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Abstract. In this paper, a hybrid method for inverse optimization of electro-
magnetic coils utilizing the multi-transition neural network and the Hopfield
neural network is proposed. Due to the discrete character of the neural network,
an optimization problem is transformed into a discrete problem through the di-
vision of the entire coil area into elemental coils with constant current density.
The minimization of the objective function is performed by the multi-transition
neural network and the Hopfield neural network in turns, Subdivision of the
elemental coils is performed in order to achieved better accuracy of the results
which are verified using 2-D finite element analysis. The application of the
proposed method for inverse optimization of MRI device is also presented.

1. Introduction

Design and optimization of shapes and parameters of various electromagnetic devices can be
performed by two general methods: direct methods which are usually very time consuming
and require treatment of one variable as a parameter while other variables are changeable,
and inverse methods which are faster than direct methods but usually very case sensitive.

For solving inverse optimization problems, various procedures such as simulated anneal-
ing, neural networks or genetic algorithms have been proposed. [1, 2] Recently, the authors
proposed a new inverse method for optimization of coil position using the Hopfield neural
network [3]. However, several problems were experienced, such as long computation time
and achievement of a local minimum of the objective function instead of the desired global
minimum.

In this paper, the authors propose an improved hybrid method for optimal position design
of electromagnetic coils by using the multi-transition neural network (MTNN) [4] and the
Hopfield neural network (HNN). Due to the discrete character of the neural network, the dis-
cretization of the entire available coil area into a set of elemental coils is performed. Initially,
the MTNN, which is less sensitive to the local minimum of the objective function than the
HNN [4], is employed for global minimization of the objective function. However, the MTNN
minimization is discrete and strongly influenced by neuron number — in our case the dis-
cretization pattern of the entire available coil area. To improve the approaching characteristic
of the minimization process, the HNN was used in conjunction with the MTNN. While the
Dirack Step-function is utilized as an input-output function of the MTNN, for the HNN the
ordinary sigmoid function is employed. This results in a continuous spectrum of output val-
ues between 0 and 1, rather than two discrete binary values 0 and 1, as previously proposed
[3]. The elemental coils with neuron output values between 0 and 1 can be subdivided into
smaller sub-elemental coils, resulting in greater accuracy of the optimization process. The
entire algorithm can be repeated until the desired accuracy is achieved.

In this paper, the algorithm of the proposed hybrid method is described. Then, the proposed
method is successfully applied for optimization of the electromagnetic coils in an electromag-
netic MRI device.

2. Outline of Proposed Method

As mentioned above, due to the discrete character of the neural network where the neuron
status is restricted to binary values 1 or 0, the optimization problem of the coil position, which
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Using the following objective function
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we are able to control not only the intensity of magnetic flux density B, which is the monitoring
parameter in the analysis, but also its components j and direction in the space. In (1), mis
the number of observation points with prescribed value of magnetic flux density component j,

and p is a vector definie as pl = [p1yp2y -+, p5,-- - »Pn), where n is the number of elemental
coils (see Fig. 1).

2.1. Multi-transition Neural Network

A new multi-transition neural network (MTNN) [4] is employed for initial minimization of the
objective function. In minimization of he objective function using of the HNN, the minimum

at its local minimum (see Fig. 4). Since we use a discrete Dirack Step-function for the input-
output function of the MTNN, we are likely to jump at each multi-transition step in the’
direction of the global minimum. After only a few minimization steps of the MTNN, we can
approach the global minimum of the objective function. Further minimization is executed

using the HNN, mainly for reasons related to its greater sensitivity than that of the MTNN.

2.2. Hopfield Neural Network

Before minimization of the objective function with the HNN begins, each neuron status is
defined by the last output of the MTNN, and not by some random function like in [3].
Therefore, the status of each neuron pi (each neuron represents one elemental coil) can be:
i = 0 resulting in no current flow in elemental coil 7, or p; = 1 resulting in constant current
flow in elemental coil i. This status is more likely to be closer to the global minimum of
the objective function than any other neuron status. Therefore, the minimization of the
objective function can be executed faster using the HNN. However, due to the difference
between input-output functions used for the MTNN and for the HNN » which for the latter is
a continuous sigmoid function, the status of each neuron might change significantly. While the
minimization process evolves with time, the status of each neuron pi changes. Finally, after a
stopping criterion is achieved, the status of each neuron might have values in the entire region
between 0 and 1. It is reasonable to conclude that the elemental coil with neuron status 1
is carrying a constant amount of source current, while the elemental coil with neuron status
0 is not carrying any current. The possibility is high, however, that some of the elemental
coils will end with a neuron status somewhere between 0 and 1. For these elemental coils, the
subdivision process is performed by further dividing each of these elemental coils into smaller
sub-elemental coils, and the assignment of a new neuron to each new generated sub-elemental
coil. This newly generated neural network ;s again minimized employing the MTNN. By the
repetition of this procedure, it is possible to reach the global minimum of the network faster
and easier. The simplified block-diagram of the proposed algorithm is presented in Fig. 2. To
reduce the number of circles, and therefore to speed up the computation in general, a simple
procedure that changes the status of some of the neurons is enabled. We used two threshold
values: 0.9 and 0.1 as margins, and neurons with a status larger than 0.9 or lower than 0.1
were changed into a new status of 1 and 0, respectively. The threshold values can be defined
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Fig. 2. Algorithm of probbsed hybrid method. Fig. 4. Energy minimization by MTNN-step #1.

by the user. For more accurate results, narrow margins are advisable.

3. Application

The proposed hybrid method was applied for inverse position optimization of electromagnetic
coils inside a MRI device. The schematic layout of the application model is presented in Fig. 3.
The available coil area, presented as a striped region in Fig. 3, was bounded as 500 [mm)] <
7 < 650 [mm] and 0 [mm] < 2 < 750 [mm] — only 1/4 of the entire optimization area was
analyzed. The entire coil area was divided into twenty elemental coils, initially developing
a neural network of only twenty neurons. Ten observation points symmetrically positioned
along a circle with a radius of 200 [mm] around the center of the model (see Fig. 3) were
considered. The source current value was constant and equal to 20 [A/mm?].

Figure 4 shows the minimization of the energy of the neural network by the MTNN. It can
be seen that as the network evolves with time the minimization of its energy can be executed
faster using the MTNN, and at the same time, avoiding any local minimum of the objective
function. The status of each neuron was established initially by randomly generating output
values of each neuron. In this stage only the discrete values 0 and 1 are allowed to exist
as output values of each neuron (see Fig. 5a). Then, using the MTNN, the minimization of
the energy due to the objective function (1) was performed. The final status of each neuron
following the MTNN minimization process, is presented in Fig. 5b. The next step in the
analysis is checking the error of the obtained solution by the following error criterion:
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where the B.o; and B,; are the desired and obtained intensity values of the 2-component of
magnetic flux density vector B at each observation point %, respectively.

If the maximum error obtained by means of (2) was smaller than the prescribed one, the
computation was terminated. Otherwise, the neural network’s energy was further minimized
b; tge HNN, and the neuron status presented in Fig. 5¢ was obtained. Notice that now some
of the neurons have an output value between discrete terminal values 0 and 1. To speed
up the computation to each neuron with a status larger than 0.9, a new status value 1 was
assigned, and to those with a status smaller than 0.1, value 0 (see Fig. 5d). The elemental
coils represented in the neural network by neurons with a status between 0.1 and 0.9 are
further subdivided into smaller sub-elemental coils, and each new neuron is assigned to each
new sub-elemental coil. This procedure must be repeated until the desired error criterion is
reached (see Figs. 2 and 5).
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Fig. 5. Obtained results for MRI model.

4. Conclusions

A new hybrid method for inverse optimization of electromagnetic coils using the multi-
transition and the Hopfield neural networks in combination was proFosed. Avoiding local
minimum points by using the MTNN and preserving the sensitivity of the network by using
the HNN results in a new algorithm that provides hxghl{) accurate results with less computa-
tion effort. The accuracy of the results is also increased fy subdivision of elemental coils into
smaller sub-elemental coils, a procedure that can be performed using the proposed method.
The successful application of the proposed method for inverse optimization of e ectromagnetic
coils in MRI device is very promising.
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