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Abstract— We study the two-user MIMO block fading two-
way relay channel in the non-coherent setting, where neither
the terminals nor the relay have knowledge of the channel
realizations. We analyze the achievable sum-rate when the
users employ independent, isotropically distributed, unitary input
signals, with amplify-and-forward (AF) strategy at the relay
node. As a byproduct, we present an achievable pre-log region
of the AF scheme, defined as the limiting ratio of the rate
region to the logarithm of the signal-to-noise ratio (SNR) as the
SNR tends to infinity. We compare the performance with time-
division-multiple-access (TDMA) schemes, both coherent and
non-coherent. The analysis is supported by a geometric interpre-
tation, based on the paradigm of subspace-based communication.

I. INTRODUCTION

We consider a three-node network where one node acts as

a relay to enable bidirectional communication between two

other nodes (terminals). We assume that no direct link is

available between the terminals, a setup often denoted as the

separated two-way relay channel (sTWRC). The system is

assumed to operate in the half-duplex mode where the nodes

do not transmit and receive signals simultaneously.

Since half-duplex relay systems suffer from a substantial

loss in terms of spectral efficiency due to the pre-log factor

1/2, a two-way relaying protocol has been proposed to over-

come the spectral efficiency loss [1], [2]. Also, the analog

network coding (ANC) based on self interference cancelling

has been employed for improving the performance of the two-

way system in [2]–[4].

There have been substantial recent efforts to characterize

the performance bounds of the two-way relay channel, and

finding the optimal transmission strategy (capacity region) for

the two-way relay with a single relay node has lately attracted

a lot of attention. Results for the achievable rate regions

of different relaying strategies including amplify-and-forward

(AF), decode-and-forward (DF), compress-and-forward (CF),

etc., have been reported in [5], [6] and [2], [3], [7]–[9].

These works address the so called coherent setup where

some amount of channel knowledge at the terminals and/or

at the relay is assumed. In contrast to these approaches, we

focus on the non-coherent communication scenario where the

terminals and the relay are aware of the statistics of the fading

but not of its realization, i.e. they have neither transmit nor

receive channel knowledge. We note that this setup is different

from the one analyzed in [10] where the authors address the

case with multiple relays, and denote as ”non-coherent” the

setup when the relays do not have any knowledge of the

channel realizations, but the terminals have receive channel

knowledge.

Studying the capacity in the non-coherent setting is funda-

mental to the characterization of the performance loss incurred

by the lack of a priori channel knowledge at the receiver,

compared to the coherent case when a genie provides the

receiver with perfect channel state information. Further, it

gives a fundamental assessment of the cost associated with

obtaining channel knowledge in the wireless network.

The exact characterization of the capacity region for two-

way relaying channels in the non-coherent regime is an open

problem, even under the high signal-to-noise-ratio (high-SNR)

assumption. As a step towards the characterization of the

capacity region in the high-SNR regime, we will concentrate

on the performance of the amplify-and-forward (AF) strategy

and derive a lower bound on the achievable rate region. As a

byproduct of the analysis, we will present an achievable pre-

log region of the AF scheme, defined as the limiting ratio of

the rate region to the logarithm of the SNR as the SNR tends to

infinity. The motivation to study the pre-log region is the fact

that it is the main indicator of the performance of a particular

relaying strategy in the high-SNR regime.

Notation: Uppercase boldface letters denote matrices

and lowercase boldface letters designate vectors. Uppercase

calligraphic letters denote sets. The superscript H stands for

Hermitian transposition. We denote by p(R) the distribution

of a random matrix R. Expectation is denoted by E[·] and

trace by tr(·). We denote by IN the N × N identity ma-

trix. Furthermore, CN (0, σ2) stands for the distribution of a

circularly-symmetric complex Gaussian random variable with

covariance σ2. For two functions f(x) and g(x), the notation

f(x) = o(g(x)), x → ∞, means that limx→∞ |f(x)/g(x)| =
0. Finally, log(·) indicates the natural logarithm and det(·)
stands for the determinant of a matrix.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Two-way Relaying in the half-duplex Mode

We consider a wireless network with two users, A and B,

one relay node R, and no direct link between the terminals. All

transceivers (terminals and relay) work in a half-duplex regime

i. e. they can not transmit and receive simultaneously. We

assume a block Rayleigh model where the channel is constant

in a certain time block of length T , denoted as coherence time.

Although a block-fading structure represents a simplification

EUSIPCO 2013 1569744795
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of reality, it does capture the nature of fading and yields

results that are similar to those obtained with continuous

fading models [11]. The communication takes part in two

Fig. 1. AF in two-way relaying

phases, each of duration T . The first phase is the multiple

access (MA) phase, where both users simultaneously transmit

their information. The signals transmitted from the users are

combined at the relay R, which performs a certain operation

on the received signal, depending on the relaying strategy. In

the next phase, denoted as broadcast phase (BC), the relay R

broadcasts a signal to both users. Based on the received signal

and the knowledge about its’ own transmitted signal, each user

decodes the information from the other user. We address the

MIMO setup where user A and user B employ MA and MB

transmit antennas respectively, and the relay has MR antennas.

Within the MA phase of duration T , the channel between

A and R is denoted as HAR and the channel between R and

A in the BC phase as HRA. We assume that these channel

realizations are independent. The elements of HAR and HRA

are i. i. d. circular complex Gaussian, CN (0, 1). Similarly, the

channel between B and R in the MA phase is denoted as HBR

and the channel in the BC phase as HRB , where HBR and

HRB are independent, i. i. d. CN (0, 1) entries.

The signal transmitted from user A is a M×T matrix XA ∈
XA, where XA is the codebook of A. Similarly, user B sends

a M × T transmit matrix XB from the codebook XB . P is

the average transmit power for one transmission of user A and

user B and PR is the average power for one transmission for

the relay as PR. For fair comparison, we use the total network

power constraint, 2P +PR = Ptot. When no assumptions are

made about the network geometry (topology), results from the

coherent setup [12] suggest that the power allocation P =
PR/2 = Ptot/4 maximizes the SNR per receive antenna.

B. Problem Formulation

We are interested in the individual rates (in bits/s/Hz) for

the links A → B and B → A respectively, defined as

RA
.
=

1

2T
I (XA;YB | XB) ;

RB
.
=

1

2T
I (XB;YA | XA) , (1)

subject to E
[

tr
(

XAX
H
A

)]

≤ PT , E
[

tr
(

XBX
H
B

)]

≤ PT ,

and E
[

tr
(

XRX
H
R

)]

≤ PRT .

The pre-log factor 1

2
in the individual rates is caused by the

half-duplex constraint, and the factor 1

T
scales the information

rates in bits/s/Hz. Additionally, we say that a rate pair (R1, R2)
is achievable if there is a strategy which attains RA = R1 and

RB = R2 simultaneously.

C. Amplify-and-forward (AF) Two-way Relaying

According to the AF strategy, each relay only forwards the

received signal and transmits it to user A and user B in the

BC phase without any decoding. At the receiver side, the

users benefit from the side information they have about the

self-interference, when decoding the signal. As comparison,

the decode-and-forward (DF) strategy would require decoding

at the relay.This implies that the achievable rate region with

DF is limited by the achievable rate region for the multiple

access channel with two users, employing respectively MA

and MB transmit antennas, and a receiver employing MR

receive antennas. This system, on the other hand is upper-

bounded by the MIMO point-to-point channel with MA+MB

transmit and MR receive antennas [13]. We know from [13],

[14] that, unless MR ≥ MA + MB , there is a performance

loss associated with employing more transmit than receive

antennas.

Compared to DF, with AF the relay requires only MR =
max(MA,MB) antennas, since each user can use his trans-

mitted signal as side information in the decoding. This is the

main motivation for choosing AF as preferred strategy.

In the following, we will concentrate on the case MA =
MB = MR

.
= M , but the results can be easily extended to

the case MA 6= MB and MR = max(MA,MB). Additionally,

we will assume that T ≥ MA+MB, which is usually fulfilled

in practical systems of interest.

With this assumptions, after the MA phase, the signal

received at relay R is given as

YR = HARXA +HBRXB + ZR, (2)

where ZR is the noise matrix at the relay R, with elements

which are i. i. d. complex Gaussian, CN (0, σ2).
According to the AF protocol, in the BC phase the relay R

broadcasts the signal

XR =
√
γRYR, (3)

where γR = PR

2P+σ2 is a scaling factor.

Due to symmetry, it suffices to analyze the signal received

by user B, which is given by

YB =
√
γRHRBHARXA+

√
γRHRBHBRXB +WB. (4)

WB is the equivalent noise at user B, having contribution

from the relay noise as well

WB =
√
γRHRBZR + ZB , (5)

where ZB is the noise matrix at the user B, with elements

which are i.i.d. complex Gaussian, CN (0, σ2). We note that

the elements of WB are not Gaussian, and have variance

ν2 = MγRσ
2 + σ2. (6)

2
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By substituting HA = HRBHAR and HB = HRBHBR we

write YB in the following form

YB =
√
γRHAXA +

√
γRHBXB +WB. (7)

We observe that the term
√
γRHBXB is self-interference. We

note that this therm can not be subtracted from the received

signal, since we do not know the channels and we do not

assume that the channels are reciprocal, i. e. that, for example,

HBR = HH
RB . At first sight, it seems that it is difficult to

decode the signal of interest XA, without the knowledge of

HB . However, by knowing its own transmitted signal XB ,

user B actually knows the ”direction” of self-interference and

can use this knowledge in the decoding. We also note that the

random matrices HA and HB which represent the effective

channels of user A and user B respectively, are products of

Gaussian matrices and as such, not Gaussian. Further, HA and

HB are not independent.

III. PRELIMINARIES

A. Capacity of the MIMO Point-to-point Channel

The non-coherent MIMO point-to-point channel is a starting

point for the analysis of the non-coherent MAC. The system

equation is given as

Y = HX+W, (8)

where X ∈ CM×T is the transmit matrix with power constraint

E
[

tr
(

XHX
)]

≤ PT , H ∈ CN×M is the channel matrix, with

i. i. d. CN (0, 1) entries and W ∈ CN×T is the noise matrix,

with i. i. d. CN (0, σ2) entries. The SNR per receive antenna

is P
σ2 . When N ≥ M and T ≥ M+N , the high-SNR capacity

of this channel is given by [13]

CM,N = M

(

1− M

T

)

log2
P

σ2
+ cM,N + o(1), (9)

where cM,N is a term which depends only on M,N and T , but

does not depend on the SNR and o(1) is a term which vanishes

at high SNR. The key element exploited in [13] to establish

(9) is the optimality of isotropically distributed unitary input

signals in the high-SNR regime [14].

Definition 1: We say that a random matrix R ∈ CM×T , for

T ≥ M , is isotropically distributed (i. d.) if its distribution is

invariant under rotation

p(R) = p(RQ), (10)

for any deterministic unitary matrix Q ∈ CT×T .

The optimal input distribution is of the form X =
√

PT
M

V,

where V ∈ C
M×T is uniformly distributed in the Stiefel

manifold, VC

T,M which is the collection of all M × T unitary

matrices (which fulfill VVH = IM ).

B. Geometric interpretation

The fact that the optimal input has isotropic directions

suggests the use of a different coordinate system [13], where

the M × T transmit matrix X is represented as the linear

subspace ΩX spanned by its row vectors, together with an

M ×M matrix CX which specifies the M row vectors of X

with respect to a canonical basis in ΩX

X → (CX,ΩX)

C
M×T → C

M×M × GC

T,M , (11)

where GC

T,M denotes the collection (set) of all M -dimensional

linear subspaces of CT and is known as the (complex) Grass-

mann manifold, with (complex) dimension dim(GC

T,M ) =
M(T −M).

For i. d. unitary input signal X, the information-carrying

object is the subspace ΩX, i. e. I(X;Y) = I(ΩX;Y), which

defines the Grassmann manifold GC

T,M as the relevant coding

space. Additionally, dim
(

GC

T,M

)

equals the pre-log term in

the capacity expression (number of d. o. f.).

The instrumental in the derivation of (9) is the calculation

of the entropy of an isotropically distributed matrix with the

help of the decomposition (coordinate transformation) (11).

Namely, for an i. d. random matrix R ∈ CM×T admitting

the decomposition (11), R → (CR,ΩR), the entropy h(R) is

calculated as

h(R) ≈ h(CR) + log2 |GC

T,M |
+ (T −M)E

[

log2 det
(

RRH
)]

. (12)

The term |GC

T,M | is the volume of the Grassmann manifold

GC

T,M and appears in the capacity expression due to the

coordinate transformation.

IV. DERIVATION OF THE ACHIEVABLE PRE-LOG REGION

We will assume independent, unitary, isotropically dis-

tributed input signals XA and XB , of the form

XA =

√

PT

M
VA; XB =

√

PT

M
VB, (13)

where VA are VB are uniformly distributed on the Stiefel

manifold VC

T,M . Although we do not know the optimal joint

distribution p(XA,XB) in general, this assumption is moti-

vated by the results for the capacity achieving input distribu-

tion in the point-to-point case [13]. We note that by making

this assumption, we actually derive a lower bound on the AF

performance in the two-way relay channel.

A. Analysis of I (XA;YB | XB) and I (XB;YA | XA)

We start by evaluating the expressions of the mutual infor-

mation of interest. We note that, due to symmetry, it suffices

to analyze the mutual information between user A and user B,

given by

I (XA;YB | XB) = h(YB | XB)−h(YB | XA,XB). (14)

We start by deriving h(YB | XB). Since conditioning does

not increase entropy, we can write

h(YB | XB) ≥h(YB | XB,HB = HRBHBR)

≈h(
√
γRHRBHARXA | HRB)

=MT log2 γR + h(HARXA)

+ME
[

log2 det(HRBH
H
RB)

]

. (15)

3
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We note that HARXA is isotropically distributed, as in (10).

Hence, from (12) we have

h(HARXA) =MT log2
PT

M
+ h(CHARVA

) + log2 |GC

T,M |
+ (T −M)E

[

log2 det
(

HARH
H
AR

)]

=MT log2
PT

M
+ h(HAR) + log2 |GC

T,M |
+ (T −M)E

[

log2 det
(

HARH
H
AR

)]

=MT log2
PT

M
+M2 log2 πe+ log2 |GC

T,M |
+ (T −M)E

[

log2 det
(

HARH
H
AR

)]

. (16)

What remains is to evaluate h(YB | XA,XB). We start

by observing that given XA and XB , YB is not Gaussian,

since HA, HB and WB are not Gaussian. Nevertheless, the

following holds

h(YB | XA,XB) ≤ h(NB), (17)

where NB is Gaussian with the same covariance matrix as the

one of YB | XA,XB ,

E
[

NHN
]

= E
[

YH
BYB | XA,XB

]

= γRPTVH
AVA + γRPTVH

BVB + ν2IT . (18)

Hence, we can write

h(YB | XA,XB) ≤ME[log2 det(ν
2IT + γRPTVH

AVA

+ γRPTVH
BVB)] + log2 (πe)

TM

=ME[log2 det(I2M +
γRPT

ν2
VH

AVA

+
γRPT

ν2
VH

BVB)] +MT log2
(

πeν2
)

≈ME[log2 det(V
H
AVA +VH

BVB)]

+ 2M2 log2
γRPT

ν2
+MT log2 πeν

2.

(19)

From (15), (16) and (19), for I(XA;YB | XB) we obtain

I(XA;YB | XB) ≥M(T − 2M) log2
γRPT

ν2

+ log2 |GC

T,M | −MT log2 M

+ (T −M)E
[

log2 det
(

HARH
H
AR

)]

+ME
[

log2 det(HRBH
H
RB)

]

−ME
[

log2 det(V
H
AVA +VH

BVB)
]

−M(T −M) log2 πe

=M(T − 2M) log2
γRPT

ν2

+ log2 |GC

T,M | −MT log2 M

+ TE
[

log2 det
(

HARH
H
AR

)]

−ME[log2 det(V
H
AVA +VH

BVB)]

−M(T −M) log2 πe, (20)

where the last equation follows from the fact that

E
[

log2 det
(

HARH
H
AR

)]

= E
[

log2 det(HRBH
H
RB)

]

. (21)

Now, if we assume the power allocation P = PR/2, in the

high SNR regime (when σ2 → 0), we have that γR ≈ 1 and

ν2 ≈ Mσ2 + σ2. Hence, (20) becomes

I(XA;YB | YB) ≥M(T − 2M) log2
PT

(σ2 + σ2

M
)M

+ log2 |GC

T,M | −MT log2 M

+ TE
[

log2 det
(

HARH
H
AR

)]

−ME[log2 det(V
H
AVA +VH

BVB)]

−M(T −M) log2 πe. (22)

Having obtained (22), we can write the pre-log factors of

the individual users. We recall that the corresponding pre-log

factors are defined as

ΠRA

.
= lim sup

P

σ2 →∞

RA(
P
σ2 )

log P
σ2

;

ΠRB

.
= lim sup

P

σ2 →∞

RB(
P
σ2 )

log P
σ2

, (23)

where RA and RB are defined in (1). From (22) we get

ΠRA
= ΠRB

=
M

2

(

1− 2M

T

)

. (24)

We note that these pre-log factors are achievable when both

users transmit simultaneously, which means that the pre-log

factor of the sum-rate RA+B is given by

ΠRA+B
= ΠRA

+ΠRB
= M

(

1− 2M

T

)

(25)

On the other hand, the maximum achievable rates for user A

and user B respectively are obtained when the other user is

silent,

ΠRA,max = ΠRB ,max =
M

2

(

1− M

T

)

, (26)

which is the pre-log factor of a point-to-point channel with

M transmit antennas (only normalized by 1/2 due to the two-

way relaying protocol). Hence, the following pre-log pairs are

achievable

(ΠRA
,ΠRB

) =

(

M

2

(

1− M

T

)

, 0

)

;

(ΠRA
,ΠRB

) =

(

0,
M

2

(

1− M

T

))

;

(ΠRA
,ΠRB

) =

(

M

2

(

1− 2M

T

)

,
M

2

(

1− 2M

T

))

. (27)

Remark 1: We note that the pre-log factor (25)of the

sum-rate achievable with independent, i. d. unitary inputs is

at the same time an upper bound for the achievable pre-log

factor of the sum rate. A heuristic argumentation is as follows.

Let us first note that h(YB | XB) ≤ h(YB). The entropy of

YB , on the other hand, is of the order of the entropy of the

received signal Y in the point-to-point MIMO system with

MA + MB = 2M transmit antennas and MB = M receive

antennas. This entropy, according to [13], (Section IV and

Appendix D), is of the order

h(Y) ∼ MT log2 SNR+ CM , (28)

4
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where CM is a constant which does not depend on the SNR.

After combining with h(YB | XA,XB) (19), we obtain the

same pre-log factors as in (24) and (25).

Remark 2: The term E
[

log2 det
(

HARH
H
AR

)]

in the

expression (22) can be further written as

E
[

log2 det
(

HARH
H
AR

)]

=

M
∑

i=1

E
[

log2 χ
2
2i

]

, (29)

where χ2
2i is Chi-square distributed of dimension 2i [13]. The

term E[log2 det(V
H
AVA + VH

BVB)], on the other hand, is a

measure for the ”orthogonality defect” of the matrix V =
(

VA

VB

)

and appears in the expression since user A and user

B do not cooperate, i. e. they send independent messages.

The exact characterization of this term is of interest when we

are interested not only in the pre-log factors, but also in the

constant terms which appear in the capacity expressions. The

evaluation of this therm is a topic of our current work.

V. EXAMPLES AND PRACTICAL CONSIDERATIONS

An achievable pre-log region for the two-way relay channel

in the non-coherent setup, with M = 2 and T = 12 is shown

in Fig. 2. We note that we use the fact that any point (pre-log

pair) which lies on the line between two corner points is also

achievable (by time sharing).

The region is compared to the TDMA case, both coherent

and non-coherent. For the particular choice of the parameters,

the joint scheme outperforms TDMA, both coherent and non-

coherent. Actually, it can be shown that, given that T is

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

Π
A
 [b/s/Hz]

Π
B
 [
b
/s

/H
z
]

Pre−log region: M
A
=M

B
=M

R
=M=2, T=12

 

 

non−coherent AF

non−coherent TDMA

coherent TDMA

(0,5/6)

(5/6,0)

(2/3,2/3)

Fig. 2. An achievable pre-log region for the block two-way relay channel.
The coherence time is T = 12, user A and B have MA = MB = 2 antennas.

sufficiently large, the two-way relaying AF scheme always

outperforms TDMA. It follows directly from (27) that when

T ≥ 3M two-way relaying with AF outperforms non-coherent

TDMA. When T ≥ 4M , two-way relaying with AF outper-

forms coherent TDMA as well.

In the context of emerging systems such as 3GPP LTE or

IEEE 802.16 WiMAX, symbol periods of around 10− 20 ms

still exhibit flat-fading and the block fading model applies. For

pedestrian velocities, T is in the range of several hundreds,

for vehicular velocities up to v = 120 km/h, T is around

10, and for high-speed trains with velocities v ≥ 300 km/h,

T ≤ 5. Hence, in the first example, two-way relaying would

be preferable over TDMA for practical numbers of transmit

antennas. In the second case this would still hold for M ≤ 2.

In the last case this would only hold for M = 1 and already

for M > 1, TDMA would be the preferred strategy.
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VII. CONCLUSIONS

We presented an achievable pr-log region of the two-

way relaying channel with amplify-and-forward (AF) at the

relay node. We concentrated on the non-coherent setup where

neither the terminals nor the relay have knowledge of the

channel realizations. The performance analysis reveals that,

even without channel knowledge, the users can still benefit

from the two-phase transmission protocol in the sense that the

proposed scheme outperforms TDMA (both non-coherent and

coherent) in most cases of practical relevance.
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