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Summary

Recent epidemiological studies have reinforced the link between short and long-term

exposure to air pollutants and adverse effects on public health especially over the

weaker part of the population, like children and older adults. The creation of simple

tools to locate sensible areas as well as of dedicated Spatial Decision Support System

(SDSS) to improve the management of pollution risk areas system is strongly advised.

The aim of this work is to develop a SDSS methodology, based on easy to find data

and usable by decision makers, to assess and reduce the impact of air pollutants in a ur-

ban context. To achieve this goals I tested the exploitability of a set of low-cost sensors

for outdoor air quality monitoring, I characterized the urban micro-environments and

the spatial variability of air pollutants using remote sensing compared to field data and

eventually I developed a SDSS to improve the public health designing and comparing

different scenarios.

The city centre of Edinburgh has been used as study case for the purposed method-

ology. To test the reliability and applicability of low cost sensors as proxies for remote

sensed data, we conducted a measurements campaign to compare the observed data

between an official measurements station (OMS) in Trento (Italy) and electrochemical

and thick film sensors respectively of Carbon Monoxide (CO) and Ozone (O3). Due to

data quality and availability we decided to characterize the urban micro-environments

of Edinburgh (Scotland, UK) in eight main classes (water, grass, vegetation, road, car,

bus, buildings and shadow) combining the Geographic Object-Based Image Analysis

(GEOBIA) with Machine Learning algorithms to process the high resolution (0.25m

x 0.25m) RGB aerial ortho-rectified images. This land-use characterization combined

with other geographical informations, like the classification of the roads and the ur-

ban morphology, were compared with 37 Nitrogen Dioxide (NO2) concentration data,

collected using passive tubes during a six week campaign of measurements conducted

by the school of Chemistry of the University of Edinburgh. I developed a new open-

source GIS python library (PyGRASS), integrated in the stable release of GRASS GIS,

to speed-up the prototyping phase and to create and test new GIS tools and methodolo-

gies. Different studies on SDSS were carried out to implement procedures and models.

Based on these models and data all the factors (land-use, roads and geo-morphological
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features) were ranked to identify which are driving forces for urban air quality and to

help decision makers to develop new policies.

The sensor tested in Trento revealed an evident drift in measurement residues for

CO, furthermore the measurements were also quite sensitive to external factors such as

temperature and humidity. Since these sensors required frequent recalibration in order

to obtain reliable results, their use was not as low-cost as expected. The characteri-

zation of urban land-use in Edinburgh with GEOBIA and machine learning provided

an overall accuracy of 93.71% with a Cohen’s k of 0.916 using a train/test dataset of

9301 objects. The NO2 data confirm the assumption that air concentration is strongly

dependent on geographical position and it is strongly influenced by the position of the

pollutant’s source. Using the results of the tests and remote sensing analysis, I devel-

oped an SDSS. Starting from the current situation, I designed three scenarios to assess

the effect that different policies and actions could have on improving air quality at on

the local and district level.

The outcomes of this work can be used to define and compare different scenarios

and develop effective policies to reduce the impact of air pollutants in an urban context

using simple and easy to find data. The GIS-based tool can help to identify critical

areas before deploying sensors and splitting the study area in homogeneous micro-

environments clusters. The model is easy to expand following different procedures.



Chapter 1

Introduction

1.1 Status quo, context and motivations

An increasing body of literature underlines how air pollution has a negative influence

on human health (Curtis et al., 2006; Janssen et al., 2013) in particular for weaker

parts of the population such as foetuses, children and older adults. The effects of pol-

lutants are more evident and temporally much closer to children due to their higher

metabolism than adults (Coneus and Spiess, 2012). Recent studies highlight that ma-

ternal exposure to pollutants increases adverse pregnancy outcomes (Dadvand et al.,

2011; Gomez-Mejiba et al., 2009), hence there is great interest from the science com-

munity to improve knowledge of the consequences of air pollution exposure on child

health and deepen the environmental injustice implications (Jephcote and Chen, 2012;

Meijer et al., 2012; Schoolman and Ma, 2012; Stuart and Zeager, 2011).

The World Health Organisation (WHO) assesses that around 7 million of prema-

ture deaths are due to air quality, in particular around 3.7 million are due to outdoor

concentrations of air pollutants (World Health Organization (WHO), 2014a). The

pollutants of major public health concern include particular matter (PM10, PM2.5,

PM0.1), carbon monoxide (CO), ozone (O3), nitrogen dioxide (NO2) and sulphur diox-

ide (SO2). Reducing emissions from stationary sources (e.g. power plants); reducing

emissions of road traffic sources; improving waste management; reducing energy con-

sumption and increasing production from renewable energies are all examples of suc-

cessful emission control policies (World Health Organization (WHO), 2014b). How-

ever, exceeding air quality limit values, in particular in urban areas and near busy

roads, is still an open issue in many parts of the world.



2 1 INTRODUCTION

1.1.1 Monitoring sensor network

The main technologies available to characterize the space and time variabilities of air

pollutants in an urban context are: Official Measurements Stations (OMS), passive

samplers, low-cost sensors, moving sensors and numerical models. All these solutions

are different in terms of: cost, accuracy, spatial and time resolution.

The OMS are characterized by a very high accuracy and time resolution provid-

ing data in real-time, but also by high investments and maintenance costs, limiting

the number of observation points and therefore limiting the spatial resolution. As ev-

idenced by Sheppard et al. (2005) using central site monitor data will affect health

effect estimates. Traditional technologies provide poor information on the spatial con-

centration variability of air pollutants especially in an urban context.

Passive samplers (Kardel et al., 2012; Sally Liu et al., 2012), and bio-indicators

(Ram et al., 2012; Salo et al., 2012) such as lichens (Käffer et al., 2012; Llop et al.,

2012; Salo et al., 2012; Stevens et al., 2012) increase the number of measurement

points improving the spatial characterization of air pollutants, but generally with a

lower accuracy and time resolution and requiring more time than other systems to

collect and analyse the samplers.

Recent studies have started to investigate the use of low-cost sensors for air qual-

ity monitoring (De Vito et al., 2011; Hu et al., 2011). As highlighted in Rada et al.

(2012) combining the information coming from the Wireless Sensor Network (WSN)

can improve characterization of air pollutant concentrations in the micro-environment

in both spatial and temporal variability. A good Sensor Network is necessary (Borrell,

2011) for assessing an emerging scientific concept defined by Wild (2005) as expo-

some. Exposome is a term used to represent all kind of exposure (including exposure

to diet, lifestyle, and endogenous sources) and aims to identify the combined effects of

genetic and environmental factors on chronic diseases (Gasiewicz, 2010; Hamzelou,

2011).

An emerging monitoring technique is to use moving sensors; this system couples

sensors characterized by a high degree of accuracy and time resolution with a moving

platform (e.g. taxi, tram, bus, etc.) to be able to increase the spatial resolution of the

study area. What it is challenging in this approach is handling and interpolating data

values that are changing in space and time.

1.1.2 Model spatial variability

Steinle et al. (2013) highlight that the spatio-temporal variability of personal expo-

sures in urban micro-environments is very high. Fixed monitoring stations are not

sufficiently informative to characterize this variability, and recent studies are moving

from static monitoring to spatio-temporally resolved personal exposure assessment,
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collecting data of air pollutants concentrations while people are conducting their daily

activities. However it is not possible to measure everything everywhere, therefore we

need to identify a methodology to model personal exposure in highly variable urban

concentration fields. Many studies confirm that the spatial temporal variability of am-

bient air pollution could affect the assessment of health effects on the population (EPA,

2010) and try to characterize the variability of micro-environments (Can et al., 2011;

Dons et al., 2011; Mölter et al., 2012; Richmond-Bryant et al., 2011).

In most of the used cases, measuring concentrations of air pollutants is not enough

to assess the exposure of a population in a certain area. To transform the information

points from points to a surface, several methods are available; the most used in air

quality literature are: the Kriging interpolation method (Baume et al., 2011; Beelen

et al., 2009; Briggs et al., 2000; Guo et al., 2007; Janssen et al., 2008; Marchetti et

al., 2011; Motaghian and Mohammadi, 2011; Pearce et al., 2009; Shad et al., 2009;

Singh et al., 2011; Vienneau et al., 2009); the Land Use Regression (LUR) method

(Arain et al., 2007; Beelen et al., 2010; Crouse et al., 2009; Hoek et al., 2008; Johnson

et al., 2010; Mölter et al., 2010; Mukerjee et al., 2009; Ross et al., 2007; Su et al.,

2008b); and numerical dispersion modelling (Allwine et al., 2006; Berkowicz et al.,

2008; Carruthers et al., 2000; Kesarkar et al., 2007).

The first two methodologies are based on geo-statistical analysis, the third one

resolves numerically the physical equations of air pollutants dispersion. If enough

information is available concerning emissions and meteorology, dispersion models are

well suited to short and long term exposure modelling. Many different dispersion

models have been developed, but in broad terms, few of them are able to provide a

detailed map over a large study area. The most used dispersion models in literature are:

ADMS-Urban (Carruthers et al., 2000), AERMOD (Kesarkar et al., 2007), DUSTRAN

(Allwine et al., 2006) and OSPM (Berkowicz et al., 2008). As highlighted by Gulliver

and Briggs (2011) three main limiting factors characterize the applicability of these

models: they require a huge amount of data (e.g. detailed data on source emissions and

boundary-layer meteorology), they are often expensive, they do not simultaneously

deal with large numbers of emission sources and generally tens of model runs are

required to map air pollutants at high spatial resolution (< 50m).

The Land Use Regression method demonstrates good results on pollutant interpo-

lations particularly to model the spatial variation of annual average concentrations of

Particular Matter (PM) (Eeftens et al., 2012), Black Carbon (BC) (Dons et al., 2013),

Nitrogen Dioxide (NO2) (Mukerjee et al., 2009).
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1.1.3 Decision support system and air quality

From a literature review, it seems that not many Decision Support Systems (DSS)

have been developed to help urban dwellers, planners and policy-makers to test and

compare different scenarios. Most of these DSSs focus on the national/regional scale

with a spatial resolution that is not suitable/adaptable to an urban scale (Carnevale et

al., 2012a,b; Elbir et al., 2010; Finardi et al., 2008; Gidhagen et al., 2013; Vedrenne

et al., 2014). Vlachokostas et al. (2011) developed a multi-criteria methodological

approach to managing air pollution at an urban scale but the spatial variable is not

taken into account in the analysis. Mavroulidou et al. (2004) developed a DSS using an

interaction matrix to assess qualitatively the concentration of air pollutants at an urban

scale and provide a vulnerability map, but this final map still had quite low spatial

resolution. González et al. (2013) presented a more general approach to developing a

DSS for a sustainable urban metabolism that considers the problem in broader terms

(e.g. social quality of life, economic performance, environmental protection).

1.2 Aims and objectives

This dissertation aims to develop a method to derive very high-resolution urban con-

centrations for personal exposure assessment, reflecting the spatio-temporal variability

of urban pollution fields. The research questions addressed in this dissertation are the

following:

• Are low-cost sensors ready for outdoor air quality monitoring?

• How can we characterize different urban micro-environments for air pollutants?

Which geographical factors are more important?

• Can we enhance the Land Use Regression (LUR) method to take into account

and integrate information on micro-environments and other factors that are drivers

of air pollutant concentrations in an urban context?

• Can we develop a Spatial Decision Support System (SDSS) to assess and com-

pare the impact of different policies and scenarios of urban management?

1.3 Methodology

During the PhD I have contributed to select areas that are suitable for the design of low-

carbon settlements using a Spatial Multi Criteria Analysis (SMCA) (Vettorato et al.,

2011) and developed a Spatial Decision Support System (SDSS) to assess the forestry

biomass potential for energy exploitation (Sacchelli et al., 2014; Sacchelli et al., 2013;
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Zambelli et al., 2012). Starting from this experience I developed an SDSS to assess

the impact on air pollutant concentrations of different policies and scenarios. But in

order to develop an SDSS, several intermediate steps needed to be addressed.

• Low-cost sensors were compared with measurements from the Official Mea-

surement Station (OMS) to test reliability of this emerging technology.

• The urban micro-environments were extracted from high resolution aerial im-

ages.

• The correlation between geographical factors and pollutants concentration was

verified using measured data of NO2 using passive samples.

• The measured and geographical data were used to regress the concentration

where the measurements were not available.

• Finally, different scenarios were made, changing the urban land use to mimic

the effect of different policies and management planning decisions.

1.4 Framework

The GIS used to develop this work is the Geographic Resources Analysis Support

System (GRASS), an open source software that supports creation, modification and

processing of 2D and 3D raster and vector layers. It provides a topological vector

model and true three dimensional coordinates for vector features analysis. GRASS is

characterized by stability, an efficient application programming interface (API) written

in C, and a large number of GIS functions and modules (Neteler et al., 2012). Its

capabilities of processing geographical information have been evaluated and validated

by many research and technical papers (Ciolli et al., 2004; Hofierka and Zlocha, 2012;

Li et al., 2010; Okabe et al., 2009; Preatoni et al., 2012; Sacchelli et al., 2013; Tattoni

et al., 2010, 2012; Vettorato et al., 2011; Zambelli et al., 2010, 2012).

I developed a new python interface (PyGRASS) to expand GRASS capabilities

implementing a tool that gives the freedom to approach the GIS problem from a dif-

ferent perspective, opening the software developer’s approach to GIS users and trying

to maintain relative simplicity. As shown in Zambelli et al. (2013), the new Object-

Oriented Python programming API introduces an abstract layer that opens the possi-

bility for users who are not familiar with C or with GRASS C-API to use and access

transparently the efficient C functions of GRASS.

The PyGRASS library has been designed to facilitate management of complex

problems that need the integration of large data sets and geographical data, such as

air quality, data monitoring and modelling, and to integrate/develop new methods and
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functions extending the GRASS functionalities. PyGRASS supplies a new interface

to prototype complex scientific algorithms and simplify the interoperability with all

related geospatial software and tools provided by a Python interface. The development

of PyGRASS has been sponsored by Google’s Summer of Code program (2012), and

the code produced has been integrated in the current stable release: GRASS7.

To characterize urban micro-environments, I extracted information from high-

resolution aerial photography, and I tested and used some Machine Learning algo-

rithms for image classification and for the regression used in the LUR. The libraries

used for this analysis are sklearn and mlpy. Both libraries provide a wide range of

state-of-the-art machine learning methods for supervised, and unsupervised problems

for regression and classification (Albanese and Visintainer, 2012; Pedregosa et al.,

2011).



Chapter 2

Low-cost sensors: a new paradigm

for environmental monitoring

low-cost sensors open new paradigms for air quality monitoring. Their

performance allows a new strategy closer to the population and its health.

Critical situations that cannot be seen with conventional approaches can

emerge through a low-cost sensors network. In this chapter a comparison

between electrochemical sensors and official measurement stations (OMS)

data is reported. Low-cost sensors can not be used straight-forwardly in

outdoor environments to measure environmental concentrations of air pol-

lutants. An accurate characterization of sensor behaviour in local condi-

tions during the design phase of the network and the post-processing of the

collected data is required. A low-cost sensor network can help detect dan-

gerous peaks in concentration and provide an early warning system. This

system can be used to drive and develop local strategies to reduce the ad-

verse effects of air pollutants.

2.1 Introduction

In recent years the European Union regulation of air quality management has reached

important results in term of exposure and health implications of organic and inorganic

pollutants, and in terms of environment protection. However many actions remain

to be developed mainly in urban areas, the general trend is towards an average im-

provement of air quality, with positive consequences on population health. Generally,

adopted regulations for air quality management are based on the concept of protecting

the environment without facing critical situations at micro-scale, where human expo-

sure to atmospheric pollutants can reach unacceptable concentration levels.

Traditionally, air quality measurement networks take into account two instruments:

the first is characterized by very high accuracy and resolution, providing data in real-

time, but on the other hand, requiring high investment and maintenance costs (Shep-
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pard et al., 2005); the second technique is based on passive samplers (Kardel et al.,

2011; Sally Liu et al., 2012), bio-indicators (Ram et al., 2012) such as lichens (Llop

et al., 2012; Stevens et al., 2012) that increase the number of measurement points but

only provide information on average concentrations. Therefore traditional monitoring

and environmental warning systems are often insufficient for planning detailed correc-

tive actions and quickly identifying critical situations that are potentially harmful to

public health.

Many studies point out how the spatial and temporal variability of ambient air

pollution could affect the assessment of health effects on the population (USEPA -

U.S. Environmental Protection Agency, 2010). As highlighted by Dons et al. (2011)

and Richmond-Bryant et al. (2011) some micro-environments can be characterized by

significant variability.

The existing regulatory monitoring network provides punctual information on the

spatial and temporal concentration of air pollutants. The main factors driving space-

time variability are: pollutant sources, meteorological conditions, building and vegeta-

tion topography and different land-use. Due to the higher number of factors some local

temporary anomalies in air pollution cannot be detected by the conventional regulatory

approach; new sensor networks can help to characterize this spatial variability.

New developments in wireless communications and micro-electro-mechanical tech-

nology have enabled the development of low-cost and multifunctional sensors for ap-

plication not only in the industrial sector (Flammini et al., 2009) but also in the agri-

cultural and environmental sphere (Alemdar and Ersoy, 2010; Burgess et al., 2010;

Cao et al., 2008; Hu et al., 2011; Rawi and Al-Anbuky, 2011; Wang et al., 2006).

In this context, Wireless Sensor Networks (WSNs) can effectively improve char-

acterization of the variability of air pollutants in space and time and consequently

improve the life hazard assessment. This is why recent studies have started to investi-

gate the use of WSNs for air quality monitoring (Hu et al., 2011; Merbitz et al., 2012).

However, protocols and sensors are extremely new, and much research remains to be

done to integrate and test these technologies in the outdoor environment.

This chapter analyses the opportunities and challenges of low-cost monitoring net-

works for improving control of the human health risk from atmospheric pollutants. The

chapter presents the results of some preliminary tests to build an outdoor air quality

monitoring system based on WSNs technology aimed at detecting hotspots and peaks

of pollutant concentrations (NO2, CO and O3). The proposed network is not designed

to substitute traditional monitoring systems but aims to detect peak concentrations of

pollutants, to provide a new instrument for public decision makers, and to minimize

the impact of air pollution on the population.



2.2 MATERIALS AND METHODS 9

Critical case Selected pollutants Notes

Kindergartens NO2 CO could be added
Street canyon NO2 CO could be added
Proximity to high traffic roads NO2

Proximity to urban tunnels NO2

Proximity to urban canyons NO2

Proximity to Industrial plants CO, NO2 Depending on the process
Summertime O3

Table 2.1: Selected pollutants for each critical case.

2.2 Materials and methods

A few micro-scale critical situations were selected pointing out peak values of O3,

NO2, and CO, that could be reached and the potential effects on health, in order to

develop strategies and policies to improve the status of air quality and comply with

National and European legislations. Generally critical situations could be found as

follows: in the yards of kindergartens and schools (when an important road is present

in the proximity); in street canyons (when the flux of traffic is critical); in residential

areas close to highways, tunnels or above trenched roads, and in the proximity of large

industrial units.

Some low-cost sensors were selected to check their viability to act as sentinels

where the conventional approach of air quality monitoring cannot guarantee a high

spatial density of measurements.

The tests were conducted during two weeks from 14/12/2011 until 27/12/2011 in

a suburban area of Trento (via Bolzano, Gardolo).

The implementation of the tested WSNs was provided by ENVEVE SA and we

used electro-chemical sensors as a tool to evaluate and characterize micro-environment

concentrations in both spatial and temporal variability. A mixed network composed of

two different sensors characterized by different accuracy/sensitivity for CO, O3 and

NO2, and optional sensors for the measurement of such physical variables as tempera-

ture, humidity, wind speed and direction, have been designed for this research.

During the campaign the low-cost sensors were coupled with an official measure-

ment station, and we tested only CO and O3.

2.3 Results and discussion

For each critical case, different pollutants were selected: NO2, CO and O3. Other

pollutants were excluded, due to their power consumption that seemed ill-suited for a

wireless sensor network (e.g. PM10). The NO pollutant was not taken into account as

non-toxic. Large industrial plants are required to analyse the production process of air
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Company NO2 CO O3

law limits 0.1@1h & 0.02@8760h 8.7@8h 0.06@8h

min max resolution min max resolution min max resolution
e2v 0.05 5 n.a. 0 500 1 n.a. n.a. n.a.

alphasense 0.02 50 0.015 0 2000 0.02 0 10 0.01
Nemoto 0 20 0.2 0 1000 5 n.a. n.a. n.a.

Xcell Sensors 0 50 0.1 0 1999 1 n.a. n.a. n.a.
SGX sensortech 0 20 0.1 0 500 1 n.a. n.a. n.a.

Dräger 0 50 0.1 0 2000 1 0 10 0.01
veris.com 0 10 0.1 0 200 1 n.a. n.a. n.a.
City-tech 0 50 0.1 0 500 1 0 2 0.02
Euro-gas 0 20 0.1 0 200 n.a. 0 3 n.a.

Table 2.2: Comparison of different sensors concerning range and resolution for air
pollutants: NO2, CO, O3, all units are in ppm.

Figure 2.1: Comparison of official measurement station (blue) and low-cost sensor
data (green) multiplied by a factor of 1.25.

pollutants and the way of they are released into the atmosphere, because both factors

can change significantly the concentration mix and level of air pollutants. The selected

pollutants for each critical case are shown in Table 2.1.

Looking at low-cost sensor available on the market (see Table 2.2), it is evident

that to measure outdoor concentration of NO2 and O3 is challenging, due to their low

resolution and because they are working always close to their detection limit.

The comparison between measurements of O3 from the low-cost sensor and the

OMS data highlight a malfunctioning of the sensor which makes the low-cost sensor

data unsuitable for environmental monitoring. Thus, only data analysis for the CO will

be presented.

Figure 2.1 shows the comparison between concentration data for CO collected

using the official measurement station and the low-cost sensor data multiplied by a

factor of 1.25 to reduce measurement shift.

To analyse the behaviour of the electrochemical sensor in Figure 2.2 the residuals

between the two instruments are reported. The figure clearly shows a strong drift in the

data collected by the low-cost sensor; furthermore the electrochemical sensor requires

a quite long spin-up time (∼ 1 week) with a significant standard deviation of ∼ 0.29mg
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Figure 2.2: CO residuals between OMS measurements and low-cost sensor.

that became ∼ 0.05mg in the second week (see Figure 2.3).

(a) First week (b) Second week

Figure 2.3: Comparison of the residuals with removed drift for the first and second
week of measurements.

2.4 Conclusions

The emerging technology of low-cost sensors can contribute to improving the charac-

terization of spatial variability of air pollutants in a complex context (e.g. city centre).

However, current technologies available on the market are designed to monitor the
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concentration of air pollutants in industrial and indoor environments. Further tests

are required to prove the exploitability of these technologies for outdoor air quality

monitoring. Low-cost sensors for NO2, CO and O3 can be used to provide qualitative

information about air quality and to detect peaks, whereas low-cost sensors for PM10

are still not available (Rada et al., 2012).

The tests conducted in this work highlight a high cross-sensitivity of the low-

cost sensor to other pollutants and micro-climate parameters (e.g humidity) and a low

signal-to-noise ratio (S/N). Therefore, sensor network design and the post-processing

phase requires accurate testing at local conditions.

As highlighted by Ragazzi et al. (2012), in spite of all the difficulties and chal-

lenges, low-cost sensors could lead to a new monitoring paradigm where private cit-

izens can contribute toward integrating air quality monitoring systems. For example:

enterprises could be interested in monitoring the air quality around plants to certify

their activity to the community, while private citizens, grouping in committee, could

support the air quality monitoring of their neighbourhood. Offering a higher-spatial

resolution with respect to fixed air quality stations could be considered a useful tool

in assessing population exposure near relevant pollutant sources (e.g. trafficked roads,

domestic wood burning plants, filling stations placed in populated areas) located in re-

gions with complex landforms or simply far away from traditional monitoring stations.

This scenario, however, also raises some new issues that must be taken into account,

such as: how can we rely on data collected from entrepreneurs or citizens? How can

we validate or exclude these data? How can we homogenize information coming from

different networks with heterogeneous sensors? How can we collect and organize these

data coming from an increasing number of stakeholders and institutions?

To be able to address the above questions, the solution could be to mix and inte-

grate different technologies such as: low-cost sensor networks, traditional air quality

monitoring stations and protocols such as the Sensor Observation Service (SOS) de-

fined by the Open Geospatial Consortium (OGC) to collect/filter and query all these

data. An integrated system, that implements the above mentioned standards, promises

to reach several advantages compared to traditional air quality monitoring systems

and institutions: allows reaching higher spatial accuracy; reduces the redundancy of

measures by different network systems; improves the localization of critical pollutant

concentrations; reduces the cost of improving spatial resolution of the data; and allows

the creation of a real time alert system for dangerous pollutants.



Chapter 3

PyGrass: a high level GIS library

for research and rapid prototyping

PyGRASS is an object-oriented Python Application Programming Interface

(API) for Geographic Resources Analysis Support System (GRASS) Geo-

graphic Information System (GIS), a powerful open source GIS widely used

in academia, commercial settings and governmental agencies. We present

the architecture of the PyGRASS library, covering interfaces to GRASS

modules, vector and raster data, with a focus on the new capabilities that it

provides to GRASS users and developers. Our design concept of the module

interface allows the direct linking of inputs and outputs of GRASS modules

to create process chains, including compatibility checks, process control

and error handling. The module interface was designed to be easily ex-

tended to work with remote processing services (Web Processing Service

(WPS), Web Service Definition Language (WSDL)/Simple Object Access

Protocol (SOAP)). The new object-oriented Python programming API in-

troduces an abstract layer that opens the possibility of using and accessing

transparently the efficient raster and vector functions of GRASS that are

implemented in C. The design goal was to provide an easy to use but pow-

erful Python interface for users and developers who are not familiar with

the programming language C and with the GRASS C API. We demonstrate

the capabilities, scalability and performance of PyGRASS with several ded-

icated tests and benchmarks. We compare and discuss the results of the

benchmarks with dedicated C implementations.

3.1 Introduction

Geographic Information Systems (GIS) have the capability to integrate heterogeneous

digital data, giving the opportunity to public administration, industry and research to

provide basic and advanced data analysis and modeling for a wide range of disci-

plines (Foody, 2008). The Geographic Resources Analysis Support System (GRASS)
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supports the creation, modification and processing of 2D and 3D raster and vector lay-

ers. It provides a topological vector model and true three dimensional coordinates for

vector features analysis. GRASS is characterized by stability, an efficient application

programming interface (API) written in C, and a large number of GIS functions and

modules (Neteler et al., 2012). GRASS provides a large number of models and al-

gorithms which, after substantial testing and trouble shooting, have proven to be very

reliable. Its capabilities of processing geographical information have been attested by

many research and technical papers (Ciolli et al., 2004; Hofierka and Zlocha, 2012; Li

et al., 2010; Okabe et al., 2009; Preatoni et al., 2012; Sacchelli et al., 2014; Sacchelli

et al., 2013; Tattoni et al., 2010, 2012; Vettorato and Zambelli, 2009; Vettorato et al.,

2011; Zambelli et al., 2010, 2012).

GRASS GIS has a modular design. The core functionalities are implemented

in shared libraries using the programming language C and can be accessed via the

GRASS C API. This API provides read and write access to raster, 3D raster and vector

data, as well as the handling of projection information, spatial and attribute database

management, spline interpolation, mathematical and numerical functionalities and vi-

sualization functionalities (see Table 3.1). Spatial algorithms and models are imple-

mented as small stand-alone programs, called modules, that make use of the C API.

The implementation of GRASS modules follows the UNIX concept. Hence, each

module in GRASS has a dedicated purpose and is efficiently implemented. Modules

can be combined, similar to the UNIX tool concept. Since the early days of GRASS

in the 80s, the UNIX shell was used to combine GRASS modules and UNIX tools

to script repetitive tasks and to implement complex spatial analysis and processing

algorithms. This concept results in a large amount of over 400 modules. Most of

them are implemented in C. A sufficient amount is implemented as scripts using either

POSIX (Portable Operating System Interface; defines a standard operating system in-

terface and environment, including a command interpreter (or “shell”), and common

utility programs to support applications portability at the source code level. Scripts are

POSIX-based until version 6 of GRASS GIS or Python, as in the latest stable release

of GRASS.

Many GIS software packages have chosen Python as a main language for users (see

Table 3.2), because it is available on many platforms, and it seems to be a good com-

promise between simplicity (syntax, low learning curve), flexibility (multi-paradigm

programming) and power (due to rich scientific libraries). GRASS developers have

chosen Python to replace POSIX for scripting modules (Neteler et al., 2012). For

this purpose, a Python scripting library was implemented by the GRASS development

team, but it does not provide any further improvement to the POSIX approach than

managing process chains using the standard Python library (subprocess).
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ctypes n. funcs n. structs n. vars

gis 501 20 175
raster 372 26 37
vector 344 66 147
dbmi 333 19 100
ogsf 331 33 151
raster3d 245 20 52
gmath 130 1 21
display 120 15 21
imagery 100 15 16
nviz 82 8 30
date 63 1 17
vedit 22 49 43
cluster 19 3 10
stats 19 0 10
proj 17 9 16
arraystats 0 1 10

2,698 286 856

Table 3.1: GRASS C API consists of 2,698 C functions that are available through the
ctypes library, divided into 10 different fields. This data is derived from the official
GRASS source code (Zambelli et al., 2013).

Software write script license use OS

ArcGIS C++ python proprietary desktop Windows
AutoCAD Map C/C++ AutoLisp proprietary desktop Windows
Geoserver java python(dev) GPL server Windows, Mac, Linux
GRASS7 C python GPL desktop Windows, Mac, Linux
gvSIG Java jython GPL desktop Windows, Mac, Linux
IDRISI COM python proprietary desktop Windows
ILWIS C++ python GPL desktop Windows
Geomedia C/C++ python proprietary desktop Windows
MapInfo C/Basic MapBasic, python proprietary desktop Windows
Mapserver C/C++ python X/MIT server Windows, Mac, Linux
QGIS C++ python GPL desktop Windows, Mac, Linux
Saga-GIS C++ python GPL desktop Windows, Mac, Linux
Udig Java groovy LGPL desktop Windows, Mac, Linux

Table 3.2: Comparison of the most used GIS software (Zambelli et al., 2013).

Most GIS software and tools provide a large number of high-level algorithms to

cover different GIS processing needs. Few GIS open capabilities to users to access the

lower functionalities, such as iterating between the geometry features of a vector map,

or iterating row by row to a raster map using a higher-level language.

GRASS modules must be implemented in C to access the low level functionality.

To overcome this limitation and to reach a broader development community, a ctypes

interface was introduced to GRASS version 7. This interface allows access to the low

level GRASS C API in Python. However, the creation of new modules written in C

or using the C API with Python through the ctypes interface is not a trivial task and

is generally a very time-consuming activity. This happens because the writer must be

a competent C programmer (manage the computer memory, work with pointers, etc.)

http://www.esri.com/software/arcgis
http://usa.autodesk.com/autocad-map-3d
http://geoserver.org
http://grass.osgeo.org
http://www.gvsig.org
http://clarklabs.org
http://www.ilwis.org
http://www.intergraph.com
http://www.mapinfo.com
http://www.mapserver.org
http://qgis.org
http://www.saga-gis.org
http://udig.refractions.net
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and because of how the GRASS library works internally. Hence, an intensive study of

the large GRASS C API is required.

The goal of this work is to implement an intuitive and easy to use object-oriented

layer around the GRASS C API, hiding its complexity, but providing a more abstrac-

t/powerful development environment for solving complex GIS data analysis and model

problems. An additional task is the replacement of parts from the existing Python

script API with more efficient and powerful object-oriented approaches. In this way,

we can provide access to the capability of the C API of GRASS for power users and

geo-scientists who are not familiar with C and the C API of GRASS.

The idea of PyGRASS was born from the experience of the authors who wished to

expand GRASS capabilities by implementing a tool that gives the freedom to approach

the GIS problem from a different perspective, opening a software developer’s approach

to GIS users and trying to maintain relative simplicity. The PyGRASS library provides

a simple, object-oriented higher level interface that transforms each GRASS module

into an object by interpreting its XML interface description, trying to simplify the syn-

tax and enforcing the script activity. The object-oriented layer around the GRASS C

API, PyGRASS, implements several classes to access vector and raster data, covering

several complex features that are only available in the GRASS C API, like support for

the vector topology or the use of the raster cache for fast random read and write access.

In addition, PyGRASS simplifies interoperability with all related geospatial software

and tools provided by a Python interface.

The development of PyGRASS has been sponsored by Google’s Summer of Code

program (2012), and the code produced has been integrated in the latest stable release

of GRASS.

3.2 Methodology

The PyGRASS library is written in Python and makes use of modules from the Python

standard library (van Rossum, 1995), like: sys, fnmatch, collections, sqlite3,

as well as from the third party Python library, NumPy (Jones et al., 2013). NumPy

is a package for scientific computing and it is already a dependence of GRASS. An

optional library is psycopg2 (Varrazzo and Psycopg Community, 2013), which is used

to interface PyGRASS vector attribute handling with the PostgreSQL database.

The PyGRASS library was developed taking into account four main aspects:

• consistency – the library shall adhere to norms and architecture commonly found

in both Python and GRASS, in order to avoid confusion for users who are only

familiar with one of the above;

• simplicity – the library must be simple and intuitive, without hiding access to
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lower-level functionality, indeed, providing a seamless user experience between

the low level C API of GRASS with a higher-level object-oriented Python ap-

proach;

• flexibility – the library must be flexible, both allowing the use of existing GRASS

modules and giving to each user the freedom to implement his own logic, using

more detailed and fine-grained programming tools;

• performance – the library must be fast, considering both the development and

the CPU time. GRASS C API functions are heavily used by PyGRASS every

time that it is possible.

The library is split in two parts: the first is more related to script activity and the

GRASS modules; the second is focused on programming aspects and the C API of

GRASS.

To improve the existing script API of GRASS, PyGRASS considers each GRASS

module as an object with input parameters, output parameters and flags. When the

object is “instantiate”, the Module class parses the XML interface description gener-

ated from the GRASS modules through the --interface-description flag to know

which parameters and flags are defined. For each parameter, the metadata is analyzed.

The metadata specifies if a parameter is required or optional, if it is an input or an

output, what type it is (raster, vector, string, float, etc.) and many more. This infor-

mation allows the class to check the correctness of the parameters and provides the

capability to suggest the correct ones. The identification of inputs and outputs allows

the implementation of process chains. The interface design of this class was chosen to

support the implementation of local and remote process execution services, which may

be added in future. To implement an interface to a Web Processing Service (WPS), the

definition of complex inputs, complex outputs and literals must be known to generate

the XML execute request. The same is true for remote process execution services based

on WSDL/SOAP. The Module class provides all required module-specific information

by design.

The current Python script API defines several functions to manage the GRASS

module: the make_command returns a list of strings with the command options from

a dictionary of keys and values. The start_command is a GRASS-oriented interface

to subprocess.Popen (a module process creation and management provided by the

Python standard library), that internally uses the make_command function. All the other

run/pipe/feed/read/write/parse command functions are specialized wrappers of

the start_command.

The Module class of PyGRASS gathers all these features in a single object, con-

necting directly the inputs and outputs of GRASS modules; see Listing 8.1 in the
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Appendix.

The PyGRASS Module class simplifies the Python syntax as much as possible to

be competitive with the POSIX module interface. It supports backward compatibility

syntax and enhances the API to provide a tool that manages user errors and returns a

list of valid options. Moreover, the PyGRASS library gives the capability to pass text

to a command as input (stdin), to catch the text output (stdout) and the error message

(stderr) of a command. Finally, PyGRASS allows users to manage (i.e., terminate,

kill, or wait) the process.

The PyGRASS library introduces an Object-Oriented (OO) Python API to GRASS,

which implements for each GIS/GRASS entity one or more classes. The classes use

C structures and functions through the existing ctypes interface. Ctypes is a Python

library; it provides C-compatible data types and allows calling functions in DLLs or

shared libraries. It can be used to wrap these libraries in pure Python. Our higher level

Python interface uses ctypes to integrate the underlying GRASS C API structures and

functions in an object-oriented framework, but at the same time, trying to respect the

GRASS work-flow and nomenclature to conform with the C API. The object-specific

ctypes pointer to the underlying C structures are available under the attribute name that

starts with c_*. This allows the user to access the lower level GRASS C API structures

directly using the ctypes interface. These classes allow facing the problem to be con-

fronted in a more abstract way. A high-level object-oriented approach can help users

face the problem, even if they are not familiar with the implementation details of the

C API level, speeding up the design, writing, prototyping and debugging phases.
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Architecture of the Library

The PyGRASS library follows the main GRASS structure and is divided in four

parts. Each part implements a set of dedicated classes. See Figures 3.1 and 3.2 for a

general overview of the library.

Figure 3.1: Module, Raster and GIS classes.

Figure 3.2: Vector class.

• modules contains the classes Module, MetaModule and Parameter. These

classes are designed to substitute the previous POSIX-based scripting approach
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(see Listing 8.2) and replace parts of the existing Python script API (see Listing

8.3).

The object-oriented architecture of the PyGRASS library allows users to interact

with GRASS modules as Python objects. These objects allow direct access to

module attributes like: name, description and keywords. The input and

output options are implemented using a dedicated parameter class. Instances

of this class are stored either in an input dictionary or an output dictionary within

the module object (Listing 8.4). Inputs and outputs can be referenced by their

name in the dictionaries or as attributes of the dictionary objects. They can be

connected to each other to create process chains, (see Listing 8.1). The type

check system of the parameter class assures that output options can only be

connected with input options of different modules when they have the same

type. Hence, the PyGRASS module library will raise an error in case the output

of a vector module was connected with a raster input of a second module.

The PyGRASS module library introduces special parameters to allow fine-grain

control over the GRASS processes. These special parameters end with the ‘_’

character to avoid a mix-up with option names. The first two special parameters

– run_ and finish_ – are used to manage the process. The parameter defini-

tion run_=True will execute the process immediately, and finish_=True will

wait until the process terminates, (see Listing 8.5). Other special parameters

that were added are: stdin_, stdout_ and stderr_. The parameters stdin_

and stdout_ are used to connect the textual inputs and outputs from different

modules to create a process pipeline; stdin_ is used to pass the textual output

(stdout_) from one process to another, (see Listing 8.6).

• vector contains the classes Vectorwithout the GRASS topology and VectorTopo

with the GRASS topology.

The Vector class allows the user to access the non-topological geometry fea-

tures of a vector map in sequential order; see Listing 8.7. The class VectorTopo

was designed to access topological and non-topological geometry features of

a vector map in random order. This class allows for iterating among specific

feature types, (see Listings 8.8 and 8.9). Writing is supported in both classes

in sequential order. However, already written features can be updated in the

topological access class.

The following classes are designed to represent vector features: Point, Line,

Centroid, Boundary, Isle and Area. Instances of these classes are usually cre-

ated when features are read from vector maps by the Vector and VectorTopo

classes. To manage multiple connections with vector attribute SQL databases,
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the classes DBLinks and Link were designed. Attribute tables can be created,

accessed and modified with the Table class. The Filter class provides sev-

eral methods for working with data without the need to know SQL. The Attrs

class was designed to access the content of the attributes table from a geometry

feature.

• raster contains the classes (RasterRow, RasterRowIO, and RasterSegment).

Each class uses a different GRASS C-library to grant a specific kind of access

to raster maps. All the raster classes share common methods to open a map,

read raster values or raster rows, get raster information and write metadata, such

as categories and history. As with vectors, a similar syntax has been used to

instantiate, open and close a raster object.

The RasterRow class reads the contents of the raster map row by row and writes

it in a sequential mode, row after row, (see Listings 8.10 and 8.11).

The RasterRowIO class implements a row cache that allows users to read raster

rows randomly by keeping a number of rows in the main memory. This caching

mechanism avoids heavy I/O (input/output) hard-disk usage in specific tasks,

such as moving window operations, or cell neighborhood analysis. Similarly to

the RasterRowIO, the RasterSegment class provides access to a tile cache. The

tile cache is an uncompressed representation of a raster map that will be created

at the point of initialization. The access to the uncompressed file is based on

tiles that are cached in the main memory for fast random read and write access

through the Segment class. With the RasterSegment class, it is possible to read

and write the pixel value randomly at the same time in the same map.

• gis contains GRASS management classes, like Gisdbase, Location and Mapset,

that help users interact with the GRASS environment, (see Listing 8.12). The

Region class manages the computational region of GRASS that directly affects

2D and 3D raster processing, as well as several vector processing algorithms,

(see Listing 8.13).

The PyGRASS library assures that memory management is fully handled by Python.

All structures from the GRASS C API that are used by PyGRASS are ctypes objects or

get deleted in the class destructor’s and, therefore, are handled by the Python garbage

collector. The user must not take care of memory allocation and deletion directly.

3.3 Results

In this section, we compare different solutions of simple GIS tasks using standard

GRASS tools and PyGRASS. The machine used for the benchmark was a laptop with
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an Intel Core i7 3610QM processor with 2.30 GHz and 6 Mb L3 Cache. The system

has 24 Gb DDR3@1333Mhz of RAM and a solid state disk (SSD) of 250 Gb as the

system driver. The installed operating system (OS) is GNU/Linux 3.7.5 (×86_64) on

the SSD. The GRASS 7 development version used for the benchmark has the revision

number r54812. The GRASS data are stored on a secondary hard disk of 750 Gb at

7,200 rpm.

Concerning script activity, PyGRASS improves mainly the syntax and changes

how users can interact with GRASS modules. We measured small performance loss

when executing GRASS modules using the PyGRASS module interface compared to

the POSIX approach, which go from 1% up to 12%, due to the average load of the

system. We did not expect a large performance difference, since Python and POSIX

are basically using the same OS (operating system) functions to spawn processes.

On the contrary, we needed to test the new API added by PyGRASS to identify

its strengths, weaknesses and scalability (all the benchmark tests used in this chapter

are available at https://github.com/zarch/pygrass-benchmark). Each test, ex-

cluding the biggest region (with 1010 cells), has been repeated five times. There are

only small differences between each measured run time, resulting in a small standard

deviation. Hence, we think that the final results of our benchmark are representative.

The first test compares two simple procedures, one written using PyGRASS (RasterRow

and VectorTopo) (see Listing 8.14) and the other using the programming language C

(see Listing 8.15 and for the results, see Table 3.3). The test takes as inputs a vector

point map and a raster map. It creates a new vector point map that includes all vector

points from the input map. A new attribute table is created and linked with the vector

map, which contains a column with the sampled values of the raster map. The proce-

dure is applied to five different random vector point maps, to be independent from the

spatial distribution of the vector points. Moreover, the tests have been executed using

different region extents and numbers of points, to test the scalability of the different

solutions. Both procedures are conceptually identical and share most of the GRASS

C API functions. The only difference is database access: PyGRASS uses the Python

driver instead of the C API of GRASS.

number of cells 102 104 106 108 1010

number of points 10 102 103 104 105

Vector and Raster

sample (PyGRASS) 2.21 4.23 23.87 218.63 12670.27
v.sample2 (C API) 3.03 5.48 31.67 266.54 13304.67
Raster

RasterRow 0.046 0.431 4.53 74.46 4303.24
r.mapcalc 0.078 0.525 5.83 170.43 5347.95

Table 3.3: Table with benchmark results, reported in seconds, using different compu-
tational extents and a different number of vector points (Zambelli et al., 2013).

https://github.com/zarch/pygrass-benchmark
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One indication that our approach is easier to handle than the C implementation is

that the PyGRASS version is considerably shorter (48 lines) than the C version (102

lines). With a PyGRASS library, it is noted that there is a marginal advantage in speed

compared to it’s C counterpart. The speed gain over the C version is probably due to

the slower driver adopted by the GRASS C API of the vector attribute database.

In a further test we compared performance of the PyGRASS RasterRow imple-

mentation (see Listing 8.16), with r.mapcalc using a simple raster map algorithm

(see Listing 8.17). The algorithm stores only those pixels in a new raster map that

have a value that it is greater than 50. Again, the PyGRASS version is slightly faster

than the GRASS module. The good performance of PyGRASS is caused by our design

approach that uses NumPy for row computation tasks. The performance will drop dra-

matically in case we would implement the same algorithm in pure Python comparing

cell by cell without using the optimized NumPy approach.

3.4 Discussion and Benchmarks

The PyGRASS Module class adds some useful features that were not available with

the previous Python script API; these features have a time cost, because they require

exporting the GRASS module in XML, parsing the XML and instantiating the object,

checking that all parameters are correct and then executing. The time cost for these op-

erations is around 0.2 s, but generally, the execution time of a GRASS module requires

much more time; therefore, in most of the cases, we can neglect this time loss.

Concerning the new approach introduced by PyGRASS, the performance depends

mainly on the features that are used. For example, updating the column attribute with

the value of area with PyGRASS requires almost the same time, around 0.24 s for

PyGRASS and 0.26 s using the v.to.db module.

Using the RasterRow class to compute areas that satisfy a condition, with a region

of 16,000 rows and 14,000 columns, it is slightly faster (27.42 s) than using r.mapcalc

(35.49 s) if the row is used as a NumPY array. Using the PyGRASS RasterRow class

without using the NumPy array makes the execution seven-times slower than using the

GRASS r.mapcalc module (992.5 s vs 144.2 s).

The example above highlights that it is not convenient to replace an existing GRASS

module with a new one written in PyGRASS, because the user has to write more code

and because the GRASS native modules are generally faster. The big advantage of

using the PyGRASS library is the object-oriented access to the GRASS C API func-

tionality.

Without the need to extract information from the output string of the module, in

this kind of operation, the PyGRASS library is faster compared with modules and with
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existing Python functions: for example, to get the list of the raster map contained in a

Mapset with PyGRASS takes 608 ns.

Using the Python function list_grouped in the GRASS core takes 0.1273 s.

The same good results are obtained with the Region object; with PyGRASS, it

takes 211 ns.

Using the Python function region in the GRASS core takes 0.1056 s.

The PyGRASS library can help to substitute all the commands in the GRASS

Python script library that need to wrap and interpret the output of a GRASS module.

3.5 Conclusions

An increasing amount of GIS software uses the Python language to provide a powerful

scripting interface. An easy to use, but powerful, Python interface can help to effi-

ciently exploit the capabilities of GIS software. Such an interface can be effectively

used to integrate different GIS, statistical, and geospatial tools and programming lan-

guages in a GIS to expand its overall capabilities.

The PyGRASS library tries to open a new perspective to power users and scientists

that use GRASS GIS. It provides a Python interface that is able to compete with the

simplicity of POSIX to write procedures with existing GRASS modules, as well as

a powerful object-oriented interface to deal and experiment with GIS problems at a

lower level.

The new Module class, introduced by PyGRASS, provides a single interface to

all GRASS modules and can be extended to work with Web Processing Services

(WPS), Web Services Description Language (WSDL) and Simple Object Access Pro-

tocol (SOAP) services or other remote execution services. The design concept of the

Module class allows direct linking of inputs and outputs of GRASS modules to create

process chains, including compatibility checks, process control and error handling.

The new Object-Oriented Python programming API introduces an abstract layer

that opens the possibility for users who are not familiar with C and with GRASS C API,

to use and access transparently the efficient C functions of GRASS. Our tests show that

algorithms implemented with PyGRASS are comparable in terms of performance with

an equivalent C implementation. Hence, our approach wraps the underlying GRASS

C libraries efficiently. It needs much fewer lines of code to implement an algorithm in

PyGRASS than in C. Moreover, it shows that specific Python strengths, for example,

the database Python interface, can be used to gain a speed improvement over specific

C-implementations in GRASS. The PyGRASS library has been designed to integrate

new methods or to inherit from an existing class to extend GRASS functionalities,

providing new tools for prototyping complex scientific algorithms.
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Some of the functionalities provided by PyGRASS are also available in other soft-

ware, such as Postgresql/Postgis, R, shapely, etc. However, switching to them requires

changing the GIS working environment. That means installing, configuring, learn-

ing the new tools and converting from one format to another. The PyGRASS library

does not force the users to learn and switch between different languages (C, SQL, R,

Python, BASH, etc.) and tools to carry out their work.

The PyGRASS library allows GIS modelers and scientists to use the C API of

GRASS, with a high level interface, providing a tool that gives the freedom to ap-

proach the GIS problem from a different perspective. In this way, users and scientists

can combine the GRASS modules with the GRASS C API functions and algorithms.

Therefore, PyGRASS is able to simplify the approach to develop a new GIS model,

using one program (GRASS) and one language (Python) to cover the different GIS

aspects, increasing the productivity and allowing geo-scientists to focus on studying

the problem they have selected and not on studying the tools and languages used.

Moreover, the PyGRASS library can be used as a tool to facilitate use and inte-

gration with other GIS/statistical software and libraries (not only open source). The

common language among different software and the object-oriented structure should

make communication and procedure/data exchange easier.

The PyGRASS library, together with the GRASS GIS temporal framework, can

provide a comprehensive high performance spatio-temporal GIS framework for GI-

Scientists.

PyGRASS seems to be ideal applying in complex case studies, such as air quality

monitoring from wireless sensor networks, and for building decision support systems

to evaluate the assessment of sustainable forest energy.





Chapter 4

Machine learning classification of

urban micro-environments

Urban micro-environments substantially affect the spatial variability and

distribution of air pollutants, urban heat-islands (UHI) and urban micro-

climate. A fine resolution land classification and urban morphology can

help to address these topics and provide useful insights into this spatial

variability for urban planners and local authorities. This work presents

a new methodology to identify the urban micro-environments from colour

airborne images (RGB) applying automatic algorithms in an open source

software environment. A set of several machine-learning algorithms was

used to obtain an object-based image supervised classification. Eight main

categories (water, grass, vegetation, road, car, bus, building and shadow)

were classified. Overall, 9,301 areas were used for training and evaluating

the machine-learning results. The cross-validation accuracy of the six best

algorithms is above 93% of the training data set using 5 folds. The best

classifiers were Gradient Boost (93.82%), Random Trees (93.75%) and Ex-

tremely Randomized Tree classifier (93.73%).The described methodology

yields reliable results for the classification of urban micro-environments us-

ing only RGB images and constitutes a promising approach. Where avail-

able, spectral data could further improve the results characterizing each

object with additional information about the surface that can be used by the

classifiers.

4.1 Introduction

A highly detailed spatial characterization of urban environments is of increasing inter-

est for several research fields and communities. Fine resolution land classification and

urban morphology can help address questions regarding the spatial variability of air

pollutants (Merbitz et al., 2012), help to understand model phenomena like the Urban

Heat Island (Busato et al., 2013), and urban micro-climates (Rahman et al., 2014),
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and also to identify the specific role of ecological functions and different ecosystem

services (Behling et al., 2015).

Lehmann et al. (2014) stressed the importance of identifying the urban vegetation

structure type (UVST) to link particular ecosystem services with physical parame-

ters to explain temperature variability at the urban and district level. Jin et al. (2014)

showed how the concentration of fine particulate matter (PM2.5, particulate matter with

an aerodynamic diameter < 2.5µm) is influenced, for instance, by the canopy density

(CD) and the leaf area index (LAI). Other studies such as (Kaur et al., 2007; Pirjola

et al., 2012; Rahman et al., 2014) demonstrated that the characterization of micro-

climatic and urban micro-environment conditions also drive concentrations of various

air pollutants.

With the term “urban micro-environments”, we aim to identify not only environ-

ments with similar micro-climate conditions but also with a similar context such as:

urban morphology, distance from main roads, and other human structures and activi-

ties. The characterization of urban micro-environments, especially if combined with

indoor micro-environments (Steinle et al., 2013), can help to assess the overall impact

of air pollutants on the population and to define new policies to reduce this impact

(Rada, 2014; Rada et al., 2012; Schiavon et al., 2014).

We selected eight broad land cover classes, that are considered representative, to

characterize urban environments (Chen et al., 2014; Dugord et al., 2014; Kotthaus

and Grimmond, 2013; Lehmann et al., 2014; Llop et al., 2012). Then we extracted

them from aerial images at high spatial resolution (0.25 m). The spatial characteri-

zation of these classes combined with other information, such as digital terrain and

surface model, can provide useful information to assess the spatial variability of phys-

ical phenomena that occur at the urban scale (Liu and Shen, 2014; Mölter et al., 2010;

Skelhorn et al., 2014). The classification of an image is a complex task due to the high

number of elements (e.g., shapes, materials, textures, and relative position between the

objects) that need to be interpreted. Recent publications suggest that an object-based

image classification can achieve better results when combined with machine-learning

algorithms, as compared to per-pixel classifications (Duro et al., 2012).

The Geographic Objects-Based Image Analysis (GEOBIA) is a process that splits

image into segments (objects) based on analysis of the statistics of shape, texture and

spectral response. A growing number of publications describe combining object-based

image classification with machine-learning algorithms (Alioscha-Perez and Sahli, 2014;

Clewley et al., 2014; Dronova et al., 2012; Duro et al., 2012; Novack et al., 2011;

Senthilnath et al., 2012; Wieland and Pittore, 2014). The most employed classifiers

are the Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT),

and k-Nearest Neighbours (k-NN). All of these studies apply the GEOBIA to multi-
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and hyper-spectral images.

The objective of this study was to develop a methodology along with an imple-

mentation as open-source tools for the characterization of urban micro-environments

using only orthophoto images with the three spectral bands of red, green and blue

(RGB). We chose to work with RGB images because they are generally available at

lower cost compared to other multi-spectral data and are commonly available in aerial

photography and in high resolution satellite imagery. An open-source tool is important

as a guarantee of repeatability and reproducibility of the research (Steiniger and Hay,

2009).

The study areas in the City of Edinburgh, Scotland (UK), were chosen to represent

a medium-size city of Northern Europe. With respect to other areas, it is particularly

challenging because the roof colors are often similar to the color of nearby roads.

Moreover, the study area is characterized by huge varieties of urban settlements that

include streets and medieval alleys and buildings ranging from residential and sub-

urban areas and modern and industrial buildings.

In this chapter, I present the use of ten different machine-learning algorithms. For

each algorithm, I tested several set-ups to determine the options that perform best with

our training dataset.

As reported by Clewley et al. (2014) there are currently a number of open source

packages that can be used to perform various parts of the GEOBIA process (Orfeo

Toolbox (Inglada and Christophe, 2009), TWOPAC (Huth et al., 2012), InterIMAGE

(InterImage, 2014), GDAL-RSGISLib-RIOS-TuiView-KEA (Clewley et al., 2014)).

None of them is integrated with a multi-purpose GIS software such as GRASS. The

presented work aims to fill this gap opening the GEOBIA process to a wider number

of users.

4.2 Material and methods

4.2.1 Study area and data

The study area covers most of the city center of Edinburgh, Scotland (UK), with a

dimension of 6 km x 12 km (Figure 4.1). Edinburgh is the capital of Scotland and it

is situated on the south shore of the Firth of Forth. It is the seventh most populated

city in the United Kingdom and the second largest urban area in Scotland with a total

population of 487,000 habitants in 2013 (National Records of Scotland, 2013).

The input dataset for the image classification task of the urban micro-environment

of the city of Edinburgh is a set of RGB aerial ortho-rectified images (2009) provided

by the Ordinary Survey (British Ordnance Survey, 2012) with a spatial resolution of

0.25 m by 0.25 m.
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Figure 4.1: The red box illustrates the location and dimensions of the study area in the
City of Edinburgh, Scotland/UK.

4.2.2 Tools

I used GRASS (Geographic Resources Analysis Support System), a free and open source

Geographic Information System (GIS) (Neteler et al., 2012) to process geographi-

cal data through the pyGRASS library, and scikit-learn, which provided the main

machine-learning algorithms for the classification of the objects. Python (van Rossum,

1995) was used as the main language to integrate all the tools together and to develop

a new GRASS GIS 7 module v.class.ml.

• The GRASS GIS software suite has been under continuous development since

1982 (Neteler et al., 2012). Since 1999, it has been developed as free and open

source software by an international development team. GRASS GIS has been

used in several research projects, e.g., to develop holistic models to assess the

biomass potential in alpine regions (Sacchelli et al., 2013; Vettorato et al., 2011;

Zambelli et al., 2012).

• pyGRASS is a Python interface used to access the C API of GRASS GIS with

a higher and more abstract interface (Zambelli et al., 2013) and was developed

during the Google Summer of Code 2012 (GSoC 2012) as a tool to simplify the

use of GRASS GIS from other Python libraries. The main features of pyGRASS

are described in Chapter 3.

• Scikit-learn (Pedregosa et al., 2011) is a Python library that provides simple and

efficient tools for data mining and data analysis built on NumPy (Walt et al.,

2011), SciPy (Jones et al., 2001-2015; Millman and Aivazis, 2011; Oliphant,

2007), and matplotlib (Hunter, 2007). The main features of Scikit-learn are al-

http://grass.osgeo.org
http://grass.osgeo.org/programming7/pygrass/
http://scikit-learn.org/
https://www.python.org/
http://trac.osgeo.org/grass/browser/grass-addons/grass7/vector/v.class.ml
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gorithms for classification (Support Vector Machine (SVM), nearest neighbors,

and random forest), regression (Support Vector Regression (SVR), ridge regres-

sion, and Lasso), clustering (k-Means, spectral clustering, and mean-shift), di-

mensionality reduction (Principal Component Analysis (PCA), Isometric map-

ping, and non-negative matrix factorization), model selection (grid search, cross

validation, and metrics), pre-processing and feature extraction.

• Python is a general purpose high-level programming language that supports

multiple paradigms (e.g., object oriented, imperative, functional and procedural

styles). It is an interpreted language with a dynamic type system and automatic

memory management and is provided with a large and comprehensive standard

library (van Rossum, 1995; Wikipedia, 2014b).

4.2.3 Methodology

For the classification methodology presented here, we used an RGB image of the city

center of Edinburgh for the following eight broad classes: water, grass, tree, road, car,

bus, building and shadow. The shadow class was introduced to avoid forcing the clas-

sifiers to assess the land-use of areas without enough information. We introduced the

car and bus classes because, in many applications, it could be interesting to assess the

traffic density on roads using relative low-cost RGB images. The remaining classes

are basic land-use classifications that are generally associated with a certain material

and use, which can help to assess the urban micro-climatic and/or environment’s con-

ditions.

I classified the RGB image set using five main steps: bands ratio, image segmen-

tation, segment conversion, feature extraction, and classification. In detail, I processed

the data as follows:

1. Bands ratio: as highlight by Gitelson and Merzlyak (1996) and Zhang and Hu

(2012) to improve the identification of vegetation in a urban environment and

to be less sensitive to the partial shadowing due to the closer vegetation and

buildings, they combined the NDV I defined as:

NDV I =
NIR−R

NIR+R
(4.1)

where NIR and R represent respectively the Near-Infrared and the Red image

bands, with the Greeness Index (GI) expressed as:

GI =
G

R+G+B
(4.2)
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where R, G, B represent respectively the Red, Green and Blue image bands.

Since the NIR band is not available on our dataset, we used the GI, which is

an index representing the green percentage of the pixel. Zhang and Hu (2012)

demonstrates that another useful band ratio that helps to distinguish between

deciduous and conifer is GRI, defined as:

GRI =
G−R

G+R
(4.3)

Following the same path, the indexes: GI, RI, BI, GRI GBI, RBI, visible in

Figure 4.2, were computed and scaled to a value between 1−255 to improve the

results of the segmentation algorithm and help to identify and distinguish the

image objects.

2. Image segmentation: The image segmentation was performed using a growing

and merging region algorithm with the i.segment GRASS GIS 7 module. Dur-

ing the segmentation process, a unique segment ID was assigned to the pixel if

the difference of the pixels similarity criteria was lower than the user defined

threshold. The image was segmented hierarchically, which means that the out-

put of the segmentation was used as input seeds for further segmentations. The

image was segmented using a threshold of 0.01; the output was used as an input

for the segment with a threshold of 0.02, and then for 0.03, etc. The thresholds

computed were: 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06. Another parameter used

for the segmentation was to set a minimum number of pixels that a segment must

have to be identified with a unique ID. I selected the best segmentation parame-

ters from a visual comparison of the ones identified and objects that were fused

together. Figure 4.3 shows the results of segmentation using different parame-

ters.

3. Conversion of segmented raster data to a vector map: The segment map was

converted from an integer raster map containing the ID of each segment, to a

vector map using the v.to.rast GRASS GIS module. In GRASS GIS, each

geometry feature of a vector map can be linked with one or more categories of

an attribute table called a “layer”. During the classification process, I linked

each geometric feature of the vector map with several layers: one containing

the features extracted for each segment, one with the training classes, and one

with the final classification results. I used v.category to assure that all of

the geometric features are linked with the same category in all of the vector

layers, otherwise, the first row in the attribute table with the extracted features

and the first row with the classification results could not be referred to the same

geometric feature (segment).

http://grass.osgeo.org/grass71/manuals/i.segment.html
http://grass.osgeo.org/grass71/manuals/v.to.rast.html
http://grass.osgeo.org/grass71/manuals/v.category.html
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4. Segment characterization and features extraction: The segment characterization

was performed by extracting several statistical parameters from the raster image

for each band and feature shape, using v.stats. To improve characterization

of the segment, I computed the Principal Component Analysis (PCA) of the

RGB image (i.pca) and the first component of the PCA is used to analyse the

texture index (r.texture). The r.texture module computed the first (see

Figure 4.4) and the second order statistics (see Figure 4.5). The texture indexes

considered on this work are six, with a moving window of three pixels: Entropy

(ENT), Sum of Variance (SV), Sum of Average (SA), Angular Second Moment

(ASM), Contrast (CON), and Measure of Correlation (MOC). The shape of each

segment was characterized by extracting 13 parameters: the number of isles, the

longitude and latitude extension, the perimeter, the area, the area of the boundary

of the segment without considering internal isles, the ratio between the area

of isles and the area of the boundary, the compactness factor and the fractal

dimension defined as:

compactness f actor =
perimeter

2 ·
√

π ·area
(4.4)

f ractal dimension = 2 ·
log(perimeter)

log(area)
(4.5)

The isles of segments were characterized by the same parameters: area, perime-

ter, compactness factor and fractal dimension and aggregate using the sum.

From each raster (R, G, B, PCA1, PCA2, and PCA3) and for each segment, I

extracted the following 20 zonal statistics: the number of pixels, the coefficient

of variance, coefficient variance of the square, Kurtosis, Kurtosis of the square,

maximum, mean, median, minimum, mode, number of occurrences, percentile

(90%), range, skewedness, skewedness of the square, standard deviation, stan-

dard deviation of the square, first quartile, third quartile, variance and variance

of the square. In summary, I used 15 bands to characterize each segment (3

RGB + 6 RGB indexes + 6 textures); for each band I extracted 20 parameters

with zonal statistics for each segment, and the shape of the segment was charac-

terize by 7 values. Therefore the number of features extracted for each segment

was 307. All these statistics were grouped together into a new layer of the vector

map.

5. Segment classification: The new module v.class.ml, developed during the

third year of the Ph.D., implements several utilities: to perform pre-processing,

to tune classification parameters and to conduct classification and post-processing

http://trac.osgeo.org/grass/browser/grass-addons/grass7/vector/v.stats/v.stats.py
http://grass.osgeo.org/grass71/manuals/i.pca.html
http://grass.osgeo.org/grass71/manuals/r.texture.html
http://trac.osgeo.org/grass/browser/grass-addons/grass71/vector/v.class.ml/v.class.ml.py
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tasks. The module can be applied to any general vector map that has all of the

attributes that are integer and/or float types, and there are no limitations on the

number of columns (e.g., features) and rows (e.g., segments) except the dimen-

sion of the whole table that must be able to be allocated to the RAM of the

computer used for the analysis. The classification process can be split into three

main tasks: extraction of the training segments, testing of the different algo-

rithms and set-ups, and finally, classification of all of the remaining segments.

The v.class.ml requires a vector map where the training areas for supervised

classification are identified. For each supervised area, the module extracts all of

the segments that are included and/or intersected and assigns the class of the area

to them. All of the segments selected from the training vector map are saved in

a new layer of the vector segment map. To train and test the different machine-

learning algorithms, I manually classified more than 9,300 segments; a complete

list of classes with the number of training segments per class is reported in Table

4.1

class id numb. of training segments [%]

water 0 297 3.19
grass 1 2,810 30.21
vegetation 2 1,260 13.55
road 3 1,121 12.05
car 4 126 1.35
bus 5 94 1.01
building 6 3,279 35.25
shadow 7 314 3.38

total training 9,301 1.34

total 691,795

Table 4.1: Table with the class name, numeric label and number of segments used to
train all the different machine-learning algorithms

To identify the machine-learning algorithm that provides the best result, I used

a cross-validation with a k-fold of five sub-samples. The sub-samples were gen-

erated by randomly shuffling the dataset samples but preserving the percentage

of samples for each class. The machine-learning algorithm uses all of the sub-

samples for training, excluding one that is used to compute the accuracy score

as defined in Table 4.2, and the process is cycled through all of the sub-samples.

Using this method, all sub-samples are used both to train and to test the machine-

learning algorithm. The selection of the best algorithm is conducted by comput-

ing the average of five accurately computed during the cross validation process

and selecting the algorithms with the higher mean value.

I tested the following ten machine-learning algorithms: the Gradient Boosting
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Classifier (GBC) using 100 Decision tree estimators with a varying minleaf size

of one, three, and five; the Support Vector Classifier (SVC) using different ker-

nels: linear, Radial Basis Function (RBF), Sigmoid, and Polynomial and varying

the C (from 10-2 up to 108) and the γ values (from 10-6 up to 106); Extra Trees

Classifier (ET) with a different number of estimators (10 and 100) and with dif-

ferent minimum leaf sizes of one, three, and five; the Random Forest (RF) using

different criteria (Gini and Entropy) and with a different value for the maximum

feature (a percentage, the sqrt, and a log2); the k-Nearest Neighbor (kNN) us-

ing a different number of neighbors (2, 4, 8, 16) and different weights (uniform

and distance); Nearest Centroid (NC) using different metrics (l1, l2, cityblock,

manhattan, and eucldean); the Decision Tree (DT) using different criterion (Gini

and Entropy); Stochastic Gradient Descendant (SGD) varying the loss parameter

(hinge, huber, and log) and different penalties (l1, l2, and elasticnet); Gaussian

Naive Bayes (GNB), and Ada Boosting Classifier (ABC) using 50 estimators

with a learning rate of 1 and a minimum leaf of 3.

Because the Support Vector Classifier requires 2420 models (4(kernel) ·11(C) ·

11(γ) ·5(cross− validation)) to run, the training dataset were applied on a bal-

anced sub-set of the training classes, with a number of segments for each class

that is equal to the class with the least training segments. The class with the low-

est number of training segments is the bus with only 94 segments. Therefore,

the subset was composed of 94 segments per class, reducing the total number of

the training dataset from more than 9300 to (94 · 8 =) 752 segments. To select

the number of trainings for each class that provides the best results, an instance

of the SVC using the default parameters (kernel=RBF, C = 1, γ = 0) was tested

1000 times with 1000 different randomly balanced shuffled training datasets; the

subset of the training segments that provided the highest accuracy was used to

explore the domain of the best kernel, C and γ set of values that maximize the

accuracy score.

Some of the above machine-learning algorithms tested during this work were en-

semble methods. Ensemble methods, to improve robustness and generalizability

of the classifier, combine the results of several estimators. The first approach is

to return the average of several classifiers; this approach compared to a single

estimator has a reduced variance (Pedregosa et al., 2011). RF and ET classi-

fiers are the ones that use this approach. A second approach is to combine and

organize several (weak) classifiers in a sequence to obtain a powerful ensemble

(Pedregosa et al., 2011); the classifiers tested as part of this group are ABC and

the GBC.

The classification task was repeated with a different configuration: using a scaled
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and decomposed (PCA) version of different features: RGB, PCA, and RGB and PCA

statistics.

Based on the overall accuracy, the best 6 algorithms and pre-processing options

were further analyzed by computing the confusion matrix to see which classes can be

more problematic than others and by analyzing the Precision/Recall curve as defined

in Table 4.2.

Condition

Tpop =CP+CN CP = T P+FN CN = FP+T N PRV = CP
CN

Total Population Condition Positive Condition Negative Prevalence

Outcomes

OP = T P+FP T P FP PPV = T P
OP FDR = FP

OP

Outcomes Positive True Positive False Positive
Positive Predictive Value

(Precision)
False Discovery Rate

ON = FN +T N FN T N FOR = FN
ON NPV = T N

ON
Outcomes Negative False Negative True Negative False Omission Rate Negative Predictive Value

LR+ = t pr
f pr T PR = T P

CP FPR = FP
CN ACC = T P+T N

Tpop

Positive Likelihood Ratio
True Positive Rate

(Sensitivity, Recall)
False Positive Rate

(Fall-out)
Accuracy

LR− = f nr
tnr FNR = FN

CP T NR = T N
CN

Negative Likelihood Ratio False Negative Rate
True negative rate

(Specificity)

DOR =
LR+
LR−

Diagnostic Odds Ratio

Table 4.2: Definitions of the Accuracy, Precision and Recall parameters used to evalu-
ate and compare the performance of different machine-learning classifiers (Wikipedia,
2014a).

4.3 Results and Discussion

The threshold used to segment the aerial images that provide the best results was 0.03.

To identify the best threshold, we performed a visual comparison between the seg-

mented images. Higher values of the threshold parameters generate segments that

merge different classes together; in our case, some buildings were merged with streets,

cars with roads, and trees with grass. However, a lower threshold value would only

identify a small portion of the objects. Therefore, the segment threshold parameter

needs to be set manually depending on what image objects we aim to classify. An-

other important parameter used for image segmentation was the minimum segment

areas, which were set to 64 pixels (0.25m · 0.25m · 64pix = 4m2). Setting a minimum

number of pixels to identify the image objects helps to exclude all objects that are too

small to be classified and reduces the overall number of segments. Another reason to

set a minimum number of pixels was that the feature extraction of each segment is

characterized by a statistical value, which can have some meaning only if it is com-

puted over a significant number of pixels. The total number of segments identified
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Figure 4.2: Bands ratio indexes used to highlight differences on aerial images, the grid
size is 250 m. The indexes are defined as RI = R

R+G+B
, GI = G

R+G+B
, BI = B

R+G+B
,

RBI = R−B
R+B

, GRI = G−R
G+R

, GBI = G−B
G+B

with R, G, B respectively the Red, Green and
Blue image bands.
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Figure 4.3: The results of different segment thresholds are shown, where indicated a
minimum size of 64 pixels (4m2) is used, the grid size is 250 m.
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Figure 4.4: First order statistics using the first component of the Principal Component
Analysis (PCA1): Sum Average (SA), Entropy (ENT), Difference Entropy (DE), Sum
Entropy (SE), Variance (VAR), Difference Variance (DV), Sum Variance (SV), the grid
size is 250 m.
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Figure 4.5: Second order statistics using the first component of the Principal Compo-
nent Analysis (PCA1): Angular Second Moment (ASM), Inverse Difference Moment
(IDM), Contrast (CON), Correlation (CORR), Measures of Correlation (MOC), Cor-
relation Coefficient (MCC), the grid size is 250 m.
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(a) (b)

Figure 4.6: Domain exploration of the best set of parameters for each SVC kernel that
provides a higher averaged accuracy score using a cross-validation with five k-folds
and varying the C and γ values, using a subset of 94 segments per class.

using a threshold of 0.03 and a minimum number of pixels (64) were 691,795.

As described in the methodology, the Support Vector Machine algorithm has two

main parameters (C, γ) that have to be set properly to reach good classification results,

for this reason a domain exploration of the best parameters was performed. To speed-

up the process, the classification was applied on a balanced sub-set of the training

classes; Figure 4.6 shows the results.

I ranked the features used to classify the segment, using the Extra Trees Classifier

with 500 estimators (see results in Figure 4.7 and Table 4.3). The values not reported

in the previous Figure and Table are the importances of shape features that are [%]:

numb. of isles 0.0506, x extent 0.2155, y extent 0.2692, perimeter of the isles 0.0450,

area of the isles 0.0322, compact of the isles 0.0383, fractal dimension of the isles

0.0565, perimeter 0.3075, area 0.1728, bound of the area 0.1531, aratio 0.0313, com-

pact 0.3656, fractal dimension 0.1720.

More than 80 different algorithm set-ups were tested to find the best set of pa-

rameters. The 6 best classifiers providing a higher accuracy using 5 shuffled folds are

reported in Table 4.5 and visible in Figure 4.8 and are: with an accuracy of 93.82%

Gradient Boosting Classifier using 100 estimators and a min samples leaf of 3

(gradient_boost_500_meanleaf3); with 93.75% the Random Forest Classifier

using 500 estimators, the entropy function to assess the quality of a split and consid-

ering only 50% of the features at each split (rand_tree_entropy_0p50_500); with

almost the same accuracy 93.73% the Extra Trees Classifier using 500 estima-

tors and a min samples leaf of 1 (extra_tree_500_1); with 93.59% the Support

Vector Classifier (SVC), the Gaussian radial basis function kernel (RBF) and

C = 10,γ = 0.001 (SVC_rbf); with 93.10% the SVC using a linear kernel with a C = 1

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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Figure 4.7: Score matrix with the percentage of the importance of each raster and zone
statistics considered in the dissertation.

Figure 4.8: In the first plot the segments used for training the machine-learning algo-
rithms are reported, in the other subplots the results of the classification with different
algorithms are reported.
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(SVC_linear); with 93.07% the SVC using the Sigmoid kernel and C = 1e6,γ = 1e−6

(SVC_sigmoid);

In Table 4.4 the confusion matrices of the first best six algorithms are reported.

The accuracy score of the first 6 best machine-learning algorithms were very sim-

ilar (e.g., the best and the worst classifiers differ from each other by only 0.75% of

the overall accuracy). This result was in part due to the extremely unbalanced training

dataset. Analyzing the confusion matrix, all of the algorithms had particularly good

performances to identify: water, grass, tree, shadow which, looking at Table 4.1,

were the classes with an accuracy above 95% in most of the classifiers.

All of the algorithms had a lower identification performance for road class, with an

accuracy around ∼ 84% of the training dataset. This low identification performance

for the road class shows that the features extracted from the RGB channels did not

characterize and differentiate this class enough from the others. All of the other classes

were above 80%. The classes car and bus obtain accuracy that, depending on the

classifiers, vary from 94.74% to 79.84% for the car and between 94.25% and 87.37%

for the bus. The confusion matrix clearly shows that there were two classes that were

more confused from each other: road and building. If available, we can integrate

the classification result with the Digital Surface Model (DSM) to help the classifiers

distinguish between these classes. A graphical overview of how the classifier was

able to distinguish between the classes is provided in Figure 4.9, which illustrates the

variation of the Precision and the Recall, defined in Table 4.2.

From our tests the Gradient Boost was the best classifier with an overall accuracy

of 93.8% and a Cohen’s k of 0.92. The overall accuracies from other studies (Duro

et al., 2012; Li et al., 2014; Novack et al., 2011; Vieira et al., 2012) lie between 71%

and 95%, and the Cohen’s k coefficients lie between 0.63 and 0.91. Therefore, the

current work seems to be in line with previous works, but it is notable that we were

able to reach almost the same accuracy level using only the visible spectrum, while

previous studies used at least an additional Near Infra Red (NIR) spectrum or more.

The methodology described in this chapter can also be applied to images with other

spectral bands and context, and it is not limited to the visible spectrum or the classi-

fication of urban land use, but can also be used for classification and interpretation of

rural images.

4.4 Conclusions

This chapter presents a methodology for the extraction, from RGB aerial ortho-rectified

images, of urban micro-environments with a high spatial resolution by combining Geo-

Objects Based Image Analysis (GEOBIA) and machine-learning algorithms to achieve



4.4 CONCLUSIONS 45

gradient_boost_500_meanleaf3
class water grass vegetation road car bus building shadow Tot. Prod. Prod. Acc. [%]
water 285 4 kCohen 5 3 297 95.96

grass 1 2757 25 9 18 2810 98.11

vegetation 39 1202 3 1 11 4 1260 95.40

road 18 8 924 170 1 1121 82.43

car 1 96 29 126 76.19

bus 4 75 15 94 79.79

building 14 8 153 7 5 3085 7 3279 94.08

shadow 2 1 2 7 302 314 96.18

Tot. User 288 2833 1250 1089 104 80 3340 317 9301

User Acc. [%] 98.96 97.32 96.16 84.85 92.31 93.75 92.37 95.27

Overall Acc. [%] 93.82

kCohen [%] 91.72

rand_tree_entropy_0p50_500
water 289 2 2 4 297 97.31

grass 1 2742 37 10 20 2810 97.58

vegetation 40 1196 4 17 3 1260 94.92

road 26 9 927 158 1 1121 82.69

car 1 1 90 1 33 126 71.43

bus 1 2 82 9 94 87.23

building 1 19 11 158 5 4 3072 9 3279 93.69

shadow 2 2 3 307 314 97.77

Tot. User 293 2830 1258 1100 95 87 3314 324 9301

User Acc. [%] 98.63 96.89 95.07 84.27 94.74 94.25 92.70 94.75

Overall Acc. [%] 93.59

kCohen [%] 91.43

extra_tree_500_1
water 293 1 2 1 297 98.65

grass 2747 38 10 15 2810 97.76

vegetation 35 1211 3 1 7 3 1260 96.11

road 26 9 906 179 1 1121 80.82

car 1 96 1 28 126 76.19

bus 1 82 11 94 87.23

building 18 16 151 5 4 3078 7 3279 93.87

shadow 1 2 6 305 314 97.13

Tot. User 294 2827 1278 1070 102 87 3326 317 9301

User Acc. [%] 99.66 97.17 94.76 84.67 94.12 94.25 92.54 96.21

Overall Acc. [%] 93.73

kCohen [%] 91.61

SVC_rbf
water 290 1 3 3 297 97.64

grass 1 2754 28 11 1 15 2810 98.01

vegetation 33 1212 3 3 5 4 1260 96.19

road 18 5 913 184 1 1121 81.45

car 3 1 98 1 23 126 77.78

bus 1 83 10 94 88.30

building 2 26 9 153 15 8 3058 8 3279 93.26

shadow 3 4 1 9 297 314 94.59

Tot. User 296 2832 1261 1081 119 92 3307 313 9301

User Acc. [%] 97.97 97.25 96.11 84.46 82.35 90.22 92.47 94.89

Overall Acc. [%] 93.59

kCohen [%] 91.43

SVC_linear
water 290 3 1 3 297 97.64

grass 4 2748 30 13 15 2810 97.79

vegetation 37 1208 1 3 6 5 1260 95.87

road 1 22 5 906 186 1 1121 80.82

car 3 1 99 1 22 126 78.57

bus 2 83 9 94 88.30

building 4 26 11 174 19 11 3029 5 3279 92.38

shadow 3 1 4 1 1 8 296 314 94.27

Tot. User 302 2837 1261 1096 124 95 3276 310 9301

User Acc. [%] 96.03 96.86 95.80 82.66 79.84 87.37 92.46 95.48

Overall Acc. [%] 93.10

kCohen [%] 90.78

SVC_sigmoid
water 290 3 1 3 297 97.64

grass 4 2748 30 13 15 2810 97.79

vegetation 37 1208 1 3 6 5 1260 95.87

road 1 22 5 904 188 1 1121 80.64

car 3 1 99 1 22 126 78.57

bus 2 83 9 94 88.30

building 4 26 11 175 19 11 3028 5 3279 92.35

shadow 3 1 4 1 1 8 296 314 94.27

Tot. User 302 2837 1261 1095 124 95 3277 310 9301

User Acc. [%] 96.03 96.86 95.80 82.56 79.84 87.37 92.40 95.48

Overall Acc. [%] 93.07

kCohen [%] 90.74

Table 4.4: Confusion matrix for the first best six classifiers.
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(a) Gradient Boosting Tree (b) Random Tree

(c) Extremely Randomize Tree (d) SVC radial basis function (RBF)

(e) SVC linear (f) SVC sigmoid

Figure 4.9: The Precision/Recall (PR) curves provide an informative picture of algo-
rithm performance. Ideally, if all of the segments were classified correctly without
errors, both the value for Precision and Recall are 1, and the Area Under the Curve
(AUC) reported in the legend will be 1. (a) Gradient Boosting Tree (GBC) (c) Ex-
tremely Randomize Tree (ET) (e) SVC Sigmoid (b) SVC linear (d) SVC radial func-
tion (RBF) basis (f) Random Forest (RF).
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name mean [%] max [%] min [%] std [%] time [s]

gradient_boost_500_meanleaf3 93.82 94.78 92.91 0.67 2939.2
rand_tree_entropy_0p50_500 93.75 94.41 92.96 0.56 2202.7
extra_tree_500_1 93.73 94.09 93.12 0.34 34.3
SVC_rbf 93.59 94.35 92.48 0.64 81.6
SVC_linear 93.10 93.98 91.99 0.67 92.2
SVC_sigmoid 93.07 93.82 91.99 0.63 90.9

Table 4.5: Total accuracy reach by each classifier, in the table are reported mean, max-
imum, minimum, standard deviation and the time needed for cross-validation using 5
k-folds.

a reliable accuracy. The entire methodology is based on open-source software. The

minimum input data required is quite common and easy to retrieve, which makes this

research easier to reproduce, modify and apply to other contexts. The methodology

was verified with more than 9,300 training segments, testing several pre-processing

and machine-learning algorithm set-ups. The classifiers achieve an overall accuracy

greater than 93% and a Cohen coefficient above 0.92, and the results are comparable

to those of other literature for the same classification task (Duro et al., 2012; Li et al.,

2014; Moskal et al., 2011; Novack et al., 2011; Vieira et al., 2012).

The accuracy achieved with the presented methodology could be sufficient to char-

acterize urban micro-environmental conditions. For example, limiting the analysis

to micro-climatic conditions, even if the classifiers confuse some classes such as the

building and road, these two classes have generally similar material property with re-

gard to the emissivity and heat transmission and the same considerations are valid for

grass and trees. Further improvement of the overall accuracy can be reached using

extra information to characterize each segment, such as another spectrum band or the

elevation difference between the digital terrain model (DTM) and the digital surface

model (DSM).

The GRASS GIS module v.class.ml developed and used in this work is not

limited to image and segment classification, but presents a more general tool for wider

application that allows the classification of any kind of vector map using the attribute

table as a data source for machine-learning classifiers. The segment classification was

chosen as a test due to the relatively high number of segments (2,726,635) and features

(307), but the module can also be applied in other contexts and research fields.





Chapter 5

Geographical factors and urban

Nitrogen Dioxide

micro-environments

In this chapter I examined the correlation between Nitrogen Dioxide (NO2)

concentrations measured using passive diffusive tubes (PDTs) and geo-

graphical factors. The study area is the city centre of Edinburgh. I con-

sidered nine urban micro-environment classes; for each of them I computed

the distance and the Sky View Factor (SVF). For all of these maps I cal-

culated the Sum Average texture using different window dimensions. The

chapter presents which factors have a stronger correlation with the mea-

sured concentration of NO2. These geographical factors were used as input

to apply several machine-learning regression algorithms, to assess the spa-

tial variability of NO2 within an urban context.

5.1 Introduction

To examine the effects of air pollutants on human health, an accurate assessment of

spatial variability of the pollutants is needed. For this reason an increasing amount of

literature focuses on spatial variability within-city at an intra urban scale. At this scale

the traditional central site monitors based on official measurement stations (OMS) are

inadequate.

This chapter aims to understand if it is possible to treat the spatial variability of

air pollutants within the domain of GIS modelling, neglecting, as first approximation,

the meteorological conditions. Moreover I want to identify which geographical factors

influence pollutant concentration within an urban context.

Levy et al. (2014) highlights that the space and time variability of multipollutant

mix varies considerably throughout a city, and even if a single pollutant that acts as
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proxy measure for the entire mix under all circumstances does not exist, indicates Ni-

trogen Dioxide (NO2) as “the best available indicators of spatial variation in exposure

to the outdoor urban air pollutant mixture”.

Similarly to other studies, passive diffusive tubes (PDTs) were used to measure

and characterize the spatial variability of the NO2 (Madsen et al., 2007); what is new

with respect to previous studies is the high density of PDTs used and the relatively

long time of the measurements campaign (6 consecutive weeks).

I tested the correlation between several geographical factors and the average of

the measured concentrations of NO2, and then I used these geographical factors to

regress the NO2 and assess the spatial variability of the air pollutant. The presented

work extends the concept of the Land Use Regression method to base the regression

not only on land-use categories but also on other geographical factors that could be

significant to describe micro-environment conditions of the physical phenomena under

investigation.

5.2 Materials and methods

The study area is the city centre of Edinburgh, Scotland (UK); see previous chapter for

further information on the area object of this study. The methodology combines the

urban micro-environments extracted by the RGB aerial ortho-rectified images with the

elevation difference between the Digital Terrain Model (DTM) and the Digital Surface

Model (DSM) to better distinguish between buildings and roads or trees and grass,

improving the final characterization of the urban morphology.

Thirty-seven passive diffusion tubes (PDTs) of Nitrogen Dioxide were positioned

by the School of Chemistry and Engineering of the University of Edinburgh under the

supervision of Dr. M. Heal and Dr. C. Lin. The passive samplers were analysed weekly

for a six-week campaign starting on 2 December 2013 and ending on 13 January 2014.

The area covered by the PDTs was less than 9 sq.km with a density of about 0.250

sq.km per passive sample, and covered the south part of the city centre of Edinburgh

and suburban areas ()see Figure 5.1 for more details).

Nine geographical factors were considered in this work: buildings, tree, grass,

roads split in five main classes: very high, high, medium, low, very low traffic, and

urban tunnels. Since during this work we had not the opportunity to analyse data

coming from the traffic counter of the city council, the traffic classification of roads

were based on the Open Street Map (OSM) project classification. The OSM project

founded in 2004 by Steve Cost collects and organizes geo-referenced data provided

and checked from a growing number of volunteers, often in the scientific literature

we refer to this data as Volunteered Geographic Information (VGI). Roads vector data
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Figure 5.1: The white points represent the passive samplers used to monitor the con-
centration of Nitrogen Dioxide (NO2) and to characterize the spatial variability of air
pollutants in an urban context during the six weeks of the measurement campaign.
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were transformed to raster using an increasing buffer around the road starting from

8m for very low until 18m for very high traffic roads and removing from the buffer

all pixels that were already classified as buildings. The other geographical factors

were extracted from the visible spectrum (RGB) of aerial ortho-rectified images pro-

vided by the Ordinary Survey (British Ordnance Survey, 2012), with a resolution of

0.25 m by 0.25m, combining a Geo-Object Image Analysis (GEOBIA) and machine-

learning classifiers as explained in the previous chapter. The classified raster map was

re-sampled from a resolution of 0.25m to a 5m using the statistic mode as value of the

pixel. The spatial resolution has been reduced, because spatial variability of an aver-

age week’s concentration of air pollutants is difficult to model and to measure at this

scale, and to make the processing time faster. Moreover a spatial resolution of 0.25 m

seems not coherent with deployment of the measurement campaign and probably not

feasible with current technologies and costs. A lower resolution of 10 or 25m, on the

other hand, hides the effect of important geographical factors such as urban grass and

trees.

For each of these geographical factors three main features were extracted: the

distance, the Sky View Factor (SVF), and the Sum Average texture. The SVF is defined

as:

SV F =

∫ 2π
0 cos(φ(λ))dλ

2π
(5.1)

and represents the portion of sky visible from a specific point. For geographical

features that haven’t got an elevation such as grass, roads and tunnels a default value

of 100m was assigned. The SVF was computed with an angle step of 5 degrees.

The Sum Average (SA) texture was used to “describe” the context of each point

with a moving window of a different number of pixels (3, 5, 9, 15, 21, 27, 33, 39, 45),

therefore considering a zone of influence that goes from 15m up to 225m, for each

geographical factor.

For each of the 243 geographical factors (9(class) ·3( f eatures) ·9(texture) I com-

puted the Spearman’s correlation coefficient (ρs) in respect to the mean concentration

of NO2 measured during the winter campaign. All the geographical factors satisfying

the following condition: ρs > 0.4∨ρs <−0.4 were manually selected considering the

class type of the geographical features (e.g. grass, tree, roads, etc.), the feature type

(e.g. distance, SVF, etc.) and the texture value if used.

A Recursive Feature Elimination (RFE) was used to reduce the number of features

and select only those features providing a higher score. The RFE process consists of

defining an estimator, in this work the Support Vector Regression (SVR) with kernel =

RBF,C = 1,γ = 1 was used, and select features recursively considering only a small

subset of the features available. Only features with the highest score are selected. To
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Figure 5.2: Concentration of Nitrogen Dioxide (NO2) measured during the six weeks,
sorted by the mean value of each point.

evaluate the performance avoiding, or limiting, the over-fit problem, we compute the

Mean Square Error (MSE) of a cross-validated dataset using the left-one-out (LOO)

method. I tested 18 different regression algorithms with several set-ups to find the best

set of options for each regressor that maximize performance.

5.3 Results and discussion

The work is based on the assumption that the NO2 concentrations are strictly depen-

dent on the geographical position. To verify this assumption, the sample measurements

were sorted using the average value during the six weeks for each point and sorting the

points based on this value (see Figure 5.2). Since we were not interested in a concen-

tration value itself, but in a spatial variability of the NO2, we scaled the values to have

µ = 0 and σ = 1 (see Figure 5.3). Both graphs show that points characterized by a low

concentration of NO2 have low concentrations in all the weeks, accordingly the spatial

variability of the NO2 seems stable during the six weeks of the campaign. Figure 5.4

shows a summary of the Spearman’s rank correlation coefficient (ρs) between weeks

of the scaled dataset, and Figure 5.5 shows the detailed plot for each week combina-

tion. The Spearman’s rank correlation coefficient assesses how well the relationship

between two variables can be described using a monotonic function. If there are no

repeated data values, a perfect Spearman correlation of +1 or -1 occurs when each of

the variables is a perfect monotone function of the other. All couples of weeks had

a strong Spearman correlation coefficient between 0.88 and 0.97. From this dataset
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Figure 5.3: Concentration of Nitrogen Dioxide (NO2) measured during the six weeks,
sorted by the mean value of each point and scaled to have: µ = 0 and σ = 1.

Figure 5.4: Spearman correlation coefficient between weeks measurements of NO2

scaled with µ = 0 and σ = 1.
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(a) Week_1 VS
Week_2

(b) Week_1 VS
Week_3

(c) Week_1 VS
Week_4

(d) Week_1 VS
Week_5

(e) Week_1 VS
Week_6

(f) Week_2 VS
Week_3

(g) Week_2 VS
Week_4

(h) Week_2 VS
Week_5

(i) Week_2 VS
Week_6

(j) Week_3 VS
Week_4

(k) Week_3 VS
Week_5

(l) Week_3 VS
Week_6

(m) Week_4 VS
Week_5

(n) Week_4 VS
Week_6

(o) Week_5 VS
Week_6

Figure 5.5: Detail of the correlation between weeks, the values are scaled with µ = 0
and σ = 1.

and graphs the geographical position seems to be the main driver or proxy of the NO2

concentrations.

The Spearman’s rank correlation coefficient was computed for each geographical

factor. The geographical factors with ρs > 0.4 are reported in Figure 5.6, and in Figure

5.7 are reported all of them with ρs <−0.4. The subset of geographical factors with the

higher Spearman’s coefficient were manually selected avoiding repetition about: class,

feature, and texture type. The selected geographical factors with a positive correlation
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coefficient are shown in Figure 5.8, while Figure 5.9 shows the geographical factors

with a negative correlation’s coefficient. The details and values of the Spearman’s

coefficient are shown in Table 5.1.

These graphs highlight a strong correlation between NO2 concentrations and grass

distance (ρs = 0.60), and in particular considering the grass presence within an area

of 45m (ρs = 0.66) another linked indicator is the grass’ SVF (ρs = 0.51). A strong

correlation exists with the presence of very high traffic roads in a radius of 195m; this

confirms the role of traffic as main driver of the NO2 concentrations. The strong corre-

lation with the grass class could be due to the fact that where we have grass we haven’t

got NO2 sources (e.g. roads). A correlation also exists between NO2 concentrations

and the SVF of urban tunnels in a surrounding area of 135m (ρs = 0.59). It is not

clear from these data if the tunnels influence the NO2 as a geomorphological factor

or because they indicate a certain urban context in Edinburgh. Similar considerations

are valid for the presence of buildings in a radius of 195m (ρs = 0.46). A strong neg-

ative correlation exists between NO2 concentrations and the SVF (ρs = −0.67) and

distance (ρs = 0.66) of very high and high traffic roads and also considering only very

high traffic roads with a ρs respectively of 0.59 and 0.56 for SVF and distance, a simi-

lar correlation was found with the urban tunnels with distance (ρs =−0.56) and SVF

(ρs = −0.55). We found a negative correlation (ρs = −0.49) with the presence of the

tree within a surrounding area of 25 m, which means that a higher presence of trees

generally correspond to a lower concentration of NO2.

As highlighted by Cape (2009), the PDTs could be sensitive to wind speed, tem-

perature and humidity, and these meteorological conditions could have influenced the

campaign, perhaps the correlation with grass and trees is partially due to the micro-

climatic conditions influenced by urban vegetation. However the average humidity

condition of Edinburgh is quite high, and therefore we can assume a very low spatial

variability of this parameter.

Table 5.2 reports the values of the Root Mean Square Error (RMSE) of the re-

gression estimators. The correlation of the best regressed values and the measured

concentrations of NO2 are shown in Figure 5.10 with a Spearman’s correlation coeffi-

cient of 0.78. A direct comparison between the estimate concentrations and measured

data is shown in Figure 5.11. Figure 5.12 shows the raster map with the assessed

concentrations of NO2.

5.4 Conclusions

The work highlight how the concentration of Nitrogen Dioxide (NO2) is strictly de-

pendent on geographical position. Therefore it is possible to explore the spatial vari-
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Figure 5.6: Positive Spearman’s correlation coefficient between Geographical features
and measurements of NO2 concentrations.

Figure 5.7: Positive Spearman’s correlation coefficient between Geographical features
and measurements of NO2 concentrations.
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label class type feature type texture [pixels] texture [m] ρs P-value

dist__grass09_SA grass distance 9 45 0.6648 0.000005
dist__grass grass distance 0.5972 0.000075
cls__rd_vh39_SA very high traffic road class 39 195 0.5891 0.000100
svf__tunnels27_SA tunnel SVF 27 135 0.5864 0.000109
svf__roads_vh_h09_SA very high + high traffic road SVF 9 45 0.5560 0.000290
svf__grass grass SVF 0.5088 0.001107
cls__bd39_SA building class 39 195 0.4641 0.003337

svf__roads_vh_h very high + high traffic road SVF -0.6742 0.000003
dist__roads__vh_h very high + high traffic road distance -0.6619 0.000006
dist__tunnels21_SA tunnel distance 21 105 -0.5950 0.000082
svf__roads__very_high very high traffic road SVF -0.5909 0.000094
dist__roads__very_high very high traffic road distance -0.5598 0.000258
dist__tunnels tunnel distance -0.5592 0.000263
svf__tunnels tunnel SVF -0.5540 0.000308
dist__tunnels15_SA tunnel distance 15 75 -0.5523 0.000324
dist__roads__very_high45_SA very high traffic road distance 45 225 -0.5068 0.001168
dist__roads__vh_h45_SA very high + high traffic road distance 45 225 -0.5024 0.001309
cls__vg5_SA tree class 5 25 -0.4985 0.001447

Table 5.1: Spearman’s correlation coefficient (ρs) computed between the average value
of the concentration of NO2 and different geographical factors, In this Table are re-
ported selected geographical factors with a moderately or strong positive or negative
Spearman’s correlation coefficient ρs > 0.4∨ρs <−0.4.

model parameters mean [µg ·m−3] max [µg ·m−3] min [µg ·m−3] std [µg ·m−3] time [s]

Support Vector Regression kernel=Sigmoid, C = 10, γ = 0.01 15.17 62.48 0.41 25.31 0.07
Support Vector Regression kernel=linear, C = 0.1 15.54 63.24 0.47 25.56 0.06
Support Vector Regression kernel=RBF, C = 100, γ = 0.001 15.89 60.42 0.46 24.61 0.08
Ridge α = 100 15.99 62.40 0.00 25.50 0.03
BayesianRidge 16.47 62.29 0.30 25.59 0.24
Elastic Network α = 10, l1_ratio = 0 16.52 65.49 0.47 26.52 0.56
Gradient Boosting Regressor loss=lad, learning_rate=0.5, numb. estimators=10 17.02 45.67 0.63 20.54 0.18
Extra Trees Regressor numb. estimators=500, max_features=sqrt 17.09 62.75 0.33 25.45 9.35
Lars numb. non-zero coefficient=5 17.27 67.72 0.20 27.37 0.05
Lasso Lars α=1 17.63 69.65 0.54 28.12 0.05
Random Forest Regressor numb. estimators=500, max_features=log2 17.64 65.03 1.33 26.40 18.79
Bagging Regressor numb. estimators=500, max_features=20 17.77 65.03 0.83 26.33 33.02
Lasso α = 1 20.10 61.90 0.28 26.94 0.05
Perceptron penality=l2, α = 100 21.60 81.72 0.20 33.45 0.02
SGD Regressor loss=squared_epsilon_insensitive, penality=l2 21.60 81.72 0.20 33.45 0.02
Logistic Regression penality=l1, C = 10 22.53 48.00 1.00 26.67 0.73
ARD Regression 30.39 73.98 3.18 35.26 12.13
Passive Aggressive Regressor C = 10, loss=epsilon 38.80 105.57 1.89 48.28 0.02

Table 5.2: Root Mean Square Error (RMSE) computed between the average value of
the concentration of NO2 and the regression value assess using a left-one-out cross-
validation method for each machine learning algorithm. In this Table are reported the
mean value the maximum, minimum, standard deviation and the computational time
needed for cross-validation.
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(a) ρs = 0.66, p = 5.3e−6

grass, distance, texture 9 pixels
(b) ρs = 0.60, p = 7.5e−5

grass, distance
(c) ρs = 0.59, p = 9.9e−5

very high traffic road, class, tex-
ture 39 pixels

(d) ρs = 0.59, p = 1.1e−4

tunnel, SVF, texture 27 pixels
(e) ρs = 0.56, p = 2.8e−4

very high + high traffic road,
SVF, texture 9 pixels

(f) ρs = 0.51, p = 1.1e−3

grass, SVF

(g) ρs = 0.46, p = 3.3e−3

building, class, texture 39 pixels

Figure 5.8: Correlation between the transformed geographical features (µ = 0 and
σ = 1) and NO2 concentration. In each sub-plot are reported: the ρs and the relative
p, the feature land-use class, the feature type and, if a texture is applied, the number of
pixels used to compute the texture.

ability of the NO2 taking into account the geographical factors. In this chapter several

factors were taken into account: 9 land use classes were used (very high/high/medi-

um/low/very low traffic roads, trees, grass, building, tunnels) two different features

were computed (distance and SVF) and for all these factors 9 different texture dis-

tances were considered. For each of these 243 geographical factors we checked the
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(a) ρs =−0.67, p = 3.4e−6

very high + high traffic road,
SVF

(b) ρs =−0.66, p = 6.0e−6

very high + high traffic road, dis-
tance

(c) ρs =−0.59, p = 8.1e−5

tunnel, distance, texture 21 pix-
els

(d) ρs =−0.59, p = 9.4e−5

very high traffic road, SVF
(e) ρs =−0.56, p = 2.6e−4

very high traffic road, distance
(f) ρs =−0.56, p = 2.6e−4

tunnel, distance

(g) ρs =−0.55, p = 3.1e−4

tunnel, SVF
(h) ρs =−0.51, p = 1.2e−3

very high traffic road, distance,
texture 45 pixels

(i) ρs =−0.50, p = 1.4e−3

tree, class, texture 5 pixels

Figure 5.9: Correlation between the transformed geographical features (µ = 0 and
σ = 1) and NO2 concentration. In each sub-plot are reported: the ρs and the relative
p, the feature land-use class, the feature type and, if a texture is applied, the number of
pixels used to compute the texture.

correlation with the measured average mean concentration of NO2.

A positive correlation was found with the distance and the SVF of the grass, the

presence of very high trafficked roads in the surrounding area, the presence of tunnel

and building. Negative correlation was found for the SVF and distance of the roads

with high and very high traffic level, distance from the urban tunnels and the presence
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Figure 5.10: Relation between the regressed data using the Support Vector Regression
method and measurements of NO2 concentrations.

Figure 5.11: Comparison between regressed data and the average of the NO2 measured
concentrations.



62 5 GEOGRAPHICAL FACTORS AND URBAN NITROGEN DIOXIDE MICRO-ENVIRONMENTS

Figure 5.12: Map with assessed NO2 concentrations using the Support Vector Regres-
sion method trained with the average of the measured concentration

of trees. Since correlation does not imply causation, we can not say that grass or vege-

tation play an active role in the reduction of NO2 concentrations or simply indicates the

absence of NO2 sources, however these correlations can be used to assess the spatial

variability of NO2 within the urban context.

Geographical factors were reduced using a recursive feature selection and then

used as input data to train and test 18 different machine learning algorithms to test

the algorithm that provides the best regressed values of the NO2. The Support Vector

Regression algorithm using a Sigmoid kernel provided a mean RMSE of 15.17µg ·m−3

with a strong correlation between measured and estimate concentration data (ρs =

0.78).

This chapter presents a new methodology that can be easily extended to consider

other land-use classes, different features and texture types. Combining these geo-

graphical factors with machine-learning algorithms proved to be reliable in assessing

the spatial variability of physical phenomena within the urban context.



Chapter 6

Decision support system to assess

and compare the effect of different

action on the urban air quality





Chapter 7

Regressed scenarios comparison: a

methodology for urban planners

Many studies focus their research on characterizing the intra-urban vari-

ability of air pollutants; few of them try to provide a methodology to assist

policy and decision makers to maximize air quality enhancement within the

urban context. This chapter presents a methodology that aims to compare

different scenarios, combining the measurement field data and regression

modelling to assess the Nitrogen Dioxide (NO2) concentrations before and

after a certain urban change. 37 passive diffusive tubes (PDTs) sampler

points were used to train a regression model and link the measured con-

centration with some geographical factors. Then three different scenarios

were developed to reduce the average concentrations of NO2 in the area

surrounding a nursery in the city of Edinburgh (UK). The first sets some

trees in front of the nursery building, the second changes the traffic level of

the road introducing a new tram line, and the last one couples the tram line

with some green spaces using grass and trees along the road. The result-

ing concentration in all three scenarios is computed and compared to one

another.

7.1 Introduction

An increasing number of epidemiological studies have highlighted an association be-

tween air pollution exposure and adverse health effects (World Health Organization

(WHO), 2014a). Many works focus their research developing and testing tools that

predict and model concentration of intra-urban variation of air pollutants. Two main

techniques are used in literature: Dispersion Modelling (DM) and Land Use Regres-

sion modelling (LUR). As highlighted by Hoogh et al. (2014) “DMs are based on

detailed knowledge of the physical, chemical, and fluid dynamical processes in the

atmosphere”. DMs require information related to meteorology to model transport and
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pollutant transformations, as well as a detailed model of the physical, chemical and

fluid dynamical processes in the atmosphere. These requirements come at a price of

difficulties in collecting or modelling all these input data. LUR, on the other hand,

combines monitored data with Geographic Information System (GIS)-based predictor

data to build a prediction model, in order to assess the average concentration of air

pollutant in a certain urban context. LUR modelling requires a data field campaign to

characterize the intra-urban variability and link the geographical factors with the con-

centration of air pollutants. LUR is good at assessing average values and is less used

to estimate short time variations. In comparison with DMs, LUR is easier to use and

faster to run, reaching comparable performances (Hoogh et al., 2014).

This chapter presents a LUR modelling to assess the effect of different actions

and scenarios on the air quality level at an intra-urban scale. The idea is to provide

a methodology that can be applied by urban dwellers, planners and policy-makers

to create healthier cities, allowing them to compare the effects of different policies,

landscape and urban design. The methodology not only provides an estimate of the air

quality level that will be reached after a certain action, but furnishes information about

how much and where this reduction occurs and identifies the area affected by a certain

urban change. This data-driven methodology can be used to compare different urban

and policy options.

7.2 Materials and methods

The geographical features of urban micro-environments were used in combination with

machine-learning algorithms for the regression of the average concentration of Nitro-

gen Dioxide (NO2) measured, during a winter campaign, using passive diffusive tubes

(PDTs) to monitor the city centre of Edinburgh (UK). For more details on the study

area, the measurement campaign, the geographical analysis and the regression tech-

nique please refer to previous chapters. Levy et al. (2014) highlight that NO2 seems to

be the best proxy available for the other air pollutants, therefore high levels of NO2 are

generally linked with high levels of others air pollutants, providing information about

the air quality of the area.

Old adults and babies are more sensitive than others to air pollutant concentrations.

To preserve their health it could be useful to identify some of the places where they

spent a great portion of the day time. We identified some of these places and we

extracted them from the Open Street Map (OSM) project; in particular we considered:

nurseries, kindergartens, schools and clinics.

I use a nursery in the south of the city centre of Edinburgh, close to trafficked

roads, as a test case to assess the effects that different private and urban decisions and
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Figure 7.1: The main places, in the city centre of Edinburgh extracted by the Open-
StreetMap project, where the weaker part of the population (elderly and young people)
spend a relevant part of their day-time.

actions could have on air quality and specifically on the NO2 concentrations on that

area.

Three different scenarios were developed and compared. In the first scenario we

tried to improve the air quality, planting some trees to make a sort of "vegetation wall"

in front of the building. In the second scenario we decided to reduce the traffic of the

road, introducing an electric tram that lowers the traffic level from a very high to a

high trafficked road. In this scenario the road lines were dropped from the current 4

road lines to 2 roads and 2 tram lines. The third scenario hypothesized substituting one

tram line with a green area with trees and grass and covering the remaining tram line

with grass.

In all these scenarios we basically changed the land-use and the urban micro-

environments (see Figure 7.3), so we needed to update all the geographical factors

that are influenced by the change. Then we used the previous geographical features

and the average NO2 concentration to train the best regression algorithm, which in our

case is the Support Vector Regression (SVR), and applied the regression algorithm us-

ing the changed geographical features of the scenarios to assess the impact of different

planning choices. Figure 7.4 shows the SVF of grass and tree for the current context

and the context in the third scenario.

I computed the difference between the current NO2 concentrations and all the sce-

narios to highlight the impact of different actions. Finally, actions have an effect not
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(a) Current (b) Add trees

(c) Add tram (d) Add trees and grass

Figure 7.2: In Figure 7.2a is reported the current situation; in Figure 7.2b some trees
are added in front of the building to make a sort of green wall to protect from pollutant
concentrations; Figure 7.2c introduces an electric tram line reducing the traffic road
load from very high to high; Figure 7.2d leaves only one tram line introducing grass
and trees along the road.

only at the local scale (the nursery) but also at the district and city level.
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Figure 7.3: Land-use changes concerning the second scenario that introduced a new
tram line and the third that added trees and grass areas.

7.3 Results and discussion

In the first scenario, adding trees in front of the nursery building had a negligible effect

on air pollutant concentrations (see Figure 7.5b). The maximum difference between

the existing configuration and the configuration with the trees was 0.5µgm−3 (see Fig-

ure 7.6a). The second scenario assesses the impact on the air quality if a tram line

was used to reduce the traffic load of the road in front of the nursery building. In this

case the traffic load was reduced from a very high trafficked road class to high. In-

troducing this change had an important effect on the nursery area (see Figure 7.5c),

with an assessed reduction of NO2 concentration of about 15µgm−3 (see Figure 7.6b).

The third scenario combines the tram with the introduction of grass and trees, with an

assessed reduction of 22µgm−3; the resulting concentration is shown in Figure 7.5d,

and the NO2 concentration differences are reported in Figure 7.6c. Furthermore, as

shown in Figure 7.7, the methodology presented in this chapter is able to assess NO2

concentrations changes at an urban scale. Since the tram line involves a large part of

the city-centre of Edinburgh the effect of this change involves also other parts of the

city and not only the surrounding areas of the nursery.
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(a) SVF grass, current (b) SVF grass, third scenario

(c) SVF tree, current (d) SVF tree, third scenario

Figure 7.4: The Sky View Factor (SVF) as it is now and as it is in the third scenario
with the introduction of the grass and trees element along the trafficked road.

7.4 Conclusions

The presented chapter shows a new data-driven methodology to assess the impact that

different actions have on average air quality within an urban context. The methodology

requires a set of geographical and measurement data to train the machine-learning

regression algorithms and link the pollutant’s concentrations with geographical factors.

Once this link has been established, it is possible to build new scenarios changing the

geographical factors and designing the urban landscape to enhance the average air

quality level of the city.

Using a greater number of sampled points can increase the measurement density

and therefore improve the characterization of the spatial variability of air pollutants.

A higher number of measurements can help to make the link between geographical

factors and measured concentrations of air pollutants clearer and stronger.

The described methodology is simple to implement and use, since it requires com-
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(a) Current (b) Tree

(c) Tram (d) TTG

Figure 7.5: Variation of N02 concentrations [µgm−3], in different scenarios, zoomed
on the surrounding areas of the nursery. Figure 7.5a shows the current concentration of
NO2, Figure 7.5b illustrates the concentrations after the introduction of a tree in front
the nursery. Figure 7.5c reports the concentration level after reducing the traffic level
of the road by introducing a tram, and Figure 7.5d introduces the tram and covers the
street with trees and grass (TTG).

mon geographical data as input and a measurement campaign using the Passive Dif-

fusive Tubes (PDTs) to characterize the concentration of air pollutants. Moreover,

the methodology is fast to run and allows testing for several urban configurations and

comparing the effectiveness of different scenarios and actions to each other.

The used measurements provide a value that is representative only of the aver-

age concentration value of Nitrogen Dioxide (NO2). The same methodology can be

extended to work with field data characterized by a higher temporal resolution, also

integrating meteorological factors into the model (Su et al., 2008a).

The methodology can be improved to consider other factors that can play a role in

final air quality in a certain area (e.g. farms, industrial areas, etc.)

A future development could be to write a tool that, when geographical factors are

changed, automatically updates all the derived maps and estimates the concentration
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(a) Tree

(b) Tram (c) TTG

Figure 7.6: Differences between the current N02 concentrations [µgm−3] and the sce-
narios.

of NO2 in the study area.
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(a) Current (b) Tree

(c) Tram (d) TTG

Figure 7.7: Variation of N02 concentrations [µgm−3], in different scenarios at city
scale. Figure 7.7a shows the current concentration of NO2, Figure 7.7b illustrates the
concentrations after the introduction of the tree in front the nursery. Figure 7.7c shows
the concentration level after reducing the traffic level of the road due to the introduction
of a tram, and Figure 7.7d reports the situation after the introduction of the tram and
when the street is covered with trees and grass (TTG).





Chapter 8

Conclusions

A new Geographic Information System model has been developed to characterize the

effect of micro-environmental factors that play a role in driving spatial and time vari-

ability of air pollutants, using machine-learning algorithms to assess and compare the

effects of different policies and scenarios on urban air quality. To achieve these results,

we tested low-cost sensor technologies on outside conditions, and the measurements

were coupled with Official Measurement Stations (OSM) datasets. The comparison

highlights a strong sensitivity of the accuracy to external humidity and temperature

conditions and a strong drift on the residues with time.

A new python library has been developed to enlarge the prototyping options to

GIS modellers, creating a high-level interface to the C API of GRASS GIS that conve-

niently opens the GIS data with other scientific communities and libraries. The char-

acterization of urban micro-environments is made through classifying land-use using

an Object-Based Image Analysis (OBIA). To assign the proper land-use category, for

each object several features were extracted, and these data were used to train, test and

select the machine-learning algorithms that provide the higher accuracy.

The School of Chemistry of the University of Edinburgh conducted a six-week

campaign using Passive Diffusive Tubes (PDTs) to characterize the spatial variability

of Nitrogen Dioxide (NO2) for the city centre of Edinburgh. I used these measure-

ments to test the correlation between different geographical factors and air quality

level. The analysis highlights that, even if with a certain variability, within the mea-

surement weeks, the most polluted points are the most polluted in all the weeks; there-

fore we can consider the average value of NO2 quite constant over time and spatially

well-defined. The geographical factors were used as an input dataset, to train machine-

learning regression algorithms to assess the average concentration value of NO2. The

final step was to design some urban changes and test and compare the impact these

could have on average NO2 concentration within the urban context.
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8.1 Pro and cons of the proposed methodology

PROS:

• Common and easy to found geo-
graphical input data;

• Extensible to consider other cate-
gories and factors;

• Fast to compute and assess the av-
erage air quality level;

• Easily quantifies the estimate er-
ror;

CONS:

• Needs a measurements campaign
to collect air quality data;

• Provides a static average picture
of pollutants level;

• Does not consider meteorological
conditions;

• The uncertainty increases as the
differences between the current
situation and the projected scenar-
ios increase.

Table 8.1: Pros and Cons of the methodology described in this manuscript.

The main advantages and disadvantages of the methodology described in this chap-

ter are summarized in Table 8.1. The proposed methodology requires geographical

input data that are quite common; if not available at the desired resolution it is possible

to extract them following the path as described in Chapter 4, from aerial or satellite

images. The geographical factors that were used to assess air quality level are five

different classes of roads, grass, trees and buildings, but new factors can be used de-

pending on the context and the pollutants that we aim to assess. The methodology

requires, for each change in the current land-use, to re-compute all the raster features

used by the regression model before being able to assess the air quality level. The

processing time required for these operations is short, especially if compared with dis-

persion models, since it is only extracting quite a basic feature, such as distance, Sky

View Factor or raster texture. Another interesting point of this methodology is that it

quantifies the Root Mean Square Error (RMSE) or coefficient of determination (R2)

and therefore provides a value to assess the quality of the final computed scenarios.

The proposed methodology requires the concentration data value of several mea-

sured points to test and train the regression model. Due to the low number of Official

Measurement Stations (OMS) that are generally available within the urban context, the

existing air quality monitoring network is not enough. Therefore a dedicated measure-

ments campaign or network using passive samplers, bio-indicators or low-cost sensors,

is required to apply the method. The data collected using passive samplers provides

a weekly average value of NO2 and the meteorological factors seem to play a minor
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role in influencing the average concentration value. Therefore we did not consider

meteorological factors; however, if data with a higher time resolution are available,

the methodology can be modified also to use these factors. Since the methodology

is based on measured data and not resolving the physics of the phenomena as object

of the study, then if the scenarios remain quite similar to the context where the data

were collected the error is close to the regression error; if the scenarios apply radi-

cal changes, uncertainty on the assessed error will increase considerably. Therefore a

dispersion model can be more suitable to assess radically different scenarios.

8.2 Future development

Concerning the Decision Support System, with the availability of data with a higher

temporal resolution the methodology can be tested in short-term modelling. As re-

ported by Gulliver and Briggs (2011), the LUR methods are able to model long term

spatial variability but are not well-suited to deal with short-term modelling, mainly

because the LUR methods do not consider the influence of meteorology. Combining

LUR techniques with a dispersion model produces good predictions of monitored con-

centrations for different time periods and locations (Beelen et al., 2010; Gulliver and

Briggs, 2011). Therefore increasing the temporal resolution by taking meteorology

into account could help to develop a Decision Support System that can deal with sce-

narios that change the day’s policies, such as, for example, closing a certain road to

the traffic during peak hours, etc.

Concerning the libraries and tools developed during the Ph.D., PyGRASS is now

included in the last stable release of GRASS GIS and it is being used by other re-

searchers (Grohmann, 2015). The v.class.ml module has been also converted into

a QGIS plugins (STEM), and it will be tested for processing biological images. The

analysis of urban micro-environments and the regression is under testing to assess the

Urban Heat Island (UHI) effect in the city centre of Bolzano, Italy within the SINFO-

NIA (FP7) project of the European Research Academy (EURAC).





Appendix

Some small samples of code are provided below to show how modelers, scientists

and developers could interact with the PyGRASS library. If the code starts with

>>> , this indicates a python interactive section with the terminal. To use and test

the PyGRASS extension, the reader needs to install the latest development version

of GRASS7. Furthermore, all the following examples use the maps contained in the

free available GRASS demonstration dataset North Carolina (http://grass.osgeo.

org/sampledata/north_carolina/nc_basic_spm_grass7.tar.gz).

http://grass.osgeo.org/sampledata/north_carolina/nc_basic_spm_grass7.tar.gz
http://grass.osgeo.org/sampledata/north_carolina/nc_basic_spm_grass7.tar.gz
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Modules

Listing 8.1: Direct inputs/outputs.

# -*- coding: utf -8 -*-

import subprocess as sub

from pygrass.modules import Module

colout = Module("r.colors.out", map="elevation", stdout_=sub.PIPE)

col = Module("r.colors")

col.inputs.map = "field"

col.inputs.stdin = colout.outputs.stdout

col.inputs.rules = ’-’

col.run()

Listing 8.2: The syntax is similar to POSIX.

# -*- coding: utf -8 -*-

from grass.pygrass.modules import raster as r

# cmd: r.info map=elevation

r.info(map=’elevation ’)

# cmd: r.slope.aspect elevation=elevation slope=slope aspect=aspect --overwrite

r.slope_aspect(elevation=’elevation ’, slope=’slope ’, aspect=’aspect ’, overwrite=True)

# cmd: r.mapcalc ’slope_gt100 = if(slope > 100, slope)’ --overwrite

r.mapcalc(’slope_gt100 = if(slope > 100, slope)’, overwrite=True)

Listing 8.3: Backward compatibility.

# -*- coding: utf -8 -*-

from grass.pygrass.modules import Module as run_command

run_command(’r.info ’, map=’elevation ’)

Listing 8.4: Module as an object.

>>> from grass.pygrass.modules import Module

>>> slp = Module(’r.slope.aspect ’) # instantiate

>>> slp.name

’r.slope.aspect ’

>>> slp.description

’Aspect is calculated counterclockwise from east.’

>>> slp.inputs[’elevation ’]

Parameter <elevation > (required:yes, type:raster , multiple:no)

>>> slp.inputs.elevation = ’elevation ’ # set parameter value

>>> slp.inputs.slope = ’slope ’

>>> slp.run() # finally execute the ’slp’ module

Listing 8.5: Run and finish.
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>>> from grass.pygrass.modules import Module

>>> slp = Module(’r.slope.aspect ’)

>>> slp(elevation=’elevation ’, slope=’slp’, aspect=’asp’,

... format=’percent ’, overwrite=True , run_=False) # only set the parameters

>>> slp(elevation=’elevation ’, slope=’slp’, aspect=’asp’,

... format=’percent ’, overwrite=True , finish_=False) # start the process

>>> slp.popen.wait() # .kill() manage the process

Listing 8.6: Stdin.

# -*- coding: utf -8 -*-

from pygrass.modules import raster as r

rules = """0 red

1 green

2 blue

end"""

r.colors(map=’rtest ’, rules=’-’, stdin_=rules)

Vectors

Listing 8.7: Vector class.

>>> from grass.pygrass.vector import Vector

>>> schools = Vector(’schools ’)

>>> schools.open(’r’)

>>> schools.title # Vector attributes: name , organization , person , map_date

’Wake County schools (points map)’

>>> school = schools.next() # access to the geometry features

>>> school

Point (633649.285674 , 221412.944348)

>>> for school in schools: # or simply iterate through the vector map

... print school

...

POINT (628787.129283 , 223961.620521)

POINT (629900.710134 , 222915.798505)

POINT (630686.456623 , 224447.772161)

...

>>> schools.close()

Listing 8.8: VectorTopo class.

>>> from grass.pygrass.vector import VectorTopo

>>> geology = VectorTopo(’geology ’)

>>> geology.open(’r’)

>>> geology.title # Vector attributes: name , organization , person , map_date

’North Carolina geology map (polygon map)’

>>> for g in geology: # or iterate through the vector map

... print g

...

LINESTRING (...)

LINESTRING (...)

...

POINT(...)
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POINT(...)

...

>>> big = [a for a in geology.viter(’areas ’) # iterate only a geometry type

... if a.alive() and a.area() >= 10**8]

>>> geology.close()

Listing 8.9: Write a new vector map.

# -*- coding: utf -8 -*-

from pygrass.vector import VectorTopo

# instantiate and open the tunnels map

tunnels = VectorTopo(’tunnels ’)

tunnels.open(’r’)

# instantiate a new map

new = VectorTopo(’newvect ’)

# open a new vector map defining the column names and types , with:

new.open(’w’, tabcols=[(u’cat’, int),

(u’tunnel ’, int),

(u’length ’, float)])

for tunnel in tunnels:

# extract the first and the last point of the tunnel

first , last = tunnel[0], tunnel[-1]

# compute the tunnel length and divide the length for each point

length = tunnel.length() / 2.

#.write(geom_feature , attributes)

new.write(first , (tunnel.cat, length))

new.write(last , (tunnel.cat, length))

# then close all

new.close()

tunnels.close()

Rasters

Listing 8.10: RasterRow class.

>>> from grass.pygrass.raster import RasterRow

>>> elev = RasterRow(’elevation ’)

>>> elev.exist() # check if the map exist

True

>>> elev.name # return the raster name

’elevation ’

>>> elev.mapset # return the raster mapset

’PERMANENT ’

>>> elev.open(’r’) # open in read mode

>>> elev.is_open() # check if the map is open

True

>>> elev.range # return the map range

(55.578792572021484 , 156.32986450195312)

>>> for row in elev[:5]: # get the first 5 rows

... print(row[:3]) # show the first 3 columns of each row

...
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[ 141.99613953 141.27848816 141.37904358]

[ 142.90461731 142.39450073 142.68611145]

[ 143.81854248 143.54707336 143.83972168]

[ 144.56524658 144.58493042 144.86477661]

[ 144.99488831 145.22894287 145.57142639]

>>> elev.close()

Listing 8.11: Write a new raster map.

# -*- coding: utf -8 -*-

from grass.pygrass.raster import RasterRow

# instantiate raster objects

old = RasterRow(’elevation ’)

new = RasterRow(’mapname1 ’)

# open the maps

old.open(’r’)

new.open(’w’, mtype=old.mtype , overwrite=True)

# start a cycle

for row in old:

new.put_row(row > 100) # write row

# close the maps

new.close()

old.close()

GIS/GRASS

Listing 8.12: Write a new raster map.

>>> from grass.pygrass.gis import Location , Mapset

>>> location = Location()

>>> location.mapsets()

[’PERMANENT ’, ’user1 ’]

>>> permanent = Mapset(’PERMANENT ’)

>>> permanent.glist(’rast ’, pattern=’elev*’) # return a list with rasters

[’elevation_shade ’, ’elevation ’]

Listing 8.13: Write a new raster map.

>>> from grass.pygrass.gis.region import Region

>>> region = Region()

>>> region.north

258500.0

>>> region.south

185000.0

>>> region.rows

7350

>>> region.nsres

10.0

>>> print region

projection: 99 (Lambert Conformal Conic)

zone: 0
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datum: nad83

ellipsoid: a=6378137 es=0.006694380022900787

north: 258500

south: 185000

west: 596670

east: 678330

nsres: 10

ewres: 10

rows: 7350

cols: 8166

cells: 60020100

Benchmark

Listing 8.14: Write a new vector points map adding the raster value in the attribute

table using PyGRASS.

# -*- coding: utf -8 -*-

import numpy as np

from grass.pygrass.gis.region import Region

from grass.pygrass.vector import VectorTopo

from grass.pygrass.raster import RasterRow

from grass.pygrass.functions import coor2pixel

def sample(vect_in_name , rast_in_name):

"""sample(’point00 ’, ’field ’)"""

# instantiate the object maps

vect_in = VectorTopo(vect_in_name)

rast_in = RasterRow(rast_in_name)

vect_out = VectorTopo(’test_ ’ + vect_in_name)

# define the columns of the attribute table of the new vector map

columns = [(u’cat’, ’INTEGER PRIMARY KEY ’),

(rast_in_name , ’DOUBLE ’)]

# open the maps

vect_in.open(’r’)

rast_in.open(’r’)

vect_out.open(’w’, tab_cols=columns , link_driver=’sqlite ’)

# get the current region

region = Region()

# initialize the counter

counter = 0

data = []

for pnt in vect_in.viter(’points ’):

counter += 1

# transform the spatial coordinates in row and col value

x, y = coor2pixel(pnt.coords(), region)

value = rast_in[int(x)][int(y)]

data.append((counter , None if np.isnan(value) else float(value)))

# write the geometry features

vect_out.write(pnt)



8.2 FUTURE DEVELOPMENT 85

# write the attributes

vect_out.table.insert(data , many=True)

vect_out.table.conn.commit()

# close the maps

vect_in.close()

rast_in.close()

vect_out.close()

Listing 8.15: Write a new vector points map adding the raster value in the attribute

table using C.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include <grass/gis.h>

#include <grass/raster.h>

#include <grass/glocale.h>

#include <grass/dbmi.h>

#include <grass/vector.h>

static void sample(char *input , char *rast , char *column , char *output) {

struct Cell_head window;

struct Map_info In, Out;

int fdrast;

DCELL value;

G_get_window(&window);

int line;

int type;

struct field_info *Fi;

dbDriver *Driver;

char buf[2000];

dbString sql;

DCELL *dcell_buf;

/* Open input */

Vect_set_open_level (2);

Vect_open_old2(&In, input , "", "1");

fdrast = Rast_open_old(rast , "");

/* Open output */

Vect_open_new(&Out, output , 0);

Vect_hist_copy(&In, &Out);

Vect_hist_command(&Out);

/* Create table */

Fi = Vect_default_field_info(&Out, 1, NULL , GV_1TABLE);

Vect_map_add_dblink(&Out, Fi->number , Fi->name , Fi->table , Fi->key,

Fi->database , Fi->driver);

Driver = db_start_driver_open_database(Fi->driver ,
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Vect_subst_var(Fi->database , &Out));

sprintf(buf, "create table %s ( cat integer , rast_val double precision)",

Fi->table);

db_init_string(&sql);

db_set_string(&sql , buf);

db_execute_immediate(Driver , &sql);

db_create_index2(Driver , Fi->table , Fi->key);

db_grant_on_table(Driver , Fi->table , DB_PRIV_SELECT , DB_GROUP | DB_PUBLIC);

/* Sample the raster map with vector points */

struct line_pnts *Points = Vect_new_line_struct();

struct line_cats *Cats = Vect_new_cats_struct();

int nlines = Vect_get_num_lines(&In);

int count = 0;

dcell_buf = Rast_allocate_buf(DCELL_TYPE);

db_begin_transaction(Driver);

for (line = 1; line <= nlines; line++) {

type = Vect_read_line(&In, Points , Cats , line);

if (!(type & GV_POINT))

continue;

if(G_point_in_region(Points ->x[0], Points ->y[0]) == 0)

continue;

if (Rast_is_d_null_value(&value))

continue;

int row = Rast_northing_to_row(Points ->y[0], &window);

int col = Rast_easting_to_col(Points ->x[0], &window);

Rast_get_d_row(fdrast , dcell_buf , row);

value = dcell_buf[col];

/* Write value into the vector table */

count++;

Vect_reset_cats(Cats);

Vect_cat_set(Cats , 1, count);

Vect_write_line(&Out, GV_POINT , Points , Cats);

sprintf(buf, "INSERT INTO %s VALUES ( %d, %e ); ", Fi->table , count ,

(double)value);

db_set_string(&sql , buf);

db_execute_immediate(Driver , &sql);

}

db_commit_transaction(Driver);

db_close_database_shutdown_driver(Driver);

Rast_close(fdrast);

Vect_close(&In);

Vect_build(&Out);
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Vect_close(&Out);

exit(EXIT_SUCCESS);

}

Listing 8.16: Compute using the RasterRow class.

# -*- coding: utf -8 -*-

from grass.pygrass.raster import RasterRow

def ifcondition(mapname0 , mapname1):

# instantiate raster objects

old = RasterRow(mapname0)

new = RasterRow(mapname1)

# open the maps

old.open(’r’)

new.open(’w’, mtype=old.mtype , overwrite=True)

# start a cycle

for row in old:

true = row > 50

new.put_row(row * true)

# close the maps

new.close()

old.close()

Listing 8.17: Call the r.mapcalc module from Python

sub.Popen("r.mapcalc expression=’test_mapcalc=if(field >50,field ,0)’ --o", shell=True).wait()
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