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Abstract— This paper concerns the TCP (Transmission 

Control Protocol) vulnerabilities which gives space for a 

DoS (Denial of Service) attacks called TCP-SYN flooding 

which is well-known to the community for several years.  

The paper shows this attack in wireless as well as wired 

networks using perl synflood script, Wireshark network 

analyzer server, Windows 2008 server, and OPNET 

simulation environment. Using these tools an effects of this 

attack are shown. Finally, some effective practical 

mitigation techniques against SYN flooding attack for 

Linux and Windows systems are explained. 

Index Terms  - DoS, Flooding, TCP-SYN, Wireshark, OPNET 

Modeler 

I.  INTRODUCTION  

Nowadays, there are many attacks intended to deprive 

legitimate users from accessing any kind of network resources 

and functions. Any act which denies legitimate use of a 

service can be classed as a Denial of Service (DoS) attack. A 

DoS attacks are major security threats to the services provided 

through the Internet resulting in large scale revenue losses. 

One specific kind of DoS attack which is large-scale 

cooperative attack, typically launched from a large number of 

compromised hosts, is Distributed Denial-of-Service (DDoS). 

DDoS attacks are bringing about growing threats to businesses 

and Internet providers around the world. While many methods 

have been proposed to counter such attacks, they are either not 

efficient or not effective enough.  

Moreover, the analysis shows that the DDoS attacks which 

use TCP and TCP-SYN flooding are the most prevalent 

among them ([1], [2]). However, flooding DDoS attacks are 

distinct from other attacks, for example, those that execute 

malicious code on their victim. These attacks floods the victim 

with a large volume of traffic and continuous data stream 

disables the victim from providing services to the legitimate 

users. These types of attacks are the mass of all attacking 

packets directed at the victim, which poses the threat, rather 

than the contents of the packets themselves. In that context, 

the Flooding DoS attacks are classified as resource depletion 

form of attacks. Moreover, these types of attacks pose the 

greatest problem in today’s network infrastructures. 

Subverting the use of protocols, such as TCP or UDP, enables 

an attacker to disrupt on-line services by generating a traffic 

overload to block links or cause routers near the victim to 

crash. Considering the TCP-SYN flooding attack, it should be 

mentioned that it is a DoS method affecting hosts that run TCP 

server processes. Although this paper is considering the effects 

of this attack on wireless networks, however considering the 

affected layer from this attack and the way of conducting the 

attack there is no main difference with the wired networks. 

Considering the TCP-SYN flooding attack, as a well-known 

DoS method affecting hosts that run TCP server processes (the 

three-way handshake mechanism of TCP connection), 

nowadays, despite the original one, a lot of variations of it are 

still seen. Although there are many effective techniques 

against TCP-SYN flooding attack exist, and even RFC4987 is 

covering some common mitigation techniques against this 

attack yet there is no single mechanism (schemes) for effective 

defense. 
This paper is organized as follows. Section 2 illustrates 

short reviews on TCP-SYN flooding attacks. Moreover, 
Section 3 gives related works in this area. Section 4 describes 
practical demonstration of the TCP-SYN flood attack using 
perl script synflood and Section 5 withdraws some simulation 
results and analysis of the effects of TCP-SYN and DDOS 
TCP-SYN flooding attack. In Section 6 some practical example 
to protect against this type of attack are explained. Finally, 
Section 7 concludes our work. 

II. TCP-SYN FLOODING ATTACKS 

The TCP is connection oriented and reliable, in-sequence 

delivery transport protocol. It provides full duplex stream of 

data octets and it is the main protocol for the Internet. Most 

nowadays services on Internet relay on TCP. For example 

mail (SMTP, port 25), old insecure virtual terminal service 

(telnet, port 23), file transport protocol (FTP, port 21) and 

most important in this case also is the hyper text transfer 

protocol (HTTP, 80) better known as the world wide web 

services (WWW). Almost everything uses TCP someway to 

do their communications over the network - at least the 

interactive ones.  

In TCP-SYN flooding attack, the “SYN” stands for the 

Synchronize flag in TCP headers. The SYN flag gets set when 

a system first sends a packet in a TCP connection, and 

indicates that the receiving system should store the sequence 

number included in this packet. In this kind of flooding attack, 

the focus is given on the Flags, six different bits that may be 
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sent to represent different conditions, such as initial sequence 

number (SYN), that the acknowledgement field is valid 

(ACK), reset the connection (RST), or close the connection 

(FIN).  

During the TCP-SYN flooding attack [1], the attacking 

system sends TCP-SYN request with spoofed source IP 

address to the victim host. These SYN requests appear to be 

legitimate. The spoofed address refers to a client system that 

does not exist. Hence, the final ACK message will never be 

sent to the victim server system. This results into increased 

number of half-open connections at the victim side. A backlog 

queue is used to store these half-open connections. These half-

open connections bind the resources of the server. Hence, no 

new connections (legitimate) can be made, resulting in DoS or 

DDoS. The victim server is unable to respond to the requests 

for Domain Name System (DNS) service coming from 

legitimate users (this attack is illustrated in Fig. 2). 

Generally in the literature, there are three types of TCP-

SYN flooding attacks, which are going out in the nowadays 

Internet networks: Direct Attack, Spoofing Attack and 

Distributed Direct Attack (see Fig.: 1-3).  

If attackers rapidly send SYN segments without spoofing 

their IP source address, this is assign as a direct attack (Fig. 1). 

This method of attack is very easy to perform because it does 

not involve directly injecting or spoofing packets below the 

user level of the attacker’s operating system. It can be 

performed by simply using many TCP connect() calls, for 

instance. To be effective, however, attackers must prevent 

their operating system from responding to the SYN-ACKS in 

any way, because any ACKs, RSTs, or ICMP messages will 

allow the listener to move the TCB out of SYN-RECEIVED. 

When detected, this type of attack is very easy to defend 

against, because a simple firewall rule to block packets with 

the attacker’s source IP address is all that is needed. This 

defense behavior can be automated, and such functions are 

available in off-the-shelf reactive firewalls. 

Furthermore, TCP-SYN spoofing attacks uses IP address 

spoofing, which might be considered more complex than the 

method used in a direct attack, in that instead of merely 

manipulating local firewall rules, the attacker also needs to be 

able to form and inject raw IP packets with valid IP and TCP 

headers. Moreover, the IP address spoofing techniques can be 

categorized into different types according to what spoofed 

source addresses are used in the attacking packets. 

The three common IP spoofing types are: random 

spoofing, subnet spoofing and fixed spoofing [4].  

 

 

 

Figure 1.  TCP-SYN Flooding: Direct attack 

 

Figure 2.  TCP-SYN Flooding: Spoofing attack 

 

Figure 3.  TCP-SYN Flooding: Distributed direct attack 

In random spoofing, the attacker randomly generates 32-bit 

numbers for use as source addresses of the attacking packets. 

In subnet spoofing, the addresses are generated from the 

address space corresponding to the subnet in which the agent 

machine resides. For example, a machine which is part of the 

194.149.134.0/24 network may spoof any IP address in the 

range from 194.149.134.0 to 194.149.134.255. Another type 

of IP spoofing, called fixed spoofing, chooses source 

addresses from a given list. In this case, the attacker typically 

wants to perform a reflector attack or impose a blame for 

attack on several specific machines.   

Moreover, for spoofing attacks, a primary consideration is 

address selection. If the attack is to succeed, the machines at 

the spoofed source addresses must not respond to the SYN-

ACKs that are sent to them in any way. A very simple attacker 

might spoof only a single source address that it knows will not 

respond to the SYN-ACKs, either because no machine 

physically exists at the IP address presently, or because of 

some other property of the address or network configuration. 

Another option is to spoof many different source addresses, 

under the assumption that some percentage of the spoofed 

addresses will be unrespondent to the SYN-ACKs. This option 

is accomplished either by cycling through a list of source 

addresses that are known to be desirable for the purpose, or by 

generating addresses inside a subnet with similar properties. If 

only a single source address is repetitively spoofed, this 

address is easy for the victim to detect and filter. In most cases 

a larger list of source addresses is used to make defense more 

difficult. In this case, the best defense is to block the spoofed 

packets as close to their source as possible. 



 

 

Generally, the defense against spoofed flooding traffic, 

especially with subnet spoofing, is really difficult, but in the 

literature can be found several schemes for defense. One of 

them is [5] which is based on a storage-efficient data structure 

and a change-point detection method. Through trace-driven 

simulations, it is shown that this method is accurate and 

efficient to detect the SYN flooding attacks, due to the fact 

that it achieves shorter detection time and small storage space. 

Moreover, in [6] a novel defense mechanism that makes use of 

the edge routers that connect end hosts to the Internet to store 

and detect the outgoing SYN, ACK or incoming SYN/ACK 

segment is proposed. That is accomplished by maintaining a 

mapping table of the outgoing SYN segments and incoming 

SYN/ACK segments and establishing the destination and 

source IP address database. The results of simulation given in 

[6] are showing that the approach can yield accurate DDoS 

flooding attack alarms at early stage. 

On the other hand, assuming the attacker is based in a 

“stub” location in the network (rather than within a transit 

Autonomous System (AS), for instance), restrictive network 

ingress filtering [7] by stub ISPs and egress filtering within the 

attacker’s network will shut down spoofing attacks—if these 

mechanisms can be deployed in the right places. Because 

these ingress/egress filtering defenses may interfere with some 

legitimate traffic, such as the Mobile IP triangle routing mode 

of operation, they might be seen as undesirable, and are not 

universally deployed. Moreover, the IP Security (IPsec) also 

provides an excellent defense against spoofed packets, but this 

protocol generally cannot be required, because its deployment 

is currently limited, and it is usually impossible for the listener 

to ask the initiator’s ISPs to perform address filtering or to ask 

the initiator to use IPsec, defending against spoofing attacks 

that use multiple addresses requires more complex solutions. 

The real limitation of single-attacker spoofing-based 

attacks is that if the packets can somehow be traced back to 

their true source, the attacker can be easily shut down. 

Although the tracing process typically involves some amount 

of time and coordination between ISPs, it is not impossible. A 

distributed version of the SYN flooding attack, in which the 

attacker takes advantage of numerous zombie 

machines/processes throughout the Internet, is much more 

difficult to stop. In the case shown in Fig. 3, the zombies use 

direct attacks, but in order to increase the effectiveness even 

further, each zombie could use a spoofing attack and multiple 

spoofed IP addresses. Currently, distributed attacks are 

feasible because there are several “botnets” or “zombie 

armies” of thousands of compromised machines that are used 

by criminals for DoS attacks. Because zombie machines are 

constantly added or removed from the armies and can change 

their IP addresses or connectivity, it is quite challenging to 

block those types of TCP-SYN flooding attacks. 

III. RELATED WORK 

In the literature there are many methods and frameworks 

which are proposed in order to detect the TCP-SYN flooding 

attacks. The authors of [1] detected the SYN flooding attacks 

at leaf routers that connect end hosts to the Internet, which 

utilizes the normalized difference between the number of 

SYNs packets and the number of FIN (RST) packets in a time 

interval. If the rate of SYNs packets is much higher than that 

of FIN (RST) packets by a non-parametric cumulative sum 

algorithm, the router recognizes that some attacking traffic is 

mixed into the current traffic. Similar work is presented in [8], 

where the fast and effective method for detecting TCP-SYN 

flooding attacks is given. Moreover, a linear prediction 

analysis is proposed as a new paradigm for DoS TCP-SYN 

flooding attack detection. The proposed mechanism makes use 

of the exponential backoff property of TCP used during 

timeouts. By modeling the difference of SYN and SYN&ACK 

packets, it is shown that this approach is able to detect an 

attack within short delays. Again this method is used at leaf 

routers and firewalls to detect the attack without the need of 

maintaining any state. However, considering the fact that the 

sources of attack can be distributed in different networks, 

there is a lack of analysis for the traffic near the sources and 

also the detection of the source of SYN flooding attack in TCP 

based low intensity attacks is missing.  

Moreover, a quite similar (with the previous two papers) 

approach was used in [9], which also considers a non-

parametric cumulative sum algorithm; however the authors 

apply it to measure the number of only SYN packets, and by 

using an exponential weighted moving average for obtaining a 

recent estimate of the mean rate after the change of SYN 

packets. In [10] three counters algorithms for SYN flooding 

defense attacks are given. The three schemes include detection 

and mitigation. The detection scheme utilizes the inherent 

TCP valid SYN–FIN pairs behavior, hence is capable of 

detecting various SYN flooding attacks with high accuracy 

and short response time. The mitigation scheme works in high 

reliable manner for victim to detect the SYN packets of SYN 

flooding attack. Although the given schemes are stateless and 

required low computation overhead, making itself immune to 

SYN flooding attacks, the attackers may retransmit every SYN 

packet more than one time to destroy the mitigation function. 

It is necessary to make it more robust and adaptive.  

In [11], the authors built a standard model generated by 

observations from the characteristic between the SYN packet 

and the SYN+ACK response packet from the server by a 

program for the activity of the server. The authors of [12] 

proposed a method to detect the flooding agents by 

considering all the possible kinds of IP spoofing, which is 

based on the SYN/SYN-ACK protocol pair with the 

consideration of packet header information. The Counting 

Bloom Filter is used to classify all the incoming SYN-ACK 

packets to the sub network into two streams, and a 

nonparametric cumulative sum algorithm is applied to make 

the detection decision by the two normalized differences, with 

one difference between the number of SYN packets and the 

number of the first SYN-ACK packets and another difference 

between the number of the firs SYN-ACK packets and the 

number of the retransmission SYN-ACK. Moreover, in [13] a 

simple and efficient method to detect and defend against TCP-

SYN flooding attacks under different IP spoofing types is 

proposed. The method makes use of a storage-efficient data 



 

 

structure and a change-point detection method for 

distinguishing complete three-way TCP handshakes from 

incomplete ones. The presented experiments in [13] 

consistently show that their method is both efficient and 

effective in defending against TCP-based flooding attacks 

under different IP spoofing types. However there is a lack of 

autoimmunization of processes within the shame for setting 

the parameters. Additionally, the method is not evaluated in a 

reasonably large real network. 

Moreover, there are also some other related studies such as 

SYN cookies, SYN filtering mechanisms [14], SYN cache, 

SYN proxy (firewall), SYN kill, D-SAT [15] and DiDDeM 

([16] and [17]), and more related studies is in [5], [6], [18] and 

[19]. In the [5] and [6] an early stage detecting method 

(ESDM) is proposed. The ESDM is a simple but effective 

method to detect SYN flooding attacks at the early stage. In 

the ESDM the TCP-SYN traffic is forecasted by 

autoregressive integrated moving average model, and non-

parametric cumulative sum algorithm is used to find the SYN 

flooding attacks according to the forecasted traffic. The 

ESDM achieves shorter detection time and small storage 

space. However, these exiting methods or defense mechanisms 

that against SYN flooding attack are effective only at the later 

stages, when attacking signatures are obvious [6].   

IV. PRACTICAL DEMONSTRATION OF THE TCP-SYN FLOOD 

ATTACK 

For a practical demonstration of TCP-SYN attack we will 

use the perl script synflood (Fig. 4), and in order to make an 

analysis of traffic during the attack we will use the Wireshark 

tool. 

 
Figure 4.  TCP-SYN flooding attack using perl script synflood  

 
Figure 5.  Traffic analysis using Wireshark network analyzer 

Using the perl script the Wireshark network analyzer server 

is attacked. The attack starts and stops for a short time after 

Wireshark collects a sufficient number of packets for traffic 

analysis (Fig. 5). 

During the traffic analysis in Wireshark it can be noticed 

that the address of the attacker is the same as that of the client 

which means that the client address is spoofed, and it looks 

like the client sends TCP packets to itself i.e., it looks like it 

burdens itself with huge amount packages. 

To demonstrate the consequences of this attack we are login 

into our Windows Server 2008 that has installed DNS role and 

we are attacking it with synflood perl script. Although before 

the attack it is notable that the processor is not burdened at all, 

and the burden on network traffic is very low, however in the 

moment when the attack is executed on port 53 (DNS port) 

(Fig. 6), small increasing on CPU burden on 2008 server can 

be noticed, but very evident is the increase of the burden of 

network bandwidth, which increases over 7Mbps (Fig. 7). We 

must take into consideration that the attack was committed by 

only one machine. It is obvious that in case of attack by 2 or 3 

machines or in case of organized DDoS attack the server 

consequences would be worse, even catastrophic, which 

would cause to be unable to answer on the DNS requests. 

 

 
Figure 6.  Attacking DNS server using perl script synflood 

 

Figure 7.  Resource monitoring after attack 

Immediately after stopping the attack the burden of the 

CPU load and network bandwidth is reduces to its primary 

values. It is necessary to know that realization of this type of 

attack requires a great processing time in order to process 

large amount of packets that are sent to the client, which 

makes understandable the usage of DDoS attacks from 

multiple machines in order to increase processing time for 

packets generation as well as increasing of the network 

bandwidth to send those packages to the client-victim.  

 



 

 

V. SIMULATION RESULTS AND ANALYSIS OF THE EFFECTS 

OF TCP-SYN AND DDOS TCP-SYN FLOODING ATTACK 

In this section we are going to present our simulation 
experiment on TCP-SYN flooding attack. We have subdivided 
this section into two subsections. We start this section giving 
the configuration of our whole test bed. Then we present 
results we got from specific scenarios. 

A. The Scenario Configuration 

 

Figure 8.  OPNET Scenario 

In order to make a detailed analysis we are considering a 

scenario with three WLAN nodes, where one of them is used 

for simulating data traffic, another for simulating the video and 

the third for voice transmission. The scenario takes place on 

100x100m workspace and it is presented in Fig. 8. For serving 

different requirements (data, video, voice) from different nodes 

we are using a server that is configured to support all the above 

services. The wireless communication is realized via a wireless 

access point. 

In this paper three different scenarios are reviewed: during 

the first scenario there is no attack, during the second scenario 

TCP-SYN flood attack is conducted, and during the third 

scenario we are considering the situation when the network is 

attacked by DDoS TCP-SYN flood attack. In all these 

scenarios as a basis we use the scenario without attack, and 

what changes is the intensity of the attack, which depends on 

the number of attackers. The time of simulation is set to 20 

minutes. We should also mention that examined environment 

presented in this paper is 802.11e capable. 

B. Simulation Results and Analysis 

The average values from the obtained simulation results are 

presented. As results global statistic of the simulated scenario 

is shown. These statistics are scoped to the simulation as a 

whole, in contrast to local statistics, which are scoped to a 

particular queue or processor. In other words, multiple 

processes, as well as pipeline stages, all at different locations 

in the model's system, can contribute to the same shared 

statistic. This is done by referring to the statistic by name and 

obtaining a statistic handle. 
Although from the simulations we obtained a lot of results 

which only confirmed our expectation, however in this paper we 

will present only few of them. Considering the fact that in all 

scenarios there are three legitimate clients with different 

requirements from the server, hereinaftersome of the obtained 

results considering each legitimate node individually are 

explained.  

1) Node: Voice 

 
Figure 9.  Voice Application Jitter 

In Fig. 9 the average voice jitters which occur during voice 

transmission in the situation when no attack is performed and 

when the wireless network is under the TCP-SYN and DDoS 

TCP-SYN Attack is presented. Even the jitter value when 

there is no attack conducted is 0, this value during attacks are 

dramatically increased. Special case is the situation when the 

network/server is attacked by DDoS TCP-SYN Attack which 

is causing higher voice jitter or higher voice packet delay 

variation. 

 
Figure 10.  Voice Application Packet Delay Variation 

The packet delay variation on voice application is shown 

in Fig. 10. This parameter shows the variance among end to 

end delays for voice packets received by this node. End to end 

delay for a voice packet is measured from the time it is created 

to the time it is received. Again, it is noticeable that this delay 

is 10 time higher when TCP-SYN flood attack is committed. 

The situation of DDoS attack is even worse. As it can be seen 

the delay is constantly increasing during this attack  and it is 



 

 

even incomparable higher than the values from other two 

scenarios. 

2) Node: Video 

 
Figure 11.  Video Application WLAN Delay 

The wireless LAN delay (Fig. 11) represents the end-to-

end delay of all the data packets that are successfully received 

by the WLAN MAC and forwarded to the higher layer. This 

delay includes queuing and medium access delays at the 

source MAC, reception of all the fragments individually, and 

the relay of the frame via AP, if the source and destination 

MACs are non-AP MACs of the same infrastructure BSS. 

Increased number of attackers causes higher delay. 

 
Figure 12.  Video Application WLAN data dropped (buffer overflow) 

Fig. 12 shows higher layer video data traffic dropped (in 

bits/sec) by the WLAN MAC due to full higher layer data 

buffer. In this case during the TCP-SYN flood attack by one 

attacker the value of this parameter is almost the same with the 

scenario without attack. Opposite of this, in the case of DDoS 

attack the number of dropped packets is very high which is 

understandable if we consider that the buffers are filled by 

multiple malicious nodes.  

 

3) Node: Data 

 
Figure 13.  Data TCP segment delay 

Fig. 13 shows the delay (in seconds) of segments received 

by the TCP layer in this node, for all connections. It is 

measured from the time a TCP segment is sent from the source 

TCP layer to the time it is received by the TCP layer in the 

destination node. Using this parameter we collect "TCP 

Delay" statistics for delays experienced by complete 

application packets submitted to TCP. This delay during the 

TCP-SYN flood attack is two time higher than the situation 

without attack, but again the worst case is  the scenario with 

conducted DDoS attack, where the value of TCP segment 

delay is seven time higher than the scenario without attack. 

 
Figure 14.  Data TCP connection aborts (RST sent) 

The parameter TCP connection aborts (RTS Sent) shows 

the total number of TCP connections aborted because the 

maximum number of retransmissions has been reached (Fig. 

14). Statistic is updated each time the connection is abort is 

initiated by the TCP process at this node. The method used by 

OPNET to calculate this parameter is incrementing each time 

a TCP connection is aborted at this node. There is not 

difference from the previous explanations. Against the worst 

case is the situation when the network is attacked by DDoS 



 

 

attack. Moreover, Fig. 15 shows the TCP load parameter or 

the total number of packets submitted to the TCP layer by the 

application layer in this node, for all connections. 

 

 
Figure 15.  Data TCP Load 

In case of TCP-SYN flood attack this total number of 

packets is reduced on half compared with scenario without 

attack, but situation is much better than the situation when 

DDoS attack is conducted, in which case the number of these 

packets is dramatically reduced. 

VI. PROTECTION AGAINST TCP-SYN FLOOD ATTACK 

The universal answer on the question how to protect against 

TCP-SYN attack is that this type of attack is a very 

problematic issue. 

In the case of TCP-SYN attack, the client does not return a 

response to a SYN / ACK packet, and does not return an ACK 

packet to the server to open connections between the client 

and server. Because of that the server remains with half-

opened connections which are stored in memory, and until the 

timeout expiration the server tries to send a new SYN / ACK 

packet to the client. 

The base problem is the large quantities of generated "half-

opened" connections which server keeps in memory until the 

expiration of their timeout, which can ultimately lead to server 

crash, but nowadays the most common consequence is the 

inability/sluggishness of opening a new connection due to the 

occupancy of the limit for the half-Opened connections. 

Although one of the indicators can be increased CPU time 

and memory, today it will not be visible on the new generation 

of servers, or it will be marginally noticeable. In the case of 

web server what will surely be noticeable, at least at first 

glance, is extremely slow opening of the web pages without 

any "obvious" reasons such as overload of the servers’ 

resources or bandwidth link. 

Netstat command can easily detect whether there is a TCP-

SYN attack. On Linux systems, half-opened connections will 

be marked as SYN_RECV, while on Windows systems they 

will be marked as SYN_RECEIVED. 

Primer (Linux) [20]: 

>netstat -tuna | grep :80 | grep SYN_RECV 

tcp 0 0 192.168.2.1:80 15.55.82.20:1309               SYN_RECV 

tcp 0 0 192.168.2.1:80 51.1.5.7:1743              SYN_RECV 

tcp 0 0 192.168.2.1:80 209.112.192.126:4988 SYN_RECV 

tcp 0 0 192.168.2.1:80 53.12.51.1:1724          SYN_RECV 

… 

This command filters all opened connections per port 80 

(HTTP), and status SYN_RECV (half-opened connection). If 

the output contains a lot of rows that contain SYN_RECV, it 

is likely that a TCP-SYN attack occurred. Consideration 

should be given that filtering IP address, from which the attack 

comes, probably will have no impact on reducing the attack 

because the attacker can easily spoof packets, respectively 

spoofs IP addresses from which an attack is coming. The IP 

addresses in most cases will be related to the actual source of 

the attack. 

Although the ultimate solution to prevent TCP-SYN flood 

attack is very complex issue, it is possible to perform the basic 

actions that will reduce the impact of this attack. 

In Chapter 3 we already mentioned several proposed 

effective mechanisms for detection and prevention against this 

type of attack. Even more, some effective solutions against 

this attack are considered in RFC 4987 [21]. Anyway, in this 

section we are considering a practical approach to mitigate the 

effects of SYN flood attack. 

LINUX: Enabling SYN Cookies function within the Linux 

kernel will allow "ignoring" of the TCP-SYN flood attacks, 

allowing the server to stop the half-opened connections when 

they fill their limit. While the connection will be terminated, 

the server will send a SYN / ACK packet to the client, and if it 

receives an ACK response from the client it will reconstruct 

the previous half-opened connection, and enable 

communication with the client. 

To enable SYN cookies inside the kernel the following 

actions should be taken: 

sysctl -w net.ipv4.tcp_syncookies=1 

In order to enable SYN cookies during every restart it is 

necessary to edit/etc/sysctl.conf, and enter into a new row: 

net.ipv4.tcp_syncookies = 1 

It is recommended to increase the SYN backlog queue with 

a default value of 1024 to 2048: 

sysctl -w net.ipv4.tcp_max_syn_backlog=2048 

To set options for each server restart is necessary to 

edit/etc/sysctl.conf, and enter into a new row: 

net.ipv4.tcp_max_syn_backlog = 2048 

In the case of TCP-SYN attacks in the logs the following 

should occur, but despite the attack server will still be able to 

normally open a new connection toward the customers. 
[1116377.589736] possible SYN flooding on port 80. Sending cookies. 

[1116439.567828] possible SYN flooding on port 80. Sending cookies. 

[1116500.631623] possible SYN flooding on port 80. Sending cookies. 

WINDOWS: In order to configure TCP-SYN flood protection 

for Windows 2000 and 2003 servers several registry entries 

should be set (Table 1). 

First step is to enable SYN attack protection. 

SynAttackProtect defines whether it is included TCP-SYN 

flood protection, and if the value is 0 then it is disabled, which 



 

 

means that it should be set to the value 1 for better or value 2 

for best protection against TCP-SYN flood attack [22]. 

TABLE I.  CONFIGURING REGISTRY ENTRIES 

Registry Path NAME VALUE 
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SynAttackProtect 2 

TcpMaxPortsExhausted 5 

TcpMaxHalfOpen 500 

TcpMaxHalfOpenRetried 400 

TcpMaxConnectResponseRetransmissions 2 

TcpMaxDataRetransmissions 2 

EnablePMTUDiscovery 0 

KeepAliveTime 300000 

 

A denial of service (DoS) attack against Windows servers is 

to send it a "name release" command. This will cause it to 

release its NetBIOS, preventing clients from accessing the 

machine. By setting NoNameReleaseOnDemand with registry 

path KEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\ 

Services\NetBT\Parameters to DWORD "1" instead of the 

default "0", other machines will be prevented from causing the 

protected system's name from being released. 

Using the TcpMaxPortsExhausted, TCPMaxHalfOpen 

TCPMaxHalfOpenRetried it is possible to define values, 

primarily limits of the possible number of half-opened 

connections. Within 2008/ Vista/7 Windows the protection 

from the TCP-SYN flood attacks is turned on for by default, 

and cannot be excluded. For Windows 2008 servers it is 

possible to apply an increase in CPU and memory load, 

because the server releases the half-opened connections 

depending on system load. Manually adjustment option as in 

Windows 2003 Server is not possible, but the server adapts the 

configuration to current needs / conditions. 

VII. CONCLUSION 

In this paper one of the vulnerabilities of TCP protocol 
which leads to the TCP-SYN flooding DoS attack is shown. 
Furthermore a practical demonstration of the effects of this 
attack using perl script, synflood and Wireshark network 
analyzer server, as well as Windows Server 2008 is presented. 
To confirm the results from the practical demonstration and to 
see the effects of the TCP-SYN flood attack and DDoS TCP-
SYN flood attack on other parameters on different types of 
traffic (voice, video, data) in 802.11e environment we used 
OPNET Modeler simulation tool. The results we obtained are 
as we expected to be. Namely, during the TCP-SYN flooding 
attack the situation with all network parameters became worse, 
but even this results are incomparable with the dramatically 
deteriorated results obtained during the simulation of the last 
scenario when DDoS TCP-SYN flood have been conducted. 
Finally, we have given some practical example for mitigating 
the effects of TCP-SYN flood DoS attack in Linux and 
Windows environment. 
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