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An attempt to classify dry-cured hams according to the maturation time on the basis of near infrared (NIR)
spectra was studied. The study comprised 128 samples of biceps femoris (BF) muscle from dry-cured hams
matured for 10 (n = 32), 12 (n = 32), 14 (n = 32) or 16 months (n = 32). Samples were minced and
scanned in the wavelength range from 400 to 2500 nm using spectrometer NIR System model 6500 (Silver
Spring, MD, USA). Spectral data were used for i) splitting of samples into the training and test set using 2D
Kohonen artificial neural networks (ANN) and for ii) construction of classification models using counter-
propagation ANN (CP-ANN). Different models were tested, and the one selected was based on the lowest per-
centage of misclassified test samples (external validation). Overall correctness of the classification was 79.7%,
which demonstrates practical relevance of using NIR spectroscopy and ANN for dry-cured ham processing
control.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Dry-cured ham “Kraški pršut” is a traditional Slovenianmeat product
protected with EU designation of geographical indication (Commission
implementing regulation, 2012). This protection implies that certain
consortium rules should be respected in regard to rawmaterial, process-
ing losses, chemical and sensory properties. Processing of dry-cured
ham “Kraški pršut” consists of dry salting, absence of smoking and
longmaturation period. Regarding the latter, the consortium rules re-
quire a minimum maturation period of 12 months. During seasoning,
proteins and lipids undergo intense proteolysis and lipolysis processes
and these changes affect the flavour and texture of dry-cured ham,
resulting in sensorial quality appreciated by consumers. Chemical and
sensory changes occurring through the process are strongly dependent
on the duration of the ripening processwhichhas been demonstrated in
different dry-curedmeat products (Benedini, Parolari, Toscani, & Virgili,
2012; Buscailhon & Monin, 1994; Toldra & Flores, 1998 and Virgili,
Saccani, Gabba, Tanzi, & Soresi Bordini, 2007). From the practical point
of view it would be interesting to develop cheap and rapid method
capable of detecting ham ripening stage. In the case of “Kraški pršut”
such approach would be useful for verification purposes (e.g. to detect
+386 1 2805 255.
dek-Potokar).
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if the requirement of 12 months ofmaturationwas respected) or to rec-
ognize longer maturation associated with higher quality label. Near in-
frared (NIR) spectroscopy is one of the techniques which have the
potential for such purposes. Its usefulness has already been proven for
the prediction of chemical and physical characteristics of meat and
meat products and for various classification purposes (for review see
Prevolnik, Čandek-Potokar, & Škorjanc, 2004 and Prieto, Roehe, Lavín,
Batten, &Andrés, 2009). NIR spectral information demandsmultivariate
data analysis due to its complexity (Pérez-Marín, Garrido-Varo, &
Guerrero, 2007). Artificial intelligent methods are often applied for
the classification since their primary target is to distinguish objects
or groups or populations. Their advantages are in ability to handle
with non-linear data, highly correlated variables and potential for
identification of problems or classification (Cartwright, 2008). Artificial
neural networks (ANN) were lately tested for many problems in meat
production and technology such as carcass classification, quality control
of raw material, meat processing, meat spoilage or freshness and
shelf-life evaluation, detecting off-flavours, authenticity assessment,
etc. (for review see Prevolnik, Škorjanc, Čandek-Potokar, & Novič,
2011). To our knowledge there is no literature data on the prediction
of maturation time in any of dry-cured meat products based on NIR
spectral information. Therefore the present study aimed to test if
dry-cured hams can be classified into different maturation classes (10,
12, 14 and 16 months) on the basis of spectral information by means
of ANN.

https://core.ac.uk/display/35330246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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Table 1
Chemical composition of dry-cured hams (means and standard deviations).

Maturation time (months)

Constituenta 10 12 14 16

1Moisture, g/kg 592 ± 16.1 567 ± 21.8 582 ± 15.1 564 ± 22.8
2Salt, g/kg 70.3 ± 10.38 76.7 ± 10.18 77.0 ± 8.30 78.1 ± 8.38
3Salt per dry mater, % 17.2 ± 2.03 17.7 ± 2.11 18.4 ± 1.67 17.9 ± 1.60
4Protein, g/kg 27.8 ± 1.07 29.5 ± 1.64 29.6 ± 1.07 30.1 ± 1.58
5Non-protein nitrogen,
g/kg

11.6 ± 0.51 11.8 ± 1.50 12.7 ± 1.00 12.6 ± 1.45

6Proteolysis index, % 27.1 ± 1.05 26.1 ± 3.14 27.8 ± 1.75 27.2 ± 2.55
7Intramuscular fat, g/kg 42 ± 7.3 43 ± 20.3 30 ± 9.0 40 ± 13.7

a Assessed with NIR spectroscopy using internal calibration models (Prevolnik,
Škrlep, et al., 2011) with the following chemometric parameters:

1 n = 131, sec = 4.5, R2
c = 0.89, secv = 5.0, R2

cv = 0.86
2 n = 130, sec = 1.23, R2

c = 0.97, secv = 1.44, R2
cv = 0.96

3 n = 129, sec = 0.42, R2
c = 0.92, secv = 0.46, R2

cv = 0.90
4 n = 131, sec = 0.49, R2

c = 0.81, secv = 0.55, R2
cv = 0.77

5 n = 131, sec = 0.28, R2
c = 0.88, secv = 0.36, R2

cv = 0.80
6 n = 130, sec = 0.67, R2

c = 0.78, secv = 0.83, R2
cv = 0.67

7 n = 128, sec = 3.00, R2
c = 0.88, secv = 3.16, R2

cv = 0.87.
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2. Materials and methods

2.1. Ham processing and sampling

The study comprised 128 dry-cured hams taken from regular pro-
duction in three commercial ham processing facilities (members of
consortium for Kraški pršut). The production of hams was carried out
respecting the rules of consortium for Kraški pršut. In short, the hams
from commercial crossbred pigs were trimmed into a prescribed
shape and put to salting for 2–3 weeks at 2–4 °C. According to the
rules only sea salt is allowed as a conservation additive. After the salting,
the hams were washed and left to rest in controlled atmosphere
(at 4–6 °C and 70–85% relative humidity) for 10 weeks. Following
the resting period the hams were dried (14–20 °C and 60–80% RH)
until the required weight loss had been attained. Thereafter the
open surface of the hams was coated with a mixture of pork leaf
fat, rice flower and spices (to permit ripening while preventing
further desiccation) and left to ripen. Hams were sampled after 10
(n = 32), 12 (n = 32), 14 (n = 32) and 16 months (n = 32) of sea-
soning in all three dry-cured ham processing facilities. Thereafter the
hams were boned and sampled from the central part of the dry-cured
hams containing biceps femoris and semimembranosusmuscles according
to Škrlep et al. (2012).

2.2. NIR spectra acquisition

Biceps femoris muscle samples (2 cm thick slice) were trimmed of
superficial fat tissue, cut in small pieces, frozen in liquid nitrogen and
grinded to fine dust using a laboratory mill (IKA M120, IKA Werke,
Staufen, Germany). Homogenized ham samples (app. 50 g) were put
in rectangular quartz cup (47 × 57 mm2) about 3 mm thick, covered
by paper disc and placed directly in NIRS apparatus NIR System model
6500 (Silver Spring, MD, USA). For each sample one scanning was
performed in a wavelength range from 400 to 2500 nm. Absorbance
data were collected every 2 nm as log 1/R, where R represents the
reflectance.

2.3. Dry-cured ham chemical composition

Several chemical constituents (moisture, intramuscular fat, protein,
non-protein nitrogen, salt content, the percentage of salt per dry mater
and proteolysis index) of dry-cured ham muscle biceps femoris were
determined by means of internal NIR spectroscopy calibration models
published in Prevolnik, Škrlep, Janeš, Velikonja-Bolta, Škorjanc &
Čandek-Potokar (2011). Data are presented in Table 1.

2.4. Chemometric analysis

Chemometric analysiswas performed using ANN software developed
at the National Institute for Chemistry (Ljubljana, Slovenia), written in
FORTRAN for IBM-compatible PCs and a Windows operating system.
In the present study, unsupervised Kohonen ANN and supervised
counter-propagation (CP) ANN were applied. Although both types
of ANN are comprehensively described in the literature (Dayhof, 1990;
Hecht-Nielsen, 1987; Zupan, 1994 and Zupan, Novič, & Ruisanchez,
1997), a short explanation of them is given in the next paragraphs.

In the case of unsupervised learning strategy, only the description of
objects are needed, i.e. the independent variables for the input vectors.
The properties are not given, so the map obtained shows only the rela-
tionship between the independent variables of the objects, regardless of
their property that may be known, but is not represented in object vec-
tors. The main goal of Kohonen ANN is to project or map objects from
m-dimensional into 2-dimensional space on the basis of input data
(similarity among objects). Thus Kohonen ANN is most frequently ap-
plied for visualization and clustering purposes (Zupan, 1994).
The CP-ANN is based on two-steps learning procedure. The first step
corresponds to the mapping of objects in the input layer (also called
Kohonen layer) and is identical to the Kohonen learning procedure.
The second step of the learning is supervised, which means that for
the learning procedure the response or target value is required for
each input. This input-target pairs are the input to the neural network,
which is after being trained for certain amounts of epochs, capable of
the prediction of the unknown samples. Every object excites one single
neuron. The algorithm modifies the weight of the neuron with the
weightsmost similar to the input signal and smoothes themap bymak-
ingmodulated changes to neurons in a defined “neighbourhood” of that
one. These corrections of weights are made around the neuron position
in the Kohonen and output layer (Zupan, 1994).

2.5. Selection of sample sets

Composition of the training and the test sets should guarantee that
these sets are scattered over the similar descriptor spaces and the train-
ing set is a representative set of the whole data set and Kohonen ANN
are able to select a representative training set and a test set similar to
it (Gramatica, Pilutti, & Papa, 2004).

For chemometric analysis, absorbance data collected every 2 nm
(n = 1032) were compressed into 262 data points by averaging
four sequential original measurements. Each sample is represented
as a combination of 262 input variables or descriptors. For this
unsupervised step only input variables are needed. The distribution
of samples (n = 128) in the top map of the Kohonen ANN was used
to divide samples into the training and test set. Splitting of the sam-
ples was performed for each of four maturity classes separately (10,
12, 14 and 16 months). Samples of certain maturity class (n = 32)
were trained using 4 × 4 Kohonen net for 100 epochs. After the train-
ing, each sample obtained the location in the Kohonen map, i.e. in a
rectangular grid of neurons. Among the samples sited on the same neu-
ron, the one with the shortest distance to the neuron was selected for
the training set, while the remaining sample(s) was (were) placed in
the test set. For eachmaturity class 16 samples were selected for training
set and the others were placed into the test set. The final training set
(n = 64) was used for the development of calibration models and test
set (n = 64) for independent external validation of models.

2.6. Development and validation of models

In the present study, the CP-ANN was employed as a classification
model. Different models were prepared varying the net size, i.e. the
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number of neurons in x and y direction (8 × 8, 10 × 10 and 12 × 12)
and number of epochs (10, 30, 50, 70, 100, 150, 200 and 300), while
the other net parameters remained constant (no toroid boundary
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Fig. 1. Threshold determination for the best three models: a) model with 10 × 10 neurons tra
with 12 × 12 neurons trained for 200 epochs.
conditions, triangular type of neighbourhood correction, minimal and
maximal learning rates 0.01 and 0.5, respectively). In this step of analy-
sis, besides the input variables (262 spectral data points), the target or
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output variableswere also needed. The target variable i.e.maturity class
with four levels (10, 12, 14 and 16 months of ripening) was given as a
combination of four discrete values (ones and zeros) for each of the
four levels for each sample. After the training, for each sample, a combi-
nation of four real numbers between 0.0 and 1.0 (denoting probability
to belong to a respective class) was obtained. To convert this informa-
tion into a “prediction of maturation class” the real numbers had to be
transformed first to discrete values (ones and zeros). For that, it was
necessary to determine the threshold values for each of the four classes
below which all the predictions were negative and denoted by a zero
(which means that certain sample does not belong to the certain class),
while the predictions above the threshold were positive and denoted
by one. The threshold values were determined for all developed models
in order to be able to obtain class predictionswhen testing the predictive
ability on 64 independent samples (external validation). Classification
performance was evaluated through the number of correctly classified
samples in the independent set.
3. Results and discussion

3.1. Determination of threshold values

Classification of samples according tomaturation timewasperformed
using a nonlinear modelling method, i.e. CP-ANN. Prior to the interpreta-
tion of the results some presentation of the chemometric analysis should
be given, particularly of the threshold values determination. When
predicting classes using CP-ANN, the result of prediction is real numbers
for every class, which have to be converted back to the discrete values.
This is a demanding task related to the classification which requires a
determination of thresholds above which the prediction of a certain
class is positive (confirmative) and below which the prediction is nega-
tive (rejecting). In this part of the chemometric analysis we followed
the procedure described in Roncaglioni, Novič, Vračko, and Benfenati
(2004). Examples of threshold determination for three constructed
models are presented in Fig. 1. These thresholds had to be determined
separately for individual (four) classes. For each constructed model
different possible thresholds between 0.00 and 1.00 were tested. They
Table 2
Presentation of CP-ANN models for classification of hams according to the maturatio

Correctly classified samplesa

Maturation time (months)

Net size No. of epochs 10 (n = 16) 12 (n = 16)

8 × 8 10 11 8
8 × 8 30 13 10
8 × 8 50 13 10
8 × 8 70 11 12
8 × 8 100 13 10
8 × 8 150 13 11
8 × 8 200 11 11
8 × 8 300 11 13
10 × 10 10 11 8
10 × 10 30 11 10
10 × 10 50 13 11
10 × 10 70 13 12
10 × 10 100 12 13
10 × 10 150 12 12
10 × 10 200 12 11
10 × 10 300 13 12
12 × 12 10 10 8
12 × 12 30 13 12
12 × 12 50 12 12
12 × 12 70 12 11
12 × 12 100 14 12
12 × 12 150 13 12
12 × 12 200 14 11
12 × 12 300 12 11

a Independent test samples.
were chosen with regard to the values obtained from the output layer
of individual models. Below the tested threshold all predictions are de-
noted by a zero, which means that the ham sample does not belong to
certain maturity class, while the predictions above the threshold are de-
noted by one (the sample belongs to certain maturity class). If the tested
threshold is close to zero the predictions of certain class for most of the
samples from the training set would be confirmative (one). The samples
from certain class would be correctly predicted, while the predictions for
the rest of the samples would be so called false positives. On the other
hand, if the tested thresholds are close to one, themajority of predictions
for certain class would be rejected (zero). This would produce false neg-
ative predictions of the samples that actually belong to a particular class.
Among several tested thresholds (for each class of each model) one was
selected for further use (i.e. for validation of models) according to the
number of correct/wrong class predictions of the samples from the train-
ing set. As can be seen from Fig. 1, the selected threshold was located
where the sum of errors, of both false positive and false negative predic-
tions, was the lowest. The thresholds for the best three models (net with
10 × 10 trained for 100 and 150 epochs and net with 12 × 12 trained for
200 epochs) were positioned between 0.42 and 0.50 (Fig. 1). Once the
thresholds were determined, the models were validated by checking
the class-predictions of test samples respecting selected thresholds.
3.2. Classification results

Altogether, 24 CP-ANN classification models were developed in
the training step and further tested on 64 independent samples
(training set) to assess their predictive ability. Validation results
(Table 2) are presented as the number of hams that were correctly
classified according to the ripening time. In Table 2 we can examine
classification results when varying the net size (8 × 8, 10 × 10 and
12 × 12) and the number of epochs (10, 30, 50, 70, 100, 150, 200
and 300). Regarding the net size, a bit lower correctness was ob-
served in the case of a smaller net (the net with eight neurons in x
and y direction) although the differences were not substantial. A
somewhat bigger variability was caused when varying the number
of epochs used to train the net. We can observe inferior results in
n time based on spectral data.

Overall correctness
of classification
(n = 64)

14 (n = 16) 16 (n = 16)

11 8 38
11 8 42
11 8 42
12 9 44
13 8 44
13 5 42
13 10 45
11 8 43
13 6 38
12 9 42
9 10 43

10 9 44
14 10 49
14 11 49
9 8 40

10 9 44
12 6 36
12 9 46
10 11 45
10 9 42
12 8 46
12 8 45
14 12 51
15 8 46



10 12 14 16

10 12 0 0 0

12 0 13 0 0

14 3 0 14 2

16 0 1 0 10

Uncertain 1 2 2 4

Correct total 49 76.6 %

Uncertain total 9 14.1 %

b) Model: 10×10 neurons, 150 epochs

10 12 14 16

10 12 0 1 0

12 0 12 0 0

14 3 0 14 1

16 1 1 0 11

Uncertain 0 3 1 4

Correct total 49 76.6 %

Uncertain total 8 12.5 %

c) Model: 12×12 neurons, 200 epochs

10 12 14 16

10 14 0 0 0

12 0 11 0 0

14 0 0 14 0

16 1 3 0 12

Uncertain 1 2 2 4

Correct total 51 79.7 %

Uncertain total 9 14.1 %

a) Model: 10×10 neurons, 100 epochs
True  

True  

True  

Pr
ed

ic
te

d
Pr

ed
ic

te
d

Pr
ed

ic
te

d

Fig. 2. Misclassification tables with the number of correct, false and uncertain predictions
for the best three models.
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the case of the smallest number of epochs. Higher number of epochs
also produced poorer results compared to the models trained for 100
to 200 epochs, which is probably due to overfitting. The highest rate of
correctness (i.e. 79.7%) was obtained with 12 × 12 and 200 epochs.
Models with 10 × 10 neurons trained for 100 or 150 epochs produced
similar results (76.6% of correctly classified test samples) and were
thus only slightly behind the best one. When looking at the overall cor-
rectness these three models are comparable, however, differences in
prediction of single classes can be observed among them.

Further analysis of the best three models included construction of
misclassification tables (Fig. 2),whichwere obtained by the comparison
of actual and predicted classes of test samples. In misclassification
tables, correctly classified samples are presented as the diagonal ele-
ments, false positives as the upper triangle and false negative as the
lower triangle. If a sample could not be classified into a single class, it
was labelled as uncertain. In general, we can observe very good classifi-
cation accuracy for 14 month matured hams for all threemodels. There
was none or one misclassified and one or two uncertainly predicted
samples. Regarding other maturity classes, up to four samples were
wrongly and uncertainly classified. The 12 month matured hams were
most accurately predicted by the first model (10 × 10, 100 epochs),
while we can observe the most successful prediction of 10 and
16 month matured hams using the last model (12 × 12, 200 epochs).
Among these three models the best one was chosen on the basis of
the largest number of correct predictions (sum of the diagonal ele-
ments), and the smallest number of false positive predictions. Respect-
ing these criteria, the model with 12 × 12 neurons and 200 epochs
proved the best performance for class predictions. The main weakness
of this model is poorer accuracy to classify 12-months old hams which
are on the other hand better predicted using the first one (10 × 10,
100 epochs).

In Fig. 3, the predictions using the best model (12 × 12, 200
epochs) on the test set are presented in details. Besides the number
of correct, wrong and uncertain cases the probabilities to predict indi-
vidual class can be seen for all test samples. The probability of class pre-
diction decreased with maturation time as demonstrated by higher
probability rates for correctly classified hams in 10- and 12-months
groups than in 14- and 16-months groups. It is also worth noting that
10 out of 64 hamswere predictedwith similar probability into two clas-
ses The observed decline in the probabilities as well as the correctness
of the classification can be related to the chemical changes, in particular
water content and activity, of which the intensity slows down in the
course of the seasoning (from 10 to 16 months).

From the practical point of view, correct classification of hams
according to thematuration time is important from two aspects. Firstly,
a period of 12 months of maturation is required by the consortium for
Kraški pršut and secondly, longer maturation (i.e. 16 months) is associ-
ated with additional quality label. With respect to the first aspect the
worst situation that can happen is to classify a 10-month ham as 12,
14 or 16-month one. This happened with two hams, no. 11 and no.
14, being unjustifiably classified as 12- and 16-months, respectively. It
would also be undesirable to classify 12-, 14- or 16-month hams as
10-month hams because in this case a ham that fulfils the criteria of
12-months of maturation would be declassified. However, such situa-
tion did not appear with our samples (only the sample no. 51 aged
for 16-months was close to that with a probability 0.475 for class
10-months and 0.479 for 16-months, however being below a threshold
value). Considering distinction of higher quality, it is undesirable to
classify a 10, 12 or 14-month aged ham as a 16-month ham,which hap-
pened in three cases (samples no. 14, 27, 30), or to classify 16 months
old ham as less matured, which never occurred (nevertheless being
close to that; namely a similar probability was obtained for two classes
in the case of samples 57, 61, 62, 51, 60).

Despite generally satisfactory results some weaknesses of the
method must be mentioned. Firstly, some samples were classified
into two or even more classes with a similar probability (uncertain).
In the case of representative samples (or good examples) all models
produced the same resultswith high probability. In the case of untypical
samples different models produce somewhat different results. To avoid
this problem, different models for the detection of ham maturity could
be used simultaneously in such cases. It is noteworthy that 12-months
old hams which were misclassified were mainly placed into the class
of 16-months. Similarly, the majority of uncertain 16-month hams
(e.g. 57, 61, 62, 60) had similar probability for class12-months. Poor
predictions could be related to the chemical composition of individual
samples. It can be noted that dry-cured hams matured for 12 and
16 months had similar average water content (Table 1) which could
explain uncertain distinction between these two classes. On the other
hand, a lot of hams were correctly classified despite similar water con-
tent owing to the capability of NIR spectroscopy to detect other chemi-
cal (and physical) attributes. Misclassified or uncertainly predicted
samples are often atypical representatives of a certain maturity class
in relation to chemical composition. For example samples no. 14
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Fig. 3. Classification of ham samples according to the maturation time using the model with 12 × 12 neurons trained for 200 epochs based on NIR spectral information.
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(10 months) and 30 (12 months) had very low water content which
is probably the reason to be classified as 16 month matured hams. On
the contrary, 16 month matured hams no. 61 and 62 had unusually
high water content and were classified with similar probability (≈0.5)
in class 12- and 16-months. Another example is the sample no. 35
(14 months) which had similar probability (0.2–0.3) to belong to all
four classes. This sample had an average water content with relatively
low salt content which is characteristic for less matured hams and on
the other hand a high proteolysis index (non-protein nitrogen content)
known to increase with the maturity. The reason for uncertainty
may be related to the differences in a dynamics of dehydration and
salt intake and consequently other biochemical processes during
the ripening which are affected by morphological or quality charac-
teristics of the green hams (Čandek-Potokar & Škrlep, 2012).

In the literature we found one scientific paper on the prediction of
ham seasoning time reported by Lerma-García, Herrero-Martínez,
Ramis-Ramos, Mongay-Fernández, and Simó-Alfonso (2009) who ap-
plied a capillary zone electrophoresis to predict curing time of Spanish
hams using peptide profiles. However, no application of NIR spectrosco-
py for this purpose has been documented although the method was
recently used for numerous different analyses on dry-cured hams (for
review see Prieto et al., 2009). Moreover, several successful applications
of NIR spectroscopy in a combination with ANN were reported in meat
production and technology (a reviewof Prevolnik, Škorjanc, et al., 2011;
Prevolnik, Škrlep, et al., 2011) and the results of the present study rep-
resent another promising example.
4. Conclusion

In the present study, a discrimination of dry-cured hams according
to maturation time (10, 12, 14, 16 months) based on NIR spectral in-
formation and application of ANN was performed. The accuracy of
prediction (using a net 12 × 12 with 200 epoch) in external validation
was 79.7%, with 14.1% of uncertain predictions and no false positive
ones. This result indicates the practical relevance of the studied ap-
proach. It should be noted that the results are valid for one type of the
product (Kraški pršut). The potential for general use on different types
of dry-cured hams needs verification.
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