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MATHCAD – A TOOL FOR NUMERICAL CALCULATION OF SQUARE-WAVE 
VOLTAMMOGRAMS 
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An alternative approach for numerical calculation of the square-wave voltammograms using the mathematical 
programming package MATHCAD is presented. A quasi-reversible redox reaction is considered and a mathematical 
model is developed under conditions of the square-wave voltammetry (SWV). Application of the mathematical model 
in MATHCAD is discussed and the file used for numerical simulation is presented. The relationships between the 
properties of the SW response and the parameters of both the quasireversible redox reaction and the excitation signal 
are discussed. 
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INTRODUCTION 

Numerical simulation of the voltammetric re-
sponse of particular voltammetric technique is a 
common approach in the development of the volta-
mmetric method's theory. Studying the numerically 
simulated data one can predict the behavior of the 
voltametric experiment. Moreover, comparing and 
fitting the experimental and theoretical data, impor-
tant kinetic parameters of the investigated redox sys-
tem, such as the standard rate constant ks and the co-
efficient of electron transfer α, can be estimated. 
For all these reasons, a large number of scientific pa-
pers are dedicated to this important subject [l]. 

Additionally, numerous specialized program-
ming packages for simulation of the voltammetric 
response of various techniques are already avail-
able on the market. It is, however, still of interest to 
develop simple and flexible methods for calcula-
tion of the theoretical response of various voltam-
metric techniques. Nowadays, most chemists are 
familiar with the general purpose multitasking pro-
gramming packages such as EXCEL, QPRO, LO-
TUS, MATHCAD, etc. Therefore, it is very useful 
to find a way for calculation of the voltammetric 
responses using these programming packages.  

In this paper an alternative approach for calcu-
lation of the square-wave voltammetric response of 

a quasi-reversible redox reaction, using the pro-
gramming package MATHCAD, is presented. 
MATHCAD is one of the best general purpose 
mathematical programming packages [2]. The pro-
gram is user-friendly, fast and precise. It should be 
emphasized that the program provides various nu-
merical methods which are necessary for develop-
ment of voltammetric method's theory.  

As was mentioned previously, the voltammet-
ric curves are numerically simulated under condi-
tions of the square-wave voltammetry, which is one 
of the most advanced electroanalytical techniques 
[3]. The square-wave voltammetry is a complex, 
multi-step chronoamperometric method. The exci-
tation signal used in SW voltammetry is a train of 
cathodic and anodic pulses superposed on a stair-
case potential ramp (see Fig. 1a). One potential 
cycle in the SWV is presented in the Fig. 1b. The 
parameters of the signal are: the square-wave fre-
quency f, which is the inverse value of the duration 
of the potential cycle f = 1/τ (see Fig. 1b), the SW 
amplitude Esw, which is the half of the peak-to-peak 
height, and the scan increment dE, which is the step 
of the staircase ramp. 

The current is measured at the end of each po-
tential pulse. All the currents measured at the end 
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of the cathodic pulses create the forward (cathodic) 
component Ψf, while the currents measured at the 
end of the anodic pulses, create the backward (an-
odic) component Ψb of the SW response (see Fig. 

1c). The net-response Ψnet is calculated as a differ-
ence between the two successive cathodic and an-
odic currents: Ψnet = Ψf – Ψb.  
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Fig. 1. (a) The scheme of the excitation signal used in the square-wave voltammetry. (b) One potential cycle in the square- 
wave voltammetry. (c) A typical square-wave dimensionless voltammetric response for a reversible redox reaction.  

Es  – the starting potential; Esw – the SW amplitude; dE – the scan increment; τ  – the duration of one potential cycle;  
if and ib – the forward and the reverse real currents; Ψf, Ψb, Ψnet – the forward, the backward and the net dimensionless components  

of the SW response.  



 MATHCAD – a tool for numerical calculation of square-wave voltammograms 59 

��������	��
�������
 ������������������������������ 

MATHEMATICAL MODEL

A quasireversible redox reaction of two 
chemically stable species is considered: 

 RedneOx =+ −  (I) 

It is assumed that the mass transport occurs 
through planar, stationary, and semi-infinite diffu-
sion model. The redox reaction (I) is described 
mathematically with the following set of differen-
tial equations: 

 δcOx/δt = D(δ2cOx/δx2) (1) 

 δcRed /δt = D(δ2cRed/δx2) (2) 

For the meaning of the symbols and abbrevia-
tions see the Table I. For simplicity, the diffusion 
coefficients of both species Ox and Red are sup-
posed to be equal.  

At the very beginning of the experiment, only 
the Ox form of the redox couple is present in the 
electrolyte solution. Hence, the above differential 
equations are solved with the following initial and 
boundary conditions: 

t = 0:                 cOx = c*Ox;   cRed = 0 (a) 

t > 0, x � ∞ :   cOx � c*Ox;  cRed � 0 (b) 

t > 0, x = 0: 
D(δcOx /δx)x=0 = – D(δcRed /δx)x=0 = i/(nFS) (c) 

Since the redox reaction is partly controlled 
by the charge transfer rate, at the electrode surface, 
the following condition is valid: 

i/(nFS) = ks exp(–αφ) [(cOx)x=0 – (cRed)x=0 exp(φ)] 

  (3) 

where φ is dimensionless relative electrode poten-
tial: φ = (nF)(E – E0

Ox/Red)/(RT). The solutions 
which relate the concentrations of both species Ox 
and Red at the electrode surface with the current, 
were obtained applying Laplace transforms: 

T a b l e  I  

List of symbols and abbreviations  

Ox  – oxidized form of electroactive species 

Red  – reduced form of electroactive species 

cOx  – concentration of Ox species anywhere in the 
solution 

cRed  – concentration of Red species anywhere in the 
solution 

c*Ox  – concentration of Ox species in the bulk of the 
solution 

(cOx)x=0  – concentration of Ox species at the electrode 
surface 

(cRed)x=0  – concentration of Red species at the electrode 
surface 

t  – time 

x  – distance from the electrode 

i  – current 

n  – number of electrons 

F  – Faraday constant 

S  – electrode surface area 

ks  – standard kinetic rate constant of the redox 
reaction 

α  – coefficient of electron transfer  

T  – thermodynamic temperature 

R  – universal gas constant 

E  – electrode potential 

E0  – standard redox potential of the Ox/Red couple 

D  – diffusion coefficient 

Ψ1  – dimensionless current at the very first time 
increment 

Ψj  – dimensionless current at the j-th time increment 

Ψf  – dimensionless forward current 

Ψb  – dimensionless backward current 

Ψnet  – dimensionless net current  

K  – dimensionless kinetic parameter 

f  – SW frequency 

Esw  – SW amplitude 

dE  – scan increment 

∆E  – potential interval 

Es  – starting potential vs. E0 
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A combination of the eqs. (3) – (5) gives the following integral equation: 
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The above integral equation relates the current 
with time at a certain potential. The solution of the 
last integral equation under conditions of the SW volt-
ammetry was obtained by the numerical method of 
Nicholson and Olmstead [l]. Both the time variable 
t  

and dimensionless current Ψ = i(nFSc*Ox)
–1(fD)–1/2 

are discretized. To each t = jd, where d is the time 
increment, a certain Ψj can be ascribed. The nu-
merical solution is represented with the following 
recursive formulae: 
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where S1 = 1, Sk = (k)1/2 – (k–1)1/2 while K = 
ks / (fD)1/2 is dimensionless kinetic parameter. For 
this calculation, the time increment d = (50f )–1 was 

used, which means that each SW half-period τ/2 
(see Fig. 1b) was divided in 25 increments. 

SOLVING THE MATHEMATICAL MODEL USING THE PROGRAMMING PACKAGE “MATHCAD”

The MATHCAD file used for calculation of 
the dimensionless SW voltammograms is given in 
the Fig 2. At the very beginning of the file, all the 
constant parameters which are needed for numeri-
cal calculations, are defined.  

For numerical integration, the entire time of 
the SW excitation signal is divided in the finite 
number of time increments. In the previous chapter, 
it was mentioned that the time increment d is re-
lated to the SW frequency through the formula d = 

(50f )–1. It means that each potential cycle in the 
SW voltammetry is divided in 50 increments. The 
number of the potential cycles depends on the po-
tential interval ∆E and the scan increment dE. The 
total number of the potential cycles is equal to the 
ratio ∆E/dE. Therefore, the total number of the 
time increments is (∆E/dE)·50, while the ordinary 
number of each time increment is ranged within the 
interval of 1 to (∆E/dE)⋅50 (see equation (I) in Fig. 
2).  
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Fig. 2. The MATHCAD file created for numerical simulation of the SW voltammograms of a quasi-reversible redox reaction
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Creating the file, a crucial step is development 
of a function which simulates the potential wave-
form used in the SW voltammetry. MATHCAD has 
a database of various mathematical functions, how-
ever, neither of them resembles the shape of the 
SW excitation signal. Nevertheless, the problem 
can be solved if the mathematical “step” function is 
appropriately combined with the logical “if” func-
tion. The new function, called “potential”, is de-
fined by the eq. (II) in the Fig. 2 and is of exactly the 
same form as the SW excitation signal (see the Plot 1 
in the Fig. 2). This function represents the relative 
electrode potential applied to the working electrode 
under conditions of the SW voltammetry. Using this 
function, one can readily defines the dimensionless 
potential used for numerical calculations φ = nF(E–
E0)/(RT).  

The calculation of the dimensionless response 
under conditions of the SW voltammetric experi-
ment was carried out by the recursive formulae 
(IV) and (V) in the Fig. 2. The eq. (V) calculates 
the dimensionless current Ψk at each potential 
pulse applied to the working electrode. Above 
these formulae, the Sk factor needed for numerical 
integration is defined. After processing of the for-
mulae (IV) and (V), a new plot is created (see Plot 
2 in the Fig.1) which shows the variation of the 
current with time at each SW potential pulse.  

As it was mentioned previously, according to 
the current-sampling procedure used in the SW volt- 

 
 

ammetry, only the current obtained at the end of a 
single potential pulse is measured. The reason is to 
discriminate the capacitive current during the meas-
urement and to increase the sensitivity of the tech-
nique [3]. Hence, all the currents measured at the 
end of all the cathodic pulses create the forward 
branch Ψf of the SW voltammogram. The back-
ward branch Ψb contains the currents measured at 
the end of each anodic pulse. The net current Ψnet is 
defined as a difference between the forward and 
backward current. Therefore, one needs to select 
only the currents obtained at the end of the each 
SW pulse. This can be done with the set of formu-
lae from (VI) to (VIII) given in the Fig. 2.  

Finally it should be noted, that in the SW volt-
ammetry, the current data are plotted versus the 
potential values of the staircase ramp. The last 
formulae of the file (IX) defines the potential of the 
staircase ramp. Plot 3 in the Fig. 2 represents the 
numerically calculated SW voltammetric response 
of the quasireversible redox reaction. 

The processing time for calculation of a single 
SW voltammogram depends on the performance of 
the used processor, potential interval and the scan 
increment. With the processor PC 486DX2/66 MHz 
with 8 MB RAM memory, potential interval ∆E = 0.3 
V and scan increment is dE = 5 mV, processing time 
takes about 5 min. The processing time can be mark-
edly decreased with increase of the scan increment. 

DISCUSSION OF THE NUMERICALLY CALCULATED DATA

The MATHCAD file was utilized for numeri-
cal simulation of about hundred SW voltammo-
grams, in order to investigate the relationships be-
tween the properties of the response and the pa-
rameters of both the redox reaction and the excita-
tion signal.  

As can be seen from the Plot 3 in the Fig. 2, 
the SW voltammograms are current-potential bell-
shaped curves characterized with the dimensionless 
peak current ∆Ψp, the peak potential Ep and the 
half-width of the peak ∆Ep/2. The number of points 
constituting a single voltammogram depends on the 
scan increment dE. The point with the highest cur-
rent value determinates the peak current ∆Ψp, while 
its position at the potential axis defines the peak 
potential Ep. The width of the peak at its half 
height, expressed in Volts, is called the half-width 
of the peak ∆Ep/2. 

According to the eq. (8), the dimensionless 
SW response of the quasi-reversible redox reaction 
(I) is mainly dependent on the kinetic parameter K 
and the electron transfer coefficient α. The appar-
ent reversibility of the redox reaction entirely de-
pends on the kinetic parameter K = ks / (Df)1/2. The 
influence of this parameter to the dimensionless 
peak current is presented in the Fig. 3. If the redox 
reaction appears either irreversible (logK ≤ –1.5), 
or reversible (logK ≥ 0.75), the dimensionless peak 
current does not depend on the kinetic parameter 
(see Fig. 3). Within the region –1 ≤ logK ≥  0.3 the 
redox reaction appears quasi-reversible, and the 
dimensionless peak current depends linearly on the 
kinetic parameter K. The slope of this linear por-
tion is determinated by the particular value of the 
transfer coefficient α (see Fig. 3). 
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Fig. 3. The effect of the kinetic parameter K  

on the dimensionless SW peak currents for divers values  
of the transfer coefficient α. The conditions of the simulation 

were: Esw = 0,025 V; dE = 0,005 V; T = 298.15 K;  
α = 0.3 (1);  0.5 (2) and 0.7 (3) 

The position of the SW peak is also sensitive 
to the kinetic parameter K. The relationship be-
tween the peak potentials Ep and the logarithm of 
the kinetic parameter K, for different values of the 
transfer coefficient α, is presented in the Fig. 4. If 
the redox reaction is close to the reversible region 
(logK ≥  0.5), the peak potential becomes almost 
independent on the kinetic parameter. Only within 
the irreversible region, the peak potential depends 
linearly on the logarithm of K. The slope of the lin-
ear portion is dependent on the transfer coefficient 
α and it is defined by the following equation: 
∆Ep/∆logK = 2,303 RT/(αnF). Therefore, if the ir-
reversibility of the redox reaction was reached ex-
perimentally, this equation could be utilized for an 
estimation of the transfer coefficient.  

The half-width of the SW peak gradually 
changes with the alteration of the kinetic parameter 
K. If the redox reaction appears irreversible, the 
half-width of its SW peak is solely determined by 
the transfer coefficient α, through the equation: 
∆Ep/2 = (90 ± 2)/(αn) mV. Within the quasi-
reversible region, the half-width of the peak de-
creases proportionally with increase of the kinetic 
parameter K, reaching a constant value for the re-
versible redox reaction. If the SW amplitude was 
Esw = 50 mV, the half-width of the peak for re-
versible redox reaction is ∆Ep/2 = 125 mV.  

Numerical simulations shown that the SW 
peak current depends linearly on the SW amplitude 
(see Fig. 5). The peak potential remained virtually 
unchanged with the variation of the amplitude from 
2 to 100 mV. The half-width of the peak enhances 

slightly with the increase of the SW amplitude. It is 
important to note that the ratio ∆Ψp/ ∆Ep/2 reaches 
the maximum value for Esw = 90 mV, which means 
that this amplitude is the most suitable for analyti-
cal purposes. 

 

Fig. 4. The effect of the kinetic parameter K on the SW peak 
potentials for divers values of the transfer coefficient α.  
The conditions of the simulation were: Esw = 0.025 V;  

dE = 0.005 V; T = 298.15 K; α = 0.4 (1);  0.5 (2) and 0.7 (3) 

 
Fig. 5. The dependence of the peak currents on the SW 

amplitude. The conditions of the simulations were: 
 logK = –0.5; α = 0.5; dE = 5 mV; T = 298.15 K 

When particular redox reaction is investigated 
experimentally, the variation of the kinetic parame-
ter K, which is defined as K = ks /(Df)1/2, can be at-
tained by an alteration of the frequency f of the ex-
citation signal. Therefore, the effect of the SW fre-
quency on the SW response can be understood 
through the previously discussed effect of the ki-
netic parameter K. 
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CONCLUSION 

In this paper it is demonstrated that the 
MATHCAD programming package can be success-
fully used as a tool for numerical calculation of the 
square-wave voltammograms. It is shown that this 
program can easily generate a complex function 
which possesses exactly the same shape as the SW 
excitation signal. The presented MATHCAD file 

reflects the simplicity in which one can communi-
cate with the program.  

Studying the numerically simulated voltam-
mograms one can understand the behavior of the volt-
ammetric experiment and realize the relationships be-
tween the properties of the investigated redox reaction 
and the features of the voltammetric response. 
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