
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DIT - University of Trento

Provenance in Open Data Entity-Centric

Aggregation

Moaz Mohammed Reyad Abdelhamid Abdelnaby

Advisor:

Prof. Fausto Giunchiglia

Università degli Studi di Trento

April 2015

Abstract

An increasing number of web services these days require combining data

from several data providers into an aggregated database. Usually this

aggregation is based on the linked data approach. On the other hand,

the entity-centric model is a promising data model that outperforms the

linked data approach because it solves the lack of explicit semantics and

the semantic heterogeneity problems. However, current open data which is

available on the web as raw datasets can not be used in the entity-centric

model before processing them with an import process to extract the data

elements and insert them correctly in the aggregated entity-centric database.

It is essential to certify the quality of these imported data elements, especially

the background knowledge part which acts as input to semantic computations,

because the quality of this part affects directly the quality of the web

services which are built on top of it. Furthermore, the aggregation of

entities and their attribute values from different sources raises three problems:

the need to trace the source of each element, the need to trace the links

between entities which can be considered equivalent and the need to handle

possible conflicts between different values when they are imported from

various data sources. In this thesis, we introduce a new model to certify

the quality of a back ground knowledge base which separates linguistic

and language independent elements. We also present a pipeline to import

entities from open data repositories to add the missing implicit semantics

and to eliminate the semantic heterogeneity. Finally, we show how to trace

the source of attribute values coming from different data providers; how to

choose a strategy for handling possible conflicts between these values; and

how to keep the links between identical entities which represent the same

real world entity.

Keywords

provenance, entity, data aggregation, knowledge base

4

5

Acknowledgements
I would like to express my sincere gratitude to my advisor Prof. Fausto

Giunchiglia for his valuable guidance, support and constructive comments

throughout the journey toward my PhD.

I would also like to thank all the members of the Knowdive group at

the University of Trento. I can not list all the names of the current and

previous researchers, software developers and administrators of the group

who contributed to my work and knowledge.

Finally, I can not forget to thank my thesis committee for their time

and effort.

i

ii

Contents

1 Introduction 1

1.1 The Context . 1

1.2 The Problem . 2

1.3 The Solution . 3

1.4 Innovative Aspects . 4

1.5 Structure of the Thesis . 5

2 State of the Art 7

2.1 ETL Tools . 7

2.2 Provenance . 10

2.3 Patents . 15

3 Knowledge Base Provenance 17

3.1 The Problem . 17

3.2 UKC Elements . 19

3.3 References . 22

3.3.1 Modeling Users and Resources 24

3.4 Provenance . 29

3.4.1 Knowledge import scenarios 31

3.5 Web API . 33

3.5.1 Data Model . 34

3.5.2 Services . 34

iii

3.6 User Interface . 35

3.7 Use Cases . 36

3.7.1 Provenance for English Vocabulary 36

3.7.2 Provenance for Chinese Vocabulary 38

3.7.3 Provenance for Mongolian Vocabulary 40

3.8 Conclusions . 41

4 Entity Base 43

4.1 Introduction to the entity base 43

4.1.1 The semantic interface 47

4.2 Problem . 48

4.3 Import Pipeline . 49

4.3.1 Catalog Importing Workflow 51

4.3.2 The preliminary steps 52

4.3.3 The tool steps . 54

4.3.4 Running Modalities 77

4.4 Summary . 78

5 Entity Base Provenance 81

5.1 Motivation . 81

5.2 Problem . 84

5.2.1 CKAN Repositories and DCAT vocabulary 86

5.2.2 Import process aspects 87

5.3 Our approach . 88

5.3.1 Authority . 89

5.3.2 Provenance and Evidence 92

5.4 Source Tracing Module . 108

5.5 User Interface . 111

5.5.1 Authority management 111

5.5.2 Provenance and Evidence visualization 114

iv

5.6 Use case . 115

5.6.1 Authority Rules Specification Scenarios 116

5.6.2 Import Scenarios 116

5.6.3 Query Scenarios . 121

5.7 Summary . 122

6 Conclusion 123

6.1 Thesis Summary . 123

6.2 Future Work . 123

Bibliography 127

v

List of Tables

2.2 A list of knowledge extraction systems 10

2.1 A list of ETL tools . 11

3.1 Entity attributes . 24

3.2 Required provenance for each import scenario 33

3.3 List of web services for knowledge base provenance 35

3.4 Required provenance for importing UKC 1.0 37

3.5 KB Elements imported from English WordNet 38

3.6 KB Elements in Chinese importing experiment 39

4.1 Short description of the semantifying pipeline tool steps . . 60

4.2 Columns and rows for an example dataset resource 62

4.3 Example correspondence given by Semantic Matching . . . 66

4.4 An example for structure validation 69

4.5 An example for format validation 70

4.6 Example for Entity Disambiguation 71

4.7 Example for NLP of natural language attributes 72

4.8 Cases of identity disambiguation 74

4.9 An example for ID Disambiguation 76

4.10 An example for conflict resolution while merging two entities 76

4.11 Combining the pipeline running modes 78

5.1 Examples for authority rules 92

5.2 Entity attributes . 98

vii

List of Figures

2.1 Possible Conflict Handling Strategies from [53] 12

3.1 Knowledge Base Elements 19

3.2 An example for word sense ranks and synset word ranks . 21

3.3 Provenance graph for the knowledge base 31

3.4 UKC importing scenarios 32

3.5 UML for Knowledge Base Provenance Web API Model . . 34

3.6 Basic visualization for knowledge base provenance 36

3.7 importing English WordNet for UKC 1.0 37

4.1 Logical separation of elements in our entity-centric model . 44

4.2 Workflow of dataset resources selection and editing 51

4.3 Overview of the import pipeline steps 55

4.4 Step 1: Selection . 61

4.5 Step 2: Attribute Alignment 63

4.6 Step 3: Attribute Value Validation 68

4.7 Step 4: Attribute Value Disambiguation 70

4.8 Step 5: Entity Alignment 73

4.9 Exporting, Publishing and Visualization steps 77

5.1 A motivation example: importing from two sources 83

5.2 Overview of the import process scenario 85

5.3 RDF Schema for Catalog, Dataset and Distribution in DCAT 86

ix

5.4 ER Diagram for Package, Resource Group and Resource in

CKAN . 87

5.5 Extending the import process with source tracing module . 89

5.6 Authority Scopes. (a) Entity type (b) Attribute Definition

(c) Entity Set (d) Attribute Value 90

5.7 Reference types . 94

5.8 Catalog, Dataset and Distribution etypes 102

5.9 Provenance graph for the entity base 106

5.10 Authority Management Expert Console UI 112

5.11 Authority Management End User Console UI 114

5.12 Overview of provenance usage scenarios in ODR 116

x

Chapter 1

Introduction

1.1 The Context

Recently an increasing number of open data catalogs appear on the Web

[54]. These catalogs contain data that represents real world entities and

their attributes. Data can be imported from several catalogs to build

web services. The acceptance of these web services has several quality

requirements. One of these requirements is the certification of data quality.

Data can be seen as the food of the web. Restaurants that offer high

quality food may offer to the customers some facts about the source of

their ingredients as a sign of quality and to gain their trust. For the web,

data is the food which is continuously produced and consumed by web

services and users. Effective tracing for the sources of data on the web

plays a major role in the acceptance of the services built on top of it.

Web services in future will be based on linked data and linked entities.

We refer to real world objects that are of enough importance to be given

a name as entities. Examples for entities are Italy and Barack Obama.

There are different types of entities, such as Locations and Persons. Italy is

an entity of type Location and Barack Obama is an entity of type Person.

The aggregation of data in our approach is entity-centric, i.e. it imports

data from external sources as entities and entity attributes. The database

1

1.2. THE PROBLEM CHAPTER 1. INTRODUCTION

which stores entities is called the entity base and the database which stores

the language which describes them is called the knowledge base. In logic

terms, the entity base can be seen as a store of ABox elements and the

knowledge base is the store of natural language vocabularies and the TBox

elements.

The importing of data into the knowledge base and entity base must

produce data elements which are of enough quality to enable the web ser-

vices. Examples of quality aspects for the knowledge base include manual

translation of vocabularies and expert validation; and for the entity base

they include consistent attribute values without conflicts and correct link-

ing between internal and external entities. To certify the quality of the

imported elements, it can be useful to trace the provenance of each ele-

ment. Users can see this information to appreciate the quality of the data

and therefore the quality of the service built on it. This is similar to a

customer that appreciates a high quality restaurant by knowing that its

food ingredients are matching his standards.

1.2 The Problem

The main problem of this thesis is to increase the quality of aggregated

entity stores. Data quality can have many aspects and this problem fo-

cuses only on those which we think are more relevant to the entity-centric

aggregation. The problem can be divided into four major pieces of work:

the quality certification of knowledge base elements, the semantic hetero-

geneity and the lack of explicit semantics while aggregating entities, the

tracing of entity base elements with attribute values conflict avoidance and

entity linking.

The first and the most important problem is the quality certification of

knowledge base elements. The knowledge base is a database that stores

2

CHAPTER 1. INTRODUCTION 1.3. THE SOLUTION

linguistic and domain information. These knowledge base elements are

used for several high level services such as natural language processing and

semantic matching. If these elements suffer from low quality characteris-

tics, such as linguistic polysemy, then the overall quality of the services,

such as the semantic matching, will be significantly reduced. This reduces

also the acceptability of the whole system.

Second, the quality of the data in open data repositories is not high

enough due to two reasons: the lack of explicit semantics and the seman-

tic heterogeneity. Lack of explicit semantics is the absence of the implicit

semantics that the dataset developer had in his mind while creating the

dataset. If this semantics is not made explicit in the dataset itself, auto-

mated reasoning by machines will be hindered. Semantic heterogeneity ap-

pears when a dataset is developed for a specific purpose with assumptions

that may not exist when the dataset is used in another public scenario.

Third, the attribute values may come from different data sources and it

is important to trace the source of each attribute and to choose a strategy

to handle possible conflicts. Data sources are not equal and some sources

have more authority than others. A link should be provided between any

pair of entities which represent the same real world entity.

1.3 The Solution

Our proposed solution is also composed of four parts which are in parallel

with the division of the problem that was given in the previous section. The

three parts are: the provenance of knowledge base elements, the definition

of the entity import pipeline and the provenance of entity base elements.

For the knowledge base provenance, we propose a data model which is

based on two main elements: the reference and the provenance. A refer-

ences is used to refer to external users or resources which are represented

3

1.4. INNOVATIVE ASPECTS CHAPTER 1. INTRODUCTION

as entities. Provenance is used to record the source and two validators of

each knowledge base element. We define also the mapping of the fields of

the provenance model for each import scenario.

For the entity import, we propose a semantifying pipeline based on

an entity-centric approach to enrich datasets with special focus on those

datasets which originate from open data catalogs. When entities are im-

ported, the pipeline uses a natural language processing service to enrich

the text attribute values with linguistic annotations; and it uses an identity

management service to assign unique identifiers to the entities. These two

steps fix the absence of explicit semantics and helps in resolving semantic

heterogeneity. The semantifying pipeline is built on a data cleaning tool,

and its steps are divided into preliminary steps and tool steps. We describe

the semantifying pipeline steps and show some user interface mock-ups for

the tool steps. The required programming interface for the pipeline is also

defined.

For the entity base, we propose a source tracing module that extends

any existing entity-centric import process. The source tracing module con-

tains three tools: authority, provenance and evidence. Authority provides

rules for overriding attribute values, provenance specifies the source of an

attribute value and evidence links an entity with same external entities.

These three tools enable the source tracing services in the import process.

1.4 Innovative Aspects

This solution is innovative because it adds the following contributions:

• The knowledge base provenance is the first known model to capture

the provenance of the language and language-independent concepts.

The available provenance systems store entity-level provenance and

sometimes schema-level provenance. Tracing the source of linguistic

4

CHAPTER 1. INTRODUCTION 1.5. STRUCTURE OF THE THESIS

and conceptual elements is a unique feature of our knowledge base

provenance.

• The import pipeline which we use for entity-aggregation is balanced

between the two extremes of current data aggregation approaches.

The first approach is the Extract, Transform, Load (ETL) which is

used in data warehouses and the second approach is the knowledge

extraction which is used with formal knowledge systems.

• The entity base provenance handles both the provenance and the data

fusion problems using authority rules in one combined model unlike

other available solutions. Its definition of evidence is also different

from the current ’same-as’ links.

1.5 Structure of the Thesis

This thesis consists of the following chapters:

Chapter 2 presents a survey for the state-of-the-art in three research

directions that are relevant to this thesis. The first section of this chapter

surveys the ETL and knowledge aggregation methods and systems, the

second section surveys the different approaches to handle the provenance

problem. It also includes a short survey for industrial patents related to

provenance.

Chapter 3 introduces the knowledge base and shows how provenance

can be used to trace the source of knowledge base elements. The proposed

knowledge base provenance module uses external references to users and

datasets. It allows two validators to check the elements before they are

finally accepted.

Chapter 4 introduces the entity base and the import pipeline that pop-

ulates it. The entity base is a database that stores entities and attribute

5

1.5. STRUCTURE OF THE THESIS CHAPTER 1. INTRODUCTION

values. These entities are imported by a pipeline which takes as input

an external source. The pipeline creates or updates the entities and their

attribute values.

Chapter 5 builds on the previous chapter by showing three source tracing

tools: provenance, evidence and authority. We introduced these tools in

the solution section above.

Chapter 6 concludes the thesis with a short summary of the work and

the results. This chapter includes also the future work.

6

Chapter 2

State of the Art

This chapter contains a survey for the state-of-the-art in three research

directions that are relevant to this thesis. In the first section, we present

some ETL and knowledge aggregation methods and systems. The second

section surveys the different approaches to handle the provenance problem.

The chapter concludes with a short survey for patents from industry to

show examples of available solutions to provenance.

2.1 ETL Tools

Importing tools can be roughly classified into general ETL systems and

knowledge extraction systems. The knowledge extraction systems are more

strict in the target format. The target is usually a logic system that allows

some form of reasoning even if it is not implemented in the system itself.

On the other hand, there is no explicit logical reasoning in generic ETL

systems but they usually allow high level searching with languages like

SQL.

Table 2.1 shows the description and license information for some avail-

able software for ETL. While Table 2.2 contains a list of tools used in

knowledge extraction.

7

2.1. ETL TOOLS CHAPTER 2. STATE OF THE ART

Name Description

CSV2RDF4LOD

[3]

A tool that produces an RDF encoding of data

available in Comma Separated Values (CSV).

D2R Server [4] A tool for publishing relational databases on the

Semantic Web.

Data Master [5] A Protege plug-in for importing schema structure

and data from relational databases into Protege

Krextor [9] An extensible XSLT-based framework for extract-

ing RDF from XML.

MapOnto [11] A research project aiming at discovering seman-

tic mappings between different data models, e.g,

database schemas, conceptual schemas, and on-

tologies.

Mapping Mas-

ter [12]

A Protege-OWL plugin that can be used to trans-

form the content of spreadsheets into OWL on-

tologies.

ODEMapster

[14]

A NeOn plugin that provides users a Graph-

ical User Interface that allows to create, exe-

cute, or query mappings between ontologies and

databases.

OKKAM Refine

extension [15]

An Open Refine extension to upload data into the

OKKAM Entity Name System.

Poolparty Ex-

tractor [22]

A platform that provides precise text mining al-

gorithms based on semantic knowledge models.

R2R [23] A framework to allow searching the Web for map-

pings to reconcile vocabularies

RDF Refine [27] An Open Refine extension that reconciles against

SPARQL endpoints, RDF dumps.

8

CHAPTER 2. STATE OF THE ART 2.1. ETL TOOLS

RDBToOnto RDBToOnto allows to automatically gener-

ate fine-tuned OWL ontologies from relational

databases.

RDF 123 [26] An application and web service for converting

data in simple spreadsheets to an RDF graph.

RDOTE [28] A framework for transporting data residing in

RDB into the Semantic Web.

Relational.OWL

[29]

Relational.OWL is a technique to automatically

extract the semantics of virtually any relational

databases and transform this information auto-

matically into RDF/OWL

T2LD[32] An automatic framework for extracting, inter-

preting and representing tables as Linked Data

The RDF Data

Cube Vocabu-

lary [36]

A vocabulary that allows publishing multi-

dimensional data on the web in such a way that

it can be linked to related data sets and concepts.

TopBraid Com-

poser [37]

A modeling environment for developing Seman-

tic Web ontologies and building semantic appli-

cations.

Triplify [38] A small plugin for Web applications, which re-

veals the semantic structures encoded in rela-

tional databases by making database content

available as RDF, JSON or Linked Data.

Virtuoso’s RDF

Views [40]

A tool for mapping relational data into RDF and

allow the RDF representation of the relational

data to be customised.

9

2.2. PROVENANCE CHAPTER 2. STATE OF THE ART

Virtuoso

Sponger [39]

A middleware component of Virtuoso that gener-

ates Linked Data from a variety of data sources,

and supports a wide variety of data representa-

tion and serialization formats.

VisAVis [41] A Protege plugin that works as an intermediate

layer between ontologies and relational database

contents.

XLWrap [42] A spreadsheet-to-RDF wrapper which is capable

of transforming spreadsheets to arbitrary RDF

graphs based on a mapping specification.

Table 2.2: A list of knowledge extraction sys-

tems

2.2 Provenance

The current approach to combine datasets from different sources is to use

linked data[51]. Linked data systems face two major challenges that de-

termine their survival[71]. These challenges are: tracing the source of data

and tracing the identity of resources across datasets. The tracing of the

source of data becomes critical when many datasets are imported from

different data providers. A simple query to know the source of a piece

of the combined data can take weeks of investigation without a suitable

mechanism to describe how the combined dataset is built. The tracing of

identity is the second challenge. It appears because some web resources

can be treated as equivalent in some contexts. Most of the time the equiva-

lence is expressed using the owl:sameAs predicate. These equivalence links

provide the core linking feature of linked data.

One solution to these challenges is to create metadata vocabularies to de-

10

CHAPTER 2. STATE OF THE ART 2.2. PROVENANCE

N
am

e
D

es
cr

ip
ti

on
an

d
F

ea
tu

re
s

L
ic

en
se

O
p

en
R

efi
n
e

[1
6]

A
d
at

a
cl

ea
n
u
p

an
d

tr
an

sf
or

m
at

io
n

to
ol

.
B

S
D

L
O

D
R

efi
n
e

[1
0]

L
O

D
en

ab
le

d
ve

rs
io

n
of

O
p

en
R

efi
n
e

B
S
D

M
ic

ro
so

ft
P

ow
er

P
iv

ot
[1

3]
A

d
at

a
m

as
h
-u

p
an

d
d
at

a
ex

p
lo

ra
ti

on
to

ol
.

M
ic

ro
so

ft
E

U
L

A

R
ap

id
M

in
er

[2
4]

A
d
at

a
m

in
in

g
an

d
E

T
L

to
ol

.
A

G
P

L

O
ra

n
ge

[1
7]

A
D

at
a

v
is

u
al

iz
at

io
n

an
d

an
al

y
si

s
to

ol
.

G
P

L
v
3

T
al

en
d

[3
4]

D
at

a
in

te
gr

at
io

n
,

d
at

a
m

an
ag

em
en

t
an

d
b
ig

d
at

a
so

lu
ti

on
s.

G
P

L
/

A
p
ac

h
e

R
at

tl
e

[2
5]

A
G

ra
p
h
ic

al
U

se
r

In
te

rf
ac

e
fo

r
D

at
a

M
in

in
g

u
si

n
g

R
.

F
re

e

T
ab

le
au

[3
3]

D
at

a
an

al
y
si

s,
v
is

u
al

iz
at

io
n

an
d

m
as

h
u
p

so
ft

w
ar

e.
P

ro
p
ri

et
ar

y

S
p

ot
fi
re

[3
1]

B
u
si

n
es

s
in

te
ll
ig

en
ce

so
ft

w
ar

e.
P

ro
p
ri

et
ar

y

P
en

ta
h
o

[2
0]

O
p

en
so

u
rc

e
b
u
si

n
es

s
in

te
ll
ig

en
ce

su
it

e.
A

p
ac

h
e

/
C

om
m

er
ci

al

C
lo

ve
rE

T
L

[2
]

D
at

a
in

te
gr

at
io

n
fr

am
ew

or
k

fo
r

tr
an

sf
or

m
in

g,
cl

ea
n
si

n
g

an
d

d
is

tr
ib

u
ti

on
of

d
at

a

C
om

m
er

ci
al

In
fo

rm
at

ic
a

P
ow

er
ce

n
te

r
[7

]
S
ca

la
b
le

,
h
ig

h
-p

er
fo

rm
an

ce
en

te
rp

ri
se

d
at

a
in

te
gr

at
io

n
so

ft
-

w
ar

e

C
om

m
er

ci
al

E
li
x
ir

R
ep

er
to

ir
e

[6
]

B
u
si

n
es

s
In

te
ll
ig

en
ce

su
it

e
C

om
m

er
ci

al

P
er

va
si

ve
D

at
ar

u
sh

[2
1]

D
at

a
in

fr
as

tr
u
ct

u
re

so
ft

w
ar

e
an

d
E

T
L

to
ol

s
fo

r
b
ig

d
at

a
C

om
m

er
ci

al

P
al

an
ti

r
[1

8]
p
la

tf
or

m
fo

r
an

al
y
zi

n
g,

in
te

gr
at

in
g,

an
d

v
is

u
al

iz
in

g
d
at

a
of

al
l

k
in

d
s

C
om

m
er

ci
al

T
ex

tP
ip

e
[3

5]
T

ex
t

m
in

in
g

an
d

d
at

a
co

n
ve

rs
io

n
w

or
k
b

en
ch

C
om

m
er

ci
al

B
on

it
a

B
u
si

n
es

s
P

ro
ce

ss

M
an

ag
er

[1
]

B
u
si

n
es

s
p
ro

ce
ss

m
an

ag
em

en
t

so
ft

w
ar

e.
G

P
L

S
p
ag

oB
I

[3
0]

A
n

op
en

so
u
rc

e
b
u
si

n
es

s
in

te
ll
ig

en
ce

su
it

e.
O

p
en

S
ou

rc
e

K
N

IM
E

[8
]

A
n

op
en

so
u
rc

e
d
at

a
an

al
y
ti

cs
,

re
p

or
ti

n
g

an
d

in
te

gr
at

io
n

p
la

tf
or

m
.

G
P

L

P
al

o
[1

9]
P

ro
v
id

es
E

T
L

se
rv

ic
es

O
p

en
S
ou

rc
e

T
ab

le
2.

1:
A

li
st

of
E

T
L

to
ol

s

11

2.2. PROVENANCE CHAPTER 2. STATE OF THE ART

scribe the datasets, such as the Vocabulary of Interlinked Datasets (VoID)1.

This vocabulary provides a model, a vocabulary of predicates and a mech-

anism for distributing dataset descriptions. The vocabulary captures data

locations, structure and statistics. It also includes the notion of linkset

to express the mapping between instances in different datasets. These

linksets are separated from the dataset, so they can be used or updated

independently from the dataset itself.

One major problem in data aggregation is the data fusion. There are

three known classes of strategies in the literature for data fusion: conflict

avoidance, conflict ignoring and conflict resolution (See Figure 2.1). In

conflict ignoring strategies, two attribute values which are in conflict may

be created in the aggregated data base which may lead to inconsistency.

In conflict resolution strategies, the conflict between two or more attribute

values is resolved by taking their average for instance.

Figure 2.1: Possible Conflict Handling Strategies from [53]

Finally, as a part of our state-of-the-art survey for the latest advances

in provenance, we present a summary of the provenance week 2014. The

provenance week is a combined event of two conferences IPAW 2014 and

TAPP 2014.

• Initial workshops
1www.w3.org/TR/void/

12

CHAPTER 2. STATE OF THE ART 2.2. PROVENANCE

The first workshop presented the PROV standard with recipes and

tools. The tools include provenance translator that converts between

different serializations formats such as PROV-N and PROV-XML,

provenance validator that checks the provenance against PROV con-

strains, provenance store and provenance online editor. Finally a

hands on session was given about ProvStore and Git2Prov tools.

Then a session on new scenarios of provenance presented four applica-

tions in the domains of scientific research, cloud computing, geospatial

data and climate research: [59] is a tool for gathering of provenance

information about the datasets used in research papers. [44] under-

stands the behavior of Google Cloud from its one month log data. [65]

describes user requirements for modeling geospatial provenance. [86]

defines a formal provenance representation for global climate change

data.

Four more applications were presented in the next session: [91] studies

query generation for PROV-O data. [76] shows how to use provenance

for online decision making with a crowd sourcing scenario. [74] is

an application-independent methodology for analyzing data based on

the network metrics of provenance graphs for the assessment of data

quality in an automated manner. [78] uses provenance to optimize the

parallel execution of scientific workflows.

• IPAW

The workshop discussed these topics: standardization, application,

architecture, security and reproducibility.

In the standardization discussion, two papers were presented: PROV

Abs [79], a tool for interactive experimentation with policies and ab-

stractions for sharing sensitive provenance data. PROV Gen [61] pro-

duces large synthetic provenance graphs with predictable properties

13

2.2. PROVENANCE CHAPTER 2. STATE OF THE ART

and of arbitrary size. Synthetic provenance graphs are useful for test-

ing and experimenting.

In the application discussion, three applications were presented: [77] is

an application for Prov PingBack to interconnect provenance records

that would traditionally sit in isolation, [75] proposes a generic and

application-independent approach to interpret provenance of data to

make online decisions and [67] collects compile-time and run-time

provenance for benchmarking systems.

In the architecture discussion, three papers were presented: noWork-

flow [80] is a tool that transparently captures provenance of scripts

and enables reproducibility, LabelFlow [46] uses domain-specific labels

with workflow provenance as a platform for data artifacts labelling;

and [84] proposes software provenance to be included as part of soft-

ware packages.

In the security discussion, three papers were presented: [56] is a sur-

vey for security in seven provenance systems, [45] proposes a policy

control framework for integrating and developing services that gener-

ate and use provenance. [63] provides security controls for protecting

provenance information.

Finally in the reproducibility discussion, three papers were presented:

[85] is an approach to capturing data provenance based on taint track-

ing. [89] generates electronic notebook documentation from multi-

environment workflows by using provenance represented in the W3C

PROV model. [58] describes a provenance computation technique that

uses the structure of workflow specifications to pre-compute the access

paths of all dependent data items prior to workflow execution.

• Demos and Posters

Four demos were presented: [81] is an implementation of provenance

14

CHAPTER 2. STATE OF THE ART 2.3. PATENTS

query service with PingBack following Provenance Access and Query

(PROV-AQ) standard. [50] presented a system that shows infor-

mation about Internet of Things devices to users. [73] was about

Prov-O-Viz1, an online web-based visualization for provenance given

in PROV-O. Finally [57] presented PBase, a provenance repository

that supports search with ranking capability.

Several problems where discussed in the poster session. These prob-

lems include using provenance in query answering by limiting the

sources that can be used to answer a query, making provenance inter-

operable, adding provenance to an RDF store, tracing provenance of

software development as a quality factor, abstracting provenance to

hide private details.

Two provenance stores were presented, one provides a Web graphical

user interface for visualizing provenance graphs, while the other is a

public repository that allows user and applications to publish their

provenance on the web. Another two solutions extended the PROV-

DM and PROV-O standards to allow provenance of sensor web and

social computing respectively.

Few posters presented the use of provenance in several domains: med-

ical, weather, agriculture, geospatial and taxonomy alignment scenar-

ios. Other posters discussed engineering choices for provenance. One

engineering solution was proposing to use aspect-oriented program-

ming to seamlessly integrate provenance.

2.3 Patents

The patent archives include several approaches for treating the prove-

nance problem. For instance, the University Of Southern California pro-

posed a system and method for data provenance in the case of multi-

15

2.3. PATENTS CHAPTER 2. STATE OF THE ART

ple, related workflows [90]. Researchers from the University Of Utah

Research Foundation proposed provenance management system for pre-

existing applications[62]. IBM corporation shows a system to use and en-

force provenance constrains which calculates provenance based on data or

meta-data changes and determines whether the calculated provenance vio-

lates the constraints[87]. Microsoft corporation used provenance in health

care domain[88]. Other researches produces a system to visualize prove-

nance to improve search query[48]. It can be easily noted that these prove-

nance tracing approaches are either too generic and they are not tailored

to a specific work-flow or they are too specific for one domain such as the

medical domain.

16

Chapter 3

Knowledge Base Provenance

The knowledge base (KB) is a database for background knowledge. The

background knowledge must satisfy some quality requirements before it can

be used by semantic services. In this chapter we present how we certify

the quality of the knowledge in the KB.

First we present the quality certification problem, then we list the ele-

ments of the KB and how they are imported or created. Next we present

our proposed data model which is based on two main elements: the ref-

erence and the provenance. A references is used to refer to external users

or resources which are represented as entities, therefore we show also the

definition of user and resource entities with the reference model. Prove-

nance is used to record the source and the validators of the KB element,

therefore we show also the mapping of the provenance fields for each im-

port scenario with the provenance model. Then we show the Web API

model and services for KB provenance. Finally, we present few use cases

that were treated with the proposed model.

3.1 The Problem

The background knowledge is required to build semantic services [68]. The

quality of a semantic service depends largely on the quality of the back

17

3.1. THE PROBLEM CHAPTER 3. KNOWLEDGE BASE PROVENANCE

ground knowledge behind it. If the quality of the knowledge is low, the

semantic services which are built over it will fail to deliver the required

results. For instance, if the background knowledge suffers from high poly-

semy (one natural language word that has more than one meaning), it will

be less useful for the natural language processing and semantic services

[43].

Data quality is generally defined as ”fitness for use”. The KB is used in

the context of semantic services, hence the fitness here can be specified as

correctness, completeness and duplication-free. Correctness of the knowl-

edge base is the right definition of each KB element and its relations with

other elements. Completeness of the knowledge base is the coverage of the

elements in one language and the coverage of all the languages required

for the specific application. Duplication-free is the avoidance of repeated

elements in the knowledge base, such as duplicated concepts in the concept

graph or duplicated meaning for one word.

With this definition of data quality, it can be noted that the quality

of knowledge base is set at the elements creation time. This is because

the creation of a KB element causes either an increase or a decrease of

the knowledge base quality. For instance, creating a correct example for a

synset increases the quality, while creating a wrong translation for a word

decreases the quality. Since the elements creation time is when the quality

is changed, the quality can be certified by tracing the sources and users

who participated in the creation of the KB element.

Although several approaches for provenance exist in the literature as

presented in Chapter 2, they either discussed the problem of provenance at

the instance or the schema levels. There is no existing solution that fulfills

the need for provenance at the language and conceptual level, therefore we

developed this novel provenance model as a quality certification tool for

back ground knowledge bases of semantic web services.

18

CHAPTER 3. KNOWLEDGE BASE PROVENANCE 3.2. UKC ELEMENTS

Figure 3.1: Knowledge Base Elements

3.2 UKC Elements

The universal knowledge core (UKC) is a central background knowledge

database which stores several types of elements. These elements are called

knowledge base (KB) elements and some of them are traced by provenance.

The KB elements are classified into four groups: Natural Language Core,

Concept Core, Entity Type Core and Domain Core. Figure 3.1 shows the

KB elements and their inter-relations. It also show that provenance can

be assigned to:

1. Entity Type: a sort of template including the definition of the at-

19

3.2. UKC ELEMENTS CHAPTER 3. KNOWLEDGE BASE PROVENANCE

tributes and relations allowed.

2. Attribute Definition: the name and data type of the attribute.

3. Concept: a formal notion denoting a Class, an Attribute Name (in-

cluding Relation names) or an Attribute Value.

4. Concept Relation: a connection between related concepts.

5. Domain: a set of entity types and a subset of their attributes which

determine the terminology of the domain.

6. Lexical Gap: a concept that cannot be lexicalized in the language.

7. Word: represents a word that belongs to a specific vocabulary.

8. Wordform: represents a derived form of a given word.

9. Sense: represents a word sense, basically defining the link between a

word and a synset this word belongs to.

10. Synset: a group of words with same sense, i.e. which are synonyms in

a language.

11. Sense Relation: a connection between related senses.

12. Synset Relation: a connection between related synsets.

13. Synset Example: an example attached to a specific synset

14. Word Sense Rank: the word sense rank of the word sense (used to

order the senses of a word)

15. Synset Word Rank: the concept word rank of the word sense (used to

order the senses of a concepts)

20

CHAPTER 3. KNOWLEDGE BASE PROVENANCE 3.2. UKC ELEMENTS

Figure 3.2: An example for word sense ranks and synset word ranks

The last two items, namely word sense rank and synset word rank,

are not KB elements. They are two ranks associated with KB elements as

shown in Figure 3.2. This figure shows an example for the natural language

word break. Since this word can be a noun or a verb, it has a group of

synsets for each part of speech. In each part of speech group, the synsets

are ordered with the Word Sense Rank which is shown in hexagons. In

each synset, the senses are ordered with the Synset Word Rank which is

shown in squares.

The word sense rank is associated with a word and a part of speech

for this word. The synset word rank is associated with a synset. The

provenance is specified for the whole rank and not for a single entry in the

rank.

21

3.3. REFERENCES CHAPTER 3. KNOWLEDGE BASE PROVENANCE

3.3 References

A reference is data structure used to provide external references. There

are three reference types:

1. UserReference. Refers to a user who participated in the import and

his editorial role.

2. ResourceReference. Refers to an external resource.

3. ResourcePartReference. Refers to a part of an external resource. (e.g.

a row in a table)

Listing 3.1: Reference BNF for KB Provenance

Reference : := User

| Resource

| ResourcePart

User : := Id

, E d i t o r i a l R o l e

E d i t o r i a l R o l e : := St r ing

Resource : := Id

, {ResourcePart }∗

ResourcePart : := I d e n t i f i e r

, URI

I d e n t i f i e r : := Name

, Value

22

CHAPTER 3. KNOWLEDGE BASE PROVENANCE 3.3. REFERENCES

Name : := St r ing

Value : := St r ing

URI : := St r ing

Id : := Long

Where:

• Reference: is an external reference to a user, a resource or a resource

part.

• User: is a reference to a user with the editorial role assigned to this

user. The user is represented as an entity with a set of attributes

defined in Section 3.3.1.

• Resource: is a reference to an external resource. The resource is

represented as an entity with a set of attributes defined in Section

3.3.1.

• ResourcePart: is a reference to a part in an external resource.

• Identifier: is the identifier of the part in the external resource.

• Name: is the name of the identifier of the resource part. [e.g., synset offset]

• Value: is the value of the identifier of the resource part. [e.g., n#00145679]

• URI: is the universal resource identifier of the resource part. [e.g.

wordnet/2.1/dict/data.noun]

• Id: is the internal identifier of a resource or an entity in an entity

base. More information on the resource and user entities are given in

the Section 3.3.1.

• EditorialRole: is the editorial role that can be assigned to a user.

23

3.3. REFERENCES CHAPTER 3. KNOWLEDGE BASE PROVENANCE

The editorial role depends on the importing scenario. In the UKC 1.0

first-time bootstrapping scenario, there are two predefined editorial roles

UKC1.0 IMPORTER and UKC1.0 VALIDATOR. In the language devel-

opment scenario, the editorial role encodes the name of the LKC (NAME),

the source language (L1) and the target language (L2). The possible edi-

torial roles for the LKC follow this regular expression:

[< NAME >] (L1 | L2) (IMPORTER | MANAGER)

[< NAME >] (L1−L2 | L2−L1) (DEVELOPER | VALIDATOR)

The first optional part [NAME] which has the LKC name is added after

copying (promoting) the knowledge base element and its provenance from

the LKC to the UKC.

3.3.1 Modeling Users and Resources

We present here the minimal set of attributes for modeling user and re-

source entities. The general attributes of an Entity are given in Table

3.1. These attributes are inherited by both the user and resource enti-

ties. In this table (and also in the next tables) The first column shows the

attribute, the second column shows the data type and the third column

shows the reference dataset which gave the definition of the attribute. The

<P >symbol beside a data type means that the corresponding attribute is

permanent (i.e. it is not constrained with a time validity, but it is always

valid).

Attribute Data type Reference Dataset

Name NLString []

Class Concept <P >

SURL String <P > UKC system itself

Table 3.1: Entity attributes

• 1. Person

24

CHAPTER 3. KNOWLEDGE BASE PROVENANCE 3.3. REFERENCES

• Category: personal

Attribute Data type Reference Dataset

Name NLString [] Person herself

Class Concept UKC system itself

Gender

ENUM(

MALE,

FEMALE

) <P>

person herself

birth Bate Date <P> Person herself

Email String Person herself

Relation Entity type Reference Dataset
Country of

citizenship
Country Person herself

Country

where hiving

now

Country Person herself

City where

living now
City Person herself

Photo String Person herself

• Category: biography

Attribute Data type Reference Dataset

Degree

ENUM(

PhD,

MASTERS,

BACHELOR,

HIGH

SCHOOL,

NONE

) [] <P>

Person herself (Note that with

array symbol we mean that a

person ctn select more than one

degree)

Work Boolean Person herself

Student Boolean Person herself

25

3.3. REFERENCES CHAPTER 3. KNOWLEDGE BASE PROVENANCE

• Category: user

Attribute Data type Reference Dataset

Login name String Person herself

Password String Person herself
Joining

date
Date Person herself

Leaving

date
Date Person herself

Relation Entity type Reference Dataset

RecommenderPerson <P>
UKC existing user (possibly

suggested by person herself)

• Category: expertise

Attribute Data type
Reference

Dataset
Language profi-

ciency

<Language,

Level> []
Person herself

• Level

ENUM(

A1,

A2,

B1,

B2,

C1,

C2

)

person herself

Relation Entity type Reference dataset

Language Language Person herself

• 2. Resource

• Category: general

26

CHAPTER 3. KNOWLEDGE BASE PROVENANCE 3.3. REFERENCES

Attribute Data type Reference Dataset

Name NLString [] Entity importer herself

Class
Concept

<P>
Entity importer herself

description
SString

<P>
Entity importer herself

License String Entity importer herself

Note
NLString

<P>
Entity importer herself

Version String <P> Entity importer herself

Release String <P> Entity importer herself
Date of

publication
Date <P> Entity importer herself

Relation Entity type Reference Dataset

Owner

Person

and/or

Organization

Entity importer herself

• Category: resource identity

Attribute Data type Reference Dataset
Homepage

URL
String Entity importer herself

Resource

URL
String Entity importer herself

Attribute
Structured

type
Reference Dataset

KiDF URL KiDF URL Entity importer herself

• Structured types

KiDF URL

Category: recourse identity

27

3.3. REFERENCES CHAPTER 3. KNOWLEDGE BASE PROVENANCE

Atbritute Data type Reference dataset

Name NLString [] Entity importer herself

Description SString Entity importer herself

Note NLString Entity importer herself

URL String Entity importer herself

28

CHAPTER 3. KNOWLEDGE BASE PROVENANCE 3.4. PROVENANCE

3.4 Provenance

After defining the references, we present the definition of the provenance

in the figure below.

Listing 3.2: Provenance BNF

Provenance : := Provenance ID

, {KB ID , Note}∗
, Source

[, Va l idator1]

[, Va l idator2]

[, ProvenanceNote]

Provenance ID : := Long

KB ID : := Long

Note : := St r ing

ProvenanceNote : := St r ing

Source : := Reference

Val idator1 : := User

Val idator2 : := User

Where:

• Provenance: is a representation of the source, the first validator and

the second validator that participated in the creation of (zero or more)

knowledge base elements.

• Provenance ID: is a unique identifier for the KB Provenance which is

generated and managed by the provenance framework.

• KB ID: is the unique identifier of the knowledge base element to which

the provenance is related. It is generated and managed internally by

the knowledge base.

29

3.4. PROVENANCE CHAPTER 3. KNOWLEDGE BASE PROVENANCE

• Source: is a reference to an external source as defined in Listing 3.1.

It can be a resource or a user. See Table 3.2 for the content of this

field in each import scenario.

• Validator1: is a reference to an external user defined in Listing 3.1.

The user is either the importer who imported from the source or the

language validator who validated an element from the source. See

Table 3.2 for the content of this field in each import scenario.

• Validator2: is a reference to an external user who performed the final

validation on the imported element as defined in Listing 3.1. See Table

3.2 for the content of this field in each import scenario.

• Note: is a string that is used to record user notes on the knowledge

base element.

• ProvenanceNote: is a string that is used to record user notes on the

provenance. This note is written only by validator2.

This provenance model implements a provenance graph (see Figure 3.3)

between the knowledge base elements and their external sources. All ob-

jects of the provenance graph in this figure are presented before except

ProvenanceElement. This object is introduced to allow the provenance

graph to be implemented as a separate database without changing the

knowledge base.

30

CHAPTER 3. KNOWLEDGE BASE PROVENANCE 3.4. PROVENANCE

Figure 3.3: Provenance graph for the knowledge base

3.4.1 Knowledge import scenarios

Provenance is used to trace the KB elements at their creation time. The

KB elements are created in the universal knowledge core (UKC) through

import scenarios, such as importing from an external dataset or developing

a translation of a vocabulary by an expert user. In addition to the UKC,

there are three other types of knowledge cores which are involved in the

import scenarios. These are the Peer Knowledge Core (PKC), Language

Knowledge Core (LKC) and Domain Knowledge Core (DKC).

The PKC is a knowledge core which runs on a peer to provide services

that support an application. The LKC is a special PKC used to develop

languages; and the DKC is a special PKC used to develop domains. Each

LKC has a name, a source language and a target language. In all import

scenarios, elements are not created directly in the UKC. They are first

imported in an intermediate knowledge base (PKC, LKC or DKC) then

promoted to the UKC. The import scenarios are shown in Figure 3.4.

The import operation is different from other operations that transfer KB

elements between knowledge cores. In the import operation, the elements

are created from an external source (a user or a resource), while in transfer

operations between knowledge cores the elements are copied from a PKC,

31

3.4. PROVENANCE CHAPTER 3. KNOWLEDGE BASE PROVENANCE

Figure 3.4: UKC importing scenarios

32

CHAPTER 3. KNOWLEDGE BASE PROVENANCE 3.5. WEB API

LKC, DKC or UKC. No change is required in provenance when copying an

element within the system between the knowledge cores; except that after

copying an element into the UKC from an intermediate knowledge base

(such as a LKC), the name of the intermediate knowledge base should be

added to the provenance.

Provenance is specified only in the first time creation from an exter-

nal source. This operation is called Importing operation. Provenance is

not required when elements are copied from PKC, LKC or DKC into the

UKC. This operation is called Promotion operation and it just copies the

provenance of the element and adds the intermediate knowledge base when

necessary.

Table 3.2 shows how the fields of the provenance are filled in each import

scenario.

Import Scenario Required Provenance

Source Intermediate KB Source Validator1 Validator2

Resource

LKC RESOURCE [<NAME>](L1 | L2) IMPORTER [<NAME>](L1 | L2) MANAGER

PKC RESOURCE PKC IMPORTER PKC KNOWLEDGE MANAGER

DKC RESOURCE DKC <DOMAIN> IMPORTER DKC <DOMAIN> MANAGER

User

LKC [<NAME>](L1-L2 | L2-L1) DEVELOPER [<NAME>](L1 | L2) VALIDATOR [<NAME>](L1 | L2) MANAGER

PKC PKC DEVELOPER PKC VALIDATOR PKC KNOWLEDGE MANAGER

DKC DKC <DOMAIN> DEVELOPER DKC <DOMAIN> VALIDATOR DKC <DOMAIN> MANAGER

Table 3.2: Required provenance for each import scenario

3.5 Web API

We implemented a web API for provenance to make it more usable for

web scenarios. This was necessary because the main applications for our

provenance are web-based. The web API is divided into a model and a list

of services. We used JSON as the serialization format of the model and

we followed REST principles in designing the services. In this section, we

present the data model and the services of the Web API component for

knowledge base provenance.

33

3.5. WEB API CHAPTER 3. KNOWLEDGE BASE PROVENANCE

3.5.1 Data Model

The data model of the knowledge base provenance web API has three

classes as shown in 3.5. The classes are KBReference which represents

both the user and resource references; KBProvenance which represents the

provenance tuple with the source, validator1, validator2 and the prove-

nance note; and finally KBElementProvenance which provides the link

between the provenance and the knowledge base element that is identified

with the element ID (and the part of speech in the case of word sense

ranks).

Figure 3.5: UML for Knowledge Base Provenance Web API Model

3.5.2 Services

A list of web services is developed for accessing the provenance Web data

model. The service list is shown in Table 3.3. The first column shows

the HTTP method, the second column shows the end point and the third

column shows the description of this end point. The services provide read

and write operations for the model objects. The read operations include

searching such as finding a provenance by one or more of its fields (source,

validator1 or validator2). The services are designed following the REST

principles to ensure scalability and usability in modern Web applications.

34

CHAPTER 3. KNOWLEDGE BASE PROVENANCE 3.6. USER INTERFACE

HTTP Method End point Description

GET /kb/references/{id} reads a reference by its ID

POST /kb/references/ creates a reference

PUT /kb/references/{id} updates a reference by its ID

DELETE /kb/references/{id} deletes a reference by its ID

GET /kb/provenance/{id} reads a provenance by its ID

GET
/kb/provenance/source={1}
&validator1={2}&validator2={3}

Reads provenance(s) by source,

validator1 and validator2
POST /kb/provenance/ creates a provenance

PUT /kb/provenance/{id} updates a provenance by its ID

DELETE /kb/provenance/{id} deletes a provenance by its ID

GET
/kb/elementprovenance/{id}
/elementType={1}&elementID={2}

reads an element provenance by its ID,

or by the element type and the element ID

POST /kb/elementprovenance/ creates a element provenance

PUT /kb/elementprovenance/{id} updates a element provenance by its ID

DELETE /kb/elementprovenance/{id} deletes a element provenance by its ID

Table 3.3: List of web services for knowledge base provenance

3.6 User Interface

The knowledge base provenance can be visualized within the knowledge

base element user interface. As shown in Figure 3.6, this basic user interface

shows the source, validator1, validator2 and a note for an element. More

complex user interface can be developed to query the provenance and the

elements which are related to it.

35

3.7. USE CASES CHAPTER 3. KNOWLEDGE BASE PROVENANCE

Figure 3.6: Basic visualization for knowledge base provenance

3.7 Use Cases

The knowledge base provenance was validated with few use cases from the

Universal Knowledge Core project. This section presents three use cases

which used the proposed provenance successfully to ensure high quality for

the knowledge elements. The three cases are for importing the English,

Chinese and Mongolian vocabularies. English is a basic language for the

background knowledge due to its global use. Chinese is the most spoken

language and it is one of the most used languages on the Web. Mongolian

is not widely used as English and Chinese, therefore it provides a different

and interesting use case.

3.7.1 Provenance for English Vocabulary

In addition to the six scenarios which were presented in Figure 3.4, there is

one extra scenario which is the importing of English WordNet for UKC 1.0.

36

CHAPTER 3. KNOWLEDGE BASE PROVENANCE 3.7. USE CASES

This scenario is presented in Figure 3.7. For this scenario, we added the

following user roles: UKC VALIDATOR and KNOWLEDGE IMPORTER

to the definition of reference in Figure 3.1.

Figure 3.7: importing English WordNet for UKC 1.0

Import Scenario Required Provenance

Source Intermediate KB Source Validator1 Validator2

Resource PKC Resource (WordNet) UKC1.0 IMPORTER UKC1.0 VADILATOR

Table 3.4: Required provenance for importing UKC 1.0

37

3.7. USE CASES CHAPTER 3. KNOWLEDGE BASE PROVENANCE

As shown in Figure 3.7, the English vocabulary was imported on a

special importing peer which we called here WordNet Importing Peer. The

source of this import is the WordNet, the validator1 is the importer in the

role of UKC1.0 IMPORTER and the validator2 is the UKC validator in

the role of UKC1.0 VALIDATOR. This information is presented again in

Table 3.4.

This use case is important because English is a basic language for the

universal knowledge core due to its universal use. It is used as a source

language in many translating scenarios. English WordNet is also the first

and the most developed linguistic resource for the semantic web. Similar

linguistic resources for other languages (i.e. other WordNets) follow the

same data structures and sometimes they reuse the same identifiers for

common elements. The list of elements that are imported from the English

WordNet are given in Table 3.5.

Element Count

Word 133973

Synset 109941

Sense 191522

Sense Relation 47691

Synset Relation 12813

Word Form 4718

Synset Example 48459

Table 3.5: KB Elements imported from English WordNet

3.7.2 Provenance for Chinese Vocabulary

The development of Chinese language in the Language Knowledge Core

(LKC) is done firstly by translating the space domain from English to Chi-

nese in order to study the mapping between English and Chinese synsets

and then by integrating a Chinese WordNet.

38

CHAPTER 3. KNOWLEDGE BASE PROVENANCE 3.7. USE CASES

Space domain is translated from English to Chinese. The space domain[69]

is a set of knowledge base elements (concepts, words, synsets and their rela-

tions) which are used to describe locations in space. Examples for concepts

that can be found in space domain are: City and Mountain.

The Chinese WordNet (simplified version) is a linguistic resource for

Chinese language that was developed by Southeast University of China.

It contains translations for the Chinese words of synsets, but, it is out

of Chinese glosses. However, it aligned with English glosses which came

from English WordNet. I.e. it reuses the same identifiers from the original

English WordNet for synsets, therefore it was straightforward to link the

imported synsets from Chinese WordNet with the corresponding concepts

in the universal knowledge core.

The result of the Chinese language development is shown in Table 3.6.

The table shows the KB element in the first column, the number of im-

ported elements in the second column and the source of the element in

the third column. These elements are now ready to be used in Chinese

semantic web applications. With each imported knowledge element, the

provenance is added to record who is the importer, the translator and the

validator.

Element Count Source

Word 89780 Chinese Wordnet

Synset 96636 Chinese Wordnet

Sense 119959 Chinese Wordnet

Lexical Gap 21 Translator

Word Sense Rank 119959 -

Synset Word Rank 119959 Chinese Wordnet

Table 3.6: KB Elements in Chinese importing experiment

39

3.7. USE CASES CHAPTER 3. KNOWLEDGE BASE PROVENANCE

3.7.3 Provenance for Mongolian Vocabulary

The last use case that we present here is an experiment of ontology lo-

calization [47]. The experiment was done on about 1000 English concepts

which were originally developed in English and later they are translated

into Mongolian. The concepts were taken from space ontology. This use

case is interesting because there was no available resources to use as a back-

ground knowledge for the Mongolian language. Starting from the concepts

which are developed for English language, it was possible to build a Mon-

golian resource for the space domain. A manual approach was used in this

Mongolian ontology localization for translation and validation. The ap-

proach has two phases which required provenance: the concept translation

and the concept addition.

In concept translation phase, the language translator may develop a

word, a synset, a lexical gap or a concept. For each element created, a new

provenance will be generated with the source referring to the translator. If

a language validator confirms an already developed element in this phase,

then the provenance of that element is updated by linking validator1 to the

instance of the UserReference which corresponds to the user name with the

role of the language validator that is LKC Validator. As soon as the UKC

validator confirms a validated element, the provenance of that element is

updated with the instantiation of the attribute validator2 referring to the

name and role of the validator (i.e., UKC Validator) of the given context.

This marks the element as completely validated and accepted.

In the concept addition phase, the language translator may create a new

concept and its related lexical components such as synset, word, etc. in

the target language and optionally in the source language. In this case

the provenance source for each of the objects will be instantiated with

the translator for her LKC developer role. Again in this phase if the

40

CHAPTER 3. KNOWLEDGE BASE PROVENANCE 3.8. CONCLUSIONS

LKC English validator evaluates the source language synset provided by

the language translator, the provenance validator1 is instantiated with her

LKC Validator role. If it happens that the LKC English validator trans-

lates back the new concept into the source language, in this case the source

is filled in with her role as LKC Developer and the validator1 is left unin-

stantiated. Similarly to the concept translation, a UKC validator checks

the correctness of the concept addition and she becomes validator2 with

the corresponding role.

3.8 Conclusions

In this chapter, we presented the problem of quality certification for a back

ground knowledge base in semantic web scenarios. The knowledge base el-

ements are imported from external sources which can be users or resources.

Two expert validators check the elements before they are finally accepted.

We developed a model for tracing the provenance of this importing and

validation process. The model has been used successfully in few projects.

Our experiments show that tracing the creation provenance guarantees

a good level of quality for the whole knowledge base. This in turn increases

the usability of the semantic services built on top of the knowledge base.

The provenance solution that we presented in this chapter can be used

as a tool for enforcing and tracing quality for any similar back ground

knowledge.

Some parts of this chapter have been published in [64].

41

3.8. CONCLUSIONS CHAPTER 3. KNOWLEDGE BASE PROVENANCE

42

Chapter 4

Entity Base

4.1 Introduction to the entity base

The aggregation approach that we follow is entity-centric. It is rooted in

the DERA methodology[68] which captures knowledge with four facets:

Domains, Entities, Relations and Attributes. The canonical and universal

entity base is Entitypedia1. The unique features of the entity base are (1)

the separation between the natural language and formal language; (2) the

separation between the instances, the types and the concepts in the formal

language part.

1http://entitypedia.org/

43

4.1. INTRODUCTION TO THE ENTITY BASE CHAPTER 4. ENTITY BASE

Figure 4.1: Logical separation of elements in our entity-centric model

Figure 4.1 shows a high-level view of the entity-centric model. It divides

the elements in two parts: natural language part and formal language part.

The formal language part is also divided into two parts: the A-Box and the

T-Box. The A-Box part is the entities part and the T-Box part is divided

between the Concepts and Entity Types. The result of this division is four

parts:

• The natural language part is the language vocabulary which is used

to describe natural language words and their meaning (sense). A

natural language word may refer to more than one meaning (e.g. the

shown English word Apple can refer to the fruit or to the computer

company), one meaning can be denoted by different words or one

word can have exactly one meaning. The vocabulary part stores more

elements about the natural language in addition to words and senses

44

CHAPTER 4. ENTITY BASE 4.1. INTRODUCTION TO THE ENTITY BASE

as shown in Chapter 3.

• The concept part is a graph of concepts where the links between the

concepts are concept relations. Concepts are natural language inde-

pendent.

• The entity types part is a type hierarchy with a list of attribute def-

initions for each type. This part acts like the schema for the entities

part.

• The entities part is the instances part where entity types and attribute

definitions can be instantiated.

The four parts are connected together with links which are not shown

in Figure 4.1 to avoid confusion.

The entities part (i.e. the A-Box) is stored in the entity base while the

other three parts (i.e. the T-Box and the natural language vocabulary) are

stored in the knowledge base. This logical separation allows the system to

make the hidden semantic information explicit which enables many services

such as entity search with semantics. It also has other benefits such as the

multi-language feature.

We refer to real life objects that are of enough importance to be given a

name as entities. Examples for entities are Italy and Barack Obama. There

are different types of entities, such as Locations and Persons. Italy is an

entity that has a type of Location and Barack Obama is an entity that has

a type of Person. The type of entity gives the list of definitions for the

attributes that can be assigned to an entity of this type. Location entities

may have the attribute Area which holds the value of the total area of the

location, and Person entities may have the attribute Birthdate which holds

the date of the birth for this person.

The entity-centric approach is not limited to physical entities like peo-

ple and locations, but it is used also to model nonphysical ones such as

45

4.1. INTRODUCTION TO THE ENTITY BASE CHAPTER 4. ENTITY BASE

intellectual and digital objects. Books and movies are two examples of

intellectual entities; Computer files and digital pictures are two examples

of digital entities.

The type of entity gives the list of attribute definitions that can be

assigned to an entity of this type. Location entities may have the attribute

Area which holds the value of the total area of the location, and Person

entities may have the attribute Birthdate which holds the date of the birth

for this person. The values of the attribute definitions for a specific entity

are called attribute values. An attribute definition can be single-valued

(e.g. the birthdate attribute of a person), or it can be multi-valued (e.g.

the email attribute of a person).

An entity is defined as:

Listing 4.1: Entity BNF

Entity : := < {EntityName}+,

{AttributeName ,

Attr ibuteValue }∗ >

Where:

• EntityName is the name of the entity. An entity can have one or more

names.

• AttributeName is the name of an attribute which is associated with

the entity type of this entity.

• AttributeValue is a value of an attribute which is defined by the At-

tributeName.

For example, an EntityName can be Barak Obama; and an Attribute-

Value can be August 4, 1961 which is the value of the birthdate attribute

of this person.

46

CHAPTER 4. ENTITY BASE 4.1. INTRODUCTION TO THE ENTITY BASE

An entity base supports the following operations on entities and their

attributes:

• CreateEntity(Entity e): creates a new entity in the entity base.

• CreateAttributeValue(AttribueDefinition ad, AttribueValue av): cre-

ates a new attribute value for an attribute definition in the entity

base.

• UpdateAttributeValue(AttribueDefinition ad, AttribueValue av): up-

dates an existing attribute value in the entity base.

• GetEntityIdentifier(Entity e): returns the unique identifier of an en-

tity in the entity base or null if the entity does not exist.

• ReadAttributeValue(AttribueDefinition ad): reads the attribute value

for the attribute definition ad.

• IsMultiValuedAttribue(AttribueDefinition ad): returns true if the given

attribute definition is a multi-valued attribute.

4.1.1 The semantic interface

We present here a summary for the semantic services which are exposed

by the knowledge base and entity base. The semantic services are accessed

through programming interfaces. These interfaces allow the service to have

different implementations.

The semantic services are:

1. Semantic Matching service is used to perform schema matching.

2. Entity Type service is used to perform read entity types or to add

attribute definitions and unique indexes to them.

47

4.2. PROBLEM CHAPTER 4. ENTITY BASE

3. Knowledge service is used to access vocabularies to search for natural

language words.

4. NLP service is used to provide natural language processing services

such as word sense disambiguation, entity disambiguation and named

entity recognition.

5. Entity service is used for CRUD on entities and attributes. Operations

that can be performed with the entity service were defined in the

previous section.

6. Identity service is used for creating unique identifiers for new entities.

7. Search service is used to find entities that match a given query.

4.2 Problem

Creating a new catalog for open data requires preparing data for public use

if the data was not prepared from the design and the implementation for

this public scenario. While it could be easy for human users to understand

or guess the semantics behind the data, automatic reasoning by machines

will be hindered by two problems known as lack of explicit semantics and

semantic heterogeneity.

I. Lack of explicit semantics is the absence of the semantics that the

dataset developer had in his mind while creating the dataset. This im-

plicit semantics gives the meaning of the vocabularies and values used in

the dataset. When the dataset is published in a catalog without this se-

mantics made explicit with the dataset, automatic reasoning by machines

will be hard. Better services can be enabled by resolving the lack of explicit

semantics[83].

For instance, let us assume a government dataset that contains data

about the city of Trento in Italy. There is an assumption made by the data

48

CHAPTER 4. ENTITY BASE 4.3. IMPORT PIPELINE

author that Trento is the city in North Italy. It is possible that another

location in the world may have the same name, for instance Trento in the

province of Agusan del Sur, Philippines. It is clear which city is referred

to in the data only when the semantics are made explicit by assigning a

unique identifier to the Trento city which is in North Italy and link the

city with that identifier.

II. Semantic heterogeneity refers to differences or similarities in the

meaning of local data[72]. Other kinds of heterogeneity are structural

(schema), syntactic (format) heterogeneity [66]. Heterogeneity is caused by

autonomously designed and developed datasets. This heterogeneity makes

it harder to link data from different sources together and complicates the

development of services.

For instance, let us assume again a government dataset that contains

data about the city of Trento and another dataset from a public knowledge

base like Wikipedia about Trento. Each dataset represents the same city

of Trento with different schema, with different format and with different

meaning than the other dataset. The government dataset may have the

attribute inhabitants that holds the number of people living in the city in

thousands, while the Wikipedia dataset may have the attribute Population

that holds the number of people living in the city not in the format of

thousands.

4.3 Import Pipeline

The entity base stores entities from external datasets by importing them.

This section presents the import pipeline which semantifies the datasets

and extracts entities from them. The pipeline is composed of steps that

are divided into preliminary and tool steps. The preliminary steps are

executed before processing the dataset. The tool steps are steps which are

49

4.3. IMPORT PIPELINE CHAPTER 4. ENTITY BASE

executed using a graphical user interface that helps the user to semantify

the given datasets.

50

CHAPTER 4. ENTITY BASE 4.3. IMPORT PIPELINE

4.3.1 Catalog Importing Workflow

Figure 4.2: Workflow of dataset resources selection and editing

51

4.3. IMPORT PIPELINE CHAPTER 4. ENTITY BASE

The pipeline has a high level workflow which uses preliminary steps and

tool steps. This high level catalog workflow is used to select the resources

and decide if the semantification will run in automatic or in manual mode.

The high level semantification workflow is shown in Figure 4.2. The manual

preprocess block corresponds to the preliminary steps and the perform steps

block corresponds to the pipeline steps. In this section we present the high

level semantification workflow. Prepocessing steps are introduces in next

section and pipeline steps are given in Section 4.3.3. The pipeline can run

in manual or automatic modes. The modalities of running the pipeline are

discussed in Section 4.3.4.

The catalog importing workflow takes a catalog as input and checks for

each resource in the catalog if the semantification process has been done

before or if it is the first time to semantify the resource.

• If this is the first time to semantify the resource, then we execute both

the preliminary and the pipeline steps manually. After the execution

is done, a semantification process file is created. This file stores infor-

mation about the decisions made while performing the semantification

process.

• If this is not the first time to semantify the resource, then we use

the semantification process file from a previous run to automate the

processing.

4.3.2 The preliminary steps

Before using the tool steps of the semantifying pipeline, some data and

services should be prepared to provide the required functions to the tool

steps of the semantifying pipeline. This section lists the steps that install

and prepare the data and services. We call these steps the preliminary

steps because they are executed before processing the data with the tool

52

CHAPTER 4. ENTITY BASE 4.3. IMPORT PIPELINE

steps. The preliminary steps are done by experts who understand both the

entity-centric model and the domain of the data. These steps are:

1. Installing the Peer Knowledge Core (PKC). The PKC is a software

platform that has two parts: The Knowledge Base (KB) for storing

knowledge elements such as words and concepts, and the Entity Base

(EB) for storing entity elements such as entity types and attribute

values.

2. Import natural language and concepts from Universal Knowledge Core

(UKC). The UKC is a universal data set that can be imported into

a Peer to provide knowledge elements. Natural language elements in

the UKC are disambiguated to provide better semantic services.

3. Import the Entity Types (etypes) from the UKC. Initial entity types

are imported from a global Entity Base such as Entitypedia into the

Peer. This allows the pipeline user to reuse the existing entity types

and their defined attributes.

4. Insert new knowledge elements. The natural language which is im-

ported in step 2 from UKC may not contain all the words or concepts

needed to semantify the datasets of a catalog. Experts will be able

to add new elements to the local Peer knowledge base after analyzing

the domain of the catalog.

5. Redefine the etypes. The imported etypes from UKC in step 3 can

be extended or changed according to the specific data which will be

processed later by the tool steps. Experts will analyze the data and

modify the etypes as needed.

6. Redefine the identifying sets. New identifying sets can be created

for new or existing etypes. And existing identifying sets can be also

modified.

53

4.3. IMPORT PIPELINE CHAPTER 4. ENTITY BASE

7. Enrich the UKC. The new and updated knowledge elements, etypes

and identifying sets in steps 4, 5 and 6 can be promoted to the KB of

the universal knowledge core (UKC). The UKC managers will check

the elements and approve them before they are inserted into the UKC.

These steps are described in terms of our specific implementation, but

they can be generalized to other similar systems. For instance, natural

language words can be imported from WordNET2 and entity types can

be imported from Freebase3 .

4.3.3 The tool steps

The tools steps are composed of eight steps. The tools steps start by a select

of a dataset and then processes it by attribute alignment and attribute value

validation. Then the data passes through two core steps: attribute value

disambiguation and entity alignment. The attribute value disambiguation

step connects the data with unique identifiers for disambiguation and the

entity alignment step resolves the conflicts between matched entities with

different attribute values. The output is exported and published as a clean

and semantically enriched version of the original dataset. This output can

be visualized to the pipeline users if needed. The tools steps of the pipeline

are shown in Figure 4.3.

2http://wordnet.princeton.edu
3https://www.freebase.com/

54

CHAPTER 4. ENTITY BASE 4.3. IMPORT PIPELINE

Figure 4.3: Overview of the import pipeline steps

Entities are at the center of the pipeline processing. They are stored in

one or more entity bases. These entity bases are not part of the pipeline and

the tool steps of the pipeline communicates with them through a program-

ming interface. The programming interface calls the entity base services

as presented in Section 4.1.1.

The eight tool steps are executed in sequence. Each step takes an input

and produces an output. The input to the tool steps is an initial URL for

a catalog that uses a DCAT vocabulary . The DCAT vocabulary allows

us to browse the available datasets and access the actual resource of the

55

4.3. IMPORT PIPELINE CHAPTER 4. ENTITY BASE

dataset. The resource can be for example a file to download or a SPARQL

endpoint. The output of the tool steps is a semantically enriched version

of the original dataset. The short description of the tool steps is given in

Table 4.1.

N Step Name Description

1 Selection Starting from an initial URL for a catalog that uses

the DCAT vocabulary, we select a dataset from a list

of datasets retrieved from the catalog and read it. We

assume that the data is representable in a tabular form.

2 Attribute

Alignment

We select a target type of entity, and then given the

list of columns of the input dataset, we match them

automatically with the list of attributes in the target

type of entity. This will give the correspondence between

the input columns and the output attributes.

The user will then validate the schema matching result

and add manually the possible missing correspondences

and attributes.

3 Attribute

Value Valida-

tion

This step applies format and structure validation and

possible automatic transformations needed to have the

input data in the expected format according to the se-

lected entity type for the next steps of the pipeline.

The correspondence between columns types and at-

tributes of the entity type is used to automatically val-

idate the column values given that the attribute defini-

tion includes the expected format, data type, and other

possible conditions such as the allowed values (for ex-

ample in the case of the gender attribute of person).

56

CHAPTER 4. ENTITY BASE 4.3. IMPORT PIPELINE

4 Attribute

Value Disam-

biguation

This includes two operations:

1. Entity Disambiguation: used for finding the target

entity in relational attributes. For example, if an

entity Trento has a relational attribute part-of and

the target of this relation is another entity Italy,

then while we enrich the Trento entity we need to

find the entity Italy and set it as the target entity

of the relation.

2. Semantic Extraction of the free text: running the

NLP pipeline on the free text attributes and ex-

tracting the concepts and entities from it. For ex-

ample, if the gender attribute of a person entity is

Male, then the extraction will provide the concept

Male.

57

4.3. IMPORT PIPELINE CHAPTER 4. ENTITY BASE

5 Entity Align-

ment

This step has three sub-steps:

1. Identity Disambiguation : Assuming that each row

in the dataset represents an entity of the selected

entity type in step 2, runs identity management al-

gorithms to return a list of potential entities that

match the input entity in the row and the knowl-

edge base with the following potential types of re-

sults:

(a) There is no match.

(b) There is a match with exactly one entity.

(c) There are several matching entities.

58

CHAPTER 4. ENTITY BASE 4.3. IMPORT PIPELINE

2. User validation or search: The user can accept or

reject the output of the identity disambiguation

step. In case of rejection the user can perform a

manual search. The output of this step is one of

the following:

(a) An existing entity is chosen to be merged with

the row.

(b) A new ID is created for the row as a new entity

(c) The user can skip the row and ignore it.

3. Create new ID or Merge :

In case of creating a new identifier, we use the Identity

services interface to get the new ID.

In case of entity merging, we need to resolve possible

conflict that can happen if the same attribute exists in

two merged entities but with different values:

1. If the attribute value is single value at a time, then

we may decide to override one of the values or, in

presence of different time validities, keep both of

them but with different provenance information.

2. If the attribute value accepts a list of values, then

we need to check all the values in the two lists and

merge the values.

Tasks that cannot be accomplished automatically in this

step are resolved by the pipeline user or exported as

crowdsourcing activities.
59

4.3. IMPORT PIPELINE CHAPTER 4. ENTITY BASE

6 Exporting The resulting semantified entities are stored in the

knowledge base and optionally exported in some ex-

changeable format such as RDF.

7 Publishing The final clean and semantically enriched entities are

published back in the selected open data repository.

8 Visualization The entities are visualized using a graphical user inter-

face.

Table 4.1: Short description of the semantifying

pipeline tool steps

There are five steps that need services from entity bases:

1. Attribute Alignment step needs a semantic matching interface, an

entity type service interface.

2. Attribute Value Disambiguation step needs a knowledge interface, an

NLP interface and search interface.

3. Entity Alignment step needs an identity service interface and a search

interface.

4. Exporting step needs an entity service interface.

5. Visualization step needs a search interface.

The rest of this section gives more details for each step in the tool steps.

Selection

This step (see Figure 4.4) is the starting point of the tool steps. Its input

is a catalog URL given as a string. A catalog is a collection of datasets

and each dataset may contain one or more resources. A resource can be

60

CHAPTER 4. ENTITY BASE 4.3. IMPORT PIPELINE

any URL that gives access to data such as a spread sheet download link or

a SPARQL end point. Selection allows browsing the catalog and choosing

a dataset and a resource from it to be used as input to the pipeline. The

output of this step is the selected resource, which we assume for the time

being, to be in tabular format. Each row in the table can be considered to

represent, at least partially, an entity.

Figure 4.4: Step 1: Selection

The selected dataset resource is defined as a resource name, a list of

column names and column values. All of these elements are strings. The

BNF of the catalog, dataset and dataset resource are shown in Listing 4.2.

Listing 4.2: BNF for an open data catalog

Catalog : := < {Dataset }∗ >

Dataset : := < { DatasetResource }∗ >

DatasetResource : := < ResourceName ,

{ColumnName

{ , ColumnValue}∗ }+ >

ResourceName : := St r ing

ColumnName : := St r ing

ColumnValue : := St r ing

Example: given the Catalog URL http://dati.trentino.it as input, the

user navigates the Web interface of the catalog or uses the Web API to get

61

4.3. IMPORT PIPELINE CHAPTER 4. ENTITY BASE

the following dataset resource: http://www.meteotrentino.it/ws/service.asmx/

listaCampiNeve. The Resource Name is Campi Neve which is an Italian

name for Snow fields. For the sake of having a complete running example,

we assume that the column names and column values of this file are as

given in Table 4.2. In this table, we have four columns and two rows. The

column names are: name, description, Position and Part-Of. The first

row shows a snow field with a name Trento. Its description is a city in

Trentino, its position is (4604, -11.07E) and it is part of Italy. The second

row shows another snow field with a name Bolzano. Its description is a city

in Alto Adige, its position is (4630, -11.21E) and it is also part of Italy.

Columns

Name Description Position Part-Of

Rows
Trento A city in Trentino (4604, -11.07E) Italy

Bolzano A city in Alto Adige (4630, -11.21E) Italy

Table 4.2: Columns and rows for an example dataset resource

Attribute Alignment

The attribute alignment step (see Figure 4.5) takes the selected dataset

resource as input. It allows the user to choose the type of entity from a

list of types. Reading the types of entities and their attributes from the

knowledge base is done through a call to the knowledge base interface or

it could be a call to another separate interface.

62

CHAPTER 4. ENTITY BASE 4.3. IMPORT PIPELINE

Figure 4.5: Step 2: Attribute Alignment

An entity type is automatically selected by running the schema matching

operation between the selected dataset resource schema and each entity

type that we read from the entity type service. The entity type which is

semantically matched with the input resource schema with higher score is

chosen. The user may also choose manually the type of entity from existing

entity types.

The user can modify the entity type if needed. Manual modifications

which are allowed in this step are adding new attribute definition and

managing the list of attributes which uniquely identify the entity. These

attributes which uniquely identifies the entity are called the unique indexes

of the entity type. After choosing and modifying the type of entity, the

pipeline uses the schema matching interface to match the columns of the in-

put dataset with attributes of the chosen type of entity. The output of this

step is the correspondence between the input columns and the attributes

of the type of the entity.

The selected dataset resource schema is defined as a resource name and

a list of column names. The BNF of the resource schema is shown in

Listing 4.3.

Listing 4.3: BNF for Resource Schema

ResourceSchema : := <ResourceName , {ColumnName}+ >

ResourceName : := St r ing

63

4.3. IMPORT PIPELINE CHAPTER 4. ENTITY BASE

ColumnName : := St r ing

Where:

• ResourceName is the name of the dataset resource. It may correspond

to the Name metadata of the dataset resource, or can be taken from

the resource file name if the Name metadata is empty.

• ColumnName is the name of a column in the dataset resource. After

reading the resource in tabular format, this usually corresponds to the

table header.

The correspondence is defined as a list of correspondence items. Where

a correspondence items is a source, relation and target. The Source is one

column name; the relation is a semantic relation that can be: equivalence,

more general, less general or disjointness; and the target is an attribute

definition from an entity type chosen by the user. More details on semantic

matching are given in [60]. The BNF of the correspondence is shown in

Listing 4.4.

Listing 4.4: BNF for Correspondence

Correspondence : := < {<Source , Relat ion , Target>}∗ >

Source : := ColumnName

Re lat ion : := <EQUIVALENCE |
MORE GENERAL |
LESS GENERAL |
DISJOINTNESS>

Target : := A t t r i b u t e D e f i n i t i o n

A t t r i b u t e D e f i n i t i o n : := <ID ,

AttributeName ,

NameSet ,

AttributeType ,

64

CHAPTER 4. ENTITY BASE 4.3. IMPORT PIPELINE

{MetaAttribute}+ >

Where:

• Source is a column name as defined in Listing 4.3.

• Relation is one of the following values: equivalence, more general, less

general or disjointness.

• Target is an attribute definition from an entity type.

• ID is an internally managed unique identifier for attribute definition.

• AttributeName is a natural language independent concept that corre-

sponds to the attribute name.

• NameSet is a set of names for the attribute definition. The first one

is the default name.

• AttributeType is one of the following values: FreeText, Reference,

Descriptive, QualitativeQuantitative or Relational.

• MetaAttribute is an attribute of the attribute definition.

The result of schema matching can be:

(a) There is no correspondence between the column and any attribute. In

this case, the user can create a new attribute definition for the column

or he can ignore it. An ignored column can be split into two columns

or merged with another column in the step of data validation. (see

attribute validation step)

(b) There is one correspondence between the column and an attribute. In

this case, the correspondence information is stored in the tool memory

so that it can be used in next steps.

65

4.3. IMPORT PIPELINE CHAPTER 4. ENTITY BASE

(c) There is more than one correspondence between the column and more

than one attribute. In this case, the user must choose one correspon-

dence to be used in next steps of the pipeline and other correspondences

will be ignored.

Example: The selected dataset resource has Resource Name: Snow Field

and the following Column Names: Name, Description, Position, Part

of. The entity type service returns the following entity type with name:

Location and attributes Name, Description, Part of ,Latitude, Longitude.

The Semantic Matching interface is called to match the selected dataset

and the entity type. The result of semantic matching4 is the correspondence

which is shown in Table 4.3. The relation more specific means that the

source concept is more specific than the target concept. I.e. Short Name

is more specific than Name.

Source Relation Target

Snow Field more specific Location

Name equivalent Name

Description equivalent Description

Position - -

Part of equivalent Part of

- - Longitude

- - Latitude

Table 4.3: Example correspondence given by Semantic Matching

The source column Position is not matched with any attribute. The

pipeline user can add it by searching through the Knowledge interface for

the correct concept of the word Position. By investigating the values of the

Position column, the pipeline user notices that it should be split into the

two entity type attributes: Longitude and Latitude. So instead of creating

4We assume structural preserving schema matching (SPSM).

66

CHAPTER 4. ENTITY BASE 4.3. IMPORT PIPELINE

a new attribute for the column Position, the user just leave it for the next

step.

The correspondence is used to link the source column names with the

corresponding target attribute definitions. This is useful in next steps:

• In attribute value validation step, we use this information to know the

data type and the range for the values of the column. (see attribute

validation step)

• In attribute value disambiguation step, we enrich the columns which

correspond to attributes that takes values of natural language strings

using an NLP pipeline and we enrich columns which correspond to

attributes that takes relational values using entity disambiguation.

(see attribute value disambiguation step)

• In the entity alignment step, the correspondence is used while creating

an entity that will be passed to the identity service. It is also used

while merging two entities. (see entity alignment step)

Attribute Value Validation

The attribute value validation step (see Figure 4.6) applies structural and

format transformations on the input data to make it compatible with the

definition of the attributes given by the type of entity and to automatically

discover errors when possible. The data validation step starts by comparing

the value of the source column value with the expected data structure and

format given by the definition of the attribute in the entity type.

67

4.3. IMPORT PIPELINE CHAPTER 4. ENTITY BASE

Figure 4.6: Step 3: Attribute Value Validation

The first validation is the Structure Validation: If there is a structure

mismatch between the source column value and the expected entity type

attribute value, then one of the following transformations could be applied:

1. Splitting one column into two or more columns corresponding to two

or more attributes.

2. Merging two or more columns into one column corresponding to one

attribute.

Example: Let us consider a structure validation example that is shown

in Table 4.4. In the upper part (i), there is an input row which has a Name,

Description, Position and Part-Of columns. All the columns are matched

with their corresponding attribute definitions in the schema matching step

except the Position column. The pipeline user notices that the Position

column has the string value (4604, -11.07E) which represents the latitude

and longitude of the location of the entity. The target entity type Location

has two separate attributes Latitude and Longitude. The structure valida-

tion requires the splitting of the Location column values into the Latitude

and Longitude attributes. The result of the splitting transformation is

shown in the lower part (ii) of Table 4.4. Column names in this table with

brackets around them are those which are matched with an entity type

attribute.

68

CHAPTER 4. ENTITY BASE 4.3. IMPORT PIPELINE

Attributes

[Name] [Description] Position [Part-Of]

Input Row (Entity) Trento A city in North Italy (4604, -11.07E) Italy

Attributes

[Name] [Description] [Latitude] [Longitude] [Part-Of]

Validated RowValidated Row (Entity) Trento A city in North Italy 4604 -11.07E Italy

Table 4.4: An example for structure validation

The second validation is Format Validation with checks that are per-

formed automatically if there is a one-to-one correspondence between the

column and an attribute of a known type of entity:

1. Data type check: checking that the data type of the column is the

same as the expected data type of the corresponding attribute in the

entity type. For example, it checks that a numerical attribute does

not contain string values.

2. Range check: checking the correct range values for attributes. For

example, it checks that the postal code is in the acceptable range.

The range restrictions come from the attribute definitions of the entity

type as defined in [R4].

Example: Let us consider an input row shown in first row of Table 4.5.

It has a Name, Description, Longitude, Latitude and Part-Of columns.

The attributes Longitude and Latitude are defined to be of type Float.

There are range constrains as following: Latitude range is from 0 to 90

and Longitude range is from -180 to 180. The values of Latitude and

Longitude in the input row do not respect these constrains. The value of

Latitude is 4604 which is not in the range (0, 90) and the value of Longitude

is -11.07E has a letter E which is not accepted in the data type Float. The

pipeline user uses the pipeline tool to fix the values of the two columns.

The validated row is shown in the second row of Table 4.5, where value

4604 is corrected to 46.04 and the value -11.07E is corrected to 11.07.

69

4.3. IMPORT PIPELINE CHAPTER 4. ENTITY BASE

Attributes

[Name] [Description] [Latitude] [Longitude] [Part-Of]

Input Row (Entity) Trento A city in North Italy 4604 -11.07E Italy

Validated Row (Entity) Trento A city in North Italy 46.04 11.071 Italy

Table 4.5: An example for format validation

After the validation is done, the output of the step becomes the validated

version of the input dataset. Note that only those rows with valid formats

will be part of the output of the step. Rows with invalid data will be

filtered out.

Attribute Value Disambiguation

The Attribute Value Disambiguation step (see Figure 4.7) is a core step in

the pipeline that takes a validated dataset and enriches it. It is composed

of two sub steps: the entity disambiguation and the Natural Language

Processing (NLP).

Figure 4.7: Step 4: Attribute Value Disambiguation

70

CHAPTER 4. ENTITY BASE 4.3. IMPORT PIPELINE

1. Entity disambiguation takes as input the entity names and/or any

other attribute that can be used to compute the relational attribute

value. The entity names come from columns that were identified with

correspondences with relational attribute values of the selected types

of entities. The entity disambiguation sub step assigns to each of the

entity names the correct unique identifiers of the referred entity for

disambiguation.

2. NLP takes as input the values of natural text columns in the val-

idated dataset and extracts the concepts and entities mentioned in

that natural language text.

The semantic enrichment step uses NLP interface for the disambiguation

of concepts and entities. The tools will also call the knowledge service

interface as needed.

Examples:

1. Let us consider the input row which is shown in the first row of Table

4.6. It has the attributes Name, Description, Latitude, Longitude and

Part-Of. The Part-Of attribute is a relational attribute that gives the

geographic entity which contains the Trento city. The value of this

attribute is the string value Italy. After the entity disambiguation

step, the identifier of the Italy entity will replace the string value

Italy. We refer to the identifier of the Italy entity as [Italy]. The

enriched row is shown in the second row of Table 4.6.

Attributes

[Name] [Description] [Latitude] [Longitude] [Part-Of]

Input Row (Entity) Trento A city in North Italy 46.04 11.07 Italy

Enriched Row (Entity) Trento A city in North Italy 46.04 11.07 [Italy]

Table 4.6: Example for Entity Disambiguation

71

4.3. IMPORT PIPELINE CHAPTER 4. ENTITY BASE

2. Let us consider the input row which is shown in the first row of Table

4.7. It has also the attributes Name, Description, Latitude, Longi-

tude and Part-Of. The Description attribute takes values of natural

language strings. The string value A city in North Italy is processed

by NLP pipeline. The result is shown in the second row of Table 4.7

where the concept city and the entity North Italy are found and dis-

ambiguated. They are connected with their unique identifiers which

we represent as [city] and [North Italy] .

Attributes

[Name] [Description] [Latitude] [Longitude] [Part-Of]

Input Row (Entity) Trento A city in North Italy 46.04 11.07 [Italy]

Enriched Row (Entity) Trento A [city] in [North Italy] 46.04 11.07 [Italy]

Table 4.7: Example for NLP of natural language attributes

Entity Alignment

Entity Alignment (see Figure 4.8) is the second core step in the pipeline.

It compares each row in the dataset resource with entities from an existing

entity base. The goal is to find the identifier of the row or create a new one if

needed. The Entity Alignment step takes the semantified dataset as input

and produces a list of rows which represents entities to be created with

their new identifiers, or merged with an entity with an existing identifier.

72

CHAPTER 4. ENTITY BASE 4.3. IMPORT PIPELINE

Figure 4.8: Step 5: Entity Alignment

Changes made to entities and attributes in this step are internal in the

pipeline and will not affect the entity base. The changes will be reflected

in the entity base later in the Exporting step.

There are three sub steps in the reconciliation:

Step 1: Identity Disambiguation Applies identity disambiguation

on each row in the semantified dataset against entities that exist in a

knowledge base. This is done by calling the Identity Service to perform

identity disambiguation. The result of the identity disambiguation can be:

no match, one match or more than one match. Mote details about identity

management can be found in [82].

Step 2: User validation or search in which the user can accept or

reject the output of the identity disambiguation step. In case of rejection

the user can perform a manual search. Based on the output of the identity

disambiguation step, we have the cases shown in Table 4.8.

73

4.3. IMPORT PIPELINE CHAPTER 4. ENTITY BASE

Case Result

1. If there is no match, then the user can choose to :

i) Create an ID for the row as a new entity. New ID

ii) Search manually for a match and reuse its ID. Reuse ID

iii) Ignore the row Ignore

2. If there is a match with one entity, then the user can choose to:

i) Accept the matched entity and reuse its ID. Reuse ID

ii) Reject the matched entity, search manually for a match and reuse its ID. Reuse ID

iii) Reject the matched entity and create an ID for the row as a new entity. New ID

iv) Ignore the row. Ignore

3. If there is a match with more than one entity, then the user can choose to :

i) Choose one entity and reuse its ID. Reuse ID

ii) Reject the matched entities, search manually for a match and reuse its ID. Reuse ID

iii) Reject the matched entities and create an ID for the row as a new entity. New ID

iv) Ignore the row. Ignore

Table 4.8: Cases of identity disambiguation

The output of this User Validation or Search step is one of the following:

(a) An existing entity ID is reused for the row,

(b) A new ID is created for the row as a new entity,

(c) The user can skip the row and ignore it.

Skipping the row is useful when the row is not actually an entity, so

we cannot create an ID for it and we cannot reuse an existing ID and

merge the row. In this case we do not store this row or any provenance

information related to it.

Step 3: Create new ID or Reusing an existing ID

1. If the user chooses to create a new ID for the row, then the row is

considered to represent an entity and a new ID is generated through

the Identity Services interface.

74

CHAPTER 4. ENTITY BASE 4.3. IMPORT PIPELINE

2. If the user chooses to reuse an existing ID then we need to merger

the row with the existing entity. We check the cell values of the input

row against the entity attributes to see if there is any conflict. If one

attribute has two different values in the two entities, then we perform

conflict resolution for this attribute.

• If the attribute value is single value at a time, then we may decide to

override one of the values or, in presence of different time validities,

keep both of them but with different provenance information.

• If the attribute value accepts a list of values, then we need to check

all the values in the two lists and merge the values, considering their

provenance.

Tasks that cannot be accomplished automatically in this step are re-

solved by the pipeline user or exported as crowdsourcing activities.

The output of the reconciliation step is a list of rows with new IDs and a

list of rows which reuses existing IDs. Rows with new IDs will be created as

new entities and rows that reuse existing IDs will be merged with existing

entities. New IDs given by the identity service and merged entities are

stored only in the pipeline at this step. The changes will be exported in

the entity base in the following step.

Examples:

1. Let us consider the input row in the first row of Table 4.9. This row

represents an entity which we can pass to the Identity Service to see if there

is an existing identifier for it. The identity service returned two entities

that are possible matches for the input entity. They are shown in the last

two rows of Table 4.9. The user can choose to merge the matched entity

number 1 with the input entity because they represent the same real world

entity of the Trento city even though some attribute values are different.

75

4.3. IMPORT PIPELINE CHAPTER 4. ENTITY BASE

Attributes

[Name] [Description] [Latitude] [Longitude] [Part-Of]

Semantified Row (Entity) Trento A [city] in [North Italy] 46.04 11.07 [Italy]

Matched Entity 1 Trent A [city] in [North Italy] 46.04 11.071 [Trentino-Alto Adige]

Matched Entity 2 Trento A [municipality] in [Philippines] 3.24 51.41 [Agusan del Sur]

Table 4.9: An example for ID Disambiguation

2. Let us assume that the user chooses to merge the matched entity

number 1 with the input entity from the previous example. They are

shown again in the first two rows of Table 4.10. The attribute values are

merged based on the user choice. He chooses the Name, Description and

Latitude attribute values from the first (input) entity, and he chooses the

Longitude and Part-Of attribute values from the second (matched) entity.

The merged entity is shown in last row of Table 4.10.

Attributes

[Name] [Description] [Latitude] [Longitude] [Part-Of]

Semantified Row (Entity) Trento A [city] in [North Italy] 46.04 11.07 [Italy]

Matched Entity Trent A [city] in [North Italy] 46.04 11.071 [Trentino-Alto Adige]

Merged Entity Trento A [city] in [North Italy] 46.04 11.071 [Trentino-Alto Adige]

Table 4.10: An example for conflict resolution while merging two entities

For more information about merging entities and conflict resolution with

provenance and authority, see Chapter 5.

Exporting, Publishing and Visualization

The exporting step takes as input all the semantified dataset already rec-

onciled with their IDs disambiguated and stores them in the knowledge

base or export them in some exchangeable format such as RDF. Prove-

nance information can be exported also. See Chapter 3 and Chapter 5 for

more information about provenance. The publishing step takes an input

of data exchangeable format (e.g., CSV or RDF) and publishes it in a Web

catalog, like a CKAN instance. The visualization is done by the web-based

76

CHAPTER 4. ENTITY BASE 4.3. IMPORT PIPELINE

user interface of Entitypedia. Exporting, Publishing and Visualization are

shown in Figure 4.9.

Figure 4.9: Exporting, Publishing and Visualization steps

4.3.4 Running Modalities

The tool steps of the pipeline can run in two modalities: the manual and

the automatic modes. This section describes them and gives the possible

combinations of them.

Manual (interactive) Mode

The manual or interactive mode requires the pipeline user to perform the

operations manually. The interactions between the user and the pipeline

can be Manual Selection or Manual Processing. In the Manual Selection

mode, the user selects the DCAT resources from the catalog manually. In

the Manual Processing mode, the user performs the pipeline steps interac-

tively.

Automatic (batch) Mode

The Automatic or batch mode does not require the pipeline user to per-

form any interactions with the system. If the system encounters an error or

an ambiguity in the automatic mode, then it is reported in the log report.

Similar to the manual mode, there are Automatic Selection and Automatic

Processing. In the Automatic Selection mode, the dcat resources are se-

lected automatically. In the Automatic Processing mode, the pipeline steps

77

4.4. SUMMARY CHAPTER 4. ENTITY BASE

are executed automatically without user interactions. Automatic process-

ing cannot be done on new semantification processes

Combining modes

The manual and automatic modes can be combined in different import

scenarios as shown in Table 4.11.

Selection

Mode

Processing

Mode

Description of the combined mode

Manual Manual The resource is selected manually and it is also processed

manually. This is the case of the first time to run the

pipeline on the resource.

Manual Automatic The resource is selected manually, and then the processing

is done automatically. This can be done if the resource (or

another version of it) is already processed by the pipeline

before.

Automatic Automatic The resource is selected automatically and it is also pro-

cessed automatically. This can be done if the resource (or

another version of it) is already processed by the pipeline

before.

Table 4.11: Combining the pipeline running modes

4.4 Summary

An entity base is a database which is designed to eliminate the lack of

explicit semantics and the semantic heterogeneity problems. Before in-

serting a dataset in the entity base, entities must be imported from this

dataset using a semantifying pipeline. The details of the pipeline steps are

introduced with examples for each step.

This solution is implemented in OpenDataRise5 which is an open source

tool to clean and semantify datasets based on this proposed pipeline. This

5https://github.com/opendatatrentino/OpenDataRise

78

CHAPTER 4. ENTITY BASE 4.4. SUMMARY

tool is currently used to import entities from open government data into

an entity base[49].

Although this pipeline can be considered limited because its target

database is only a database that stores entities and it can not be used

with any generic database, we think that the entity base model is generic

enough to handle most of the semantic web application scenarios. We

tested the pipeline with a government scenario but it can be easily used in

various personal and business scenarios.

79

4.4. SUMMARY CHAPTER 4. ENTITY BASE

80

Chapter 5

Entity Base Provenance

Recently an increasing number of open data repositories appear on the

Web. A common category of the open data repositories is the CKAN

catalogs. CKAN catalogs contain data that represents real world entities

and their attributes. Entities can be imported from several catalogs to

build web services; hence there is a need to trace the source of each entity

and attribute value in a way that also handles the possible conflicts between

attribute values coming from overlapping sources. We present here an

approach for extending an incremental import process with a source tracing

module that supports a conflict avoidance strategy.

5.1 Motivation

Open data repositories are software systems that provide packaging and

distribution service for open data resources. One common example for

these repositories is the CKAN repository system. It is used, for instance,

in the Open Data Trentino web catalog1. These repositories contain data

that represents real world entities and their attributes. To build web ser-

vices that use this data, usually there is an import process that extracts

entities and their attribute values from one or more CKAN catalogs into

1dati.trentino.it

81

5.1. MOTIVATION CHAPTER 5. ENTITY BASE PROVENANCE

a centralized entity base. If there is more than one source for an entity

or an attribute value, the import process must be able to trace the source

of each entity and attribute value which is created or updated during the

import process.

One major problem with tracing sources is the tracing of data com-

ing from heterogeneous data sources, where an object can be represented

differently in each data source. For instance, importing data from two

overlapped web sources into a single entity base that allows only one rep-

resentation for an entity raises consistency issues due to possible conflicts.

Moreover, resolving the conflicts manually becomes harder with the in-

creasing size of data.

Figure 5.1 shows a running example which is not comprehensive but it

gives an intuition into the problem. John, Bob and Maria are three persons

who live in the three cities Trento, Mattarello and Rovereto respectively.

The data about the city residents is stored by two organizations: Comune

di Trento, for people in Trento; and Comune di Rovereto, for people in

Rovereto. Mattarello is a small city located between the two cities and

data of its residents could be stored in Comune di Trento, in Comune di

Rovereto or in both.

John’s data is stored in Comune di Trento, Maria’s data is stored in

Comune di Rovereto and Bob’s data is stored in both. Bob could be

represented in two different ways in each dataset, although the two repre-

sentations refer to the same real-world person.

82

CHAPTER 5. ENTITY BASE PROVENANCE 5.1. MOTIVATION

Figure 5.1: A motivation example: importing from two sources

To partially cope with this problem, we propose a source tracing module

that extends an existing import process by making it tracing-aware. The

source tracing module contains three tools: authority, provenance and evi-

dence. Authority provides rules for overriding attribute values, provenance

specifies the source of an attribute value and evidence links an entity with

same external entities. An import process becomes tracing-aware by using

the previously defined tools.

This problem has been studied before in the context of data fusion

[52] and there are plenty of approaches to handle conflicts on the instance

level. Our approach is to extend an incremental import process with a

conflict avoidance strategy that gives some sources more trust (authority)

than others. However, we go further than the state-of-the-art solutions

by providing a source tracing solution that also handles conflicts between

83

5.2. PROBLEM CHAPTER 5. ENTITY BASE PROVENANCE

attribute values in one integrated module; while focusing on the needs of

open data catalogs.

The chapter is organized as follows. In Section 5.2, we describe the con-

text and the problem of tracing sources with details of the DCAT catalogs,

the entity base and the import process aspects; in Section 5.3, we present

our approach to solve this problem by introducing the three tools: au-

thority, provenance and evidence and we show an algorithm that use these

tools to perform the import process with source tracing; in Section 5.4 we

present the source tracing module; in Section 5.6, we apply our approach

on a use case from the Open Data Trentino catalog; in Section 5.7, we give

the conclusions and open problems for future work.

5.2 Problem

The problem of tracing sources is studied in the context of an import and

export system. The general architecture of the system is shown in Figure

5.2. In this architecture, a peer contains a knowledge base (KB) and an

entity base (EB). These two are populated by an import process which

reads external datasets and writes the knowledge base elements in the KB

and the entity base elements in the EB. We assume that the datasets are

stored in a dataset management system such as CKAN. Datasets are always

imported and exported from/to this dataset management system.

84

CHAPTER 5. ENTITY BASE PROVENANCE 5.2. PROBLEM

Figure 5.2: Overview of the import process scenario

The input datasets are classified into four types:

1. KB language dataset is a language dataset which is exported from

a knowledge base. This dataset contains elements from Natural Lan-

guage Core (NLC) and Concept Core (CC). These elements are shown

in Figure 3.1.

2. KB domain dataset is a domain dataset which is exported from a

knowledge base. This dataset contains elements from Domain Core

(DC) and Etype Core (ETC). These elements are shown in Figure 3.1.

3. EB dataset is a dataset exported from an entity base. This dataset

contains entities and attribute values.

4. Legacy dataset is any other dataset coming from external sources.

This dataset may contain arbitrary knowledge base and entity base

elements.

85

5.2. PROBLEM CHAPTER 5. ENTITY BASE PROVENANCE

Figure 5.3: RDF Schema for Catalog, Dataset and Distribution in DCAT

The user who performs the import is a data scientist that must be

qualified to perform the import process correctly. The import process

takes as input a resource from a CKAN repository. This resource has its

metadata described in DCAT vocabulary.

5.2.1 CKAN Repositories and DCAT vocabulary

DCAT2 (Data Catalog Vocabulary) is an RDF vocabulary for describing

datasets in a data catalog. A DCAT catalog can have one or more datasets,

a dataset can have one or more distributions. The RDF schema for the

catalog, the dataset and the distribution tables in DCAT is shown in Figure

5.3.

DCAT catalogs exist within a Web-based system called CKAN. CKAN

(Comprehensive Knowledge Archive Network) is a dataset distribution sys-

tem. Datasets are distributed as packages. Each package has one or more

resource groups3, and each resource group has one or more resources. The

ER diagram for the package, the resource group and the resource tables in

CKAN Version 2.2 is shown in Figure 5.4.

2http://www.w3.org/TR/vocab-dcat/
3Not to be confused with the groups table in CKAN schema that is used to group datasets together.

86

CHAPTER 5. ENTITY BASE PROVENANCE 5.2. PROBLEM

Figure 5.4: ER Diagram for Package, Resource Group and Resource in CKAN

Although CKAN and DCAT terminologies are different, we can find

a correspondence between them. A CKAN installation corresponds to a

DCAT catalog, a CKAN package corresponds to a DCAT dataset, and a

CKAN resource corresponds to a DCAT distribution.

To use a unified terminology in this chapter, we assume that a DCAT

catalog contains one or more datasets and a dataset contains resources. A

resource is assumed to be a table of strings formatted in rows and columns.

We also assume that each column has a name and that there is one iden-

tifying column for the table4.

5.2.2 Import process aspects

The entity base is populated with entities through an import process. An

import process can be, for instance, a generic work flow for importing any

4Resources which do not follow these assumptions must be converted to the assumed format before

starting the import process.

87

5.3. OUR APPROACH CHAPTER 5. ENTITY BASE PROVENANCE

dataset; a custom procedure for importing a specific dataset or a manual

creation of entities and attribute values. We consider any import process

that has the following three aspects:

• Partiality: The import process may take a partial input. This aspect

applies to the list of resources in a catalog or to the list of columns and

rows in a resource. For instance, a subset of resources in a catalog may

be used as input to the import process instead of the whole catalog,

or a subset of columns in a resource may be imported while ignoring

the other columns.

• Overlap: Imported data may be disjoint or overlapped with existing

entities and attribute values in the entity base. For instance, some

entities which are extracted from a resource can be found also in the

entity base. The overlapped entities may have different values for their

attribute values.

• Multiple Imports: The import process may run multiple times on the

same catalog. This aspect applies to the resources in the catalog and

to the versions of each resource. For instance, when a new version

of a resource is published in the catalog, the import process may run

again to import the updated entities and attribute values.

5.3 Our approach

We propose a source tracing module that extends an existing import pro-

cess by making it tracing-aware. An overview of our approach of extending

the import process is shown in Figure 5.5. The source tracing module con-

tains three tools: authority, provenance and evidence. An import process

can access these tools using tracing-aware import procedures. This section

88

CHAPTER 5. ENTITY BASE PROVENANCE 5.3. OUR APPROACH

starts by introducing the authority, then it introduces the provenance and

evidence; and finally it gives the tracing-aware importing procedures.

Figure 5.5: Extending the import process with source tracing module

5.3.1 Authority

The source tracing module in our approach has a source tracing tool called

authority. Authority is a meta-attribute of an element in the entity base

(i.e. an entity type, an attribute definition, an entity or an attribute value)

that provides a connection between the element and the resource which has

the authority to create or update it. Authority is specified through a set

of authority rules. An authority rule is a relation between a resource and

one or more elements which are called the scope, with a ranking value that

is called the priority.

The scope specifies the set of elements that are affected by an author-

89

5.3. OUR APPROACH CHAPTER 5. ENTITY BASE PROVENANCE

ity rule. We support four ordered levels of authority scope: (1) entity

type, (2) a set of entities, (3) attribute definition and (4) attribute value.

By default an authority on one level propagates to the next level, unless

another authority is defined on the next level. The three aspects of the im-

port process (partiality, overlap and multiple imports) can happen at any

scope. The priority is a ranking value that is assigned to order if multiple

sources are given authority for the same scope. This ranking is a total

order. Authority scopes are shown in Figure 5.6.

Figure 5.6: Authority Scopes. (a) Entity type (b) Attribute Definition (c) Entity Set (d)

Attribute Value

Authority must be present always for each element that is going to be

imported with the tracing-aware import process. Its purpose is to help in

finding a winning resource if there is a conflict between two resources in

an attribute value. Authority rules are defined in Listing 5.1:

Listing 5.1: Authority BNF

AuthorityRule : := < AuthorityRuleID ,

Resource ,

Scope ,

Author i tyPr io r i ty ,

[Note] >

90

CHAPTER 5. ENTITY BASE PROVENANCE 5.3. OUR APPROACH

Scope : := Etype |
Ent i tySet |
A t t r i b u t e D e f i n i t i o n |
Attr ibuteValue

Autho r i tyPr i o r i t y : := Float

Ent i tySet : := {Entity }∗
Note : := St r ing

Resource : := URL

Where:

• AuthorityRule is a relation between a data source and a set of elements

which are affected with this rule.

• Resource is the URL of the resource which holds the authority rights

on the given scope.

• Scope is the set of elements that are affected by this authority rule.

• AuthorityPriority is a ranking value that is assigned to order if mul-

tiple sources are given the same scope.

• EntitySet is a set of entities. It can be a static list of entities or a

query that returns a list of entities.

• Entity is presented in (todo: cite the chapter which introduces the

entity base).

• Etype is presented in (todo: cite the chapter which introduces the

entity base).

• AttributeDefinition is presented in (todo: cite the chapter which in-

troduces the entity base).

91

5.3. OUR APPROACH CHAPTER 5. ENTITY BASE PROVENANCE

• AttributeValue is presented in (todo: cite the chapter which intro-

duces the entity base).

• Note is an optional string to record general notes.

For a set of authority rules associated with an entity base to be consis-

tent, it must have the following properties:

1. There exists at least one authority rule that can be used to read or

compute the priority value for every attribute value in the entity base.

2. A priority value that is defined on a scope is always greater than or

equal to the priority value that is defined on a higher scope for the

same resource.

Table 5.1 shows examples for authority rules. The first column has the

Authority Rule and the second column shows the description of the rule .

These examples are from the running example that we gave in Figure 5.1.

Authority Rule Description

<1, Resource from Comune di Trento, Person (Etype), 0.7 > The resource has authority on Person etype with priority value of 0.7

<2, Resource from Comune di Rovereto, Age (Attribute Definition), 0.5> The resource has authority on Age Attribute Definition with priority value of 0.5.

<3, Resource from Comune di Trento, John (Entity), 1 > The resource has authority on entities where birthplace is Trento with priority value of 1.

<4, Resource from Comune di Rovereto, Bob (Attribute Value), 0.9 > The resource has authority on the value of the attribute Name for the entity Bob with priority value of 0.9.

Table 5.1: Examples for authority rules

5.3.2 Provenance and Evidence

In addition to the authority, which was presented in the previous sub-

section, the source tracing module that we propose has two other source

tracing tools: provenance and evidence. Provenance is a meta-attribute

that specifies the source of an attribute value. Evidence is an attribute of

an entity that connects the entity with another external entity that rep-

resents the same real world object. It is similar to the same-as link in

92

CHAPTER 5. ENTITY BASE PROVENANCE 5.3. OUR APPROACH

OWL5. Provenance and evidence are defined using two helping elements:

Reference and ImportProcess.

Reference is an element which gives the possibility to refer to external

users and resources. Specific types of reference can provide a reference to

the whole resource, to a part of the resource (such as a row in a tabular

resource) or to a value in a row with a transformation applied on it. The

metadata of the resource and the user are stored as attributes of an entity

in the EB (See Section 5.3.2).

ImportProcess is an element that represents a process for importing

entities and their attribute values process from an external resource into

an entity base. ImportProcess supports the three aspects of an import

process: partiality, overlap and multiple imports (See Section 5.2.2).

References

We define two major types of references: UserReference and ResourceRef-

erence. UserReference is a reference to a user that can be a human user or

a software agent. The ResourceReference is a reference to a resource in an

external dataset ResourceReference has two sub types: ResourcePartRef-

erence which is a reference to a specific part in the resource and Resource-

ValueReference which is a reference to a specific value in the resource with

a transform that was applied on it during the import process.

Reference types and their examples are shown in 5.7. A UserReference

simply refers to a user. A user is the person or the software agent which

creates or modifies the element during the import process. A ResourceRef-

erence refers to the dataset resource. The example shown in the figure

shows a dataset resource which is in tabular format. The first row in the

table shows the names of the properties and the rows below are the values

of these properties. A special property is the identifier property which is

5http://www.w3.org/TR/owl-ref/#sameAs-def

93

5.3. OUR APPROACH CHAPTER 5. ENTITY BASE PROVENANCE

the External ID in this example. The value of the identifier property is

unique for each row.

Figure 5.7: Reference types

A reference is data structure used to provide external references. There

are four reference types:

1. User Reference (User). Refers to a user who participated in the import

and his editorial role.

2. Resource Reference (Resource). Refers to an external resource.

3. Resource Part Reference (ResourcePart). Refers to a part of an ex-

ternal resource. (e.g. a row in a table)

4. Resource Value Reference (Value). Refers to a value in an external

source and a transform that was applied on it.

Listing 5.2: Reference BNF for EB Provenance

Reference : := User

| Resource

| ResourcePart

94

CHAPTER 5. ENTITY BASE PROVENANCE 5.3. OUR APPROACH

User : := Id

, E d i t o r i a l R o l e

E d i t o r i a l R o l e : := St r ing

Resource : := Id

, {ResourcePart }∗

ResourcePart : := I d e n t i f i e r

, URI

Value : := ResourcePart ,

SourceProperty

[, Transform]

I d e n t i f i e r : := Name

, Value

Name : := St r ing

Value : := St r ing

URI : := St r ing

Id : := Long

Transform : := St r ing

SourceProperty : := < P r o p e r t y I d e n t i f i e r ,

IsImported ,

[, PropertyName]

[, Ta rg e tAt t r i bu t eDe f i n i t i on] >

95

5.3. OUR APPROACH CHAPTER 5. ENTITY BASE PROVENANCE

P r o p e r t y I d e n t i f i e r : := St r ing

IsImported : := Yes | No

PropertyName : := St r ing

Targe tAt t r i bu t eDe f i n i t i on : := Id

Where:

• Reference: is an external reference to a user, a resource or a resource

part.

• User: is a reference to a user with the editorial role assigned to this

user. The user is represented as an entity with a set of attributes

defined in Section 5.3.2.

• Resource: is a reference to an external resource. The resource is

represented as an entity with a set of attributes defined in Section

5.3.2.

• ResourcePart: is a reference to a part in an external resource.

• Identifier: is the identifier of the part in the external resource.

• Name: is the name of the identifier of the resource part.

• Value: is the value of the identifier of the resource part.

• URI: is the universal resource identifier of the resource part.

• Id: is the internal identifier of a resource or an entity in an entity

base. More information on the resource and user entities are given in

the Section 3.3.1.

• EditorialRole: is the editorial role that can be assigned to a user.

96

CHAPTER 5. ENTITY BASE PROVENANCE 5.3. OUR APPROACH

• Value: is a reference to an external value of a property associated with

an element in an external dataset resource. It uses ResourcePart to

specify the element which holds the property. DatasetValueReference

stores the external property which is used to import the value and the

transform that has been done on the value.

• Transform: is a string that codifies the transform which was applied

on the external value during the import process.

• SourceProperty: is a field which represents a property in the dataset.

It stores the identifier of the property and a flag saying if it is imported

or not. It optionally stores a user friendly name of the property.

• PropertyIdentifier: is the name of the property as it is defined in the

external resource.

• IsImported: is a flag that says if the property is imported in the import

process or not.

• PropertyName: is a user friendly name for a property in the external

resource.

• TargetAttributeDefinition: is the identifier of an attribute definition

which is mapped to this source property. It can be empty is the source

property is not mapped, but this source property can not be imported.

It must have IsImported = false.

Modeling Users and Resources

6

We present here the minimal set of attributes for modeling user and

resource entities. The general attributes of an Entity are given in Table
6this section is identical to 3.3.1 except that domain expertise is added to person and the etypes of

DCAT resources are defined.

97

5.3. OUR APPROACH CHAPTER 5. ENTITY BASE PROVENANCE

5.2. These attributes are inherited by both the user and resource entities.

In this table (and also in the next tables) The first column shows the

attribute, the second column shows the data type and the third column

shows the reference dataset which gave the definition of the attribute. The

<P >symbol beside a data type means that the corresponding attribute is

permanent (i.e. it is not constrained with a time validity, but it is always

valid).

Attribute Data type Reference Dataset

Name NLString []

Class Concept <P >

SURL String <P > UKC system itself

Table 5.2: Entity attributes

• 1. Person

• Category: personal

Attribute Data type Reference Dataset

Name NLString [] Person herself

Class Concept UKC system itself

Gender

ENUM(

MALE,

FEMALE

) <P>

person herself

birth Bate Date <P> Person herself

Email String Person herself

98

CHAPTER 5. ENTITY BASE PROVENANCE 5.3. OUR APPROACH

Relation Entity type Reference Dataset
Country of

citizenship
Country Person herself

Country

where hiving

now

Country Person herself

City where

living now
City Person herself

Photo String Person herself

• Category: biography

Attribute Data type Reference Dataset

Degree

ENUM(

PhD,

MASTERS,

BACHELOR,

HIGH

SCHOOL,

NONE

) [] <P>

Person herself (Note that with

array symbol we mean that a

person ctn select more than one

degree)

Work Boolean Person herself

Student Boolean Person herself

• Category: user

Attribute Data type Reference Dataset

Login name String Person herself

Password String Person herself
Joining

date
Date Person herself

Leaving

date
Date Person herself

99

5.3. OUR APPROACH CHAPTER 5. ENTITY BASE PROVENANCE

Relation Entity type Reference Dataset

RecommenderPerson <P>
UKC existing user (possibly

suggested by person herself)

• Category: expertise

Attribute Data type
Reference

Dataset
Language profi-

ciency

<Language,

Level> []
Person herself

Domain profi-

ciency

<Domain, Level>

[]
Person herself

• Level

ENUM(

A1,

A2,

B1,

B2,

C1,

C2

)

person herself

Relation Entity type Reference dataset

Language Language Person herself

• 2. Resource

• Category: general

100

CHAPTER 5. ENTITY BASE PROVENANCE 5.3. OUR APPROACH

Attribute Data type Reference Dataset

Name NLString [] Entity importer herself

Class
Concept

<P>
Entity importer herself

description
SString

<P>
Entity importer herself

License String Entity importer herself

Note
NLString

<P>
Entity importer herself

Version String <P> Entity importer herself

Release String <P> Entity importer herself
Date of

publication
Date <P> Entity importer herself

Relation Entity type Reference Dataset

Owner

Person

and/or

Organization

Entity importer herself

• Category: resource identity

Attribute Data type Reference Dataset
Homepage

URL
String Entity importer herself

Resource

URL
String Entity importer herself

Attribute
Structured

type
Reference Dataset

KiDF URL KiDF URL Entity importer herself

• Structured types

KiDF URL

Category: recourse identity

101

5.3. OUR APPROACH CHAPTER 5. ENTITY BASE PROVENANCE

Atbritute Data type Reference dataset

Name NLString [] Entity importer herself

Description SString Entity importer herself

Note NLString Entity importer herself

URL String Entity importer herself

This section shows how to capture DCAT metadata using resource en-

tity types. The DCAT catalog, dataset and distribution are mapped to

three entity types Catalog, Dataset and Distribution. The three etypes

are sub types from the Resource etype, hence they inherit all the attribute

definitions which are already defined in this entity type. See Figure 5.8.

Figure 5.8: Catalog, Dataset and Distribution etypes

1. Catalog

Category: general

102

CHAPTER 5. ENTITY BASE PROVENANCE 5.3. OUR APPROACH

Attribute Data type Reference Dataset

URI String <P> Entity importer herself

Modified Date Entity importer herself

Rights String Entity importer herself

Relation Entity type Reference Dataset

Language Language <P>(Defined in Person etype) Entity importer herself

Datasets Dataset[] Entity importer herself

Spatial Location Entity importer herself

2. Dataset

Category: general

Attribute Data type Reference Dataset

URI String <P> Entity importer herself

AccrualPeriodicity String Entity importer herself

ContactPoint String Entity importer herself

Identifier String <P> Entity importer herself

Keywords Concept[] Entity importer herself

Modified Date Entity importer herself

Temporal String Entity importer herself

Theme Concept[] <P> Entity importer herself

Relation Entity type Reference Dataset

Language Language <P>(Defined in Person etype) Entity importer herself

Distributions Distribution[] Entity importer herself

Spatial Location Entity importer herself

3. Distribution

Category: general

103

5.3. OUR APPROACH CHAPTER 5. ENTITY BASE PROVENANCE

Attribute Data type Reference Dataset

URI String <P> Entity importer herself

ByteSize Integer Entity importer herself

AccessURL String <P> Entity importer herself

DatasetIdentifier String <P> Entity importer herself

Format String <P> Entity importer herself

MediaType String <P> Entity importer herself

Modified Date Entity importer herself

Rights String Entity importer herself

The following table shows a mapping between the attributes of the par-

ent etype Resource to the child etypes Catalog, Dataset and Distribution:

Resource Attribute Catalog Attribute Dataset Attribute Distribution Attribute

Name Title Title Title

Description Description Description Description

License License - License

Date of Publication Issued Issued Issued

Owner Publisher* Publisher* -

Homepage URL Homepage Landing page Access URL

Resource URL - - Download URL

*Assuming the publisher is the owner of the catalog or dataset. But this

must be validated by the pipeline user when creating the resource entity.

ImportProcess element

In addition to the reference and the resource metadata elements, there is

another helper element which is the import process. An import process

(ImportProcess) is a representation of a process that imports entities and

their attribute values from an external dataset resource, and creates or

modifies the corresponding entities and attribute values in an entity base.

The import process runs incrementally, i.e. it imports one resource at a

time. Resources are considered to be in tabular format as shown in Listing

104

CHAPTER 5. ENTITY BASE PROVENANCE 5.3. OUR APPROACH

5.2. An import process can be partial, overlapped and it can be performed

multiple times (See Section 5.2.2).

The partiality aspect requires us to store for each import process which

columns has been imported. The multiple imports aspect requires us to

store the timestamp of each import process.

Listing 5.3: ImportProcess BNF

ImportProcess : := < Resource ,

Modi f icat ionDate ,

User ,

{SourceProperty }∗ >

Modi f i cat ionDate : := Date

Where:

• ImportProcess: is a representation of a process that leads to creation

or modification of entity base elements (i.e. entities and their attribute

values).

• Resource: is defined in Listing 5.2.

• ModificationDate: is a timestamp specifying the date of the import

process. The import process runs incrementally, i.e. it imports one

resource at a time.

• User: is a reference to the user who is responsible for the import

process. It is defined in Listing 5.2.

Provenance and Evidence elements

An import process runs on an external resource and extracts entities and

their attribute values from it. Before creating or updating the entities and

their attribute values in the entity base, a tracing-aware import process

105

5.3. OUR APPROACH CHAPTER 5. ENTITY BASE PROVENANCE

creates a graph of elements between the external source and the entity

base. This graph is shown in Figure 5.9. The ultimate goal of this graph

is to trace the sources of each element in the entity base. The graph is

connected to the entity base through two source tracing tools: provenance

and evidence.

Figure 5.9: Provenance graph for the entity base

Provenance is a meta-attribute that specifies the source of an attribute

value. Evidence is an attribute of an entity that connects the entity with

another external entity that represents the same real world object. The

BNF of provenance is given in Listing 5.4 and the BNF of the evidence is

given in Listing 5.5.

Listing 5.4: EBProvenance BNF

EBProvenance : := <AttributeValueID ,

Accuracy ,

ResourcePart ,

ImportProcess

[, Note]>

ProvenanceID : := Long

Attr ibuteValueID : := Long

Accuracy : := Float

Note : := St r ing

106

CHAPTER 5. ENTITY BASE PROVENANCE 5.3. OUR APPROACH

Where:

• EBProvenance: is a source tracing tool which is used to store the

source of an attribute value.

• AttributeValueID: is the unique identifier for the entity base attribute

value which is associated with the provenance. It is generated and

maintained internally by the entity base.

• Accuracy: is a Float in the range [0, 1] providing the degree of confi-

dence that the value is correct. The default value for accuracy is 0.9

for the data that is manually processed. Accuracy is used only for

attribute value provenances.

• ResourcePart: is defined in Listing 5.2.

• Import Process: is defined in Listing 5.3.

• Note: is a text field to store user notes.

Listing 5.5: EBEvidence BNF

EBEvidence : := <EntityID ,

{ ResourcePart }+ >

EntityID : := SURI

Where:

• EBEvidence: is a source tracing tool for linking an entity with an

external authority data set. It provides the linking between external

sources thus it corresponds to the linking phase in linked data. Its

role is similar to the ’same as’ link in OWL with the addition that it

also records according to whom the same as link is valid. It is also an

indication that this piece of information is correct by providing the

information source. Evidence is applied only to Entities.

107

5.4. SOURCE TRACING MODULE CHAPTER 5. ENTITY BASE PROVENANCE

• ResourcePart: is defined in Listing 5.2.

• EntityID: is the unique identifier of the entity generated and main-

tained by the identity management module in the entity base. SURI

is defined in (todo: reference to the chapter the describes the entity

base)

5.4 Source Tracing Module

The three source tracing tools which are presented so far are authority,

provenance and evidence. These tools are stored in a database called the

source tracing module. The source tracing module is a module that ex-

tends the import process by providing read/write operations for the source

tracing tools.

The services which can be performed by the source tracing module are:

• AddEvidence: adds an external reference as evidence to the given

entity.

• SetProvenance: sets the provenance for the given attribute value.

• ReadAttributeValueProvenance: reads the provenance of the given

attribute value.

• ReadResourcePriority: reads a float number that represents the value

of the priority which a resource has on a specific attribute value.

An import process can be extended to a trace-aware import process by

updating its procedures to use the source tracing module. Any import

process that creates entities and attribute values has a procedure that is

used to call the entity base to do entity import and attribute value import.

To extend the import process, we change the procedure that performs

108

CHAPTER 5. ENTITY BASE PROVENANCE 5.4. SOURCE TRACING MODULE

entity import and the procedure that performs attribute value import with

the trace-aware importing procedures which are shown in Listing 5.6.

The trace-aware importing procedures are:

• ImportEntity: is a method that creates an entity if it does not exist.

It adds evidence on the new entity or on an existing entity.

• ImportAttributeValue: is a method that creates an attribute value if

it is new or if the attribute definition if multi-valued; and it updates an

existing single-valued attribute value if the authority rules allow. Au-

thority rules allow updating an attribute value if the resource which is

imported in this import process has a higher authority on the attribute

value than the resource from which the current value was imported.

The method sets also the provenance of the attribute value if it is new

or updated.

• GetPriority: is a helper method to perform reading of the float number

that represents the value of the priority which a resource has on a

specific attribute value. If there is no priority value is set on this

level, it checks the level below.

109

5.4. SOURCE TRACING MODULE CHAPTER 5. ENTITY BASE PROVENANCE

Listing 5.6: Tracing-aware importing procedures

function ImportEntity(Entity entity,

ResourcePartReference reference) {

If (GetEntityIdentifer(entity) == null) {

CreateEntity(entity)

}

AddEvidence(entity, reference);

}

function ImportAttributeValue(AttributeDefinition ad,

AttributeValue newValue,

Resource resource,

ResourceValueReference reference) {

currentValue = ReadAttributeValue(ad);

If(currentValue == null OR IsMultiValuedAttribue(ad)){

CreateAttributeValue(ad, newValue);

SetProvenance(newValue, reference);

}

Else if (currentValue <> newValue) {

ExistingProv = ReadAttributeValueProvenance(currentValue);

If(GetPriority(resource, currentValue, 4) >

GetPriority(ExistingProv.resource, currentValue, 4))

{

UpdateAttributeValue(ad, newValue);

SetProvenance(newValue, reference);

}

}

}

}

function GetPriority(Resource resource,

AttributeValue attributeValue,

Level level) {

priority = readResourcePriority(resource, attributeValue, level)

If(priority != null)

Return priority;

Else

Return GetPriority(resource, attributeValue, level -1);

}

}

110

CHAPTER 5. ENTITY BASE PROVENANCE 5.5. USER INTERFACE

The strategy that we used in this source tracing module is to avoid

conflicted attribute values by giving some resources more authority than

others. As we said before in Chapter 2, there are two other know classes

of strategies in the literature: conflict ignoring and conflict resolution. In

conflict ignoring strategies, two attribute values which are in conflict may

be created in the entity base. This strategy is not acceptable for the entity

base because it leads to inconsistency.

Since we consider an incremental import process, we have a maximum

of two values that can be in conflict: the currently imported value and the

existing value. This makes conflict resolution strategies such as taking the

average or the most occurring value not appropriate. However we may use

the strategy of conflict resolution by taking the most recent value if the

two resources are on the same level of authority.

5.5 User Interface

This section shows initial mock-ups for the user interface (UI) that uses the

source tracing module. It is divided into two parts: (1) UI for the authority

management and (2) UI for provenance and evidence visualization.

5.5.1 Authority management

There are two interfaces for authority management: one for the expert user

and one for the end user. The expert user will be using the interface to

add or delete authority rules. The end user will be using the interface to

query authority rules. Expert UI is shown in Figure 5.10.

111

5.5. USER INTERFACE CHAPTER 5. ENTITY BASE PROVENANCE

Figure 5.10: Authority Management Expert Console UI

Where:

• Scope is a box of four options:

1. Entity type if this option is selected, then the other two search

boxes are disabled. The user can choose the etype by typing its

name and search for it in etype search box.

2. Attribute Definition if this option is selected, then the entity and

attribute value search boxes are disabled. The user first chooses

the etype, and then he will find the attribute definitions of that

etype in the search box. He can also type a name to start searching

the list.

3. Entity if this option is selected, then the attribute definition and

the attribute value search boxes are disabled. The user first

chooses the etype, and then searches for the entity name in the

entity search box.

112

CHAPTER 5. ENTITY BASE PROVENANCE 5.5. USER INTERFACE

4. Attribute Value if this option is selected, then all the three search

boxes are enabled. The user first chooses the etype, and then he

can choose the attribute definition and the entity which identify

together the specific attribute value.

• Resource text input: is the input box for the resource URL

• Parent Dataset label: is automatically read from the ResourceMeta-

data table.

• Apply for all resources in the dataset checkbox if a parent dataset is

found, then the user can set the authority rule for all resources in the

dataset by checking this checkbox. Instead of setting each resource

one by one.

• Priority text input : is a value between 0 and 1.

• Note text input is an optional text note.

• Recompute cache/NSM button starts the process of computing cache

or the nested set model for fast access. In the first proof-of-concept

where data is not large, this is not required.

• Add Rule button starts the process of checking the consistency of the

rule, then adds it or shows the error message if the rule causes incon-

sistency.

• Cancel button closes the console.

• Related Authority Rules list is a table that shows a list of authority

rules in the databases which are related to the new authority. These

are the authority rules on the same resource or on the same scope.

They are updated while the user is filling the fields, or may be a

button called Show Related Rules can refresh them. They help the

113

5.5. USER INTERFACE CHAPTER 5. ENTITY BASE PROVENANCE

user while writing the new rule to understand the effect of the rule

such as what overrides it and what does it override. The user can

delete rules also from the list. The delete button starts the process of

checking the consistency before deleting the rule.

The second console that we show here is the simplified end-used console

(see Figure 5.11). The user can search for authority rules by giving the

scope and the resource. The scope and resource are defined in the expert

console. The search button retrieves the list of authority rules which are

defined on the given scope and/or are defined for the given resource. The

results are shown in the results table.

Figure 5.11: Authority Management End User Console UI

5.5.2 Provenance and Evidence visualization

Provenance and evidence visualization is the display of the provenance and

evidence elements to the user. Provenance is associated with an attribute

value and evidence(s) are associated with an entity. Therefore, provenance

is shown with the attribute value as a meta-attribute; and evidences are

shown with the entities as attributes. I.e. there is no specific UI for

114

CHAPTER 5. ENTITY BASE PROVENANCE 5.6. USE CASE

showing provenance and evidence. They should appear with the entities

and attribute values in their interfaces.

To make provenance and evidence appear in the UI, it must be extended

to call the read operations of provenance and evidence. Evidence is shown

as a normal attribute of the entity (may be with some sign that differentiate

it with other attributes from the entity base). Provenance is shown as a

meta attribute of an attribute value.

5.6 Use case

To validate our approach of tracing sources, this section shows a practical

use case for tracing sources taken from Open Data Rise project.

This section presents the scenarios that use provenance in Open Data

Rise (ODR) project. The scenarios are divided into three phases: scenarios

for authority rules specifications, scenarios during the six import steps and

query scenarios. An overview of provenance usage scenarios in ODR is

given in Figure 5.12. There are two fail scenarios shown in red. The

import process, the list of properties with their mapping, the provenance

and evidence are all created in the memory of ODR. They are created in the

provenance database at step 6. This allows the operations to be reversible

in ODR. The permanent storage in provenance database will be only for

the final elements. ODR may store the original resource files permanently

or they can be stored in an external storage.

115

5.6. USE CASE CHAPTER 5. ENTITY BASE PROVENANCE

Figure 5.12: Overview of provenance usage scenarios in ODR

5.6.1 Authority Rules Specification Scenarios

(B.1) Create a consistent Authority rule: The pipeline bootstrapper wants

to specify the authority of a resource. He uses the authority management

console user interface (to be developed) or the HTTP API of entity base

provenance to create the rule. If the created rule is consistent with other

rules which are defined before, it is stored successfully in the authority

rules database.

(B.2) Create an inconsistent Authority Rule: This fail scenario happens

when the pipeline bootstrapper uses the authority management console

user interface or the HTTP API to create an inconsistent authority rule.

The back-end will discover that this rule is not consistent and will not

create it. An error message will be shown to the user.

5.6.2 Import Scenarios

(1.1) Create an Import Process: Every time a user (pipeline bootstrapper

or data publisher) starts the pipeline by performing the source selection

step, a new import process is created in the memory of ODR (and later

116

CHAPTER 5. ENTITY BASE PROVENANCE 5.6. USE CASE

stored in provenance database) automatically by the pipeline. This import

process stores a reference to the selected resource, the import date and

the responsible user. The resource reference will be an entity of etype

distribution that has attribute definitions given in a separate report. The

source dataset provenance (i.e. the first level of provenance also known as

resource metadata) is stored in the resource entity.

If the distribution belongs to a new dataset, then the dataset entity is

created. And if the dataset belongs to a new catalog, then the catalog

entity is created. A distribution resource can be imported multiple times

once, possibly each time with different columns and rows. The attribute

values of the Resource entity are updated if the external meta-data are

changed.

(2.1) Create Attribute Definition Provenance : During the attribute

alignment step, the pipeline bootstrapper may create a new attribute def-

inition. This attribute definition is added locally to the etype as a free

attribute definition. After successfully creating the attribute definition,

the user interface should seamlessly create also a knowledge base prove-

nance for this attribute definition. The source field of the provenance will

be the resource which has the new attribute definition. The validator1 field

of the provenance is the user who created the attribute definition in the

PKC since he validates the attribute definition before inserting it from the

resource in the PKC. In this scenario, the pipeline bootstrapper (role in

ODR) acts as a PKC VALIDATOR (role in provenance). Validator2 field

will be empty since this is only a local free attribute definition and it is

not going to be promoted to UKC.

(2.2) Store Attribute Mapping in Import Process: During the attribute

alignment step, the pipeline bootstrapper uses the ODR UI to create a

mapping between the original columns in the resource and attribute defi-

nitions from an entity type. This mapping is stored in the Import Process

117

5.6. USE CASE CHAPTER 5. ENTITY BASE PROVENANCE

element in the entity base provenance module as a list of SourceProperty.

If the column name is not clear, the user can add a user friendly name to

the PropertyName field. If the import is partial, the columns which are

not imported in this import process will have their isImported field set to

false. If the user changed the mapping later, then ODR deletes the old list

of SourceProperty and creates a new list with the updated mapping.

(2.3) Store Structural Transform: During the attribute alignment step,

the pipeline bootstrapper may split or join columns. This structural trans-

form is stored with the attribute value transform (see scenario 3.1) in the

transform field.

(3.1) Attribute Value Transform: During the attribute value validation

step, the pipeline bootstrapper or the data publisher may perform a trans-

form on the value. This transform can be anything from a format transform

to replacing the value with another new value. The transform field in the

EB provenance of the attribute value is filled by ODR with an automati-

cally generated string based on the transform. (Todo: list all the possible

transforms.)

The transform field is only a string field. If multiple transforms occur,

then they are combined in one string with a separator.

(4.1) Create a new concept: During the attribute value disambiguation

step, the pipeline bootstrapper or the data publisher may find new concepts

in the natural language strings of some attribute values. These concepts

are found by running an NLP pipeline on the string values. The user

may add the concepts to the local peer knowledge base. After successfully

creating each concept, the user interface should seamlessly create also a

knowledge base provenance for this concept. The user may also add the

word and the synset for the concept. The provenance will follow the same

rules of the new attribute definition provenance in scenario 2.1.

(4.2) Create a new entity: In the attribute value disambiguation step,

118

CHAPTER 5. ENTITY BASE PROVENANCE 5.6. USE CASE

the pipeline bootstrapper or the data publisher may find new entities while

performing vertical entity disambiguation (at column level). Most likely

the value of this column will be the entity name. If this entity does not

exist in the entity base, the user may create it. If the entity is created

only from its name, it will have one attribute value (name) which needs

provenance. The entity itself needs an evidence. The user interface should

create a provenance for the attribute value as in scenario 5.5 (because the

name is multi valued attribute) and an evidence for the entity as in scenario

5.1 (i.e. we ignore the column and use the whole row as evidence). An

evidence uses a reference to ResourcePart which is generic and can encode

a row, a value or even a part of the value such as the location of a sub

string. By default, only the row is stored. If needed, we can allow the

pipeline bootstrapper to configure the level of details that must be stored

with the evidence.

(5.1) Create a new entity: During the entity alignment step, the pipeline

bootstrapper or the data publisher may find new entities while performing

horizontal entity disambiguation (at row level). An evidence is added for

this new entity in ODR only (see 6.2). For creating the attribute values of

this entity, see scenarios 5.3 and 5.4.

(5.2) Merge two entities: During the entity alignment step, if the at-

tribute values from the source row are going to be merged with an existing

entity then an evidence should be added to the existing entity in ODR only

(see 6.2). The evidence will point to the resource part (e.g. the row) in

the external source which represents the same entity.

(5.3) Create a new single valued attribute value: When creating a new

attribute value for an attribute which is single valued, a provenance is

created for this attribute value in ODR only (see 6.2). The provenance

contains the resource part and an optional note. The authority checking

is not needed because the attribute value is new.

119

5.6. USE CASE CHAPTER 5. ENTITY BASE PROVENANCE

(5.4) Create a new multi valued attribute value: When creating a new

attribute value for an attribute which is mutli valued, the authority is not

checked. This is because there is no overriding for an existing attribute

value. The new value is added to the list of attribute values for this at-

tribute and a provenance is created in the same way like in scenario 5.3.

(5.5) Update an attribute value with authority: When updating an

existing attribute value for a single valued attribute, the authority must

be checked first. If the resource which contains the new value has enough

authority to override the existing attribute value, then the old value and its

provenance is replaced with the new value and its provenance. At Entity

Import step of the pipeline, the old value and its provenance are deleted

forever from the entity and they cannot be restored. The new provenance

is created in the same way like in scenario 5.3.

(5.6) Not enough authority to update an attribute value: This fail sce-

nario happens when an attribute value of an existing entity should be up-

dated with a new value from an external resource, but the resource which

contains the new value does not have enough authority to override the

existing attribute value. The existing attribute value and its provenance

are not changed. The new value is not stored in the entity base and it is

removed from ODR memory. This failed update should be reported to the

user. The user can fix this failure, by changing the authority rules.

(6.1) Store Provenance: During the entity import step, the attribute

values of the entities are created in the entity base. With each attribute

value created or updated, the provenance of the attribute value is also

created in the provenance module of the entity base. In scenarios 5.3, 5.4

and 5.5 the provenance is stored only in the memory of ODR and in this

scenario it is permanently created in the provenance module. The pipeline

user may add a note on each provenance before storing it.

(6.2) Store Evidence: During the entity import step, entities can be

120

CHAPTER 5. ENTITY BASE PROVENANCE 5.6. USE CASE

created or merged with existing entities in the entity base. For each entity

created or merged in the entity base, an evidence is created in the prove-

nance module and is associated with the entity. In scenarios 5.1 and 5.2

the evidence is stored only in the memory of ODR and in this scenario it

is permanently created in the provenance module.

5.6.3 Query Scenarios

(Q.1) Read Provenance of an Attribute Value: The entitypedia user wants

to know the provenance of an attribute value. In the entitypedia user inter-

face, the user can click on an attribute value and see its provenance. From

the provenance, the user can see a localized, human readable description

(generated by ODR) of the transform which was applied on this attribute

value and any note from the importer that informs the user on how the

value is imported, computed or inserted by a user. User notes will be in

the language of the user who created them. Multi-lingual notes may be

supported later. Also from the provenance, the user can navigate to the

Import Process of this provenance and see more details such as the im-

port date, the original resource, metadata of the original resource, original

column names and column mappings. The import process is stored in the

provenance database.

(Q.2) Read Attribute Values by Provenance: The entitypedia user wants

to find all the attribute values that were created with a given provenance.

Since the provenance refers to a single resource part, most likely there will

be only one attribute value for each provenance.

(Q.3) Read Import Process By User or Resource: The entitypedia user

wants to find all the import processes that were created with a given user

or that was done on a specific resource. The resource can be a catalog,

a dataset or a distribution. The entitypedia user can choose a user or a

resource, possibly during scenario Q.1 or through a dedicated search for

121

5.7. SUMMARY CHAPTER 5. ENTITY BASE PROVENANCE

users or resources, then he can list all the import processes for this user or

resource.

(Q.4) Read Attribute Values by Import Process: The entitypedia user

wants to find all the attribute values that were created with a given import

process. The user can choose an import process, shown by scenarios Q.1

or Q.3, then he can list all the attribute values of this import process.

(Q.4) Read Evidences of an Entity: The entitypedia user wants to find

the evidences of an entity. The evidences are external entities which rep-

resent the same real-world entity. In the entitypedia user interface, the

user can click on an entity and see the list of evidences associated with it.

The user interface may show the original resource with the evidence part

highlighted if possible.

(Q.5) Read Authority of an Element: The pipeline bootstrapper or

the data publisher wants to know the resources that have authority rules

defined on a given attribute value, entity, entity type or attribute definition.

In the entitypedia user interface, the user can click on element and choose

to open the authority management console for this element.

5.7 Summary

Tracing sources is a required feature while aggregating data from different

data providers. It becomes an essential requirement in the case of open

data because it helps in quality assurance and in the reply of the import

process. We proposed a source tracing module that extends any import

process with three tools: authority, provenance and evidence. We showed

how to modify an existing import process to use these tools with a use case

from Open Data Rise project.

Some parts of this chapter have been published in [70].

122

Chapter 6

Conclusion

6.1 Thesis Summary

An entity-centric model divides the data into the entities and the language

that describes them. We call the database which stores the first part an

entity base and the database which stores the second part a knowledge

base. In this thesis we presented an approach to build the required quality

for both parts. In the web services scenarios which require combining data

from different data providers, the quality certification problem is critical to

the success of any aggregated entity base. This quality problem becomes

more important in the domain of open data where everyone can produce

or consume data freely.

The quality certification requirements in the entities base is different

from the quality certification requirements in the knowledge base. The

knowledge base elements are imported from external sources which can be

users or resources. The elements are created either by a language trans-

lation or domain development. Two expert validators check the elements

before they are finally accepted. We developed a model for tracing the

knowledge base provenance of this importing and validation process.

For the entity base, we proposed a source tracing module that extends

any import process with three tools: authority, provenance and evidence.

123

6.2. FUTURE WORK CHAPTER 6. CONCLUSION

We showed how to modify an existing import process to use these tools

with a use case from Open Data Rise project.

Before inserting a dataset in the entity base, entities must be imported

from this dataset using a semantifying pipeline. The details of a pipeline

steps are introduced with examples for each step. This pipeline can be

used in many different scenarios from government, business or personal

data. Any dataset can be semantified by this pipeline and the provenance

will be stored automatically if the source tracing module is used with this

import process.

6.2 Future Work

This thesis could be a starting point for several future directions.

• The entity import pipeline has open research problems in almost all

steps. For instance, the attribute alignment step is based on schema

matching which has open research issues when it comes to the special

case of aligning attributes with a predefined entity types. The visual-

ization step requires Human Computer Interaction (HCI) experts to

research for innovative user interface for the imported entities.

• The knowledge base provenance model and services can be used for

language development and domain development. Currently it is only

validated with language development use cases. A domain develop-

ment use case is needed in future to complete this part.

• Extending the PROV standards (such as PROV-DM and PROV-O)

for knowledge base and entity base provenance to allow the comparison

between the KB/EB provenance and the standard PROV which is

required for evaluation; and also to allow interoperability with external

provenance stores and visualization tools.

124

CHAPTER 6. CONCLUSION 6.2. FUTURE WORK

• The entity base provenance module is missing the Destination. It is

source tracing tool that is the reverse of provenance. It is used to

tell where an element is used after it was exported from the entity

base. Pingback1 technique can be compared with the Destination in

EB provenance and an extended pingback/destination model can be

proposed.

• Finding the complete list of sources that contributed to an entity

(e.g. a scientific paper) by collecting the provenance of each item in

it (e.g. the source of the graphs in the paper, the writer of some parts

in the paper). This feature seems to be required by the community

but not completely met. The entity base provenance can solve this

problem using provenance of attribute values. The value of a relational

attribute value can be another entity with attribute values that have

provenance, hence the provenance can be queried recursively for the

complete provenance list.

• From architecture point of view, we may study the possibility of

collecting provenance seamlessly using aspect-oriented programming.

Using aspect-oriented programming is a promising implementation

strategy. Since collecting provenance seamlessly is an open engineering

problem in the provenance implementation. Considering provenance

as an aspect that is separated from the application logic increases

modularity and simplifies the development of provenance-aware ap-

plications.

• Studying provenance in the case of crowdsourcing with entity bases.

The papers [75] and [76] may be useful as examples to online adapta-

tion of the crowdsourcing behavior. E.g. assign or not assign a specific

kind of task to a user based on provenance data.

1http://www.w3.org/TR/prov-aq/#provenance-pingback

125

Bibliography

[1] Bonita Business Process Manager. http:

//www.bonitasoft.com/products/

bonita-open-solution-open-source-bpm.

[2] CloverETL. http://www.cloveretl.com.

[3] CSV2RDF4LOD. http://logd.tw.rpi.edu/technology/

csv2rdf4lod.

[4] D2R Server. http://d2rq.org/d2r-server.

[5] Data Master. http://protegewiki.stanford.edu/wiki/

DataMaster.

[6] Elixir Repertoire. http://www.elixirtech.com/products/

DataETL.html.

[7] Informatica Powercenter. http://www.informatica.com/us/

products/enterprise-data-integration/powercenter.

[8] KNIME. http://www.knime.org/.

[9] Krextor. http://kwarc.info/projects/krextor/.

[10] LODRefine. http://github.com/sparkica/LODRefine.

[11] MapOnto. http://www.cs.toronto.edu/semanticweb/

maponto/.

127

http://www.bonitasoft.com/products/bonita-open-solution-open-source-bpm
http://www.bonitasoft.com/products/bonita-open-solution-open-source-bpm
http://www.bonitasoft.com/products/bonita-open-solution-open-source-bpm
http://www.cloveretl.com
http://logd.tw.rpi.edu/technology/csv2rdf4lod
http://logd.tw.rpi.edu/technology/csv2rdf4lod
http://d2rq.org/d2r-server
http://protegewiki.stanford.edu/wiki/DataMaster
http://protegewiki.stanford.edu/wiki/DataMaster
http://www.elixirtech.com/products/DataETL.html
http://www.elixirtech.com/products/DataETL.html
http:// www.informatica.com/us/products/enterprise-data-integration/powercenter
http:// www.informatica.com/us/products/enterprise-data-integration/powercenter
http://www.knime.org/
http://kwarc.info/projects/krextor/
http://github.com/sparkica/LODRefine
http://www.cs.toronto.edu/semanticweb/maponto/
http://www.cs.toronto.edu/semanticweb/maponto/

BIBLIOGRAPHY BIBLIOGRAPHY

[12] Mapping Master. http://protege.cim3.net/cgi-bin/

wiki.pl?MappingMaster.

[13] Microsoft PowerPivot, howpublished = ”http://www.

microsoft.com/en-us/bi/powerpivot.aspx”.

[14] ODEMapster. http://neon-toolkit.org/wiki/

ODEMapster.

[15] OKKAM Refine extension. http://github.com/seyyaw/

okkam-refine-extension.

[16] Open Refine. http://openrefine.org.

[17] Orange. http://orange.biolab.si.

[18] Palantir. http://wwws.palantir.com.

[19] Palo. http://www.palo.net/index.php?id=6.

[20] Pentaho. http://www.pentaho.com.

[21] Pervasive Datarush. http://bigdata.pervasive.com.

[22] Poolparty Extractor. http://www.semantic-web.at/

poolparty-extractor.

[23] R2R. http://wifo5-03.informatik.uni-mannheim.de/

bizer/r2r/.

[24] Rapid Miner. http://rapid-i.com/content/view/181/

190/lang,en/.

[25] Rattle. http://rattle.togaware.com.

[26] RDF 123. http://ebiquity.umbc.edu/project/html/id/

82/RDF123.

128

http://protege.cim3.net/cgi-bin/wiki.pl?MappingMaster
http://protege.cim3.net/cgi-bin/wiki.pl?MappingMaster
http://www.microsoft.com/en-us/bi/powerpivot.aspx
http://www.microsoft.com/en-us/bi/powerpivot.aspx
http://neon-toolkit.org/wiki/ODEMapster
http://neon-toolkit.org/wiki/ODEMapster
http://github.com/seyyaw/okkam-refine-extension
http://github.com/seyyaw/okkam-refine-extension
http://openrefine.org
http://orange.biolab.si
http://wwws.palantir.com
http://www.palo.net/index.php?id=6
http://www.pentaho.com
http://bigdata.pervasive.com
http://www.semantic-web.at/poolparty-extractor
http://www.semantic-web.at/poolparty-extractor
http://wifo5-03.informatik.uni-mannheim.de/bizer/r2r/
http://wifo5-03.informatik.uni-mannheim.de/bizer/r2r/
http://rapid-i.com/content/view/181/190/lang,en/
http://rapid-i.com/content/view/181/190/lang,en/
http://rattle.togaware.com
http://ebiquity.umbc.edu/project/html/id/82/RDF123
http://ebiquity.umbc.edu/project/html/id/82/RDF123

BIBLIOGRAPHY BIBLIOGRAPHY

[27] RDF Refine. http://refine.deri.ie/.

[28] RDOTE. http://rdote.sourceforge.net/.

[29] Relational.OWL. http://www.dbs.cs.uni-duesseldorf.

de/RDF/.

[30] SpagoBI. http://www.spagoworld.org/xwiki/bin/view/

SpagoBI/.

[31] Spotfire. http://spotfire.tibco.com.

[32] T2LD. http://ebiquity.umbc.edu/paper/html/id/480/

T2LD-An-automatic-framework-for-extracting-interpreting-and-representing-tables-as-Linked-Data.

[33] Tableau. http://www.tableausoftware.com.

[34] Talend. http://www.talend.com.

[35] TextPipe. http://www.datamystic.com/textpipe.html.

[36] The RDF Data Cube Vocabulary. http://www.w3.org/TR/

vocab-data-cube/.

[37] TopBraid Composer. http://www.topquadrant.com/

products/TB_Composer.html.

[38] Triplify. http://triplify.org/.

[39] Virtuoso Sponger. http://virtuoso.openlinksw.com/

dataspace/doc/dav/wiki/Main/VirtSponger.

[40] Virtuoso’s RDF Views. http://virtuoso.openlinksw.com/

whitepapers/relational%20rdf%20views%20mapping.

html.

[41] VisAVis. http://www.cn.ntua.gr/˜nkons/.

129

http://refine.deri.ie/
http://rdote.sourceforge.net/
http://www.dbs.cs.uni-duesseldorf.de/RDF/
http://www.dbs.cs.uni-duesseldorf.de/RDF/
http://www.spagoworld.org/xwiki/bin/view/SpagoBI/
http://www.spagoworld.org/xwiki/bin/view/SpagoBI/
http://spotfire.tibco.com
http://ebiquity.umbc.edu/paper/html/id/480/T2LD-An-automatic-framework-for-extracting-interpreting-and-representing-tables-as-Linked-Data
http://ebiquity.umbc.edu/paper/html/id/480/T2LD-An-automatic-framework-for-extracting-interpreting-and-representing-tables-as-Linked-Data
http://www.tableausoftware.com
http://www.talend.com
http://www.datamystic.com/textpipe.html
http://www.w3.org/TR/vocab-data-cube/
http://www.w3.org/TR/vocab-data-cube/
http://www.topquadrant.com/products/TB_Composer.html
http://www.topquadrant.com/products/TB_Composer.html
http://triplify.org/
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtSponger
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtSponger
http://virtuoso.openlinksw.com/whitepapers/relational%20rdf%20views%20mapping.html
http://virtuoso.openlinksw.com/whitepapers/relational%20rdf%20views%20mapping.html
http://virtuoso.openlinksw.com/whitepapers/relational%20rdf%20views%20mapping.html
http://www.cn.ntua.gr/~nkons/

BIBLIOGRAPHY BIBLIOGRAPHY

[42] XLWrap. http://xlwrap.sourceforge.net/.

[43] Fausto Giunchiglia Biswanath Dutta Abed Alhakim Freihat. Ap-

proaching regular polysemy in wordnet, 2013.

[44] Abdulaziz Albatli, Lydia Lau, and Jie Xu. Application of prov model

for modeling a vm overload mitigating strategy: Task eviction, 2014.

[45] Mufajjul Ali and Luc Moreau. A provenance-aware policy control

framework for creating provenance-aware services, 2014.

[46] Pinar Alper, Khalid Belhajjame, Carole A. Goble, , and Pinar

Karagoz. Labelflow: Exploiting workflow provenance to surface scien-

tific data provenance., 2014.

[47] Ganbold Amarsanaa, Farazi Feroz, Reyad Moaz, Giunchiglia Fausto,

and Nyamdavaa Oyundari. An experiment in managing language di-

versity across cultures. 2014.

[48] Z. Bao, B. Kimelfeld, Y. Li, and H. Yang. Search quality via query

provenance visualization, November 18 2014. US Patent 8,892,546.

[49] Ivan Bedini, F. Farazi, David Leoni, Juan Pane, Ivan Tankoyeu, and

Stefano Leucci. Open government data : Fostering innovation. Journal

of eDemocracy and Open Government, 6(1):69–79, 2014.

[50] Stanislav Beran, Edoardo Pignotti, , and Peter Edwards. Interrogating

capabilities of iot devices, 2014.

[51] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data - The

Story So Far. International Journal on Semantic Web and Information

Systems (IJSWIS), 5(3):1–22, MarMar 2009.

[52] JENS BLEIHOLDER and FELIX NAUMANN. Data fusion. 2008.

130

http://xlwrap.sourceforge.net/

BIBLIOGRAPHY BIBLIOGRAPHY

[53] Jens Bleiholder and Felix Naumann. Data fusion. ACM Comput.

Surv., 41(1):1:1–1:41, January 2009.

[54] Katrin Braunschweig, Julian Eberius, Maik Thiele, and Wolfgang

Lehner. The state of open data limits of current open data platforms,

2012.

[55] Oleksiy Chayka. Three case studies for understanding, measuring and

using a compound notion of data quality with emphasis on the data

staleness dimension. doctoral thesis., 2012.

[56] James Cheney and Roly Perera. An analytical survey of provenance

sanitization, 2014.

[57] Victor Cuevas-Vicenttin, Bertram Ludascher, and Paolo Missier.

Rinke hoekstra and paul groth., 2014.

[58] Saumen Dey, Sven Koehler, Shawn Bowers, and Bertram Ludaescher.

Optimizing data lineage queries using static workflow analysis, 2014.

[59] Laura Dragan, Markus Luczak-Roesch, Elena Simperl, Bettina

Berendt, and Luc Moreau. Crowdsourcing data citation graphs us-

ing provenance, 2014.

[60] Mikalai Yatskevich Fausto Giunchiglia and Pavel Shvaiko. Semantic

matching: Algorithms and implementation, 2007.

[61] Hugo Firth and Paolo Missier. Provgen: generating synthetic prov

graphs with predictable structure., 2014.

[62] J. Freire, C.T. Silva, S.P. Callahan, C.E. Scheidegger, and H.T.

Vo. Enabling provenance management for pre-existing applications,

May 29 2012. US Patent 8,190,633.

131

BIBLIOGRAPHY BIBLIOGRAPHY

[63] Luiz Gadelha and Marta Mattoso. Applying provenance to protect

attribution in distributed computational scientific experiments, 2014.

[64] A. Ganbold, F. Farazi, M. Reyad, O. Nyamdavaa, and F. Giunchiglia.

Managing language diversity across cultures: the english-mongolian

case study. International Journal on Advances in Life Sciences,

6(3&4):167–176, 2014.

[65] Daniel Garijo, Yolanda Gil, and Andreas Harth. User requirements

for geospatial provenance, 2014.

[66] David George. Understanding structural and semantic heterogeneity

in the context of database schema integration.

[67] Devarshi Ghoshal and Arun Chauhan andand Beth Plale. Regener-

ating and quantifying quality of benchmarking data using static and

dynamic provenance, 2014.

[68] Fausto Giunchiglia and Biswanath Dutta. Dera: A faceted knowledge

organization framework, 2011.

[69] Fausto Giunchiglia, Vincenzo Maltese, Feroz Farazi, and Biswanath

Dutta. Geowordnet: A resource for geo-spatial applications. In

Proceedings of the 7th International Conference on The Semantic Web:

Research and Applications - Volume Part I, ESWC’10, pages 121–136,

Berlin, Heidelberg, 2010. Springer-Verlag.

[70] Fausto Giunghiglia and Moaz Reyad. Provenance in open data entity-

centric aggregation. In Bertram Ludscher and Beth Plale, editors,

Provenance and Annotation of Data and Processes, volume 8628 of

Lecture Notes in Computer Science, pages 232–234. Springer Interna-

tional Publishing, 2015.

132

BIBLIOGRAPHY BIBLIOGRAPHY

[71] Alasdair JG Gray. Dataset descriptions for linked data systems.

Internet Computing, IEEE, 18(4):66–69, 2014.

[72] Farshad Hakimpour and Andreas Geppert. Resolving semantic het-

erogeneity in schema integration: an ontology based approach. In

Proc. of the Intl. Conf. On Formal Ontologies in Information Systems

(FOIS-2001), ACM, pages 297–308. ACM Press, 2001.

[73] Rinke Hoekstra and Paul Groth. Prov-o-viz - understanding the role

of activities in provenance., 2014.

[74] Trung Dong Huynh, Mark Ebden, Sarvapali Ramchurn, Stephen

Roberts, and Luc Moreau. Data quality assessment from provenance

graphs, 2014.

[75] Amir Sezavar Keshavarz, Trung Dong Huynh, , and Luc Moreau.

Provenance for online decision making, 2014.

[76] Amir Sezavar Keshavarz, Trung Dong Huynh, and Luc Moreau. Prove-

nance for online decision making, 2014.

[77] Timothy Lebo, Patrick West, , and Deborah L. McGuinness. Walking

into the future with prov pingback: An application to opendap using

prizms, 2014.

[78] Marta Mattoso, Jonas Dias, Flavio Costa, Daniel Oliveira, and Ed-

uardo Ogasawara. Experiences in using provenance to optimize the

parallel execution of scientific workflows steered by users, 2014.

[79] Paolo Missier, Jeremy Bryans, Carl Gamble, Vasa Curcin, , and Rox-

ana Danger. Provabs: model, policy, and tooling for abstracting prov

graphs, 2014.

133

BIBLIOGRAPHY BIBLIOGRAPHY

[80] Leonardo Murta, Vanessa Braganholo, Fernando Chirigati, David

Koop, , and Juliana Freire. noworkflow: Capturing and analyzing

provenance of scripts, 2014.

[81] Tom De Nies, Robert Meusel, Dominique Ritze, Kai Eckert, Anasta-

sia Dimou, Laurens De Vocht, Ruben Verborgh, Erik Mannens, and

Rik Van de Walle. A lightweight provenance pingback and query ser-

vice for web publications., 2014.

[82] Juan Pane. Distributed identity management. doctoral thesis., 2012.

[83] Massimo Paolucci and Katia Sycara. Autonomous semantic web ser-

vices, 2003.

[84] Quan Pham, Tanu Malik, and Ian Foster. Auditing and maintaining

provenance in software packages, 2014.

[85] Manolis Stamatogiannakis, Paul Groth, and Herbert Bos. Looking

inside the black-box: Capturing data provenance using dynamic in-

strumentation, 2014.

[86] Curt Tilmes. Formal provenance representation of the data and infor-

mation supporting the national climate assessment, 2014.

[87] M.B. VELASCO. Use and enforcement of provenance and lineage

constraints, January 17 2013. US Patent App. 13/183,850.

[88] C.C. White, M.W. Thomas, and A.J. O’Leary. Managing provenance

of digitally signed data in user editable records, December 10 2009.

US Patent App. 12/136,040.

[89] Adianto Wibisono, Peter Bloem, Gerben De Vries, Paul Groth, Adam

Belloum, and Marian Bubak. Generating scientific documentation for

computational experiments using provenance, 2014.

134

BIBLIOGRAPHY BIBLIOGRAPHY

[90] J. Zhao, F. Sun, C. Torniai, A.B. Bakshi, and V.K. Prasanna. System

and method for data provenance management, September 10 2013. US

Patent 8,533,152.

[91] Jun Zhao, Honghan Wu, and Jeff Z. Pan. Towards query generation

for prov-o data., 2014.

135

	Introduction
	The Context
	The Problem
	The Solution
	Innovative Aspects
	Structure of the Thesis

	State of the Art
	ETL Tools
	Provenance
	Patents

	Knowledge Base Provenance
	The Problem
	UKC Elements
	References
	Modeling Users and Resources

	Provenance
	Knowledge import scenarios

	Web API
	Data Model
	Services

	User Interface
	Use Cases
	Provenance for English Vocabulary
	Provenance for Chinese Vocabulary
	Provenance for Mongolian Vocabulary

	Conclusions

	Entity Base
	Introduction to the entity base
	The semantic interface

	Problem
	Import Pipeline
	Catalog Importing Workflow
	The preliminary steps
	The tool steps
	Running Modalities

	Summary

	Entity Base Provenance
	Motivation
	Problem
	CKAN Repositories and DCAT vocabulary
	Import process aspects

	Our approach
	Authority
	Provenance and Evidence

	Source Tracing Module
	User Interface
	Authority management
	Provenance and Evidence visualization

	Use case
	Authority Rules Specification Scenarios
	Import Scenarios
	Query Scenarios

	Summary

	Conclusion
	Thesis Summary
	Future Work

	Bibliography

