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Geo-referenced datasets of indoor radon concentrations and radium concentrations in 
soil are available for the Republic of Macedonia. However, the indoor 222Rn data are 
spatially strongly clustered as the measurements were essentially confined to major 
towns and cities. Hence, the estimation of the geographical distribution of 222Rn 
concentration based only on the 222Rn data is difficult to be made. On the other hand, 
geochemical measurements 226Ra are quite well distributed over the country. Since 
226Ra is the source of 222Rn, one may think of using 226Ra as a predictor for 222Rn.  
In this paper we present a method for modelling the stochastic dependency of indoor 
222Rn of soil 226Ra. The method is new in the area on 222Rn assessment and still needs to 
be validated by more case studies. 
It must be born in mind that the indoor 222Rn depends, in some cases more strongly, on 
controlling factors other than the 226Ra in soil, so that its estimation from 226Ra alone is 
inevitably imperfect. The results must therefore be understood as estimates in absence 
of other information, and as a motivation to carry out measurements in regions where 
the model predicts higher 222Rn levels, but for which no measurements are available so far.  

Key words: Republic of Macedonia, indoor radon, radium in soil, probabilistic prediction. 

1. INTRODUCTION 

It is not a rare situation when a geographical distribution of a quantity Y shall 
be estimated, that the number of observations is not sufficient to cover the entire 

 
* Paper presented at the First East European Radon Symposium – FERAS 2012, September 2–5, 

2012, Cluj-Napoca, Romania. 

Rom. Journ. Phys., Vol. 58, Supplement, P. S29–S43, Bucharest, 2013 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UGD Academic Repository

https://core.ac.uk/display/35327013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 Peter Bossew et al. 2 S30 

territory. On the other hand, sufficient data of a quantity Z are available which is to 
some extent related to the first one, for physical reasons. In such case, one can use 
the relationship between the two, and estimate the geographical distribution of the 
first quantity Y, predicted by the one of the “proxy” quantity Z. One should be 
aware, however, that the resulting estimate can be correct only insofar as it reflects 
the properties of the predictor Z and the relationship between the two, but not those 
properties of the response variable Y which are not accounted for by the predictor 
Z. (Otherwise a perfect correlation would be required.) 

For this kind of problems, in the field of environmental assessment and in 
222Rn research in particular, transfer models have been proposed by a number of 
authors. Normally these models are based on conventional regression Y by Z. The 
“calibration” of the models (i.e. estimation of its parameters, for example, the 
intercept and the slope in a linear model) requires a dataset consisting of pairs 
{(z*i, y*i)}, where each pair is understood to be fixed at one point, or at one 
geographical unit. In many cases, however, the original data (measurements or 
observations) are not located at the same spot, and first need to be “collocated” by 
estimating one at the location of the other one, or both on a common grid, or by 
aggregating them into spatial units (windows, grid cells, geological or 
administrative units). The viability of such a procedure has to be checked in each 
individual case; in any case it involves uncertainty stemming from the collocation 
or aggregation procedure.  

A disadvantage of a conventional (Gaussian) regression is that normally it 
does not allow probabilistic estimates because, in real situations, the distribution of 
residuals cannot be assumed normal. Hereafter we apply a different method, which 
can be called generalized regression: it operates on the level of the joint probability 
distribution of the investigated quantities, from which desired statistics can be 
derived as statistics of the conditional distributions, for example, an exceedance 
probability of variable Y, given Z, or expected Y, given Z.  

The “methods” section of this paper will not explain the method for the sake 
of saving space, with reference to this paper and bibliographic details. However, 
additional technical issues are discussed and the results given for the sake of 
estimation of the variable Y = indoor 222Rn concentration from Z = 226Ra 
concentration in soil, for the available dataset from the Republic of Macedonia. 

2. METHODS 

2.1. DATA 

A total number of 213 undisturbed surface soils on 20 cm depth were 
collected during the period of 2008-2010. The sampling locations shown in Figure 1, 
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are concentrated in the populated areas within the country. The 226Ra activity 
concentration in soil samples were determined by gamma spectrometry. Soil 
sampling, sample preparation, measuring and analysis procedure were done 
according to ISO 18589 methods [1-2]. 

The nationwide survey of indoor radon concentration in the country has been 
performed in the period December 2008–November 2009. The methodology of the 
survey, seasonal and regional variability as well the influence of building 
characteristics of the indoor radon 222Rn concentration has already been described 
in more detail by Stojanovska et al. [3-4]. To allow data for this study for indoor 
radon concentration we extracted 125 measurements made in the ground floor of 
the dwellings with basement (Figure 1). 

Table 1 summarizes the results for 226Ra concentration in soil samples and 
indoor radon 222Rn concentration, measured in the dwellings on the ground floor, in 
houses with basement. 
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Fig. 1 – Locations of the measurement point. Black squares: 226Ra concentration in soil; red circles: 
indoor 222Rn. The linear size of the symbols is proportional to the values. - This and the following 

figures can be found in colour in the electronic version.  
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Table 1 
226Ra concentration in soil and indoor radon concentration 

 
226Ra 

(Bq/kg) 

222Rn 
(Bq/m3) 

No. of measurements 213 125 

Minimum     9   24 

Median   37   79 

Maximum 123 502 

Arithmetic mean   41 102 

Standard deviation   18   76 

Geometric mean   37   84 

Geometric standard deviation    1.53    1.84 

2.2. STOCHASTIC DEPENDENCE 

The theory behind the approach applied hereby has been presented in [5-6]. 
Essentially one states a model of the joint probability distribution of the 
investigated variables. In this paper the variable is the quantity C = indoor 222Rn 
concentration in Bq/m³, (estimated long-term concentration in ground floor rooms 
of dwellings in houses with basement), and Z = 226Ra concentration in soil in 
Bq/kg, considered as spatial random variables or random fields. 

We wanted to estimate, at location x: 
p(z; c0) := prob[C(x)>c0 | Z(x)=z],  

the probability that the indoor 222Rn concentration exceeds threshold c0 (for 
example 100 Bq/m³). From the conditional distribution of C (given the Z=z) at 
location x, we also estimate the local conditional expectation of C, 

 
( 0  )

E( ( ) | )  ( | ( )),    with ( | ( )) :  1 - ( ( ), )
c

C x z c dF c z x F c z x p z x c
= ∞

= =∫ …
 (1) 

The variance is Var(C|z) = E(C²|z) – E²(C|z); the GM and GSD are calculated 
by analogy. In practice, the integral was evaluated numerically (homemade 
software was used for all calculations). 

What remains to be done is modelling the joint distribution of C and Z, for 
which a Gumbel copula has been chosen. It is parameterized through the lagged 
Kendall τ correlation, estimated from the non-collocated data (see the theory 
section of Bossew [5-6]).  
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2.3. SPATIAL ESTIMATION OF THE PREDICTOR 

The scattered observations of Z (226Ra concentrations) have to be estimated 
on a grid by geostatistical methods. This could be done by ordinary kriging (OK; 
not further discussed here as this is routine) or by sequential simulation (SGS or 
DSSIM etc.). The first method has the advantage of being a straightforward 
technique, but results in a local expectation Espat(Z) = Z*(x) = E[Z](x*) (where x* is 
the location where it was estimated); its transform into the mean, tm: z→ E(C(x)|z) 
suffers from the fact that tm may not be not linear, hence E(C(x)|Espat(z)) ≠ 
Espat(E(C(x)|z)) in general. Estimating E(C) from Z*OK therefore involves a bias. 
This can be fixed by applying the second method whose output is a set {z*(x,ω)}, 
where ω indexes realizations (ω∈Ω, “ergodic” sample space). The spatial 
expectation at x is the “ergodic” mean over ω∈Ω. Hence, 

 
0

( ( )) d d ( | ( ) ( , )),  
z

E C x GZ z F c Z x z x
Ω = ∞

= = ω∫ ∫ …
 (2) 

with GZ the estimated local conditional distribution of Z(x) (i.e. conditional to the 
data {zi}). Again, the previous requires numerical integration. The first integral is 
in practice simply the mean over ω of replications z(x,ω). Simulation was 
performed with SGeMS [7]. The method was DSSIM with Soares correction (ibd., 
p.144). 100 realizations were generated. For the variogram, estimation and 
modelling, Surfer 8 was used. 

2.4. DE-CLUSTERING 

The method which uses the joint distribution is sensitive against correct 
estimation of the true distributions of 222Rn and 226Ra concentrations, which enter 
as FZ ≡ FRa and FC ≡ FRn. Since the observations are spatially clustered, the raw data 
cannot be used for estimating the distribution, because this would cause biases for 
areas which have been sampled more densely.  

De-clustering is done here as follows. Overlay a grid of chosen grid constant 
(in this work between 5 and 20 km) with random offset over the domain. In each 
cell choose one observation randomly. Compute the distribution of these random 
points. Repeat the procedure many times (in this work 100 was chosen) with 
varying grid offset and observations within cells. Compute the statistics over 
realizations. The result is an estimate of the true distribution of the data. It depends 
on the grid size to some extent; the best choice of grid size can only be guessed. 
We have chosen 20 km for the 226Ra data and 10 km for the 222Rn data. Also for de-
clustering home-made software was used. 
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3. RESULTS 

3.1. DE-CLUSTERING AND ESTIMATED DISTRIBUTIONS 

Fig. 2 shows the locations of the indoor 222Rn data (only ground floor, houses 
with basement; n=125) in the upper left plot, and three examples of realizations of 
de-clustering for three different grid geometries. Note that each of these graphs is 
only one realization of many (100 chosen), of which the mean distribution is 
estimated.  

The cumulative distributions of the original indoor 222Rn data and the mean 
distributions of the de-clustered data are shown in Fig. 3. The differences do not 
appear large at first sight, but in some sections of the curve they are substantial. 
The deviations between original and de-clustered distribution reflect the removal of 
the effect of preferential sampling, which is implied by clustered observations. In 
this case, the main bias was caused by high number of samples in the capital Skopje 
(the cluster in the NW), where the mean 222Rn concentration is relatively low.  

3.2. ESTIMATED DEPENDENCE MODEL 

In Fig. 4 the Pearson correlation of the ln-transformed data, the Spearman ρ 
and the Kendall τ coefficients were plotted against lag h (see Bossew [5-6]) for the 
theoretical background). For τ uncertainties (1σ) are given, resulting from the 
simulation (they were omitted for the other coefficients for legibility of the graph). 
Spearman ρ and Pearson correlation are not further used in this study. In any case, 
one can see that essentially the different correlation measures follow a similar 
dependence pattern of lag h.  

As a technical detail, lag tolerance bands were set equal to lag distances 
(1000 m), as is also a common practice in variogram estimation. 

We can observe that for small lags, correlations between 0.2 and 0.35 can be 
found, but within about h = 5 km the correlations disappear. One can thus say that 
indoor 222Rn and soil 226Ra are correlated within about 4 km. From the graph we 
can estimate τ(h=0) ≈ 0.24 and the corresponding ϑ(Gumbel)=1.32, which enters 
the dependency model.  

The resulting estimates for the exceedance probability are shown in Fig. 5, 
and the expectations (AM and GM as well as SD and GSD bands) in Fig. 6, 
according to eq. 1.  
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Fig. 2 – Data de-clustering: locations of original 222Rn data  

and three examples of realizations of random de-clustering for three grid sites.  
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Fig. 3 – Cumulative distribution of original data, 

222Rn concentration in ground floor rooms of 
houses with a basement and of means over 100 

realizations of de-clustering, for three grid sizes.

Fig. 4 – Cross-correlation of indoor radon 
(estimated long-term mean, ground floor rooms  

in houses with a basement) and 226Ra concentration 
in soil. 
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The “unsmooth” shape of the “transfer functions” between soil 226Ra and the 
statistics of 222Rn is caused by the discontinuities in the estimated marginal 
distribution of soil 226Ra (not shown, but with similar “edges” as the one of indoor 
222Rn, Fig. 3) which is in turn a consequence of the relatively low number of 
observations.  

Physical reasoning suggests linear true dependence of the indoor 222Rn on the 
soil 226Ra (if other controlling factors are ignored). Fig. 6 shows deviation from this 
behaviour (remember that they have been estimated from the actual observation 
without anticipating an analytical transfer model, apart from the stochastic 
dependency model controlled by ϑ, again estimated from the data). 
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Fig. 5 – Estimated probabilities that indoor 
222Rn exceeds a threshold, as function of 226Ra 

concentration in soil. 

Fig. 6 – “Transfer function” tm between 226Ra 
in soil and indoor 222Rn, estimated from the 

stochastic model. 

3.3. ESTIMATED GEOGRAPHICAL DISTRIBUTION OF RADIUM AND 
DERIVED EXPECTED RADON RISK 

The distribution pattern of 226Ra concentration in soil is shown in Fig. 7. It 
has been created using the two methods, described in section 2.3.  

The OK method uses a variogram, modelled as short-range spherical (as a 
continuous nugget model, in order to avoid too strong smoothing), one exponential 
and one hole effect component. For simulation, the variogram was a short-range 
exponential and a long-range Gaussian. The upper tail was modelled with 
hyperbolic exponent 4.5, derived from the empirical distribution (not to be further 
explained here; see e.g. Remy et al. (2009), p. 106, [7]). 

A relation to geology can be recognized: The low-Ra zone running NW-SE 
from Skopje is the alluvial valley of river Vardar; the high-Ra zone N Stip lies in a 
region of volcanic rocks; near Strumica and S Prilep there are granitic rocks.  
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The structure is reproduced in the two radon maps (Fig. 8 and Fig. 9) of the 
probabilities to exceed 100 and 200 Bq/m³, and the expectation, respectively. Since 
soil 226Ra has been used as the only predictor, the pattern of indoor 222Rn is 
necessarily the same as the one for 226Ra; this is of course not the true pattern, but 
the one estimated from 226Ra. 

The estimation uncertainty is high: for the OK predictor we find coefficients 
of variation CV between 66 and 70%, or GSD = 1.6 to 2, derived from the local 
G(c|z), see section 2.1, after eq. 1. This reflects the relatively weak dependence 
between 226Ra in soil and indoor 222Rn, since the latter is controlled by other factors 
as well, probably even more importantly than by soil-226Ra. 

 

950000 1000000 1050000 1100000 1150000 1200000

-700000

-650000

-600000

-550000

Skopje

Stip

Prilep

Ohrid

Veles

Bitola

Strumica

Tetovo

Gostivar

Kumanovo

SIM

950000 1000000 1050000 1100000 1150000 1200000

-700000

-650000

-600000

-550000

Skopje

Stip

Prilep

Ohrid

Veles

Bitola

Strumica

Tetovo

Gostivar

Kumanovo

OK
10

20

30

40

50

60

70

80

90

100

110

120
226Ra, 
Bq/kg

 
Fig. 7 – Geographical distribution of estimated 226Ra concentrations in soil. Grid size 5 km. Crosses: 
Measurement points of 226Ra. Left: by OK, levels: kriging estimate; right: by simulation, levels: AMs 

over realizations. 

950000 1000000 1050000 1100000 1150000 1200000

Skopje

Stip

Prilep

Ohrid

Veles

Bitola

Strumica

Tetovo

Gostivar

Kumanovo

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

SIM
950000 1000000 1050000 1100000 1150000 1200000

-700000

-650000

-600000

-550000

Skopje

Stip

Prilep

Ohrid

Veles

Bitola

Strumica

Tetovo

Gostivar

Kumanovo

prob(Rn>100) prob(Rn>200)

OK

 
Fig. 8 – Probability that the 222Rn concentration is ground floor rooms of houses with basement 

exceeds 100 Bq/m³ (left) or 200 Bq/m³ (right), estimated from 226Ra concentration in soil. Crosses: 
222Rn measurement points. Left: by OK, levels: transformed OK-means; right: by simulation, levels: 

quantities of transformed realizations. 
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Fig. 9 – Expectation of 222Rn concentration in ground floor rooms of houses with basement, estimated 
from 226Ra concentration in soil. Crosses: Rn measurement points. Left: by OK, levels: transformed 

OK-means; right: by simulation, levels: AMs over transformed realizations. 

The OK-versions of the maps, Fig. 8 and Fig. 9, rely in eq. 1, substituting the 
OK-mean z* for z and therefore include the bias mentioned on section 2.3. The 
simulation-based versions use eq. 2. Possible biases may stem from the choice of 
the method (DSSIM, Soares correction, target variogram = the empirical one); this 
has not been investigated further. 

One can recognize slight differences in the results between the two methods. 
The simulation tends to reproduce extremes better than kriging and the pictures 
look therefore a bit “rougher”. The effect of the non-linearity of transform tm 
(section 2.3) can best be recognized in Fig. 9: it causes the simulation method to 
yield higher estimates, which seem more realistic.  

3.4. RADON PRONE AREAS 

There is no authoritative definition of a radon prone area (RPA). 
Qualitatively, the concept denotes areas where observed or expected values of a 
222Rn-related variable are high with respect to reference values or with respect to 
the mean over the domain (the country in this case).  

The radon prone areas may be defined as grid cells where a certain statistical 
criterion is fulfilled. For example one can define a RPA as a cell (or union of cells) 
in which the expected indoor 222Rn concentration exceeds a threshold, such as 100 
or 200 Bq/m3. Another possibility is to declare a cell RPA if the probability that a 
threshold is exceeded, is greater than a probability threshold. For the sake of 
demonstration only, we shall use the second (more flexible) definition, and set 
c0=200 Bq/m3 and p0=10%: 

Definition of RPA: “cell U is RPA if prob(C > 200) > 10% in cell U”.  
The cells are coded easily as RPA or non-RPA by simple indicator transform 

of p(z;c0), such as in Fig. 10. Again, as an effect of the mathematical pitfalls 
discussed above, the pictures look slightly different depending on the method. 
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Finally we investigate the percentage of total area of the country designed 
RPA by this criterion. The percentage is simply the fraction of the cells labelled 
RPA, of the total number of cells. As an example, again for c0=200 Bq/m³, this 
percentage is shown as function of the probability threshold p0 in Fig. 11, again for 
the two methods.  

For example, according to the above definition (c0 = 200, p0 = 0.1), about 
37% and 64%, respectively, of the country would be assigned RPA, depending on 
the method. The rather big difference shows that methodical differences should not 
be taken lightly. It is caused by the fact that with certain probability, local 
realizations lead to high z(ω). 
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Fig. 10 – Parts of the country in which the estimated probability exceeds 10% that indoor 222Rn 

exceeds 200 Bq/m3 (yellow); derived from 226Ra concentration in soil. Left: by OK, levels: 
transformed OK-means; right: by simulation, levels: quantiles of transformed realizations,  

in both cases indicator (0.1) classified. 
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Fig. 11 – Percentage of the country in which the indoor Rn>200 Bq/m³,  

in dependence of probability threshold.  
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(Note that for the simulation method, this probability is not defined as the 
fraction of realizations which have C(ω) = tm(z(ω)) > 200, but as means over the 
probability-transformed realizations z(ω)) 

3.5. COMPARISON OF MODELLED AND EMPIRICAL  
INDOOR 222Rn VALUES 

Finally one would like to validate the model through comparison with 
empirical values. Table 2 compares empirical and estimated exceedance 
probabilities and mean values of indoor 222Rn (ground floor, houses with basement) 
for different cities, for which at least 3 indoor 222Rn data are available. The data are 
shown as scatter plots in Fig. 12. All considerations of this section are limited to 
the OK estimates. 

As one can notice, there is no really visible relation between empirical and 
modelled statistics. Reasons may be: 

• The model is insufficient. It is certainly true that 226Ra in soil is a very 
imperfect predictor of indoor 222Rn which is controlled by other factors 
too, which may be even more important than 226Ra concentration in soil. 
For example, different soil permeability leads to very different indoor 
222Rn concentrations for the same source term (226Ra).  

• It is unlikely that the mathematical base of the model is completely flawed, 
as it is merely a generalization of traditional regression, just more flexible 
through accounting (though limited by the chosen structure of the copula 
model) for the joint distribution.   

• Apart from the city of Skopje, there are too few data per city to calculate 
robust empirical statistics.  

• Most 222Rn concentrations are in the range from 60 to 160 Bq/m³, while 
low and high values are missing. Given the notoriously high local 
variability of 222Rn the factor “city” does not represent a meaningful 
grouping factor for 222Rn.  

Table 2 

Empirical and estimated probabilities that the indoor 222Rn concentrations in ground floor rooms  
of houses with basement exceed 100 Bq/m³, and empirical arithmetic mean (±1 SD) and modelled 

expectation. n = number of observations; Ra = 226Ra concentration in soil.  
Red figures: strong under-estimation 

City n Empirical 
Probility 

Probility 
Estimated from Ra 

AM(Rn), 
Empirical 

E(Rn), 
Estimated from 

Ra 
Gostivar 12 0.33 0.31 91 ± 55 103 ± 71 
Kocani  3 0.33 0.36 160 ± 169 112 ± 78 
Kumanovo  7 0.57 0.19 137 ± 77 85 ± 57 
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Table 2 (continued) 

Negotino  3 0 0.25 69 ± 19 94 ± 64 
Ohrid  7 0.29 0.35 87 ± 63 110 ± 77 
Prilep  5 0.6 0.41 141 ± 77 120 ± 84 
Radovis  3 0 0.23 88 ± 7 91 ± 61 
Skopje 54 0.35 0.25 99 ± 75 94 ± 64 
Stip  3 0.33 0.19 84 ± 30 86 ± 57 
Strumica  3 0.33 0.34 127 ± 118 109 ± 76 
Tetovo  7 0.29 0.22 70 ± 42 89 ± 60 
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Fig. 12 – Scatter plots of estimated vs. empirical values of exceedance probability (prob (Rn>100)) 

and local means (uncertainty bars: 1 SD). 

High values tend to be underestimated and low values to be overestimated. 
This results probably from the smoothing property of kriging, with which the 226Ra 
map was created (Fig. 7), on which this estimation was based.  

The estimation is particularly poor for the city of Kumanovo, for which the 
empirical probability of high indoor 222Rn is much higher than the estimated one. 
The reasons are not clear; as a hypothesis, other more important factors which 
control the indoor 222Rn obscure its relation to 226Ra in soil. 

4. FURTHER DISCUSSION AND CONCLUSIONS 

A method for estimating indoor 222Rn from 226Ra concentration in soil is 
presented. The method may be particularly useful if the radon data cover the 
domain less completely than the observations of the predictor (here 226Ra), as is the 
case for Macedonia. 

As a consequence of the method, the geographical distribution of estimated 
indoor 222Rn is the same as the one of the predictor, since other factors are not 
accounted for, which also influence indoor 222Rn. The different soil permeability of 
each region was not considered, nor was the possibly regionally different building 
styles. Both factors are known to have strong influence on indoor 222Rn levels. 
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Since the model was derived from all data, these (like the other) factors enter 
implicitly as means over the domain; but locally they can be very different.  

Comparison of modelled with empirical means and exceedance probabilities 
is not very informative in this case, because (1) local variability is high (the high 
standard deviations in Table 2), (2) the range of values is relatively narrow, so that 
identification of tendencies is difficult, and (3) the number of empirical data is too 
low for most cities.  

This means that proper validation is currently not possible with the given 
data.  

Critical issues in applying the method are: 
• Estimation of the predictor: It must be spatially modelled carefully. In this 

case the result depended sensitively on the choice of variogram model, in 
particular on the nugget effect. It was forcefully set to zero and small range 
dependence modelled as spherical or exponential with a small range. This 
allows more realistic reproduction of maxima and minima which are 
smoothed away when setting nugget > 0. (Not further discussed here.) A 
more reliable estimation could be achieved by using geology as categorical 
deterministic predictor and stochastic simulation as an estimation method. 
For simulation, certain parameters may be sensitive, such as choice of 
simulation algorithm, histogram and upper tail modelling. 

• The model of stochastic dependency has to be estimated. This includes the 
selection of the model (here the Gumbel copula, not further discussed in 
this article) and the dependency parameter, here the Kendall τ correlation. 
Both the choices of dependency model and estimation of the controlling 
parameter are sensitive to the result. Some more experience with real data 
will be required here. 

• Estimation of the true distributions of the predictor (226Ra concentration) 
and the response variable (indoor 222Rn): Some experience in assessing de-
clustering is needed; alternative de-clustering methods whose results might 
be easier to assess objectively should be investigated for this purpose. 

• The method implicitly assumes the same spatial autocorrelation structure 
for the indoor 222Rn and for 226Ra in soil. Since they are physically related, 
the assumption is probably true to some extent; but not entirely, because 
other spatial trends of 222Rn can be overlaid. These may result from 
regionally different geogenic factors which are independent of 226Ra (such 
as permeability), or anthropogenic factors, as discussed above. 
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