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Abstract

This thesis collects three independent essays. Two of them relate to experimental economics, and

one to labor economics. The first essay explores through a laboratory experiment the relationship

between cognitive costs and imitation dynamics. The second essay investigates in an experimental

setting information aversion towards bad/good news about ones’ own condition, and tests the effect

of the possibility of exerting effort, which may improve one’s own condition, on the willingness

to acquire more detailed personal information. The third essay proposes an empirical application

aiming at studying gender discrimination in a research context, and in particular whether the gender

composition of evaluating commissions affects the hiring of women in research activities.

Keywords. Beliefs; Cognitive Costs; Decision Making; Laboratory Experiments; Gender quotas;

Discrimination; Research Recruitment; Connections; Information Aversion; Information Acquisi-

tion; Signals

JEL classification: C91; D80; D81; D82; D83; J16; J71; J45;
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1 Introduction

This Ph.D. thesis presents three essays that investigate different topics in economics. Each essay

focuses on a different subject, therefore each one can be read as an independent contribution to the

thesis. Two out of the three essays employ behavioral and experimental economics methodologies to

investigate individuals’ preferences and deviations from the standard economic paradigm, in two dif-

ferent contexts. One deals with the consideration of cognitive costs, contrary to traditional economic

theories of rational behavior that disregard them. The other experimental essay examines an infor-

mational framework in which individuals may derive utility from beliefs, as opposed to the standard

paradigm of the economics of information, which considers information as valuable only as a means

for improving decision making (Stigler, 1961). The third essay lies outside the experimental domain

and proposes an empirical investigation in a labor market scenario.

Albeit the thesis encompasses three essays that can be read independently, a few intertwined

themes combining the single contributions can be envisaged. These refer to the following keywords:

beliefs, signals, costs, and gender.

The underlying motivation of the dissertation is to investigate how individuals undertake decisions

in contexts increasingly complex and characterized by uncertainty. From a methodological perspec-

tive, the natural choice was to apply the techniques of behavioral economics, which “ replaces strong

rationality assumptions with more realistic ones and explores their implications”(Camerer, 2003b, p.

1673).

The role of beliefs in every day life is central. Human beings form beliefs about themselves both

in terms of skills and qualities, and in terms of future prospects in life, as for instance financial or

personal realization. They also form beliefs about the surrounding world, about the behavior of other

people in the society and about whether they can trust them. Beliefs shape individuals’ decisions

and are hence strongly connected to both individual and collective performance. As a consequence,

we can think of beliefs as assets that decision makers invest in, protect, value and use (Bénabou and
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CHAPTER 1. INTRODUCTION

Tirole, 2011).

Sometimes beliefs are coupled with misbeliefs. Overconfidence and the better-than-average effect

are a clear example of a common misbelief. 90% of U.S. drivers deem to be above-average in terms

of quality (Svenson, 1981), and 94% of professors at a large U.S. University think to be better than

their average fellow colleagues at their own institution (Cross, 1977; Price, 2006). Moving to the

health domain, individuals show an optimistic bias as they consider themselves to be less likely

than their peers to experience adverse life situations. Weinstein (1982) for instance documents that

100 college students who were asked to compare their chances of experiencing 45 different health

and life problems consistently consider their own probabilities to be below average in 34 of the 45

circumstances.

It hence emerges that beliefs and misbeliefs must be considered as important drivers of individual

decision making and should be incorporated in the economic modeling.

In the first essay beliefs are a key component of the experimental setting. Subjects face a novel

experimental task, whose solution is not the result of computation or other technical skills. They are

asked to find a solution to the task, knowing that the better the solution, the higher their final payoff

will be. In solving the task they are provided with two kinds of default options that would allow them

to skip the task and refer to a decisional short-cut. In one of these default options participants know

that they would earn an above-average payoff, but they do not know exactly whether the payoff will

be exactly the maximum available or just the average. In the other default option, participants, on

top of this above-average information, are informed that the default option has been chosen by the

majority of participants in a previous experimental session. It emerges that individuals’ decisions

will strongly hinge on their beliefs about the default options. We implement an incentivized belief

elicitation task in order to retrieve data about beliefs of the quality of the two different default options.

We find that the majority default option is considered as the best option when the task to solve is more

complex.

Another way in which beliefs enter the first essay is through subjects’ under/over-confidence re-

garding their own absolute and relative performance. By asking subjects at the end of the experiment

to indicate how accurate they think their final choice was and to compare it with the majority of other

participants, we are able to examine whether participants relying on default options are guided by

under/over-confidence about their own skills. We document that subjects are on average overcon-

fident both in relative and in absolute terms, and that subjects who opt for the default options are

2



significantly underconfident and perceive the task as more difficult.

The second essay builds on the idea that people may derive utility from beliefs, and as a conse-

quence they may manipulate sources of available information. It follows that if some information

carries a disutility to subjects, an informational trade-off arises between emotional costs deriving

from more information and better decisions accruing from more information.

In the experiment participants know they can either be attached to a good or a bad condition,

resulting in higher or lower payoffs, respectively. In the first session of the experiment, which de-

velops across a temporal dimension of two weeks, participants receive preliminary signals about

their condition and form their initial beliefs. They are given the opportunity of acquiring additional

information in order to update their beliefs regarding their chances of being in the good or in the

bad condition. If they buy it, the additional information entails lower uncertainty regarding their

condition. Beliefs about being in the good/bad condition are computed through the Bayes formula,

provided the different signals participants can receive in the first session. However, these theoretical

probabilities should be matched with actual beliefs reported by subjects, which will be elicited in

future experimental sessions.1

We find that subjects are willing to buy more detailed information when their Bayesian theoretical

belief of being in the bad condition is higher. This result deviates from the existing literature on

information aversion and could be due to the inclusion in the experimental setting of the possibility

of improving ones’ own condition through the exertion of effort between the first and the second

experimental session.

Beliefs are strongly related to signals. Signals occupy the uncertain world we live in, and give rise

to beliefs in individuals. It is important to correctly interpret the signals received.

Experimental participants in the first essay receive signals about the quality of default options: in

one case they are informed that the default option belongs to the upper half of available options in

terms of quality, and in the other default option, on top of this information, they are given a social

signal regarding the default option. Moreover, in the first ten seconds of the experiment we provide

subjects with uncovered cards, which then become covered and will be inspected in order to solve

the experimental task. The rationale of the first ten seconds is to offer subjects a signal of the type of

task and of its difficulty.

The role of signals in the second essay is played by balls of different colors that are extracted from

1For a detailed review on the various methods to elicit beliefs, see Schlag et al. (2014).
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CHAPTER 1. INTRODUCTION

two possible boxes. On the one hand, the box representing the good condition has a higher fraction

of white balls, which are connected with a higher payoff in case of final extraction. On the other

hand, the bad box encompasses a higher percentage of black balls, which entail a lower payoff than

the white ones if they are extracted. Participants first receive a signal deriving from an extraction

of three balls from their box, and given this extraction, they can decide to spend 1 Euro for the

extraction of two additional balls from their box. On average, roughly 30% of participants chose to

receive more accurate signals about their own conditions.

Beliefs and signals are present, from a different perspective, also in the empirical application of

the third essay, which examines an Italian labor market case study. Signalling in labor markets has

received much attention since the seminal work of Spence (1973). Candidates in the data set used

in the third essay apply for research positions and are evaluated by commissions, which consider

candidates’ signals of quality as indicated in their curricula. The signals can encompass applicants’

education marks, whether they earned a Ph.D. and the number, level and impact of their scientific

productivity, which can be captured by their h-index. Another important signal about candidates’

skills could be represented by prior or current work experience at the hiring institution. Commission-

ers, given the signals of candidates’ quality, form their beliefs and choose whether to select or not

the candidate.

The perspective from which we consider signals in the third essay is that of a possible discrim-

ination of candidates. Given the scarce representation of females in research positions, especially

at top positions, we examine whether female candidates are discriminated in recruitment processes.

Therefore, we test whether female and male candidates who provide the same signals (observable

characteristics) in the job market, are treated differently or not, according to their gender. Our results

seem to support gender discrimination against female applicants in calls for lower research posi-

tions, and we also find that this effect could be mitigated by imposing one female researcher in the

evaluating commission.

Another common dimension of the essays of this thesis is represented by costs. Many decisions

involve costs, of different kinds. In the thesis I mainly consider cognitive and pecuniary costs.

Cognitive costs constitute the core of the first essay. The idea in the first essay is to model cognitive

costs through a novel experimental task, and connect them with the availability of a social default

option. We examine whether a previous majority choice can be conceived as a low-cost heuristic.

Results show that the experimental task is able to model lower and higher cognitive costs. In the

4



task which we hypothesized to be more difficult, subjects’ performance rates are actually lower. The

rationale of the novel task is to offer subjects an environment in which they do not have a reference

point, either computational or logical. The difficulty depends on the different visualization of figures

in the two scenarios and does not require mathematical skills.

A pecuniary kind of cost is present in the second essay, in which subjects can subtract 1 Euro from

their final payoffs in case they are willing to receive a more precise signal of their own condition

in the first session of the experiment. From a rational perspective, the additional extraction of two

balls from participants’ boxes after the payment of 1 Euro is not connected to any difference in the

expected value of the experiment. Each participant is attached to a good or a bad box, and at the

end of the experiment one ball is extracted from each box. Having received a more detailed signal

about one’s own condition does not impact the type of box attached to each individual. However,

participants can exert effort in order to improve their condition between the first and the second

experimental session, and the exertion of effort is connected to a higher reward in case the participant

is in a bad condition. Therefore, paying the additional Euro for a more accurate signal may derive

from a strategy of knowing whether effort is worth doing or not.

Finally, another theme of the thesis is gender. Gender is the central issue of the third essay, in

which we test for the presence of gender discrimination and whether affirmative actions may reduce

it. But gender is also a recurring topic in behavioral economics, as men and women tend to behave

differently under certain circumstances.

In the first and the second essay we are able to compare the behavior of females versus that of

males in different respects. Males slightly outperform females in the solution of the task of the first

essay, and they are significantly more overconfident in relative terms compared to females. This is

an interesting result, and corroborates the existing literature of gendered relative overconfidence (see

Niederle and Vesterlund (2007)). When asked about their absolute performance, female participants

in the first experiment appear more overconfident than males about their skills, but differences are not

statistically significant. Conversely, when asked about whether they think to have performed better,

equal or worse than the majority of participants, women exhibit lower overconfidence than men.

The gendered behavioral difference in the second essay refers to the completion of effort between

the first and the second experimental session. Interestingly, we find that women exert significantly

less effort than their male colleagues, even if they all receive the same information about the rewards

deriving from effort exertion. Yet, we do not find significant differences across genders in the other
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CHAPTER 1. INTRODUCTION

dimensions involved in the experiment, such as for instance risk aversion or procrastination propen-

sity.

In the remaining part of this general introduction to the thesis I briefly introduce the different

essays and their contribution to the economic literature.

In the first essay we aim to extend choice theory by allowing for the interaction between cognitive

costs and imitative dynamics.2 The starting point of the study lies in the fact that, in many cir-

cumstances, economic actors are boundedly rational and make use of simplifying heuristics, either

conscious or unconscious, when they process information that carries cognitive costs (Gigerenzer

and Gaissmaier, 2011). Traditional economic theories of rational behavior disregard cognitive costs

and assume that economic agents process costly information fairly easily, since they are always

able to select the utility-maximizing option among different ones. In contrast, evidence gathered by

some psychologists and economists supports the idea that decision makers systematically violate the

assumptions of rational choice theory (Tversky and Kahneman, 1974; Camerer, 2003a; Bicchieri,

2006). In this essay we investigate as a potential cognitive shortcut faced by decision makers the in-

fluence of other agents in their reference community. Imitation is a very frequent pattern of real world

behaviors but its sources have been limitedly examined by economic theory. Imitation is crucial in

the transmission of knowledge and represents one of the main sources of learning.

We experimentally examine the role of imitation when participants face a task which is costly in

cognitive terms. To do this, we devise a novel experimental task in which we model the choice of

different alternatives through high or low cognitive costs. The task is not purely mechanical and

its rationale is to offer subjects an environment in which, while searching the solution, they do not

have a reference point, either computational or logical: the assignment is not related to an univocally

clear solution, characterized by normative determinants. Our approach aims indeed at resembling a

dynamic social environment, where available options must be discovered, but it is not straightforward

which is the best one among them. We show participants a set of abstract figures, and we model the

difficulty of such figures into high or low. In these two different scenarios, we test the impact of

information available to participants: whether they know or not the choices of a majority of subjects

who took part in a previous experimental session.

Our results show that the experimental task implemented allows us to carry out a scenario with

2This chapter is co-authored with Professor Luigi Mittone. We jointly devised the experimental design, whereas the rest
of the work derives from my own contribution.
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low cognitive costs and one with high cognitive costs, with the latter being characterized by lower

performance levels. On average, participants deem that the majority choice is a winning option

when the task to perform presents higher cognitive costs. Therefore, the imitative component is

driven by the beliefs about others’ performance. We also study the extent to which participants

under or over-estimate their skills in completing the experiment, and we find that those who rely on a

previous majority choice or on a default option are significantly underconfident, whereas the majority

of participants is clearly overconfident, especially when the task to be solved is more cognitively

demanding. We thus provide evidence for imitative behavior driven by underconfidence about own

skills and by the beliefs regarding others’ performance. We also find evidence for an additional

heuristic related to the timing of decision making, which lends support to the saliency of more recent

memories in cognitively demanding scenarios.

In the second essay we investigate a particular issue in the economics of information: information

aversion.3 More specifically, we are interested in exploring the determinants of information acquisi-

tion or aversion in a general context in which individuals first receive a preliminary signal about their

own condition, after which they can decide to acquire more detailed information. Evidence from

recent studies in Economics, Psychology and Medicine suggests that decision makers assign a value

to information that goes beyond the instrumental role considered by traditional economic theories.

In many circumstances individuals avoid conclusive information when they fear to receive bad news,

whereas they search for information when they expect good news (Lerman et al., 1998; Karlsson

et al., 2009).

This informational issue, also known as ostrich effect, can be relevant if we consider for instance

health contexts, in which individuals may shy away from additional information when they fear bad

news, even if additional information about their health status may be relevant in terms of prevention or

treatment (Lyter et al., 1987; Facione, 1993; Caplan, 1994; Lerman et al., 1999; Nosarti et al., 2000;

Richard et al., 2000; Meechan et al., 2002). If people derive utility from beliefs, they may manipulate

sources of available information and obtain sub-optimal outcomes if their choices were different from

the ones undertaken under a full information set. It follows that the amount of information acquired

is not trivial and gives rise to an important trade-off between emotional costs from information and

better decisions deriving from more information.

3This chapter is co-authored with Professor Marie Claire Villeval. We jointly devised the experimental design, whereas
the rest of the work derives from my own contribution. Therefore the writing of the essay, the analysis of the existing
literature, the data analysis and discussion follows from my own work.

7



CHAPTER 1. INTRODUCTION

To investigate this informational trade-off, we devise a novel experiment in which it is possible

to exert an effort that increases the final expected payoff. The experimental design is characterized

by two experimental sessions in a longitudinal framework, with the second session taking place

two weeks after the first one. In the first session participants receive a fuzzy signal about their

condition, which may become more informative if they decide to buy additional information in week

1. Between week 1 and 3 they are given the opportunity of completing an online task (effort), on

three nonconsecutive days, which increases their expected payoff. The completion of the tasks has

a higher impact on participants’ expected payoff if their condition is bad rather than good. The

main innovative component of the essay is the introduction of an interrelation between information

acquisition and the possibility of exerting an effort that increases final expected payoffs. With this

relationship we aim to capture and investigate the informational trade-off at the basis of the ostrich

effect.

We find that participants significantly buy more information after a preliminary bad signal than

after a good signal, revealing an opposite result with respect to the previous literature. Accuracy

of signals fosters the exertion of effort only when the signal is bad. Participants understand the

incentives of completing effort when they receive a bad signal about their condition only when they

decided to be more informed. Providing participants with the possibility of acquiring additional

information lowers their effort exertion. Moreover, the possibility of acquiring additional information

points out a duality of individuals: those who decide to be more informed and thus follow a rational

behavior in the exertion of effort, and those who decide to remain with a limited information set and

behave irrationally in their effort exertion.

The third essay investigates whether the gender composition of evaluating commissions affects the

presence of women in research activities.4 The topic is currently highly debated and follows from a

stylized fact: the great gender imbalance in research. In fact, women outnumber men by 18% when

they finish university, but they represent 37% of Associate Professors and just 20% of Full Profes-

sors (Meulders and O’Dorchai, 2013). Several policy solutions have been proposed to reduce gender

disparities, such as gender quotas for employees and, lately, gender quotas in evaluating commis-

sions for research positions. The latter is motivated by possibly gender-biased preferences towards

4This chapter is co-authored with Professor Daniele Checchi and Dr. Nevena Kulic. I contributed to the essay in the
collection of around one third of the data set, involving any bibliometric measure of candidates from the Scopus
database. I wrote almost the entirety of the essay, except the parts in which the research Institute is described. I
contributed extensively in the analysis of the existing literature and did the data analysis, both in terms of models and
regressions and in terms of post-competition analysis.

8



same-sex candidates in evaluating commissions, which are generally male-dominated. Gender quo-

tas in commissions have already been introduced in a few European countries and have recently been

advocated by the European Commission.

However, imposing them does not represent a zero-cost policy since it requires a disproportionate

share of senior academic women’s time for attending evaluating commissions, a “non-productive”

activity from a research perspective. This policy could be detrimental to female academics research

activities and could thereby foster the vicious cycle of women being trapped in lower academic

positions. This essay aims to examine the potential effectiveness of such a policy by using data from

an Italian research community. We complement and extend the already existing investigation on the

Italian research environment by studying the determinants of entrance to a non-academic research

context.

We exploit a novel data set on recruitment processes in a leading Italian research center that

mainly operates in hard science. Unlike previous studies that focus on selections into professor-

ships (De Paola and Scoppa, 2011; Zinovyeva and Bagues, 2011; Bagues et al., 2014), this essay

mainly examines entry level research positions, where gender imbalance usually starts taking place.

We aim at identifying the main drivers for winning a research competition, and in particular we are

interested in knowing whether a higher proportion of women in evaluating commissions increases

the proportion of women selected for research jobs. As in almost all calls in the data set only one

candidate is selected, the competition among candidates is more evident and explicit than in previous

qualification data sets. This allows us to use different econometric techniques that take into account

the interdependent success probability of candidates applying for the same call. The data set also en-

ables us to control for pre-existing ties between candidates and commissioners or with the research

center.

We find some evidence of discrimination against women at entry research levels, while the pres-

ence of women in commissions increases the chances for female researchers to be selected for these

posts. Gender discrimination does not seem to be a concern for hierarchically higher positions.

Higher quality commissions tend to choose more productive candidates and their decisions are not

influenced by pre-existing ties with the institution. Prior ties are however the most important deter-

minant of success in all other cases. The analysis of the post-competition productivity of candidates

shows that applicants with prior ties are significantly more productive, suggesting a potentially posi-

tive role of prior ties in reducing the information gap about candidates’ research quality.
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2 Over-confidence and low-cost heuristics: an

experimental investigation of choice

behavior1

2.1 Introduction

In every day life decision makers frequently face cognitive costs when choosing among different

options. Traditional economic theories of rational behavior disregard cognitive costs and assume

that economic agents process costly information fairly easily, since they are always able to select the

utility-maximizing option among different ones. In contrast, evidence gathered by some psycholo-

gists and economists supports the idea that decision makers systematically violate the assumptions of

rational choice theory (Tversky and Kahneman, 1974; Camerer, 2003a; Bicchieri, 2006). In particu-

lar, the axiom of complete preferences, which entails that an individual is able to compare and express

a preference relation between any two objects, requires conditions such as extraordinary computa-

tional and cognitive skills that are rarely met in practice. It follows that, in many circumstances,

economic actors are boundedly rational and make use of simplifying heuristics, either conscious or

unconscious, when they process information that carries cognitive costs (Gigerenzer and Gaissmaier,

2011).

In this paper we investigate a potential cognitive shortcut faced by decision makers: the influ-

ence of other agents in their reference community. A growing strand of literature argues that many

decisions are affected by social interactions, also known as “peer effects”(Bernheim, 1994; Glaeser

and Scheinkman, 2001). Peer effects represent the channel through which individuals belonging to

a reference group influence the behavior of individuals in the same reference group, and they can be
1This chapter is a joint work with Professor Luigi Mittone, published as Cicognani and Mittone (2014), “Over-confidence

and low-cost heuristics: an experimental investigation of choice behavior” on Economics, the Open-Access, Open-
Assessment E-Journal. Financial support from the University of Trento and the School of Social Sciences of Trento is
gratefully acknowledged.
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conceived as “an average intra-group externality that affects identically all the members of a given

group”(Calvo-Armengol et al., 2009, p. 1239).

The perspective from which we consider peer effects in this work is that according to which the

behavior of other individuals in a reference community may represent a simplifying heuristic, that

allows to economize on decision costs, especially when choices carry high cognitive costs. A po-

tential channel through which this heuristic operates is the belief system, both about the quality of

others’ choices and about the quality of one’s own choices. The latter refers to the definition of

overconfidence, which in this essay we consider in both absolute and relative terms. The higher

the overconfidence regarding own skills, the more we should expect a subject not to rely on other

people’s choices.

This paper builds on contributions such as Fortin et al. (2007) for the way in which information

about others’ behavior is put forward in the experiment: we provide subjects with information about

the choice of a majority of participants in a previous experimental session. Our departure from exist-

ing research is twofold. First, we incorporate cognitive costs in an experimental setting of imitation

choices. To the best of our knowledge, this is the first study that investigates experimentally social

interactions from a cognitive perspective: we estimate the impact of the reliance on choices made

by a majority of subjects in two scenarios that differ in terms of cognitive costs involved in the

experimental task.

Second, we implement an original experimental task whose solution is not the result of computa-

tions or counting2, but which entails a more complex kind of reasoning that is more similar to modern

and dynamic decisional contexts. We show participants a set of abstract figures, and we model the

difficulty of such figures into high or low. In these two different scenarios, we test the impact of

information available to participants: whether they know or not the choices of a majority of subjects

who took part in a previous experimental session.

We do not find strong evidence in favor of imitative behavior, but on average participants deem

that the majority choice is a winning option when the task to perform presents higher cognitive costs.

Therefore, the imitative component is driven by the beliefs about others’ performance. We also study

the extent to which participants under or over-estimate their skills in completing the experiment,

and our results show that those who rely on a previous majority choice or on a default option are

significantly underconfident, whereas the majority of participants is clearly overconfident, especially

2For instance, see Pokorny (2008).
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when the task to be solved is more cognitively demanding. Our results in terms of under/over-

confidence also allow us to shed more light on the gender differences related to this topic: we don’t

find gender differences in overconfidence if this is measured in absolute terms, but we do find that

men are statistically more overconfident than women in relative terms.

In addition to investigating the connection between cognitive costs and imitative dynamics, our

experimental setting also allows us to examine very precisely the temporal pattern of subjects’ deci-

sions. This enables us to provide evidence for an additional heuristic related to the timing of decision

making, which lends support to the saliency of more recent memories in cognitively demanding

scenarios.

The chapter is organized as follows: in Section 2.2 we present the related literature; Section 2.3

outlines the experimental design, the procedures followed during the experiment and the behavioral

hypotheses; Section 2.4 presents the data and results from the experiment; Section 2.5 discusses and

draws conclusions.

2.2 Literature review

Decision makers are characterized by limited information processing systems. Not only their com-

putational and cognitive capacity is limited, but also their memory is confined in both capacity and

duration. Accordingly, they frequently employ heuristics in order to reduce the information process-

ing requirements of the tasks they face, which differ in terms of complexity (Payne, 1976). In any

decision there is an underlying trade-off between the precision of the choice and the efficiency in the

decisional process. When using heuristics, individuals give up to the former, in favor of the efficiency

of the process. According to Payne (1976), we use heuristics in contexts of decision making under

risk, when we face some probabilistic information processing. Examples of heuristics include repre-

sentativeness, when individuals anticipate the most representative outcome of the existing evidence,

as well as anchoring and adjustment, according to which we tend to base decisions on familiar po-

sitions, with an adjustment relative to this anchor. As the task to be solved increases in complexity,

“individuals will employ decision strategies resulting in a restricted pattern of information search

when the choice task becomes sufficiently complex. These decision strategies can be characterized

as heuristic processes similar to those found in studies of human problem solving” (Payne, 1976, p.

324).

When facing a new task, which is neither mechanical nor computational, subjects might conform
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to the norms deriving from the majority of members of their community. According to Bicchieri

(2006, p. 5), “to efficiently search our memory and group a new event with previously encountered

ones, we use cognitive shortcuts. Cognitive shortcuts play a crucial role in categorization and the

subsequent activation of scripts and schemata.(..) In the heuristic route, behavior is guided by default

rules stored in memory that are cued by contextual stimuli. Norms are one class of default rules.”.

Referring to what has already been chosen by other subjects in the same decisional environment

may represent a channel through which it is possible to save on cognitive costs. This type of social

shortcut may be increasingly relevant when decisions are more demanding in cognitive terms. An

underlying behavioral pattern could be driven by the beliefs regarding the behavior of others, and

especially of the majority that one decides to conform to: this majority can be considered as acting

better than the individual subjects, and hence could be chosen to be a reference point in decisional

dynamics.

Economists’ interest in the connection between social interactions and cognitive costs is very lim-

ited and relatively recent. An attempt in this direction is represented by the theoretical axiomatization

of Hayakawa (2000), who supports the idea of social capital as a source of low-cost heuristics: choice

decisions made by an individual depend crucially on the organization of her perceptions of available

choices. To the extent that such perceptions are affected by social elements, they cannot be con-

sidered independent of the particular social environment where decisions take place, and, in such a

context, bounded rationality is a tool for the formation of endogenous preferences.

Along these lines, Earl and Potts (2004), in investigating the social side of choice in complicated

situations make a sharp distinction between high-level preferences and low-level ones. While the

former relate to innate behavior, the latter are the result of a learning and specialization process,

and they can be acquired in the market for preferences, by simply using and buying other people’s

learning. Economic agents are indeed cognitively normal individuals who may access and acquire

specialized consumer knowledge, regarded as recommendation of someone having relevant expertise

on some specific problems. This is what happens in highly uncertain speculative markets, as high-

lighted by Earl et al. (2007), in which economic agents make use of decision rules picked up from

others in an attempt of interpreting and gathering new relevant information. Heuristics are hence

socially transmitted.

Conversely, very large and heterogeneous is the extent of contributions that investigate the ways

and motives for which individuals are influenced by others in their decisions making processes,
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irrespective of the cognitive costs they face. These works focus on issues ranging from peer effects,

to informational cascades, conformism and social learning.

Peer effects investigations aim at measuring and disentangling endogenous effects and at solving

the identification problem: individuals in a group influence each other and it is not easy to state

who influences whom.3 While this represents quite a complex problem to overcome empirically,

through field data, the experimental research allows to avoid it, due to a complete control of the

information provided to experimental subjects and to the absence of self-selection of subjects into

groups. More specifically, in a laboratory setting the experimenter is able to control for different

information scenarios, and hence to regulate the direction of influence of knowledge.

A significant amount of experimental work has modeled peer effects by conveying information to

participants about the behavior of experimental subjects in previous sessions. Fortin et al. (2007)

investigate a tax evasion scenario and divide participants into groups: at the beginning of each period

subjects receive feedback about the amount evaded and the number of evaders among the members

of their group in the previous period. Beugnot et al. (2013) devise both a recursive and a simul-

taneous source of influence from others’ behavior. In the former, each participant has one or two

peers (belonging to the previous baseline treatment) and receives information at the beginning of the

session about peers’ personal information, average piece-rate and performance in the task4; in the

latter, interactions occur in real time among players, in order to recreate real-like working situations.

Overall, individuals are found to be significantly influenced by others’ performance.

A more sophisticated network structure, which also entails network formation during the experi-

ment, is proposed by Conte et al. (2009). The authors investigate which are the factors underlying

network formation in an experiment in which, over a minimum of 15 rounds, connections between

two players can be set up during the game if both players mutually agree. Network formation involves

positive externalities to the extent that both direct and indirect links accrue benefits, but direct links

involve costs. Given these payoff rules, players aim at maximizing their own earnings by forming

indirect and direct links. They find empirical ground for best-response behavior, besides reciprocator

and opportunistic patterns of playing the network formation game.

Despite these network studies, existing experimental literature does not seem to examine and dis-

entangle the underlying factors that drive individuals to conform to others’ choices, which is the

focus of this work.

3This issue represents the “reflection problem” introduced by Manski (1993).
4Participants must perform a multiplication task without calculators and pens
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A potential motivation for being influenced by others’ behavior may act through the beliefs regard-

ing others’ outcome: we may imitate those individuals that we consider as successful. This is what

Apesteguia et al. (2007) and Offerman and Sonnemans (1998) indicate among their results and it

is also investigated in our experiment through an incentivized elicitation of beliefs regarding others’

performance. Apesteguia et al. (2007) in a symmetric Cournot game distinguish between participants

and roles played by participants: participants can play in three roles and are not told with whom they

are matched within groups of nine subjects each. The authors find evidence in favor of imitation of

more successful individuals: the degree of imitation they find is increasing in the difference between

own and others’ payoff. Moreover, higher imitating patterns arise with respect to the individuals with

whom one interacts, rather than with respect to individuals who play in the same role but in different

groups. A similar result is found by Offerman and Sonnemans (1998), with an experiment about

investment decisions that depend on different states of the world. Rather than imitation of choices,

they test for the presence of imitation of incentivized beliefs: least-performing individuals are found

to imitate more the judgements and beliefs of more successful subjects.

Another behavioral motivation underlying imitative dynamics can rely on the degree of under/over-

confidence of subjects. To the extent that one considers herself to perform better than a majority,

referring to what others have already chosen may represent an unattractive strategy, although it would

allow to economize on decision costs. The better-than-average effect is a widespread cognitive bias

in the population. According to Svenson (1981), 90% of the U.S. population considers herself to

be above-average drivers. Overconfidence about one’s relative skills can have many repercussions in

real life situations. For instance, it has been put forward as an explanation for the high rate of business

failures (Camerer and Lovallo, 1999), or for disproportionate job market search and unemployment

in labor economics types of contexts (Dubra, 2004). Also in financial markets overconfidence in

relative ability has been found and connected with excessive trading, which entailed a consequent

reduction in net returns (Barber and Odean, 2001). Contrary to these findings, in an experiment

aiming at testing overconfidence in individuals’ forecasts of their absolute or relative performance

in two unfamiliar tasks, Clark and Friesen (2009) report a general tendency to underconfidence,

although “underconfidence is greatest in forecasts of absolute rather than relative performance”(Clark

and Friesen, 2009, p. 229).

Interesting evidence in the overconfidence literature is represented by differences across genders:

it seems to be quite established by now that men are more overconfident than women (Frechette
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and Schotter, 2015). For instance, in an empirical study on a common stock investments data set,

Barber and Odean (2001, p. 261) find that “men trade 45 percent more than women”. This gendered

overconfidence result holds true also when we look at relative, rather absolute overconfidence. As

Niederle and Vesterlund (2007, p. 1069) document, “men are substantially more overconfident about

their relative performance than women”. Therefore, it seems that women have on average lower

expectations regarding their relative ability. In our study we are able to track both participants’

absolute under/over-confidence and their relative one, through ad-hoc questions posed in the ex-post

questionnaire at the end of the experimental sessions.

This essay is also related to the theoretical and applied literature on crowd-following or herd be-

havior, which, starting from the seminal contribution of Banerjee (1992), considers economic agents

who have incomplete information about the quality of a good or service and hence let the choices or

evaluations made by others to guide their own actions.5

Imitation can also be conceived as the desire to conform. Yet, in our experimental setting partici-

pants are not provided with information about who chose the majority card. Therefore, it is difficult

to conceive that participants aim to follow the majority for mere conformist reasons, since they do

not know anything about which kind of majority it is.

Jones (1984) examines different explanations for conformism: these include economies of scale,

heuristics as solutions to complex coordination problems, and conforming as a way to choose one of

the many existing equilibria.

Imitation is also a source of social learning. For instance, Bala and Goyal (1998) develop a the-

oretical model that explains how social learning from neighbors guides individuals’ decisions when

payoffs from different actions are unknown.

From a different and experimental perspective, based on a repeated ultimatum game and a repeated

best-shot game, Duffy and Feltovich (1999) test whether observing other players’ actions and payoffs

leads to an evolution of the way the game is played. Evidence is mixed and strictly hinges on the

type of game played.

A different line of argument characterizing individuals’ decisions and possible shortcuts refers to

the different timing of experiences faced by subjects. Indeed, cognitive processing could be related

to memory capacity, so that more recent events become more salient when subjects experience cog-

nitively demanding tasks (see, for instance, Hastie and Dawes (2010)). When facing alternatives,

5See, for an example, Çelen and Kariv (2004) and Sorensen (2007).
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decision makers experience utilities, and they attach such utilities to the alternatives present in their

memory. Hence, preferences arise from memory representations (Weber and Johnson, 2006). In this

context, a central role is played by the timing of the experience, which leads to different memories

of experiences (Miron-Shatz et al., 2009): preferences depend on the memory of past experiences.

In our experiment, when confronted with cognitive costs, we expect that individuals attach more

relevance to memories of experiences occurred later in time.

2.3 Design, procedures and behavioral predictions

2.3.1 Design

The novel feature of our experimental design is that participants do not face a typical experimental

game, nor a mechanical counting or computational task.6 Rather, on their computer screens, they

face covered cards which contain on their inner side abstract figures composed of black squares.7

Participants’ aim is to select the card containing the figure which most closely resembles the figure

appearing on the top left of the screen. In doing so, they can either uncover and inspect the cards that

appear covered on the screen, or they can choose a covered card representing a default option, which

is placed on the bottom right of the screen. The default card is accompanied by a different amount of

information according to treatments. Indeed, in the DEFAULT treatments, participants are informed

that the default card is one of the best 8 cards (among 16) appearing covered on the screen, while in

the MAJORITY treatments they are told that the default card (in this case called “majority card”) has

been chosen in a previous experimental session by the majority of participants, and that, moreover, it

represents one of the 8 best cards appearing covered on the screen.

The task is implemented both under a high-cost and a low-cost scenarios, both considered in cog-

nitive terms: in the high-cost condition, the visual resolution of the figures (number of “pixels”) is

higher than in the low-cost condition. The rationale of the task is to offer subjects an environment

in which, while searching the solution, they do not have a reference point, either computational or

logical: the assignment is not related to an univocally clear solution, characterized by normative de-

terminants. Our approach aims indeed at resembling a dynamic social environment, where available

options must be discovered, but it is not straightforward which is the best one among them.

The implementation of the design entails participants to face a screen with one card on the top

6For an overview of real-effort tasks, see Gill and Prowse (2013).
7We are deeply indebted to Paolo Crosetto for the programming of figures through Python.
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left (also known as “target card”), and 16 covered cards below, divided into rows of 4 cards each.8

Cards are randomly distributed on the screen for each subject and for each treatment, so that the

distribution of the 16 cards is different for each participant. Each card carries an abstract figure on

its covered side. For the initial 10 seconds all cards are uncovered, and hence the figures portrayed

on them are visible. As previously mentioned, the aim of the game is to choose the card which is the

most similar to the target card, within a time constraint of 10 minutes. After the 10 initial seconds,

all cards get covered: comparisons between any of the 16 cards and the target card can be carried

out by participants by clicking on each card which is chosen for the comparison. After clicking on

one of the 16 cards, the selected card is shifted next to the target card and both become uncovered.

Participants can keep the selected card beside the target card, for a visual comparison, for as much

time as they wish, within the 10 minutes of time constraint of the whole experiment. In order to place

the card back to its initial position, it is necessary to click again on the card (see Figure 2.1).

Figure 2.1: Example of a screenshot during the comparison

Notes: The Figure corresponds to the high-majority treatment.

Moreover, after the 10 initial seconds, a default card appears, covered, on the bottom right of the

screen, according to the type of treatment.9 If one of the 16 cards is inspected and then placed back in

8See Appendix 2.A.1 for the instructions provided to participants.
9In the MAJORITY treatments, the default card is called majority card, since it represents the choice of a majority of

participants in a previous experimental session.
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its original position among the other 15 cards, its boundaries get red. Participants are informed that

within the time limit of 10 minutes they have to select either one of the 16 cards or the default/majority

card. The 16 cards provide 16 different payoffs, ranging from 0.25 to 4 Euros, depending on the

fitness of the figure represented on the chosen card with respect to the figure in the target card. For

“fitness” we indicate the similarity between the chosen and the target card in terms of black squares

constituting the figures portrayed on the cards.

Participants also know that the default/majority card represents one of the 8 best cards in terms of

fitness among the 16 cards (hence leading to an earning from 2 to 4 Euros). If the default/majority

card is selected, it represents the final choice: in this case participants can no longer explore the other

cards appearing on the screen and they will receive the payoff corresponding to the chosen card.

Since participants cannot inspect the default/majority card, they can rely only on the information

about this card which is provided in the experimental instructions. The rationale for this is to test

subjects’ beliefs about the goodness of the default/majority card, without subjects being influenced

by what they see on this specific card.

In case no card is selected within 10 minutes, participants simply receive the show-up fee of 2.5

Euros. The countdown of seconds available is displayed at the bottom right of the screen. At the

beginning of each session, participants are endowed with a pen and a printed page consisting of the

contours of the 16 cards divided into rows of four, as they appear on each computer screen. The

idea is to facilitate subjects in remembering the fitness of the cards as they work through them, by

allowing participants to take notes related to the cards inspected. An example of the page is provided

in Figure 2.2.

After the completion of the choice, an incentivized belief elicitation task regarding the “fitness” of

the default/majority card takes place.

What we mean by “fitness” is the number of black squares composing each figure that differ in terms

of position between the selected and the target card. This measure changes across the high-cost and

the low-cost treatments. In the low-cost scenario, the target figure is made up of 100 black squares.

Each of the 16 cards differs from the target not for the total number of squares composing the figure,

but for 5 to 20 squares which are placed in a different position with respect to the target figure.

The idea for the high-cost scenario is that of increasing the number of “pixels” composing the

figures, that is the resolution: the target figure in this case consists of 400 black squares and each of

the 16 cards differs from the target card for 20 to 80 squares which are placed in a different position
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Figure 2.2: Example of the annotation page

with respect to the target figure, while the total amount of squares remains the same. In practice, each

black square of a low-cost figure corresponds to 4 black squares in a figure in the high-cost scenario.

Therefore, in both scenarios, there isn’t the perfect match card among the 16 cards on the screen: the

best cards in terms of “fitness” are those with 5 and 20 squares in a different position with respect to

the target figure, in the low-cost and high-cost scenarios respectively. Panel (a) and (b) in Figure 2.3

provide examples of figures in the low-cost and high-cost treatments, respectively. We expect that

the increase in the number of squares composing the figures leads to an increased complexity in the

task, and hence to higher cognitive costs.

It follows that in the belief elicitation task participants are asked to choose the number of squares

they believe that differ between the target and the default/majority card.10 All options, according

to the treatment, are presented and participants are asked to tick on one of them in order to end the

experiment: in the low-cost treatments, numbers from 5 to 16 were displayed, whereas in the high-

cost treatments participants could tick on numbers ranging from 20 to 80, with a distance of 4 to each

other (20, 24, 28, 32, and so on, until 80). Hence, subjects were not requested to write the amounts

on their own, without any prior information of the possible numbers, but were asked to select one

among the numbers displayed.

If the number selected is correct, one additional Euro is earned at the end of the experiment by the

participant who made a right guess about the fitness of the default/majority card.

10Once the experimental task has been completed, we ask subjects the following question “By what amount of squares do
you think that the default (or majority) card differs from the target?”
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Figure 2.3: Example of figures

(a) Low-cost treatments (b) High-cost treatments

Notes: In red it is represented the dimension of a square.

In addition, at the end of each session, participants were asked to fill out an anonymous ex-post

questionnaire. This questionnaire aimed at gathering information about the perceived difficulty of

the task, impressions about what the figure represented, beliefs about their absolute and relative

performance as well as a series of demographics data such as age, gender and college major (see

Appendix 2.A.2 for details).

The experimental design develops across two dimensions of treatments, that allow us to disentan-

gle the role played by the availability of social influence in a high-demanding scenario in cognitive

terms versus a low-demanding one. Moreover, the experimental setting also permits us to control for

the effect of imitation and the temporal saliency of choices, in conditions of low and high cognitive

costs.

A first dimension of the 2 x 2 experimental design is represented by cognitive costs: in the low-cost

treatment, the figures are made up of 100 black squares, while in the high-cost treatment figures have

a higher precision, since they include 400 squares. The second dimension of treatments involves the

information given to participants about the default/majority card. In the default treatment, the card

on the bottom right is called DEFAULT CARD and participants are informed that it is one of the 8 best

cards among the 16, in terms of fitness with the target card. Conversely, in the majority treatment,

the card on the bottom right is denominated MAJORITY CARD: participants are notified that it is one

of the 8 best cards, and, in addition, that it was chosen by the majority of participants from a previous

experimental session. The rationale of providing information also in the default treatment is to pre-
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serve comparability between the default and the majority treatments. In this way, the communication

of the fitness of the cards, in other words their expected value, remains invariant across treatments.

What changes is the additional information of the choice implemented by a previous majority, that in

our approach aims at representing a social interaction component which participants may decide to

follow when facing a cognitive cost.

Table 2.1 provides an outline of the four treatments.

Table 2.1: Treatments

Cognitive costs

Information on the majority

Low-Cost High-Cost

No low-default high-default

Yes low-majority high-majority

2.3.2 Procedures

A baseline session without the availability of a default/majority card was previously run with 20

participants in order to gather data on the majority card used in the following majority treatments.

The low-cost treatment was administered to 10 subjects, and the high-cost treatment was conducted

on the remaining 10 subjects. The best card in terms of fitness with the target card was chosen by the

majority of participants in both treatments.11

Following this baseline initial session, 154 subjects took part in the experiment, divided into 12

sessions.12 40 participants took part in each of the four treatments, except in the low-majority treat-

ment in which the number of participants was 34. The experiment was fully computerized and it

was performed through a between-subject design. Participants were volunteer undergraduate and

graduate students from different humanities and technical faculties from the University of Trento.

Each session lasted around 30 minutes and it was conducted at CEEL (Cognitive and Experimental

Economics Laboratory, Trento) between April and June 2013. A show-up fee of 2.5 Euros was given.

The average earning per participant was of 5.7 Euros, and it was paid privately and anonymously in a

separate room at the end of the experiment. Subjects could not participate in more than one session.

11Appendix 2.A.3 reports descriptive statistics of the baseline session, used to retrieve data about the majority choices in
the low-cost and in the high-cost setting.

12Among a total of 166 participants, 154 selected a final choice, while 12 run out of time. For the analysis, we decided to
consider only data about the 154 subjects who finalized a choice.
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Upon their arrival at the laboratory, participants were randomly allocated to cubicles inhibiting

interaction with other participants. Each participant could read the instructions for the experiment

on the computer screen placed in the cubicle, and she was invited to read them privately. Later, a

member of staff read the instructions aloud and participants were given the opportunity to privately

ask staff members for clarifications. A set of computerized control questions was administered to

subjects in all treatments, in order to verify their understanding of the task.

The experiment consisted of four treatments, as depicted in Table 2.1. Three sessions per treatment

were run.

2.3.3 Behavioral predictions

A first conjecture arises related to the task administered to subjects. We believe that our approach

in designing the figures that participants have to visually compare entails a higher cognitive cost

in case of a higher amount of resolution of the figure in the card, which consequently involves a

lower performance rate. Therefore, we maintain that increasing the cognitive cost implies lower

performance choice rates.

In this study we are interested in analyzing what kind of behavioral shortcuts do individuals put

into practice when they face decisions which are cognitively demanding and do not present a clear cut

solution. We aim at testing two possible heuristics: a social one, related to the influence of a previous

majority of participants, and a temporal one, which may guide the timing in which decisions are

taken.

Following the arguments introduced in Section 2.2, information on others’ choices can be con-

ceived as a way to economize on decision costs. Therefore, this leads us to formulate the following

testable prediction:

Hypothesis 1 People imitate more in contexts highly demanding in cognitive terms

If Hypothesis 1 is verified, we should observe more participants opting for the default choice in the

high-majority treatment. At the basis of the hypothesis, our experimental setting allows us to shed

light on participants’ motivations underlying their choices. This is possible by eliciting their beliefs

regarding the quality of the default/majority card, and also by eliciting their beliefs related to their

own relative and absolute performance. On the one hand, the better they think the default/majority

card is, with respect to the target card, the more frequently they should choose it. On the other hand,
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the perceptions on their own skills in solving the task can also play a role: we expect that more

overconfident subjects rely less on what has been previously chosen by other participants.

The second heuristic we aim at examining refers to the timing of choices, and to whether this

differs in case participants face a more complex kind of task. More specifically, we expect that:

Hypothesis 2 More recent memories have a greater impact on choices

Our experimental design enables us to follow with much detail participants choices in terms of

cards uncovered and time spent in solving the task. If Hypothesis 2 is confirmed, we should observe

a higher frequency of participants choosing their final card among the more recently uncovered cards.

This behavioral pattern could be even more important in the case of high-cost treatments.

2.4 Results

In this section, we first present the descriptive statistics of the sample of participants. We then discuss

econometric results related to the research hypotheses we aim to test. A list of the variables used in

the analyses is included as Table 2.11 in Appendix 2.A.4.

2.4.1 Descriptive statistics and prima facie evidence

From the pages for notes collected after each experimental session, it is clear that for most partic-

ipants they were useful tools for recording their thoughts as they inspected the cards, and hence

remembering the goodness of the cards visualized. Overall, 27% of such pages were left blank, 12%

presented draws or scrawls, while the remaining 61% exhibited some measures of quality about the

cards, as for instance arrows, percentages, pluses and minuses or different numbers of stars written

within the contours of some cards. Across treatments we do not observe statistical differences in the

types of writings left on the pages for notes, or in the amount of cards left blank.

Table 2.2 reports means, standard deviations, minimum and maximum values of the main variables

deriving from the experimental sessions.

Table 2.2: Descriptive statistics

Mean Std. Dev. Min Max
Payoff 5.71 1.00 2.75 7.5
Net payoff 5.42 0.95 2.75 6.5
Seconds 417231.6 162956.2 1 581673
N. uncovered cards 21.80 8.74 1 49
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The variable “payoff” included in Table 2.2 represents the total payoff from the experiment for

each subject, while in the variable “net payoff” it is subtracted the additional Euro gained in case of

a correct guess of the belief about the default/majority card (out of 154 participants, 45 guessed the

fitness of the default/majority card correctly). The average final payment consists of almost 6 Euros.

On average, subjects complete the task in almost 7 minutes and they uncover 22 cards.

In Table 2.3 are included the descriptive statistics of the answers provided by participants in the

belief elicitation task and in ex-post questionnaire administered at the end of the experiment, differ-

entiated between men and women.

The variable “belief default” of Table 2.3 is the ratio between the real difference in black squares

between the target and the default/majority card, and the believed difference in black squares be-

tween the target and the default/majority card declared by each subject at the end of the experimental

sessions. As indicated in Section 2.3.1, at the end of the experiment participants face a belief elici-

tation task: they are asked to answer to the following question “By what amount of squares do you

think that the default (or majority) card differs from the target?”. This elicitation is incentivized, as

subjects earn one additional Euro if they answer correctly. Since in both low-cost and high-cost treat-

ments the default/majority card is the one with the smallest amount of different squares with respect

to the target card (5 over 20 in the low-cost treatment vs 20 over 80 in the high-cost treatment), it

follows that the “belief default” values range between 0.25 and 1, in case of the worst and best belief

about the default card, respectively. Therefore, a higher value for “belief default” represents higher

expectations about the goodness of fit of the default/majority card. On average women have worse

beliefs regarding the default/majority card than men, but the difference is not statistically significant

(Wilcoxon rank-sum test, z = -1.564, p = 0.1177).

At question 1) of the ex-post questionnaire, participants were asked to indicate how accurate they

think their final choice is. The answer is in terms of the number of squares of difference between

their chosen card and the target one. Answers can take values between 5 and 20 in the low-cost

treatments, and values between 20 and 80, with intervals of four, in the case of high-cost treatments.

The answer to question 1), which we call “believed accuracy”, is normalized on a scale between 1

and 16, where 1 indicates that the participant believes to have chosen the best card among the 16, and

16 indicates the worst expectation about one’s own performance in the task. The normalization on a

scale 1-16 is implemented in order to compare the answers in the low-cost and high-cost treatments,

since the number of squares differ in these two conditions.
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Table 2.3: Descriptive statistics - Belief elicitation and ex-post questionnaire

Females Males
Frequency Percentage Frequency Percentage

Belief default
Mean 0.69 0.75

Believed accuracy
Mean 2.85 2.63

Absolute under/over-confidence
Mean -2.81 -2.31

Difficulty
Mean 5.23 5.54

Relative under/over-confidence
Better 31 37.80 40 55.56
Equal 42 51.22 29 40.28
Worse 9 10.98 3 4.17

Choice majority
Yes 49 59.76 52 72.22
No 33 40.24 20 27.78

Frequency Percentage
Faculty

Economics & Management 73 47.40
Engineering 10 6.49
Law 23 14.94
Literature 14 9.09
Math 11 7.14
Not a student 5 3.25
Sociology 18 11.69

Degree level
Out of due date student 17 11.04
Master student 33 21.43
Not a student 7 4.55
1st year student 21 13.64
2nd year student 39 25.32
3rd year student 37 24.03

Gender
Female 82 53.25
Male 72 46.75

Age
Mean 23.37 23.49
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At the end of the experiment participants finalize their choice. We can measure the accuracy of

their final choice and we call it “actual accuracy”. The cards rank from the best one -number 1- to

the worst one -number 16- in terms of similarity with respect to the target card. Therefore, also the

actual accuracy measure of participants’ choices ranges between 1 and 16, with 1 indicating that the

participant was able to select the best card, and 16 indicating that the participant selected the worst

card.

Believed and actual accuracy can be matched together, allowing us to construct a variable repre-

senting absolute under/over-confidence. More specifically, the variable is obtained by subtracting

actual accuracy from believed accuracy, and ranges between - 15 and + 15, with -15 indicating the

maximum level of absolute overconfidence and +15 representing the maximum level of absolute

underconfidence a subject can report. As can be noted from Table 2.3, both women and men are

on average overconfident in absolute terms, with females being slightly more overconfident than

men, although the difference is not statistically significant (Wilcoxon rank-sum test, z = -0.345, p =

0.7305).

At question 2) of the ex-post questionnaire, participants were asked to indicate the level of diffi-

culty of the task, on a scale between 1 (very easy) to 10 (very difficult). In Table 2.3 the variable

“difficulty” depicts the average of the answers to this question. Women perceive the task as slightly

easier than men, but the difference between the averages is not statistically significant (Wilcoxon

rank-sum test, z = -0.899, p = 0.3688).

We also asked participants to compare their performance in the task with that of the majority of

participants. More specifically, in question 3) of the ex-post questionnaire we ask whether they think

to have performed better, equally or worse than the majority of the participants. Answers to this

question provide us with a measure of relative under/over-confidence. In the male answers we have a

clear better-than-average effect, since more than 50% of male participants believe to have performed

better than the others. Women appear much more overconfident than men in relative terms. If we join

the answers “better” and “equal”, and we compare them to the “worse” answers, we find that women

are significantly less overconfident than men (Wilcoxon rank-sum test, z = -2.2049, p = 0.0275).

Taking into account some of these variables across the four treatments, we can see a more detailed

picture of the underlying patterns of the experiment in Table 2.4.

We find a statistically significant lower payoff in the high-cost treatments compared to the low-

cost treatments, both in case of the payoff and the net payoff variables (Wilcoxon rank-sum test, z =

28



2.4. RESULTS

Table 2.4: Means across treatments

Low-default High-default Low-majority High-majority
Payoff 6.12 5.09 6.14 5.56

Net payoff 5.87 4.84 5.93 5.11
Seconds 453786.10 411323.20 405916.30 396203.50

N. uncovered cards 22.75 22.53 20.26 21.43
Difficulty declared 5.33 5.83 5.59 4.80

Belief default .70 .71 .65 .79

Table 2.5: Means - Default versus majority treatments

Default treatments Majority treatments
Payoff 5.60 5.83

Net payoff 5.35 5.49
Seconds 432554.7 400666.2

N. uncovered cards 22.64 20.89
Difficulty declared 5.58 5.16

Belief default .71 .73

5.492, p = 0.00; z = 6.859, p = 0.00, respectively13). This is corroborated by looking at Figure 2.4,

in which we can notice that the median payoff values for the high-cost treatments are always below

the median payoff values for the low-cost treatments.

This result supports our experimental approach and sheds light in favor of the presence of a higher

cognitive difficulty in case of figures with a higher resolution, since the net payoff is a clear measure

of performance. This preliminary evidence is verified in the ordinary least-squares regression anal-

ysis which investigates the determinants of the performance reached by the 154 participants in the

experiment (see Table 2.6).

Table 2.6: Regression model of the determinants of performance

Payoff∼ Coeff. Std. Errors
(Intercept) 5.776 (.290)***
info .290 (.147)◦

cost -.788 (.146)***
male .250 (.147)◦

difficulty -.051 (.033)
seconds 8.73e-07 (4.55e-07)◦

Number of Observations: 154
Significance levels: *** 0.001; ** 0.01; * 0.05; ◦ 0.1

Notes: The dependent variable in the model is the payoff in

the experiment.

The dependent variable in the model - the payoff in the experiment- is regressed on the following

13Throughout the paper, treatment means are used for statistical two tailed tests, unless otherwise specified.
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Figure 2.4: Payoff per each treatment

Notes: Middle bars correspond to median values, the edges of the boxes comprise the inter-quartile range between the 25th

and the 75th percentiles, whiskers correspond to 1.5 times this range and circles characterize any other observation.

explanatory variables: info is a dummy variable equal to 1 if the treatment provides information about

the majority (low-majority and high-majority treatments), and it is equal to 0 otherwise (low-default

and high-default treatments); cost is equal to 1 if the treatment is highly costly in cognitive terms, and

it is equal to 0 otherwise; male is equal to 1 if the participant is a male, and to 0 in case of females;

difficulty is the perceived difficulty declared by subjects in the ex-post questionnaire and seconds is

the amount of milliseconds employed for the completion of the task.

The regression output reported in Table 2.6 confirms what previously discussed, as can be noticed

from the negative and highly significant coefficient of cost. The positive and statistically significant

coefficient of the dummy information might be due to the higher frequency of default choices in

the majority treatments: the default choice was attached to the highest payoff, even if participants

were not aware of this. Males, ceteris paribus, seem to perform slightly better than females. Fur-

thermore, the perceived difficulty declared at the end of the experiment does not seem to predict the

performance of participants, while the more time spent completing the task is significantly associated

to a higher payoff. This evidence leads to the following result, which confirms the validity of our

experimental task:

Result 2.1. Figures with a higher resolution are associated to higher cognitive costs and hence lower
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Figure 2.5: Payoff - Default versus majority treatments

Notes: Middle bars correspond to median values, the edges of the boxes comprise the inter-quartile range between the 25th

and the 75th percentiles, whiskers correspond to 1.5 times this range and circles characterize any other observation.

performance rates.

Following the descriptive statistics of Table 2.4, in the majority treatments participants employ the

smallest amount of seconds, especially in the high-majority one. Moreover, participants finalize their

choice faster if the task involves high cognitive costs, seeming hence to give up before if they face a

difficult task.

Conversely, the maximum number of uncovered cards is registered in the low-default treatment.

This might be due to the low difficulty of the task, so that participants are more willing to inspect

the 16 cards on the screen. Nevertheless, and quite surprisingly, the lowest difficulty declared for the

task is related to the high-majority treatment.

When we consider the beliefs about the goodness of fit of the default/majority card, they are better

in the case of the high-cost treatments with respect to the low-cost ones, while the information setting

does not seem to influence subjects’ beliefs (Wilcoxon rank-sum test, z = -2.261, p = 0.0238; z = -

0.618, p = 0.5369, respectively). This enables us to derive the following result:

Result 2.2. High-cost treatments present better beliefs about the default/majority card.

Table 2.5 reports the descriptive statistics of default and majority treatments, pooled together.
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From a first visual comparison no sharp differences emerge when comparing the column of the

default treatments and the column of the majority treatments. This is confirmed after performing

a series of Wilcoxon rank-sum tests on the means of the variables of Table 2.5: the tests do not

show statistical differences between the default and majority treatments.14 Absence of significant

differences between the default and majority treatments can also be noted in Figure 2.5, which shows

that the only discrepancy in the payoff between default and majority treatments is in the variance of

payoffs, which is higher in the default treatments.

2.4.2 Imitative dynamics and over-confidence

Table 2.7 reports the frequencies of subjects who chose either the default or the majority card.

Table 2.7: Frequencies of default options

Low-default High-default Low-majority High-majority
Frequencies default 1 2 2 3

N. of subjects 40 40 34 40

As we can note, the frequencies of subjects choosing the default/majority option are very low:

out of 154 individuals, only 8 adopted this decisional shortcut. The highest frequency of default

choices is in line with our imitation hypothesis: people decide for a shortcut in case the task is more

costly in cognitive terms and a majority outside option is available, but differences across treatments

are not statistically significant (two-sample test of proportions with respect to cost and information

treatments, respectively: z = -0.6135, p= 0.5395; z = -0.8400 p= 0.4009).

We do not find evidence for imitative behavior in choices, but we consider to investigate more

deeply the beliefs about the default/majority cards in order to have a better understanding of imita-

tive dynamics.

A closer examination of the elicited beliefs across treatments requires us to undertake pairwise com-

parisons. We first compare average beliefs about the goodness of the default/majority cards between

low-default and high-default treatments. By doing so we aim to test whether, while keeping the

same default informational setting and changing the difficulty of the task, participants have different

expectations regarding the goodness of the default/majority card. We do not find any statistically

significant difference (Wilcoxon rank-sum test, z = -0.483, p = 0.6290).

14The results of the Wilcoxon rank-sum tests, considering the order of the variables of Table 2.5, are: z = -1.157, p =
0.2474; z = -0.344, p = 0.7307; z = 1.349, p = 0.1774; z = 0.964, p = 0.3349; z = 0.994, p = 0.3201; z = -0.618, p =
0.5369.
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The same result holds when we compare average beliefs between the low-default and the low-

majority treatments (Wilcoxon rank-sum test, z = 1.030, p = 0.3029). This means that, while keeping

the same (low) difficulty of the task, participants do not report differences in the expectations regard-

ing the default/majority card.

A different pattern arises concerning beliefs in the high-majority treatment. Participants in this

condition have higher beliefs related to the default card both with respect to the low-majority treat-

ment and the high-default treatment (Wilcoxon rank-sum test, z = -2.636, p = 0.0084; z = -1.748, p

= 0.0804, respectively). This suggests that a majority, considered as social component in our exper-

iment, is considered to implement better decisions in presence of high cognitive costs. Hence, by

investigating participants’ beliefs about the quality of the default/majority card, we can argue that the

decisions of the majority represent a focal point in the presence of higher cognitive costs. We can

therefore conclude that:

Result 2.3. Beliefs about the choice of a majority of individuals are better with respect to a setting

with lower cognitive costs and with respect to a setting in which there is no information about the

choice of a majority.

Imitative dynamics are also investigated in connection with participants’ under/over-confidence

regarding the experimental task. It might indeed be the case that subjects decide to conform to what

a majority has already decided because they feel underconfident about their skills in solving the task.

We first compare the perceived difficulty of the task between those participants who opted for the

default/majority card and those who chose as final card one inspected by themselves. For the former

group the average reported difficulty is 6.75, whereas for the latter group it is on average 5.3. This

represents a first clue about referring to the default/majority choice when the task to be completed

is perceived as complicated, although the Wilcoxon rank-sum test for the comparison of average

difficulty between the two samples is not statistically significant (z = -1.438, p = 0.1506).

When we consider the mean value of the absolute under/overconfidence variable, we find that it is

-.364 in the low-cost treatments and -4.625 in the high-cost treatments (the differences in this case

are statistically significant: Wilcoxon rank-sum test, z = 6.477, p = 0.0000). There are no differences

in terms of under/over-confidence when information treatments are compared (the mean value of the

under/over-confidence variable is equal to -2.81 and -2.32 in the default treatments and the majority

treatments, respectively).

Comparing the subjects who chose the default/majority card and the subjects who did not, we find
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a statistically significant difference in the absolute under/over-confidence variable: more specifically,

the former subjects under-evaluate their skills by 1, while the latter over-evaluate their skills on

average by 2.77 (Wilcoxon rank-sum test, z = -2.828, p = 0.0047). That is to say that participants

are more overconfident about their capacities in absolute terms when the task is more difficult, and,

as expected, they are more overconfident when they don’t rely on the default/majority card as their

final choice. This result is in line with the values declared about the difficulty of the task. The above

analysis leads to the following result:

Result 2.4. In the high-cost treatments participants are more overconfident about their skills in

absolute terms. The same applies to participants who don’t rely on a default/majority card as their

final choice.

2.4.3 Temporal patterns of decision

As regards the time distribution of choices, our data set enables us to track the sequence of cards

uncovered by subjects, as well as the amount of seconds they spend looking at each card inspected.

Descriptive statistics across the four treatments of the variables used in this section are detailed in

Table 2.8.

On average, subjects uncovered 22 cards each: this means, since the available cards for inspection

on their screen are 16, that they uncover the same card more than once. Therefore, whenever this was

the case, we decided to consider as timing of choice the last moment the chosen card was uncovered.

For instance, if a subject uncovers the chosen card as the third card in his sequence of uncovered

cards, but also as tenth card, we consider that the subject selects the tenth uncovered card as her

final choice. Of course, this criterion pushes the distribution of choices towards the right tail, but

we believe it is more realistic than other criteria (for example, considering the first time in which

the chosen card was uncovered or a point in between the first and the last time in which it was

uncovered).

Given this assumption, we construct the variable “timing of choices” by normalizing the order in

which the chosen card was uncovered by the total number of uncovered cards for each subject. Panel

(a) and (b) in Figure 2.6 display the frequencies for the timing of choices of participants in the high-

cost and low-cost treatments, respectively.

From a first visual comparison, we can note that in the high-cost treatment there is a higher fre-

quency of participants choosing among the recently uncovered cards. This is confirmed, although
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Figure 2.6: Time distribution of choices

(a) Low-cost treatments (b) High-cost treatments

Table 2.8: Descriptive statistics - Temporal patterns

Mean Std. Dev. Min Max
Timing of choices

Low-default 0.50 0.32 0.048 1
High-default 0.48 0.29 0.043 1
Low-majority 0.59 0.28 0.056 1
High-majority 0.55 0.30 0.045 1

Distance
Low-default 0.18 0.24 0 0.791
High-default 0.23 0.24 0 0.846
Low-majority 0.30 0.24 0 0.875
High-majority 0.22 0.19 0 0.727
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by a marginal significance, when we perform a Wilcoxon rank-sum test on the average timing of

decision, comparing low-cost and high-cost scenarios (z = -1.662, p = 0.0965). When looking at the

patterns in which the cards were uncovered and then chosen, we notice that all subjects, except one,

uncovered the best card among the 16 present in the screen. That is to say, virtually all participants

knew where the best card was. We hence analyze the distance, in terms of number of cards uncovered,

between the the best card and the card chosen and we normalize it for the total amount of uncovered

cards by each subject. We compare this distance across the high-cost and the low-cost treatments

and we find that it is significantly higher in case of high-cost treatments (Wilcoxon rank-sum test, z

= -2.437, p = 0.0148). Also this finding corroborates our Hypothesis 2:

Result 2.5. More recent memories have a greater impact on choices, especially in scenarios with

higher cognitive costs.

2.5 Discussion and Conclusion

Cognitive costs characterize many decisions we frequently face in real life situations. This paper

investigates the role played by cognitive costs in contexts involving social interactions and sheds

more light on the determinants of imitative behavior.

Imitation is a very frequent pattern of real world behaviors but its sources have been limitedly

examined by economic theory. Imitation is crucial in the transmission of knowledge and represents

one of the main sources of learning.

We analyze the role of imitation in decision making through an experiment on choice behavior, in

which we disentangle the potential drivers of imitative dynamics through the modeling of different

levels of cognitive costs. For this purpose, we expressly devise a novel experimental task which is

not purely mechanical like for instance counting tasks. Our results show that the experimental task

implemented allows us to carry out a scenario with low cognitive costs and one with high cognitive

costs, with the latter being characterized by lower performance levels. Moreover, we analyze tempo-

ral decisional patterns, since these might uncover relevant heuristics in decision making, especially

in scenarios with high cognitive costs.

In our experiment, imitation, conceived as a cognitive shortcut, does not seem to be present in

participants’ choices, but we find higher expectations concerning the goodness of choice of a majority

of subjects from a previous experimental session, if the task to be performed carries high cognitive
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costs. There is therefore some evidence of imitation of a majority as concerns beliefs. Moreover,

we find that participants are statistically more overconfident in the high-cost treatments, and when

they do not rely on choosing the default/majority card as their final decision. Therefore, choosing

the short-cut of the default/majority card is correlated with underconfidence about one’s own skills

in solving the experimental task.

A possible explanation of this finding could be identified in the way in which the imitative com-

ponent has been introduced in the experiment (i.e., by providing participants information about what

a majority did in a previous experimental session): this indeed might have been too weak to generate

some imitative behavior. For this reason, further research could be devoted towards an endogenous

imitation pattern within the experiment: the majority could be formed during the experiment and

feedback about it would be provided during the game. Another stream for future research might be

represented by modeling differently the social component, and by strengthening it. This would be

achievable by incorporating an in-group/ out-group framework in the experimental design.

Moreover, from the heuristics and biases literature introduced by the seminal work of Tversky and

Kahneman (1974), we know that people tend to presume they outperform the average, as it is the

case of participants in our experiment.15 With this in mind, following what a majority previously

did, without knowing the details of what kind of individuals the majority consisted of, might have

been too risky for such kind of overconfident agents. For instance, the source credibility literature

from marketing16 highlights the importance of the source of an advertising message, in order to

strengthen the validity of the message sent. This is the case of celebrity endorsements, in which the

celebrity does not sponsor questionable items because of possible negative reputation effects. It is

hence conceivable to design future follow-up studies of the current one with different information,

across the treatments, about the composition of who has previously chosen the majority card. Telling

this kind of information to participants could help increasing the attractiveness of this card and shed

more light on the distinction between social and personal heuristics.

In this paper, we also provide empirical evidence that in the presence of high cognitive costs

subjects implement decisional heuristics in order to find a solution to the task. More specifically,

they attach more relevance to more recent memories.

The experiment studies the situation of a new decisional process, which does not have room for

15To the question “Do you think you chose a final card which is better, equal or worse than the card chosen by the
majority?”, included in the ex-post questionnaire, out of 154 individuals 71 replied they performed better than the
majority, 71 equal and just 12 worse, thus confirming the overconfident pattern first proposed by Kahneman.

16For a review, see Pornpitakpan (2004).
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learning dynamics since it is played only once by subjects. Nevertheless, for future research, it

would be interesting to investigate how participants behave when learning dynamics are taken into

account, and hence to see whether practice and repetition have an impact on participants’ behavior.

We are aware of the concerns related to the external validity of laboratory experiments, and of

the limitations of letting individuals interact with reference groups exogenously imposed. Neverthe-

less, our approach might mimic those situations in which there is a decisional default option such

as in Internet contexts, in which frequently the most popular item is signalled and individuals might

choose to opt for it instead of individually looking at its characteristics, which may be very costly in

cognitive terms, regarding both effort and knowledge required.
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2.A Appendix

2.A.1 Instructions for the “high cost - default” treatment (translated from

Italian)

Welcome to this experiment!17

You will receive 2.5 Euros as a showing-up fee for coming on time to the experiment. We kindly

ask you to read the instructions carefully. During the experiment it is forbidden the communication

with other participants. If you have any doubts and you want to ask a question, please raise your

hand, an experimenter will come to you and will answer your question. If you don’t respect these

rules we will have to exclude you from the experiment and you will not be paid.

You are taking part to an economic experiment on decision-making. You can earn an amount of

Euros depending upon your decisions during the experiment. Both your choices and other partici-

pants’ choices will remain anonymous and will never be attached to your name.

Initially, for 15 seconds, it will appear on your screen:

• a card, on the top left. This card is called “TARGET” card. It contains a figure composed of

many squares. As a square we mean the part represented in red in the figure below:

• below the TARGET card you will find 16 cards containing figures. Each figure differs from

the figure contained in the TARGET card according to a different amount of squares.

Your aim is to find the card which contains the figure more similar to the figure contained in the

TARGET card, that is with the smallest amount of squares placed in a different position with
17Instructions for the other treatments are available upon request. In Italics are the parts related to the majority treatments,

for which DEFAULT card should always be replaced by textscMAJORITY card.
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respect to the figure in the TARGET card.

Your final earning will be as greater as smaller is the amount of squares that differ from the figure of

the card you chose and the figure on the TARGET card.

Your earning will be equal to the show-up fee plus:

• 4 Euros, in the case in which the card you chose is the best one, that is the most similar to the

TARGET figure;

• 0.25 Euros, in the case in which you chose is the worst one, that is the least similar to the

TARGET figure;

• the intermediate cards, between the best and the worst one, will provide you intermediate

earnings between 0.25 and 4 Euros, with increases of 0.25 per card.

At the end of the initial 15 seconds, during which both the TARGET card and the 16 cards under-

neath are visible, all cards will be covered. On the bottom right of the screen will appear a covered

card, called DEFAULT card. This card represents one of the best 8 cards (more similar to the TAR-

GET card among the 16 you find covered. [Majority treatments only] On the bottom right of the

screen will appear a covered card, called MAJORITY card. This card has been chosen by the ma-

jority of participants in a preceding session of the experiment and moreover it represents one of the

best 8 cards (more similar to the TARGET card among the 16 you find covered. You can choose

whether to select this card as your final choice, or to uncover and inspect the other 16 cards that

appear on the left of the DEFAULT card.

In case you choose the DEFAULT card, this represents your conclusive choice and you will not

be able to uncover it and then inspect the other 16 cards. Your earning in case you choose the DE-

FAULT card depends on the similarity of the DEFAULT card with respect to the TARGET card.

About the DEFAULT card you are only informed that it is one of the best 8 cards among the 16

present on its left. [Majority treatments only] About the MAJORITY card you are only informed

that it has been chosen by the majority of participants in a preceding session of the experiment and

moreover that it represents one of the best 8 cards among the 16 you find covered. If you choose it,

this represents your conclusive choice.

If you choose to inspect one of the 16 cards, you have to click on it. The card will be enlarged and

40



2.A. APPENDIX

displayed beside the TARGET card. Once you decide to conclude the visual comparison between

the selected card and the TARGET card, in order to bring back to the initial position the selected

card you must re-click on it. In this way, the card you have just compared will return to its initial

position and and its border will become red, to indicate that the card has already been inspected.

You can decide whether to choose this card as you definitive card, and in this case you must re-

click on it, or to proceed with the visualization of another card. In case you want to visualize again

a card which has already been inspected (therefore with the red border), you can re-click on it. The

computer will ask you whether you want to select this card as your final choice or if you simply want

to visualize it again.

If you choose to inspect one or more of the 16 cards, at any moment you will be able to interrupt

your search and to choose the DEFAULT card. In this case the experiment ends and your earning

will depend on the similarity between the DEFAULT card and the TARGET card.

The time available to you is 10 minutes, starting after the reading of these instructions. When the

time expires, if you haven’t selected any card yet, your final earning will be equal to the 2.5

Euros of the show-up fee.

Once you have selected your conclusive card, we ask you to remain seated and silent, while wait-

ing for the other participants to complete the experiment. After you made your choice (either one of

the 16 cards or the DEFAULT card), the computer will ask you to specify the amount of squares for

which you think the DEFAULT card) (that you cannot visualize) differs with respect to the TAR-

GET card. In case your answer is correct, you will receive an additional 1 Euro to your final earning.

Your final earning will paid to you in cash and privately, so that the other participants to the

experiment will not know your earning.
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2.A.2 Ex-post questionnaire

1) How accurate do you think your final choice was? Indicate the number of squares for which you

think your final card differed compared to the TARGET card 18

(5/ 6/ 7/ 8/ 9/ 10/ 11/ 12/ 13/ 14/ 15/ 16/ 17/ 18/ 19/ 20)

2) On a scale of 1-10, with 1 being the lowest grade of difficulty and 10 the highest, how difficult

did you consider the experimental task?

(1/ 2/ 3/ 4/ 5/ 6/ 7/ 8/ 9/ 10)

3) Do you think you chose a final card which is better, equal or worse than the card chosen by the

majority?

(better/ equal/ worse)

4) What do you think the TARGET card represented?

5) Among the cards, do you think there was one that will most probably be chosen by the majority?

Why?

(yes/ no)

6) In which faculty are you enrolled?

(Economics/ Humanities/ Engineering/ Law/ Physics and Mathematics/ Sociology or Psychology/

Other Natural Sciences/ Other Social Sciences/ not a student)

7) In which year of studies are you enrolled?

(first year/ second/ third/ out-of-due date/ master student/ not a student)

8) Which is your sex?

18In the high-cost treatments, due to the different resolution of figures, the options available to subjects for this question
were: (20/ 24/ 28/ 32/ 36/ 40/ 44/ 48/ 52/ 56/ 60/ 64/ 68/ 72/ 76/ 80). The rest of the questionnaire did not present any
differences across treatments.
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(female/ male)

9) In which year were you born?

2.A.3 Descriptive statistics - Baseline session

Table 2.9 reports participants’ choices of cards in the low-cost and high-cost treatments of the base-

line session, respectively.

Table 2.9: Chosen cards - Baseline session

Low-cost treatment High-cost treatment
Frequency Percentage Frequency Percentage

Fitness chosen card
1 3 30 2 20
2 1 10 - -
3 - - 1 10
4 - - - -
5 1 10 - -
6 1 10 - -
7 1 10 1 10
8 - - 1 10
9 - - - -
10 2 20 1 10
11 1 10 1 10
12 - - 1 10
13 - - 1 10
14 - - 1 10
15 - - - -
16 - - - -

Mean 5.4 8
St. Dev. 4.03 4.87
Min 1 1
Max 11 14
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Table 2.10: Descriptive statistics - Baseline session

Low-cost treatment High-cost treatment
Frequency Percentage Frequency Percentage

Gender
Female 5 50 6 60
Male 5 50 4 40

Faculty
Economics & Management 3 30 5 50
Engineering 1 10 1 10
Law 3 30 1 10
Literature 1 10 1 10
Math 1 10 - -
Not a student - - 1 10
Sociology 1 10 1 10

Degree level
Out of due date student 2 20 1 10
Master student 2 20 2 20
Not a student - - 1 10
1st year student 2 20 2 20
2nd year student 3 30 2 20
3rd year student 1 10 2 20

Age
Mean 22.4 22.6
St. Dev. 1.955 2.22
Min 20 20
Max 25 27

Payoff
Mean 5.4 4.75
St. Dev. 1.008 1.219
Min 4 3.25
Max 6.5 6.5

In Table 2.10 we report other descriptive statistics from the baseline session.

2.A.4 List of variables

Table 2.11 includes a list of the variables used in the analyses.

Table 2.11: List of variables

Variable Description

Male Dummy variable assuming value 1 if the participant is male and value

0 otherwise

Continued on next page
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Table 2.11 – Continued from previous page

Variable Description

Age Age in years

Payoff Total payoff earned by the participant at the end of the experiment

Net payoff Payoff earned by the participant excluding the 1 Euro gained in case of

correct guess of the fitness of the default/ majority card

Seconds Amount of milliseconds spent in choosing one card on the screen

N. uncovered cards Number of cards uncovered by the participant in solving the task

Low-default Indicates a low-cost treatment in which the card at the bottom right of

the screen is a default card

High-default Indicates a high-cost treatment in which the card at the bottom right of

the screen is a default card

Low-majority Indicates a low-cost treatment in which the card at the bottom right of

the screen is a majority card

High-majority Indicates a high-cost treatment in which the card at the bottom right of

the screen is a majority card

Info Dummy variable assuming value 1 if the participant takes part in a ma-

jority treatment (either low-majority or high-majority) and value 0 oth-

erwise

Cost Dummy variable assuming value 1 if the participant takes part in a high-

cost treatment (either high-default or high-majority) and value 0 other-

wise

Belief default The ratio between the real difference in black squares between the tar-

get and the default/majority card, and the believed corresponding dif-

ference in black squares declared at the end of each session by the par-

ticipant (answer to the question included in footnote 10 of Chapter 2).

The variable ranges between 0.25, if the participant believes that the

default/majority card is the worst, in terms of similarity with the target

card, and 1, in case she believes it is the most similar card with respect

to the target

Believed accuracy Number of squares the participant believes differ between her chosen

card and the target card. It has been normalized to values from 1 to 16,

where 1 indicates that the participants believes she has chosen the best

card possible and 16 indicates the worst card (participant’s answer to

Question 1 of the ex-post questionnaire, normalized to 1-16)

Continued on next page
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Table 2.11 – Continued from previous page

Variable Description

Actual accuracy Number of squares of difference between the participant’s chosen card

and the target card. It has been normalized to values from 1 to 16, where

1 indicates that the participant has chosen the best card and 16 indicates

that she has chosen the worst card

Absolute under/over-confidence Believed accuracy - actual accuracy. It ranges from -15 (maximum over-

confidence) to +15 (maximum underconfidence)

Difficulty Difficulty declared about the task (participant’s answer to Question 2 of

the ex-post questionnaire)

Relative under/over-confidence Believed performance of the participant compared to the majority: bet-

ter/ equal / worse. (participant’s answer to Question 3 of the ex-post

questionnaire)

Choice majority Dummy variable assuming value 1 if the participant believed that one

card will most probably be chosen by the majority of participants (par-

ticipant’s answer to Question 5 of the ex-post questionnaire)

Timing of choices Order in which the chosen card was uncovered, divided by the number

of cards uncovered by the participant (it ranges from 0 to 1: the smaller

the value of the variable, the sooner the participant uncovered the card

which she finally chooses; the higher the value of the variable, the later

the participant inspected the card which she finally chooses)

Distance Distance in terms of number of uncovered cards between the best card in

absolute and the card chosen, divided by the number of cards uncovered

by the participant (it ranges from 0 to 1)
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3 Exploring information aversion: an

experimental analysis1

3.1 Introduction

In neoclassical economic theory information is deemed as valuable only as a means for improving

decision making. Accordingly, individuals should collect as much information as possible as it will

allow them to fine-tune their choices (Stigler, 1961).

Yet, a growing number of studies in various fields, such as Economics, Psychology and Medicine,

point in the opposite direction and suggest that decision makers assign a value to information that

goes beyond the instrumental role considered by traditional economic theories. Every day life offers

many instances of such anomalous attitudes towards information: we avoid information when we

fear to receive bad news and we look for information when we expect good news or we want to

confirm our opinions. This is especially true in health contexts, in which emotions such as anxiety

and fear play an important role in driving decisions about medical treatments and preventive behavior

in general. Consider for instance a patient who neglects medical tests when she has some clues of

being ill, while she performs more accurate tests when she is almost certain of being healthy. In line

with this, Lerman et al. (1998) show that 46% of subjects with an hereditary history of breast and

ovarian cancer who perform a blood test to check for genetic mutations associated to these illnesses

refuse to receive test results. Likewise, but with a social interaction component, Zanella and Banerjee

(2014) find in a U.S. workplace environment that if a co-worker is diagnosed with breast cancer, the

probability of subjects to perform a mammography decreases.2

1This chapter is based on a joint work with Marie Claire Villeval. This research has been supported by a grant from the
French National Research Agency (ANR, EMCO program, HEIDI grant, ANR-11-EMCO-011-01) and was performed
within the framework of the LABEX CORTEX (ANR-11 LABX-0042) of Universit de Lyon, within the program
Investissements dAvenir (ANR-11-IDEX-007) operated by the French National Research Agency (ANR). Simona
Cicognani gratefully acknowledges financial support from PALSE and the School of Social Sciences of Trento.

2Other empirical studies indicating information avoidance in health related issues and procrastination in going to a doctor
if symptoms of illness are evident include Lyter et al. (1987), Facione (1993), Caplan (1994) Lerman et al. (1999),
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The asymmetric impact of good and bad news on the acquisition of complementary information

about own condition has been recently theorized and investigated as the so-called “ostrich effect”.3

Karlsson et al. (2009) find clear evidence of this selective attention phenomenon in a financial context,

analyzing data on investment decisions: after a preliminary good signal about portfolio returns, as

represented by generic financial news on media, private investors are more willing to check their

online bank accounts in order to obtain conclusive information that reassures them. The contrary

occurs in case of preliminary bad news, after which subjects are less prone to look for precise and

definitive information in their online financial prospects.4

Selective attention towards information may originate from the inclusion of beliefs in subjects’

utility functions, as opposed to the traditional von Neumann-Morgenstern (vNM) utility function.

Information would be a means for decision makers to nurture desired beliefs and to overcome un-

pleasant beliefs (Eliaz and Spiegler, 2006). Hence, anticipatory utility should also be taken into

account when considering individuals’ welfare and to predict policy implications. If people derive

utility from beliefs, they may manipulate sources of available information and obtain sub-optimal

outcomes if their choices were different from the ones undertaken under a full information set. It

follows that the amount of information acquired is not trivial and gives rise to an important trade-off

between emotional costs from information and better decisions deriving from more information.

We investigate this informational trade-off by devising a novel experiment composed of two ex-

perimental sessions, with the second session taking place two weeks after the first one. In the first

session participants receive a fuzzy signal about their condition, which may become more informa-

tive if they decide to buy additional information in week 1. Between week 1 and 3 they are given the

opportunity of completing an online task, on three nonconsecutive days, which increases their ex-

pected payoff. The completion of effort has a higher impact on their expected payoff if participants’

condition is bad rather than good. By interacting the possibility of acquiring additional information

with the possibility of exerting effort, we aim to capture and investigate the informational trade-off

at the basis of the ostrich effect.

Our experiment departs from the existing research in two dimensions. First, it enables us to study

the main characteristics of the ostrich effect without providing a specific framing. Second, we intro-

Nosarti et al. (2000), Richard et al. (2000) and Meechan et al. (2002).
3The term was coined by Galai and Sade (2006) and theorized by Karlsson et al. (2009).
4Golman and Loewenstein (2013)) present a modified version of Karlsson et al. (2009), which includes a unified theoret-

ical framework that aims to explain a wide array of anomalous attitudes towards information, such as curiosity or the
desire for wisdom.
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duce the possibility of exerting an effort that increases expected payoffs. This may contribute to shed

some light on policy implications of the ostrich effect, as we are interested in knowing whether the

opportunity to acquire more specific information boosts subjects to exert effort.

Our findings show that participants significantly buy more information after a preliminary bad sig-

nal than after a good signal. Accuracy of signals has an impact on the exertion of effort only when the

signal is bad: in this case participants exert significantly more effort than after receiving a good sig-

nal, which lends support to the importance of additional information acquisition if someone deems to

be in a bad situation. Hence, participants understand the incentives of completing effort after receiv-

ing a bad signal about their condition only when they decided to be more informed. Effort exertion

and information acquisition seem to be substitutable rather than complementary: providing partici-

pants with the possibility of acquiring additional information lowers their effort exertion. Moreover,

the possibility of acquiring additional information about own condition points out a duality of indi-

viduals: those who decide to be more informed and thus follow a rational behavior in the exertion of

effort, and those who decide to remain with a limited information set and behave irrationally in the

exertion of effort.

The remainder of the paper is organized as follows. Section 3.2 presents the related literature

and Section 3.3 details the experimental design and the procedures followed to conduct the experi-

ment. In Section 3.4 we present the behavioral predictions we aim to test. Section 3.5 provides the

experimental results and Section 3.6 discusses the results and concludes.

3.2 Literature review

A few psychological theories are closely connected to the ostrich effect and envisage that individ-

uals may influence information acquisition in order to seek consistency in their beliefs. According

to the cognitive dissonance theory, theorized in the seminal work of Festinger (1962), individuals

would naturally tend towards an harmony of attitudes and beliefs and would hence face discomfort

whenever they cope with new information that contrasts existing beliefs or values. Inconsistent or

conflicting beliefs lead to a discomfort that individuals would seek to avoid, but in trying to elim-

inate the cognitive discrepancy they may act irrationally. Different ways to reduce the dissonance

in beliefs encompass: a change in the attitudes causing the dissonance, the acquisition of new in-

formation that compensates the dissonant belief or the reduction in the relevance of the conflicting

belief. For instance, a smoker may enjoy smoking but at the same time she may feel uncomfortable
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for the negative health effects driven by her behavior. Possible ways to reduce this discomfort may

be represented by quitting smoking, acquiring new information that reduces the belief that smoking

leads to lung cancer, or convince herself that the benefits of smoking outnumber the damages of it.

Closely interconnected with cognitive dissonance, the confirmation bias theory postulates that

when people search for or interpret information, they tend to confirm their own beliefs, especially

when emotional issues are involved (Nickerson, 1998). Likewise, according to Klayman and Ha

(1987), scientific research has the tendency to implement positive test strategies, which means that

researchers are more likely to test those cases characterized by the highest probability of verifying ex-

isting beliefs, rather than those cases which would probably falsify them. According to this cognitive

bias, poor decisions can be undertaken in that it distorts the informational capacity of individuals.

Conversely, the standard paradigm of the economics of information failed to explain many of the

logics for which people acquire or avoid information. For this reason in the past decades several

economic studies addressed the idea of anticipatory feelings in order to account for the behavioral

anomalies towards information registered in real-life scenarios. Akerlof and Dickens (1982) are the

first ones to extensively incorporate beliefs in a vNM utility function. They do so by considering

economic agents who are not emotionally neutral towards their beliefs, which can be influenced

either through self-persuasion or through the selection of informational sources and signals.

A common feature of studies addressing anticipatory feelings is the Bayesian belief updating of

subjects, originated by a first imprecise signal of their own condition. Caplin and Leahy (2001) build

a psychological expected utility model that explicitly takes into account a wide class of anticipatory

emotions, in which the main innovation is that agents’ psychological states are directly connected to

their utility level. They model how lotteries over future physical outcomes influence these emotions.

Building on Caplin and Leahy (2001), Koszegi (2003) introduces a patient-doctor model of free in-

formation acquisition by patients, in which the focus is placed on the patient’s decision making. The

model suggests that, in case of possible very bad news, the patient completely avoids the doctor. Sim-

ilarly to Koszegi (2003), Caplin and Leahy (2004) present a patient-doctor model. Here the doctor

observes the health condition (either good or bad) of a patient and the doctor’s aim is to maximize the

patient’s utility function. Patient’s posterior belief about her own health state is incorporated in the

model. There exist two types of patients: one who wishes to have a posterior belief about her health

condition as close as possible to her prior belief, whereas the other one has opposite preferences. The

patient first reveals her type and then the doctor decides to reveal or not her health state.
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Few studies have addressed anticipatory utility from a policy perspective. In Caplin and Eliaz

(2003), a game theoretical model examines the optimal testing mechanism for AIDS. By taking

into account psychological factors such as anxiety in undertaking the test, as well as the externality

involved in the spreading of this illness, they show that partially revelatory certificates could enhance

people to undertake AIDS tests. A similar policy implication is put forward by Schweizer and Szech

(2013). They aim to investigate the optimal mechanism of conveying life-changing information,

which results in providing either precise good news or noisy bad news. Only if the diagnosing

system is designed in such a manner it would be easier to be undertaken by patients.

Other studies propose different reasons for avoiding or collecting information, respectively. Car-

rillo and Mariotti (2000) consider strategic ignorance as a self-control device for those individuals

who may fear the impact of information on their beliefs. For instance, a non-smoker might want to

ignore the real harmful effects of tobacco on health in order to prevent herself from smoking. In fact,

she may discover that the objective probability of getting lung cancer from smoking is lower than her

subjective probability.

Conversely, a case of anomalous information acquisition is proposed by Eliaz and Schotter (2010),

who study the demand for non-instrumental information, that is information which is useless in terms

of decision making. Their findings show that people derive an intrinsic utility from posterior beliefs,

as they are willing to pay in order to be more confident about the choices they made. In particular,

people attach more weight to bad news, as they prefer to know whether the worst case scenario has

occurred, rather than the best case scenario.

In this paper we present a laboratory experiment that examines the key dynamics of the ostrich

effect, such as the existence of preliminary non-conclusive information, either positive or negative,

and a following optional decision of acquiring more conclusive information. The novelty of our

study is the possibility of exerting an effort that improves participants’ expected outcomes. The effort

aims to proxy a prevention component, that introduces policy implications from a new perspective

compared to the optimal diagnosing system proposed by Caplin and Eliaz (2003) and Schweizer and

Szech (2013).

Few attempts have been made to investigate the extent of information aversion experimentally.

Brown and Kagel (2008) mirror the financial setting of Karlsson et al. (2009), with an experiment

that simulates a stock market. If the ostrich effect is present, investors should look at their stocks

more often when they hold a winning stock than when they hold a losing stock. The authors find
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evidence of a status quo bias rather than of the ostrich effect.

The topic of our study is also related to the “good news-bad news effect”, which mirrors the ostrich

effect in representing the aversion to acquire new information when subjects expect negative news.

This effect has been tested in two recent papers, in which the relevant information displayed refers to

very personal characteristics, such as beauty or IQ scores. Mobius et al. (2011) find an asymmetric

updating of beliefs about subjects’ performance to an IQ quiz: participants over-weight positive

feedback of their IQ scores relative to the negative feedback. Also Eil and Rao (2011) use IQ scores,

besides beauty scores based on a ranking of all participants made by participants themselves. Their

results reveal the existence of aversion to new information when subjects receive negative feedback

about their beauty or IQ.

3.3 Experimental design and procedures

3.3.1 Design

The experiment comprises two sessions in a longitudinal framework: session 1 occurs in week 1,

whereas session 2 takes place in week 3. Subjects are paid only at the end of week 3 and are informed

of this at the recruitment. At the recruitment subjects are also asked their availability for the date of

session 2, in order to minimize attrition in the data. In the experimental instructions of session 1

they are informed of the possibility of completing an online task between week 1 and 3, which might

have an impact on their final payoff. A brief description of the task is provided in the instructions of

session 1 in order not to push subjects to discover the online task simply out of curiosity.

3.3.2 Baseline treatment

We follow the longitudinal framework of the experiment, by first presenting session 1 and then pro-

ceeding with session 2.

Session 1. In week 1 participants come to the laboratory and they are told each of them is assigned

a box containing 20 balls. They also know that half of them is assigned box A, containing 14 white

balls and 6 black balls, and half of them box B, with 6 white balls and 14 black balls inside. They

don’t know their own box composition, but they are aware that the different box content in terms

of balls colors entails a different expected payoff. In fact, at the end of session 2, the computer will

randomly extract a ball from each box, and if the ball extracted is white the corresponding participant
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wins 25 Euros, otherwise she wins 15 Euros.

After being told this, a random extraction of 3 balls from each participant’s box occurs, without

reinsertion. The color of the three balls extracted is displayed on each computer screen, as a signal

of the box composition.

Finally, participants are asked to fill in a computerized questionnaire including demographic ques-

tions, such as gender, age and field of studies.5

Between session 1 and 2. Between the first and second experimental sessions, in which participants

are requested to come to the laboratory, they are given the opportunity to complete an online task

that has an impact on their expected earnings at the end of session 2. They are provided with this

opportunity on three nonconsecutive dates, distant 2-4 days one to another. On all these dates, they

receive an email reminding them of this opportunity, containing the link to the online task.

The task involves replicating a series of blurred codes correctly, between 00:00 and 23:59 of the

specific dates devoted for the task.6 Subjects should replicate the codes in succession, and after com-

pleting them they receive an email indicating the correct replication of the codes. The rationale for

this task, which is novel in an experimental setting, is to provide participants with a boring assign-

ment, not related to their intellectual capacities and not capable of entertaining them. Moreover, as

the experimenter does not benefit from the task completion, we avoid any reciprocity concerns from

the subject towards the experimenter.

For the task to be effective for an increase in expected earnings, it should be completed in all three

dates. Participants know that the exertion of the task has two different effects depending on the type

of box attached to them. If a participant is given box A and completes the task successfully in all

three dates, two black balls from her box become white. If a participant is assigned box B, four black

balls become white. If no task is performed or if it is not completed in its entirety in all the due dates,

the initial composition of participant’s box is maintained.

Session 2. On the same day of the week of session 1, but two weeks later, participants come back

to the laboratory and take part in session 2.7 Payoffs in this session are calculated in points and

converted into Euros at the end of the experiment (1 point = 0.20 Euros).

We elicit subjects’ risk preferences by adopting Eckel et al. (2012)’s task.8 This is a very simple

5See Appendix 3.A.2.
6This type of codes are called CAPTCHA in computer science terminology.
7A flexibility of up to two days for the date of session 2 is allowed to participants in case of unforeseen circumstances

that otherwise would preclude their participation to session 2.
8The task was first introduced by Eckel and Grossman (2008). We use Eckel et al. (2012)’s simpler version, focusing on
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risk measurement mechanism, which enables to disentangle subject’s preferences about risk from

their ability to perform mathematical computations. The task entails a choice among six lotteries,

which include one sure gamble with no risk (variance) and five more gambles, with both variance

between the payoffs and expected return increasing if we move from lottery 1 to lottery 6. The

representation of lotteries is circular, with the high payoff on the right of the circle and the low

payoff on the left.

Once all participants complete the risk elicitation task, the computers notify to subjects their box

type and a random extraction of one ball from each box takes place. The final box composition may

have changed from the initial composition only due to the correct completion of the three online tasks

between session 1 and 2. The color of the extracted ball is privately displayed on screens, as well as

the result of the risk elicitation task.

After the definitive extraction, participants are asked to fill in a computerized questionnaire, which

includes questions regarding their health status and their procrastination propensity.9 The rationale

for this is to investigate a potential correlation between information aversion and health related as-

pects. Finally, payment procedures follow in a separate room.

3.3.3 Additional information treatment

The main purpose of this treatment is to test the existence of the ostrich effect in a context in which

subjects can improve their own condition by exerting effort.

The Additional Information Treatment (AIT) differs from the Baseline Treatment (BT) only in

Session 1, as can be noted in Table 3.1. After telling participants that an extraction of 3 balls will

occur from their urn, we ask them to indicate for each possible combination of 3 extractable balls

whether they are willing to pay 1 Euro for the extraction of two additional balls from their box. The

1 Euro would be subtracted from their final payoff at the end of session 2. We thus apply the strategy

method to elicit participants’ willingness to pay for additional information, which provides them a

better signal of their own box composition.10

After this elicitation, the random extraction of three balls occurs and their color is privately dis-

played on each participant’s screen. The total number of balls displayed follows participants’ choices

from the strategy method. Hence, in case the participant chose to acquire the extraction of two ad-

the gain domain, in order to avoid loss aversion considerations.
9The ex-post questionnaire is included in Appendix 3.A.5.

10The strategy method was first introduced by Selten (1965). See Charness and Rabin (2005) for a discussion of the
strategy method in experiments.
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Table 3.1: Procedures across treatments

BT AIT

Session 1 control questions control questions

additional information acquisition
decision (strategy method)

extraction of 3 balls extraction of 3/5 balls

demographic demographic
questionnaire questionnaire

Between session 1 possibility of online task possibility of online task
and session 2 on 3 nonconsecutive days on 3 nonconsecutive days

Session 2 risk aversion task risk aversion task

extraction of the ball extraction of the ball
from own box from own box

ex-post questionnaire ex-post questionnaire

payment payment
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ditional balls for the combination of balls extracted, a total of five balls is displayed on the screen.

Otherwise, the participant observes a total of three balls.

3.3.4 Procedures

We conducted the experiment between May and June 2014 at the CEEL laboratory of the Univer-

sity of Trento, Italy. The experiment was computerized and programmed with Borland Delphi. 123

subjects were recruited with the online software used at CEEL, that reaches a pool of around 2000 in-

dividuals from different faculties of the University.11 Since participants in a few circumstances could

earn more than 25 Euros, at the recruitment they were asked to be of EU citizenship - Switzerland

included - and to hold a bank account, due to Italian jurisdiction laws.

Participants were quizzed on their understanding of the experiment after reading the instructions

of session 1 (control questions). Answers were provided in private and their accuracy was checked.

Each session consisted of various stages, and a final questionnaire was administered to subjects at the

end of session 2.12 Both sessions lasted on average 25 minutes, whereas each online session lasted

approximately 5 minutes. Subjects could not attend more than one session of the experiment; they

were paid at the end of the second session in a separate room and received on average 22.3 Euros.13

We ran three sessions for the BT and five for the AIT, with 44 and 79 participants, respectively.

Three subjects did not show up at session 2, therefore we excluded them from the final data set.

Overall the experiment consisted of 16 sessions, of which eight in week 1 and eight in week 3.

Upon arrival at the laboratory, each participant drew a tag from a bag, indicating the number of her

corresponding computer. Computers were allocated in separated cubicles. Participants also had to

randomly pick from an urn a tag which reported their secret code for the experiment, to be entered

on computers at session 1 and 2, and also before performing the tasks between the two sessions.14

With this procedure we were able to track participants’ choices and at the same time to assure their

11These include Economics and Management, Engineering, Math, Physics, Chemistry, Literature, Computer Science and
Sociology.

12At the beginning of session 1, participants were informed of the existence of various stages in the experiment, but were
not provided with details of each stage in order to avoid strategic behavior. Instructions were neutrally-framed and are
available in Appendices 3.A.1 and 3.A.4, whereas a screen-shot of the online task is included in Appendix 3.A.3.

13At the end of session 2, subjects were asked to fill in the form for payment and to come to a separate room for payment.
Those whose payoff was lower than 25 Euros were paid in cash, whereas for payments above 25 Euros we paid
participants by bank transfer, due to Italian laws on cash use. We did not inform subjects in advance regarding this
different payment scheme, and they could not be familiar with it since payments above 25 Euros are a real exception
at the laboratory in which this experiment was run.

14In order not to lose the observations of those subjects who might have lost or forgot the code, we asked them, at the end
of session 1, to pick a copy of their secret code and to put it in an envelope, which was sealed in front of them and kept
at the laboratory. Each participant’s name was written on each respective envelope, as a guarantee in case of code loss.
Envelopes were destroyed at the end of the experiment.
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anonymity. At the beginning of each stage, subjects received the instructions for the corresponding

stage and read them for 5 minutes, after which instructions were read aloud by a member of the

laboratory.

3.4 Theoretical background and hypotheses

In this section we highlight the key components of the experimental setting, in connection with the

behavioral predictions we aim to test.

First, we represent a generic scenario in which the ostrich effect can take place. Two different types

of individuals, characterized by different endowments (box types), face a stochastic phenomenon: the

possibility of exerting effort between session 1 and 2 increases participants’ expected payoff, but the

payoff is eventually determined by the final random extraction of one ball from their box. Hence,

effort is not deterministic: even if subjects exert it, they may end up at week 3 with a black ball

extracted, which corresponds to the low payoff.

Second, the longitudinal framework of the experiment over two weeks creates a considerable tem-

poral dimension in which subjects face uncertainty about their own condition. They could choose to

reduce this uncertainty by buying additional information about their own condition, in week 1 of the

AIT.

Third, the informational trade-off which characterizes the ostrich effect is introduced in the exper-

imental design via the asymmetric expected gain from the tasks completion: we consider the tasks

completion to be more fruitful in terms of final expected payoff in case a participant is attached to

box B, which is the bad box. This adds a more realistic component to the model, as it is likely that,

for instance in a health scenario, the exertion of activities such as exercising or preventive effort in

general have a higher impact on individuals who are initially characterized by a bad condition. As

we incorporate in the model decreasing marginal benefits of effort, the acquisition of information is

clearly more useful if participants are attached to the bad box.

Signals about own condition are crucial for modeling the ostrich effect. In week 1 of the BT,

participants receive preliminary signals, via the random extraction of three balls from their box,

without reinsertion. At this stage participants form their initial beliefs about the type of box attached

to them. Beliefs following a Bayesian pattern in the BT are depicted in the left-hand side of Table

3.2, and are computed according to the formula:
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P(A|X) =
P(X |A)×P(A)

P(X)
, (3.1)

where A indicates the good/bad box and X the type (white or black) and number of balls extracted.

For instance, a participant who has two white balls and one black ball displayed on her screen reports

a Bayesian probability of 72.22% of being attached to the good box, versus a Bayesian probability

of 27.78% of holding the bad box.15

Table 3.2: Bayesian beliefs about box types after an extraction of 3 vs 5 balls

3 balls extracted 5 balls extracted
# White # Black Bayes pr. good Bayes pr. bad # White # Black Bayes pr. good Bayes pr. bad Signal

3 0 94.79% 5.21% 4 1 96.62% 3.38% C
5 0 99.70% 0.30% C
3 2 75.00% 25.00% C

2 1 72.22% 27.78% 3 2 75.00% 25.00% C
4 1 96.62% 3.38% C
2 3 25.00% 75.00% S

1 2 27.78% 72.22% 2 3 25.00% 75.00% C
3 2 75.00% 25.00% S
1 4 3.38% 96.62% C

0 3 5.21% 94.79% 1 4 3.38% 96.62% C
2 3 25.00% 75.00% C
0 5 0.30% 99.70% C

Notes: The column Signal refers to a confirmatory (C) or switching (S) signal with respect to the initial 3 balls signal. A confir-

matory signal maintains the domain (positive or negative) of the Bayesian probability of being attached to the good box, whereas a

switching signal entails the overturning of the domain of holding the good box.

We distinguish among three types of signals: a good signal, if the Bayesian belief of being attached

to the good box is greater than 50%, versus a bad signal, which occurs if the Bayesian belief of being

attached to the good box is smaller than 50%. A Bayesian probability equal to 50% of having the

good box refers to an uninformative signal.

In the AIT signals can become more informative with respect to the BT: participants have the pos-

sibility of paying 1 Euro for the extraction of two additional balls from their box, without reinsertion.

The aim of information acquisition is to be useful in informational terms with respect to the extrac-

15Participants’ beliefs about being in the good or in the bad box were not elicited, but will be elicited in future experimental
sessions. For further details of future research, see Section 3.6 and Chapter 5.
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Table 3.3: Different types of signals in terms of detail

Types of signals 3 balls extracted 5 balls extracted
# White # Black # White # Black

Good
Excellent

3 0 5 0
4 1

Decent 2 1 3 2

Bad
Poor 1 2 2 3

Very poor
0 3 0 5

1 4

tion of three balls: the two additional balls either provide a more informative signal of the initial

condition (confirmatory signal), or they change the domain of the belief, from a positive to a negative

domain, or viceversa (switching signal). Bayesian beliefs in case of 5 balls extracted are detailed in

the right-hand side of Table 3.2.

In order to better investigate the effect of different kinds of signals, we decompose good and bad

signals into more detailed signals, which are portrayed in Table 3.3. As a result, a good signal is split

into an excellent and a decent signal, whose corresponding Bayesian probabilities of being in the

good box are both higher than 70%. Conversely, a bad signal is decomposed into a poor and a very

poor signal, for which the Bayesian probabilities of being attached to the good box are both lower

than 30%.

The research hypotheses we aim to investigate cover three main issues: the exertion and com-

pletion of effort, the acquisition of additional information and the relationship between additional

information acquisition and health-related variables.

Effort. The comparison between the BT and the AIT allows us to determine whether the possibility

of having a more precise information about own condition has an impact on effort exertion. The

underlying rationale is to investigate whether there is complementarity or substitutability between

effort exertion and information acquisition. Thus, to explore if subjects, provided with the possibility

of acquiring additional information as in the AIT, are driven to complement this information with

effort or rather prefer to substitute it with effort. However, it is not clear to determine a priori which

effect will prevail.

We can further examine the availability of additional information to participants by comparing the

effort of those who saw five balls with the effort of those who saw three balls, conditional on having

received a good or a bad signal.16 This comparison enables us to test whether a higher accuracy of

16By type of signal we refer to a good versus a bad signal, whereas the accuracy of the signal refers to having observed

59



CHAPTER 3. EXPLORING INFORMATION AVERSION: AN EXPERIMENTAL ANALYSIS

the signal leads participants to exert more or less effort, depending on the type of signal received.

Since, by the experimental design, effort has a higher impact on expected payoff if a participant holds

the bad box, having a more accurate signal of the type of box assigned may influence effort exertion.

If significant differences among the types of signals and their accuracy are found, we can presume

that the acquisition of information is driven by the willingness to have better information regarding

the differential impact of the effort that participants may decide to exert.

Hypothesis 3.1. Effort is higher the worse is the signal and the higher is the accuracy of the signal.

Therefore: e5,BS > e3,BS > e3,GS > e5,GS,

where e stands for effort, the first subscript refers to the number of balls displayed and the second

subscript refers to having received a bad signal (BS) or a good signal (GS).

Hypothesis 3.1 hinges on the perceived probability of being attached to the bad box. The higher

this probability, the higher is the expected payoff deriving from the completion of effort. Therefore,

irrespective of the effort cost function, the higher the perceived probability of the bad box, given a

certain accuracy and type of signal, the higher should be the effort exerted for that specific informa-

tional condition. Indicating by P the probability of having a bad box, it follows that:

P5,BS > P3,BS > P3,GS > P5,GS⇒ e5,BS > e3,BS > e3,GS > e5,GS (3.2)

Computations underlying the validity of the first part of Equation 3.2, which leads us to formulate

the second part (Hypothesis 3.1), are reported in Appendix 3.A.7.

Moreover, we can distinguish the exertion of effort between those who had the opportunity to

buy additional information and bought it (e5,AIT ) versus those who did have the same opportunity

but decided to shy away from it (e3,AIT ). Comparing these two types of participants we can shed

light on the differences in effort exertion between those who decided to be better informed and

those who denied a better informational set. This comparison will allow us to dig more deeply in

the complementary/substitutability relationship between effort and information. Yet, it is not clear

which rationale may eventually prevail.

Additional information acquisition. By focusing on the AIT, it is possible to test the existence of

the ostrich effect and correlate it with other issues involved in the process of information acquisition.

The ostrich effect arises if the information acquired after a preliminary bad signal is lower than after

either five or three balls.
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a preliminary good signal. This leads us to formulate the following testable prediction:

Hypothesis 3.2. Information acquisition (I) after a preliminary bad signal is lower than after a

preliminary good signal: IBS < IGS

Additional information acquisition and health-related variables. Albeit the experimental set up

is not framed as a health context, we aim to shed light on possible connections between informa-

tion aversion and health-related variables. For instance, smoking attitudes may entail present-biased

preferences, as highlighted by O’Donoghue and Rabin (1999) and Downs et al. (2009). Smokers

may concentrate on present utility and avoid information, even if information may be relevant for the

future in terms of expected payoff from effort.

Hypothesis 3.3. Smokers are more information-averse than non-smokers: Ismokers < Inon−smokers

Individuals’ self-reported health-status may be considered in parallel with a preliminary signal

about their own condition. Hence, we posit that those who self-report a low health condition receive

a bad signal and hence are less willing to acquire additional information about their condition:

Hypothesis 3.4. Ilow−health < Ihigh−health,

where low-health is defined as a health level between 1 and 8 whereas high-health corresponds to

a health level between 9 and 10.17

Likewise, we suppose that procrastinators in terms of resolution of a health problem are more

information-averse, since they tend to delay the acquisition of more detailed information regarding

their health condition:

Hypothesis 3.5. Iprocrastinators < Inon−procrastinators,

where we indicate as non-procrastinators those participants who are willing to contact the doctor in

case of arising of a problem after one hour to one week, whereas procrastinators delay the resolution

of the problem beyond two weeks.

3.5 Results

In this section we provide an overview of the results through descriptive statistics and we follow

the analysis with econometric estimates. Tables 3.4 and 3.6-3.7 summarize the effort dynamics and

17The value of 8 corresponds to the median health status reported by experimental subjects.
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Table 3.4: Effort exerted between week 1 and week 3

BT AIT 5 balls 3ballsAIT 3 balls

Sum of efforts 2.50,∗∗ 2.32 2.71∗∗,∗ 2.16 2.31
GS 2.63∗,∗ 2.24 2.38 2.19 2.40
BS 2.35 2.38 2.92∗∗∗,∗∗ 2.14 2.22

Complete effort 0.77∗∗,∗∗∗ 0.59 0.81∗∗ 0.51 0.62
GS 0.83∗∗,∗∗ 0.56 0.63 0.54 0.68
BS 0.70 0.62 0.92∗∗∗,∗∗ 0.48 0.57

Notes: The Table reports means. We distinguish effort exerted after a good signal (GS)

and after a bad signal (BS). 5 balls vs 3 balls refer to the number of balls displayed on

the screen in week 1. Wilcoxon rank-sum tests have been estimated to test the equality

of means for the sum of efforts, whereas tests of proportions have been estimated in

case of complete effort. ∗∗∗ indicate significance at the 0.01 level, ∗∗ at the 0.05 and ∗

at the 0.10 level, for comparisons of BT and 5 balls with the following column. Com-

parisons between BT and 3ballsAIT are indicated in the BT column, after the comma,

if significant at any of the standard levels, whereas comparisons between 5 balls and 3

balls are indicated after the comma in the 5 balls column.

information acquisition, respectively. In Tables 3.5 and 3.8 we provide econometric estimates of

the determinants of effort exertion and information acquisition. Descriptive statistics of participants’

answers to the demographic questionnaire, the ex-post questionnaire and the risk elicitation task are

reported in Appendix 3.A.6, whereas regression results with more detailed signals, following the

distinction of Table 3.3 are included in Appendix 3.A.9.

3.5.1 Effort decisions

Table 3.4 depicts both the number of times participants completed the online task (sum of efforts) and

whether they completed the task all three times (complete effort), which was a necessary condition

in order to improve the composition of their own box.

Result 3.1. Participants in the BT complete more effort than in the AIT, especially after receiving a

good signal: eBT > eAIT

Evidence in favor of Result 3.1 derives from data about effort completion, since the sum of efforts

does not present significant differences across treatments: 77% of participants in the BT complete

all three tasks, versus 59% in the AIT. The gap increases after a good signal, with 83% and 56%

of participants completing all tasks, respectively. As in the AIT participants hold on average more

information than in the BT, Result 3.1 indicates that overall a substitution effect is operating between
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effort completion and information acquisition, which is possible only in the AIT. In fact, by offering

subjects the possibility to acquire more information they significantly exert less effort.

Considering Hypothesis 3.1, we find evidence of the first part of the inequality:

Result 3.2. Effort is higher the higher is the accuracy of the signal, especially after a bad signal:

e5,BS > e3,BS

As the other comparisons included in Hypothesis 3.1 do not report significant tests, what seems to

matter for the exertion of effort is the higher accuracy of bad signals.

The asymmetric impact of good and bad signals on effort exertion applies also when we focus on

those participants of the AIT who observe five balls versus those who observe three balls:

Result 3.3. A higher effort exertion occurs in the AIT when participants observe five balls instead of

three, especially after a bad signal: e5 > e3,AIT

Table 3.4 also shows that those participants in the AIT who decide to shy away from additional

information (the 3ballsAIT column) significantly exert less effort than those who take part in the BT,

especially after receiving a good signal:

Result 3.4. A higher effort exertion occurs after the appearance of three balls in the BT compared

to three balls appeared in the AIT, especially in case of a good signal: eBT > e3,AIT

It is interesting to implement comparisons by rows in Table 3.4, thus verifying whether participants

significantly exert more or less effort, conditional on the type of signal. As the marginal utility of

effort is higher if one is provided with the bad box, it is rational to complete more effort in case of

a bad signal. Therefore, conditional on the column, comparing effort exerted after the two types of

signals allows us to shed some light on the condition in which participants behave more rationally.

The only significant comparison between effort after a good and a bad signal turns out to be the case

of five balls displayed, both for the sum of effort and for complete effort (Wilcoxon rank-sum test, z

= 1.695, p = 0.0901; two-sample test of proportions, z = 1.6893, p = 0.0912, respectively). Therefore,

after receiving additional information, participants take advantage of it and exert effort in the rational

direction.

Result 3.5. Participants’ behavior is more rational, in terms of effort exertion, the more information

they receive
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We perform regression analyses on the determinants of effort exertion, employing as dependent

variables both the sum of efforts and the dummy variable taking value 1 if participants completed

the three tasks. By comparing the two models we check whether there exist some factors influencing

the completion of all the tasks versus factors driving participants to exert effort irrespective of the

premium in expected payoffs. From Table 3.5 we note that the only significant difference between the

two models lies in the coefficient of age: younger participants are more likely to complete all three

tasks, whereas this does not occur in case of effort exertion. Estimates displayed in Table 3.5 provide

a robustness check for the negative impact of the Additional Information Treatment on the exertion

and completion of effort, as well as for the positive impact of the availability of more information, as

depicted by the positive and significant coefficient of the Five balls variable. Interestingly, we find

that females are less likely to exert and complete effort, whereas the contrary holds for smokers.

Regression results on the determinants of effort exertion employing the more detailed signal vari-

able do not report significant differences in the estimates with respect to Table 3.5 and are reported

in Appendix 3.A.9.

Table 3.5: Determinants of effort exertion and completion

Independent variable Sum efforts Complete effort

(1) (2)

Additional Information Treatment -0.414** -1.122***

(0.196) (0.338)

Age -0.069 -0.203**

(0.052) (0.085)

Female -0.605*** -0.994***

(0.184) (0.292)

Smoker 0.388* 0.552

(0.225) (0.364)

Low health 0.155 0.234

(0.185) (0.301)

Procrastinator -0.198 -0.251

(0.209) (0.332)

Not a student as reference category

Out of due date student -0.286 -0.455

(0.461) (0.804)

Master student -0.436 -0.854

Continued on next page
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Table 3.5 – Continued from previous page

Independent variable Sum efforts Complete effort

(0.401) (0.730)

1st year student -0.865* -1.755**

(0.467) (0.869)

2nd year student -0.417 -1.429*

(0.448) (0.833)

3rd year student -0.282 -1.013

(0.437) (0.770)

Good signal 0.047 0.148

(0.178) (0.281)

Low risk aversion 0.199 0.372

(0.184) (0.310)

Five balls 0.481* 0.815**

(0.246) (0.409)

Constant 3.979*** 5.942**

(1.430) (2.457)

Observations 116 116

Log likelihood – -58.306

R2 0.211 0.212 (pseudo)

LR χ2 – 31.52

Prob > χ2 – 0.005

F 1.93 –

Prob > F 0.0315 –

Notes: The Table reports OLS and probit coefficients in models (1) and (2), respectively. Symbols *, ** and *** indicate

that coefficients are statistically significant at 10%, 5% and 1% levels, respectively.

3.5.2 Additional information decisions

In Table 3.6 we display information acquisition decisions following the strategy method procedure.

In 31% of cases subjects decide to spend 1 Euro in order to have two more balls extracted from their

box in week 1. When we distinguish information acquisition across types of signals we find that

participants are more willing to buy additional information after receiving a bad signal, which is the

contrary of the ostrich effect.

Result 3.6. Participants are more willing to acquire information after receiving a bad signal: IBS >

IGS
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Table 3.6: Information acquisition in the AIT

Mean Std. Dev. Min Max Observations

Information acquisition 0.31 0.46 0 1 304
GS 0.22∗∗∗ 0.42 0 1 152
BS 0.40 0.49 0 1 152

Notes: Observations refer to strategy method decisions. A test of proportion has been esti-

mated comparing information acquisition after receiving a good signal (GS) and a bad signal

(BS). ∗∗∗ indicate significance at the 0.01 level, ∗∗ at the 0.05 and ∗ at the 0.10 level.

Table 3.7: Information acquisition in the AIT after more detailed signals

Mean Std. Dev. Min Max Observations

Information acquisition 0.31 0.46 0 1 304
Excellent signal 0.22∗∗ 0.42 0 1 76
Decent signal 0.22∗ 0.42 0 1 76
Poor signal 0.35 0.48 0 1 76
Very poor signal 0.45 0.50 0 1 76

Notes: Observations refer to strategy method decisions. Tests of proportion have been es-

timated comparing information acquisition after receiving an excellent signal versus a very

poor signal, and after receiving a decent signal versus a poor one. A test of proportions be-

tween poor and very poor signal did not turn out to be significant. ∗∗∗ indicate significance

at the 0.01 level, ∗∗ at the 0.05 and ∗ at the 0.10 level.
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When good and bad signals are decomposed into more detailed signals, as in Table 3.7, we notice

that after excellent and decent signals participants buy, overall, the exact same amount of informa-

tion, hence suggesting that excellent and decent signals are perceived equally. Even if signals are

symmetric in the negative domain with respect to positive signals, poor and very poor signals en-

tail different levels of information acquisition. The means of information acquisition after a poor

and a very poor signal are both statistically higher with respect to the information acquisition mean

registered after a positive signal, and this strengthens the evidence in favor of higher information

acquisition the worse is the signal received. As depicted in Table 3.7, this result follows a gradual

pattern when moving towards worse types of signals.

This result is confirmed by the negative and highly significant coefficient of the dummy variable

for the good signal in the regression model which investigates the determinants of information ac-

quisition (Table 3.8). The model reports robust standard errors clustered at the individual level, since

each participant takes repeated decisions about buying or not buying additional information. Thus,

intra-subject correlation is taken into account. Risk aversion, age, gender, health-related variables

and levels of study do not impact information acquisition.
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Table 3.8: Determinants of information acquisition

Independent variable Information acquisition

Good signal -0.516***

(0.174)

Low risk aversion -0.151

(0.232)

Age -0.032

(0.084)

Female 0.060

(0.226)

Smoker 0.309

(0.259)

Low health 0.092

(0.255)

Procrastinator -0.296

(0.270)

Not a student as reference category

Out of due date student 0.222

(0.519)

Master student -0.133

(0.487)

1st year student 0.220

(0.650)

2nd year student 0.170

(0.520)

3rd year student -0.223

(0.550)

Constant -0.086

(2.160)

Observations 296

Log pseudolikelihood -172.808

Pseudo R2 0.0659

Wald χ2 17.26

Prob > χ2 0.1402

Notes: The Table reports probit coefficients with clustering at the individual level and robust standard errors in parenthesis.

The dependent variable is Information Acquisition. Symbols *, ** and *** indicate that coefficients are statistically

significant at 10%, 5% and 1% levels, respectively.
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Finally, no evidence of correlation between information aversion and health-related variables

emerges from our data, neither from pairwise statistical tests performed on the sub-samples of those

who bought additional information and those who did not, nor from the regression analysis of Table

3.8.

When the variable depicting more detailed signals is included in the regression analysis of infor-

mation acquisition, we find that participants significantly buy more information when receiving a

poor signal with respect to an excellent signal, and the coefficient of a very poor signal is even higher

and more significant. This finding corroborates the higher information acquisition in case of bad sig-

nals, and allows us to shed more light on the gradual effects of more detailed signals on the patterns

of information acquisition. Regression results are reported in Table 3.14 of Appendix 3.A.9.

3.6 Discussion and conclusion

Information aversion is frequently observed in real life contexts. These range for instance from fi-

nancial to health scenarios, in which individuals prefer not to obtain additional information when

they fear to receive conclusive bad news, whereas they search for more information when they be-

lieve conclusive information will be good. In these contexts individuals do not follow the standard

paradigm of choice, since beliefs seem to matter for subjects’ utility function and thus anticipatory

utility should be taken into account when considering individual preferences. To the extent that in-

dividuals may manipulate sources of available information and obtain sub-optimal outcomes, it is

important to investigate the determinants of information acquisition.

Moreover, little is known about the interaction between information acquisition/aversion and the

possibility of exerting an effort which increases the final expected payoff, where the effort could be

considered as a prevention type of activity. Introducing the possibility of exerting effort in an infor-

mation aversion framework allows us to tackle the important informational trade-off which character-

izes the ostrich effect: individuals may fear bad news and suffer from emotional costs, but additional

information may be relevant for pushing them to exert effort, which in our design increases the final

expected payoff in a higher proportion for those in a bad condition than for those in a good condition.

Our experimental design enables us to study the interrelation between information aversion and the

possibility to improve own condition, as well as to study how the accuracy of the preliminary signal

about own condition impacts the exertion of effort, conditional on the type of signal received.

Our primary finding is that participants significantly buy more information after a preliminary bad
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signal: in this case, additional information is acquired in 40% of cases, whereas the percentage of

information acquisition after a good signal is 22% (Result 3.6). Moreover, by decomposing good

and bad signal into finer categories, we find that the effect of higher information acquisition after bad

signals is gradual when moving from excellent to very poor signals. Thus, contrary to Karlsson et al.

(2009), who do not envisage possibilities of improving own condition, we find an opposite result.

One explanation for this may derive from the willingness to have better information about their own

box given the higher return in the exertion of effort in case one holds a bad box. If information

acquisition were driven by having a better clue about the expected return of effort in case of a bad

signal, we would report significantly more participants completing the tasks after a bad signal than

after a good signal. However, evidence on effort decisions does not lie in this direction: overall,

effort exerted after a bad signal is not statistically different from effort exerted after a good signal.

Moreover, there is no general evidence of effort differentials conditional on the quality of the signal,

even when we distinguish them on the accuracy of the signal received.

As highlighted in the literature review section, previous studies revealing the existence of an ostrich

effect, such as Karlsson et al. (2009), do not envisage the possibility of improving subjects conditions.

This, on the contrary, represents the main innovative component of our experiment, through the

completion of effort in a real-life situation. It could hence be the case that by providing experimental

subjects with the possibility of improving their condition, as represented by expected payoffs in the

experimental design, they revert a phenomenon that has been proven to exist in different contexts. In

order to disentangle the role played by effort in our experiment, it could be advisable to run a third

treatment, which mirrors the already existing Additional Information Treatment, in which we elicit

subjects’ intentions to buy additional information. Differently from the AIT, the new treatment would

not entail the opportunity of exerting effort between week 1 and week 3. By comparing information

acquisition between this new treatment and the AIT, it would be possible to shed more light on the

main innovative element of this experiment.

Accuracy of signals has an impact on the exertion of effort only when the signal is bad: in this

case participants exert significantly more effort than after a good signal, which lends support to the

importance of additional information acquisition if someone deems to be in a bad situation (Result

3.2). This is confirmed by the higher effort exertion and completion after a bad signal and a more

complete set of information when we focus on the AIT only. In this case, participants faced the same

possibility of acquiring additional information, and those who had more information displayed and
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received a bad signal significantly exerted more effort (Result 3.3). Hence, participants understand

the incentives of completing effort when they receive a bad signal about their condition only when

the informational level is high, or, in other words, the more informed they decided to be.

Effort exertion and information acquisition seem to be substitutable rather than complementary:

providing participants with the possibility of acquiring additional information lowers their effort exer-

tion. A possible explanation for this finding may derive from the decomposition of AIT participants.

We can note a duality in the behavior of AIT participants: those who chose to buy additional infor-

mation and observed five balls from their box are rational types of individuals, as on average they

exert more effort and in particular they exert it after a bad signal (Result 3.5). On the contrary, those

individuals who decide not to have more information displayed remain irrational in their choices of

effort exertion and completion. Thus, they don’t significantly exert more effort after a bad signal,

even if this would represent the ideal decision to undertake. These irrational types of subjects sig-

nificantly exert less effort also compared to BT participants, who have the same informational set

(Result 3.4).

It is reasonable to expect that these two kinds of subjects coexist in the BT, but since we do not

leave them the possibility of acquiring information we cannot distinguish them. In the BT the rational

subjects face more uncertainty about their own condition, as they receive less information from their

box than in the case of the AIT with five balls. This could lead them to exert even more effort than

they exert if they have the possibility of observing five balls. On the other hand, as the irrational

subjects in the BT are not provided with the possibility of acquiring more information, they may be

driven to exert more effort. Nevertheless, since in the BT we do not find more effort exerted after

a preliminary bad signal, as it would be rational, we can posit that irrational subjects outnumber

rational ones in the BT.

Our results suggest that the possibility of acquiring additional information about own condition

points out a duality of individuals: those who decide to be more informed and thus follow a rational

behavior in the exertion of effort, and those who decide to remain with a limited information set and

behave irrationally in the exertion of effort. Further analysis could explore whether reducing the cost

of information acquisition or making the returns from effort more understandable may foster infor-

mation diffusion and thus effort exertion by the irrational types of individuals, who may undertake a

more rational behavior in terms of effort exertion.

We do not observe any correlation between information aversion and risk aversion. However,
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what could be more relevant in an ostrich effect framework is ambiguity aversion, which could be

measured in further experimental sessions by the Abdellaoui et al. (2011)’s task.

Further research could also be conducted in deepening our understanding of participants’ beliefs

of being attached to the good or the bad box, and these could be compared with the Bayesian beliefs

of Table 3.2. Beliefs could be elicited and incentivized after receiving the preliminary signal and

in case participants opt for the extraction of two additional balls from their box, in order to check

participants’ belief-updating.
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3.A Appendix

3.A.1 Instructions - Session 1

Welcome!18

You are about to participate in an experiment on decision making. Please switch off your mobile

phone and remain quiet. It is strictly forbidden to talk to other participants. If you violate this

rule, you will be dismissed from the lab and forfeit all earnings. Whenever you have a question,

please raise your hand and one of the experimenters will come to your aid and answer your questions

privately. If the question is deemed to be relevant for everybody, the experimenter will repeat the

answer aloud for all participants.

All instructions are identical for all participants, and we read them aloud so that you can verify them.

At the beginning of each session you will receive the corresponding instructions.

The experiment consists of two sessions, run in two different days: the first one is the one at which

you are taking part today, while the second session will take place in exactly two weeks from now.

Participation to the experiment will be considered completed only after session 2. Therefore, pay-

ments will occur only after the second session. In case of unforeseen circumstances, you can post-

pone your participation to the second session of a maximum of 2 days. After two days of delay

we can no longer consider you as participant to this experiment and hence you will not receive any

payment. So, it is very important that you commit to come back for the second session. All your

decisions and answers will remain anonymous throughout the experiment. During this experiment,

your earnings will depend on your decisions. It is therefore important that you read the instructions

carefully.

Instructions of session 1

Each of you, at the beginning of the experiment, will receive a secret code. This code is crucial

throughout the experiment because it allows us to keep your choices anonymous and it allows you to

identify yourself at the beginning of each task you may complete.

We will provide you two copies of the secret code. You will take home one, which you will have to

bring back to the laboratory for session 2, in order to continue the experiment. At the end of session

1, we ask you to put the second copy of your secret code in an envelope that we provide you, write

18These instructions refer to the Baseline Treatment (BT). In Italics, prior explicit indication, are reported the parts exclu-
sive for the BT or added for the Additional Information Treatment (AIT).
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your name on it and close it with adhesive tape. We will keep all envelopes in a safe place at the

laboratory, and they will be useful in case someone loses her secret code or forgets to carry it with her

at session 2. This procedure will allow you to know that the code is anonymous and that we cannot

identify your decisions and answers throughout the experiment.

Each of you is matched to a box containing 20 balls. Half of you is matched to Box A and half of

you to Box B. The boxes differ in terms of the composition of white and black balls inside them. Box

A contains 14 white balls and 6 black balls, while Box B contains 6 white balls and 14 black balls.

The color of balls is associated with a different payoff. In experimental session 2, the computer will

randomly extract for each participant a ball from her respective box. If the ball extracted is white,

your payoff is equal to 25 Euros. If the ball extracted from the box is black, your payoff is equal to

15 Euros. You do not know to which box you have been matched.

Today, a random extraction of 3 balls, without reinsertion, for each participant’s box takes place.

Without reinsertion means that each extracted ball is not reinserted inside the box. As an illustrative

example, if you have been matched to box A, whose content is 14 white balls and 6 black balls, if the

first extraction results in one white ball, this means that for the second extraction there are 13 white

balls and 6 black balls available in the box.

There are 4 possible combinations for the 3 balls extracted from your box:

• 3 white

• 2 white and 0 black

• 1 white and 2 black

• 3 black

[BT only] The computer will randomly extract 3 balls from your box and the color of these balls

will be displayed on the screen.

[AIT only] For each possible combination of 3 balls extractable from your box, we ask you to

express whether you are willing to pay for the extraction of 2 additional balls from your box, without

reinsertion. In case you opt in favor of the extraction of two additional balls, this procedure costs

you 1 Euro, which will be subtracted from your final earnings at the end of session 2. This means

that if you pay 1 Euro, you can have 5 balls extracted from your box, instead of 3. After you have in-

dicated all your hypothetical choices for each different combination of balls extracted, the computer

randomly extracts 3 balls from your box and the color(s) of these balls is displayed on your screen.
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Then, the color of 2 additional balls randomly extracted from your box will be displayed only if you

previously decided to pay 1 Euro for this extraction.

Time between session 1 and session 2

Between session 1 and session 2, you have the possibility of completing a task online that may change

your final earnings.

You can complete this task only during some specific days, indicated below:

• this Thursday

• next Tuesday

• next Thursday

You will receive an email on these days, reminding you of this possibility. The email will also contain

the link at which you will find the online task.

You can log in on the internet page devoted to the task at any time between 00:00 and 23:59, in these

specific days. When you log in, you will have to indicate your secret code. You will receive emails

after you will complete the task. If you choose to perform the task, you will have to complete the

task straight after you log in on the web site.

The impact of completing the task, in all these dates, on your earnings depends on whether you have

been matched to box A or box B:

- if you have box A and you complete all the tasks, two black balls will be transformed into two

white balls. This means that, since box A contains initially 14 white balls and 6 black balls, you will

end up having 16 white balls and 4 black balls

- if you have box B and you complete all the tasks, four black balls will be transformed into four

white balls. This means that since box B contains initially 6 white balls and 14 black balls, you will

end up having 10 white balls and 10 black balls

If you do not want to complete the task at all or if you do not complete the task in all the specific

dates, your box will keep the same composition as initially, hence either with the original Box A or

the original Box B. In other words, the composition of your box will change only if you connect on

the web site of the experiment at the three specified dates and if you complete the task in its entirety.

The online task consists in replicating a blurred and not well-defined code. You are asked to write a

series of such codes. Each online session lasts approximately 5 minutes.
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Session 2

After two weeks, at the same day and time of this experimental session, you will have to come back

to the laboratory in order to finalize the experiment and proceed for payment. We will send you an

email to remind you of this task.

Do not forget to bring your secret code with you.

We will ask you to answer a few questions and to take decisions that reflect your preferences.

After this, you will be notified the type of box you were matched with, and the computer will activate

the random extraction of one ball from your box. For the purposes of this extraction, your box con-

tains 20 balls. Indeed, any ball previously extracted will be reinserted in your box. The composition

of your box may have changed from the initial composition exclusively if you have completed the

three tasks successfully between session 1 and session 2.

Your screen will display the color of the ball extracted at random from your box. You will be paid

according to this draw (25 Euros if the ball is white, 15 Euros if the ball is black).

You will receive a feedback on the exact composition of your box only at the end of session 2.

Please answer the following questions. These serve to check your understanding of the decision sit-

uation and earnings calculations. When everyone will have answered all the questions correctly, we

will proceed with session 1.

Control questions:

[AIT only] 1) In Session 1, if you pay 1 Euro for the extraction of two additional balls from your box,

this extraction takes place:

- from 20 balls

- from 17 balls

- from 3 balls

2) Suppose that you have completed the task in all the three dates specified in these instructions.

Suppose that you think you have been initially matched to box B. What is the effect of completing

the task on your hypothetical situation?

- your box now contains 14 white balls and 6 black balls

- your box now contains 10 white balls and 10 black balls

- your box remains unchanged
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3) The experiment will end in two weeks of time and you will be paid even if you don’t show up at

session 2, in two weeks of time

- true

- false

4) If you have been matched to box A, which contains a higher number of white balls, you will earn

25 Euros for sure

- true

- false: this will occur only if, at the end of session 2, the final extraction will result in one ball

extracted and if I haven’t bought the extraction of two additional balls

5) At the end of session 2, the random extraction of 1 ball from your box will occur from a total of

- 17 balls

- 20 balls

- 15 balls if you paid 1 Euro for the extraction of 2 balls

3.A.2 Demographic questionnaire

1) Which is your gender?

2) In which year were you born?

3) In which faculty are you enrolled?

(Economics/ Humanities/ Engineering/ Law/ Physics and Mathematics/ Sociology or Psychology/

Other Natural Sciences/ Other Social Sciences/ not a student)

4) In which year of studies are you enrolled?

(first year/ second/ third/ out-of-due date/ master student/ not a student)

3.A.3 Online task

On three dates between session 1 and 2, participants received an email with a link to a web page in

which they could find the online task they could perform.

Here we report a screenshot of the page with the task.
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Figure 3.1: Online task between week 1 and week 3

3.A.4 Instructions - Session 2

Welcome to the second session of the experiment!

We will ask you to answer a few individual questions at the end of the experiment. As in session 1,

all your choices will remain anonymous.

During this session your earnings are calculated in points. Each point corresponds to 0.20 Euros.

You will be paid individually and in a separate room.

We ask you to choose, among the six following lotteries, the lottery you would like to play. The

figure below displays the type of screen you will face in order to select your preferred lottery.
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Figure 3.2: Risk elicitation task

Each circle represents a different lottery. Each circle is divided in two parts. Each part represents a

possible outcome of the lottery.

For each lottery, each outcome is equiprobable, i.e. it has a 50% probability to occur. The amount of

points the lottery provides you for each possible outcome is indicated inside the circle.

At the end of this part, the computer will throw a six-sided die to determine which outcome of the

selected lottery will take place:

- if the die throws a 1, 2 or 3, you will receive the points to the left of the circle

- if the die throws a 4, 5 or 6, you will receive the points to the right of the circle

Please keep in mind that in any lottery each outcome has 50% of probability to occur.

To select a lottery you should click on it. You can change your choice any time you want. When you

are happy with your choice, press the OK button.

Illustrative example:

Suppose that you select lottery 3 and that, afterwards, the die throws a 4, 5 or 6⇒ in this case you

earn 11 points.
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If the die throws a 1, 2 or 3⇒ you earn 5 points.

3.A.5 Ex-post questionnaire

1) Are you currently a smoker?

(Yes / No)

1.1) If yes, are you trying to quit?

(Yes / No)

1.2) If not, have you ever been a smoker?

(Yes / No)

2) How would you consider your health status on a scale from 1 to 10, where 1 represents the

minimum and 10 the maximum?

(1/ 2/ 3/ 4/ 5/ 6/ 7/ 8/ 9/ 10)

3) Suppose you have a tooth problem, and you think you should go to the dentist. Since the moment

in which you think you should go to the dentist, how much time does it take before you call the

dentist to fix an appointment?

(1 hour/ 1 day/ 2 days/ 1 week/ 2 weeks/ 1 month/ 2 months/ more than 2 months)

4) Have you completed the task in all three circumstances between session 1 and 2?

(Yes / No)

4.1) If yes, do you regret having performed it?

(Yes / No)

4.2) If not, do you regret not having performed it?

(Yes / No)

3.A.6 Background of experimental participants

Table 3.9 reports participants’ descriptive statistics of the demographic questionnaire performed at

the end of session 1, as outlined in Table 3.1.

In Table 3.10 we present participants’ descriptive statistics of the ex-post questionnaire performed

to subjects at the end of session 2, as also outlined in Table 3.1.

In Table 3.11 we report both frequencies and percentages of experimental participants’ choices in

the risk elicitation task presented in Figure 3.2.
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Table 3.9: Descriptive statistics - Demographic questionnaire

Frequency Percentage

Gender
Female 43 64.17
Male 77 35.83

Faculty
Economics & Management 67 55.83
Engineering 12 10.00
Law 15 12.50
Literature 9 7.50
Math 1 0.83
Not a student 6 5
Sociology 10 8.33

Degree level
Out of due date student 11 9.17
Master student 26 21.67
Not a student 7 5.83
1st year student 27 22.50
2nd year student 26 21.67
3rd year student 23 19.17

Age
Mean 22.88 –
St. Dev. 2.60 –
Min 20 –
Max 32 –
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Table 3.10: Descriptive statistics - Ex-post questionnaire

Frequency Percentage

Actual smoker
Yes 23 19.66
No 94 80.34

Smoker trying to quit
Not applicable 53 45.30
Yes 13 11.11
No 51 43.59

Ever been a smoker
Not applicable 17 14.53
Yes 27 23.08
No 73 62.39

Health status
4 1 0.85
5 3 2.56
6 4 3.42
7 24 20.51
8 43 36.75
9 32 27.35
10 10 8.55

Completed three tasks
Yes 84 71.79
No 33 28.21

Regret having performed them
Not applicable 18 15.38
Yes 9 7.69
No 90 76.92

Regret not having performed them
Not applicable 68 58.12
Yes 18 15.38
No 31 26.50

Procrastination
1 hour 15 12.82
1 day 29 24.79
2 days 24 20.51
1 week 21 17.95
2 weeks 17 14.53
1 month 8 6.84
2 months 2 1.71
More than 2 months 1 0.85

Notes: Health status ranges from a minimum of 1 to a maximum of 10.
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Table 3.11: Descriptive statistics - Risk elicitation task

Frequency Percentage

Lottery 1 4 0.33
Lottery 2 22 18.33
Lottery 3 23 19.16
Lottery 4 17 14.16
Lottery 5 33 27.5
Lottery 6 18 15

3.A.7 Proof underlying Hypothesis 3.1

According to Hypothesis 3.1, if participants are rational the exertion of effort should comply with the

following pattern: e5,BS > e3,BS > e3,GS > e5,GS.

Given that effort leads to a higher reward in case of a bad box with respect to a good box, as

imposed in the experimental design and known by experimental subjects, the higher the probability

of being attached to a bad box, the higher is the expected return from effort.

Therefore, indicating by P the probability of having a bad box, it follows that:

P5,BS > P3,BS > P3,GS > P5,GS ⇒ e5,BS > e3,BS > e3,GS > e5,GS .

In the following part of the section we aim to compute P5,BS, P3,BS, P3,GS and P5,GS in order to prove

the first part of Equation 3.2.

Case of P3,GS

Bad box

The bad box contains 6 white balls and 14 black balls. A good signal with an extraction of 3 balls

can derive either from 3 white balls or from 2 white balls.

Probability that 3 white balls and 0 black balls are extracted from a bad box:

p3−0,BB = 6/20× 5/19× 4/18 = 0.018,

where the first subscript refers to the number of white and black balls extracted, respectively, and

the second subscript to a bad box.

Probability that 2 white balls and 1 black ball are extracted from a bad box:

p2−1,BB = 6/20× 5/19× 14/18×3 = 0.184

The probability of receiving a good signal, given a bad box, is hence equal to: 0.018 + 0.184 =

0.202

Probability that the good signal derives from 3 white balls extracted: 0.018/0.202 = 0.087
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Probability that the good signal derives from 2 white balls and 1 black ball extracted: 0.184/0.202 =

0.913

Good box

The good box contains 14 white balls and 6 black balls. A good signal with an extraction of 3 balls

can derive either from 3 white balls or from 2 white balls.

Probability that 3 white balls are extracted from a good box:

p3−0,GB = 14/20× 13/19× 12/18 = 0.319,

where the first subscript refers to the number of white and black balls extracted, respectively, and

the second subscript to a good box.

Probability that 2 white balls and 1 black ball are extracted from a good box:

p2−1,GB = 14/20× 13/19× 6/18×3 = 0.479

The probability of receiving a good signal, given a good box, is hence equal to: 0.319 + 0.479 =

0.798

Probability that the good signal derives from 3 white balls: 0.319/0.798 = 0.4

Probability that the good signal derives from 2 white balls and 1 black ball: 0.479/0.798 = 0.6

Since being attached to the good or the bad box is equally probable, the overall probability that the

good signal derives from the extraction of 3 white balls, irrespective of being attached to the good or

the bad box, is equal to: 1/2×0.087+ 1/2×0.4 = 0.24

With the same argument, the overall probability that the good signal derives from the extraction of

2 white balls and 1 black ball is equal to: 1/2×0.913+ 1/2×0.6 = 0.76

These are the weights of the Bayesian probabilities of being in the bad box, considering an extrac-

tion of 3 white balls and an extraction of 2 white and 1 black balls, respectively, which are indicated

in Table 3.2:

0.24×5.21+0.76×27.78 = 22.28,

where 22.28 is the probability of being attached to the bad box, given 3 balls extracted and a good

signal (P3,GS).

Case of P5,GS

Bad box

84



3.A. APPENDIX

The bad box contains 6 white balls and 14 black balls. A good signal with an extraction of 5 balls

can occur in three cases: from 5 white balls, from 4 white balls or from 3 white balls.

Probability that 5 white balls are extracted from a bad box:

p5−0,BB = 6/20× 5/19× 4/18× 3/17× 2/16 = 0.0004

Probability that 4 white balls and 1 black ball are extracted from a bad box:

p4−1,BB = 6/20× 5/19× 4/18× 3/17× 14/16×5 = 0.0135

Probability that 3 white balls and 2 black balls are extracted from a bad box:

p3−2,BB = 6/20× 5/19× 4/18× 14/17× 13/16×10 = 0.1174

The probability of receiving a good signal, given a bad box, is hence equal to: 0.0004 + 0.0135 +

0.1174 = 0.1313

Probability that the good signal derives from 5 white balls: 0.0004/0.1313 = 0.00295

Probability that the good signal derives from 4 white balls and 1 black ball: 0.0135/0.1313 = 0.1031

Probability that the good signal derives from 3 white balls and 2 black balls: 0.1174/0.1313 = 0.8939

Good box

The good box contains 14 white balls and 6 black balls. A good signal with an extraction of 5 balls

can occur in three cases: from 5 white balls, from 4 white balls or from 3 white balls.

Probability that 5 white balls are extracted from a good box:

p5−0,GB = 14/20× 13/19× 12/18× 11/17× 10/16 = 0.1291

Probability that 4 white balls and 1 black ball are extracted from a good box:

p4−1,GB = 14/20× 13/19× 12/18× 11/17× 6/16×5 = 0.3874

Probability that 3 white balls and 2 black balls are extracted from a good box:

p3−2,GB = 14/20× 13/19× 12/18× 6/17× 5/16×10 = 0.3522

The probability of receiving a good signal, given a good box, is hence equal to: 0.1291 + 0.3874

+ 0.3522 = 0.8687

Probability that the good signal derives from 5 white balls: 0.1291/0.8687 = 0.1486

Probability that the good signal derives from 4 white balls and 1 black ball: 0.3874/0.8687 = 0.4459

Probability that the good signal derives from 3 white balls and 2 black balls: 0.3522/0.8687 = 0.4054

Since being attached to the good or the bad box is equally probable, the overall probability that the

good signal derives from the extraction of 5 white balls is equal to: 1/2× 0.00295+ 1/2× 0.1486 =
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0.08

With the same argument, the overall probability that the good signal derives from the extraction of

4 white balls and 1 black ball is equal to: 1/2×0.1031+ 1/2×0.4459 = 0.27

And the overall probability that the good signal derives from the extraction of 3 white balls and 2

black balls is equal to: 1/2×0.8939+ 1/2×0.4054 = 0.65

These are the weights of the Bayesian probabilities of being in the bad box, considering an ex-

traction of 5 white balls, an extraction of 4 white and 1 black balls, and 3 white and 2 black balls,

respectively, which are indicated in Table 3.2:

0.30×0.08+3.38×0.27+25×0.65 = 17.19,

where 17.19 is the probability of being attached to the bad box, given 5 balls extracted and a good

signal (P5,GS).

Case of P3,BS

Bad box

The bad box contains 6 white balls and 14 black balls. A bad signal with an extraction of 3 balls

can derive either from 1 white ball or from 0 white balls.

Probability that 1 white ball and 2 black balls are extracted from a bad box:

p1−2,BB = 6/20× 14/19× 13/18×3 = 0.4789

Probability that 0 white balls and 3 black balls are extracted from a bad box:

p0−3,BB = 14/20× 13/19× 12/18 = 0.3193

The probability of receiving a bad signal, given a bad box, is hence equal to: 0.4789 + 0.3193 =

0.7982

Probability that the bad signal derives from 1 white ball and 2 black balls: 0.4789/0.7982 = 0.60003

Probability that the bad signal derives from 2 white balls and 1 black ball: 0.3193/0.7982 = 0.40002

Good box

The good box contains 14 white balls and 6 black balls. A bad signal with an extraction of 3 balls

can derive either from 1 white ball or from 0 white balls.

Probability that 1 white ball and 2 black balls are extracted from a good box:

p1−2,GB = 14/20× 6/19× 5/18×3 = 0.1842
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Probability that 0 white balls and 3 black balls are extracted from a good box:

p0−3,GB = 6/20× 5/19× 4/18 = 0.01754

The probability of receiving a bad signal, given a good box, is hence equal to: 0.1842 + 0.01754 =

0.2017

Probability that the bad signal derives from 1 white ball and 2 black balls: 0.1842/0.2017 = 0.9132

Probability that the bad signal derives from 2 white balls and 1 black ball: 0.01754/0.2017 = 0.08696

Since being attached to the good or the bad box is equally probable, the overall probability that the

bad signal derives from the extraction of 1 white ball and 2 black balls is equal to: 1/2×0.6+ 1/2×

0.91 = 0.755

With the same argument, the overall probability that the bad signal derives from the extraction of

0 white balls and 3 black balls is equal to: 1/2×0.4+ 1/2×0.08696 = 0.2434

These are the weights of the Bayesian probabilities of being in the bad box, considering an ex-

traction of 1 white ball and 2 black balls and an extraction of 3 black balls, respectively, which are

indicated in Table 3.2:

0.755×72.22+0.2434×94.79 = 77.60,

where 77.60 is the probability of being attached to the bad box, given 3 balls extracted and a bad

signal (P3,BS).

Case of P5,BS

Bad box

The bad box contains 6 white balls and 14 black balls. A bad signal with an extraction of 5 balls

can occur in three cases: from 2 white balls, from 1 white ball and from 5 black balls.

Probability that 2 white balls and 3 black balls are extracted from a bad box:

p2−3,BB = 6/20× 5/19× 4/18× 13/17× 12/16×10 = 0.3522

Probability that 1 white ball and 4 black balls are extracted from a bad box:

p1−4,BB = 6/20× 14/19× 13/18× 12/17× 11/16×5 = 0.3874

Probability that 0 white balls and 5 black balls are extracted from a bad box:

p0−5,BB = 14/20× 13/19× 12/18× 11/17× 10/16 = 0.1291

The probability of receiving a bad signal, given a bad box, is hence equal to: 0.3522 + 0.3874 +
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0.1291 = 0.8687

Probability that the bad signal derives from 2 white balls and 3 black balls: 0.3522/0.8687 = 0.4054

Probability that the bad signal derives from 4 white balls and 1 black ball: 0.3874/0.8687 = 0.4459

Probability that the bad signal derives from 3 white balls and 2 black balls: 0.1291/0.8687 = 0.1486

Good box

The good box contains 14 white balls and 6 black balls. A bad signal with an extraction of 5 balls

can occur in three cases: from 2 white balls, from 1 white ball and from 5 black balls.

Probability that 2 white balls and 3 black balls are extracted from a good box:

p2−3,GB = 14/20× 13/19× 6/18× 5/17× 4/16×10 = 0.1174

Probability that 1 white ball and 4 black balls are extracted from a good box:

p1−4,GB = 14/20× 6/19× 5/18× 4/17× 3/16×5 = 0.01354

Probability that 0 white balls and 5 black balls are extracted from a good box:

p0−5,GB = 6/20× 5/19× 4/18× 3/17× 2/16 = 0.0004

The probability of receiving a bad signal, given a good box, is hence equal to: 0.1174 + 0.01354 +

0.0004 = 0.13134

Probability that the bad signal derives from 2 white balls and 3 black balls: 0.1174/0.13134 = 0.8939

Probability that the bad signal derives from 1 white ball and 4 black balls: 0.01354/0.13134 = 0.1031

Probability that the bad signal derives from 0 white balls and 5 black balls: 0.0004/0.13134 = 0.00304

Since being attached to the good or the bad box is equally probable, the overall probability that the

bad signal derives from the extraction of 2 white balls and 3 black balls is equal to: 1/2× 0.4054+

1/2×0.8939 = 0.6497

With the same argument, the overall probability that the bad signal derives from the extraction of

1 white ball and 4 black balls is equal to: 1/2×0.4459+ 1/2×0.1031 = 0.2745

And the overall probability that the bad signal derives from the extraction of 0 white balls and 5

black balls is equal to: 1/2×0.1486+ 1/2×0.00304 = 0.07582

These are the weights of the Bayesian probabilities of being in the bad box, considering an extrac-

tion of 2 white balls and 3 black balls, an extraction of 1 white ball and 4 black balls, and 0 white

balls and 5 black balls, respectively, which are indicated in Table 3.2:

75×0.6497+96.62×0.2745+99.7×0.07582 = 82.81,
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where 82.81 is the probability of being attached to the bad box, given 5 balls extracted and a bad

signal (P5,BS).

Since 82.81 > 77.60 > 22.28 > 17.19, it is rational to exert effort following the pattern indicated

in Hypothesis 3.1, for any effort cost function.

3.A.8 List of variables

In Table 3.12 we report a list of variables used in the non parametric tests of Tables 3.4, 3.6 and 3.7,

as well as in the regression analyses reported in Tables 3.5, 3.8, 3.13 and 3.14.

Table 3.12: List of variables

Variable Description

Sum of efforts Times the participant completed the online task between week 1 and

week 3 (it ranges from 0 to 3)

Complete effort Dummy variable assuming value 1 if the participant completed the on-

line task in all three circumstances and value 0 otherwise

Information acquisition Dummy variable assuming value 1 if the participant spent 1 AC in order

to have two more balls extracted from her box in week 1 and value 0

otherwise

Additional Information Treatment Dummy variable assuming value 1 if the participant belongs to the Ad-

ditional Information Treatment and value 0 otherwise

Age Age in years

Smoker Dummy variable assuming value 1 if the participant answered “Yes” to

Question 1) of the ex-post questionnaire and value 0 otherwise

Female Dummy variable assuming value 1 if the participant is female and value

0 otherwise

Low health Dummy variable assuming value 1 if the participant answered a value

between 1 and 8 to Question 1) of the ex-post questionnaire and value

0 otherwise19

Procrastinator Dummy variable assuming value 1 if the participant answered a value

between “2 weeks” and “more than 2 weeks” to Question 3) of the ex-

post questionnaire and value 0 otherwise

Good signal Dummy variable assuming value 1 if the participant visualized mini-

mum 2 white balls out of 3 balls or minimum 3 white balls out of 5

balls

Continued on next page
19The value 8 corresponds to the sample average of the variable.
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Table 3.12 – Continued from previous page

Variable Description

Dummies for more detailed signals

Excellent signal 3 white balls out of 3 balls extracted OR 5 white balls out of 5 balls

extracted OR 4 white balls out of 5 balls extracted

Decent signal 2 white balls out of 3 balls extracted OR 3 white balls out of 5 balls

extracted

Poor signal 1 white ball out of 3 balls extracted OR 2 white balls out of 5 balls

extracted

Very poor signal 0 white balls out of 3 balls extracted OR 0 white balls out of 5 balls

extracted OR 1 white ball out of 5 balls extracted

Low risk aversion Dummy variable assuming value 1 if the participant selected one lottery

from 4 to 6 in the risk elicitation task represented in Figure 3.2 and value

0 if she selected one lottery from 1 to 3

Five balls Dummy variable assuming value 1 if the participant visualized 5 balls

and value 0 if she visualized 3 balls

Dummies for study levels

Out of due date student Student employing more years than those expected for the specific de-

gree she is enrolled for

Master student Student enrolled in a master program

1st year student Student enrolled in the first year of the Bachelor

2nd year student Student enrolled in the second year of the Bachelor

3rd year student Student enrolled in the third year of the Bachelor

Not a student Participant not enrolled in any University course

3.A.9 Regression analyses with more detailed signals

Tables 3.13 and 3.14 report the regression analyses of Tables 3.5 and 3.8, in which the dummy

variable “Good signal” has been replaced with the variable indicating different types of signals, as

detailed in Table 3.3.
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Table 3.13: Determinants of effort exertion and completion with more detailed signals

Independent variable Sum efforts Complete effort

(1) (2)

Additional Information Treatment -0.402** -1.155***

(0.199) (0.344)

Age -0.067 -0.207**

(0.052) (0.086)

Female -0.643*** -1.006***

(0.190) (0.305)

Smoker 0.373 0.588

(0.230) (0.370)

Low health 0.172 0.195

(0.190) (0.310)

Procrastinator -0.203 -0.289

(0.214) (0.339)

Not a student as reference category

Out of due date student -0.252 -0.592

(0.488) (0.852)

Master student -0.407 -1.003

(0.423) (0.779)

1st year student -0.835* -1.926**

(0.491) (0.923)

2nd year student -0.362 -1.583*

(0.472) (0.885)

3rd year student -0.236 -1.092

(0.447) (0.791)

Excellent signal as reference category

Decent signal -0.200 -0.167

(0.267) (0.431)

Poor signal -0.213 -0.150

(0.262) (0.412)

Very poor signal -0.087 -0.372

(0.286) (0.456)

Low risk aversion 0.209 0.431

(0.192) (0.325)

Five balls 0.415 0.885**

Continued on next page
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Table 3.13 – Continued from previous page

Independent variable Sum efforts Complete effort

(0.265) (0.442)

Constant 4.073*** 6.377**

(1.461) (2.544)

Observations 116 116

Log likelihood – -58.107

R2 0.217 0.216(pseudo)

LR χ2 – 31.92

Prob > χ2 – 0.010

F 1.72 –

Prob > F 0.0557 –

Notes: The Table reports OLS and probit coefficients in models (1) and (2), respectively. Symbols *, ** and *** indicate

that coefficients are statistically significant at 10%, 5% and 1% levels, respectively.

Table 3.14: Determinants of information acquisition with more detailed signals

Independent variable Information acquisition

Excellent signal as reference category

Decent signal 0.004

(0.168)

Poor signal 0.371*

(0.201)

Very poor signal 0.661***

(0.222)

Low risk aversion -0.151

(0.233)

Age -0.032

(0.084)

Female 0.060

(0.227)

Smoker 0.312

(0.260)

Low health 0.091

(0.256)

Procrastinator -0.297

(0.270)

Continued on next page
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Table 3.14 – Continued from previous page

Independent variable Information acquisition

Not a student as reference category

Out of due date student 0.223

(0.521)

Master student -0.135

(0.489)

1st year student 0.221

(0.652)

2nd year student 0.169

(0.522)

3rd year student -0.223

(0.551)

Constant -0.611

(2.176)

Observations 296

Log pseudolikelihood -171.880

Pseudo R2 0.0710

Wald χ2 19.52

Prob > χ2 0.1462

Notes: The Table reports probit coefficients with clustering at the individual level and robust standard errors in parenthesis.

The dependent variable is Information Acquisition. Symbols *, ** and *** indicate that coefficients are statistically

significant at 10%, 5% and 1% levels, respectively.
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4 Selection into Research: do gender and

connections matter?1

4.1 Introduction

Over the past decades, researchers have sought to explain the great gender imbalance in research:

women outnumber men by 18% when they finish university, but are under-represented compared to

their male colleagues when we look at top academic positions. More specifically, their share repre-

sents 37% of Associate Professors and just 20% of Full Professors.2 This phenomenon is commonly

known as the “leaky pipeline” or “glass ceiling” effect, with both metaphors evoking the difficulty

for women to reach equal access at the top of several professions (Clark Blickenstaff, 2005; Cotter

et al., 2001).

What makes the university environment peculiar is that research contexts, differently from most

jobs in the private sector, do not exhibit large disparities in work load across junior, intermediate

and senior positions (Bosquet et al., 2014). Accordingly, child rearing - which, on average, affects

women more than men - should not be a major reason for preventing women from reaching higher

academic and research ranks.3

A recent report on the conditions in academia in Italy (Frattini and Rossi, 2013) shows a rather

discouraging scenario for female academics. It is still significantly more difficult for women than for

men to pursue a career in academia. The aim of this article is to contribute to the debate on gender

discrimination in the Italian research community. This paper complements and extends the already

existing investigation on the Italian research environment: we study the determinants of entrance to

a non-academic research environment.

In 2005 the former president of Harvard University Larry Summers suggested that differences in

1This chapter is based on a joint work with Daniele Checchi and Nevena Kulic.
2European Commission data, see Meulders and O’Dorchai (2013).
3See Ceci and Williams (2011) for a meta-analysis of the causes of women’s under-representation in science.
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innate aptitude are responsible for the failure of women to progress to top scientific positions (Barres,

2006). This statement provoked a heated debate in the academic community. Although it is hardly

defendable, it stimulated the debate on this important topic. For a country to be competitive in the

globalized world, it is crucial to maximize its human intellectual capital, and data from around the

world suggest that a great contribution could be provided by women (Sugimoto, 2013).

For more than a decade, in many disciplines, affirmative action policies that “require pro-active

steps”4 have been designed in order to level the playing field for men and women and help to increase

the number of female academics (Sugimoto, 2013). A direct affirmative action in this direction,

currently hotly debated, consists of imposing gender quotas in selection boards when filling research

positions. This has already been introduced in a few European countries such as Sweden, Norway,

Finland and Spain, where the compulsory share of commission members of each gender is 40%.

Also the European Commission has recently brought into the discussion for suggested legislation

such type of policy as a desirable tool to countervail the gender inequality which is still prevailing in

the academic sector (Meulders and O’Dorchai, 2013, p. 7).

Nevertheless, imposing gender quotas in scientific evaluating commissions does not represent a

zero-cost policy since it requires a disproportionate share of senior academic women’s time for at-

tending evaluating commissions, a “non-productive” activity from a research perspective. This policy

could be detrimental to female academics research activities and could thereby foster the vicious cy-

cle of women being trapped in lower academic positions. Therefore, effectiveness of such a policy

should be carefully examined.

This paper aims to investigate the potential effectiveness of gender quotas in evaluating commis-

sions. The focus of this study is a research environment in Italy, a country which is characterized

by substantial gender inequality in many spheres of public and private life (De Paola and Scoppa,

2011; Frattini and Rossi, 2013). More specifically, we analyze the selection procedures within the

Foundation Bruno Kessler (FBK), a top Italian research institution in hard science, located in the

north-eastern part of the country. We aim at identifying the main drivers for winning a research

competition, and in particular we are interested in knowing whether a higher proportion of women in

evaluating commissions increases the proportion of women selected for research jobs.5

The contribution of this paper is threefold. First, in contrast to previous studies, we investigate

4For an overview of affirmative action policies, see Holzer and Neumark (2000, p.484).
5We thank the Human Resource division of FBK for providing the data within the project “FESTA”, supported by the EC

under the 7th FP.
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gender discrimination in a non-academic research environment. The research institution we study

is not related to any specific university, which allows us to shed light on research careers of women

outside university. Second, we examine recruitment processes and not promotions. The recruitment

strategy to the institution studied here mainly operates at the lowest research levels, equivalent to

post-doc or research fellowship positions at universities. To the best of our knowledge, no other study

has so far investigated gender discrimination at the start of a research career. This is an extremely

interesting level of the research ladder, because it may be the starting point of the scissors effect in

women and men research careers. Third, in almost all cases only one candidate is selected. Therefore,

the competition among candidates is more evident and explicit than in previous qualification data sets,

and it allows us to use different econometric techniques that take into account the interdependent

success probability of candidates applying for the same call.

Building on these innovative components, our study suggests that the introduction of gender quo-

tas may be useful in promoting female researchers in their early careers, although we do not find

evidence of discrimination at higher hierarchical levels. Surprisingly, our analyses indicate that the

most important factor in explaining the success of candidates are pre-existing ties with the institution

or commission members, which however seem to be gender neutral. We also find interesting distinc-

tions according to the quality of the commission in terms of research output, as well as a different

productivity across candidates selected through prior ties or not.

The paper is organized as follows. In Section 4.2 we discuss the related literature and Section

4.3 presents the institutional environment in which FBK operates, and outlines the selection process

followed. In Section 4.4, we describe the sources of our data set and we report candidate and call

level characteristics. We proceed in Section 4.5 with the estimation strategy and results, where we

focus on gender dynamics and pre-existing ties with the institution or one commissioner. Section 4.6

discusses and concludes.

4.2 Literature review

The economic literature has provided several explanations for the gender imbalance in academia and

research. A number of studies attribute the poorer academic performance of women to their lower

productivity. The lower productivity might be due to a lower number of international connections

and coauthorships (Sugimoto, 2013), to the lack of role models in the upper echelons of the academic

world (Blau et al., 2010), and to a higher burden of family responsibilities on women than men (Shen,
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2013). A different reasoning is put forward by the supporters of the pipeline theory. According to this

theory gender inequalities registered in academia are due to a shorter permanence of women in the

academic pipeline. This theory suggests that women would reach gender parity in universities if they

acquire the same tenure as their male colleagues (Gregory, 2003). However, evidence throughout the

years does not seem to support the pipeline theory and hence other interpretations are needed.

A large recent body of literature based on behavioral and experimental studies posits the existence

of a different preference system across genders with regard to risk aversion and competition: women

are found to be more risk averse, less competitive, less self-confident and to have lower performance

in competitions than men.6 Since competition for top positions in academia is more intense, women

could shy away from these jobs and prefer to remain at lower levels of the career ladder. If this is

what women want and what they aim for, then, in economic terms no inefficiency would exist and no

policy intervention would be required. Moreover, we cannot exclude the possibility that women are

prevented from reaching the upper levels of the academic career because of gender discrimination. A

possible channel through which discrimination might operate could be the larger presence of males in

evaluating commissions. Male evaluators could be more likely to hire or promote a male researcher

instead of a female if they are subject to gender stereotypes, if they have gendered connections to male

candidates, or if they share the same research interests as male candidates. Therefore, examiners’

gender-biased preferences could foster further the gender segregation of women in research.

A substantial number of studies have recently investigated the impact of the gender composition of

evaluating commissions on the likelihood of female candidates to be selected for a research position.

However, none of these has examined entry-level research positions, such as post-docs or research

fellowships, which may be the starting levels of the gender imbalance in this type of profession.7

These recent studies analyze centralized selection for Associate and Full Professor positions in Italy

and Spain, where the promotion mechanisms are relatively similar and consist of a first phase of

centralized selection, after which candidates apply for specific positions at the university level. The

identification strategy hinges on the random assignment of evaluators to commissions (see De Paola

6For a detailed review of experimental studies see Gneezy and Rustichini (2004), Croson and Gneezy (2009), De Paola
et al. (2013), Flory et al. (2012), Gneezy et al. (2009), Charness and Gneezy (2012), Niederle et al. (2013), Frick
(2011), Kleinjans (2009), Datta Gupta et al. (2005), Datta Gupta et al. (2013), Villeval (2012) and Marianne (2011).

7Another strand of the gender discrimination literature has investigated non-academic competitions. Based on 150,000
applications to enter the Spanish Judiciary system, Bagues and Esteve-Volart (2010) find opposite sex preferences:
commissions with relatively more females are more likely to hire a male candidate. Other studies examine the impact of
evaluators’ gender on decisions such as accepting articles in a leading journal in economics (Abrevaya and Hamermesh,
2012) or approving grant proposals for the economics Program of the National Science Foundation (Broder, 1993). In
the former study no discrimination is documented against female authors, whereas in the latter there is a clear preference
for opposite sex grant applicants.
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and Scoppa (2011); Zinovyeva and Bagues (2011); Bagues et al. (2014)). This avoids endogene-

ity due to the possible existence of unobservables that may be correlated with commissions’ and

candidates’ characteristics. The exogenous variation in the gender composition of the commission

enables the estimation of the impact of one more female commissioner on the likelihood of a female

candidate to be selected. Although the papers share the same methodology, the evidence is mixed.

De Paola and Scoppa (2011) examine 1,000 candidates in Chemistry and Economics for the Italian

qualifications to Associate and Full professorship held in 2008 and document same-sex preferences,

while Bagues et al. (2014), analyzing 66,000 applications to Associate and Full Professorships in

all academic fields in Italy in 2013, report the opposite result: namely, each additional female com-

missioner decreases the success rate of female candidates by 2%. A mixed and different result is

provided by Zinovyeva and Bagues (2011) on Spanish data from all academic fields: opposite-sex

preferences are found in competitions for Associate Professor, whereas female evaluators tend to

prefer female candidates in competitions to become Full Professor. The authors explain their results

with the internalization of the glass ceiling effect in academia by female evaluators, who may tend

to discriminate against potential future female competitors. However, little is known on the gender

dynamics operating at the start of a research career.

4.3 Institutional background

4.3.1 The research institute

This paper is based on a novel data set about selection procedures for research positions in the Bruno

Kessler Foundation (FBK). FBK is a private non-profit research organization based in Trento (Italy),

which focuses on the physical sciences but also carries out some research in the humanities. It was

established in March 2007 as a transformation of the pre-existing Trentino Institute of Culture (ITC),

a major provincial research institute founded in 1962 and fully funded by the local government

(Provincia Autonoma di Trento).8 Nowadays, it hosts around 350 researchers who work in five

8According to the provincial law 14/2005, art.28, regulating the transformation process from ITC to FBK, “Since the date
indicated at subsection 2, the personnel working at ITC with open-ended contracts that does not establish a working
contract with FBK, is transferred in the unique role of the provincial personnel, and is made available to FBK. The
personnel transferred to the Province can ask to be hired at FBK within 120 days from the adoption of the governing
body decision that identifies the collective contract indicated at subsection 13”. Therefore, the data set investigated in
this paper does not include calls dedicated to ITC personnel, since specific provincial laws regulated the transfer of
personnel from ITC to FBK. More details of the laws regulating the transformation process are included in Appendix
4.A.3.
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research centers.9 Each center is composed of several independent units that manage various research

projects and compete for national and international funds. The institute has an excellent reputation

and attracts many young researchers not only from the local University of Trento, but also from other

parts of Italy and from abroad.

4.3.2 The selection process

The selection procedure for hiring new researchers is competitive, public and follows the rules and

stages outlined in the institutional guidelines. The guidelines cover two different selection processes:

selection procedures for level I and II researchers, irrespective of whether contracts are fixed-term or

permanent, and selection procedures for level III and IV researchers and employees with an equiv-

alent salary. First and second level researchers correspond to the academic positions of Full and

Associate Professor, whereas third and fourth level researchers are equivalent to the positions of

Assistant Professor and Research Assistant, respectively.

For level I and II researchers, the analysis of the CVs by the evaluating commission results in

a short-list of candidates. This is followed by seminar presentations by short-listed candidates. A

ranking of eligible applicants is produced after these two stages.

The selection of researchers for level III and IV researchers and employees with an equivalent

salary consists of four stages. In the first stage, the evaluating commission (or its president) carries

out a first screening and provides a short-list with at most 20 candidates. These candidates are then

interviewed by both personnel officers and researchers in charge of center(s) and/or research unit(s)

that have required the hiring. This second phase determines the suitability of candidates. The list

of suitable candidates is then ranked according to the quality of the candidates and adequacy for the

position. Finally, the post is offered to highest ranked candidate(s).

Each evaluating commission in both cases consists of up to five members, with typically one

from the Human Resource department. The remaining members are researchers from FBK (from the

relevant unit or center that posts the vacancy) or from other research institutions (in Italy and abroad).

Within the sluggish Italian academic labor market, a salient feature of FBK is the high turnover

of researchers, leading to a large number of selection procedures each year (between 30 and 50 per

year). Given both the significantly smaller size of the two research centers working in the field of

9The five centers are: Center for Information Technology-CIT, which focuses on computer science; Center for Materials
and Microsystems - CMM, concerned with microsystems and microelectronics, as well as computational physics and
materials; European Center for Theoretical Physics - ECT; Center for Italian-German Historical Studies - ISIG, which
deals with the historical connections between Italy and Germanic countries, and Center for Religious Sciences - ISR.
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humanities (history and religious studies) and the unavailability of clear bibliometric criteria in this

field, we focus on science and engineering competitions in the other three centers. These are typically

male-dominated disciplines.

4.4 Data

The data used in this study come from three main sources: candidates’ CVs, administrative archives

of the FBK and the bibliometric database Scopus, which was used to retrieve information about

candidates’ research output. Candidates applied online or via email, and their applications are kept

within the institution for up to 5 years. Administrative archives hold official final reports, as well as

the job advertisement of the public call. The three sources lead to a multilevel design of the analysis,

since data relate to both the applicant and the call level.

The data analyzed include information on 672 candidates from 112 calls posted between 2009 and

2011.1011 The number of applications and calls, each year, varied: 37 calls were posted in 2009, 47

in 2010 and 28 in 2011. Overall we examined 191 candidates in 2009, 290 candidates in 2010 and

191 candidates in 2011. Some of these competitions failed to fill the position, while a few resulted

in recruitment of more than one candidate. For 27 competitions only one application was received.

Our final sample excludes both competitions with only one applicant and without any successful

candidate. As a result, the dataset contains 616 applicants and 79 calls: 26 calls and 179 candidates

were analyzed for 2009, 31 calls and 266 for 2010, as well as 22 calls and 171 candidates were

considered for 2011. Out of the 79 calls, 73 resulted in the recruitment of one candidate and they

amount to 510 candidates, whereas five calls led to two recruitments and one to three, with 73 and

33 applicants, respectively.

The calls examined are all public calls, hence open to both external and internal candidates of

FBK. The personnel already working at FBK, as employees and not as temporary collaborators, can

proceed in the internal career ladder through the advancement procedures outlined in the institutional

guidelines.12 However, this does not hamper applications from the internal staff.

10The calls are observations at the call level and the candidates are observations at the candidate level.
112008 was not included in the analysis because the transformation process from the Trentino Institute of Culture to FBK

was still in progress in 2008.
12Among the positions included in the analysis, internal advancements in the career ladder do not apply only for co.co.pro.

workers, who are considered as fixed-term collaborators.
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4.4.1 Candidate level variables

We analyze socio-demographic characteristics of the candidates such as gender, age, the country of

birth and, for Italians only, the region of birth, the highest educational level and its mark, the year

of graduation, the years of work experience and the field of study.13 Candidates’ age was missing in

47% of CVs, but the proportion was higher for candidates from abroad at 66%. When no age was

given, the age was estimated based on the year of graduation.

Several categorical variables were constructed. Origin was coded distinguishing between Trentino-

Alto Adige (local), the rest of Italy, the European Union (including Switzerland) and the rest of

the world. The field of study was recoded in three main areas: 1) social sciences and humanities

(within engineering fields); 2) engineering, computer sciences, architecture, environmental sciences;

3) physical sciences without engineering (mathematics, physics, chemistry, geography). Educational

attainment consists of four categories: no degree, bachelor degree, masters and Ph.D. level. We also

generated a variable to capture the level of excellence of the candidate in her educational career,

by distinguishing four ranges of the final mark: 110 and 110 cum laude14; between 100 and 109;

between 90 and 99 and less than 90.15

The data set also includes information on candidates’ scientific output. Candidates self-reported

their publications on their CVs. Nevertheless, in order to make the comparison more objective, we

decided to retrieve data regarding the number of publications and citations directly from Scopus,

the Elsevier’s bibliographic database founded in 2004.16 In order to obtain applicants’ publication

records, the Scopus Author search page was queried with researchers’ first and last names. If the

author’s name was not unique, the results were cross-checked with data appearing on candidate’s

CV, such as age, origin and field of study, in order to refine results and ensure the correct attribution

of publications to candidates.17 The database was accessed in August 2014. Both publications and

h-index data were retrieved for the specific year of the FBK call for which the candidate applied. We

13Ph.D. activity alone is not considered as work experience, whereas lecturing and/or other types of employment, even if
conducted during the Ph.D., are taken into account.

14This mark corresponds to distinction in the Italian university system.
15Foreign marks were converted to the Italian standard classification.
16Although other bibliographic sources such as Google Scholar and Web of Science are available, many studies suggest

that Scopus is superior both in terms of coverage and accuracy. According to Falagas et al. (2008, p. 338), “Scopus
offers about 20% more coverage than Web of Science, whereas Google Scholar offers results of inconsistent accuracy.”.
Moreover, “Scopus helps distinguish between the researchers in a more nuanced fashion than Web of Science.”(Meho
and Rogers, 2008, p. 1711).

17Out of 616 candidates, 50 candidates, corresponding to 40 unique individuals were not uniquely identified. In order not
to lose these observations, the average value for the h-index and the number of publications of namesakes in the same
field as the individual applying to FBK were entered in the data set.
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opted for collecting candidates’ h-index besides the number of publications because we believe that

this combined measure is a good proxy for the importance and significance of candidates’ contribu-

tions (Hirsch, 2005).

Finally, candidates’ pre-existing ties with FBK are captured by a dummy variable taking value 1

if the candidate had prior ties with FBK or with one member of the evaluating commission, either

in the past or at the time of the application. Defining a pre-existing tie is to some degree arbitrary.

Candidates were classified as having a pre-existing tie/connection with FBK if they complied with at

least one of the following criteria:

1) a co-author with a member of the evaluating commission;

2) supervision at the master or Ph.D. level by one of the commission members;

3) prior work experience (including internship) at FBK;

4) current work experience (including internship) at FBK.

We refer to 1) and 2) as commission ties and to 3) and 4) as institution ties, with the underlying

hypothesis that ties with the institution may exert a stronger effect in the hiring procedures, since a

candidate with prior or current work experience at FBK may have had more opportunities to show

her skills and at the same time to create networks with the hiring institution.

4.4.2 Call level variables

For each call, the characteristics of the members of the evaluating commission are included in the data

set, jointly with information about the position advertised. For commission members, gender, age and

country of origin were obtained from administrative archives of FBK, and their bibliometric measures

retrieved from Scopus for the year of the call. The latters provide a measure of the intrinsic quality

of the commission, which according to the literature is positively correlated with the meritocracy of

the hiring system.18 To distinguish between researchers and HR staff, a dummy variable HR (Human

Resources department) is created for each commission member.

In order to investigate whether the commissions are gendered, two variables were created: a

dummy variable taking value 1 if the commission presented at least one female member, and an-

other variable measuring the fraction of female members in the commission. At the call level, we

also obtained information on the centers to which the call belongs, the duration of the contract, the

18De Paola et al. (2014), in a recent piece of work on the 2013 Italian qualifications to Associate and Full Professor, find
that a commission whose members had an h-index above the median tends to weight a candidates’ publications in the
selection process more than other commissions; moreover, in the lower tail of the distribution of commissions’ quality,
candidates with a weaker publication record tend to be qualified, at the expense of stronger candidates.
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salary and the type of position advertised.19 The advertised positions are classified into the following

categories: R1 are level I researchers, R3 level III researchers and R4 level IV researchers. Finally,

our data set includes T4 positions, which are for level IV technicians, post-doc positions and fixed-

term contracts (called “co.co.pro.” in the Italian legislation).

4.4.3 Descriptive statistics

Almost 8 candidates applied per call.20 The variation of the number of candidates across calls how-

ever is considerable: it ranged from two applicants to more than 30 applicants. Table 4.1 depicts the

number of candidates and calls across the different positions included in the data set. We distinguish

the different research positions into upper and lower positions. To the former type belong R1, R3

and R4 calls, which represent higher positions in the career ladder with respect to T4, post-doc and

co.co.pro., which we refer to as lower positions. As can be noted in Table 4.1, the vast majority of

the observations included in our data set apply for lower positions. Descriptive statistics regarding

monthly wage, applicant’s age and contract length across the different research positions are reported

in Table 4.21 in Appendix 4.A.3.

Table 4.1: Number of candidates and calls across different positions

Position N. applicants N. calls Average N. of candidates per call
R1 8 1 8
R3 65 13 5
R4 124 13 9.54
T4 22 2 11
post-doc 15 2 7.5
co.co.pro. 382 48 7.96
Total 616 79 7.8

Table 4.2 reports descriptive statistics for the candidate level variables. As can be seen from

Table 4.2, the average candidate was around 30 years old, with 4.6 years of work experience; he

had around 6 publications and a corresponding h-index of 1.38. The proportion of women was about

20%. Almost 14% of the candidates were recruited (15.7% of the female candidates and 13.5% of the

male candidates) and almost 11% had pre-existing ties with FBK members or with commissioners

(similar for men and women, with 12.3% of the women and 10.5% of the men).

Table 4.2 also allows us to shed a preliminary light on some marked differences between male

19The duration of the posted job is given in months of activity.
20Applicants per call range from 6.88 in 2009, to 8.58 in 2010 and 7.77 in 2011, with an overall mean of 7.80.
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Table 4.2: Descriptive statistics - Candidates

Candidates

Mean Std. Dev. Min Max Observations

Female 0.196 0.397 0 1 616
Age 30.646 5.774 19 60 616

Females 29.942 4.736 20 53 121
Males 30.818 5.992 19 60 495

Success 0.139 0.346 0 1 616
Females 0.157 0.365 0 1 121
Males 0.135 0.342 0 1 495

Publications 5.982 21.659 0 424 616
Females 3.190 6.284 0 29 121
Males 6.664 23.917 0 424 495

H-index 1.388 3.188 0 39 616
Females 0.851 1.552 0 7 121
Males 1.519 3.461 0 39 495

Work experience 4.628 4.913 0 34 616
Females 3.609 3.723 0 25 121
Males 4.877 5.135 0 34 495

Ties with FBK 0.108 0.311 0 1 616
Females 0.123 0.330 0 1 121
Males 0.105 0.306 0 1 495

and female candidates: male applicants had on average one more year of work experience than

female ones; they had on average three more publications, and their h-index was higher, although the

disparity across genders was proportionally lower for the h-index.21

By decomposing the variable representing prior ties with FBK into the four categories indicated at

the end of Section 4.4.1, we note that the majority of ties is represented by ties with the institution

(Table 4.3). Forty candidates have been working in the past for FBK, whereas twenty-six are cur-

rently working for the institute. Only nine and eight observations have a co-author or a Ph.D./Master

thesis supervisor among the commissioners, respectively.

It can be the case that one candidate has more than one type of tie with FBK. In order to investigate

the role of a different amount of ties, we constructed a “tie indicator” variable, which ranges between

0 and 4, where 0 indicates that the candidate does not have any tie with FBK, and 4 stands for having

all the four types of ties with FBK. Of the 616 observations of the data set, 549 have no ties, 55 have

one tie, 9 have two types of ties, 2 have three types of ties whereas one individual boasts of all types

21The differences in the standardized number of publications between male and female candidates are statistically signif-
icant - Wilcoxon rank-sum test, z= 4.093, p= 0.000 -, whereas they are not significant for the standardized h-index -
Wilcoxon rank-sum test, z= 1.531, p = 0.126 -.
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of ties.

Table 4.3: Decomposition of types of ties with FBK

Co-author Supervisor Prior work Current work At least one tie Institution Commission
Frequency 9 8 40 26 67 56 16
Percentage 1.46 1.30 6.49 4.22 10.88 9.09 2.60

Notes: The percentage is computed with respect to the total amount of candidates (616).

Looking at the geographical origin of candidates, almost half come from Italy, with one out of six

candidates from the local Trentino-Alto Adige region (see Table 4.4). It is interesting that a large

number of applications came from international researchers, and that the share of their applications

increased over the years, especially for those candidates applying from outside Europe. This confirms

the attractiveness of FBK for foreign researchers.

When we consider more in depth candidates’ bibliometric measures, we notice large differences

across fields of research, due to different publication propensities in different sectors of research.

In order to compare candidates from different fields, we standardize the number of publications, as

well as the value of candidates’ h-index, according to 3 macro fields of research, more uniform in

terms of bibliometric patterns: social sciences; math, physics and chemistry; environmental sciences,

engineering and computer sciences.22 Table 4.5 reports candidates’ h-indexes across these macro

fields of work, as well as the number of observations in each case.

Table 4.6 shows information about commission members. Of all commission members 26% were

female, but if female HR members are excluded, the percentage of female commissioners decreases

to 8.6%. Women accounted for the 74% of the total HR personnel at FBK.

Commission members were mainly Italian: only 30% were not Italian, and among female commis-

sioners only 5% were non-Italian. The average age of commissioners was 45 years, with an h-index

of 15. Commissioners’ h-index was standardized following the same procedure as for candidates’

h-index.23

If we look more closely at the gender composition of commissions, only 16% of the commis-

sions included a female researcher. Thus, all-male researchers commissions were dominant, reached

92% in 2009 but the percentage was lower in the subsequent years, about 78-82%. Furthermore,

the percentage of female researchers in commissions varies little, as generally only one member was

female. Table 4.7 shows all combinations of female percentage of commissioners and commission’s

22The field of research was indicated by each candidate on the CV sent to FBK at the time of the application.
23Unlike for candidates, who had to indicate their field of research in the CV, commissioners’ field was retrieved from

Scopus, as the principal sector of their publications appearing on the Elsevier database.
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Table 4.4: Geographical origin of candidates

Origin 2009 2010 2011 2009-2011
Trentino- Alto Adige 14.53 21.05 10.53 16.23
Rest of Italy 45.81 25.56 26.90 31.82
EU and Switzerland 13.97 17.29 14.62 15.58
Rest of the world 25.70 36.09 47.95 36.36
Total 100 100 100 100

Table 4.5: Candidates’ h-indexes across macro fields of research

Field Mean Std. Dev. Min. Max. Obs.
Field 1 .116 .448 0 2 43
Field 2 2.507 4.057 0 39 227
Field 3 .812 2.440 0 32 346

Notes: Field 1 includes social sciences within engineering fields;

Field 2 math, physics and chemistry; Field 3 environmental sci-

ences, engineering and computer sciences.

size. The very high percentage of all-male commissions makes discrimination against female appli-

cants a possibility if commissioners tend to have same-sex preferences as regards candidates. This

will be further examined in the econometric analysis.

Table 4.8 depicts a series of descriptive statistics of successful and unsuccessful candidates, over

the years under analysis. The percentage of successful candidates among male and female applicants

is gender neutral in some years but varies in other years. The fraction of successful female candidates

over the whole set of candidates is quite constant over the years at about 20%, but while the year 2009

presents the same proportion of female successful candidates, in 2010 women are favored and the

opposite occurs in 2011.

Finally, Table 4.9 indicates that the disparity between men and women is greatest at high level

research positions. No women applied for any level I position, while their share in applications and

recruitment increases as the level of the position decreases. For instance, men and women are almost

equally represented at the T4 level (which corresponds to the position of research assistants and

technologists).

4.5 Empirical analysis

In this section we analyze whether women applying at FBK are discriminated during the selection

process. We analyze the factors influencing the selection process, and among others the gender of
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Table 4.6: Descriptive statistics - Commission members

Evaluators

Mean Std. Dev. Min Max Observations

Female commissioner 0.263 0.440 0 1 2058
Female commissioner (no HR) 0.086 0.280 0 1 1626
Origin 0.296 0.456 0 1 2058

Females 0.042 0.201 0 1 542
Males 0.387 0.487 0 1 1516

Age commissioner 45.267 11.385 25 71 1940
Females 40.094 9.606 27 58 542
Males 47.273 11.391 25 71 1398

Human Resources 0.210 0.407 0 1 2051
Females 0.741 0.438 0 1 542
Males 0.019 0.139 0 1 1509

H-index commissioner 15.071 11.698 0 47 1626
Females 4.821 4.445 0 19 140
Males 16.037 11.707 0 47 1486

the applicant and the gender composition of the commission. The descriptive overview showed that

women are in the minority both at the application and the recruitment stages. Is it possible that one

of the reasons for this is the under-representation of women in the evaluating commissions?

We first conduct an analysis on the whole sample of candidates at FBK, and we proceed to examine

hiring patterns on sub-samples of applicants, obtained by stratifying on relevant characteristics of the

hiring process. We then investigate the relationship between gender, origin and pre-existing ties.

4.5.1 Analysis of the full sample

To examine the effects of the gender composition of the commission on the probability of being hired

we estimate Equation 4.1 by a conditional logit model:

Successi j = β0 +β1Femalei j +β2Femalei j ∗Female in commission j +β3Xi j +µ j + εi j (4.1)

where Successi j is a dummy variable taking value 1 if candidate i was recruited as a result of the

call j and value 0 otherwise. We control for the gender of the candidate, Femalei j, and for the inter-

action between the gender of the candidate and a dummy variable indicating the existence of at least
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Table 4.7: Percentage of women in evaluating commissions and number of commissioners

N. of commissioners
% of women 1 2 3 4 5 Tot.

0 2 27 23 8 6 66
0.2 0 0 0 0 1 1
0.25 0 0 0 4 0 4
0.33 0 0 4 0 0 4
0.5 0 3 0 0 0 3
0.8 0 0 0 0 1 1
Tot. 2 30 27 12 8 79

Notes: Women in this table are considered as researchers

and not belonging to the HR department of FBK.

Table 4.8: Applicants by final outcome and year

Year Unsuccessful Successful Total
2009 Female share 0.22 0.19 0.22

Age 30.86 29.32 30.60
Publications 9.84 6.55 9.27
H-index 1.70 1.61 1.69
Work experience 4.49 3.81 4.37

2010 Female share 0.18 0.33 0.20
Age 29.85 30.24 29.89
Publications 4.50 9.12 5.08
H-index 1.28 1.91 1.36
Work experience 4.14 5.12 4.26

2011 Female share 0.19 0.09 0.18
Age 32.18 29.73 31.87
Publications 3.78 5.09 3.95
H-index 1.05 1.59 1.12
Work experience 5.71 3.80 5.46

one woman in the commission, Femalei j ∗Female in commission j.24 Thus, β1 indicates the effect of

being female on the probability of being selected by a all-male evaluating commission, whereas β1

+ β2 that of being female on the probability of being selected by a mixed-gender commission. Xi j

is a vector of candidates’ attributes, such as the Scopus h-index at the year of the competition, age

and origin, a dummy for holding a Ph.D., years of work experience and the presence of pre-existing

ties with FBK. Call fixed effects are captured by µ j, which includes both the type of position and the

area of specialization, as well as other factors that may influence candidates’ probability of success.

Besides estimating Equation 4.1 by a conditional logit model, we also estimate a linear probability

24Given the low variability of the share of women among commissioners, we decided to opt for this specification in order
to study the effect of the gender composition of the commission.
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Table 4.9: Gender distribution of unsuccessful and successful applicants at different research levels

Unsuccessful Successful
Position Males Females Males Females

R1 100.00 0.00 100.00 0.00
R3 80.39 19.61 64.29 35.71
R4 82.57 17.43 80.00 20.00
T4 52.63 47.37 66.67 33.33

post-doc 92.31 7.69 50.00 50.00
co.co.pro. 80.97 19.03 82.35 17.65

Total 80.75 19.25 77.91 22.09

model as a robustness check. The conditional logit allows us to take into account candidates’ inter-

dependent probabilities of being recruited. The likelihood of the data in a conditional logit depends

on the conditional probabilities, conditional on the number of positive outcomes (in our case the

success) within group. For almost all calls in our data set only one candidate was selected per call

and hence the group at the basis of the conditional logit is composed of those candidates applying

for the same call. In other words, the conditional logit fits a logistic model that explains why one

candidate had a positive outcome in a certain group, conditional on one of the candidates in the group

having a positive outcome. Hence, the differences across candidates are considered at the call level.

Estimates for the conditional logit are displayed in Table 4.10 and refer to coefficients.

In the first specification reported in Table 4.10, column 1, we are interested in knowing whether

there is overall a lower probability of female candidates to be recruited. Our results do not support

this hypothesis. Examining the effect of the gender composition of the commission in column 2,

it turns out that commissions with a female evaluator tend to favor female candidates. This holds

true also if we include a measure of candidates’ scientific productivity, the standardized h-index, as

in column 3. Being more productive in bibliometric terms has a positive impact on the probability

of being appointed for the job. Other individual variables statistically significantly influence the

chances of success, as reported in column 4 of Table 4.10: age has a negative impact, whereas Italian

origin and Ph.D. positively influence the probability of being recruited, as so does an additional year

of work experience. Yet, by incorporating these variables the positive effect of the h-index is not

statistically significant anymore.

If the estimation encompasses the dummy variable representing pre-existing ties, as in column 5,

the interaction term between candidates’ gender and the gender composition of the commission loses

significance, while pre-existing ties is positive and highly significant. Therefore, it might be that
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Table 4.10: Probability of success - Conditional logit

1 2 3 4 5
Female -0.033 -0.415 -0.371 -0.369 -0.404

(0.309) (0.379) (0.383) (0.406) (0.432)
Female*Dummy fem. in Comm. 1.587∗∗ 1.545∗∗ 1.422∗ 1.101

(0.760) (0.763) (0.798) (0.817)
H-index standardized 0.221∗∗ 0.181 0.129

(0.103) (0.114) (0.124)
Age squared -0.002∗∗∗ -0.002∗∗∗

(0.001) (0.001)
Italian origins 1.052∗∗∗ 1.074∗∗∗

(0.339) (0.352)
Ph.D. 0.790∗∗ 0.683∗

(0.384) (0.413)
Work experience 0.090∗∗ 0.099∗∗

(0.045) (0.047)
Ties with FBK 1.457∗∗∗

(0.351)
Pseudo R2 0.000 0.016 0.030 0.104 0.164
Observations 614 614 614 614 614

Notes: The Table reports conditional logit coefficients, computed at the competition level. The dependent vari-

able is a dummy variable for being successful. Standard errors are reported in parenthesis. Symbols ∗, ∗∗ and
∗∗∗ indicate that coefficients are statistically significant at 10%, 5% and 1% levels, respectively.

the interaction term in the previous specifications of the model hides connections between female

commissioners and female candidates. Moreover, all individual variables are significant, except for

the productivity measure of candidates as captured by the h-index. This shows the importance of

prior ties, possibly at the expense of purely meritocratic patterns of selection, based on research

output. Results of the final conditional logit model are confirmed both in significance and in signs

when we look at the estimates of Table 4.11. Linear probability models do not change substantially

the results, thus providing a robustness check. It is important to note that in both final specifications

the probability of selection is not statistically significantly different for female and male candidates

and the presence of a female member in the evaluating commission is also not statistically significant.

This means that a female quota in evaluating commissions seems unlikely to have an impact, if we

consider the whole data set.

4.5.2 Analysis on sub-samples of candidates

In this section we analyze if a gender gap in hiring patterns arises in sub-samples obtained by splitting

the original data set according to relevant variables. All results displayed in Table 4.12 are from a
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Table 4.11: Probability of success - Linear Probability Model

1 2 3 4 5
Female -0.004 -0.054 -0.046 -0.045 -0.036

(0.043) (0.048) (0.048) (0.047) (0.046)
Female*(Dummy fem. in Com.) 0.205∗∗ 0.199∗∗ 0.173∗ 0.139

(0.090) (0.089) (0.090) (0.094)
H-index standardized 0.032 0.021 0.014

(0.019) (0.018) (0.018)
Age squared -0.002∗∗∗ -0.001∗∗∗

(0.000) (0.000)
Italian origins 0.115∗∗∗ 0.112∗∗

(0.042) (0.043)
Ph.D. 0.114∗∗ 0.091∗∗

(0.044) (0.044)
Work experience 0.009∗∗ 0.011∗∗

(0.005) (0.005)
Ties with FBK 0.283∗∗∗

(0.082)
Call FE Yes Yes Yes Yes Yes
Adj. R2 0.005 0.013 0.019 0.051 0.109
Observations 616 616 616 616 616

Notes: The Table reports OLS estimates. The dependent variable is a dummy variable for winning the com-

petition. We control for call fixed effects. Standard errors, clustered at the competition level, are reported in

parenthesis. Symbols ∗, ∗∗ and ∗∗∗ indicate that coefficients are statistically significant at 10%, 5% and 1%

levels respectively.

conditional logit model. The model is the same as the full model specification of Table 4.10, column

5. First, we are interested in distinguishing commissions in terms of a bibliometric measure, as

a proxy for the quality of the commission. To this end, we compute the average h-index of all

evaluating commissions and divide the full sample of candidates in two sub-samples: those assessed

by commissions belonging to the fourth quartile of the h-index distribution and those in the three

lower quartiles. Estimations performed on these two sub-samples are shown in columns 1 and 2 of

Table 4.12.

The fourth quartile of commissioners in terms of research quality seems to be more responsive

to candidates’ research production, as highlighted by the positive and significant (at the 10% signif-

icance level) coefficient for the standardized h-index. Also Italian origin increases the probability

of recruitment and so do more years of work experience, ceteris paribus. For candidates evaluated

by the three lower quartiles in terms of h-index, the criteria that matter most for being recruited are

being younger, having Italian origin and pre-existing ties with FBK. The same estimation has been

performed on two sub-samples divided in above or below the median of commission’s h-index. No
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Table 4.12: Probability of success sub-categories - Conditional logit

1 2 3 4 5 6
H-index commission: Position: Discipline:

4th quartile 1st- 3rd quartiles lower upper lower h higher h
Female -0.059 -0.359 -1.425∗∗ 0.637 -0.207 0.468

(1.221) (0.465) (0.699) (0.610) (0.548) (1.006)
Female* 15.444 0.814 2.000∗ 0.720 -0.504 15.592
*(fem. in Com.) (1508.159) (0.863) (1.062) (1.570) (1.255)(2216.181)
H-index stand. 0.321∗ 0.020 0.499∗∗∗ -0.098 0.029 0.885∗∗∗

(0.183) (0.257) (0.186) (0.239) (0.153) (0.332)
Age squared -0.002 -0.002∗∗ -0.002∗∗ -0.001 -0.001 -0.009∗∗∗

(0.002) (0.001) (0.001) (0.001) (0.001) (0.003)
Italian origins 1.947∗∗ 0.890∗∗ 0.931∗∗ 1.578∗∗ 1.166∗∗∗ 1.555∗∗

(0.850) (0.392) (0.430) (0.680) (0.436) (0.786)
Ph.D. 0.318 0.737 0.679 0.647 0.469 0.889

(1.284) (0.452) (0.586) (0.618) (0.533) (1.023)
Work experience 0.308∗∗ 0.081 0.141∗∗∗ 0.014 0.077 0.273∗

(0.153) (0.052) (0.055) (0.102) (0.056) (0.148)
Ties with FBK -0.447 1.590∗∗∗ 1.645∗∗∗1.790∗∗∗ 1.710∗∗∗ 2.806∗∗

(1.706) (0.370) (0.499) (0.552) (0.430) (1.160)
Pseudo R2 0.238 0.176 0.200 0.239 0.166 0.410
Observations 168 446 417 197 340 190

Notes: The Table reports conditional logit coefficients, computed at the competition level. The dependent variable is a

dummy variable for for being successful. Standard errors are reported in parenthesis. In models 1 and 2 observations

are divided according to the average h-index of commissioners, whether belonging to the first three quartiles of the h-

index of the commissions or to the fourth quartile; in models 3 and 4 the distinction is made according to the level of the

position of the competition: lower refers to co.co.pro., post-doc and T4 levels, whereas upper stands for R1, R3 and R4

types of positions; in models 5 and 6 observations are divided in two sub-samples according to the average h-index of

the discipline involved by the competition: model 5 includes fields 1 and 3, whereas model 6 refers to field 2. Symbols
∗, ∗∗ and ∗∗∗ indicate that coefficients are statistically significant at 10%, 5% and 1% levels, respectively.

relevant differences between the two sub-samples are found in this case, meaning that a different

hiring pattern emerges only for top quality evaluating commissions.

Next, we examine whether different characteristics are statistically significant if we consider sep-

arately lower and upper research positions at FBK.25 As we pointed out in the introduction, what

distinguishes our study from previous studies is the availability of data for entry research jobs: in-

deed, 417 out of 616 applications are for lower level research jobs, whereas only 197 are for upper

research positions (columns 3 and 4 of Table 4.12). Females applying for lower level jobs have, ce-

teris paribus, a lower probability of being hired, although this is reverted if the commission includes a

25Due to the scarce numerosity of candidates applying for level I and level II positions, we split the sample in two groups
with respect to the hierarchy of research positions present in the sample. To this end, T4 candidates, although belonging
to the same level as R4 positions, were included in the lower group, given the less research-oriented nature of their
contracts.
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female researcher. Being younger, having more years of work experience and being born in Italy pos-

itively influence the probability of selection, and so does having a higher h-index. Still, pre-existing

ties with FBK play an important role in being recruited. If we look at the recruitment for upper levels

of research positions, important determinants for being recruited are being born in Italy and having

prior ties. However, not only do we lose statistical significance of the gender dummy, but we also

lose significance of the h-index, age, and work experience, but not of pre-existing ties with FBK. The

recent Italian reform on Italian universities, which strengthens the role of bibliometric measures in

selection processes for academic positions, seems to impact mainly entry level recruitment .26

Finally, we divide candidates according to the h-index of the field of research. For this purpose

we take the fields of research of Table 4.5. We group fields 1 and 3, which represent social sci-

ences, engineering, computer sciences and environmental sciences, which are characterized by a

lower h-index, separately from field 2, which corresponds to math, physics and chemistry. Looking

at columns 5 and 6 of Table 4.12 we note that in both sub-samples being selected depends on being

born in Italy and having pre-existing ties with the institution. For field 2, age and the h-index are

statistically significant, which is not the case for the other fields. In both sub-samples, no indication

of discrimination against female candidates and no effect of a female researcher in the commission

can be found.

4.5.3 Gender, origin and prior ties

In the previous sections it emerged that in almost any model specification and sub-sample, the most

important factors affecting the probability of recruitment are Italian origin and pre-existing ties with

FBK. In half of the sub-samples, the probability of being recruited decreases with age and increases

with work experience. Interestingly, in half of sub-samples of Table 4.12, scientific productivity

is not statistically significant, while holding a Ph.D. does not statistically increase the chances of

selection.

We find clear indications that pre-existing ties with FBK increase the probability of recruitment.

This represents an alternative channel through which a gendered selection may take place. Therefore,

we explore in more detail whether pre-existing ties are gender specific. Prior ties precede the actual

selection process. Could they be a mechanism to attract more women into research? The decompo-

sition of prior ties with FBK across candidates’ gender, however, shows that connections are gender

26The reform is based on the “Legge Gelmini 30 Dicembre 2010, n. 240”.
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Table 4.13: Gender composition of successful and unsuccessful candidates, with and without con-
nections with FBK

Females % Males %

Overall
Ties 15 (12.4%) 52 (10.51%)
No ties 106 (87.6%) 443 (89.49%)

Successful
Ties 6 (31.58%) 22 (32.84%)
No ties 13 (68.42%) 45 (67.16%)

Unsuccessful
Ties 9 (8.82%) 30 (7.01%)
No ties 93 (91.18%) 398 (92.99%)

neutral. Table 4.13 reports the percentage of candidates with and without prior ties: overall, 12.4%

of female applicants have previous ties with FBK, and the percentage for males stands at 10.51%.27

If we look at successful and unsuccessful applicants separately, again, we do not find any statistically

significant differences across genders.

We also examine the correlation between pre-existing ties with FBK and the region of origin of

candidates. It may not be surprising that the proportion of candidates born in Trentino- Alto Adige

or in the rest of Italy have more prior ties with FBK, as portrayed in Table 4.14.

Table 4.14: Pre-existing ties with FBK by country of origin

Origin No ties Ties Total
Trentino- Alto Adige 76 24 100
Rest of Italy 90.8 9.2 100
EU and Switzerland 97.9 2.1 100
Rest of world 89.7 10.3 100
Total 89.1 10.1 100

We now examine the impact of different types of ties with FBK on the probability of being re-

cruited. We do this in two ways: first, we estimate the conditional logit model (5) of Table 4.10 by

replacing the variable “Ties with FBK” with the four variables representing the different types of ties

with FBK. Second, we estimate the same model by replacing two dummy variables indicating ties

with commissioners or with the institution, in order to examine which dimension prevails. Results

are reported in Tables 4.15 and 4.16, respectively. The analyses are performed on the full sample of

candidates, since estimating the model on the sub-samples of candidates as in Table 4.12 entails huge

27Differences in proportions are not statistically significant; two-group test of proportions: z = -0. 599, p = 0.549.
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standard errors. This is due to the low frequencies of the different types of ties in each sub-sample

considered. Linear probability model estimations on the full data set in both cases did not provide

significant differences.

The estimation including the four different types of ties sheds light on the significant positive effect

of two types of ties on the chances of being recruited. More specifically, we find that having one’s

own supervisor among the commissioners and currently working at FBK are important drivers in the

recruiting process, with the former type of tie having a stronger effect. However, when we consider

ties distinguishing them into ties with the commission or with the institution, we can see that both

dimensions are significant, with the coefficient of the dummy variable commission being slightly

higher.

Table 4.15: Probability of success - Conditional logit with four types of ties

Female -0.284
(0.425)

Female*(Dummy fem. in Com.) 0.989
(0.830)

H-index standardized 0.143
(0.129)

Age squared -0.002∗∗∗

(0.001)
Italian origins 0.913∗∗

(0.356)
Ph.D. 0.636

(0.417)
Work experience 0.096∗∗

(0.047)
Co-author 0.672

(1.024)
Supervisor 2.562∗∗

(1.002)
Prior work 0.738

(0.480)
Current work 1.292∗∗

(0.566)
Pseudo R2 0.180
Observations 614

Notes: Symbols ∗, ∗∗ and ∗∗∗ indicate that coefficients are

statistically significant at 10%, 5% and 1% levels, respec-

tively.

Finally, in the model of Table 4.17 we aimed at testing whether having incremental types of ties

with FBK increases the chances of being recruited, treating equally the different ties. The coefficient
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Table 4.16: Probability of success - Conditional logit with Commission and Institution ties

Female -0.335
(0.432)

Female*(Dummy fem. in Com.) 0.945
(0.832)

H-index standardized 0.109
(0.131)

Age squared -0.002∗∗

(0.001)
Italian origins 1.015∗∗∗

(0.356)
Ph.D. 0.695∗

(0.414)
Work experience 0.096∗∗

(0.047)
Commission 1.815∗∗∗

(0.701)
Institution 1.225∗∗∗

(0.381)
Pseudo R2 0.170
Observations 614

Notes: Symbols ∗, ∗∗ and ∗∗∗ indicate that coefficients

are statistically significant at 10%, 5% and 1% levels, re-

spectively.
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of the tie indicator variable shows that having an additional tie with FBK significantly increases the

chances of being hired, irrespective of the type of tie.

Table 4.17: Probability of success - Conditional logit with tie indicator

Female -0.341
(0.424)

Female*(Dummy fem. in Com.) 0.990
(0.824)

H-index standardized 0.128
(0.124)

Age squared -0.002∗∗∗

(0.001)
Italian origins 0.972∗∗∗

(0.353)
Ph.D. 0.669

(0.416)
Work experience 0.100∗∗

(0.047)
Tie indicator 1.120∗∗∗

(0.287)
Pseudo R2 0.170
Observations 614

Notes: Symbols ∗, ∗∗ and ∗∗∗ indicate that coefficients are

statistically significant at 10%, 5% and 1% levels, respec-

tively.

Having identified in pre-existing ties an important determinant of candidates’ success at FBK, we

conduct a post-competition analysis on those candidates who won a competition, splitting them into

two groups: applicants with pre-existing ties and without pre-existing ties with the institution. The

rationale for this is to investigate the role of ties in the ex-post candidates’ research productivity,

since hiring through networks can carry two opposite effects: the negative effect of an evaluation

bias driven by acquaintances, and the positive effect of reducing information asymmetries regarding

candidates’ quality and research potential. It could hence be the case that the connections mechanism

present at FBK competitions might contribute to hiring the most productive individuals and hence to

making the selection more efficient.

We limit the analysis to the sub-sample of successful candidates, consisting of 86 observations,

and we compare the number of publications in the two years following the competition between

those individuals with prior ties and those without prior ties.28 Table 4.18 shows that the h-index

28In this case we opted for a comparison of the number of publications rather than of h-indexes, since for a period of only
two years gathering citations for the articles published in this very short time lapse is extremely rare and variability in
the data would not be sufficient.
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and number of publications of successful candidates with prior ties is on average higher than for

successful candidates without prior ties. If we perform a Wilcoxon rank-sum test on the number of

publications the difference is statistically significant at the 10% level (z= -1.667, p= 0.0954), although

it is not for the standardized number of publications (z= -1.574, p= 0.1156).

Table 4.18: Post-competition productivity of successful candidates

Ties No Ties
Average N. of publications 4.78 3.29
Average N. of publications (std) 0.38 0.13

Notes: Data refer to the two years following the year of the com-

petition and are retrieved from Scopus. The standardization oc-

curs at the field level, as of Table 4.5.

There is hence some evidence of a positive informational effect of ties, suggesting that networks

may help to select more productive candidates in terms of scientific publications.

When we decompose the post-competition productivity of successful candidates across the differ-

ent types of ties, as in Table 4.19, we see that candidates with a co-author in the commission are on

average more productive than candidates with other ties. Performing Wilcoxon rank-sum tests on

all the average number of publications of the different tie variables, we find that only the co-author

dummy is significant, both in levels and in standardized values (z = -2.131, p = 0.0331; z = -1.998, p

= 0.0457). This means that the post-competition productivity of successful candidates who had a co-

author in the commission is higher than the post-competition productivity of successful candidates

who did not have a co-author among the commissioners.

This may suggest that commissioners who probably work at FBK and who are co-authors with suc-

cessful candidates exert a positive effect on the propensity of publication of candidates. By repli-

cating this analysis on the Commission and Institution dummy variables for ties, we find that only

the post-competition productivity of candidates with a commission tie is significantly higher than

the post-competition productivity of candidates without a tie in the commission, both in levels and

in standardized values (Wilcoxon rank-sum test, z = -2.215, p = 0.0267; z = -2.002, p = 0.0453).

Therefore, it emerges that having networks with commissioners is positively correlated with the post-

competition propensity of publication, especially when the tie is represented by a co-authorship.
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Table 4.19: Post-competition productivity of successful candidates across ties

Average N. of publications Average N. of publications (std)
Co-author 9 0.997
Supervisor 7.3 0.765
Prior work 5.63 0.539
Current work 6.08 0.680
Commission

Yes 6.8 0.629
No 3.38 0.156

Institution
Yes 5 0.442
No 3.36 0.132

Notes: Data refer to the two years following the year of the competition and are retrieved from

Scopus. The standardization occurs at the field level, as of Table 4.5.

4.6 Discussion and conclusion

Gender disparities in some professional fields are a highly-debated issue. Several policy solutions

have been proposed to reduce gender disparities, such as gender quotas for employees and, lately,

gender quotas in evaluating commissions for research positions. The latter is motivated by possi-

bly gender-biased preferences towards same-sex candidates in evaluating commissions, which are

generally male-dominated.

In this paper we analyze whether female commissioners foster the hiring of female candidates.

The analysis uses data from recruitments at FBK, an Italian research center mainly operating in

hard science, a typically male-dominated field. Based on data on recruitment processes occurred

between 2009 and 2011, we investigate the main determinants in the selection process. We study if

the gender composition of the evaluating commissions influences the selection of candidates in terms

of gender. Our data set allows us to analyze factors influencing recruitment at the start of a research

career. Unlike other studies, our analysis includes mainly post-docs, temporary jobs and research

fellowships.

Furthermore, our study is the first one in the strand of gender discrimination research to use bib-

liometric data retrieved from Scopus, which is widely recognized as being more reliable that other

databases previously used for such types of analysis.

The most important determinants for successful applications are Italian origin of the candidate and

prior ties with FBK. Ties play a major role if a commissioner member is the Ph.D./Master thesis

supervisor of the candidate or if the candidate is currently working at FBK. The absence of evidence
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of discrimination on the whole data set is in contrast to previous research. Previous studies found

either same-sex preferences (De Paola and Scoppa, 2011), opposite-sex preferences (Bagues et al.,

2014) or mixed preferences depending on the level of the position (Zinovyeva and Bagues, 2011).

Candidates’ h-index increases the probability of being recruited more when commission members

themselves have a higher h-index. The effect of prior ties vanishes when candidates are evaluated

by commissions belonging to the fourth quartile of the distribution of commissions’ h-index. We

find that for commissions with lower h-index, prior ties with FBK are the most important factor for

recruitment.

Interestingly, for entry level research positions we find that female candidates are discriminated

against by all-male commissions, even after controlling for their research productivity and education,

as well as for socio-demographic variables and prior ties with the institution. The presence of a

female researcher in the evaluating commission increases the probability of hiring female candidates,

thus lending support to a potential benefit of gender quotas at lower research levels. The same does

not hold for top research positions, for which ties with FBK and Italian origin are the main drivers

for selection. We do not find evidence of gender discrimination in hiring, except for lower research

positions. However, looking at the internal organizational chart of FBK, women share declines with

the hierarchy rank, as in most organizations. The real challenge is thus to understand how to increase

the percentage of female researchers at top positions.

From our analysis, it is evident that prior ties with the research center play a major role in the

recruitment decisions. For this reason we investigated more thoroughly the effect of pre-existing ties

and we found that having won a competition having prior ties with FBK entails significantly more

new publications in the two years following the competition. This implies that there might be a possi-

ble positive role for prior ties in reducing the information gap between candidates and the evaluating

commissions about candidates’ research quality, confirming a result found by Bagues and Zinovyeva

(2012). They posit the existence of an optimal distance in terms of pre-existing ties between evalua-

tors and candidates in their analysis on academic promotions to Associate and Full Professorships in

Spain. Being selected through weak ties with commissioners enhances ex-post research productiv-

ity, whereas being promoted with strong ties or without ties hinders candidates’ research outcome.29

They explain this result suggesting that with strong ties the selection bias driven by the acquaintance

would be too prevalent, while with no pre-existing ties there would be no informational advantage

29Strong connections are those with a Ph.D. thesis advisor or with a coauthor, while weak ties are identified in same
university colleagues and to a lesser extent in Ph.D. thesis defense members.
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about applicants’ potential. Unlike Bagues and Zinovyeva (2012), in our analysis we are not able to

distinguish between strong and weak ties. The aspect of different kinds of ties is worth additional

research. Further research should also be carried out on promotion mechanisms operating at FBK:

it would probably be possible to isolate in a more explicit way contingent discrimination dynamics

and the role of the gender composition of promoting commissions because prior ties should lose their

importance. Promotions represent indeed another significant portion of the story of why women are

under-represented in top rank positions.

4.A Appendix

4.A.1 List of variables

Table 4.20: List of variables

Variable Description

Female Dummy variable assuming value 1 if the candidate is female and value 0 other-

wise

Success Dummy variable assuming value 1 if the candidate is recruited and value 0

otherwise

Dummy fem. in Comm. Dummy female in commission: dummy variable assuming value 1 if the can-

didate is evaluated by a commission in which there is at least one female re-

searcher (no HR) and value 0 otherwise

H-index standardized Candidate’s h-index at the year of the call, standardized by her macro field of

research as indicated in Table 4.5

Age Candidate’s age in years

Age squared Candidate’s age squared

Italian origins Dummy variable assuming value 1 if the candidate has an Italian nationality and

value 0 otherwise

Ph.D. Dummy variable assuming value 1 if the candidate has earned a Ph.D. and value

0 otherwise

Work experience Candidate’s work experience in years, excluding years exclusively devoted to

Ph.D.

Continued on next page
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Table 4.20 – Continued from previous page

Variable Description

Ties with FBK Dummy variable assuming value 1 if the candidate complies with at least one of

the following criteria, and value 0 otherwise: 1) a co-author with a member of

the evaluating commission; 2) supervision at the master or Ph.D. level by one

of the commission members; 3) prior work experience (including internship) at

FBK; 4) current work experience (including internship) at FBK

Commission Dummy variable assuming value 1 if the candidate has ties with FBK of type 1)

or 2) and value 0 otherwise

Institution Dummy variable assuming value 1 if the candidate has ties with FBK of type 3)

or 4) and value 0 otherwise

Tie indicator Variable assuming value 0 if the candidate has no ties with FBK, value 1 if she

has one type of tie with FBK, value 2 if she has two types of ties with FBK,

value 3 in case of three types of ties and value 4 in case of four different types

of ties with FBK

Upper positions R1, R3, R4 positions

Lower positions T4, post-doc, co.co.pro. positions

Lower h Competitions in social sciences within engineering fields, environmental sci-

ences, engineering and computer sciences (fields characterized by lower h-

indexes)

Higher h Competitions in math, physics and chemistry (fields characterized by higher

h-indexes)

Female commissioner Dummy variable assuming value 1 if the commissioner is female and value 0

otherwise

Female commissioner (no HR) Dummy variable assuming value 1 if the commissioner is a female researcher,

not from the HR division, and value 0 otherwise

Origin commissioner Dummy variable assuming value 1 if the commissioner comes from outside

Italy and value 0 otherwise

Age commissioner Commissioner’s age in years

Human resources Dummy variable assuming value 1 if the commissioner is from the HR division

and value 0 otherwise

H-index commissioner Commissioner’s h-index at the year of the call

Monthly wage Monthly wage of the posted positions expresses in Euros

Contract length Contract length of the posted positions expressed in months
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4.A.2 Descriptive statistics of different research levels

Table 4.21 aims to shed light on some descriptive statistics of the various research levels at FBK.

Table 4.21: Descriptive statistics of different research levels

Mean Std. Dev. Min Max
Monthly wage 2687 905.228 750 7234

R1 7234 0 7234 7234
R3 3113 124.320 2667 3156
R4 2842 124.221 2750 3150
T4 2750 0 2750 2750
post-doc 3156 0 3156 3156
co.co.pro. 2394 815.445 750 4388

Applicant’s age 30.65 5.774 19 60
R1 42.88 9.978 25 52
R3 32.94 5.431 26 55
R4 30.65 5.295 24 56
T4 26.59 5.378 20 37
post-doc 32.33 3.244 26 37
co.co.pro. 30.17 5.539 19 60

Contract length 21.46 11.010 3 44
R1 36 0 36 36
R3 29.63 9.117 12 42
R4 25.58 9.411 8 36
T4 8.36 1.177 8 12
post-doc 30.4 6.197 24 36
co.co.pro. 18.83 10.503 3 44

Notes: The monthly wage is specified in AC, applicant’s age in

years and contract length in months of the posted job.

4.A.3 Transformation process from ITC to FBK

In this appendix we report the original documents which regulated the transformation process from

ITC to FBK. These documents highlight that at the date of the expiration of ITC (1st March 2007),

all the personnel working for ITC was offered to be transferred to FBK with an equivalent contract.

Reg.delib.n. 338, Prot. n. 890-GEN/07/S007, VERBALE DI DELIBERAZIONE

DELLA GIUNTA PROVINCIALE

O G G E T T O: Approvazione schema di convenzione disciplinante i rapporti finanziari e organiz-

zativi per la gestione del personale dell’Istituto Trentino di Cultura, che verr inquadrato nel ruolo

unico della Provincia Autonoma di Trento e messo a disposizione della Fondazione Kessler, ai sensi
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dell’articolo 28, comma 8 della Legge provinciale 2 agosto 2005, n. 14.

Il relatore comunica:

con Legge provinciale 2 agosto 2005, n. 14

“Riordino del sistema provinciale della ricerca e dell’innovazione. Modificazioni delle L.P. 13

dicembre 1999, n. 6, in materia di sostegno dell’economia, L.P. 5 novembre 1990, n. 28, sull’Istituto

agrario di San Michele all’Adige, e di altre disposizioni connesse”, la Provincia promuove la costi-

tuzione di una fondazione denominata “Fondazione Bruno Kessler”, quale Ente di interesse pubblico

senza fini di lucro. Con questa legge riconosciuta alla fondazione la personalit giuridica di diritto

privato.

Ai sensi di tale legge l’Istituto trentino di cultura, istituito dalla legge provinciale 29 agosto 1962, n.

11 soppresso e il personale, gi dipendente dello stesso, con rapporto di lavoro a tempo indeterminato,

che non istauri un rapporto di lavoro con la Fondazione, trasferito nel ruolo unico del personale della

Provincia ed contemporaneamente messo a disposizione della Fondazione Bruno Kessler.

Premesso che il rapporto di lavoro del personale trasferito regolato dai contratti collettivi applicati

alla data del trasferimento, con i successivi adeguamenti, a norma del citato articolo 28, occorre

approvare un apposito schema di convenzione, al fine di regolare i reciproci rapporti tra Provincia

autonoma di Trento e la Fondazione Kessler, per la gestione del personale messo a disposizione.

Come previsto dall’articolo 7 della legge provinciale 29 dicembre 2005, n. 20, la spesa per la messa

a disposizione di personale a favore di altri soggetti privati, deve sempre far carico al soggetto utiliz-

zatore.

L.P. 2-8-2005 n. 14 Riordino del sistema provinciale della ricerca e dell’innovazione.

Modificazioni delle L.P. 13 dicembre 1999, n. 6, in materia di sostegno dell’economia,

L.P. 5 novembre 1990, n. 28, sull’Istituto agrario di San Michele all’Adige, e di altre

disposizioni connesse. Pubblicata nel B.U. Trentino-Alto Adige 9 agosto 2005, n. 32.

Capo VI

Disposizioni transitorie e finali.

Art. 28

Disposizioni per l’avvio della fondazione Bruno Kessler e soppressione dell’Istituto trentino di cul-

tura.
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1. Il Presidente della Provincia assume gli atti necessari affinch la fondazione Bruno Kessler sia

costituita entro diciotto mesi dalla data di entrata in vigore di questa legge.

2. Dalla data fissata dalla Giunta provinciale, comunque entro il 1 marzo 2007, l’Istituto trentino di

cultura, istituito dalla legge provinciale 29 agosto 1962, n. 11, soppresso e i suoi organi decadono, ad

eccezione del direttore e del collegio dei revisori dei conti, che rimangono in carica per la redazione

del rendiconto generale finale e, rispettivamente, per l’esame e l’attestazione della correttezza dei

valori riportati, da ultimare entro tre mesi dalla soppressione dell’ente. (10) (11)

3. Dalla data di cui al comma 2, la fondazione Bruno Kessler subentra nei rapporti giuridici attivi

e passivi gi facenti capo all’Istituto trentino di cultura secondo le modalit e i criteri stabiliti dalla

Giunta provinciale, fatto salvo quanto previsto da quest’articolo in materia di personale. A seguito

della soppressione dell’Istituto trentino di cultura i riferimenti ad esso contenuti nella vigente legis-

lazione provinciale s’intendono sostituiti con il riferimento alla fondazione Bruno Kessler. (12)

4. Dalla data prevista dal comma 2, il personale con rapporto di lavoro a tempo indeterminato

dipendente dell’Istituto trentino di cultura, che non instauri il rapporto di lavoro con la fondazione,

trasferito nel ruolo unico del personale della Provincia ed messo a disposizione della fondazione

Bruno Kessler. Il personale trasferito alla Provincia pu comunque chiedere di essere assunto presso

la fondazione entro centoventi giorni dall’adozione da parte del consiglio di amministrazione della

deliberazione che individua il contratto collettivo di cui all’articolo 13. (13)

5. Al personale con rapporto di lavoro a tempo indeterminato, che instaura il rapporto di lavoro con

la fondazione o trasferito nel ruolo unico del personale della Provincia, riconosciuta tutta l’anzianit

maturata nell’ente di provenienza.

6. Dalla data indicata dal comma 2, la fondazione Bruno Kessler subentra all’Istituto trentino di

cultura nei rapporti di lavoro a tempo determinato per la durata residua dei contratti.

7. Il rapporto di lavoro del personale trasferito nei ruoli provinciali regolato dai contratti collet-

tivi applicati nei suoi confronti alla data del trasferimento nel ruolo della Provincia, con i successivi

adeguamenti.

8. La gestione giuridica ed economica del personale di cui al comma 4, cui possono provvedere la

Provincia o la fondazione, le sue modalit di utilizzo e quant’altro necessario sono regolati mediante

intese fra la Provincia e la fondazione Bruno Kessler.
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5 Summary and concluding remarks

This thesis contains two experimental essays that explore the role of cognitive costs in imitative

dynamics and the role of effort decisions on information aversion, respectively. The other essay

provides an empirical application which examines whether gender quotas in evaluating commissions

foster the hiring of female researchers.

The aim of this general conclusion to the thesis is to discuss the limitations of the three essays,

that constitute a baseline for future research directions.

In the first essay we aimed at studying the extent of imitation as a possible cognitive short-cut when

individuals face decisions cognitively demanding. To this end, the experimental design develops

across two dimensions of treatments, that allow us to disentangle the role played by the availability

of social influence in a high-demanding scenario in cognitive terms versus a low-demanding one.

The first dimension involves cognitive costs: via the novel experimental task we devised we can

set a low-cost scenario and a high-cost one. The second dimension of treatments concerns the social

influence that subjects may receive. We model this by the amount of information provided to subjects

about a default choice. In one type of treatments we tell participants that this choice belongs to

the upper half of choices in terms of quality, whereas in the other set of treatments, on top of this

information, we notify subjects that the choice derives from a majority of participants in a previous

experimental session. Given the low frequencies of the majority option, our results suggest that

imitation, conceived as a cognitive shortcut, does not seem to be present in participants’ choices.

A possible explanation of this finding could be identified in the way in which the imitative com-

ponent has been introduced in the experiment setting. This indeed might have been too weak in

order to generate some imitative behavior. For this reason, further research could be devoted towards

an endogenous imitation pattern within the experiment: the majority could be formed during the

experiment and feedback about majority choices could be provided during the game.

A possible way of strengthening the social component of the experiment could be achieved by
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incorporating an ingroup/ outgroup framework. The idea would be to induce group identity and thus

to provide information about ingroup members’ choices, versus those of outgroup members. Chen

and Li (2009), with their recent contribution in the social identity literature, propose an effective tool

for inducing group identity. The task is characterized by social-welfare-maximizing actions and by

positive reciprocity. It entails subjects to chat online prior to the experiment, regarding the solution

of a task, whose correct solution provides positive payoffs to the members belonging to the same

group.

Another line of argument refers to the general overconfidence of subjects. With this in mind,

following what a majority previously did, without knowing the details of what kind of individuals

the majority consisted of, might have been too risky for such kind of overconfident agents. It is thus

conceivable to design future follow-up studies of the current one with different information, across

the treatments, about the composition of who has previously chosen the majority card. Telling this

kind of information to participants could help increasing the attractiveness of this card and shed more

light on the distinction between social and personal heuristics.

In the second essay we were interested in extending the study of information aversion and we

coupled it with the possibility of exerting an effort that may improve final payoffs. The idea was to

investigate the informational trade-off of the ostrich effect, by allowing subjects to acquire informa-

tion that can be useful for their final payoff. Individuals receive preliminary signals and form their

beliefs about the probabilities of being attached to the good and the bad box. In the experiment we

relied on Bayesian beliefs rather than eliciting subjects’ beliefs.

It would be interesting to extend our design by eliciting subjects’ beliefs of being in the good or

in the bad condition. Such further experimental sessions would help to understand how individuals

update their beliefs after receiving additional information. Such evidence would provide us a glimpse

in whether there exists an asymmetric belief updating after different types of signals. It could also

occur that the mere belief elicitation has an effect on information acquisition or effort exertion. Par-

ticipants would be asked to reflect about their condition, and thus may change their choices. If this

were the case, the further experimental sessions with beliefs elicitation could represent an “attention

treatment”.

Our results show that risk aversion is not correlated with information aversion, although one would

expect that risk averse subjects are willing to buy additional information in order to reduce the risk

of their effort choices. Yet, what could be more related to information aversion is ambiguity aver-
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sion rather than risk aversion, that is the tendency of individuals to prefer outcomes with known

probabilities instead of outcomes with unknown probabilities. Further experimental sessions could

implement Abdellaoui et al. (2011)’s methodology in order to elicit ambiguity aversion and correlate

it with information acquisition and effort completion. This would help us to shed more light on the

behavioral determinants of information acquisition and effort exertion.

Further analysis could explore whether reducing the cost of information acquisition or making the

returns from effort more understandable may foster information diffusion and thus effort exertion by

the irrational types of individuals, who may undertake a more rational behavior in terms of effort

exertion.

Finally, in the third essay we aimed to study the main determinants of victory of research com-

petitions in an Italian context, and in particular whether the presence of one female commissioner

impacts the likelihood of female participants to be selected for the research job. One main drawback

of the analysis is the absence of randomization in the composition of evaluating commissions. This

lack in the identification strategy does not allow us to consider our estimates in terms of causality.

In fact, endogeneity concerns may arise if unobservable factors are correlated with committees’ and

candidates’ characteristics. However, one way to deal with this problem would be to apply the sen-

sitivity analysis proposed by Altonji et al. (2005), who propose an impact evaluation in which the

identification strategy hinges on subjects’ observable characteristics and in which there is no infor-

mation on the selection process. The rationale is to use the degree of selection on observables as a

guide to the degree of selection on the unobservables, in an attempt to measure the degree of omitted

variables bias.

Moreover, a natural extension of the study could be carried out on data about promotion mecha-

nisms operating at the institution analyzed, as promotions represent another significant portion of the

story of why women are under-represented in top rank positions. By gathering data on promotions

it would probably be possible to isolate in a more explicit way contingent discrimination dynamics

and the role of the gender composition of promoting commissions, as prior ties would apply to all

subjects already working at the research center.
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odizero, Rivista dell’Università in movimento.
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