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Summary 

 

 

Reward is a strong determinant of human and non-human behavior, influencing the 

exploration of the world around us and our interactions with it. Interestingly, the impact 

of reward and reward-associated objects is not limited to strategic changes in approach 

behavior or attention deployment, but also extends to situations in which prioritizing 

processing of such objects is not necessarily advantageous for current goals. In spite of 

converging evidence for the automatic influence of reward on attentional deployment, 

less is known about the impact of reward on other cognitive processes.  

In this thesis I describe a first attempt to investigate the influence of reward in encoding 

and maintenance of visual representations in working memory. Throughout this thesis I 

argue that once objects have been associated with a positive outcome in past encounters, 

they are preferentially encoded and maintained in visual working memory (VWM) even 

when reward is no longer provided or when there is no consistent pairing between 

reward feedback and target identity. In Chapters 2 and 3 I demonstrate that reward 

associated objects interfere with the visual representations of less valuable items 

maintained in VWM. This interference was already present starting 10 ms from the 

offset of the memory display suggesting that valuable objects directly affected the 

encoding of less valuable items. This robust phenomenon was observed at different 

delays, both when reward-associated objects were task-relevant and when they were 

not, and was independent of object salience. However, the interference disappeared 

when task requirements for target selection increased suggesting that items with a 

positive reward history can effectively capture attention and interfere with VWM 

representations only when cognitive resources are not exhausted by the main task 

(Chapter 3). 
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In the last study presented in this thesis I explored the possibility that reward could 

impact VWM beyond target selection and encoding, namely influencing the active 

maintenance process. To investigate this hypothesis I measured reward priming effects 

on event-related potential (ERP) indices of selective attention – the N2pc - and visual 

working memory maintenance – the CDA (contralateral delay activity). Results indicate 

that reward modulated CDA only, speaking for a discrete effect of reward on VWM 

maintenance. While the precise nature of such modulation is still unknown, these results 

suggest that reward history might influence the precision or the duration of visual 

representations maintained in VWM. Further studies are necessary to directly test this 

hypothesis, but these initial results suggest an interesting direction for future research in 

better characterizing the nature and extent of the influence of reward history on visual 

cognition. 
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1 Motivational and automatic influence of 

reward on visual processes 

 

 

 

Prior experience is one of the key factors in guiding our daily interactions with the 

world. It influences our behavior, our choices, our expectations, the way we explore and 

allocate attention in space, and the way we weight sensory inputs and build perceptual 

representation of the world around us. Experience is fundamental in at least two ways: it 

has a predictive value yielding to anticipation and guiding interpretation of upcoming 

situations, and it also brings qualitative information about the value of familiar objects 

and the consequences of past choices and behaviors. 

During my PhD I have worked on how past experience, and especially learned 

contingencies, can change visual processing, focusing on two main aspects of learning: 

a) the influence of cues and statistical regularities on our ability to improve in visual 

tasks, precisely investigating the interaction between expectations and visual perceptual 

learning (which is not reported in this thesis) and b) the impact of reward history on 
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visual processing, specifically assessing its influence in visual working memory 

(VWM).  

In our daily life, we encounter situations that are familiar to us and that can lead to 

positive or negative outcomes based on past encounters. In some cases we know it 

explicitly, whereas in others we may be unaware of it even if our brain has detected 

these regularities and has automatically driven us towards the most valuable option. Our 

brain constantly faces the challenge of combining past experience with available 

sensory information and current goals. In particular, the history of interaction with 

objects and their associated value plays an important role in influencing the way we 

explore and analyze the world around us. Crucially, situations or objects that we have 

learned to be valuable are not always currently relevant and an important challenge 

consists in understanding how our brain weights information gathered from experience 

and integrates it with what is relevant for current goals.  

We know that our visual processing capacities are limited and objects compete for 

access to these limited resources (Desimone & Duncan, 1995). Perception and 

attentional deployment are driven by stimulus characteristics, such as raw salience 

(Theeuwes, 1991a, 1992; Yantis & Jonides, 1984), or current goals (Chelazzi, 1999; 

Egeth & Yantis, 1997). Furthermore, motivation and prior experience are two additional 

factors that play a very influential role (e.g. Anderson, Laurent, & Yantis, 2011a; Della 

Libera & Chelazzi, 2006, 2009; Engelmann & Pessoa, 2007; Gilbert & Fiez, 2004; 

Hickey, Chelazzi, & Theeuwes, 2010a; Mohanty, Gitelman, Small, & Mesulam, 2008; 

Pochon et al., 2002; Small et al., 2005). In the last twenty years, a lot of effort has been 

put in trying to describe the interplay between these factors and specifically in trying to 

isolate the automatic influence of reward in visual cognition in absence of motivational 

or strategic factors.  

While it has been demonstrated that reward associated objects receive prioritized 

processing and can automatically capture visual attention (Anderson et al., 2011a; 

Anderson, Laurent, & Yantis, 2011b; Della Libera & Chelazzi, 2006, 2009; Hickey et 

al., 2010a), it is not clear yet to which extent these influences spread to other cognitive 

processes. The research presented in this thesis is motivated by the goal of further 

characterizing the influence of reward on visual cognition, specifically addressing its 
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impact on encoding and maintenance of visual representations in VWM. Attention and 

VWM are two strongly connected cognitive processes (Gazzaley & Nobre, 2012; Zanto, 

Rubens, Thangavel, & Gazzaley, 2011) and understanding the extent to which reward 

can influence VWM can improve our understanding of the influence of reward on visual 

cognition in general. 

After reviewing the main evidence for reward influence in vision (Chapter 1), I describe 

some studies that investigate the influence of reward on iconic and visual working 

memory (Chapters 2 and 3). The main focus of these experiments is the description of 

an interference phenomenon induced by reward associated objects in VWM 

representations of non-valuable items. The modulation of this interference effect can be 

interpreted as evidence for the impact of reward associations in the encoding of 

information in visual memory. In the second part of this thesis, I discuss the possibility 

that reward affects VWM also by directly modulating the process of actively 

maintaining visual representations in memory after targets disappearance (Chapter 4). 
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1.1 Motivational role of reward  

 

Motivational incentives in attention and memory 

Animal theories of reinforcement learning have described that rewards, usually primary 

rewards such as food or water, can be effective motivators for behavior. In fact, reward 

has been influentially defined as the thing that makes you “come back for more” 

(Thorndike, 1911). The ability to learn reward contingencies in the environment is 

crucial to anticipate positive outcomes and thus to optimize value-oriented behavior.  

In terms of physiological mechanisms, influential research has shown that dopamine 

plays an essential role in reward motivate behavior, mediating learning of reward 

predicting cues (Schultz, 2002; Schultz, Dayan, & Montague, 1997), influencing 

behavior by selectively reinforcing associations between rewards and neutral stimuli in 

order to render them motivationally salient (for a review, see Wise, 2004). Furthermore, 

according to the “incentive salience hypothesis”, reward-related mesolimbic dopamine 

can drive approach towards reward-associated stimuli and directly guide perception by 

prioritizing the selection and processing of behaviorally relevant information that 

anticipates the arrival of reward (Berridge, 2007; e.g. Berridge & Robinson, 1998; 

McClure, Daw, & Read Montague, 2003).  

In studies involving both humans and non-human primates, reward has often been used 

to increase motivational engagement in various tasks (e.g. Engelmann & Pessoa, 2007; 

Hikosaka & Watanabe, 2000; Kiss, Driver, & Eimer, 2009; Krebs, Boehler, Roberts, 

Song, & Woldorff, 2012; Platt & Glimcher, 1999; Serences, 2008; Watanabe, 1996). In 

the majority of such experiments, reward is administered in a performance-contingent 

fashion, namely as a function of performance accuracy or response speed, adopting two 

kinds of paradigms: proactive (anticipatory) or reactive. In the first case, participants are 

informed about the availability and magnitude of reward at stake prior to the actual 

target presentation. Reward cues are unrelated to the perceptual properties of the target 

and trigger a general motivational engagement that optimizes preparation for stimulus 

processing and response execution (e.g. Watanabe, 2007 for evidence in monkeys). In 

reactive paradigms however, different items are associated with different value and no 
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information about trial value is available before target onset (e.g. Boehler, Hopf, 

Stoppel, & Krebs, 2012; Kiss et al., 2009; Krebs, Boehler, & Woldorff, 2010; Taylor et 

al., 2004; reactive paradigms are described more in detail in the next session of the 

Introduction). 

Nowadays, there is large evidence that reward predicting cues can produce benefits on 

attentional orienting and motor response initiation towards valuable stimuli (Ikeda & 

Hikosaka, 2003; Peck, Jangraw, Suzuki, Efem, & Gottlieb, 2009; Platt & Glimcher, 

1999; Roesch & Olson, 2003, 2007). Single cell recordings in the macaque brain have 

revealed that several regions in the frontal cortex show higher firing rate when 

preparing a saccadic response in highly rewarded trials (Roesch & Olson, 2003, 2007). 

The greater firing rate to high compared to low reward trials increases progressively 

moving towards posterior areas dedicated to preparation of motor responses, suggesting 

a motivation-dependent modulation of motor preparation (Roesch & Olson, 2003). On 

the other hand, anterior regions, such as the orbitofrontal cortex, appear to encode the 

value of the expected reward (Roesch & Olson, 2004). For example, in macaque frontal 

cortex distinct effects of reward can be observed in different frontal areas reflecting 

value processing and influence of motivation on response preparation (Roesch & Olson, 

2007). 

Aside from approaching and orienting behavior, reward predicting stimuli can also 

influence visual selection and subsequent processing of reward predictive stimuli. For 

example, Peck and colleagues (2009) demonstrated that spatially uninformative cues 

indicating forthcoming rewards can influence visual processing in different ways. They 

have a motivational impact on performance in trials were reward is expected compared 

to when it is not expected, as measured in benefits for saccades initiation and precision. 

Furthermore, learning of cue-reward associations caused the cue to bias spatial 

attention; retinotopic cells in the lateral intraparietal cortex (LIP), that are believed to 

represent a high-level saliency map (for a review, see Gottlieb, 2007), show stronger 

response to reward cues suggesting that learning of reward-cue associations makes cues 

become visually salient. However, it is not clear whether this result suggests that reward 

association automatically influence low-level processing of reward predicting stimuli or 

whether monkeys strategically attended to the reward cue, because they treated the cue 
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predicting reward as a reward itself (Bromberg-Martin & Hikosaka, 2009; Lauwereyns 

et al., 2002). These results altogether show that the value of motivational incentives 

changes activity in cortical and subcortical areas designated to the processing of the 

upcoming valuable information and the preparation of the motor response to it.  

Similar conclusions can be drawn from neuroimaging studies in humans adopting 

motivational cues in a variety of cognitive tasks (e.g. Adcock, Thangavel, Whitfield-

Gabrieli, Knutson, & Gabrieli, 2006; Engelmann & Pessoa, 2007; Kiss et al., 2009; 

Krawczyk, Gazzaley, & D’Esposito, 2007; Pochon et al., 2002; Small et al., 2005). 

Prospects of reward, especially monetary ones, have been used as a form of incentives 

to increase motivational engagement of participants while performing a task (for a 

review, see Pessoa, 2009). Behavioral and imaging studies have demonstrated that 

monetary incentives can improve efficiency in orienting and re-orienting of attention 

towards the most valuable objects (Engelmann & Pessoa, 2007; Engelmann, Damaraju, 

Padmala, & Pessoa, 2009; Small et al., 2005) resulting in faster reaction times, RTs 

(Small et al., 2005) and increased sensitivity for targets presented at the most valuable 

location both when this validly predicted target appearance and when it did not 

(Engelmann & Pessoa, 2007; Engelmann et al., 2009). In one of the first human studies 

addressing the impact of motivation in cognition, Small and colleagues (2005) 

investigated the interaction between motivation and top-down attention using an 

attentional orienting task (Posner, 1980). They showed a general benefit of incentive 

motivation in RTs in both valid and invalid trials, suggesting a benefit in orienting and 

decrease in cost of re-orienting spatial attention. These results were associated with 

enhanced responses in areas associated with visuospatial expectancy as well as areas 

associated with the disengagement of attention (Small et al., 2005). In the work of Small 

and colleagues, incentives did not contain any spatial information; on the contrary, other 

studies have used spatial incentives that could be used to strategically bias the 

distribution of attention towards the most valuable portion of the screen, even when 

exogenous informative spatial cues were available (Engelmann & Pessoa, 2007; 

Engelmann et al., 2009; Pessoa & Engelmann, 2010). These studies lead to similar 

conclusions: they specifically reported an increase in sensitivity for the targets presented 

in the most valuable side of the screen (Engelmann & Pessoa, 2007; Engelmann et al., 

2009; Pessoa & Engelmann, 2010). An interesting recent electroencephalography 
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(EEG) study started to investigate more in detail the mechanisms underlying 

motivational benefits in spatial attention, specifically aiming to disentangle the 

contribution of cognitive and motor preparation (Risa Sawaki, Luck, & Raymond, 

2015). Using spatial motivational cues that did not predict the specific motor response 

required to perform the task, Sawaki and colleagues demonstrated a behavioral benefit 

of reward that was not relying on motor preparation (Mir et al., 2011), but solely on the 

opportunity to engage in cognitive preparation.  

It is crucial to notice that all the experiments reviewed so far report converging 

evidence for the strong influence of reward on cognitive processes, but they clearly 

describe benefits that are dependent on strategic and unspecific preparatory mechanisms 

that reflect participant’s engagement in performing the task. In our everyday experience, 

the behavioral relevance of an object is often determined by the positive or negative 

valence of consequences experienced at previous encounters, rather than by an explicit 

cue anticipating the value of the object. However, this literature constitutes a crucial 

framework for the work presented in this thesis given that almost all the research 

describing the role of reward on memory is based on proactive paradigms, similar to 

those described up to this point (but see Gong & Li, 2014; Taylor et al., 2004). In the 

following paragraphs, before introducing the influence of learned object-reward 

associations in cognition, I review the main studies concerning the behavioral benefits 

and the neural correlates of reward incentives in long-term and working memory.  

Memory is the ‘‘neurocognitive capacity to encode, store, and retrieve information’’ 

(Tulving, 2000). Long-term memory for visual scenes can significantly improve when 

high-value reward cues are available (Adcock et al., 2006; Wittmann et al., 2005). As 

shown in functional magnetic resonance imaging (fMRI) studies, this behavioral 

advantage is associated with a greater blood oxygen level dependent (BOLD) response 

in the dopaminergic midbrain and the nucleus accumbens, but only for scenes that were 

remembered and not for those that were forgotten (Adcock et al., 2006; Wittmann et al., 

2005). Interestingly, increased connectivity between areas sensitive to reward, such as 

the ventral tegmental area (VTA), and the hippocampus for remembered trials suggests 

that prior motivation can promote memory formation by facilitating the encoding and 

storage of relevant items (Adcock et al., 2006).  
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Single cell recordings in non-human primates and imaging studies in humans have 

suggested an interaction of reward incentives also in cognitive control networks 

recruited during working memory tasks (Beck, Locke, Savine, Jimura, & Braver, 2010; 

Kawasaki & Yamaguchi, 2013; Krawczyk et al., 2007; Pochon et al., 2002; Taylor et 

al., 2004; Watanabe, 1996; Watanabe, Hikosaka, Sakagami, & Shirakawa, 2005). 

Reward incentives of different magnitude in a verbal working memory task can 

modulate activity in cortical areas already activated by working memory processing and 

sensitive to memory load, such as the dorsolateral prefrontal cortex (DLPFC) (Gilbert & 

Fiez, 2004; Pochon et al., 2002). Analogous observations has been reported by 

Krawczyk and colleagues (2007) that tested the influence of incentives in a VWM task. 

In this experiment, participants were presented with a stream of face or scene images 

and their task consisted in focusing on either one or the other category according to the 

instructions provided at the beginning of the trial. Importantly, the initial instructions 

also informed participants about the value of the current trial. Neural response in ventral 

visual areas responsible for processing of scenes or faces was significantly modulated 

by category relevance. Most importantly, this pattern was significantly amplified in high 

reward trials. As in previous studies (Gilbert & Fiez, 2004; Pochon et al., 2002; 

Watanabe, 1996), a significant response enhancement was measured in prefrontal 

regions for high reward trials. Krawczyk and colleagues suggested that reward 

motivation drives performance through top-down signaling in frontal regions involved 

in WM as long as in those visual areas that are selective for processing the visual inputs 

that had to be remembered.  

It is worth noticing, however, none of the aforementioned studies measured any benefit 

in accuracy or any improvement in visual capacity for highly valuable targets compared 

to less valuable ones (but see Kawasaki & Yamaguchi, 2013). In some cases, no 

significant behavioral benefit was observed (Pochon et al., 2002) and, in general, a clear 

benefit was measured only in RTs for rewarded over non-rewarded or poorly rewarded 

trials (Beck et al., 2010; Krawczyk et al., 2007) or for most preferred over least 

preferred rewards (Watanabe, 1996; Watanabe et al., 2005). These results suggest that, 

at least in a proactive paradigm, the behavioral effects of reward seem to rely mainly on 

an increase in arousal more than a real benefit in working memory capacity. 



Motivational and automatic influence of reward on visual processes 

13 

 

Despite the absence of clear improvements in working memory capacity, these studies 

coherently suggest that reward incentives can significantly affect the neural activity in 

those cortical areas that were relevant for encoding and maintain relevant 

representations in working memory (Gilbert & Fiez, 2004; Pochon et al., 2002; Small et 

al., 2005; Taylor et al., 2004).  

As discussed previously, this literature focuses on the strategic benefits of general 

arousal or increased invested effort aimed at optimizing task performance and 

maximizing the final income (Bijleveld, Custers, & Aarts, 2009, 2010; Pessoa, 2009). In 

the next section, I describe other approaches to assess behavioral and neural 

consequences of reward on cognitive processes in the absence of preparatory cues. 

Importantly this does not exclude the influence of top-down strategies, but it might rely 

on different mechanisms triggered at target onset (reactive paradigms). 

 

Learned reward associations in attention and memory 

In our daily experience, we interact with objects or situations that are familiar to us and 

bring an intrinsic associated value that we have learned to recognize through previous 

encounters. Numerous studies have investigated the response evoked by stimuli 

according to their explicitly (Kiss et al., 2009; Krebs et al., 2012) or implicitly 

(Kristjánsson, Sigurjonsdottir, & Driver, 2009) learned value. Behavioral benefits are 

observed in a variety of cognitive tasks: faster responses are measured in spatial 

orientation of attention (Krebs et al., 2012), visual working memory (Taylor et al., 

2004), and cognitive control tasks (Locke & Braver, 2008), but rewards can also 

facilitate response inhibition (Boehler et al., 2012) or influence performance in conflict 

tasks (Krebs et al., 2010; Krebs, Boehler, Egner, & Woldorff, 2011). Imaging studies 

have demonstrated that valuable items can influence information processing, 

modulating neural gain already at early stages of sensory processing thus competing 

more effectively for cortical representation (Serences, 2008). Moreover, objects’ value 

can induce a specific bias towards the features characterizing reward-associated objects 

also when they are presented outside the focus of attention (Serences & Saproo, 2010). 

Serences and Saproo have shown that this benefit in representations can be measured in 
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the sharpening of the response profile across the populations of neurons within the 

regions of sensory cortex that are most important for encoding the relevant properties of 

objects. These results imply that objects value can influence performance not only by 

differentially weighting motor responses, but also by biasing the quality of relevant 

sensory inputs. 

Among the studies on reward influence on visual cognition, one of the most 

investigated aspects concerns the influence of objects’ value on mechanisms of attention 

deployment and specifically on how objects’ value interacts with current goals (e.g. 

Della Libera & Chelazzi, 2006, 2009; Hickey et al., 2010a; Kiss et al., 2009; 

Kristjánsson et al., 2009) and stimulus properties (Navalpakkam, Koch, Rangel, & 

Perona, 2010). Top-down and bottom-up mechanisms have been identified as 

fundamental factors in orienting attention towards the most relevant objects and 

locations in space (Desimone & Duncan, 1995). Recent evidence suggests that together 

with individual goals and objects saliency, reward might hold a special role in 

determining how our limited resources should be distributed in exploring the 

environment around us.  

By means of an EEG study, Kiss and colleagues have shown that valuable objects can 

orient attentional selection and subsequent more in-depth processing of visual stimuli 

(Kiss et al., 2009). They adopted a visual search paradigm in which a color singleton, 

either a red or a green target among gray distractors, had to be detected and then further 

analyzed in order to identify the location of a notch (Mazza, Turatto, Umiltà, & Eimer, 

2007). Crucially they informed participants of the different value associated with each 

target color and measured their performance and neural activity during the task. 

Interestingly, targets were color singletons and therefore could automatically attract 

attention (Theeuwes, 1991a). Event-related potentials (ERPs) were analyzed focusing 

on two main components in order to explore the influence of reward at different stages 

of target processing. The first component considered, the N2pc, is an enhanced 

negativity arising around 200 – 300 ms from stimulus onset measured at posterior 

electrodes contralateral to the target which is believed to reflect target selection and 

distractor suppression processes (S J Luck & Hillyard, 1994a, 1994b). The contralateral 

delayed activity, or CDA (also known as SPCN, sustained posterior contralateral 
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negativity), is a later component measured at posterior electrodes contralateral to the 

target which reflects additional processing of stimuli after their selection, including 

maintenance in visual working memory (Mazza et al., 2007; Mccollough, Machizawa, 

& Vogel, 2007; Vogel & Machizawa, 2004). The crucial result of this work is that more 

valuable objects evoked larger and earlier N2pc response than less valuable targets 

indicating a significant influence of reward on target selection that does not depend on 

the saliency of the object or the top-down attentional set. Interestingly, also CDA’s 

amplitude was increased for more valuable targets showing that reward influence does 

not restrict to initial selection of targets only, but it can also extend to the following 

processing stages. More cognitive resources are dedicated to the selection and further 

analysis of valuable items resulting in overall better performance. This study 

interestingly suggests that reward associated with objects can benefit their processing at 

different stages going beyond attentional capture and potentially contributing to any 

cognitive process that is relevant for efficiently dealing with the task. However, it is 

difficult to argue whether the benefit in CDA is the result of a genuine benefit on later 

object processing or if it reflects a carryover of benefit in selection: items that are better 

attended are also better processed after selection.  

In the previous section, I reviewed some evidence that reward incentives can benefit 

VWM, however all these studies used motivational cues to strategically increase 

participants’ engagement with the task. Taylor and colleagues (2004) asked participants 

to perform an object working memory task with abstract visual shapes where load and 

reward (associated with different target colors) were varied orthogonally. Behaviorally, 

they found a trend for faster RTs for high reward trials but no benefits in terms of 

accuracy. Previous studies have shown modulations of activity in prefrontal (Pochon et 

al., 2002) and extrastriatal visual areas (Krawczyk et al., 2007) in relation to the amount 

of reward that could be gained with correct response, but without distinguishing at 

which stage of the working memory process these modulations arise. In this work, 

Taylor and colleagues, showed that different reward outcomes associated with different 

objects modulated BOLD response in the premotor superior frontal sulcus and the 

intraparietal sulcus mainly during the delay phase, when objects’ representation were 

maintained in VWM. These areas, involved in maintenance of information, also 

increased in response to working memory load.  
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The hypothesis that the influence of reward extends to different cognitive processes 

according to current task demands motivates the entire work reported in this thesis 

(Chapter 2 and Chapter 4). In particular, we focused on the impact of reward on 

different stages of a VWM task, from encoding (Chapters 2 and 3) to maintenance 

(Chapter 4). As suggested in the last studies I reviewed (Kiss et al., 2009; Taylor et al., 

2004), reward could directly affect the processing of relevant information also after 

object selection. The study reported in Chapter 4 specifically aims to investigate this 

issue by testing whether changes in VWM can arise in absence of a measurable effect in 

attentional capture.  

Crucially, all studies reviewed so far do not allow one to disentangle the contribution of 

reward per se from the influence of top-down strategic effects. Such studies rely on 

varying targets’ value that directly affects participants’ motivation resulting in 

prioritized processing or allocation of resources to the most valuable target. This is an 

important limitation because it does indicate whether reward can automatically guide 

perception (and other cognitive processes) beyond current goals. In other words, the 

influence of reward is indistinguishable from that of top-down selection.  

A first indication of the coexistence of automatic mechanisms and top-down effects of 

reward emerges from two clever experiments focusing on attention mechanisms 

(Kristjánsson et al., 2009) and cognitive control (Krebs et al., 2010, 2011). 

Kristjansson and colleagues (Kristjánsson et al., 2009) adopted a visual search 

paradigm, similar to the one described in Kiss et al. (2009), to investigate how unknown 

reward contingencies affected search performance. Interestingly, the effect of reward 

was analyzed at two different levels: a) in relation to color-value associations; and b) as 

a function of target repetition effects. Prior trials influence visual processing of items at 

subsequent encounters and this is generally measured as a benefit in the repetition of the 

same target singleton in successive trials, known as priming of pop-out (Maljkovic & 

Nakayama, 1994, 2000; Olivers & Meeter, 2006). In this work it has been shown how 

this phenomenon, considered resistant to top-down influences (Maljkovic & Nakayama, 

1994), can be modulated by the reward value associated with objects. In Experiment 1, 

targets’ colors were paired with either high or low reward with a fixed probability. 

Interestingly, not only performance was improved for highly valuable items, but 
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automatic phenomena, such as repetition effects, were significantly affected by the 

actual reward feedback obtained in the preceding trial. This is an intriguing observation 

that suggests that objects’ value is continuously and automatically updated and can have 

immediate effects in subsequent encounters.  

This interesting work shows that reward history, here characterized by reward 

contingencies and immediately preceding encounters, can drive attention orientation in 

both bottom-up and top-down ways. Krebs and colleagues found coherent results in a 

cognitive control task, but they also significantly extended them suggesting that reward 

associations can impact performance also against current goals (Krebs et al., 2010, 

2011) . 

Krebs and colleagues designed an elegant experiment using a Stroop color-naming 

paradigm (Stroop, 1935) in which they demonstrated that reward can have an double 

impact on cognitive control (Krebs et al., 2010, 2011). Participants are required to name 

the ink color of a color word while ignoring its semantic meaning. Coherently with 

previous studies, reward associations sped up RTs by reducing the interference of 

incongruent irrelevant information when targets were highly rewarded. Crucially, 

reward associations also revealed to be detrimental for performance when the irrelevant 

color word was semantically related to the rewarded color. This critical result extends 

the impact of reward beyond current goals and shows how learned feature-reward 

associations can come into play even when they are detrimental for performance.  

Growing evidence suggests that reward can affect attention and cognitive control in two 

distinct ways. Top-down, strategic or task related benefits can be induced by 

preparatory cues or learned reward associations. Moreover, under appropriate 

circumstances, also involuntary, bottom-up, and sometimes disadvantageous effects can 

be observed. In the last 10 years a growing body of research focused on this second type 

of effects of reward on visual cognition, addressing the impact of reward associations 

beyond current goals, when attending to more valuable objects can be detrimental for 

performance (e.g. Hickey et al., 2010a; Krebs et al., 2010), when reward is no longer 

delivered (e.g. Anderson et al., 2011b; Della Libera & Chelazzi, 2006, 2009), or when 

there is no consistent pairing between items and reward (e.g. Hickey et al., 2010a). In 

the next session, I describe in detail the paradigms and main results of such studies that 
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constitute the relevant methodological framework for the experimental work reported in 

this thesis.  
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1.2 Automatic and non-strategic influence of reward on visual 

processes 

 

The importance of reward history 

As noted earlier, in most of animals and human studies, trials value is typically 

manipulated by changing either the amount of reward delivered for a correct response or 

the probability with which a reward is associated with a particular location or stimulus. 

Both manipulations have the effect of motivating individuals to mobilize resources for a 

more efficient control of attention in order to maximize success. Under these conditions 

the effects of reward on attention are hardly separable from those that can be elicited by 

any other cue or instruction inducing attentional deployment in a strategic fashion 

(Maunsell, 2004).  

Recently, a growing number of studies has started to focus on non-strategic effects of 

reward, aiming at describing whether and how objects change their ability to recruit 

cognitive resources as a function of their reward history, without any overt advantage in 

prioritizing these objects over others in the current task. Different paradigms have been 

developed to this purpose, namely to investigate how exposure to items-reward 

associations affects the way these items are treated in future encounters. Two main lines 

of research can be identified on this respect: a) automatic immediate effects of reward 

feedback on subsequent encounters with the same stimuli in the absence of consistent 

object- or feature-reward associations; b) influence of learned object- or feature-reward 

associations during extinction.  

The study of the immediate effects of reward feedback on visual perception derives 

from the literature on priming which documents the influence of recent selection history 

in the processing of newly encountered objects (e.g. Hickey, McDonald, & Theeuwes, 

2006; Maljkovic & Nakayama, 1994, 2000; Tipper, 2001). According to this first line of 

research, the strength of priming effects can be modulated by the more or less rewarding 

consequences of previous acts of attentional selection (Della Libera & Chelazzi, 2006; 

Hickey & Peelen, 2015; Hickey & van Zoest, 2012; Hickey et al., 2010a; Hickey, 
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Chelazzi, & Theeuwes, 2014; Hickey, Kaiser, & Peelen, 2015). Appropriate attention 

mechanisms engaged in performing a task, leading to selection or suppression of certain 

items, are reinforced, while less optimal ones, are suppressed. In other words, these 

studies suggest that mechanisms of visual selective attention can be adaptively adjusted 

to optimize the interactions with the environment.  

Other approaches investigated the impact of learned reward-stimulus association in the 

absence of reward delivery, in what is known as extinction period (e.g. Anderson et al., 

2011b; Pool, Brosch, Delplanque, & Sander, 2014; Raymond & O’Brien, 2009). Stimuli 

are imbued with a more or less positive value by means of a value learning procedure 

based on the reinforcement of appropriate attentional selections. Value learning 

paradigms can highly differ from experiment to experiment. Reward associations can be 

established by means of a single session training with a rewarded visual search task 

(Anderson et al., 2011b), or multiple training sessions distributed in consecutive days 

(Della Libera & Chelazzi, 2009); classical conditioning paradigms (Pool et al., 2014) or 

choice games (Raymond & O’Brien, 2009). 

Both approaches have been used in the research reported in this thesis in order to 

address the impact of reward history on VWM, so it is worth describing more in depth 

the main differences and the individual specificities of the two general methods. 

In a seminal work, Della Libera and Chelazzi (2006) adopted a modified version of the 

negative priming paradigm in which discrimination performance to a prime display was 

followed by a reward feedback before the appearance of a second probe display. 

Negative priming is a measure of the costs in selection of targets that have previously 

served as distractors and it is thought to rely on the lingering of inhibitory attention 

mechanisms (Tipper, 2001). The hypothesis motivating this study was that the strength 

of the inhibitory mechanisms triggered by prime processing could be sensitive to the 

more or less rewarding consequences of the response to the prime. In the first 

experiment, Della Libera and Chelazzi adopted a Navon-like paradigm (Navon, 1977) 

in which participants had to report either the local or the global digit displayed on the 

screen (e.g. the global number 6 could be composed by the distribution of small 5s in 

the appropriate configuration). Participants could obtain a high or a low reward 

feedback on their response. They were misled to believe that the amount of reward 
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received was based on their performance, while it was in fact randomly assigned based 

on a predetermined schedule. Authors’ attention focused on the automatic influence of 

the amount of reward received on the following probe display, in which a second 

discrimination task was required. The authors reported a robust negative priming effect 

following highly rewarded responses to the prime stimuli, though the effect was 

eliminated when correct responses to the same stimuli were poorly rewarded. 

Analogous results were found in Experiment 2 with different stimuli (colored 

meaningless shapes) and task. These observations suggest that the attention mechanisms 

engaged to select a relevant target and to suppress a concurrent distractor were sensitive 

to the magnitude of reward obtained after response to the prime and were immediately 

coherently adjusted.  

On a similar note, Hickey and colleagues (2010) have designed a task aimed at 

determining whether reward has an immediate and automatic low level impact on 

vision. They developed a paradigm based on the additional singleton paradigm 

(Theeuwes, 1991b) in which the magnitude of reward feedback was manipulated at the 

end of each trial. In the additional singleton paradigm participants searched for a shape 

singleton target presented among an array of uniformly colored distractors. In a subset 

of trials, an additional singleton, defined on a task irrelevant dimension such as color, 

was included in the visual search display. The color singleton captured attention and 

consequently delayed discrimination response to the target. The task-irrelevant color 

characterizing targets and distractors could repeat or swap from trial to trial producing 

benefits or costs in performance known as inter-trial priming (Hickey et al., 2006). 

Precisely, attention was driven towards items sharing the same features that 

characterized previous trials, resulting in faster responses when features were repeated 

from one target to the next and slower responses when colors swapped from one target 

to the following distractor. Hickey and colleagues provided participants with a high or a 

low reward feedback for correctly performing the task. Reward was randomly assigned 

and participants were explicitly informed that the amount of reward received was not 

linked to the target features and was not informative about the feature characterizing the 

upcoming trial. Results confirmed that the strength of priming was influenced by the 

magnitude of reward feedback received in the preceding trial. A high reward feedback 

produced a benefit in visual search for a target repeating the same task-irrelevant 
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feature, but slowed responses when target and distractor features swapped. The opposite 

pattern of result was observed for low reward trials, suggesting that a poor outcome 

could cancel the cost of switch. Interestingly these results did not depend on participants 

strategically perseverating in selecting the previously rewarded item, because the same 

results were observed when participant were explicitly told that high reward feedback 

predicted a swap in target color (Experiment 1). When participants were able to 

strategically use the provided information to optimize performance (Experiment 2), the 

automatic effects of reward seemed to overcome the strategic attentional set adopted by 

participants.  

Together these studies suggest that attentional mechanisms can flexibly and rapidly 

adapt to the more or less optimal consequences of a certain attentional set. In absence of 

reward feedback, priming effects show that cognitive processes can be adjusted online 

according to an internal evaluation of the consequences of recent selection, by means of 

an internal reinforcement mechanism that consolidates adaptive choices and devalues 

inappropriate ones (Roelfsema, van Ooyen, & Watanabe, 2010). The obtainment of an 

external reward feedback overwrites this internal evaluation and re-defines the most 

adaptive attentional mechanisms based on the external information. In particular, 

external reward feedback can yield to the reinforcement of attentional mechanisms that 

led to positive outcomes and the devaluation of those considered less optimal given the 

external feedback. Following this hypothesis, in Chapter 4 I report an experiment in 

which Hickey’s paradigm has been adapted to a visual working memory task to assess 

the cognitive and neural mechanisms underlying the impact of reward feedback on 

encoding and maintenance of visual representations in VWM.  

While reward priming effects highlight the automaticity and flexibility of the reward 

influence in visual processing in conditions where reward is randomly assigned, other 

approaches have examined the effect of learned reward associations in absence of 

reward delivery: during extinction (Anderson et al., 2011a, e.g. 2011b; Della Libera & 

Chelazzi, 2009; Raymond & O’Brien, 2009; Rutherford, O’Brien, & Raymond, 2010). 

These associations are believed to leave behind memory traces that can guide attention 

for future tasks. The relevance of these studies is twofold: on the one hand, they 

highlight the ability of our brain to detect relevant contingencies in the environment and 
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quickly learn to take advantage of them to optimize behavior; on the other, they show 

how these automatic biases continue to drive attention also when it is detrimental for 

performance, when, for example, such motivationally salient objects become task-

irrelevant distractors.  

Raymond and O’Brien (2009) have adopted a choice game paradigm with win and 

losses to imbue face stimuli with different valence and motivational salience in order to 

investigate how these factors affect the subsequent ability to recognize these objects. In 

this framework, the value learning procedure was based on the explicit choice of one 

face between two alternatives with the explicit goal to try to maximize the gains. 

Individual faces were characterized by different motivational salience, i.e. the degree of 

their ability to predict a certain outcome (either high or low) and the valence of that 

outcome (win or loss). This paradigm is quite different from those described previously 

because it is explicitly based on the ability to learn the expected value of each individual 

stimulus. In a following testing phase, the ability to recognize such items is assessed in 

conditions where attentional resources are more or less available. Results showed that 

motivationally salient objects are better recognized than less salient ones irrespective of 

their predictive value. However, only rewards prioritize processing of objects when low 

attentional resources are available, making them resilient to the attentional blink 

phenomenon (Raymond, Shapiro, & Arnell, 1992; Shapiro, Raymond, & Arnell, 1997).  

The strength and generality of value learning procedures has been demonstrated also in 

studies implying primary rewards, instead of monetary ones, to modulate the affective 

relevance of otherwise neutral stimuli (Pool et al., 2014). Pool and colleagues adopted a 

Pavlovian conditioning paradigm to demonstrate that initially neutral stimuli can 

acquire the capacity to orient attention once they acquire affective relevance by the 

association with a primary reward such as a chocolate odor. They showed that reward 

associated figures were more efficient than neutral figures in the initial capture of 

attention in a spatial cueing paradigm (Posner, 1980), but that they would lose the 

ability to do so once they lost their affective relevance because of devaluation of the 

primary reward (satiation). 

In these paradigms, a “simple” form of value learning has been employed, such that 

different objects have been paired with different outcomes, and consequently imbued 
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with a positive, negative or neutral value, but no actual task is performed on these items 

during training. Other approaches have embraced a slightly more sophisticated 

hypothesis suggesting that reward or value does not simply benefit salience of the 

associated object, but affects a more specific prioritization process (Anderson et al., 

2011b; Della Libera & Chelazzi, 2009). 

Della Libera and Chelazzi demonstrated that attentional processing of objects can be 

durably adjusted according to the more or less rewarding consequences of prior 

attentional episodes concerning the same objects, persisting beyond the stop of reward 

delivery (Della Libera & Chelazzi, 2009). They designed an extensive training 

procedure distributed in three days in which participants performed a same/different 

task in which they had to compare the shape of a meaningless wire-frame target 

superimposed over a distractor with a reference. Different shapes were used during 

training and each of them was associated with a high reward or a low reward outcome 

with different probability. Some shapes were associated with higher probability to a 

high reward outcome when they were presented as targets while others only when they 

were presented as distractors. On the other hand, other shapes were mainly associated 

with low reward outcomes, some when they were presented as targets and some when 

presented as distractors. Participants were unaware of these associations and were made 

believe that the magnitude of reward feedback was determined by their performance. 

Participants were then tested several days later either on the same task (Experiment 1) 

or a simple visual search employing the same stimuli (Experiment 2), but no reward 

feedback was provided during test. Results showed that items that acted as good-

outcome targets during training were easier to select when serving as targets 

(Experiment 2), but more difficult to reject when serving as distractors (Experiment 1), 

while poor-outcome targets were easier to reject when presented as distractors 

(Experiment 1), but more difficult to select when presented as targets (Experiment 2). 

Interestingly, a different pattern of results was measured for good and poor-outcome 

distractors. Items followed by favorable outcomes when correctly rejected during 

training were more difficult to select when presented as targets (Experiment 2) and 

easier to ignore when presented as distractors (Experiment 1). In contrast, poor-outcome 

distractors were easier to select when acting as targets (Experiment 2), but harder to 

select when presented as distractors (Experiment 1). The most interesting result of this 
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experiment is that the impact of reward associations is dependent on the specific 

attentional process activated during learning. The authors suggest that “every episode of 

attentional selection leaves behind a memory trace that incorporates information about 

the specific items involved, the specific attentional processes applied to them, and, 

crucially, the adaptive value associated with the episode”. To account for the better 

inhibition of good-outcome distractors, it is necessary to assume that learning does not 

blindly benefit stimuli processing or representation, but specifically reinforces the 

attentional process engaged for the obtainment of that reward (e.g. target selection or 

distractor inhibition, but see Della Libera, Perlato, & Chelazzi, 2011; Hickey, Chelazzi, 

& Theeuwes, 2011).  

Eventually, a further value learning procedure have been developed to describe how 

contextually irrelevant stimuli can capture attention (Anderson et al., 2011a, 2011b). In 

their first study, Anderson and colleagues measured the amount of capture elicited by 

irrelevant and non-salient objects imbued with value after a single session of training (in 

contrast to the multiple days of training used in Della Libera & Chelazzi, 2009), 

showing that reward associations can have long lasting effects also when established 

with brief training sessions (Anderson & Yantis, 2013; Anderson et al., 2011b). The 

authors designed a value learning procedure in which participants performed a visual 

search task where they had to identify a red or a green target among other differently 

colored distractors (Anderson et al., 2011b). Importantly, reward was provided for the 

correct discrimination of an oriented line presented inside the target, while, unbeknown 

to participants, the magnitude of reward feedback obtained for correct performance was 

defined by target color. One color was associated with higher probability to high reward 

(80% of the trials) than low reward (20% of the trials), while opposite odds were 

assigned to the other color. A short training session was sufficient to imbue colors with 

a high or low value such that in a following visual search task, while looking for a 

unique shape, performance would be significantly slowed by the presence of an 

irrelevant, non-salient and not-rewarding distractor that had been associated with high 

reward. Importantly, these results do not simply reflect the persistence in selecting 

previous targets, because analogous attentional capture effects are not detected when 

training is performed without reward manipulations. Furthermore, the authors reported 

that when items imbued with different reward values were presented as salient 
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distractors, the strength of attentional capture during test was also modulated by the 

magnitude of associated reward (Anderson et al., 2011a).  

In Chapters 2 and 3, I describe a value learning procedure modelled on the one 

introduced by Anderson and colleagues. In Chapter 2, a rewarded visual search task was 

used to imbue different colors with different reward associated values. In the following 

test, their influence on iconic and visual working memory performance was measured 

when they were presented as salient targets in an array of to-be-memorized objects. In 

Chapter 3, the training procedure, loosely based on Anderson and colleagues (Anderson 

et al., 2011b), was adapted to a visual working memory task. Participants performed a 

VWM task and were differently rewarded for their performance according to target 

color. During the test phase, the influence of feature-reward associations was measured 

on VWM representations of targets presented simultaneously with distractors of 

different value. Both studies documented the influence of learned reward associations in 

a VWM task during extinction. Importantly, in contrast to what found in previous 

studies (Anderson et al., 2011b), the influence of reward was visible both when reward-

associated objects were salient singletons (Chapter 2) and when they were not (Chapter 

3). 

 

Cognitive and behavioral consequences of reward history 

In the previous paragraph, I have already described the basic findings about the impact 

of reward history on mechanisms of deployment of attention, but interestingly reward 

influence extends more broadly to other aspects of visual cognition.  

As mentioned before, reward associations have been shown to be able to emphasize 

salience-based attentional capture (Anderson et al., 2011a; Hickey et al., 2010a). In 

particular, highly valuable distractors are more efficient in capturing attention than 

equally salient, but less valuable ones. These observations reveal that learned value can 

influence attentional priority also in phenomena that are dominated by physical 

salience. Moreover, valuable objects can capture attention and disrupt performance 

when presented as distractors even when they are not physically salient (Anderson et al., 

2011b), suggesting that reward association can directly increase objects saliency.  



Motivational and automatic influence of reward on visual processes 

27 

 

These observations suggest that attention is oriented towards the location occupied by 

the reward associated item which gets prioritized processing. Location specific inter-

trial effects indicate a modulation of RTs to targets presented at locations previously 

occupied by highly valuable objects (Anderson et al., 2011b; Hickey et al., 2014). On 

the one hand, responses to a target are delayed when it appears in a location occupied by 

a high-value distractor on the previous trial (Anderson et al., 2011b), suggesting not 

only that attention is drawn at that location but also that the following suppression of the 

valuable distractor leaves an inhibitory trace at that location that hinders target 

discrimination. By contrast, locations occupied by previously rewarded items tend to 

receive prioritize analysis in future encounters, thus facilitating processing in case of 

targets and disrupting performance in case of distractors (Hickey et al., 2014). 

While there is clear evidence that objects with reward history can capture attention and 

influence response speed in visual search tasks (Anderson et al., 2011a, 2011b; Della 

Libera & Chelazzi, 2006, 2009; Hickey et al., 2010a; Hickey, Chelazzi, & Theeuwes, 

2010b), less is known about whether and how reward associations significantly changes 

behavior and exploration of the environment. In recent years, some studies have started 

to assess the influence of reward associations on eye movements reporting a direct 

evidence for spatial displacement of attention, expanding the boundaries of reward 

impact directly on overt behavior (Anderson & Yantis, 2012; Hickey & van Zoest, 

2012, 2013; Theeuwes & Belopolsky, 2012). Saccade trajectories to targets are deviated 

by the onset of reward associated distractors even when their location is known in 

advance (Hickey & van Zoest, 2012). Moreover salient distractors have an higher 

probability of producing oculomotor capture when they share a feature with a 

previously selected and highly rewarded target (Hickey & van Zoest, 2013) or when 

they have been associated with higher value and they are not currently rewarded 

(Theeuwes & Belopolsky, 2012). These studies reveal a pattern of effects in oculomotor 

capture that resembles that produces by physically salient distractors (Godijn & 

Theeuwes, 2004), supporting the interpretation that valuable objects become more 

salient and can capture attention. Taken together, these studies support the conclusion 

that reward-driven selection involves low-level and non-strategic mechanisms that act 

automatically, biasing exploration of visual scenes towards objects that have led to 

positive outcomes in previous encounters. 
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Beyond affecting attentional capture, it has been argued that influence of reward 

associations also extends to other cognitive processes. Della Libera and Chelazzi 

reported that valuable distractors were indeed more difficult to select when presented as 

targets, but also easier to ignore when presented as distractors (Della Libera & Chelazzi, 

2006, Experiment 1) proposing that the attentional set recruited to perform a task is 

adjusted according to the more or less rewarding consequences it leads to. However, a 

subsequent study did not fully replicate these results and suggested that reward 

associations can mainly prioritize or hinder target selection, while they cannot make 

distractors easier to suppress (Hickey, Chelazzi, et al., 2011).  

Attention is strongly and deeply interconnected with a variety of other cognitive 

processes and plays a pivotal role in visual cognition. Therefore, it is not surprising that 

reward associations, either by enhancing the representation or by recruiting cognitive 

resources, emphasize conflict in control tasks (Anderson, Laurent, & Yantis, 2012; 

Krebs et al., 2010) or modulate context effects in cognitive control (Braem, Hickey, 

Duthoo, & Notebaert, 2014). In particular, attention and visual working memory are 

two processes that are strongly interconnected (Awh, Vogel, & Oh, 2006; Gazzaley & 

Nobre, 2012; Zanto et al., 2011) and the consistent effects of reward on attention 

measured with different paradigms raises the question of whether reward associations 

would improve memory performance for the reward-associated items as well. 

Objects predictive of positive or negative outcomes are recognized more quickly and 

more easily than non-valuable objects (O’Brien & Raymond, 2012); moreover reward 

associated objects are identified also when the cognitive resources available are limited, 

partly overtaking the costs of attentional blink (Raymond & O’Brien, 2009). 

Interestingly, a recent study showed that learned feature reward associations can 

influence VWM as well (Gong & Li, 2014).  

Only a limited subset of visual information that is perceived can be selected and 

transferred into the VMW, where it can be actively maintained for several seconds 

(Cowan, 2001). Gong and Li (2014) reported that VWM capacity can be enhanced 

when targets had been associated with high reward by means of a value learning 

procedure. They showed that change detection performance was increased for items 

associated with high reward (Experiment 1), but not for non-valuable physically salient 
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items (Experiment 2). Interestingly, an increase in VWM capacity was observed not 

only when one single reward-associated object was present on the display (Experiment 

1), but also when all the relevant items were rendered in the same color (Experiment 3). 

This result suggests that reward can directly benefit the encoding of reward associated 

objects in a way that goes beyond attentional capture.  

Despite reward was no longer provided during the test phase, it is difficult to exclude 

that these results do not reflect the perpetuation of previously advantageous strategies. 

Indeed, participants might engage more resources in memorizing objects that they have 

learned to be more valuable, given that perpetuating with this strategy produces no 

actual cost. In one of the studies reported in this thesis (Chapter 3), the reward value 

associated with distractors was manipulated during the test phase, rendering 

disadvantageous the persistence of strategies adopted during training. Nonetheless, a 

clear influence of learned feature-reward associations was observed. 

In two experiments in Chapter 2, the influence of learned reward associations in visual 

memory representations is investigated at different intervals from the offset of a 

memory display, from the early stages of iconic representations towards later phases in 

visual working memory. In contrast to previous reports (Gong & Li, 2014; Kawasaki & 

Yamaguchi, 2013), in this study there was no evidence for a direct benefit of reward on 

VWM capacity, nevertheless a clear index of reward influence on memory was 

observed. Both at short and at long intervals from memory display offset, the response 

to the target was significantly affected by the information conveyed by the adjacent 

salient item when it was associated with high reward (interference effect). Results 

suggested that reward associated object interfere with VWM representations of neutral 

items presented together in nearby locations. Since no difference was observed in the 

amplitude of the interference at different time intervals from the offset of memory 

display, we hypothesized that valuable items can influence the content of VWM by 

means of driving the process of encoding information in memory. 

 



Motivational and automatic influence of reward on visual processes 

30 

 

The extent and limits of reward influence in visual cognition 

Reward has been shown to effectively influence processing of specific stimuli, specific 

individuals of a certain category that are predictive of reward outcome, such as outlined 

nonsense shapes (Della Libera & Chelazzi, 2006, 2009; Della Libera et al., 2011), faces 

(Raymond & O’Brien, 2009), geometric figures (Pool et al., 2014). However, it is 

interesting to notice that reward can also be associated with simple visual features. In 

fact, most of the studies in the literature of reward influence on visual perception 

focused on how simple visual features, specifically color, showing that they can be 

imbued with different reward values and drive exploration. Importantly, this seems to 

influence the perception of the rewarded color also when it is presented in different 

contexts (Anderson & Yantis, 2012) and it also generalizes to its abstract meaning 

(Krebs et al., 2010). In an ecological context, being able to recognize color-reward 

associations has a clear adaptive value, for example helping to distinguish a sweet and 

juicy fruit from an unripe one. Color however is a very salient feature and it is important 

to verify how pervasive reward associations can be. In fact, it has been shown that 

reward can be effectively associated with other simple visual features such us 

orientation (Theeuwes & Belopolsky, 2012) and direction of motion (Seitz, Kim, & 

Watanabe, 2009). Interestingly, it has been recently shown that reward can also promote 

the processing of a whole category of objects when it is associated with positive 

outcomes, independently of the specific instantiations of that category (Hickey et al., 

2015). This suggests that according to the task performed, the reward association can 

work at different levels, relying on simple features, individuals or whole categories. 

Lastly, different reward values can be paired not only with items, but prioritize also the 

processing of information presented at reward associated locations (Hickey et al., 2014) 

or moments in time (Hickey & Los, 2015). 

Taken together, these observations show that reward can have a very wide influence on 

the way we process visual information and this strongly depends on the task performed 

and on the specific cognitive processes that are required to efficiently perform the task. 

Beyond being very general, the influence of reward history on visual perception appears 

to have robust and durable effects. Once established, object-reward associations keep 

influencing attention deployment in similar context days (Della Libera & Chelazzi, 
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2009; Della Libera et al., 2011) also several months later without further training 

(Anderson & Yantis, 2013).  

As noted before, these effects do not emerge only when it is advantageous for 

performance, but also when the prioritization of reward associated objects plays against 

current goals (Hickey & van Zoest, 2012; Hickey et al., 2010a), suggesting that reward 

influence on visual processing does not depend on top-down attentional set (Hickey & 

van Zoest, 2013; Munneke, Hoppenbrouwers, & Theeuwes, 2015). 

In Chapter 3 I report a series of experiments aimed at assessing the limits of reward 

influence of visual processing, specifically testing under which circumstances learned 

feature-reward associations are effective in influencing visual representations in VWM 

and when, on the other hand, they fail. In particular, influence of reward in VWM is 

assessed in conditions of increased attentional demands for target selection showing that 

the interference of reward-associated distractors is negligible when fewer resources are 

available for distractors processing. 

 

Neural evidence of reward influence in visual cognition 

In line with behavioral evidences, a handful of electrophysiological studies have shown 

that sensory and perceptual processing of reward associated objects is facilitated 

compared to less valuable ones as reflected in increase in amplitude of early 

components of visual processing such as P1 and N2pc (Hickey et al., 2010a; Qi, Zeng, 

Ding, & Li, 2013). The P1, a lateralized component which reflects early visual 

processing in extra-striate visual cortex and is not normally sensitive to endogenous 

attentional set (Hillyard, Vogel, & Luck, 1998), increases in amplitude in trials 

preceded by the obtainment of a high reward feedback (Hickey et al., 2010a). 

Specifically, an increase in amplitude of the P1 contralateral to the target was observed 

when target features were repeated in the following trial, while an increase in amplitude 

of P1 contralateral to distractor was measured when target features were swapped. No 

corresponding patterns were observed after low reward. These results show that reward 

can have a very early impact in visual processing (see also Pool et al., 2014) and 

support the hypothesis that values have a direct effect on human perception, 
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automatically increasing salience of valuable objects. Similarly to the P1, also the N2pc 

was modulated in amplitude as a function of the amount of reward obtained in the 

preceding trials and the repetition or swap or target and distractor irrelevant features.  

Analogous changes in N2pc amplitude have been also documented for non-salient 

distractors that had been associated with high reward but were not currently rewarded 

(Qi et al., 2013). When a non-salient but valuable distractor was presented on the side of 

the screen opposite to target location, two N2pc components were elicited: the 

distracter-elicited N2pc followed by the target-elicited N2pc with opposite polarity. 

Despite this pattern of results provides compelling evidence for the attentional capture 

hypothesis, it was not observed on all trials, but only for those leading to slow RTs to 

the visual search task, and thus when reward associated distractor efficiently captured 

attention. By contrast, in fast RT trials, the emergence of a Pd component, reflecting 

active distractor suppression (Hickey, Di Lollo, & McDonald, 2009; R. Sawaki, Geng, 

& Luck, 2012; Risa Sawaki & Luck, 2010), suggested that in order to efficiently select 

task-relevant targets, the valuable distractor had to be actively suppressed. 

Interestingly, Hickey and colleagues (2010a) suggested that the impact of reward on 

performance was mediated by an underlying interaction between processing of reward 

feedback in dopaminergic structures in the midbrain and visual processing in the cortex. 

Clearly, no direct measure of midbrain activity could be detected with scalp recordings. 

However, the authors indexed the individual sensitivity to reward feedback with the 

amplitude of the medial frontal negativity (MFN), considered to reflect the evaluation of 

the motivational impact of an event such as a reward feedback (Gehring & Willoughby, 

2002). The source of this component was located in the anterior cingulate cortex (ACC), 

an area with strong connections to dopaminergic structures in the midbrain. 

Interestingly, participants who were more sensitive to the obtainment of reward as 

indicated by MFN modulation, showed larger impact of reward associations in visual 

processing and attentional deployment towards reward associated objects. Recently the 

connection between the observed effects of reward in vision and the dopamine system 

has been made more explicit by showing that the strength of BOLD response in 

dopaminergic midbrain predicted the enhancement of encoding of reward-associated 
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targets and the suppression of reward-associated distractors in visual cortex (Hickey & 

Peelen, 2015). 

These observations suggest that reward influences processing of visual stimuli already 

at early stages (Hickey et al., 2010a). By contrast, the study reported in Chapter 4 

addresses the hypothesis that, according to the specific requirements of the task 

performed, reward could also influence other stages of visual processing, namely active 

maintenance of visual information in VWM. To test this hypothesis, the influence of 

reward is assessed on different components of evoked potentials measured while 

participants perform a VWM task. 

Previous studies, investing strategic effects of reward on visual processing, have 

reported that objects value not only modulates N2pc amplitude, reflecting target 

selection, but also the following CDA component suggesting further impact on the 

analysis of the selected target (Kiss et al., 2009). In Chapter 4, I report the results of an 

electrophysiological study that investigates such post-selection processes in the absence 

of motivational incentives. While experiments described in Chapters 2 and 3 reported 

effects of interference in VWM representations that could be easily interpreted as the 

consequence of benefits in visual encoding of reward associated objects because of their 

increased salience and therefore capacity to capture attention; other studies have shown 

benefits in VWM capacity also in absence of competition between reward associated 

and non-reward associated objects, excluding a benefit resulting from attentional 

capture (Gong & Li, 2014). However, none of the previous studies directly addressed 

whether reward influence in a VWM task benefits encoding or maintenance stages of 

visual processing. The work reported in Chapter 4 starts to investigate this issue by 

evaluating which components in the evoked scalp activity are affected by reward 

associations. Specifically, the aim of the study was to assess whether a benefit in VWM 

could be measured in the absence of detectable changes in the deployment of attention. 

Interestingly in the specific task we adopted, it was possible to highlight an effect of 

reward on maintenance stages only, reflected in modulation of CDA amplitude, while 

no changes were observed for N2pc. 

In the next chapters I report evidence for reward influence on visual representations 

stored in VWM at different stages of visual processing, namely encoding and 
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interestingly also maintenance. A possible interpretation for these results is that more 

resources are recruited for processing and maintaining objects that have been associated 

with positive outcomes in the past and consequently more precise representations can be 

created and maintained. However, the study of reward influence on VWM is just at the 

beginning and further work is necessary to explicitly test this interpretation.  
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2 Reward associations impact both iconic 

and visual working memory 

Adapted from: Infanti, E., Hickey, C., & Turatto, M. (2015). Reward associations 

impact both iconic and visual working memory. Vision research, 107, 22-29. 

 

2.1 Abstract 

Reward plays a fundamental role in human behavior. A growing number of studies have 

shown that stimuli associated with reward become salient and attract attention. The aim 

of the present study was to extend these results into the investigation of iconic memory 

and visual working memory. In two experiments we asked participants to perform a 

visual-search task where different colors of the target stimuli were paired with high or 

low reward. We then tested whether the pre-established feature-reward association 

affected performance on a subsequent visual memory task, in which no reward was 

provided. In this test phase participants viewed arrays of 8 objects, one of which had 
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unique color that could match the color associated with reward during the previous 

visual-search task. A probe appeared at varying intervals after stimulus offset to identify 

the to-be-reported item. Our results suggest that reward biases the encoding of visual 

information such that items characterized by a reward-associated feature interfere with 

mnemonic representations of other items in the test display. These results extend current 

knowledge regarding the influence of reward on early cognitive processes, suggesting 

that feature-reward associations automatically interact with the encoding and storage of 

visual information, both in iconic memory and visual working memory. 
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2.2 Introduction 

Rewards play a fundamental role in human cognition. The ability to learn reward contingencies 

in the environment is crucial to anticipate positive or negative outcomes and optimize value-

oriented behavior. Rewards can accordingly act as motivational incentives, guiding the 

deployment of cognitive resources in order to effectively orient attention and prioritize 

processing of task relevant information (Engelmann et al., 2009; Pessoa & Engelmann, 2010; 

Pessoa, 2009; Watanabe, 2007). 

A growing number of studies have shown that learned stimuli-reward associations can modulate 

the allocation of attention when rewards are no longer provided (for a review see Chelazzi et al., 

2013). Reward associations appear to automatically bias selective attention in favor of the 

associated object or feature even when individuals are not aware of the established feature-

reward associations. Importantly, the processing of reward associated stimuli is prioritized when 

this confers no strategic advantage, and perhaps even when it creates a performance cost ( 

Anderson, Laurent, & Yantis, 2011a, 2011b; Della Libera & Chelazzi, 2006, 2009; Krebs, 

Boehler, & Woldorff, 2010). Initially neutral visual features that have been linked to reward 

through experience seem to subsequently become salient, acquiring the ability to draw attention 

in space ( Anderson, Laurent, & Yantis, 2011a, 2011b; Della Libera & Chelazzi, 2006, 2009; 

Hickey, Chelazzi, & Theeuwes, 2010a, 2010b, 2011) and time (Hickey & Los, under review; 

Raymond & O’Brien, 2009), and to drive oculomotor capture (Anderson, Laurent, & Yantis, 

2012; Hickey & van Zoest, 2012, 2013; Theeuwes & Belopolsky, 2012). These results have led 

to the proposal that reward may act on attention through a mechanism that is independent of the 

traditional dichotomy of bottom-up and top-down processes (Awh, Belopolsky, & Theeuwes, 

2012). 

While increasing effort has been made in the last years to study the influence of learned 

value associations on attentional and visual search tasks, fewer studies have been 

dedicated to the relation between reward and other cognitive processes. With the present 

study, we aim to expand the existing literature addressing the non-strategic influence of 

reward-value associations on the encoding and storage of information in visual memory. 

Memory is the “neurocognitive capacity to encode, store, and retrieve information” 

(Tulving, 2000). In the visual domain, the early stages of visual memory have been 

classically distinguished in iconic memory (IM) and visual working memory (VWM). 

IM is a high capacity, fast decaying storage system where visual representations are 
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encoded and stored only for a few hundreds of milliseconds after the offset of briefly 

presented stimuli (Coltheart, 1980; Neisser, 1967). Only a limited subset of the 

information retained in IM is then selected and transferred into the limited-capacity 

system of VMW, where it can be actively maintained for several seconds (Cowan, 

2001). VWM is a system with limited resources where capacity is limited in terms of 

number of items that can be remembered and accuracy of the encoded representations 

(Alvarez & Cavanagh, 2004; Bays & Husain, 2008; Bays, Catalao, & Husain, 2009; 

Zhang & Luck, 2008). Whether information is selected and transferred from IM to 

VWM depends on its relevance for subject’s goals as well as perceptual properties of 

the visual input (Belopolsky, Kramer, & Godijn, 2008; Schmidt et al., 2002). 

Recent studies have demonstrated that incentives can improve performance in a visual 

memory task, increasing VWM capacity (Kawasaki & Yamaguchi, 2013) and speeding 

response times for the most valuable stimuli (Krawczyk, Gazzaley, & D’Esposito, 

2007). Interestingly, learned feature-reward associations have been shown to influence 

VWM also in the absence of direct incentive motivation, when rewards are no longer 

provided. Learned item-reward associations lead to enhanced VWM capacity for stimuli 

associated with high compared to low reward (Gong & Li, 2014).  

The current study was designed to further characterize the influence of reward on the 

early stages of visual memory. On the one hand, we aimed to describe the influence of 

learned feature-reward associations on visual memory over time, from the earliest 

sensory storage of IM gradually moving to VWM. On the other, we wanted to 

investigate how the presence of a previously reward-associated item in the memory 

array influences the capacity to encode and store the identity of other neutral items in 

the display. 

To address these issues, we combined a value-learning procedure with a visual memory 

task. During value-learning participants performed a visual search task loosely based on 

that employed by Anderson, Laurent, and Yantis (2011). Two magnitudes of reward 

outcome were associated with two colors that characterized the target object. 

Participants conducted a visual memory task immediately after this training. In this test 

phase they were presented with a number of items arranged in a circle, where a probe 

identified a single item in the array and participants reported the orientation of a line 
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element within this item. Importantly, one of these items could have the color associated 

with reward during training, rendering it a color singleton. This item was no more likely 

to act as memory target than any of the other elements in the array. 

Our test task was modeled on the partial report technique introduced by Sperling 

(1960). By presenting the probe at short or long delays after stimulus offset, Sperling 

used this task to investigate the content of IM independent of the limitations of working 

memory. As compared to full report paradigms, where observers are able to report 

around 3 to 5 items from the memory array, partial report studies suggest the presence 

and availability of much more information at short probe delays (i.e. partial report 

superiority). 

We approached our results with interest not only in raw accuracy, but also in the 

interference created when a singleton stimulus was present in the display and 

participants were probed to report a non-singleton item. We quantified this interference 

effect as the accuracy difference between conditions where the response associated with 

the line inside the singleton was congruent to that of the line inside the probed target 

(same response, congruent trials) versus when it was incongruent (different response, 

incongruent trials; see Theeuwes & Burger, 1998). This measure was examined for 

modulation as a function of the color-reward association established during the training 

phase.  

Our hypothesis was that learned reward associations could act on visual memory at 

different levels, influencing IM, VWM, or both. To foreshadow, we did not find direct 

evidence for enhancement of visual memory performance for a reward associated item, 

but we did observe a stronger interference effect on performance when an irrelevant 

singleton had its color associated with high-magnitude reward. This interference effect 

was insensitive to the timing of the probe, suggesting that the entrained reward 

association impacted both IM and VWM.  

  



Reward associations impact both iconic and visual working memory 

40 

 

2.3 Experiment 1 

 

Methods 

Participants. Thirty students of the University of Trento (26 female) participated in the 

experiment. Mean age was 22 (ranging from 19 to 37). All had normal or corrected-to-

normal vision, normal color vision, and were naïve to the purpose of the experiment. 

Participants were reimbursed for their participation, with compensation varying 

between 7.50€ and 9€ based on performance. Written informed consent was obtained 

from all participants and the experiment was carried out in accordance with the 

Declaration of Helsinki and was approved by the local Ethics Committee. 

Apparatus. Stimuli were presented on a gamma-calibrated ViewSonic Graphic Series 

G90fB 19’’ CRT monitor (1024 x 768) at a refresh rate of 100Hz. Participants were 

seated in a dimly illuminated room approximately 60 cm from the display with their 

head supported by a chinrest. Stimuli were created using a custom Matlab script 

(Mathworks Inc., Massachusetts, USA) and the Psychophysics Toolbox 3.8 (Brainard, 

1997; Pelli, 1997). 

Stimuli. All stimuli appeared on a uniform gray background (2.58 cd/m
2
) and were 

regularly displaced along an imaginary circle at a radius of 5° of visual angle from the 

fixation point (0.12° in diameter). Stimuli were light gray lines (36.1 cd/m
2
; 1.5°x0.12°) 

oriented vertically or horizontally, presented inside a circle of 2° diameter (width 0.12°). 

We selected 7 colors to assign to the circles and these colors were adjusted to be 

physically equiluminant (~24 cd/ m
2
). 

Procedure. The experiment lasted for about an hour and was structured in two parts.  

Visual Search Training. In the training phase participants completed a visual search 

task where the target was defined by one of two colors, one associated with high reward 

and one associated with low reward (Figure 2.1A). The training began with 40 practice 

trials which were followed by 480 experimental trials divided in 8 blocks. Each trial 

began with a fixation display; after a variable delay of 400, 500, or 600 ms a visual 

search display was presented for 100 ms. The search display consisted of 6 gray lines 
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each surrounded by a uniquely colored circle. Targets were defined as circles of one of 

two possible colors and only one of them could be presented in each trial. Participants 

were instructed to report as fast and as accurately as possible the orientation of the line 

inside the target circle, pressing “m” for vertical or “z” for horizontal on a standard 

computer keyboard. Feedback was provided for 1500 ms beginning immediately after 

response. The feedback display was identical to the memory display except that light 

gray text indicating the number of earned points was overlaid at the center of the screen 

subtending about 1° of visual angle. Participants received either “+01” points or “+10” 

points for correct responses (10 points corresponded to €0.032). No points, indicated 

with three dashes “---“, were assigned for incorrect responses or trials where 

participants failed to response within 1400 ms. At the end of each block participants 

received feedback about the overall number of points accumulated.  

Participants were informed prior to beginning the training procedure that one of the two 

target colors was associated with high and the other to low reward. The reward schedule 

was probabilistic such that correct responses with high reward targets were followed by 

high reward on 80% of trials and by low reward in 20% of the trials (and vice versa for 

low reward targets). The two target colors were selected among three alternatives (red, 

green or blue). The non-target color was assigned to one of the distractors presented in 

the search array. Target color and value were counterbalanced across participants. 

Target identity and location were fully balanced for each participant and presented in 

random order. 
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Figure 2.1 Experimental design 

(A) Visual search task. A visual search display of 6 elements was presented for 100 ms 

after a variable fixation delay. Either a green or a red target was presented in each trial and 

participants reported the orientation of the line inside it. Participants’ response was 

followed by a feedback display that indicated the number of points that were earned on 

each trial. The feedback did not depend on participants speed, but was determined by 

means of the probabilistic schedule: for each participant either red or green target were 

associated with high reward in 80% of the trials and to low reward in the remaining 20% of 

the trials (green in the illustrated example); the opposite association was made for the other 

color. (B) Memory task. A memory array of 8 elements was presented for a 130 ms. All but 

one item were gray. The uniquely colored circle could be defined by a color previously 

associated with a high or low reward target or a distractor. After a variable delay (50 or 800 

ms) a line appeared and indicated one of the 8 locations. Participants’ task was to report the 

orientation of the line presented at the probed location. All locations were selected with the 

same probability. Neither reward nor feedback was provided during this task. 

 

Iconic and Visual Working Memory Test. In the test phase participants completed a 

visual memory task where the to-be-remembered target was identified by a probe 

(Figure 2.1B). Importantly, at this stage of the experiment participants were not 

rewarded for performance. After 20 practice trials, the experimental session began with 

480 experimental trials divided in 6 blocks. Memory trials started with a fixation cross 

that sustained for a random interval of 400, 500, or 600 ms before being replaced by the 

memory array for 130 ms. The memory array consisted of 8 circles evenly spaced 

around fixation, all of but one with gray color. The uniquely colored circle could be 

defined by a color that had characterized high-reward targets, low-reward targets, or 

distractors during training. After a 50 or 800 ms delay a line cue (3°x0.05°) indicated 

the memory target for 100 ms.  
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Each item in the memory array was probed with equal probability. Participants were 

required to report the orientation of the line seen at the probed location using the 

keyboard (“m” for vertical; “z” for horizontal”). Responses were unspeeded and 

accuracy was emphasized, but no feedback was provided. Target identity and position 

was fully counterbalanced and trials were randomly presented during the experiment. 

 

Analyses and Results 

Visual Search training performance. Statistical analysis of response times (RTs) over 

the course of training in the visual search task took the form of a repeated measures 

analysis of variance (ANOVA) with time (trials were divided in 4 bins of 120 trials 

each) and target-color-association (high-reward color vs. low-reward color) as factors. 

RT was significantly faster for high reward targets (main effect of reward F(1, 29) = 

4.80; p = .037; 𝜂𝑝
2

 = .14) and became faster over the course of the training (main effect 

of time F(1.8, 51.9) = 19.03; p < .001; 𝜂𝑝
2

 = .40) but these factors did not interact 

(F(3,87) = .67; p = .571; 𝜂𝑝
2

 = .02). A similar ANOVA based on arc-sine transformed 

accuracy revealed an improvement over the course of training (F(2.3, 65.3) = 28.1; p < 

.001; 𝜂𝑝
2

 = .49) but no effect involving target-color-association (F(1, 29) = 3.08; p = 

.090; 𝜂𝑝
2

 = .10; interaction: F < 1). Note that statistical results here and below reflect 

Greenhouse-Geisser corrected degrees of freedom where appropriate.  

These results suggest that participants successfully learned the reward contingencies 

and became faster in recognizing the targets when they were associated with high 

reward value. 

Iconic and Visual Working Memory task performance. Statistical analysis of the 

visual memory task began with a repeated-measures ANOVA of arc-sign transformed 

accuracy values with factors for target color (unique color vs. gray), singleton color-

reward association (high-reward vs. low-reward vs. distractor color) and probe-delay 

(50 ms vs. 800 ms). Accuracy was significantly higher for singletons than non-singleton 

items (F(1,29) = 58.33; p < .001; 𝜂𝑝
2

 = .67) and for short compared to long delay 

(F(1,29) = 6.26; p = .018; 𝜂𝑝
2

 = .18). We accordingly examined performance for 
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singleton and non-singleton targets separately. Accuracy for singletons was 

significantly higher at the short delay (F(1, 29) = 4.26; p = .048; 𝜂𝑝
2

 = .13), but no effect 

of reward-color association was observed (F(2, 58) = .11; p = .898; 𝜂𝑝
2

 = .00) and these 

factors did not interact (F(2,58) = 1.16; p = .321; 𝜂𝑝
2

 = .04). Analysis of accuracy for 

gray items also revealed a main effect of delay (Figure 2.2; F(1, 29) = 4.59; p = .041; 𝜂𝑝
2

 

= .14), but no effects of singleton-reward-association (reward: F(2, 58) = 1.15; p = .325; 

𝜂𝑝
2

 = .04; reward X delay: F(2, 58) = .16; p = .850; 𝜂𝑝
2

 = .01). Additional analyses of RTs 

for correct responses, in the form of a repeated-measures ANOVA with target color 

(unique vs. gray), probe-delay (50 ms vs. 800 ms) and reward (high-reward vs. low-

reward vs. distractor color) as factors, revealed a trend for shorter RTs for singletons 

than gray items (color: F(1, 29) = 4.16; p = .051; 𝜂𝑝
2

 = .13), but no other significant 

results (delay: F(1, 29) = 3.34; p = .078; 𝜂𝑝
2

 = .10; color X delay: F(1, 29) = 3.45; p = 

.073; 𝜂𝑝
2

 = .11; all other Fs <1). 

Analysis of interference took the form of a 3x2 repeated measures ANOVA with factors 

for singleton-color-association (high-reward color vs. low-reward color vs. distractor 

color) and probe-delay (50 ms vs. 800 ms). This revealed a main effect of reward 

(Figure 2.2; F(2, 58) = 3.17; p = .049; 𝜂𝑝
2

 = .10), but no effect of probe-delay (F(1, 29) = 

2.33; p = .138; 𝜂𝑝
2

 = .07) and no interaction (F(2, 58) = 0.69, p = .933, 𝜂𝑝
2

 = .00). Given 

that delay had no reliable impact on the memory performance we collapsed the data 

across this factor in subsequent analyses. Pairwise comparisons (t test) revealed 

significant differences in the interference effect when the singleton was characterized by 

the high-reward versus neutral color (t(29) = 2.26; p = .030; Cohen’s d = .50) and a 

trend towards a difference when the singleton was characterized by high-reward versus 

low-reward color (t(29) = 1.99; p = .056; Cohen’s d = .52). There was no difference 

when the singleton was characterized by the low-reward versus neutral color (t(29) = -

.02; p = .981; Cohen’s d = -.01). 
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Figure 2.2 Experiment 1: interference effect in memory task. 

The interference effect is an index of interference in memory performance for the target as 

a function of the congruency of the response to the singleton (it was computed as the 

difference in accuracy between congruent and incongruent trials). The interference effect 

was dependent on reward history and was strongest for high reward associated colors 

compared to low reward associated color or control. Errorbars here and below represent 

SEM. 

 

 

We conducted an additional analysis to examine the impact of target-singleton distance 

on the interference effect (Figure 2.3). To this end we conducted an ANOVA similar to 

that described above but with an added factor for the distance of the probed item from 

the singleton (distance zero: no items between target and singleton, distance one: one 

item between; distance two: two items between). This revealed a) that the interference 

effect was strongest for items closer to the singleton (main effect of distance F(2,58) = 

9.08; p < .001; 𝜂𝑝
2 = .24), and b) that the interference effect was dependent on reward 

(F(2,58) = 3.31; p = =.044; 𝜂𝑝
2

 = .24). No significant interaction between reward and 

distance was observed (F(4,116) = 1.74; p = .145; 𝜂𝑝
2

 = .06) and no other main effects or 

interactions were detected (all Fs <1). An analogous measure of interference was 

computed for RTs (difference in RTs for congruent and incongruent trials), but analysis 

revealed no significant effects (delay: F(1,29) = 1.54; p = .224; 𝜂𝑝
2

 = .05; reward: 

F(2,58) = 1.59; p = .213; 𝜂𝑝
2

 = .05; delay X reward: F(2,58) = .16; p = .849; 𝜂𝑝
2

 < .01). 

Follow-up analyses revealed that when the probed item was adjacent to the singleton a 

strong main effect of reward could be detected (10% difference in accuracy; F(2,58) = 

5.29; p = .008; 𝜂𝑝
2=.15). Planned contrasts confirmed that the interference effect was 

larger when the singleton had high-reward versus low reward color (t(29) = 2.28; p = 
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.030; Cohen’s d = .51) and when the singleton had high-reward versus neutral color 

(t(29) = 3.2 ; p < .001; Cohen’s d = .72), but that there was no difference when the 

singleton had low-reward versus neutral color (t(29) =. 8; p = .429; Cohen’s d = .18). 

The interference effect was negligible and was not significantly modulated by reward at 

other target-singleton distances (1-away: mean = -2%, se = 2%, 2-away: mean = 0%, se 

= 2%).  

 

Figure 2.3 Experiment 1: interference effect as a function of target-

singleton distance. 

The strength of the interference effect is modulated as a function of distance of target and 

color singleton. (A) Interference effect at distance zero (no items between target and 

singleton). (B) Interference effect at distance one (one item between target and singleton). 

(C) Interference effect at distance two (two items between target and singletons). 

 

A core goal of Experiment 1 was to test the idea that an object characterized by a 

reward-associated color would be better represented in visual memory. Results in fact 

show that such an object will interfere with the mnemonic representation of other items 

in the array, supporting this notion. Experiment 1 had an additional purpose, namely to 

test whether the reward effect might be specific for a particular type of memory, and 

thus differentially impact IM or VWM representations. To test this we included two 

probe-delays in Experiment 1, 50 ms and 800 ms, under the assumption that the short 

probe would index representation in IM and the long probe VWM. However, results 

showed no difference as a function of this manipulation. This null result may simply 

reflect insufficient power to detect a difference, and with this in mind we ran a second 

experiment. This importantly included a larger number of probe-delays with the intent 

of identifying a systematic variation in the reward effect over levels of this 

manipulation. 
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2.4 Experiment 2 

 

Methods 

Participants. A new group of 20 students of the University of Trento (13 females) took 

part in Experiment 2. The mean age of participants was 22 (ranging from 19 to 36). All 

had normal or corrected-to-normal visual acuity and color vision and were all naïve to 

the purpose of the experiments. Participants were reimbursed for their participation; the 

overall compensation could vary between 8€ and 10€ based on their performance. All 

participants gave their written consent to the participation to the experiment. The 

experiment was carried out in accordance with the Declaration of Helsinki and was 

approved by the local Ethics Committee. 

Stimuli and procedure. Display settings and stimuli were as in Experiment 1 and the 

training procedure was unchanged. The aim of Experiment 2 was to better characterize 

the temporal dynamics of the effect of reward on memory. To this end we had the 

memory probe appear at four temporal delays (10 ms, 50 ms, 100 ms and 500 ms). 

While we maintained the structure of the memory display as in Experiment 1, only a 

subset of the 8 possible locations was probed. The rationale behind this change was to 

increase power to detect modulation of the interference effect, which was strongest at 

the location adjacent to the singleton in Experiment 1. Only 5 of the 8 locations of the 

memory display were probed: the position occupied by the color singleton (16% of 

trials), the two adjacent locations at distance zero (20% of the trials at each location) 

and the two locations at distance two (22% of the trials at each location). We adopted 

this distribution in order to avoid participant adoption of a strategic bias toward the 

items centered around the color singleton. Note that while probe location was not fully 

random in this design, the target location was not rendered predictable and the location 

of the singleton was fully counterbalanced and randomly presented during the 

experiment.  

Experiment 2 was substantially longer than Experiment 1, with 320 additional working 

memory trials. With this in mind we divided the experiment into two identical sessions, 
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each consisting of a training and test procedure. Each of the two training sessions 

comprised 240 trials of the visual search task, with each test session constituting 400 

trials of the memory task. Participants took a short break between sessions. Our purpose 

here was to reduce the potential for extinction of the reward-color association over the 

course of the memory task (eg. Anderson, Laurent, & Yantis, 2011b). 

 

Analyses and Results 

Visual Search training performance. Participants were faster (F(1, 19) = 15.81; p 

=.001; 𝜂𝑝
2

 =.45 ) and more accurate (F(1, 19) = 6.28; p = .021; 𝜂𝑝
2

 = .25) in responding to 

high reward targets. Moreover, a significant improvement in performance over time was 

measured in accuracy (F(3, 57) = 32.84; p < .001; 𝜂𝑝
2

 = .63), but not response latency 

(F(3,57) = 1.71 ; p = .174; 𝜂𝑝
2

 = .08). No significant interactions were observed (all Fs < 

1). 

Iconic and Visual Working Memory task performance. As was the case in Experiment 

1, we first analyzed the raw accuracy in the visual memory task by means of repeated 

measures ANOVA with factors for color (unique color vs. gray) and probe-delay (10ms 

vs. 50 ms vs. 100 ms vs. 500 ms). Accuracy was significantly greater for singletons as 

compared to non-singleton items (F(1,19) = 57.89; p < .001; 𝜂𝑝
2

 = .75). A main effect of 

delay was also observed (F(3,57) = 3.64; p = .018; 𝜂𝑝
2

 = .16) as was a color X probe-

delay interaction (F(3,57) = 2.95; p = .040; 𝜂𝑝
2

 = .13). This motivated follow-up analyses 

for singletons and non-singleton targets separately.. Memory performance for non-

singleton targets was better for short delays (main effect of probe delay: F(3, 57) = 

10.03; p < .001; 𝜂𝑝
2

 = .35), and for targets adjacent to the color singleton (main effect of 

distance: F(1, 19) = 11.31; p = .003; 𝜂𝑝
2

 = .37), but reward had no effect on this measure 

(F(1, 19) = .42; p = .523; 𝜂𝑝
2

 = .02). No significant interactions were observed between 

reward and distance (F(1,19) = 2.79; p = .111; 𝜂𝑝
2

 = .13) or reward, distance and delay 

(F(3,57) = 1.12; p = .350; 𝜂𝑝
2

 = .06; all other Fs < 1). The analysis of accuracy for 

singletons revealed no significant effects (delay: (F(3,57) = 1.31; p = .279; 𝜂𝑝
2

 = .07; 

reward X delay: F(3,57) = 2.03; p = .120; 𝜂𝑝
2

 = .10; all other Fs < 1). Additional 
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analyses of RTs, with color, probe-delay and reward as factors, revealed a main effect 

of color reflecting shorter RTs for singletons than gray targets (F(1, 19) = 20.5; p < 

.001; 𝜂𝑝
2

 = .52) and a trend for color-delay interaction (F(3,57) = 2.77; p =.05; 𝜂𝑝
2

 = .13), 

no other effects were significant (reward X delay: F(3, 57) = 2.25; p = .09; 𝜂𝑝
2

 = .11; all 

other Fs <1). 

Statistical analysis of the interference effect took the form of a 2x4x2 repeated measures 

ANOVA with factors for singleton color-reward association (high-reward color vs. low-

reward color), probe-delay (10ms vs. 50 ms vs. 100 ms vs. 500 ms) and distance 

(adjacent-to-singleton vs. far-from-singleton). 

This confirmed that the feature-reward association established in the training phase 

induced a stronger interference effect when singletons’ color was associated with high 

than low reward (F(1, 19) = 5.90; p = .025; 𝜂𝑝
2

 = .24), and this effect was strongest for 

stimuli adjacent to the singleton (F(1, 19) = 12.34; p = .002; 𝜂𝑝
2

 = .39; Figure 2.4). The 

interference effect did not vary reliably over probe delay conditions (F(3, 57) = 1.11; p 

= .352; 𝜂𝑝
2

 = .06) and no interaction was observed (F(3,57) = 1.21; p = .316; 𝜂𝑝
2

 = .03; all 

other Fs < 1). An analogous measure of interference for RT showed no significant 

effects of probe-delay or reward manipulations (delay: F(2.44,46.46) = 2.03; p = =.133; 

𝜂𝑝
2

 = .10; reward: F(1,19) = 1.77; p = =.200; 𝜂𝑝
2

 = .09; delay X reward: F(3,57) = 1,92; p 

= =.136; 𝜂𝑝
2

 = .09).  
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Figure 2.4 Experiment 2: interference effect as a function of target-

singleton distance. 

The interference effect decreased as a function of target-singleton distance for all delays. 

A. Interference effect at distance zero (no items between target and singletons). B. 

Interference effect at distance two (two items between target and singletons). 
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2.5 Discussion 

Features and objects associated with delivery of reward become salient and draw 

attention in space and time, even when they are no longer rewarded ( Anderson, 

Laurent, & Yantis, 2011a, 2011b; 2012; Della Libera & Chelazzi, 2006, 2009; Hickey, 

Chelazzi, & Theeuwes,, 2010a, 2010b, 2011; 2014; Krebs, Boehler, & Woldorff, 2010; 

Raymond & O’Brien, 2009). Recent studies have also shown that reward-associated 

items are better maintained in visual working memory (Gong & Li, 2014). 

The present study expands the existing knowledge about the influence of reward on 

visual memory, addressing content of visual memory at different delays from display 

offset and investigating both IM and VWM. This manipulation opens the opportunity to 

speculate at which stage reward associations can influence the memory process. A 

further element of novelty in our design is that we investigated VWM and IM not only 

for items directly associated with reward, but also for simultaneously presented items 

presented alongside such a reward-associated non-target. To index changes in the 

mnemonic representation of such items we employed an index reflecting the difference 

in accuracy between congruent and incongruent trials, which we term the interference 

effect. Importantly, our results show that memory performance for neutral items was 

influenced by the information contained in the color singleton, in a way that was 

dependent on the learned color-reward association, but not on the probe-delay.  

Our results suggest that the interference effect was dependent on the distance between 

target and singleton. Memory of the target was not affected by the orientation of the line 

inside the singleton when they were separated by one or more objects. This observation 

is in line with a recent study by Anderson and colleagues (2012) in which participants 

learned a feature-reward association by means of a visual search value learning 

procedure before performing a flanker task. The flanker target could be surrounded by 

two letters with the congruent or incongruent identity, and these letters could have high-

reward or low-reward associated color. Results showed an increased cost in RTs when 

the flanking distractors had the high-reward color. Thus, as in our results, proximal 

stimuli characterized by the reward-associated color interfered more strongly with the 

target representation. This pattern is evocative of results in the visual search literature 
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showing that salient stimuli such as color singletons will disrupt the representation of 

targets in close proximity (Caputo & Guerra, 1998; Hopf et al., 2006; Mounts, 2000). 

This is thought a product of the misdeployment of attention to the salient object, whose 

selection would cause the suppression of surrounding stimuli including the target. 

However, in the current results we do not see an impact of proximity as a raw decrease 

in accuracy, but rather an increase in interference. It is not immediately clear how this 

effect is related to the suppression described in prior works, and there is a clear 

opportunity here for further dedicated research.  

We tested visual memory at different time intervals from the display offset in order to 

address the content of both IM and VWM. Our goal was to investigate whether feature-

reward associations could have a variable impact on performance at different stages of 

the memory process. Interestingly, our results show that reward-associated singleton 

influenced the representation of the target element at very short delays, starting already 

10 ms after the offset of the memory array. Moreover, at least for the temporal intervals 

we have tested, the interference effect was not modulated by the temporal delay of the 

probe. There are a number of possible accounts for this pattern of results. One is that 

such early observed interference may arise at the level of encoding of visual 

information. Several studies have suggested that the VWM capacity depends on an 

item/resolution trade-off, with mnemonic precision decreasing as the number of to-be-

remembered items increases (Alvarez & Cavanagh, 2004; Bays & Husain, 2008; Bays, 

Catalao, & Husain, 2009; Zhang & Luck, 2008). In the relatively difficult memory task 

adopted here, the mnemonic representation of stimuli may be low in precision and thus 

particularly susceptible to interference from other sources of information. Alternatively, 

it could be the case that stimuli features were represented with adequate precision, but 

stored information about location was degraded (e.g. Bays, Catalao, & Husain, 2009). In 

a memory task like the one we adopted, the target was probed with a line that indicated 

one of the previous items locations. To accurately perform the task, participants needed 

to correctly remember both the orientation of the items in the array, and the exact 

location indicated by the probe. Misremembering the location indicated by the probe 

and responding with the remembered orientation of another item could contribute as a 

further source of errors. The presence of a reward-associated singleton could bias the 

remembered location towards that of the singleton itself, interfering with performance. 
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In either case, it appears that the relatively low-precision of the visual memory 

representation created an opportunity for the reward-associated object to interfere with 

memory for other items.  

Another possible explanation of the interference effect is that items associated with 

reward are more persistent over time and less prone to decay. The decay of information 

from iconic to visual working memory is not abrupt but it follows a smooth decaying 

function (Graziano & Sigman, 2008). If reward reinforces the persistence of the 

memory trace, one would expect a slower decay of information for reward-associated 

items. This suggests that a larger impact of reward associations should be observed at 

longer probe delays, when the memory trace for neutral items has already faded away 

while reward-associated items are still accurately represented in memory. However, we 

failed to detect such a pattern in our results, with no hint of a statistical trend. The 

apparent stability of the effect over time speaks for an early influence of reward on the 

encoding of information in visual memory, which remains constant within the first 800 

ms. However, it should be noted that we tested only the early period of transfer of 

information from IM to VWM. Further work with longer probe delays is necessary to 

directly address the hypothesis of the influence of reward on the maintenance stage of 

information into working memory. 

Finally, there is the possibility that the interference effect arises at the level of response 

selection, such that the response triggered by the singleton biased participants’ 

performance. The orientation indicated by the singleton could have automatically 

triggered a motor response that interfered with the selection of the appropriate motor act 

required for the target. One feature of our design argues against this interpretation: 

participants performed the memory task with no time pressure and were encouraged to 

be as accurate as possible, presumably minimizing response-selection errors. Moreover, 

the interference effect was strongest for items adjacent to the singleton, consistent with 

the idea that interference occurred during perceptual or selective processing. However, 

strong evidence for or against this interpretation would also require further dedicated 

work.  

Our results importantly suggest that both IM and VWM for a visual object are 

significantly modulated by reward history. In particular, memory was affected by the 
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value that each color assumed through a previous procedure of learning: features 

associated with high value led to a stronger interference effect than features associated 

with low value or features that were never presented as targets in the previous learning 

procedure. 

Whereas Gong and Li (2014) observed a direct influence of feature reward associations 

on memory accuracy, we found an influence only on the interference effect, with raw 

accuracy unaffected. This may stem from our use of color singleton stimuli. Such 

stimuli automatically attract attention (e.g. Hickey, McDonald, & Theeuwes, 2006) and 

are better represented in memory (Schmidt et al., 2002), The possibly subtle impact of 

reward may have been overwhelmed by this raw visual salience. Moreover, our 

experiment was not designed to have the power to directly detect such change since we 

had only few trials in which we tested memory performance for singleton targets. On 

the other hand, in our experiments we tested relatively short delays, ranging from 10 to 

800 ms, compared to 1000-2500 ms employed in Gong and Li. It is possible that reward 

directly affects maintenance of information in memory, but this is detectable only after 

longer intervals than were employed here.  

While a clear interference effect emerged in our work, the paradigm we adopted was not 

specifically designed to disentangle whether reward associated items affect IM and 

VWM by means of an attentional capture phenomenon (Anderson, Laurent, & Yantis, 

2011; Della Libera & Chelazzi, 2006, 2009; Hickey, Chelazzi, & Theeuwes, 2010, 

2011), or if reward produces a proper reinforcement of the information that is encoded 

and stored in visual memory (Gong and Li, 2014). On the one hand, a shift of attention 

towards the location occupied by the high reward singleton should be accompanied by a 

modulation of accuracy at the neighboring locations. While in Experiment 2 we observe 

an improvement in performance in the locations near the singleton, suggesting that 

indeed it does attract attention, we fail to observe any modulation of this effect as a 

function of the reward value associated with the singleton. On the other hand, the 

stronger interference exerted by the information contained in the high-reward associated 

singletons seems to suggest facilitated representation of the visual information. 

However, further studies are necessary to directly investigate these two possibilities and 
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understand the nature of the mechanisms involved in the influence of reward on the 

earliest stages of visual memory.  

To conclude, we have shown that learned feature-reward associations can have an 

important impact on the encoding of information in memory. Previous experience and 

learned reward associations not only prioritize processing of associated visual stimuli, 

but also changes how these objects are stored in visual memory. 

  



Reward associations impact both iconic and visual working memory 

56 

 

 

  



Limits of reward influence on visual working memory 

57 

 

 

 

 

 

 

 

 

3 Limits of reward influence on visual 

working memory 

Adapted from: Infanti, E. & Turatto, M.. Limits of reward influence on visual 

working memory. In preparation 

 

3.1 Abstract 

Recognizing objects and situations that are predictive of positive or negative outcomes 

is fundamental in promoting adaptive behavior. A growing number of studies have 

shown that once positive associations are learned, reward-associated objects become 

salient and acquire the capacity to attract attention even beyond current goals and 

attentional sets. In this work we aim to test the limits of such influence, specifically 

addressing the impact of feature-reward associations in a visual working memory 

(VWM) task with increasing attentional demand for target selection. We adopted a 

value learning procedure to imbue specific colors with different associated values and 

subsequently tested the impact of such learned color-reward associations on 

performance in a VWM task. We observed that when items associated with high 
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rewards were presented as distractors, they significantly interfered with mnemonic 

representations of simultaneously-presented low-reward targets. However, when the 

target-defining shape was varied on a trial-by-trial basis, the interference of distractors 

was no longer modulated by their value. We suggest that exhausting attention in target 

selection reduces processing of irrelevant information related to interfering items, such 

as their associated value. While recent studies have shown that reward history impacts 

attentional selection independently of top-down sets and stimulus-driven shifts of 

attention, here we advance the idea that such effects are limited by the cognitive 

demands of the task performed. Increasing attentional requirements for target selection 

exhausts attentional resources resulting in more efficient filtering of task-irrelevant 

information, and prevents the emergence of residual effects from learned feature-reward 

associations. 
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3.2 Introduction 

Reward plays an important role in guiding human behavior (Skinner, 1953). Learning to 

recognize objects and situations that are predictive of positive or negative outcomes is 

fundamental for promoting optimal behavior in future encounters. Because of its 

powerful motivational value, it is well established that reward can efficiently guide the 

deployment of attention and cognitive resources towards reward-predicting stimuli 

(Engelmann & Pessoa, 2007; Kristjánsson et al., 2009; Pessoa, 2009; Risa Sawaki et al., 

2015).  

Frequently, however, the familiar environments we interact with are full of 

motivationally salient stimuli that are irrelevant for current goals. Interestingly, a 

growing body of literature over the last 10 years has demonstrated that learned reward 

associations can automatically influence our ability to select and process visual stimuli 

even when rewards are no longer provided (see Anderson, 2013; Chelazzi, Perlato, 

Santandrea, & Della Libera, 2013 for a review). In particular, it has been shown that 

features that are associated with positive outcomes acquire the power to attract and 

orient attention even beyond an individual’s current goals and interests (Anderson et al., 

2011a, 2011b, 2012; Della Libera & Chelazzi, 2006, 2009; Hickey et al., 2010a; 

Raymond & O’Brien, 2009). 

For example, to study the influence of reward history in visual cognition, Anderson and 

colleagues (2011b) developed a value-learning procedure based on a visual search task 

that established an association between features, such as colors, and different reward 

levels. During the subsequent test phase, the residual impact of learned-reward 

associations on deployment of attention was assessed in a second visual search task in 

the absence of reward delivery. This paradigm allowed the researchers to demonstrate 

that stimuli imbued with value can capture attention even when they are presented as 

irrelevant distractors. The same value-learning procedure has been used to prove that 

the advantage of high reward-associated features over neutral or less valuable ones can 

be generalized to new stimuli and tasks (Anderson et al., 2012; Gong & Li, 2014; 

Infanti, Hickey, & Turatto, 2015). 

Given the strong interconnection between visual working memory (VWM) and 

selective attention (Awh et al., 2006; Gazzaley & Nobre, 2012; Zanto et al., 2011), a 
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few recent studies have suggested that the influence of reward history could also extend 

to VWM tasks (Gong & Li, 2014; Infanti et al., 2015). VWM is a system with limited 

capacity in terms of the number of items that can be stored and the precision of the 

encoded representations (Alvarez & Cavanagh, 2004; Bays, Catalao, & Husain, 2009; 

Steven J Luck & Vogel, 2013; Zhang & Luck, 2008). Hence, the selection, encoding 

and maintenance of information in VWM is determined by its relevance for current 

goals (Gazzaley, 2011; Vogel & Machizawa, 2004; Vogel, McCollough, & Machizawa, 

2005), its likelihood of being selected as a target (Umemoto, Scolari, Vogel, & Awh, 

2010), and object salience (Belopolsky, Kramer, & Godijn, 2008). Interestingly, the 

contents of VWM can also be affected by the value associated with targets (Gong & Li, 

2014; Infanti et al., 2015). Learned feature-reward associations can induce an 

enhancement of VWM capacity for stimuli associated with high compared to low 

reward (Gong & Li, 2014). Moreover, Infanti and colleagues (2015) documented that 

salient and reward-associated items interfere more strongly with the memory trace of 

adjacent neutral stimuli, revealing that reward history can significantly affect both early 

(Iconic Memory) and late stages (VWM) of visual memory. 

In the present work we aim to define the boundaries of such influence by further 

exploring how variations in the attentional requirements of a task affect the impact of 

learned feature-reward associations in VWM.  

In this work we first aim to extend our previous findings (Infanti et al., 2015) and 

explore whether reward-associated items interfere with VWM representations of neutral 

stimuli even when they are irrelevant for the current task. We also investigate whether 

increasing attentional demands for target selection can limit the influence of value-

associated distractors on VWM. It has been suggested that the extent to which a task 

exhausts available resources determines whether task-irrelevant items will be processed 

(Lavie, 1995, 2005; Lavie & Cox, 1997; Lavie & Tsal, 1994). With a low attentional 

load, task-irrelevant stimuli will automatically gain access to attentional resources. 

However, when a task results in high attentional load, there are no residual resources to 

process irrelevant stimuli. In this work we ask whether task-irrelevant information such 

as distractor value is efficiently suppressed when the attentional requirements of the 

task increase. 
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To this aim, we employed a value-learning procedure (modeled on Anderson et al., 

2011b) adapted to a VWM task, where we associated target colors with either high or 

low reward outcomes. A second memory task was performed immediately after this 

training, during extinction. In this test phase, items rendered in either high or low 

reward-associated colors were presented simultaneously. On each trial, one color was 

assigned to targets and the other color to distractors. We analyzed the influence of 

reward on VWM performance by quantifying the interference effect of distractors in 

addition to raw accuracy and response times (RTs). The interference effect calculates 

the extent of interference exerted by distractor stimuli as a function of their associated 

reward value. The interference effect thus indexes the impact the distractors on the 

response to targets. It is quantified as the difference in accuracy between trials in which 

the probed item requires a response congruent to that evoked by the adjacent distractor 

(same response, congruent trials) and trials in which the responses evoked by the target 

and the distractor are incongruent (different response, incongruent trials) (for an 

analogous use of this measure see Infanti et al., 2015). An increase in the amplitude of 

this effect reflects greater intrusion by the distractor. 

We hypothesized that reward-associated distractors would interfere with VWM 

performance only under specific circumstances. Specifically we hypothesized that the 

interference effect would be limited by increasing demands on the target selection 

process. We manipulated the task demands for target selection by either continuously 

varying or blocking the shape characterizing the target. To anticipate the results, we 

observed a significant interference with visual memory representations of targets in the 

presence of high value distractors, but the influence of reward on interference was 

abolished by increasing attentional load for target selection.  
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3.3 General paradigm and rationale for the experiments 

Each experiment lasted for about an hour and was organized in two parts: a VWM task 

was performed during the initial training session, followed by a similar task during the 

test session. During the first phase, reward was provided for correct performance, and 

different reward magnitudes were paired with different target colors, enabling the 

establishment of feature-reward associations. During the second phase, no reward was 

provided for correct performance so that we could measure the residual effects of 

learned feature-reward pairings during extinction. The training session was identical 

across all experiments, while the criteria defining targets during the subsequent test 

session were varied to explore under which circumstances reward associations were 

able to affect VWM performance.  

 

3.4 Experiment 1 

 

Methods 

Participants. Eighteen young adults (14 females; mean age ± standard deviation: 22.7 ± 

2.1 years; 3 left handed) participated in this experiment. All participants had normal or 

corrected-to-normal visual acuity and color vision. One participant was excluded from 

the analysis because of poor performance during the test phase (accuracy not different 

from chance at both display sizes). The experiment was conducted in accordance with 

the Declaration of Helsinki and with the approval of the local ethical committee. All 

participants gave their written informed consent and received a reimbursement for their 

participation. 

Apparatus. The experiment was performed in a dimly illuminated room. Participants 

were seated approximately 60 cm away from the display with their head supported by a 

chinrest. Stimuli were created using a custom Matlab script (Mathworks Inc., 

Massachusetts, USA) and the Psychophysics Toolbox 3.8 (Brainard, 1997; Pelli, 1997) 
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and presented on a gamma-calibrated ViewSonic Graphic Series G90fB 19’’ CRT 

monitor (1024 x 768) at a refresh rate of 100Hz. 

Stimuli. All stimuli appeared on a uniform gray background (3.7 cd/m
2
) inside a subset 

of the 16 square placeholders (1.65°x1.65°) displaced along an imaginary circle with a 

radius of 5° of visual angle centered around the central fixation point (0.2° in diameter). 

Targets were circles (diameter 1.2°; width 0.1°) or diamonds (diagonal 1.3°; width 0.1°) 

with a central light gray line (28.5 cd/m
2
; 0.7°x0.15°) oriented vertically or horizontally. 

Three approximately equiluminant colors (~22.6 cd/ m
2
), red, green, and blue, were 

assigned to the stimuli. 

Design and Procedure. Visual Working Memory training. An example of a trial is 

depicted in Figure 3.1A. Targets were circles rendered in one of two possible colors 

(e.g. red and green) and participants were instructed to memorize the orientation of the 

gray bars presented inside them while ignoring circles rendered in a third color (e.g. 

blue) that were always present as distractors. Unbeknownst to participants, one of the 

target colors was associated with a high reward in 80% of trials while the other target 

color was mainly associated with low reward (high reward in 20% of trials). Color 

assignments were counterbalanced across participants. The training phase started with 

20 practice trials and was followed by 256 experimental trials organized in 8 blocks. 

Each trial started with the onset of a fixation cross at the center of the screen and the 

array of placeholders for a variable interval ranging from 300 to 500 ms. Then, a 

memory display of 4 or 8 elements, half rendered in one of the target colors and half in 

the distractor color, was presented for 200 ms. Each target on the display was flanked, 

either on the left or on the right, by a distractor. The participant’s task was to memorize 

the orientation of the lines presented inside the target circles and ignore the information 

associated with the distractors. The orientation of the line inside the target was 

congruent, in half of the trials, and incongruent, in the other half, with that of the 

adjacent distractor. The orientation of the target line had to be encoded and stored in 

VWM for 2 seconds until a probe appeared. The probe (“?”), indicating the target 

location, was visible until the participant responded. Participants reported the target 

orientation by pressing the corresponding key on the keyboard. Keys were labeled with 

a vertical or horizontal line. Accuracy, but not response speed, was emphasized. Correct 
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responses led to a high (“+100 points”) or low (“+1 point”) reward feedback; incorrect 

responses were signaled by the loss of one point (“-1 point”). Points were accumulated 

during the experiment and determined the final reimbursement obtained for 

participation which could range from €6 to €8. The running total of points accumulated 

and the corresponding gains in euros were shown at the end of each block.  

 

Figure 3.1 Experimental design. 

(A) Trials schematic of the training phase. Memory display included the same number of 

targets and adjacent distractors rendered in different colors. Targets could be rendered in 

one of two colors associated with high or low reward outcome with a different probability. 

Correct responses for colors paired with high reward led to the obtainment of 100 points in 

80% of the trials and 1 point in the remaining 20% of the trials, while the opposite was true 

for low reward associated color. Incorrect responses were penalized with the loss of 1 point 

irrespectively of the target color. (B) Trials schematic of the test phase. The structure of the 

task was analogous to the one used during training with the exception that targets were now 

defined based on their shape and irrespective of their color. Only the colors of previous 

targets are used in this phase. No reward was provided. 

 

Visual Working Memory test. The test phase consisted in a VWM task analogous to the 

one performed during training, the only difference was the features that defined targets. 

The session started with 20 practice trials, followed by 256 experimental trials divided 

into 8 blocks. An example of a trial is depicted in Figure 3.1B. During this phase, the 

oriented lines were presented inside objects of different shapes that could be either 

circles or diamonds. Only diamonds were relevant for the memory task while circles 

were always distractors. Stimuli were rendered in the colors used for targets in the 

training phase (e.g. red and green), but no consistent shape-color pairing was present 

during this phase. In other words, for half of the trials the targets (diamonds) were 
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rendered in red and for the other half of the trials they were rendered in green. The 

opposite color was assigned to the distractors. Participants indicated the orientation of 

the line presented at the probed location by pressing the corresponding key on the 

keyboard. They received feedback on their performance (“OK” or “error”), although no 

reward was obtained. 

 

Analyses and Results 

Training VWM task. All statistical analyses of VWM performance for all the 

experiments (unless otherwise specified) took the form of a 2x2 repeated measures 

analysis of variance (ANOVA) with reward magnitude (high vs. low) and display size 

(two vs. four targets) as factors. Accuracy and RTs were analyzed only for responses 

occurring within 3 standard deviations from the mean RT, resulting in the exclusion of 

1.47% of trials. Accuracy was significantly higher for small than for large display size 

(F(1,16) = 135.94; p < 0.001; 𝜂𝑝
2 = 0.90), but no significant effects of reward were 

observed (all Fs < 1). Equivalent results were found for RTs, indicating faster responses 

for small than for large display size (Display size: F(1,16) = 28.85; p < 0.001; 𝜂𝑝
2 = 0.65; 

all other Fs < 1). 

Test VWM task. Accuracy and RTs for responses occurring within 3 standard deviations 

from the mean RT (1.54% of trials discarded) were analyzed as a function of the reward 

magnitude associated with distractors (and targets) and display size. Not surprisingly, 

raw accuracy and RTs revealed better performance for displays with 2 rather than 4 

targets (Accuracy. F(1,16) = 36.78; p < 0.001; 𝜂𝑝
2 = 0.70; RTs. F(1,16) = 36.15; p < 

0.001; 𝜂𝑝
2 = 0.69), but showed no relevant effects of reward (Accuracy. Reward: F(1,16) 

= 1.45; p = 0.245; 𝜂𝑝
2 = 0.08; Reward X Display size: F < 1. RTs. Reward: F(1,16) = 

3.63; p = 0.075; 𝜂𝑝
2 = 0.19; Reward X Display size: F < 1) (Figure 3.2A). We further 

investigated the influence of reward on representations in VWM by computing the 

interference effect induced by distractors of different value on target representations. 

The interference effect was operationalized as the difference in accuracy between 

congruent and incongruent trials. A positive interference effect was measured across 

conditions showing that distractors significantly influenced the response provided to the 
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targets (t(16) = 2.65; p = 0.017; mean interference = 3.9%). The analysis for different 

reward magnitude and display size revealed larger interference for targets rendered in 

the low reward associated color flanked by high reward distractors, irrespective of the 

display size (Reward: F(1,16) = 12.12; p = 0.003; 𝜂𝑝
2 = 0.43; Display size: F(1,16) = 

1.52; p = 0.235; 𝜂𝑝
2 = 0.09, Reward X Display size: F(1,16) = 1.04; p = 0.323; 𝜂𝑝

2 = 0.06) 

(Figure 3.2B). A similar analysis of interference performed for RTs did not reveal any 

significant effect (all Fs < 1); 

 

 

Figure 3.2 Accuracy and Interference Effect in Experiment 1 

 (A) Mean accuracy for VWM task during test for high (black) and low (gray) reward-

associated colors at different display size (2 vs. 4 targets). Accuracy is significantly higher 

for smaller display size, but no significant modulations of are measured as a function of 

reward. (B) Interference effect for VWM task during test. The interference effect is a 

measure of the interference of distractors in VWM representations of nearby targets. It is 

computed as the difference between congruent and incongruent trials. Higher interference is 

executed by high reward (black) than low reward (gray) distractors. Error bars here and 

below represent within-participant 95% confidence intervals (Cousineau, 2005). 

 

 

Discussion 

The first experiment provides clear evidence for the influence of learned reward 

associations on object representations stored in VWM. Learned feature-reward 

contingencies persist beyond the cessation of reward delivery and interfere with VWM 

performance. Analogous costs in performance have been previously documented in 

attentional selection (Anderson et al., 2011a, 2011b, 2012) and VWM paradigms 
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(Infanti et al., 2015) by using a value learning procedure based on a visual search task 

(Anderson et al., 2011b).  

In this work, we generalized the training procedure showing the efficiency of a different 

task: a VWM task where valuable targets and neutral distractors are simultaneously 

presented. During the training phase, no significant effects of reward were measured. 

Although these results may seem surprising, they are consistent with those obtained 

with different value-learning procedures (Anderson et al., 2011b, 2012; Anderson & 

Yantis, 2012, 2013; Gong & Li, 2014; Sali, Anderson, & Yantis, 2014; but see Infanti et 

al., 2015).  

During the test phase, two colors were presented on the same display, each of which 

was associated with a different value during training. One color was assigned to the 

targets and one to the distractors in an orthogonal fashion. While no direct modulation 

of raw accuracy or RTs was observed as a function of reward magnitude, a highly 

significant variation in the amplitude of the interference effect was observed with 

variations in the relative values associated with targets and distractors. A positive 

interference effect indicates that response accuracy to a probed target is higher when the 

adjacent distractor has the same orientation, thus evoking a congruent response, while 

accuracy is lower when the adjacent distractor is oriented differently. The stronger 

interference effect generated by high reward distractors (Figure 3.2B) supports the 

hypothesis that the presence of highly valuable items cannot be completely suppressed 

and the information they convey might be integrated with the representation of targets. 

These results reinforce and expand our previous observations (Infanti et al., 2015) 

showing that effects of interference also hold even when reward-associated items are 

neither singletons, nor salient and are completely irrelevant to the task. 

 

3.5 Experiment 2 

In the following experiments, we varied the shape of the target objects on a trial-by-trial 

basis aiming to establish whether increased cognitive demands on target selection limit 

the residual influence of reward on VWM. 



Limits of reward influence on visual working memory 

68 

 

 

Method 

Participants. A different group of 24 participants (18 females; mean age ± standard 

deviation: 23.2 ± 4.6 years; 2 left handed) took part in this experiment. All participants 

had normal or corrected-to-normal visual acuity and color vision. Two participants were 

excluded from the analysis because of poor performance during the test phase (accuracy 

not different from chance at both display size). The experiment was conducted in 

accordance with the Declaration of Helsinki and with the approval of the local ethical 

committee. All participants give their written informed consent and received a 

reimbursement for their participation. 

Stimuli and procedure. After the initial training session, participants performed a 

VWM task during extinction. The test phase for Experiment 2 was analogous to that in 

Experiment 1 with the only difference being that the shape of the target stimulus was 

variable and was defined on a trial by trial basis. At the beginning of each trial a cue, 

presented around the fixation dot and rendered in the same color, was presented for 300-

500 ms. The cue shape could be either a diamond (diameter 1.3°; width 0.1°) or a circle 

(diameter 1.2°; width 0.1°) indicating the corresponding target shape for the current 

trial. The memory display was then presented including both diamonds and circles in 

the same way as in Experiment 1. After a retention interval of 2 seconds, a probe 

indicated the location occupied by one of the target shapes and participants reported the 

orientation of the line inside it. 

Analyses and Results 

Results of the training phase mimicked those obtained for Experiment 1 in terms of both 

accuracy and RTs revealing only the impact of difficulty due to display size (discarded 

trials: 1.78%; Accuracy: F(1,21) = 193.10; p < 0.001; 𝜂𝑝
2 = 0.90; and RT: F(1,21) = 

54.74; p < 0.001; 𝜂𝑝
2 = 0.72), but no effects of reward (Accuracy. Reward: F(1,21) = 

1.09; p = 0.308; 𝜂𝑝
2 = 0.05; RTs. Reward X Display size: F(1,21) = 1.83; p = 0.191; 𝜂𝑝

2 = 

0.08; all other Fs < 1). Similarly, in the VWM task during the test phase, performance 

was better for small display size (discarded trials: 1.58%; Accuracy: F(1,21) = 133.68; p 

< 0.001; 𝜂𝑝
2 = 0.86; RTs: F(1,21) = 50.96; p < 0.001; 𝜂𝑝

2 = 0.71), but no other significant 
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modulations were measured (Accuracy. Reward: F(1,21) = 1.83; p = 0.190; 𝜂𝑝
2 = 0.08; 

Reward X Display size: F(1,21) = 3.91; p = 0.061; 𝜂𝑝
2 = 0.16; RTs. all Fs < 1). In 

contrast to Experiment 1, despite a significant interference effect across conditions 

(t(21) = 3.34; p = 0.003; mean interference = 4.8%), no difference in the magnitude of 

interference was observed as a function of target and distractor reward associated value 

(Display size: F(1,21) = 1.99; p = 0.173; 𝜂𝑝
2 = 0.09; Reward: F(1,21) = 0.54; p = 0.470; 

𝜂𝑝
2 = 0.03; Reward X Display size: F(1,21) = 2.20; p = 0.153; 𝜂𝑝

2 = 0.10) (Figure 3A).  

 

Discussion 

In Experiment 2 we tested whether the interference of reward-associated objects was 

affected by an increase in cognitive control and task demands. As in the first 

experiment, target selection was defined on a neutral feature, shape, while the reward-

associated feature, color, was task irrelevant and was free to switch between target and 

distractors on a trial by trial basis. Differently from Experiment 1, in the current task, 

the shape of the target was not fixed across the entire experiment, but was randomly 

varied on each trial according to the instructions provided by the central cue. The 

variability of target shape increased the cognitive demands of the task by requiring 

continuous shifts between different templates in order to identify the correct subset of 

items to memorize.  

Our results suggest that increased attentional demands for target selection can limit the 

interference from reward-associated but task-irrelevant information on the display. We 

suggest that the more resources are required to control target selection, the stronger the 

filtering of irrelevant attributes of distractors, such as the reward value previously 

associated with them. On the other hand, when the target template remains constant 

across trials, the residual resources available can be captured by irrelevant information 

such as the color of stimuli and their previously associated value (Lavie, 1995; Lavie & 

Cox, 1997).  

In this second experiment, continuous changes in target shape increased task demands, 

but could also interfere with task performance by leading to inaccurate target selection 

due to insufficient cue processing or produce costs for target switching (Maljkovic & 
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Nakayama, 1994; Pinto, Olivers, & Theeuwes, 2005). Inaccurate target selection can 

drive the interference effect independently of a distractor’s associated value. Indeed, the 

results of this study indicate the presence of an overall significant interference effect, 

despite the fact that the level of interference was not affected by the associated value of 

distractors.  
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3.6 Experiment 3 

In the next study, we replicated Experiment 2, but organized the trials in separated 

blocks according to the shape defining the target. In this way we maintained the same 

number of targets for each shape type as in Experiment 2, but reduced the cognitive 

load associated with the task by keeping the shape of the target (and the distractor) fixed 

within each block. The aim of this experiment was to test whether, by releasing 

attentional load on target selection, the interference effect of high reward distractors 

would be restored.  

 

Method 

Participants. Twenty-four new participants took part to this experiment (19 females; 

mean age ± standard deviation: 24.0 ± 3.4 years; 4 left handed). All participants had 

normal or corrected-to-normal visual acuity and color vision. Two participants were 

excluded from the analysis because of poor performance during the test phase (accuracy 

not different from chance at both display sizes). The experiment was conducted in 

accordance with the Declaration of Helsinki and with the approval of the local ethical 

committee. All participants give their written informed consent and received 

reimbursement for their participation. 

Design and procedure. After the initial training session, a VWM task analogous to the 

one described for Experiment 2 was performed during the test phase. At the beginning 

of each block, a warning appeared instructing participants about the shape of the target 

for the following 32 trials. In each block participants attended either to diamonds or to 

circles and ignored the other shape (either circles or diamonds). As in the former 

experiments, the orientation of the bar presented inside the probed target was reported 

by pressing a key on the keyboard and feedback was provided. 
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Analyses and Results  

Results of the training phase replicated those obtained for previous experiments with no 

evidence of reward influence on performance (discarded trials: 1.60%; Accuracy. 

Reward F(1,21) <1; Reward X Display size: F(1,21) = 3.19; p = 0.089; 𝜂𝑝
2 = 0.13; RTs. 

Reward: F(1,21) = 1.16; p = 0.295; 𝜂𝑝
2 = 0.05; Reward X Display size: F(1,21) = 1.338; 

p = 0.260; 𝜂𝑝
2 = 0.06), but a clear advantage for small over large displays (Accuracy: 

F(1,21) = 106.24; p < 0.001; 𝜂𝑝
2 = 0.84; RTs: F(1,21) = 22.17; p < 0.001; 𝜂𝑝

2 = 0.51).  

 

Figure 3.3 Interference Effects in Experiments 2 and 3 

(A) Interference effect for VWM task during test in experiment 2. The amplitude of the 

interference effect is not affected by reward magnitude associated distractors when targets 

shape changes on a trial-by-trial basis. (B) Interference effect for VWM task during test in 

experiment 3. Interference effect is significantly higher for distractors associated with high 

reward (black) when target shape changes are blocked. 

 

Performance on the VWM task during the test phase replicated the results observed in 

Experiment 1 for both accuracy and interference effects. No significant effects were 

observed for either raw accuracy (discarded trials: 1.51%; Reward: F(1,21) = 1.12; p = 

0.302; 𝜂𝑝
2 = 0.05; Display size X Reward: F < 1) or RTs (Reward: F(1,21) = 3.52; p = 

0.075; 𝜂𝑝
2 = 0.14; Display size X Reward: F(1,21) = 0.30; p = 0.597; 𝜂𝑝

2 = 0.01), except 

for better performance for small display size (Accuracy: F(1,21) = 42.94; p < 0.001; 

𝜂𝑝
2 = 0.84; RTs: F(1,21) = 32.80; p < 0.001; 𝜂𝑝

2 = 0.61). As expected, a significant 

interference effect was measured across conditions (t(21) = 3.85; p < 0.001; mean 

interference = 4.7%), and, most importantly, the interference was significantly 

modulated by reward magnitude irrespective of display size (F(1,21) = 4.42; p = 0.048; 

𝜂𝑝
2 = 0.17; all other Fs < 1) (Figure 3B).  
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We directly contrasted the interference effect measured in the testing phase of 

Experiments 2 and 3 which differed only in the segregation of trials with the same target 

shape. We compared the interference effect in the two experiments by means of a mixed 

2 X 2 ANOVA with distractor-associated value (high vs. low) as a within subjects 

factor and experiment as a between subjects factor. Display size was not included in this 

analysis given the absence of any significant interaction with reward in both 

experiments. Our analysis confirmed that there was a significant interaction between a 

distractor’s associated value and the experiment (Reward X Experiment: F(1,42) = 4.44; 

p = 0.041; 𝜂𝑝
2 = 0.10; Reward: F(1.42) = 1.45; p = 0.236; 𝜂𝑝

2 = 0.03; Experiment: F < 1). 

This last analysis further supports our conclusion that value associated with distractors 

had a significant impact on the magnitude of the interference effect only in Experiment 

3.  

 

Discussion 

Experiment 3 was successful in showing that when target selection was less 

attentionally demanding because target identity was blocked, learned reward 

associations modulated interference in VWM performance. The direct comparison 

between Experiment 2 and 3 confirms that spared attentional resources are necessary for 

processing the distractors and their previously associated value. 
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3.7 General Discussion 

Reward-associated objects acquire high attentional priority and can capture attention, 

even when presented as salient or non-salient distractors, in a way that appears in part 

independent of other attentional mechanisms (Anderson et al., 2011a, 2011b; Awh, 

Belopolsky, & Theeuwes, 2012; Della Libera & Chelazzi, 2009; Hickey et al., 2010a). 

The goal of the present study was to delimit the boundaries of the influence of reward 

on performance in a VWM task, specifically testing whether the attentional 

requirements of target selection could limit the interference produced by valuable 

distractors. 

In a recent study, we showed that visually salient items interfere with memory for 

neighboring non-salient objects and that the amplitude of this interference is 

significantly modulated by the reward magnitude associated with them (Infanti et al., 

2015). This interference is evident already at short delays from the offset of the memory 

display (10 ms) suggesting that valuable objects interfere with encoding of 

representations in VWM of neutral targets. The results presented in this work 

corroborate and expand our previous observations, specifically showing that valuable 

items produce significant interference in VWM representations of relevant objects even 

when presented as distractors. Both studies tested the influence of learned feature-

reward associations during extinction, thus providing no strategic advantage for 

prioritizing processing and encoding of items identified by a previously rewarded 

feature. However, in our previous work both valuable and non-valuable objects were 

equally relevant for the task and it is possible that participants preferentially attended 

the previously rewarded objects. By contrast, in the current study only a subset of items 

presented in the initial display was relevant for the VWM task and participants were 

instructed to ignore distractors irrespective of their color. Furthermore, while in our 

previous work reward-associated objects were salient singletons presented among 

uniform non-salient gray objects, in this case the same number of equally salient targets 

and distractors were presented within the same display demonstrating that saliency is 

not necessary for the interference effect to emerge. 
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The overall pattern of results in our work demonstrates that although features with a 

previous history of reward association have been claimed to automatically drive 

attention and receive prioritized visual processing even beyond current goals and 

endogenous attentional set (Anderson, 2013; Chelazzi et al., 2013; Hickey et al., 2010a; 

Munneke et al., 2015), there are some limits to their capacity to influence visual 

cognition. More specifically, we suggest that the involuntary processing and 

interference of high value distractors is limited by increasing attentional demands for 

target selection. 

It is known that the capacity to filter distractors is enhanced by an increase in the 

perceptual load of the task, typically achieved by changing the number or the 

discriminability of the targets (Lavie, 1995, 2005, 2010; Lavie & Cox, 1997; Lavie & 

Tsal, 1994; Lavie, Hirst, de Fockert, & Viding, 2004). In this work, we observed that an 

increase in attentional demands for target selection results in better filtering of learned-

reward associations leading to decreased interference by high value distractors. Similar 

to the increase in perceptual load, we suggest that a continuous swap of target shape 

greatly reduces the resources available for processing irrelevant information such as an 

item’s color and its reward history. Only when target selection can be automatized, are 

residual resources available to process irrelevant information leading to the emergence 

of reward effects.  

The literature describing the impact of reward-associated distractors on performance has 

typically employed simple visual search tasks in which the target is a singleton whose 

defining feature is kept constant across the experiment (e.g., Anderson et al., 2011a). 

The novel results reported in this work suggest that by increasing task demands for 

target selection, the influence of learned feature-reward associations can be strongly 

reduced. However, further studies are necessary to precisely quantify the interaction of 

these two factors by observing how parametrical modulations of task load interact with 

the value associated with distractors. 

Prioritized processing of objects that have been associated with positive outcomes is 

important for adaptive behavior. However, the present results demonstrate that, under 

appropriate circumstances, such as increased task requirements, valuable distractors can 

be efficiently suppressed. 
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4 Reward-priming impacts visual working 

memory maintenance 

Adapted from: Infanti, E., Hickey, C., & Turatto, M.. Reward-priming impacts 

visual working memory maintenance: evidence from human electrophysiology. 

Submitted 

 

4.1 Abstract 

Experience plays a central role in guiding human and non-human behavior and reward 

is one of the key factors in this process. Reward is known to facilitate visual processing, 

automatically guide attention toward reward-associated objects even under 

circumstances where this is counter-strategic. A handful of recent studies have begun to 

investigate similar effects of reward on visual working memory (VWM), suggesting a 

residual influence of reward on mnemonic representations of previously reward-

associated stimuli. However, it is not clear yet which mechanisms underlie these 
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behavioral effects: reward could have a direct impact on our ability to maintain 

representations in VWM or it could influence memory indirectly via priming of 

attentional selection. To distinguish between these alternatives we measured event-

related potential (ERP) indices of selective attention – the N2pc - and visual working 

memory maintenance – the CDA (contralateral delay activity) - while participants 

completed a VWM task. Results show that reward outcome in one trial caused similar 

target stimuli to be strongly represented in VWM in subsequent trials, as expressed in 

larger amplitude CDA. This was not preceded by a corresponding effect on the N2pc 

that, nonetheless, was significantly enhanced by target color repetition. The specific 

reward related modulation of CDA only suggests a discrete effect of reward on VWM 

maintenance. We suggest that reward's impact on visual cognition is guided by task 

confines: when the task stresses VWM maintenance, it is at this representational level 

that reward will have impact.    
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4.2 Introduction 

Learning to identify objects that can lead to a desirable outcome is a fundamental 

function of our brain, promoting effective behavior when analogous situations are 

encountered in the future. Theories of reinforcement learning suggest that reward can 

directly guide perception by prioritizing the selection and processing of behaviorally 

relevant information (e.g. Berridge & Robinson, 1998). In humans, rewards have been 

used to modulate motivational engagement in task performance with results showing 

that cognitive resources can be flexibly distributed to increase the efficiency in orienting 

and reorienting attention towards valuable stimuli (Engelmann & Pessoa, 2007; 

Kristjánsson et al., 2009; Pessoa, 2009; Risa Sawaki et al., 2015). In particular, attention 

is preferentially deployed to stimuli characterized by reward-associated features 

(Anderson et al., 2011a, 2011b, 2012; Della Libera & Chelazzi, 2006, 2009; Raymond 

& O’Brien, 2009), locations (Hickey et al., 2014; Rutherford et al., 2010) and latencies 

(Hickey & Los, 2015; Raymond & O’Brien, 2009), even when reward is no longer 

available (e.g. Anderson et al., 2011b) or when there is no consistent pairing between 

stimuli characteristics and outcome (e.g. Hickey et al., 2010a).  

To date, the investigation of reward effects in visual cognition has focused on 

influences on the deployment of attention. A challenging and largely unresolved issue 

thus concerns the impact of reward associations on other cognitive processes that 

require sustained cognitive control, such as visual working memory (VWM). Selective 

attention and working memory are highly connected cognitive processes (for a review 

see Gazzaley & Nobre, 2012), and a direct investigation of the influence of reward 

associations on VWM could be of great interest in understanding the extent to which 

reward impacts visual cognition. Previous studies have shown that incentives can 

influence top-down attentional signals leading to a motivational improvement in VWM 

performance (Kawasaki & Yamaguchi, 2013; Krawczyk et al., 2007). However, in these 

experiments, it is not possible to disentangle the motivational influence of reward on 

memory from non-strategic improvements in performance due to automatic changes in 

visual mechanisms such as those demonstrated in the attention literature. This 

distinction is important if one wants to claim that reward can automatically bias the way 

we perceive, attend and memorize the world around us, in a way that is theoretically 
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distinct from the known role of reward in the strategic establishment of attentional set 

(Maunsell, 2004).  

There is very little existing work exploring the influence of reward associations on 

VWM in the absence of direct incentive motivation (Gong & Li, 2014; Infanti et al., 

2015). However, this nascent literature does suggest a residual influence of reward 

association on mnemonic representations of reward-associated stimuli. For example, 

Gong and Li (2014) reported non-strategic benefits in VWM performance for stimuli 

previously associated with high reward compared to low reward, while Infanti and 

colleagues (2015) documented the interference of reward-associated items on the 

memory trace of adjacent neutral stimuli. However, the precise neural and cognitive 

mechanisms underlying these behavioral effects are unknown. One the one hand it 

could be the case that reward association has a direct impact on our ability to maintain 

the corresponding mnemonic visual representations. However, current results largely 

leave open the alternative possibility that influences on VWM reflect an indirect 

influence of reward on attentional selection: if reward-associated stimuli are better 

attended, this 'boost' may cause them to be better remembered even if reward has no 

discrete impact on VWM.  

Here we address this issue by measuring electrophysiological activity in a VWM task in 

which we varied the magnitude of the reward feedback provided for correct responses. 

We adopted a reward priming paradigm (Hickey et al., 2010a) in which we categorized 

each trial based on the magnitude of reward received in the preceding trial and the 

repetition or swap of the target characterizing feature (color). We hypothesized that 

high-magnitude reward would benefit VWM only for targets whose color was repeated 

among trials, while the opposite pattern of results was expected for repetition of low-

rewarded items. We looked for this pattern of interaction focusing on two components 

in the event related potential (ERP) that independently index attentional selection - the 

N2pc - and VWM maintenance - the CDA (contralateral delay activity). The N2pc 

arises around 200 ms after stimulus onset and consists of a more pronounced negative 

activation at the posterior electrodes contralateral to an attended stimulus (Luck & 

Hillyard, 1994a, 1994b). It can be used to index the deployment of attention during 

visual search (Eimer, 1996; Hickey et al., 2009; Mazza, Turatto, & Caramazza, 2009a, 
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2009b; Woodman & Luck, 1999, 2003) and has been shown sensitive to target and 

distractor value associations (Hickey et al., 2010a; Kiss et al., 2009). In contrast to the 

N2pc, the CDA is a sustained posterior contralateral negativity that typically arises 

approximately 300 to 400 ms after display onset and reflects the active maintenance of 

representations in VWM (Drew & Vogel, 2008; Ikkai, McCollough, & Vogel, 2010; 

Mccollough et al., 2007; Vogel & Machizawa, 2004; Vogel et al., 2005). The amplitude 

of the CDA is modulated by the number of items in VWM (Ikkai et al., 2010; Vogel & 

Machizawa, 2004) and the precision of these memory traces (Machizawa, Goh, & 

Driver, 2012).  

By looking to discrete ERP indices of selective attention and working memory 

maintenance, we hoped to identify the locus of reward's impact on VWM in a working 

memory task. We approached the experiment with three hypotheses. First, reward might 

benefit attentional encoding, indexed in N2pc, without effecting VWM maintenance 

reflected in the CDA. This would suggest that reward effects in VWM tasks identified 

in existing behavioral studies are indirect in nature, ultimately caused by the known 

influence of reward on attentional selection and encoding. Alternatively, high reward 

might benefit VWM maintenance, indexed in the CDA, without effecting attentional 

encoding reflected in the N2pc. This would be the case if reward were to act at the level 

of representation that is critical to task performance, thus VWM maintenance in a 

VWM task. Finally, reward might impact both components, suggesting that benefits to 

encoding translate to benefits in maintenance. To foreshadow, our data show a 

significant impact on CDA only, suggesting that reward can directly affect the 

maintenance stage of VWM in a visual memory task. 
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4.3 Experiment 

 

Methods 

General paradigm and rationale. Participants performed a VWM task similar to that 

described in Vogel, McColloug, and Machizawa (2005). On each trial they were 

instructed to attend to one side of the screen and memorize the orientation of uniformly 

colored target rectangles presented together with irrelevant squares. Correct response in 

a trial was followed by feedback indicating high- (+100 points) or low-magnitude (+1 

point) reward outcome. Participants were paid based on the number of points 

accumulated throughout the experiment, but, at the same time, they were informed that 

the magnitude of reward received in each trial was completely random.  

Two main features characterized the reward conditions in the paradigm we used 

(adapted from Hickey et al., 2010a): 1) on each trial the color of the target rectangles 

could be either red or green and in the following trial the color could either repeat or 

change; 2) each trial resulted in high- or low-magnitude reward outcome (and thus each 

trial was preceded by a trial that garnered either high- or low-reward outcome). We 

were interested in sequential effects in this task reflecting the interaction of these 

factors: does high-magnitude reward in one trial impact mnemonic performance when 

the target-defining color is repeated in the next trial?  

The design lead to 4 experimental scenarios in which a) participants received a high 

magnitude reward on trial n-1 and they had to perform the VWM task on a target of the 

same color on trial n (High reward Repetition condition), b) participants received a high 

magnitude reward on trial n-1, then target color was swapped (High reward Swap 

condition), c) participants received a low magnitude reward on trial n-1, then target 

color was repeated (Low reward Repetition condition), and d) participants received a 

low magnitude reward on trial n-1, then target color was swapped (Low reward Swap 

condition). 

Participants. 22 healthy volunteers from the University of Trento (mean ± SD age = 

22.3 ± 3.4; 13 female) participated to the experiment. They had normal color vision and 
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normal or corrected-to-normal visual acuity, and were all naïve as to the purpose of the 

experiment. Participants were reimbursed for their participation proportionally to their 

performance (up to 25€). Written informed consent was obtained from all participants, 

and the experiment was carried out in accordance with the Declaration of Helsinki and 

with the approval of the local ethical committee.  

Apparatus. Stimuli were presented on a ViewPixxEEG monitor with 1920x1080 pixels 

resolution at a refresh rate of 100Hz. Participants were seated in a dimly illuminated 

room at approximately 1m from the display. Stimuli were presented using the 

Psychophysics Toolbox 3.8 (Brainard, 1997; Pelli, 1997) for Matlab (Mathworks) 

running on Windows 7.  

Stimuli. Displays consisted of the bilateral presentation of rectangles (0.3°x0.7° visual 

angle) and squares (0.3°x0.3°) placed randomly within an area of 5°x3° centered at 4° 

to the left or to the right of the central fixation point (see Figure 4.1). The stimuli could 

be either red or green, with their color adjusted to be physically equiluminant 

(approximately 8 cd/m
2
), and were presented on a uniform dark gray background (6 

cd/m
2
). The rectangles had various orientations (selected from 0°, 45°, 90°, or 135°) and 

all rectangles on each side of the display had the same color (e.g. left red and right 

green). In contrast, half of the squares on each side of the display had red and half had 

green color.  

Design and Procedure. The schematic of a trial is illustrated in Fig. 1A. Trials started 

with a grey fixation dot (0.2°x0.2°) presented at the center of the screen for a random 

interval of 500-900 ms. A grey arrow appeared for 200 ms pointing either to the left or 

the right of the screen and was followed by the onset of the memory display after a 

random inter stimulus interval (ISI) of 100-500 ms. Each side of the memory display 

consisted of 2 or 4 target rectangles and 4 distractor squares and was visible for 100 ms. 

After a retention interval of 900 ms, a probe display appeared. The probe display 

consisted of a single rectangle in one of the target locations on the cued side. The task 

of the participants was to indicate whether the orientation of this probe rectangle was 

the same or different from that of the corresponding stimulus presented in the memory 

display. The test display remained on the screen up to 1500 ms or until participant 

response. Responses were made on a standard keyboard, with the “m” key indicating 
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that the probe matched the memory stimulus and “z” indicating that this was not the 

case. Each response was followed by a 1000 ms feedback interval. Correct responses 

were followed by either “+001” or “+100”. Incorrect responses were indicated by the 

loss of 1 point (“-001”). Each point had a value of approximately €0.006.  

The experiment took about 90 minutes to complete and was composed of 20 practice 

trials and 960 experimental trials divided in 16 blocks.  

 

 

Figure 4.1 Experimental design 

A. Trial Schematic. After a cue of 200 ms, a memory display of either 2 or 4 targets on 

each side of the screen is presented for 100 ms. Targets could be either green or red and 

participants memorized their orientation for 900 ms, until a test display appeared for a 

maximum of 1500 ms. Participants indicated if the rectangle presented on the test display 

was the same or different from the corresponding one in the memory display. Participant 

response was followed by a feedback display that indicated the number of points that were 

earned on each trial. The magnitude of reward feedback was randomly assigned and, 

specifically, was not dependent on target color. B. General Paradigm. Trials where divided 

in 4 conditions according to the magnitude of reward received in trial n-1 (high vs. low) 

and the repetition or swap of the target color (irrespective of cued side). The rectangle that 

indicates the to-be-memorize side in the figure was not shown in the experiment. 
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EEG recording and analyses. EEG was recorded from 61 Ag/AgCl electrodes 

mounted in an elastic cap (right mastoid reference; online filter: 0.01–250 Hz; sampling 

rate: 1000 Hz). Additional electrodes were placed 1 cm lateral to the external canthi of 

each eye in order to record horizontal electrooculogram (HEOG), 1 cm below the right 

orbital ridge to record vertical electrooculogram (VEOG), and at the left mastoid. 

Impedance was kept below 5 kΩ for all electrodes, data were down-sampled offline to 

500Hz, referenced to the average of encephalic channels, and digitally low-pass filtered 

at 30Hz (non-causal 1000-point linear-phase FIR kernel; 0db attenuation at 29 Hz; -6dB 

at 30 Hz). Epochs tainted by head motion or other non-stereotyped artifacts were 

removed after visual inspection (mean: 1.4%; range: 0-2.5%). Epochs affected by 

horizontal eye movements during the interval between cue onset and memory display 

offset (HEOG exceeding ± 30 μV; mean: 1%; range: 0.1-6.7%) were removed to 

guarantee lateralized presentation of targets. Independent component analysis (ICA; 

Bell & Sejnowski, 1995; Delorme & Makeig, 2004) was applied to the data and used to 

identify and correct artifacts resulting from blinks, later eye movements, and muscular 

activity.  

Event-related potentials (ERPs) were calculated using standard signal averaging 

procedures (Luck, 2005). All ERPs were baseline corrected to the 200 ms interval 

preceding onset of the memory array. Average activity was computed separately for 

electrodes contralateral and ipsilateral to the to-be-memorized side of the screen. 

Contralateral waveforms were measured at occipital, posterior parietal, and parietal 

electrode sites as the difference in mean amplitude between the contralateral and 

ipsilateral waveforms. We defined N2pc and CDA in accordance with previous studies 

(Hickey et al., 2009, 2010a; Mccollough et al., 2007; Vogel & Machizawa, 2004; Vogel 

et al., 2005). We defined a relatively large interval for N2pc that was measured between 

200–300 ms after the onset of the memory display (Mccollough et al., 2007).The CDA 

was computed from 400–900 ms. The CDA is commonly defined starting from 300 ms 

(Mccollough et al., 2007; Vogel & Machizawa, 2004; Vogel et al., 2005) or 400 ms 

(Machizawa et al., 2012; Pagano, Lombardi, & Mazza, 2014). We decided to use a 

more conservative approach selecting a later lower bound for our interval in order to 
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avoid the risk of measuring residuals of modulation in the N2pc, however results 

equivalent to those reported in the next session were obtained for the 300-900 ms 

interval. Only correct trials were included in ERP analysis. 

 

Analyses and Results 

Our motivating hypothesis was that reward would increase the quality of visual 

representations held in VWM. As such, we expected that high magnitude reward would 

positively impact the encoding or maintenance of stimuli representations when the color 

characterizing target stimuli was repeated between trials. To test this hypothesis, we 

looked at the modulation of performance (accuracy and response times –RTs) and 

electrophysiological responses on each trial as a function of the magnitude of reward 

received in the preceding trial and the repetition or swap of the target color. Considering 

that the magnitude of reward obtained at trial n-1 was a key factor in our design, only 

trials preceded by a correct response (i.e. trials in which reward feedback was received) 

were analyzed (leading to a mean of 178 trials per condition for behavioral analysis of 

accuracy, where 127 of these trials garnered correct response and were used to calculate 

ERPs). 

Behavioral performance. Working memory performance was better for two-item 

arrays than for four-item arrays in terms of both accuracy (2 items: 81.35±7.27%; 4 

items: 66.17±7.54%; t(21) = 17.08; p < 0.001) and RTs (2 items: 714±91ms; 4 items: 

787±93ms; t(21) = -13.31, p < 0.001). We analyzed the influence of the magnitude of 

reward received in the previous trial as a function of the repetition or swap of the target 

color by means of a repeated measures ANOVA with Reward X Repetition (2 X 2) as 

factors. Contrary to our expectations, no effects were observed on accuracy (all Fs<1). 

A facilitation for color repetition was observed on RTs (F(1,21) = 6.68; p = 0.017; 𝜂𝑝
2 = 

0.24), but no main effects or interactions with reward (all Fs<1). 

Electrophysiological results. Consistent with previous studies (Ikkai et al., 2010; 

Mccollough et al., 2007), we measured N2pc and CDA amplitude at a set of posterior 

and occipital electrodes: O1/2, PO3/PO4, PO7/PO8, P3/P4, P5/P6, P7/P8 (Figure 4.2A) 

and compared the average difference waves (contralateral minus ipsilateral) across 
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different reward and repetition conditions. Average N2pc and CDA amplitudes were 

entered into a repeated measures ANOVAs with factors for prior reward (high- vs. low-

magnitude reward in trial n-1) and target color repetition (repeat vs. swap). N2pc 

amplitude was significantly larger for target color repetition (F(1,21) = 6.03; p = 

0.023; 𝜂𝑝
2 = 0.22), suggesting facilitated selection of stimuli characterized by the target-

associated color (see Hickey, Olivers, Meeter, & Theeuwes, 2011). However, prior 

reward had no reliable effect on the N2pc (all Fs<1). To gain further perspective on this 

null result we calculated mean N2pc amplitude across 40 ms bins beginning at 180 ms 

post-stimulus and ending at 300 ms. No effect involving prior reward emerged at any 

latency interval (all Fs<1).  

 

Figure 4.2 N2pc and CDA topographic maps and ERPs 

(A) Topographic maps for N2pc (200-300 ms) and CDA (400-900 ms). Electrodes located 

on the right side of the scalp depict ERPs contralateral to stimulus presentation while 

electrodes on the left depict ipsilateral potentials (collapsed for “memorize left” and 

“memorize right” trials). Highlighted are electrodes O1/2, PO3/PO4, PO7/PO8, P3/P4, 

P5/P6, P7/P8, selected for analysis of N2pc and CDA amplitudes. (B) Mean ipsilateral and 

contralateral waves at the posterior and occipital electrodes shown in A. Shaded gray areas 

indicate the time intervals selected for N2pc and CDA analysis 
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Consistent with prior work (Drew & Vogel, 2008; Ikkai et al., 2010; Mccollough et al., 

2007; Vogel & Machizawa, 2004; Vogel et al., 2005), the CDA reached its maximum 

around 400 ms post-stimulus and persisted throughout the entire retention period. 

Critically, analysis revealed an interaction between target color repetition and 

magnitude of reward in trial n-1 (F(1,21) = 6.85; p = 0.016; 𝜂𝑝
2 = 0.25; main effects: 

Fs<1). Specifically, CDA amplitude was larger when the to-be-remembered stimuli 

were characterized by the same color as in the preceding trial and that trial had garnered 

high-magnitude reward (t(21)= 4.54; p = 0.044; Cohen’s d = 0.48; for low magnitude 

trials results are t(21)= 1.72; p = 0.209; Cohen’s d = 0.28).  

 

 

Figure 4.3 Reward-priming on N2pc and CDA 

Difference waves from posterior electrodes identified in figure 4.2a. (A) ERPs as a function 

of reward received in trial n-1 and repetition or swap of target color in trial n. Shaded gray 

areas indicate N2pc and CDA time intervals. (B) Mean N2pc and CDA amplitudes over the 

interval indicated in A. Error bars represent within-participant confidence intervals 

(Cousineau, 2005). N2pc amplitude is significantly increased for target color repetitions, 

but it is not modulated by reward. In contrast, the CDA is sensitive to the magnitude of 

reward obtained in trial n-1. 

 

In order to contrast the effects of prior reward and color repetition on the N2pc and 

CDA we conducted an additional repeated measures ANOVA with factors for 

component (N2pc vs. CDA), prior reward (high vs. low), and color repetition (repetition 
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vs. swap). This revealed a critical 3 way interaction (F(1,21) = 8.52; p = 0.008; 𝜂𝑝
2 = 

0.29), indicating that the interaction of prior reward and color repetition had a reliably 

large impact on the CDA than the unreliable impact of these factors on the N2pc. 

Uninterestingly, this analysis revealed additional effects of component (F(1,21) = 58.58; 

p < 0.001; 𝜂𝑝
2 =0.74), indicating that the CDA was larger than the N2pc, and a 

component X color repetition interaction (F(1,21) = 5.60; p = 0.028; 𝜂𝑝
2 = 0.21), 

reflecting a larger effect of color repetition on the N2pc (other comparisons were not 

significant; main effect of repetition: F(1,21) = 2.66; p = 0.118; 𝜂𝑝
2 = 0.11; reward X 

repetition interaction: F(1,21) = 1.66; p = 0.241; 𝜂𝑝
2 = 0.07; all other Fs<1).  
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4.4 Discussion 

We investigated the non-strategic influence of reward on working memory for visual 

stimuli. Participants completed a task designed to determine whether an implicit 

association of high-magnitude reward to a color would change the quality of VWM 

maintenance for subsequent stimuli characterized by this color, even when color was 

task irrelevant. Results showed that when memory targets were characterized by the 

same color in two trials, and the previous trial had garnered high-magnitude reward 

outcome, an ERP measure of VWM maintenance - the CDA - was larger in amplitude. 

This maintenance effect appeared discrete and independent of any preceding benefit to 

VWM encoding, in so far as our manipulation had no detectable influence on attentional 

selection indexed in the N2pc.  

To date, behavioral studies of reward's impact on VWM, including our own, have left 

open the possibility that effects of reward might be indirect, reflecting changes in how 

reward-associated stimuli are attended and thus encoded for memory. Gong and Li 

(2014) suggested that reward could benefit the representation of items stored in VWM, 

but did not address at which particular stage this benefit might occur. The dissociation 

of N2pc and CDA results we observe here addresses this ambiguity, demonstrating that 

reward can have a discrete influence on VWM maintenance without any apparent 

preceding influence on attentional selection and memory encoding.  

We interpret the apparent absence of a reward effect on attentional selection in our data 

as evidence that reward effects appear as a product of the demands of the experimental 

task. In our prior behavioral work, for example, we found that reward impacted memory 

both at very early stages of iconic store (from 10 ms. post-stimulus) and at later stages 

of VWM maintenance (up to 1000 ms; Infanti et al., 2015). This suggested to us that the 

locus of reward's influence preceded memory maintenance, likely through a modulation 

of attentional selection and encoding, such that memory performance was impacted 

from very early in time. However, in the task employed in that study color-reward 

associations were learned by means of a visual search task (Anderson et al., 2011b) that 

had no VWM component. Moreover, at test participants were required to spatially 

memorize a set of targets presented alongside a salient color singleton potentially 
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characterized by a reward-associated color. Thus our training task was designed to 

impact selection, not memory, and our test task was designed to induce biases in the 

deployment of spatial attention. It is perhaps no wonder that our results showed 

influence at selective processing stages. 

In contrast, the current experiment did not rely on an attentional training session, but 

rather looked to sequential effects where characteristics of one trial could influence 

brain activity in the next. Moreover, the task itself did not require spatial search: 

participants were pre-cued to orient their attention to targets on one side of the screen. 

Finally, target stimuli were uniformly colored and presented alongside distractors of 

both same and different color. This created a situation where facilitated processing of 

the reward-associated color, if it existed, would impact both representations of target 

and distractor, providing no net benefit to attentional selection or memory encoding. 

We found a modulation of CDA amplitude as a function of the interaction of prior 

reward and target color repetition. It is crucial to note that in the paradigm we used, a 

main benefit of reward magnitude was possible, but would not speak to our central 

experimental hypothesis. For example, a main effect of reward could indicate a 

motivational benefit of reward feedback, while we hypothesized that high reward 

feedback could benefit processing of targets when their characterizing feature was 

repeated in consecutive trials. By contrast, we had no strong predictions as to whether 

high reward feedback would produce a cost or have no impact at all on performance 

when color was not repeated. 

In the current study, our results describe a modulation of CDA amplitude as a function 

of reward priming, but we see no corresponding effect on behavior. This is inconsistent 

with the idea that an increase in CDA reflects an increase in VWM capacity, as such an 

increase should have a behavioral correlate. One possibility is that the increase in CDA 

amplitude we observe rather reflects an increase in the precision of maintained 

representations. This would be consistent with prior literature suggesting that the quality 

and detail of VWM representations reflected in CDA can be flexibly adapted to changes 

in circumstance and task confine (Gao, Li, Liang, Chen, & Shen, 2009; Machizawa et 

al., 2012). Our task required only a coarse discrimination of orientation, with target and 

test stimuli differing by 0°, 45°, or 90°. Participants were presumably well able to 
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correctly discriminate whether or not stimuli stored in VWM matched the test object, 

raising the possibility that a slight improvement in the quality of this representation 

would have no impact on overt performance.  

In conclusion, our work shows how feature-reward associations can automatically affect 

the neural mechanisms instantiating VWM. Previous studies, mainly focusing on visual 

search paradigms, have revealed that reward can facilitate visual perception and drive 

attentional selection (Anderson et al., 2011a, 2011b; Hickey et al., 2010a, 2010b). More 

recently, the influence of reward have been expanded to other cognitive processes, such 

as VWM, showing that high reward-associated items are better maintained in VWM 

(Gong & Li, 2014) and can produce stronger interference in representation of other 

neutral items (Infanti et al., 2015). With this work we begin to shed light on the specific 

VWM mechanisms impacted by reward association, showing that reward can have a 

discrete effect on the maintenance of information in VWM.  



General discussion and conclusions 

93 

 

 

 

 

 

 

 

 

5 General discussion and conclusions 

 

 

 

A long-standing literature documents that reward is a fundamental determinant of 

animal behavior. In recent years, understanding the role of reward in human cognition 

has gained renewed interest (for reviews see Anderson, 2013; Awh et al., 2012; 

Chelazzi et al., 2013; Pessoa, 2009). Importantly, most of these studies aimed at 

disentangling the automatic effects of reward from strategic deployment of attention 

(Maunsell, 2004), in order to understand under what circumstances and to what extent 

reward affects visual cognition beyond current goals (for reviews see Anderson, 2013; 

Chelazzi et al., 2013). This recent and multifaceted literature demonstrates that reward 

history does indeed have a residual impact on the way attention is deployed to objects, 

locations or moments in time, even when it is not strategically advantageous for current 

tasks (Anderson et al., 2011a, 2011b; Della Libera & Chelazzi, 2006, 2009; Hickey & 

Los, 2015; Hickey et al., 2010a, 2014, 2015; Raymond & O’Brien, 2009). 

During my PhD, I have begun to delineate the extents of reward influence on other 

aspects of visual cognition. Specifically, in the three studies I report, I address whether 

reward could have a direct impact on visual representations stored in VWM. In these 
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studies, I argue that reward can influence VWM at different stages. The experiments 

described in Chapters 2 and 3 suggest that reward impacts information encoding in 

VWM; whereas in Chapter 4 I suggest that reward can influence memory also at later 

stages, without necessarily relying on a benefit in target selection.  

The study described in Chapter 2 illustrates the influence of learned reward associations 

in a VWM task at different latencies from display offset when reward-associated objects 

are both task relevant and visually salient. The results show that items characterized by 

a reward-associated feature are not necessarily easier to remember, but they do interfere 

with representations of neutral items presented at the same time at nearby locations. I 

call this an  interference effect. While all salient items tended to interfere with responses 

to non-salient targets, the magnitude of the interference was dependent on their 

associated value. Interestingly, the strength of the interference effect did not vary when 

tested at different delays between display and probe (ranging from 10 to 800 ms) 

suggesting that the interference effect originated at the moment of encoding information 

in VWM. The suggested explanation for this result is that reward-associated objects 

receive prioritized processing compared to neutral items leading to stronger 

representations that can interfere with those of other non-valuable items. 

In Chapter 3, I describe a series of experiments which investigate the limits of the 

influence of reward on VWM, by varying the relevance of reward-associated objects for 

current goals and the resources required to perform the task. Prior work has shown that 

task relevant items are better remembered (Gong & Li, 2014) or produce larger 

interference in a VWM task (Chapter 2) when associated with high value. This study 

supports and expands those observations demonstrating that reward-associated objects 

can also exert interference in VWM representations of less valuable items when they are 

presented as distractors. Moreover, this work extends the results described in Chapter 2 

showing that saliency is not a requirement for the emergence of reward influence on 

VWM representations.  

Interestingly, the second experiment described in Chapter 3 indicates potential limits to 

the influence of reward-associations on visual cognition. Recent work has claimed that 

reward associations can influence performance (usually in a visual search task) beyond 

current goals and beyond item salience (Bourgeois, Neveu, Bayle, & Vuilleumier, 2015; 
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Munneke et al., 2015). Despite the suggested strength of reward influence, results 

reported in Chapter 3 suggest that such effects depend on the availability of spared 

cognitive resources for processing task-irrelevant information. When task demands 

increase, no resources are available for processing task-irrelevant information such as 

distractors’ associated value. While several studies have shown that attention is 

captured by irrelevant items if these are learned to be valuable (Anderson et al., 2011a, 

e.g. 2011b), this automatic influence can occur only when the task performed does not 

completely exhaust attentional resources. This result suggests the existence of a sensible 

and evolutionary advantageous mechanism that prioritizes processing of valuable, but 

currently irrelevant, information only when performing a current task does not require 

our full resources. 

The first two studies reported in this thesis were conducted adopting a value learning 

procedure (adapted from Anderson et al., 2011b) that established an association 

between different colors and values. Participants learned to select more or less valuable 

items among distractors in the context of a visual search (Chapter 2) or VWM (Chapter 

3) task. The influence of learned associations was then tested in the context of an 

inhomogeneous display in which items of different value were presented. Results 

highlighted very early signatures of interference (already detectable at 10 ms from 

stimulus offset) suggesting that learned feature reward associations can affect the way 

information is selected and encoded. The type of task performed during training aimed 

to promote target selection among distractors. If the influence of learned associations is 

specific to the task performed during test (Della Libera & Chelazzi, 2009), it is perhaps 

not surprising that the effects observed during test emerged at the encoding stage. 

Moreover, the uneven displays used to quantify VWM performance during test 

leveraged competition between objects of different value possibly biasing the initial 

selection process. 

The study presented in Chapter 4 investigates whether, under appropriate 

circumstances, past reward associations could significantly impact maintenance of 

visual representations in VWM even when no direct benefit during targets selection and 

encoding is observed. In this experiment I adopted a reward priming procedure, in 

which a high or low magnitude reward feedback was randomly assigned for each 
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correct response. Results showed that when memory targets were characterized by the 

same color in two trials, and the previous trial had a garnered high-magnitude reward 

outcome, an ERP measure of VWM maintenance - the CDA - was larger in amplitude. 

This maintenance effect appeared discrete and independent of any preceding benefit to 

VWM encoding, in so far as reward had no detectable influence on attentional selection 

indexed in the N2pc. These results represent initial evidence that reward history can 

influence different stages of visual processing according to display characteristics and 

task requirements. Unfortunately, despite clear changes in electrophysiological 

measures, no corresponding variations were observed in performance. One simple 

account for this might be that the influence of reward on maintenance is simply too 

small to be detected at the behavioral level. On the other hand, reward can influence 

VWM representations in ways not directly addressed by the task used. For example, 

reward history might influence VWM by increasing the precision of the information 

stored. This account is supported by previous studies showing that finer representations 

or representations of more complex objects produce larger amplitude CDAs than simple 

objects or coarse representations (Gao et al., 2009; Machizawa et al., 2012). This 

interesting account is not explicitly addressed in the study reported in Chapter 3 and a 

direct test is necessary to support this hypothesis. Another interesting possibility is that 

reward history influences the strength of representations in time, resulting in more 

durable VWM traces. While the work described in Chapter 2 may not appear to support 

this view, there the analysis of the content and capacity of visual memory was limited to 

a short interval from display offset, and mainly reflected iconic memory and the early 

stages of VWM, without testing the duration of the stored representations. 

Overall, the work described in this thesis adds to previous studies showing that reward 

does not simply speed up processing of reward associated objects, prioritizing them and 

making them more difficult to ignore, but it can also significantly affect the nature of 

visual representations stored in VWM. However, this effect is not directly observable as 

a modulation of VWM capacity. This observation is consistent with most of the 

literature investigating the motivational impact of incentives on working memory. 

While reward usually benefits response speed, there is no clear improvement in VWM 

capacity (Gilbert & Fiez, 2004; Krawczyk, Gazzaley, & D’Esposito, 2007; Pochon et 

al., 2002; but see Gong & Li, 2014; Kawasaki & Yamaguchi, 2013). A fundamental 
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challenge for future research is to better characterize the impact of reward history on 

VWM maintenance in order to characterize the nature of reward influence on visual 

representations and the mechanisms that support these effect.   
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