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Abstract. The extended Feistel networks are defined elsewhere. Here we
analyse the prop ratio tables of the extended Feistel networks and of the

quasigroups produced by them. Since the prop ratio tables are used in differ-
ential cryptanalysis, the obtained results can be useful in designing suitable
cryptographic primitives, when extended Feistel networks and quasigroups
produced by them are used. One new classification of quasigroups, according

to their prop ratio table properties, is given as well.

1. Introduction

Extended Feistel networks (EFNs) are introduced in [5] as one generalization
of the Feistel networks, introduced by H. Feistel [4]. The name was unhappily
chosen, because it has been already used by several authors for denoting the type-
1, type-2 and type-3 Feistel networks (introduced by Zheng et al [9]). Here we use
the meaning of the EFNs as it is defined in [5].

In this paper we give further analysis of the EFNs and of the quasigroups
produced by them, and especially we consider the so called prop ratio tables.
The prop ratio tables, introduced by Daemen [3], can be used in analyzing the
resistance of some cryptographic primitives again differential cryptanalysis.

Differential cryptanalysis, introduced by E. Biham and A. Shamir [1], is a chosen
plaintext attack/chosen ciphertext attack, because the attacker is able to choose
pairs of plaintexts such that there is a specified difference ∆X between members
of the pair. For any particular cipher, the plaintext pair difference must be care-
fully chosen, if the attack has to be successful. The attacker then trace a path
of highly probable difference through all rounds of the cipher until the difference
of the corresponding ciphertext pairs ∆Y , termed a differential characteristic, has
suitable value. The resulting pair of differences (∆X,∆Y ) is called a differential.
In an ideally randomized cipher, the probability that a particular output differ-
ence ∆Y occurs, given a particular input difference ∆X, is 2−n, where n is the
number of input bits. Statistics of the differentials can discover where the cipher
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exhibits non-random behaviour resulting with recovering of the secret key. Statis-
tical properties of differentials depend upon the nature of non-linear components
of the cryptographic primitive, usually S-boxes, so they must be examined.

Let a and a∗ be n-dimensional binary vectors with bitwise difference a⊕a∗ = a′.
Let b = h(a), b∗ = h(a∗) and b′ = b ⊕ b∗. Hence, the difference a′ propagates to
the difference b′ through the mapping h and this difference propagation is denoted
by (a′ ⊣ h ⊢ b′). The prop ratio Rp of a difference propagation (a′ ⊣ h ⊢ b′) is
defined by

Rp(a
′ ⊣ h ⊢ b′) = 2−n

∑
a

δ(b′ ⊕ h(a⊕ a′)⊕ h(a)).

where δ(w) is the real-valued function equal to 1 if w is the zero vector and 0
otherwise. The prop ratio ranges between 0 and 1.

Differential cryptanalysis attacks are possible if there are predictable difference
propagations over all but a few rounds that have prop ratio significantly larger
than 21−n, where n is the block length in the block ciphers [3]. To be resistant
against this attack, necessary condition is that there are no differential trails with
predicted prop ratio higher than 21−n.

2. Extended Feistel Networks

Let (G,+) be an Abelian group, let f : G → G be a mapping and letA,B,C ∈ G
are constants. The extended Feistel network FA,B,C : G2 → G2 created by f is
defined for every l, r ∈ G by

FA,B,C(l, r) = (r +A, l +B + f(r + C)).

It is shown in [5, 6] that if f is a bijection, then FA,B,C is an orthomorphism
of the group (G2,+). Inversion of an orthomorphism is again an orthomorphism.
Even more, for the group (Zn

2 ,⊕n), any composition of two extended Feistel net-
works is an orthomorphism, too. We generalize the last statement for any Abelian
group by the following Proposition.

Proposition 2.1. Let (G,+) be an Abelian group, let f, g : G → G be bijections,
A,B,C,A′, B′, C ′ ∈ G and let FA,B,C ,HA′,B′,C′ : G2 → G2 be extended Feistel
networks of the group (G2,+), created by f and g respectfully. Then the composite
function HA′,B′,C′ ◦ FA,B,C is an orthomorphism on (G2,+) too.

Proof. Let Φ = HA′,B′,C′ ◦FA,B,C − I, where I is the identity mapping. Then, for
every l, r ∈ G, we have

Φ(l, r) = (B +A′ + f(r + C), A+B′ + g(l +B + C ′ + f(r + C))).

Define the function Ω : G2 → G2 by

Ω(l, r) = (g−1(r −A−B′)− l +A′ − C ′, f−1(l −A′ −B)− C).

It can be checked that Ω ◦Φ = Φ ◦Ω = I, i.e., Φ and Ω = Φ−1 are bijections. �
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2.1. Prop ratio tables of the extended Feistel networks over (Zn
2 ,⊕n).

In this subsection we consider extended Feistel networks of the Abelian groups
(Zn

2 ,⊕n) and their prop ratios. Our first result is the following.

Proposition 2.2. Let FA,B,C : Z2n
2 → Z2n

2 be an extended Feistel network of the
Abelian group (Z2n

2 ,⊕2n) created by a bijection f : Zn
2 → Zn

2 . If the maximal prop
ratio of f is smaller than 1, then the extended Feistel network FA,B,C is uniquely
determined by the parameters A, B and C.

Proof. Let (A,B,C) ̸= (A′, B′, C ′) and FA,B,C = FA′,B′,C′ . Then FA,B,C(l, r) =
(r⊕n A, l⊕n B⊕n f(r⊕n C)) = (r⊕n A′, l⊕n B′ ⊕n f(r⊕n C ′)) = FA′,B′,C′(l, r),
for every l, r ∈ Zn

2 . Consequently, we have A = A′ and B ⊕n B′ = f(r ⊕n C) ⊕n

f(r ⊕n C ′) = K, where K is a constant. K ̸= 0, since B = B′ implies C = C ′.
Then C ⊕n C ′ = R is also a nonzero constant. So, for every t, where t = r ⊕n C,
we have f(t)⊕n f(t⊕n R) = K.

The last equation means that we must have a nontrivial difference propagation
for our starting bijection f , that propagates with probability 1. In other words, we
must have a nonzero input difference R that propagates to the output difference
K with probability 1, i.e., the maximal prop ratio of the starting bijection is 1. �

Theorem 2.1. Let f : Zk
2 → Zk

2 be bijection such that Rp(a ⊣ f ⊢ b) = 1 only for
a = b = 0, and let FA,B,C : Z2k

2 → Z2k
2 be an extended Feistel network of the group

(Z2k
2 ,⊕2k), created by f . Then Rp(a

′ ⊣ FA,B,C ⊢ b′) = 1 if and only if a′ = (x, 0)
and b′ = (0, x) for some x ∈ Zk

2 .

Proof. Let b′ = (b′1, b
′
2), a

′ = (a′1, a
′
2), where b′1, b

′
2, a

′
1, a

′
2 ∈ Zk

2 . Then we have:

Rp(a
′ ⊣ FA,B,C ⊢ b′) = 1

⇔ 2−2k
∑

a δ(b
′ ⊕2k FA,B,C(a⊕2k a′)⊕2k FA,B,C(a)) = 1

⇔
∑

a δ(b
′ ⊕2k FA,B,C(a⊕2k a′)⊕2k FA,B,C(a)) = 22k

⇔ δ(b′ ⊕2k FA,B,C(a⊕2k a′)⊕2k FA,B,C(a)) = 1 (∀a ∈ Z2k
2 )

⇔ b′ ⊕2k FA,B,C(a⊕2k a′)⊕2k FA,B,C(a) = 0 (∀a ∈ Z2k
2 )

⇔ (b′1, b
′
2)⊕2k FA,B,C((a1, a2)⊕2k (a′1, a

′
2))⊕2k FA,B,C(a1, a2) = 0 (∀(a1, a2) ∈

Z2k
2 )

⇔ (b′1, b
′
2)⊕2kFA,B,C(a1⊕ka

′
1, a2⊕ka

′
2)⊕2kFA,B,C(a1, a2) = 0 (∀(a1, a2) ∈ Z2k

2 )

⇔ b′1 ⊕k a2 ⊕k a′2 ⊕k A⊕k a2 ⊕k A = 0 &
b′2⊕k a1⊕k a

′
1⊕kB⊕k f(a

′
2⊕k a2⊕kC)⊕k a1⊕kB⊕k f(a2⊕kC) = 0 (∀a1, a2 ∈ Zk

2)

⇔ b′1 = a′2 & b′2 ⊕k a′1 = f(a′2 ⊕k a2 ⊕k C)⊕k f(a2 ⊕k C) (∀a2 ∈ Zk
2).
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Let put a2 = t ⊕k C. Then for every t ∈ Zk
2 we will have b′2 ⊕k a′1 = f(a′2 ⊕k

t) ⊕k f(t), i.e., Rp(a
′
2 ⊣ f ⊢ (b′2 ⊕k a′1)) = 1. It follows that b′1 = a′2 = 0 and

b′2 = a′1. �

Corollary 2.1. The prop ratio table of an extended Feistel network Fa,b,c : Z2k
2 →

Z2k
2 of the group (Z2k

2 ,⊕2k), created by a bijection f : Zk
2 → Zk

2 such that Rp(a ⊣
f ⊢ b) = 1 only for a = b = 0, has exactly 2k ones.

Theorem 2.2. Let f : Zk
2 → Zk

2 be a bijection such that Rp(a ⊣ f ⊢ b) = 1 only
for a = b = 0, and let FA,B,C : Z2k

2 → Z2k
2 be an extended Feistel network of

the group (Z2k
2 ,⊕2k), created by f . Then Rp(a

′ ⊣ F 2
A,B,C ⊢ b′) = 1 if and only if

a′ = b′ = (0, 0).

Proof. Let b′ = (b′1, b
′
2), a

′ = (a′1, a
′
2), where b′1, b

′
2, a

′
1, a

′
2 ∈ Zk

2 . Then we have (by
avoiding some steps presented in the proof of Theorem 2.1):

Rp(a
′ ⊣ F 2

A,B,C ⊢ b′) = 1

⇔ b′ ⊕2k F 2
A,B,C(a⊕2k a′)⊕2k F 2

A,B,C(a) = 0 (∀a ∈ Z2k
2 )

⇔ (b′1, b
′
2)⊕2k F 2

A,B,C((a1, a2)⊕2k (a′1, a
′
2))⊕2k F 2

A,B,C(a1, a2) = 0 (∀(a1, a2) ∈
Z2k
2 )

⇔ (b′1, b
′
2)⊕2kF

2
A,B,C(a1⊕ka

′
1, a2⊕ka

′
2)⊕2kF

2
A,B,C(a1, a2) = 0 (∀(a1, a2) ∈ Z2k

2 )

⇔ b′1⊕ka1⊕ka
′
1⊕kA⊕kB⊕kf(a

′
2⊕ka2⊕kC)⊕ka1⊕kA⊕kB⊕kf(a2⊕kC) = 0

& b′2 ⊕k a2 ⊕k a′2 ⊕k A ⊕k B ⊕k f(a1 ⊕k a′1 ⊕k B ⊕k C ⊕k f(a2 ⊕k a′2 ⊕k C)) ⊕k

a2 ⊕k A⊕k B ⊕k f(a1 ⊕k B ⊕k C ⊕k f(a2 ⊕k C)) = 0 (∀a1, a2 ∈ Zk
2)

⇔ b′1 ⊕k a′1 = f(a′2 ⊕k a2 ⊕k C)⊕k f(a2 ⊕k C) &
b′2 ⊕k a′2 = f(a1 ⊕k a′1 ⊕k B ⊕k C ⊕k f(a2 ⊕k a′2 ⊕k C)) ⊕k f(a1 ⊕k B ⊕k C ⊕k

f(a2 ⊕k C)) (∀a1, a2 ∈ Zk
2).

Let put a2 = t⊕kC. Then for every t ∈ Zk
2 we have b′1⊕ka

′
1 = f(a′2⊕k t)⊕kf(t),

which means Rp(a
′
2 ⊣ f ⊢ (b′1 ⊕k a

′
1)) = 1. So, a′2 = 0 and b′1 = a′1. Now, from the

second equality we have b′2 = f(a1⊕ka
′
1⊕kB⊕kC⊕kf(t))⊕kf(a1⊕kB⊕kC⊕kf(t)),

for every a1, t ∈ Zk
2 . Let put a1 = r⊕k B ⊕k C ⊕k f(t). Then for every r ∈ Zk

2 we
have b′2 = f(a′1 ⊕k r)⊕k f(r), i.e., Rp(a

′
1 ⊣ f ⊢ b′2) = 1. It follows that a′2 = 0 and

b′1 = a′1 = b′2 = 0. �

The previous theorems show that the maximal prop ratio of F 2
A,B,C is smaller

than the maximal prop ratio of FA,B,C (which is equal to 1). Consequently, for
getting higher resistance again differential cryptanalysis it should be used F 2

A,B,C ,
and then the price is paid by smaller efficiency.
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3. Quasigroups by extended Feistel networks over (Zn
2 ,⊕n)

Let (G,+) be an abelian group, let f : G → G be a bijection and let FA,B,C

be an extended Feistel network created by f (FA,B,C is an orthomorphism of the
group (G2,+)). One can construct quasigroup (G2, •) by using Sade’s diagonal
method [8] as a base [5, 6]. For all X,Y ∈ G2, the quasigroup operation • is
defined by

X • Y = FA,B,C(X − Y ) + Y.

In the sequel we examine only Abelian group (Zn
2 ,⊕n). We give the shape of

prop ratio tables of the quasigroups produced by extended Feistel networks FA,B,C

and F 2
A,B,C .

Theorem 3.1. Let QFA,B,C : Z4k
2 → Z2k

2 be a quasigroup generated by the extended

Feistel network FA,B,C : Z2k
2 → Z2k

2 of the group (Z2k
2 ,⊕2k), created by the bijection

f : Zk
2 → Zk

2 such that Rp(a ⊣ f ⊢ b) = 1 only for a = b = 0. We have
Rp(a

′ ⊣ QFA,B,C ⊢ b′) = 1 if and only if a′ = (x, y, z, y) and b′ = (z, x⊕k y ⊕k z),

for some x, y, z ∈ Zk
2 .

Proof. Let b′ = (b′1, b
′
2), a

′ = (a′1, a
′
2, a

′
3, a

′
4), where b′1, b

′
2, a

′
1, a

′
2, a

′
3, a

′
4 ∈ Zk

2 . Then
we have (by avoiding some steps presented in the proof of Theorem 2.1):

Rp(a
′ ⊣ QFA,B,C

⊢ b′) = 1

⇔ b′ ⊕2k QFA,B,C
(a⊕4k a′)⊕2k QFA,B,C

(a) = 0 (∀a ∈ Z4k
2 )

⇔ (b′1, b
′
2)⊕2k QFA,B,C

(a1 ⊕k a′1, a2 ⊕k a′2, a3 ⊕k a′3, a4 ⊕k a′4)⊕2k

QFA,B,C
(a1, a2, a3, a4) = 0 (∀a1, a2, a3, a4 ∈ Zk

2)

⇔ b′1 ⊕k a2 ⊕k a
′
2 ⊕k a3 ⊕k a

′
3 ⊕k a4 ⊕k a

′
4 ⊕k A⊕k a2 ⊕k a3 ⊕k a4 ⊕k A = 0 &

b′2 ⊕k a1 ⊕k a
′
1 ⊕k a3 ⊕k a

′
3 ⊕k a4 ⊕k a

′
4 ⊕k B ⊕k f(a

′
2 ⊕k a2 ⊕k a

′
4 ⊕k a4 ⊕k C)⊕k

a1 ⊕k a3 ⊕k a4 ⊕k B ⊕k f(a2 ⊕k a4 ⊕k C) = 0 (∀a1, a2, a3, a4 ∈ Zk
2)

⇔ b′1 = a′2 ⊕k a′3 ⊕k a′4 &

b′2⊕ka
′
1⊕ka

′
3⊕ka

′
4 = f(a′2⊕ka2⊕ka

′
4⊕ka4⊕kC)⊕k f(a2⊕ka4⊕kC) (∀a2, a4 ∈

Zk
2).

It follows that b′1 = a′2 ⊕k a′3 ⊕k a′4 and, by putting a2 ⊕k a4 = t ⊕k C, we
obtain b′2 ⊕k a′1 ⊕k a′3 ⊕k a′4 = f(a′2 ⊕k a′4 ⊕k t) ⊕k f(t), for every t ∈ Zk

2 . This
means Rp((a

′
2 ⊕k a′4) ⊣ f ⊢ (b′2 ⊕k a′1 ⊕k a′3 ⊕k a′4)) = 1, implying a′2 = a′4 and

b′2 = a′1 ⊕k a′3 ⊕k a′4. Hence, a′ = (x, y, z, y) and b′ = (z, x ⊕k y ⊕k z) for some
x, y, z ∈ Zk

2 . �

According to obtained prop ratio tables, quasigroups can be classified as:
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1. non-restricted quasigroups - when all nontrivial difference propagations
are of prop ratio 1

2. weak restricted quasigroups - when at least one nontrivial difference prop-
agation is of prop ratio 1 and at least one nontrivial difference propagation
is of prop ratio smaller than 1

3. restricted quasigroups - when there is no nontrivial difference propagations
of prop ratio 1.

Corollary 3.1. Extended Feistel network FA,B,C : Z2k
2 → Z2k

2 of the group
(Z2k

2 ,⊕2k), created by the bijection f : Zk
2 → Zk

2 such that Rp(a ⊣ f ⊢ b) = 1
only for a = b = 0, produces weak restricted quasigroups and, even more, its prop
ratio table has 23k ones.

The interpretation of the last corollary tell us that for exactly 23k input differ-
ences we can predict the proper output difference with probability 1. This is very
useful for differential cryptanalysis, so we should not use this kind of quasigroups
standalone. As alternative, we have to use better quasigroups, or to use these
quasigroups in some quasigroup transformations.

Theorem 3.2. Let QF 2
A,B,C

: Z4k
2 → Z2k

2 be a quasigroup generated by the extended

Feistel network FA,B,C : Z2k
2 → Z2k

2 of the group (Z2k
2 ,⊕2k), created by the bijection

f : Zk
2 → Zk

2 such that Rp(a ⊣ f ⊢ b) = 1 only for a = b = 0. We have
Rp(a

′ ⊣ QF 2
A,B,C

⊢ b′) = 1 if and only if a′ = (x, y, x, y) and b′ = (x, y), for some

x, y ∈ Zk
2 .

Proof. Let b′ = (b′1, b
′
2), a

′ = (a′1, a
′
2, a

′
3, a

′
4), where b′1, b

′
2, a

′
1, a

′
2, a

′
3, a

′
4 ∈ Zk

2 . Then
we have (by avoiding some steps presented in the proof of Theorem 2.1):

Rp(a
′ ⊣ QF 2

A,B,C
⊢ b′) = 1

⇔ (b′1, b
′
2)⊕2k QF 2

A,B,C
(a1 ⊕k a′1, a2 ⊕k a′2, a3 ⊕k a′3, a4 ⊕k a′4)⊕2k

QF 2
A,B,C

(a1, a2, a3, a4) = 0 (∀a1, a2, a3, a4 ∈ Zk
2)

⇔ b′1 ⊕k a1 ⊕k a′1 ⊕k A ⊕k B ⊕k f(a2 ⊕k a′2 ⊕k a4 ⊕k a′4 ⊕k C) ⊕k a1 ⊕k A ⊕k

B⊕k f(a2 ⊕k a4 ⊕k C) = 0 & b′2 ⊕k a2 ⊕k a
′
2 ⊕k A⊕k B⊕k f(a1 ⊕k a

′
1 ⊕k a3 ⊕k

a′3 ⊕k B⊕k C ⊕k f(a2 ⊕k a
′
2 ⊕k a4 ⊕k a

′
4 ⊕k C))⊕k a2 ⊕k A⊕k B⊕k f(a1 ⊕k a3 ⊕k

B ⊕k C ⊕k f(a2 ⊕k a4 ⊕k C)) = 0 (∀a1, a2, a3, a4 ∈ Zk
2)

⇔ b′1 ⊕k a′1 = f(a2 ⊕k a′2 ⊕k a4 ⊕k a′4 ⊕k C)⊕k f(a2 ⊕k a4 ⊕k C) &
b′2 ⊕k a

′
2 = f(a1 ⊕k a

′
1 ⊕k a3 ⊕k a

′
3 ⊕k B⊕k C ⊕k f(a2 ⊕k a

′
2 ⊕k a4 ⊕k a

′
4 ⊕k C))⊕k

f(a1 ⊕k a3 ⊕k B ⊕k C ⊕k f(a2 ⊕k a4 ⊕k C)) (∀a1, a2, a3, a4 ∈ Zk
2)

Let put a2 ⊕k a4 = t ⊕k C. Then for every t ∈ Zk
2 we have b′1 ⊕k a′1 =

f(a′2 ⊕k a′4 ⊕k t) ⊕k f(t), which means Rp((a
′
2 ⊕k a′4) ⊣ f ⊢ (b′1 ⊕k a′1)) = 1.

So, a′2 = a′4 and b′1 = a′1. Now, from the second equality we have b′2 ⊕k a′2 =
f(a1 ⊕k a

′
1 ⊕k a3 ⊕k a

′
3 ⊕k B ⊕k C ⊕k f(t))⊕k f(a1 ⊕k a3 ⊕k B ⊕k C ⊕k f(t)) for
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every a1, a2, t ∈ Zk
2 . Putting a1 ⊕k a3 = r ⊕k B ⊕k C ⊕k f(t), we get b′2 ⊕k a′2 =

f(r⊕k a
′
1⊕k a

′
3)⊕k f(r) for every t ∈ Zk

2 , i.e., Rp((a
′
1⊕k a

′
3) ⊣ f ⊢ (b′2⊕k a

′
2)) = 1.

Then, altogether, we obtain a′2 = a′4 and b′1 = a′1 and a′1 = a′3 and b′2 = a′2, which
means that a′ = (x, y, x, y) and b′ = (x, y) for some x, y ∈ Zk

2 . �
Corollary 3.2. Extended Feistel network F 2

a,b,c : Z2k
2 → Z2k

2 of the group (Z2k
2 ,⊕2k),

created by the bijection f : Zk
2 → Zk

2 such that Rp(a ⊣ f ⊢ b) = 1 only for
a = b = 0, produces weak restricted quasigroups and, even more, its prop ratio
table contains 22k ones.

Quasigroup produced by F 2
a,b,c have better prop ratio tables than those pro-

duced by Fa,b,c, but still we have that 2
2k input differences propagate to the proper

output difference with probability 1. They are also not suitable for building cryp-
tographic primitives as they are, so some additional transformations should be
applied, if we choose to use them.
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