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In this paper, we present a novel nested dynamic programming (nDP) algorithm for 

multipurpose reservoir optimization. The nDP algorithm is built from two algorithms: 1) 

dynamic programming (DP) and 2) nested optimization algorithm implemented with Simplex 

and quadratic Knapsack. The novel idea is to include a nested optimization algorithm into the 

DP transition that lowers the starting problem dimension and alleviates the DP curse of 

dimensionality. The nDP can solve multi-objective optimization problems, without significantly 

increasing the algorithm complexity and the computational expenses. Computationally, the nDP 

is very efficient and it can handle dense and irregular variable discretization, it is coded in Java 

as a prototype application and has been successfully tested with eight objectives at the Knezevo 

reservoir, located in the Republic of Macedonia. 

 

INTRODUCTION 

 

Historically, the two most widely used methods for optimal reservoir operation have been 

dynamic programming (DP) and stochastic dynamic programming (SDP). These two methods 

suffer from the so called “dual curse” which prevents them to be used in reasonably complex 

water systems. The first one is the “curse of dimensionality” that denotes an exponential growth 

of the computational complexity with the state – decision space dimension [1]. The second one 

is the “curse of modelling” that requires an explicit model of each component of the water 

system [2] to anticipate the effect of each system’s transition. 

The literature offers various strategies to overcome the curse of dimensionality such as 

successive approximations, incremental dynamic programming and differential dynamic 

programming [3-5]. The application of various DP and SDP methods in optimal reservoir 

operation are reviewed in [6] and for multireservoir systems in [7]. 

This paper addresses the problem of optimal reservoir operation concerning multiple 

objectives that are related to 1) reservoir releases to satisfy several downstream users competing 

for water with dynamically varying demands, 2) deviations from target water levels in the 

reservoir (recreation and/or flood control),  and 3) hydropower production that is a combination 

of the reservoir water level and the reservoir releases. Especially, the problem focus is on 

multiple water demand users. 
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Addressing such a problem with classical DP requires a reasonably high level of reservoir 

storage volume discretization, which in combination with the required releases discretization 

for meeting the demands of downstream users leads to computationally expensive formulations 

and causes the curse of dimensionality. 

We present an alternative approach, in which at each transition of the classical DP an 

additional optimization algorithm is executed to identify the optimal releases (allocations) to 

individual users. Because this second optimization algorithm is ‘nested’ inside the DP algorithm 

we name this method ‘nested Dynamic programming’ or nDP. Two methods are developed 

depending on the allocation problem in the nested optimization: 1) Simplex for linear allocation 

problems, and 2) quadratic Knapsack method in the case of nonlinear problems. The nDP 

algorithm was tested at the multipurpose reservoir Knezevo of the Zletovica hydro-system 

located in the Republic of Macedonia, with the purpose of urban water supply, agriculture, 

ecological flow and hydropower. 

 

nDP ALGORITHM 

 

Typically in a single-reservoir optimization problem there is only one decision variable at each 

time step to be identified - the reservoir release. The problem characteristic considered in this 

paper is that this release needs to be divided between n competing users, which multiply the 

number of decision variables. This problem, if posed in the dynamic programming setup, uses 

the Bellman equation [1]: 
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where st is the state vector representing discrete reservoir storage volume at the beginning of the 

period t; T is the number of stages in the sequential decision process; Vt(st) is the state value 

function; at={a1t,a2t..ant}  is the actions or decision variables vector during the period t; 

gt(st,st+1,at) is the reward from period t when the current state is st, the action at is executed and 

the resulting state is st+1. The reservoir model is based on the mass balance equation: 
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where qt is the reservoir inflow, et are evaporation losses and rt 
is the total reservoir release. 

The nDP contains a nested optimization algorithm inside the DP algorithm that will optimally 

allocate the total reservoir release rt to different users corresponding to their demands Unt. 

 

The nDP algorithm pseudo code is presented below: 

 

1. Discretize storage st and st+1 in m intervals, i.e., si,t  (i = 1, 2, …, m), sj,t+1 (j = 1, 2, …, 

m). 

2. Set time at t=T-1 

3. Set reservoir level i=1 (for time step t) 

4. Set reservoir level j = 1 (for time step t+1) 

5. Calculate the total release rt using Equation (2)  

6. Execute the nested optimization algorithm to allocate the total release to all users 

{r1t,r2t,..rnt} in order to meet their individual demands. 

7. Calculate the first group of the objective functions (related to users’ releases). 



8. Calculate the second group of the objective functions (related to deviations from target 

reservoir levels). 

9. Using the reservoir levels and the user releases, calculate the third group of the 

objective functions (related to hydropower production). 

10. Objective functions from step 5, 8 and 9 are combined into the main objective function 

V(st). 

11. j=j+1. 

12. If j ≤ m, go to step 5. 

13. Select the optimal actions (decision variables) {a1t,a2t,..ant,}opt, which consist of the 

optimal transition {st+1}opt and the users’ releases {r1t,r2t..rnt}opt  that give the minimal 

value of  V(st). 

14.  i = i +1. 

15. If i ≤ m, go to step 4. 

16. If t = 0, stop. 

17. t = t -1. 

18. Goto step 3.  
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Figure 1. Transition at time step t of the nDP algorithm 

 

The nDP method incorporates optimal allocation algorithm and directly updates the state value 

function V(st) at each time step consequently changing the optimal reservoir policy and solving 

the multiobjective optimization problem. 

 



Nested optimal allocation algorithms 

 

Depending on the formulation different methods can be used to optimally allocate the total 

reservoir release rt between n water users that is described with its demand dit and 

corresponding weight wit at time step t. For the nested optimal allocation the following variables 

are relevant: d1t,d2t,…dnt are users demands; w1t, w2t ,…wnt are the corresponding demands 

weights; rt  is the reservoir release; r1t..rnt  are the users’ releases, v is the release discretization 

value. 

Simplex method 

 

The Simplex method is used for solving the linear programming optimization problem: 
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subject to: 
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Quadratic Knapsack method 

 

The quadratic Knapsack method is used when the objective function is non-linear – this is the 

case when the squared weighted deficit of the demand objectives is to be minimized. The 

reservoir release
 
rt is discretized in v levels. The objective function is to minimize: 

 

 




n

i

ititit rdw

1

2
min

       (4) 

 

With the same constraints previously described in Equation (3a-3c). 

 

nDP DEMOSTRATION  

 

The nDP algorithm was implemented on the hydro system Zletovica located in the eastern part 

of the Republic of Macedonia. The hydro system Zletovica is composed of the reservoir 

Knezevo, several water distribution canals used for delivering water to downstream users and 

associated infrastructure structures. The reservoir Knezevo is a multipurpose reservoir, and its 

main objective is to provide drinking water to several towns and populated areas in the region, 

as well as to provide environmental flows in Zletovica, water for agriculture and hydropower 

(in the exact order of decreasing priority).  



The Knezevo reservoir optimization problem has eight objectives and six decision 

variables. In this study, we aggregate all objectives into one objective function being the 

weighted sum of squared deviations over the entire time horizon: 
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Referring to the Belman Equation (1) the function for reward has the following form: 
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where Oi is describing each objective i, st is the reservoir storage volume at time step t, wit is the 

objective weight for a given objective i and time step t and Dit is the difference between the 

target value and decision variable for a given objective i and time step t, ci is the balance 

coefficient explained below in this chapter. 

The first two objectives (O1 and O2) are deviations from the recreation and the flood 

control water level targets: 
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where Rt  and Ft are the recreation and the flood control reservoir water level targets. 

Based on the hydro system configuration, our formulation has five users with water 

demand related objectives (O3-O7). These are the following users: 1) the towns of Zletovo and 

Probishtip (one intake), 2) the upper agricultural zone, 3) the towns of Shtip and Sveti Nikole 

(one intake), 4) the lower agricultural zone, and 5) the minimum environmental flow, with their 

respective demands d3t, d4t, d5t, d6t, d7t. The objectives O3-O7 are calculated using the Equation 

(15): 
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where rit is the release (decision variable) for a given objective (i) and time step (t). 

The last objective (O8) is related to hydropower. Its corresponding formulation uses w8t as 

the hydropower energy production weight and D8t is calculated from: 










tttt

t
t

phifph

pif
D

          ,

h                    ,0 t
8       (11) 

 

where ht   is the hydropower demand and pt is the hydropower production. 



The action vector at consist of six actions or decision variables: st+1, r3t, r4t, r5t, r6t, r7t 

which are the next optimal reservoir state and water user releases at each time step. With the six 

decision variables it is possible to calculate all other variables and objective functions. 

The nDP algorithm was tested on 40-year monthly data from 1951 to 1990 (480 time-steps 

data arrays). The reservoir operation volume is 361023 m  which was discretized in or 115 

equal levels ( 3310200 m  each). The recreation reservoir level was set at 1035 [amsl] while the 

flood control reservoir level was set at 1058 [amsl]. The objective related to the water level has 

the lowest priority weight of 0.04 and demand of 1.5 GWh per month.  

Four different scenarios were considered in this case study to test and evaluate the 

proposed nDP algorithm and to compare results using the two nested optimization methods. 

The first and the third scenario employed the Simplex, while the second and the fourth the 

quadratic Knapsack. In the quadratic Knapsack the discretization was set to 50. The two sets of 

weights were used as presented in Table 1. 

 

Table 1. Simulations weights 

 Simulation w1 w2 w3 w4 w5 w6 w7 w8 

1 and 2 0.05 0.05 0.25 0.1 0.25 0.1 0.16 0.04 

3 and 4 0.05 0.05 0.25 0.075 0.3 0.075 0.16 0.04 

 

The four scenario optimization results are presented below in Figures 3, 4, and 5. The 

Figures 3,4 and 5 present the comparison of the sums of 1) min and max objectives deviations, 

Equations (8-9), 2) water user’s deficits, Equation (10) and 3) hydropower deficit, Equation 

(11), over the entire time horizon respectively. 

The comparison between the first and second, and the third and fourth scenario 

considering the Figures 3, 4 and 5 demonstrate that the squared deficits formulations give better 

overall results. This is because the quadratic Knapsack is more suitable nested optimization 

algorithm than the Simplex regarding the overall objective function. On the other hand, as 

expected, the Simplex is almost completely satisfying the towns demand, which are higher 

priority versus other objectives that is shown in Figure 4. 

One can also see that the O5 weight increase shown in Table 1, in the third and fourth 

scenario has an impact. The result is that more water is allocated to the O5. The O5 deficit 

reduction was achieved at the expense of O6 for which the total deficit is increased shown in 

Figure 4. This demonstrates that by changing the weights in accordance with the user 

preferences it is possible to create different optimal reservoir policies and proves that the nDP 

works as designed.  

 



 
 

Figure 3. Comparison of the sum of min and max deviation over the entire modeling horizon (in 

meters) for the four scenarios 

 

 
 

Figure 4. Comparison of the sum of users’ deficit over entire modeling horizon (in 10
3
m

3
) for 

the four scenarios 

 

 
 

Figure 5. Comparison of the sum of hydropower deficit over the entire modeling horizon (in 

MWh) for the four scenarios 



 

CONCLUSIONS 

 

This article presented the new algorithm nDP that can alleviate the curse of dimensionality in 

optimal reservoir operation in case of multiple users. The nDP algorithm was implemented in 

the Zletovica river basin case study with eight objectives and six decision variables. The nDP 

algorithm has the following advantages: (1) It effectively alleviates the DP curse of 

dimensionality in optimal reservoir operation in presented case study. (2) Computationally, it is 

very efficient and runs fast on standard personal computers. The presented simulation time was 

under five minutes. (3)The algorithm allows for employing dense and variable discretization on 

the reservoir volume and release. (4) It supports using a variable weight at each time step for 

each objective function. (5) The method presented can be applied to the SDP, RL and other 

similar algorithms. 

Further research will be focused on implementing the nDP methodology in stochastic 

dynamic programming and on the reinforcement of learning algorithms for optimal reservoir 

operation. 
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