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Abstract—Animation of a time-varying 3-D scalar
field distribution requires generation of a set of images
at a sampled time intervals i.e. frames. Although,
volume rendering method can be very advantageous
for such 3-D scalar field visualizations, in case of
animation, the computation time needed for gener-
ation of the entire set of images can be considerably
long. To address this problem, this paper proposes
a fast volume rendering method which utilizes or-
thonormal wavelets. The coherency between frames,
in the proposed method, is eliminated by expanding
the scalar field into a series of wavelets. Application
of the proposed method for time-varying eddy-current
density distribution inside an aluminum plate (TEAM
Workshop Problem 7) is given. :

Index terms—Scientific visualization, Volume
rendering, Wavelet transform, Eddy currents.

I. INTRODUCTION

With the increase of the computer ‘performances,time-
varying physical phenomena becomes easily simulated
according to the results obtained by the finite element
method.Utilizing an adequa.te visualization “techniqué is
very important to understand and verify the results
of such simulations. = For ‘3-D electromagnetlc field
visualization,several visualization methods have been al-
ready proposed [1]. Volume rendering method is one of
the methods for v1suahzmg tlme-varymg 3-D scalar fields
such as ma,gnetlc field' density or eddy-clirrents’ density
distributions. . Using this method, a scalar field first is
sampled at discrete points in 3-D space generating a 3-D
volume data set. Then, images ‘are generated’ by project-
ing this 3-D volume data set onto two-dimensional screen.
However, this process often requires a lot of computation
time. Therefore, in order ‘to reduce the calculation time,
several methods have already been proposed [2], [3]; [4].
These methods successfully solve the problem of quickly
generating images with an arbitrary viewpoint. ‘When
_the volume data changes with time, however, the com-
putation time is still considerably long-as a result of the.
pre-processing which is necessary ‘to be recomputed for

generation of each images at each time step separately.
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Fig. 1. Basic idea of the p}oposed method.

In this paper, we propose a fast image generation
method for visualization of time variant. 3-D scalar fields
using volume rendering method and orthonormal wavelet
transformation. Because, volume data in general has
similar distribution between neighboring frames, the time
variant volume data is: ea,sxly transformed into wavelet
series along  time, axis, and t_ercfore, ehrmnatmg the
redundancy.. between frames, ._Next, a set of images is
generated usmg the alread ransformed volume data.
Moreover, using parallel _projection and light attenu-
ation depending on the distance from the yiewpoint,
the proposed v1suahzatxon method prov1des sophlstlcated
animation with three to four txmes shorter computation
time than the conventional volume. rendering methods.

1I. Basic IDEA oF THE PROPOSED METHOD

With the proposed method the volume data set has to
be transformed along time axis into a series of wavelets
in order to reduce. the Jcomputatlon time for an image
generatlon as shown in Fig. 1. Note that for sunphc1ty,
in Fig. 1, a 2-D volume giatq is: assumed and the size of
the black circles 1mphes the magmtude of a scalar value
at each grid point. Initially, scalar values at each grid
point are transformed‘inté wavelets and approximated so
that the approximation érror does not exceed a specified
tolerance rate.. Next, intermediate images are generated
from the transformed volume data by using the splatting
method [5]. The splatting method works as follows: First,
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Fig. 2. Wavelets and function approximation.

a grid point of the volume data is projected onto a 2-D
image plane. Next, the intensity determined by the scalar
value at each grid point is added to the neighboring pixels
corresponding to the projected point. The entire image is
generated by splatting all grid points of the volume data,
therefore, the computation time for image generation is
approximately proportional to the size of the volume data,
i.e. the number of grid points. The resulting images are
generated using inverse transformation of the intermedi-
ate images. '

As can be seen from Fig. 1, in the transformed volume
data, low frequency components have larger values, and
the higher ‘the frequency is, the smaller its transformed
value becomes. The coherency between each time step can
be efficiently removed by eliminating the higher frequency
components that Have small transformed values. There-
fore, the size of the transformed volume data becomes
smaller than that of the original data. Consequently,
the calculation time for splatting the volume data can
be reduced and hence the images can be generated more
quickly.

III. APPROXIMATING VOLUME DATA USING
' WAVELETS

Let us assume V(x;,t;) to be a scalar value at an

arbitrary grid point x;, at time step ;. The volume data.

V(xi,t;) can be expanded into series of wavelets

. n=-1
Vixits) = Y ce(xi)ur(ti) (1)

k=0

where u(t) is a wavelet basis function. In the proposed
method, the Haar wavelets and the multi-wavelets, which
both aré orthonormal wavelet basis, are used as wavelet
basis functions. The Haar wavelets have an advantage

of low computational cost for forward and inverse trans-
formations. However, as shown in Fig. 2, the approxi-
mated function using the Haar wavelets is likely to have
discontinuities since they approximate arbitrary function
with a ladder function. On the other hand, multi-wavelets
can approximate a function fair smoothly although the
computational cost becomes higher than that of the Haar
wavelets. The volume data V(x;,;), is approximated so
that the approximation error does not exceed a specified
root mean square (RMS) error.

Using the orthonormal wavelet basis functions, the
RMS error €,40e can be obtained easily according to (2).
That is, the error is equal to the sum of the square of coef-
ficients of removed basis functions. Utilizing properties of
the orthonormal wavelet basis functions, the volume data
can be approximated using the following procedure:

Step - 1: Sort the coefficients cg(x;) in descending order,
and define the current number of coefficients ¢k
as | = n — 1, where n is the total number of
coefficients in the wavelet: series. . After sorting
indexes k are replaced with o(k).

Step - 2: Calculate the appféiimation error using €:

(2)

Step - 3: If error € <'Ewave, or 1 = 0, then stop after
# = |+ 1, where 7 is the final number of basis
wavelet functions. Else, go to Step - 2 after
l=1-1.

Using # obtained by the above procedure, V(xi,t;) is

approximated by the fpllg‘v"vingweguag;ion'.

3 : ity ,ﬁvl ;
V(i t5) = Vapp (Xir i) Y Co(r)(Xi)toqey(ts)-  (3)
. b0
i IV : éIﬁ;{AéE“GENERATION
Usihg the‘i splattmg metth, iﬁi;ehsity_of a pixel p of the
intermediate image.i(p,?;) is expressed by the following
equation. i
b’ ’ rnv"'“; 3 ‘ : .\
i(p,t) = E‘Vapp(xi,tj)h(py Xi), 4)
. s ; siah ,
where nyor is the number of grid points in the volume,
h(p,x;) is called a reconstruction kernel [5]. Equation 4)
can be rewritten using (3) as follows.. ’
Mg =1
> (3 ot xauoceyt)) hlp,xs)

=1 k=0 :
.;_ EZ} (Ca(k)(xt)h(p’ x’l)) u”(k)(tj)

Nyol ﬁ"‘l

= ZZ Ci,or) (0 X)Uoy(),  (8)

=1 k=0

il

i(p’tj)
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Fig. 3. Estimation of normalized ixitensity.

where,
Equation (5) implies that intensity of the intermedi-
ate images is also expressed with a series of wavelet basis

functions. Therefore, the resulting images can be obtained
by inverse transform of the intermediate images.

V. ERROR ESTIMATION

Let I(p,t;) be the intensity of a pixel p of an image
at time step ¢; generated using the original volume data.
Similarly let Ipp(p, t,) be the intensity of the pixel p of
‘an image generated usin, he appmmmated volume data.
Then, the relative eer be

eg {(P,tj) and Iapp(py i) is

as described in the section \II A the threshold ‘Ewave in the
sense of the RMS error has to be specified to approximate
the volume data.  Therefore, the threshold for ‘wavelet
transform must be calculated from €,,,. In the following,
the calculatlon method of €yave is proposed.

Putting (4)i into (7), elative error is expressed with

ach grid point
- Vapp(Xi,15)| < €(t5)

Let us assume that 'the a ohite error of
is less than &(t;), that i ls, Vi(xi,5)
Then,

e(t;)
Era(p,tj) < (T,igj ©)
soy) = ZiiyCathex) )

En“" h(p,x:)

C;,a(k)(P,ii) = ¢o (k) (Xi)h(p, xi). (6)
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'Fig. 4. TEAM Workshop problem 7.

We call g(p,t;) a normalized intensity. Therefore, to
satisfy the condition Eyei(p,tj) < €usr, €(t;) is calculated
by the following equation

€(tj) = €user X m:.xg(p,tj). (11)
The threshold value €y qve used for wavelet transform is
given by the following equation

(12)

Ewave =

To calculate £(t;) using (11), the normalized intensity
g(p,t;) must be evaluated for each pixel. However, the
computation cost for thé normalized intensity is equal
to the generation of the resulting images. Therefore, we
estimate the normalized intensity using the Monte-Carlo
method as follows. In order to estimate the normalized
intensity, several projection planes are placed around the
volume data, as shown in Fig.3. Then several initial
sample points are randomly generated on the projection
planes. After calculating the normalized intensity for each
sample point at each’ titne step, ‘additional sample points
are placed around the‘initial sample point with high value
of the normalized internisity and the normalized intensity
is calculated again. using sampled The maximum value of
the sampled normalized intensities is used for calculating
the e(t;) using (11).

VI. APPLICATION

The proposed method was apphed to visualize the
time-varying eddy current densxty distribution inside an
aluminum plate as shown m Flg 4 (TEAM Workshop
problem 7).

A. Pseudo-Color Display

Pseudo-color is used for visualizing 3D scalar fields in
the following example. Blue is assigned to small values,
green to middle values, and red to large values.

To achieve the pseudo-color: display, first, the scalar val-
ues are converted to pseudo-color using a color mapping
function [6). Three sets of volume data are generated,
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Fig. 5. Pseudo-color display.

TABLE I

Computation time [sec]

Proposed Method
Haar Wavelets I Multi-wavelets

Traditional Method

3993 | 559.8
SGI Powerlndigo2

| 1643.0 [

each volume data corresponds to Red(R), Green(G),
and Blue(B) components respectively, as shown in Fig.5.
Next, images corresponding to R, G, and B components
are generated by applying the proposed method to each
volume data. Finally, the resulting images are generated
by superposition of the images.’

B. Obtained Results

One time cycle is divided into 2° = 32 steps. An
image generated by the proposed method using the Haar
wavelets at time step ¢ = 15 is shown in Fig, 6(a) :The
user specifed error ey, (see. sectoin II.C), is 0.02(~
5/256). Fig, 6(b) shows the relative error distribution
between traditional method [5] and the proposed method.
The maximum relative error using the Haar, wavelets was
10%, while using multi-wavelets was 7%. The quality of
the generated images is very high which means that the
proposed visualization method is very useful for image
generation and animation of a tlme-varymg 3-D scalar
field distributions. Finally, as shown in Table I, the
proposed method can generate the entire set of 32 i images
four times faster (using the Haar wavelets) or three times
faster (using multi-wavelets) than the traditional method.

VII. CoNcLUSION

We proposed a fast volume rendering method for time-
varying scalar field distributions by expanding the volume
data into orthonormal wavelet basis' along time axis.
Using the proposed method, high accurate images can be

generated three to four times faster than the traditional
method. As for the future work, further speeding up of the
computation process can be achieved by wavelet expan-
sion of the volume data along space axis as well as along
time axis and exploiting the coherency between both the
space and time axis.
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Fig. 6. Obtained eddy'current dens:ty distribution at time step
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