

TCP-SYN Flooding Attack in Wireless Networks

Mitko Bogdanoski

Military Academy “General Mihailo Apostolski”

Skopje, R. Macedonia

mitko.bogdanoski@ugd.edu.mk

Tomislav Shuminovski, Aleksandar Risteski

Faculty of Electrical Engineering and Information

Technologies

Skopje, R. Macedonia

{tomish, acerist}@feit.ukim.edu.mk

Abstract— This paper concerns the TCP (Transmission

Control Protocol) vulnerabilities which gives space for a

DoS (Denial of Service) attacks called TCP-SYN flooding

which is well-known to the community for several years.

The paper shows this attack in wireless as well as wired

networks using perl synflood script, Wireshark network

analyzer server, Windows 2008 server, and OPNET

simulation environment. Using these tools an effects of this

attack are shown. Finally, some effective practical

mitigation techniques against SYN flooding attack for

Linux and Windows systems are explained.

Index Terms - DoS, Flooding, TCP-SYN, Wireshark, OPNET

Modeler

I. INTRODUCTION

Nowadays, there are many attacks intended to deprive

legitimate users from accessing any kind of network resources

and functions. Any act which denies legitimate use of a

service can be classed as a Denial of Service (DoS) attack. A

DoS attacks are major security threats to the services provided

through the Internet resulting in large scale revenue losses.

One specific kind of DoS attack which is large-scale

cooperative attack, typically launched from a large number of

compromised hosts, is Distributed Denial-of-Service (DDoS).

DDoS attacks are bringing about growing threats to businesses

and Internet providers around the world. While many methods

have been proposed to counter such attacks, they are either not

efficient or not effective enough.

Moreover, the analysis shows that the DDoS attacks which

use TCP and TCP-SYN flooding are the most prevalent

among them ([1], [2]). However, flooding DDoS attacks are

distinct from other attacks, for example, those that execute

malicious code on their victim. These attacks floods the victim

with a large volume of traffic and continuous data stream

disables the victim from providing services to the legitimate

users. These types of attacks are the mass of all attacking

packets directed at the victim, which poses the threat, rather

than the contents of the packets themselves. In that context,

the Flooding DoS attacks are classified as resource depletion

form of attacks. Moreover, these types of attacks pose the

greatest problem in today’s network infrastructures.

Subverting the use of protocols, such as TCP or UDP, enables

an attacker to disrupt on-line services by generating a traffic

overload to block links or cause routers near the victim to

crash. Considering the TCP-SYN flooding attack, it should be

mentioned that it is a DoS method affecting hosts that run TCP

server processes. Although this paper is considering the effects

of this attack on wireless networks, however considering the

affected layer from this attack and the way of conducting the

attack there is no main difference with the wired networks.

Considering the TCP-SYN flooding attack, as a well-known

DoS method affecting hosts that run TCP server processes (the

three-way handshake mechanism of TCP connection),

nowadays, despite the original one, a lot of variations of it are

still seen. Although there are many effective techniques

against TCP-SYN flooding attack exist, and even RFC4987 is

covering some common mitigation techniques against this

attack yet there is no single mechanism (schemes) for effective

defense.
This paper is organized as follows. Section 2 illustrates

short reviews on TCP-SYN flooding attacks. Moreover,
Section 3 gives related works in this area. Section 4 describes
practical demonstration of the TCP-SYN flood attack using
perl script synflood and Section 5 withdraws some simulation
results and analysis of the effects of TCP-SYN and DDOS
TCP-SYN flooding attack. In Section 6 some practical example
to protect against this type of attack are explained. Finally,
Section 7 concludes our work.

II. TCP-SYN FLOODING ATTACKS

The TCP is connection oriented and reliable, in-sequence

delivery transport protocol. It provides full duplex stream of

data octets and it is the main protocol for the Internet. Most

nowadays services on Internet relay on TCP. For example

mail (SMTP, port 25), old insecure virtual terminal service

(telnet, port 23), file transport protocol (FTP, port 21) and

most important in this case also is the hyper text transfer

protocol (HTTP, 80) better known as the world wide web

services (WWW). Almost everything uses TCP someway to

do their communications over the network - at least the

interactive ones.

In TCP-SYN flooding attack, the “SYN” stands for the

Synchronize flag in TCP headers. The SYN flag gets set when

a system first sends a packet in a TCP connection, and

indicates that the receiving system should store the sequence

number included in this packet. In this kind of flooding attack,

the focus is given on the Flags, six different bits that may be

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UGD Academic Repository

https://core.ac.uk/display/35329464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

sent to represent different conditions, such as initial sequence

number (SYN), that the acknowledgement field is valid

(ACK), reset the connection (RST), or close the connection

(FIN).

During the TCP-SYN flooding attack [1], the attacking

system sends TCP-SYN request with spoofed source IP

address to the victim host. These SYN requests appear to be

legitimate. The spoofed address refers to a client system that

does not exist. Hence, the final ACK message will never be

sent to the victim server system. This results into increased

number of half-open connections at the victim side. A backlog

queue is used to store these half-open connections. These half-

open connections bind the resources of the server. Hence, no

new connections (legitimate) can be made, resulting in DoS or

DDoS. The victim server is unable to respond to the requests

for Domain Name System (DNS) service coming from

legitimate users (this attack is illustrated in Fig. 2).

Generally in the literature, there are three types of TCP-

SYN flooding attacks, which are going out in the nowadays

Internet networks: Direct Attack, Spoofing Attack and

Distributed Direct Attack (see Fig.: 1-3).

If attackers rapidly send SYN segments without spoofing

their IP source address, this is assign as a direct attack (Fig. 1).

This method of attack is very easy to perform because it does

not involve directly injecting or spoofing packets below the

user level of the attacker’s operating system. It can be

performed by simply using many TCP connect() calls, for

instance. To be effective, however, attackers must prevent

their operating system from responding to the SYN-ACKS in

any way, because any ACKs, RSTs, or ICMP messages will

allow the listener to move the TCB out of SYN-RECEIVED.

When detected, this type of attack is very easy to defend

against, because a simple firewall rule to block packets with

the attacker’s source IP address is all that is needed. This

defense behavior can be automated, and such functions are

available in off-the-shelf reactive firewalls.

Furthermore, TCP-SYN spoofing attacks uses IP address

spoofing, which might be considered more complex than the

method used in a direct attack, in that instead of merely

manipulating local firewall rules, the attacker also needs to be

able to form and inject raw IP packets with valid IP and TCP

headers. Moreover, the IP address spoofing techniques can be

categorized into different types according to what spoofed

source addresses are used in the attacking packets.

The three common IP spoofing types are: random

spoofing, subnet spoofing and fixed spoofing [4].

Figure 1. TCP-SYN Flooding: Direct attack

Figure 2. TCP-SYN Flooding: Spoofing attack

Figure 3. TCP-SYN Flooding: Distributed direct attack

In random spoofing, the attacker randomly generates 32-bit

numbers for use as source addresses of the attacking packets.

In subnet spoofing, the addresses are generated from the

address space corresponding to the subnet in which the agent

machine resides. For example, a machine which is part of the

194.149.134.0/24 network may spoof any IP address in the

range from 194.149.134.0 to 194.149.134.255. Another type

of IP spoofing, called fixed spoofing, chooses source

addresses from a given list. In this case, the attacker typically

wants to perform a reflector attack or impose a blame for

attack on several specific machines.

Moreover, for spoofing attacks, a primary consideration is

address selection. If the attack is to succeed, the machines at

the spoofed source addresses must not respond to the SYN-

ACKs that are sent to them in any way. A very simple attacker

might spoof only a single source address that it knows will not

respond to the SYN-ACKs, either because no machine

physically exists at the IP address presently, or because of

some other property of the address or network configuration.

Another option is to spoof many different source addresses,

under the assumption that some percentage of the spoofed

addresses will be unrespondent to the SYN-ACKs. This option

is accomplished either by cycling through a list of source

addresses that are known to be desirable for the purpose, or by

generating addresses inside a subnet with similar properties. If

only a single source address is repetitively spoofed, this

address is easy for the victim to detect and filter. In most cases

a larger list of source addresses is used to make defense more

difficult. In this case, the best defense is to block the spoofed

packets as close to their source as possible.

Generally, the defense against spoofed flooding traffic,

especially with subnet spoofing, is really difficult, but in the

literature can be found several schemes for defense. One of

them is [5] which is based on a storage-efficient data structure

and a change-point detection method. Through trace-driven

simulations, it is shown that this method is accurate and

efficient to detect the SYN flooding attacks, due to the fact

that it achieves shorter detection time and small storage space.

Moreover, in [6] a novel defense mechanism that makes use of

the edge routers that connect end hosts to the Internet to store

and detect the outgoing SYN, ACK or incoming SYN/ACK

segment is proposed. That is accomplished by maintaining a

mapping table of the outgoing SYN segments and incoming

SYN/ACK segments and establishing the destination and

source IP address database. The results of simulation given in

[6] are showing that the approach can yield accurate DDoS

flooding attack alarms at early stage.

On the other hand, assuming the attacker is based in a

“stub” location in the network (rather than within a transit

Autonomous System (AS), for instance), restrictive network

ingress filtering [7] by stub ISPs and egress filtering within the

attacker’s network will shut down spoofing attacks—if these

mechanisms can be deployed in the right places. Because

these ingress/egress filtering defenses may interfere with some

legitimate traffic, such as the Mobile IP triangle routing mode

of operation, they might be seen as undesirable, and are not

universally deployed. Moreover, the IP Security (IPsec) also

provides an excellent defense against spoofed packets, but this

protocol generally cannot be required, because its deployment

is currently limited, and it is usually impossible for the listener

to ask the initiator’s ISPs to perform address filtering or to ask

the initiator to use IPsec, defending against spoofing attacks

that use multiple addresses requires more complex solutions.

The real limitation of single-attacker spoofing-based

attacks is that if the packets can somehow be traced back to

their true source, the attacker can be easily shut down.

Although the tracing process typically involves some amount

of time and coordination between ISPs, it is not impossible. A

distributed version of the SYN flooding attack, in which the

attacker takes advantage of numerous zombie

machines/processes throughout the Internet, is much more

difficult to stop. In the case shown in Fig. 3, the zombies use

direct attacks, but in order to increase the effectiveness even

further, each zombie could use a spoofing attack and multiple

spoofed IP addresses. Currently, distributed attacks are

feasible because there are several “botnets” or “zombie

armies” of thousands of compromised machines that are used

by criminals for DoS attacks. Because zombie machines are

constantly added or removed from the armies and can change

their IP addresses or connectivity, it is quite challenging to

block those types of TCP-SYN flooding attacks.

III. RELATED WORK

In the literature there are many methods and frameworks

which are proposed in order to detect the TCP-SYN flooding

attacks. The authors of [1] detected the SYN flooding attacks

at leaf routers that connect end hosts to the Internet, which

utilizes the normalized difference between the number of

SYNs packets and the number of FIN (RST) packets in a time

interval. If the rate of SYNs packets is much higher than that

of FIN (RST) packets by a non-parametric cumulative sum

algorithm, the router recognizes that some attacking traffic is

mixed into the current traffic. Similar work is presented in [8],

where the fast and effective method for detecting TCP-SYN

flooding attacks is given. Moreover, a linear prediction

analysis is proposed as a new paradigm for DoS TCP-SYN

flooding attack detection. The proposed mechanism makes use

of the exponential backoff property of TCP used during

timeouts. By modeling the difference of SYN and SYN&ACK

packets, it is shown that this approach is able to detect an

attack within short delays. Again this method is used at leaf

routers and firewalls to detect the attack without the need of

maintaining any state. However, considering the fact that the

sources of attack can be distributed in different networks,

there is a lack of analysis for the traffic near the sources and

also the detection of the source of SYN flooding attack in TCP

based low intensity attacks is missing.

Moreover, a quite similar (with the previous two papers)

approach was used in [9], which also considers a non-

parametric cumulative sum algorithm; however the authors

apply it to measure the number of only SYN packets, and by

using an exponential weighted moving average for obtaining a

recent estimate of the mean rate after the change of SYN

packets. In [10] three counters algorithms for SYN flooding

defense attacks are given. The three schemes include detection

and mitigation. The detection scheme utilizes the inherent

TCP valid SYN–FIN pairs behavior, hence is capable of

detecting various SYN flooding attacks with high accuracy

and short response time. The mitigation scheme works in high

reliable manner for victim to detect the SYN packets of SYN

flooding attack. Although the given schemes are stateless and

required low computation overhead, making itself immune to

SYN flooding attacks, the attackers may retransmit every SYN

packet more than one time to destroy the mitigation function.

It is necessary to make it more robust and adaptive.

In [11], the authors built a standard model generated by

observations from the characteristic between the SYN packet

and the SYN+ACK response packet from the server by a

program for the activity of the server. The authors of [12]

proposed a method to detect the flooding agents by

considering all the possible kinds of IP spoofing, which is

based on the SYN/SYN-ACK protocol pair with the

consideration of packet header information. The Counting

Bloom Filter is used to classify all the incoming SYN-ACK

packets to the sub network into two streams, and a

nonparametric cumulative sum algorithm is applied to make

the detection decision by the two normalized differences, with

one difference between the number of SYN packets and the

number of the first SYN-ACK packets and another difference

between the number of the firs SYN-ACK packets and the

number of the retransmission SYN-ACK. Moreover, in [13] a

simple and efficient method to detect and defend against TCP-

SYN flooding attacks under different IP spoofing types is

proposed. The method makes use of a storage-efficient data

structure and a change-point detection method for

distinguishing complete three-way TCP handshakes from

incomplete ones. The presented experiments in [13]

consistently show that their method is both efficient and

effective in defending against TCP-based flooding attacks

under different IP spoofing types. However there is a lack of

autoimmunization of processes within the shame for setting

the parameters. Additionally, the method is not evaluated in a

reasonably large real network.

Moreover, there are also some other related studies such as

SYN cookies, SYN filtering mechanisms [14], SYN cache,

SYN proxy (firewall), SYN kill, D-SAT [15] and DiDDeM

([16] and [17]), and more related studies is in [5], [6], [18] and

[19]. In the [5] and [6] an early stage detecting method

(ESDM) is proposed. The ESDM is a simple but effective

method to detect SYN flooding attacks at the early stage. In

the ESDM the TCP-SYN traffic is forecasted by

autoregressive integrated moving average model, and non-

parametric cumulative sum algorithm is used to find the SYN

flooding attacks according to the forecasted traffic. The

ESDM achieves shorter detection time and small storage

space. However, these exiting methods or defense mechanisms

that against SYN flooding attack are effective only at the later

stages, when attacking signatures are obvious [6].

IV. PRACTICAL DEMONSTRATION OF THE TCP-SYN FLOOD

ATTACK

For a practical demonstration of TCP-SYN attack we will

use the perl script synflood (Fig. 4), and in order to make an

analysis of traffic during the attack we will use the Wireshark

tool.

Figure 4. TCP-SYN flooding attack using perl script synflood

Figure 5. Traffic analysis using Wireshark network analyzer

Using the perl script the Wireshark network analyzer server

is attacked. The attack starts and stops for a short time after

Wireshark collects a sufficient number of packets for traffic

analysis (Fig. 5).

During the traffic analysis in Wireshark it can be noticed

that the address of the attacker is the same as that of the client

which means that the client address is spoofed, and it looks

like the client sends TCP packets to itself i.e., it looks like it

burdens itself with huge amount packages.

To demonstrate the consequences of this attack we are login

into our Windows Server 2008 that has installed DNS role and

we are attacking it with synflood perl script. Although before

the attack it is notable that the processor is not burdened at all,

and the burden on network traffic is very low, however in the

moment when the attack is executed on port 53 (DNS port)

(Fig. 6), small increasing on CPU burden on 2008 server can

be noticed, but very evident is the increase of the burden of

network bandwidth, which increases over 7Mbps (Fig. 7). We

must take into consideration that the attack was committed by

only one machine. It is obvious that in case of attack by 2 or 3

machines or in case of organized DDoS attack the server

consequences would be worse, even catastrophic, which

would cause to be unable to answer on the DNS requests.

Figure 6. Attacking DNS server using perl script synflood

Figure 7. Resource monitoring after attack

Immediately after stopping the attack the burden of the

CPU load and network bandwidth is reduces to its primary

values. It is necessary to know that realization of this type of

attack requires a great processing time in order to process

large amount of packets that are sent to the client, which

makes understandable the usage of DDoS attacks from

multiple machines in order to increase processing time for

packets generation as well as increasing of the network

bandwidth to send those packages to the client-victim.

V. SIMULATION RESULTS AND ANALYSIS OF THE EFFECTS

OF TCP-SYN AND DDOS TCP-SYN FLOODING ATTACK

In this section we are going to present our simulation
experiment on TCP-SYN flooding attack. We have subdivided
this section into two subsections. We start this section giving
the configuration of our whole test bed. Then we present
results we got from specific scenarios.

A. The Scenario Configuration

Figure 8. OPNET Scenario

In order to make a detailed analysis we are considering a

scenario with three WLAN nodes, where one of them is used

for simulating data traffic, another for simulating the video and

the third for voice transmission. The scenario takes place on

100x100m workspace and it is presented in Fig. 8. For serving

different requirements (data, video, voice) from different nodes

we are using a server that is configured to support all the above

services. The wireless communication is realized via a wireless

access point.

In this paper three different scenarios are reviewed: during

the first scenario there is no attack, during the second scenario

TCP-SYN flood attack is conducted, and during the third

scenario we are considering the situation when the network is

attacked by DDoS TCP-SYN flood attack. In all these

scenarios as a basis we use the scenario without attack, and

what changes is the intensity of the attack, which depends on

the number of attackers. The time of simulation is set to 20

minutes. We should also mention that examined environment

presented in this paper is 802.11e capable.

B. Simulation Results and Analysis

The average values from the obtained simulation results are

presented. As results global statistic of the simulated scenario

is shown. These statistics are scoped to the simulation as a

whole, in contrast to local statistics, which are scoped to a

particular queue or processor. In other words, multiple

processes, as well as pipeline stages, all at different locations

in the model's system, can contribute to the same shared

statistic. This is done by referring to the statistic by name and

obtaining a statistic handle.
Although from the simulations we obtained a lot of results

which only confirmed our expectation, however in this paper we

will present only few of them. Considering the fact that in all

scenarios there are three legitimate clients with different

requirements from the server, hereinaftersome of the obtained

results considering each legitimate node individually are

explained.

1) Node: Voice

Figure 9. Voice Application Jitter

In Fig. 9 the average voice jitters which occur during voice

transmission in the situation when no attack is performed and

when the wireless network is under the TCP-SYN and DDoS

TCP-SYN Attack is presented. Even the jitter value when

there is no attack conducted is 0, this value during attacks are

dramatically increased. Special case is the situation when the

network/server is attacked by DDoS TCP-SYN Attack which

is causing higher voice jitter or higher voice packet delay

variation.

Figure 10. Voice Application Packet Delay Variation

The packet delay variation on voice application is shown

in Fig. 10. This parameter shows the variance among end to

end delays for voice packets received by this node. End to end

delay for a voice packet is measured from the time it is created

to the time it is received. Again, it is noticeable that this delay

is 10 time higher when TCP-SYN flood attack is committed.

The situation of DDoS attack is even worse. As it can be seen

the delay is constantly increasing during this attack and it is

even incomparable higher than the values from other two

scenarios.

2) Node: Video

Figure 11. Video Application WLAN Delay

The wireless LAN delay (Fig. 11) represents the end-to-

end delay of all the data packets that are successfully received

by the WLAN MAC and forwarded to the higher layer. This

delay includes queuing and medium access delays at the

source MAC, reception of all the fragments individually, and

the relay of the frame via AP, if the source and destination

MACs are non-AP MACs of the same infrastructure BSS.

Increased number of attackers causes higher delay.

Figure 12. Video Application WLAN data dropped (buffer overflow)

Fig. 12 shows higher layer video data traffic dropped (in

bits/sec) by the WLAN MAC due to full higher layer data

buffer. In this case during the TCP-SYN flood attack by one

attacker the value of this parameter is almost the same with the

scenario without attack. Opposite of this, in the case of DDoS

attack the number of dropped packets is very high which is

understandable if we consider that the buffers are filled by

multiple malicious nodes.

3) Node: Data

Figure 13. Data TCP segment delay

Fig. 13 shows the delay (in seconds) of segments received

by the TCP layer in this node, for all connections. It is

measured from the time a TCP segment is sent from the source

TCP layer to the time it is received by the TCP layer in the

destination node. Using this parameter we collect "TCP

Delay" statistics for delays experienced by complete

application packets submitted to TCP. This delay during the

TCP-SYN flood attack is two time higher than the situation

without attack, but again the worst case is the scenario with

conducted DDoS attack, where the value of TCP segment

delay is seven time higher than the scenario without attack.

Figure 14. Data TCP connection aborts (RST sent)

The parameter TCP connection aborts (RTS Sent) shows

the total number of TCP connections aborted because the

maximum number of retransmissions has been reached (Fig.

14). Statistic is updated each time the connection is abort is

initiated by the TCP process at this node. The method used by

OPNET to calculate this parameter is incrementing each time

a TCP connection is aborted at this node. There is not

difference from the previous explanations. Against the worst

case is the situation when the network is attacked by DDoS

attack. Moreover, Fig. 15 shows the TCP load parameter or

the total number of packets submitted to the TCP layer by the

application layer in this node, for all connections.

Figure 15. Data TCP Load

In case of TCP-SYN flood attack this total number of

packets is reduced on half compared with scenario without

attack, but situation is much better than the situation when

DDoS attack is conducted, in which case the number of these

packets is dramatically reduced.

VI. PROTECTION AGAINST TCP-SYN FLOOD ATTACK

The universal answer on the question how to protect against

TCP-SYN attack is that this type of attack is a very

problematic issue.

In the case of TCP-SYN attack, the client does not return a

response to a SYN / ACK packet, and does not return an ACK

packet to the server to open connections between the client

and server. Because of that the server remains with half-

opened connections which are stored in memory, and until the

timeout expiration the server tries to send a new SYN / ACK

packet to the client.

The base problem is the large quantities of generated "half-

opened" connections which server keeps in memory until the

expiration of their timeout, which can ultimately lead to server

crash, but nowadays the most common consequence is the

inability/sluggishness of opening a new connection due to the

occupancy of the limit for the half-Opened connections.

Although one of the indicators can be increased CPU time

and memory, today it will not be visible on the new generation

of servers, or it will be marginally noticeable. In the case of

web server what will surely be noticeable, at least at first

glance, is extremely slow opening of the web pages without

any "obvious" reasons such as overload of the servers’

resources or bandwidth link.

Netstat command can easily detect whether there is a TCP-

SYN attack. On Linux systems, half-opened connections will

be marked as SYN_RECV, while on Windows systems they

will be marked as SYN_RECEIVED.

Primer (Linux) [20]:

>netstat -tuna | grep :80 | grep SYN_RECV

tcp 0 0 192.168.2.1:80 15.55.82.20:1309 SYN_RECV

tcp 0 0 192.168.2.1:80 51.1.5.7:1743 SYN_RECV

tcp 0 0 192.168.2.1:80 209.112.192.126:4988 SYN_RECV

tcp 0 0 192.168.2.1:80 53.12.51.1:1724 SYN_RECV

…

This command filters all opened connections per port 80

(HTTP), and status SYN_RECV (half-opened connection). If

the output contains a lot of rows that contain SYN_RECV, it

is likely that a TCP-SYN attack occurred. Consideration

should be given that filtering IP address, from which the attack

comes, probably will have no impact on reducing the attack

because the attacker can easily spoof packets, respectively

spoofs IP addresses from which an attack is coming. The IP

addresses in most cases will be related to the actual source of

the attack.

Although the ultimate solution to prevent TCP-SYN flood

attack is very complex issue, it is possible to perform the basic

actions that will reduce the impact of this attack.

In Chapter 3 we already mentioned several proposed

effective mechanisms for detection and prevention against this

type of attack. Even more, some effective solutions against

this attack are considered in RFC 4987 [21]. Anyway, in this

section we are considering a practical approach to mitigate the

effects of SYN flood attack.

LINUX: Enabling SYN Cookies function within the Linux

kernel will allow "ignoring" of the TCP-SYN flood attacks,

allowing the server to stop the half-opened connections when

they fill their limit. While the connection will be terminated,

the server will send a SYN / ACK packet to the client, and if it

receives an ACK response from the client it will reconstruct

the previous half-opened connection, and enable

communication with the client.

To enable SYN cookies inside the kernel the following

actions should be taken:

sysctl -w net.ipv4.tcp_syncookies=1

In order to enable SYN cookies during every restart it is

necessary to edit/etc/sysctl.conf, and enter into a new row:

net.ipv4.tcp_syncookies = 1

It is recommended to increase the SYN backlog queue with

a default value of 1024 to 2048:

sysctl -w net.ipv4.tcp_max_syn_backlog=2048

To set options for each server restart is necessary to

edit/etc/sysctl.conf, and enter into a new row:

net.ipv4.tcp_max_syn_backlog = 2048

In the case of TCP-SYN attacks in the logs the following

should occur, but despite the attack server will still be able to

normally open a new connection toward the customers.
[1116377.589736] possible SYN flooding on port 80. Sending cookies.

[1116439.567828] possible SYN flooding on port 80. Sending cookies.

[1116500.631623] possible SYN flooding on port 80. Sending cookies.

WINDOWS: In order to configure TCP-SYN flood protection

for Windows 2000 and 2003 servers several registry entries

should be set (Table 1).

First step is to enable SYN attack protection.

SynAttackProtect defines whether it is included TCP-SYN

flood protection, and if the value is 0 then it is disabled, which

means that it should be set to the value 1 for better or value 2

for best protection against TCP-SYN flood attack [22].

TABLE I. CONFIGURING REGISTRY ENTRIES

Registry Path NAME VALUE

H
K

E
Y

_
L

O
C

A
L

_
M

A
C

H
IN

E
\S

Y
S

T
E

M
\

C
u

rr
en

tC
o

n
tr

o
lS

et

\S
er

v
ic

es
\T

cp
Ip

\P
ar

a

m
et

er

SynAttackProtect 2

TcpMaxPortsExhausted 5

TcpMaxHalfOpen 500

TcpMaxHalfOpenRetried 400

TcpMaxConnectResponseRetransmissions 2

TcpMaxDataRetransmissions 2

EnablePMTUDiscovery 0

KeepAliveTime 300000

A denial of service (DoS) attack against Windows servers is

to send it a "name release" command. This will cause it to

release its NetBIOS, preventing clients from accessing the

machine. By setting NoNameReleaseOnDemand with registry

path KEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\

Services\NetBT\Parameters to DWORD "1" instead of the

default "0", other machines will be prevented from causing the

protected system's name from being released.

Using the TcpMaxPortsExhausted, TCPMaxHalfOpen

TCPMaxHalfOpenRetried it is possible to define values,

primarily limits of the possible number of half-opened

connections. Within 2008/ Vista/7 Windows the protection

from the TCP-SYN flood attacks is turned on for by default,

and cannot be excluded. For Windows 2008 servers it is

possible to apply an increase in CPU and memory load,

because the server releases the half-opened connections

depending on system load. Manually adjustment option as in

Windows 2003 Server is not possible, but the server adapts the

configuration to current needs / conditions.

VII. CONCLUSION

In this paper one of the vulnerabilities of TCP protocol
which leads to the TCP-SYN flooding DoS attack is shown.
Furthermore a practical demonstration of the effects of this
attack using perl script, synflood and Wireshark network
analyzer server, as well as Windows Server 2008 is presented.
To confirm the results from the practical demonstration and to
see the effects of the TCP-SYN flood attack and DDoS TCP-
SYN flood attack on other parameters on different types of
traffic (voice, video, data) in 802.11e environment we used
OPNET Modeler simulation tool. The results we obtained are
as we expected to be. Namely, during the TCP-SYN flooding
attack the situation with all network parameters became worse,
but even this results are incomparable with the dramatically
deteriorated results obtained during the simulation of the last
scenario when DDoS TCP-SYN flood have been conducted.
Finally, we have given some practical example for mitigating
the effects of TCP-SYN flood DoS attack in Linux and
Windows environment.

REFERENCES

[1] H. Wang, D. Zhang, and K. G. Shin, “Detecting SYN flooding attacks”,
in Proceedings of Annual Joint Conference of the IEEE Computer and

Communications Societies(INFOCOM), volume 3, pages 1530-1539,
June 23-27 2002

[2] D. Moore, G. M. Voelker, and S. Savage, “Inferring Internet Denial-of-
Service Activity,” in Proceedings of the 10th USENIX Security
Symposium, Aug. 2001, pp. 9–22.

[3] J. Postel, “Transmission Control Protocol” STD 7, September 1981.
[RFC 793] http://tools.ietf.org/html/rfc793

[4] J. Mirkovic and P. Reiher, "A taxonomy of DDoS attack and DDoS
defense mechanisms", ACM SIGCOMM Computer Communications
Review, 34(2):39—54, April 2004

[5] S. Qibo, W. Shangguang, Y. Danfeng and Y. Fangchun, "An Early Stage
Detecting Method against SYN Flooding Attacks", China
Communication, Vol. 4, pp. 108-116, November 2009.

[6] G. Wei, Y. Gu and Y. Ling, "An Early Stage Detecting Method against
SYN Flooding Attack," csa, pp.263-268, International Symposium on
Computer Science and its Applications, 2008.

[7] P. Ferguson and D. Senie, “Network Ingress Filtering: Defeating Denial
of Service Attacks which employ IP Source Address Spoofing,” BCP 38,
RFC 2827, May 2000. http://www.ietf.org/rfc/rfc2827.txt

[8] D. M. Divakaran, H. A. Murthy and T. A. Gonsalves, ``Detection of
SYN Flooding Attacks Using Linear Prediction Analysis,'' 14th IEEE
International Conference on Networks, ICON 2006, pp. 218-223, Sep.
2006.

[9] V. A. Siris and P. Fotini, “Application of Anomaly Detect Algorithms
for Detecting SYN Flooding Attack” Elsevier Computer
Communications, 29: 1433-1442, 2006.

[10] S.Gavaskar, R.Surendiran and Dr.E.Ramaraj, "Three Counter Defense
Mechanism for TCP-SYN Flooding Attacks", International Journal of
Computer Applications, Volume 6–No.6, pp.12-15, September 2010.

[11] T. Nakashima and S. Oshima, “A detective method for SYN flood
attacks”, First International Conference on Innovative Computing,
Information and Control, 2006.

[12] D. Nashat,X. Jiang and S. Horiguchi, “Detecting SYN Flooding Agents
under Any Type of IP Spoofing”, IEEE International Conference on e-
Business Engineering table of contents, 2008.

[13] W. Chen and D.-Y. Yeung, "Defending Against TCP-SYN Flooding
Attacks Under Different Types of IP Spoofing", ICN/ICONS/MCL ’06,
IEEE Computer Society, pp. 38-44, April 2006.

[14] A. Yaar, A. Perrig and D. Song, "StackPi: New Packet Marking and
Filtering Mechanisms for DDoS and IP Spoofing Defense", IEEE
Journal on Selected Areas in Communications, Volume 24, no. 10, pp.:
1853-1863, October 2006.

[15] S.-W. Shin, K-Y. Kim and J.-S. Jang, “D-SAT: detecting SYN flooding
attack by two-stage statistical approach”, Applications and the Internet,
pp.:430 – 436, 2005.

[16] J. Haggerty, T. Berry, Q. Shi and M. Merabti, “DiDDeM: a system for
early detection of TCP-SYN flood attacks”, GLOBECOM, 2004.

[17] J. Haggerty, Q. Shi and M. Merabti, "Early Detection and Prevention of
Denial-of-Service Attacks: A Novel Mechanism With Propagated
Traced-Back Attack Blocking", IEEE Journal On Selected Areas In
Communications, Vol. 23, No. 10, pp.: 1994-2002, October 2005.

[18] T. Peng, C. Leckie and K. Rammamohanarao, “Survey of Network-
Based Defense Mechanisms Countering the DoS and DDoS Problems”,
ACM Computing Surveys, Vol. 39, Issue 1. 2007.

[19] B. Xiao, W. Chen, Y. He and E.H.-M. Sha, “An active detecting method
against SYN flooding attack”, Parallel and Distributed Systems, 2005.

[20] A. Chin, Detecting and preventing SYN Flood attacks on web servers
running Linux, Linux Forum, 21. January 2011

[21] W. M. Eddy, “TCP-SYN Flooding Attacks and Common Mitigations,”
RFC 4987, August 2007. http://tools.ietf.org/html/rfc4987

[22] support.microsoft.com

