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Abstract

Wireless-enabled electronic devices are becoming cheaper, more powerful

and thus more popular. They include sensors, actuators, smartphones,

tablets, wearable devices, and other complex devices. They can carry out

complex tasks, cooperating with their “neighbors”. However, it is difficult

to develop mobile applications to exploit the full power of available resources

because the computational capabilities on devices are not homogeneous, and

their connectivity changes with physical movement. We propose a mobile

environment model to describe the connected devices and study the struc-

tural and behavioral characteristics of the environments. Based on the

model, we design the routing protocols and a language to support the com-

position of environments. We propose a framework to provide a unified,

flexible and scalable service for task/process deployment and execution on

top of the heterogeneous and dynamic mobile environments. We compare

different architectures, and discuss the optimization of resources discovery

and routing algorithm. A proof-of-concept framework is implemented and

shows the feasibility of our Environment-as-a-Service approach. Finally,

we explore the theoretical principles and practical techniques for perfor-

mance optimization, including a data prefetching technique and a dynamic

process/task allocation algorithm.

Keywords

mobile device, cloud, service, business process.
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Chapter 1

Introduction

With the development of electronic and telecommunication technologies,

devices are becoming smart and inter-connected. These connected devices

(including sensors, actuators, smartphones, tablets, domestic electronics,

smart vehicles, and other complex devices) are playing more and more im-

portant roles in our daily lives and industrial environment. According to

CISCO [19], 8.7 billion objects were connected by 2012, and the number

is expected to reach 50 billion by 2020. These devices provide very diverse

capabilities and connect with each other via wired or wireless connections

(Wi-Fi, Bluetooth, etc.). They assist us to monitor and interact with the

environment, and carry out complex tasks. For example, devices such as

smartphones are emerging as working equipments for workers in different

industries [43]. Although each device provides a limited set of capabil-

ities, integrated together, they have high potential in different domains,

including healthcare, industry automation, emergency response, and many

others.

However, it becomes more difficult to develop and deploy applications

that can utilize the capabilities of the devices. We explain the challenges

with examples under different scenarios.
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CHAPTER 1. INTRODUCTION

1.1 Scenarios

Healthcare applications, application integration on smartphones and location-

aware services are some example scenarios facing this challenge.

Mobile devices are more and more used to provide sophisticated per-

sonal healthcare assistance, such as in [61]. A simpler example scenario

is: a patient can have monitoring devices such as blood pressure meter,

and a clinic has more devices and access to remote repository of healthcare

records of patients. To develop an application that assists the blood pres-

sure monitoring, the developers need to analyze the available devices and

accessible Application Programming Interfaces (APIs) in different environ-

ments, connect these resources, and integrate them to provide assistance to

the monitoring. When the availability of devices in environment changes

or we need to provide new healthcare services, developers need to go over

the process again, because the application logic is tightly-coupled with the

available hardware devices and other resources such as API access. The

emergence of wearable devices those monitor the health status, including

watches, chest belts, brings new possibilities for healthcare applications.

The need of an efficient way to manage the diverse resources especially on

mobile devices is also emerging.

Mobile application integration is another scenario that requires a frame-

work to manage the bundled hardware/software resources. Many applica-

tions that a user installs have similar components, for example, barcode

scanning, or Optical Character Recognition (OCR), etc. The development

and integration of such components cost inefficient duplicated efforts, and

occupies unnecessary space on phone. A framework to model the avail-

ability of these components and integrate them into new applications can

make application more flexible, reduce the applications sizes, and allows

the developers to focus on either the component development or the appli-

2



1.1. SCENARIOS

cation integration. Android provides a mechanism for the intra-application

invocation, using Intent 1. However, it is merely an interface to invoke ap-

plications on the same device, and is not capable for the across-device

invocation and sophisticated resource management.

The prevailing of smartphones has created lots of opportunities for the

location-aware services. One usage scenario for location-aware services is

to apply the detected context information to help users to find the infor-

mation of interest under the current situation. According to McKinsey,

the number of horizontal Web searches from personal computers in France

is outstripped by vertical and mobile searches [46]. People often search on

mobile device for facilities (restaurants, hotels, parking places, shops, etc.)

nearby current location, or near destination or en route [89]. Different with

search on desktop, searching on a smartphone does not only implies a loca-

tion to filter the search results, but also implies the urgent need of services

at that time and that location, which has a high conversion rate into con-

crete business. However, current services on smartphone merely use the

detected location information to filter the search results. The matching of

users need and the services provided nearby still need to be done manually

by the user: he/she has to check the rating of the hotels/restaurants on

a website, and open another website to start booking. There are services

of integration by mashing up information from correlated websites [98].

For example, the website first shows hotel ratings to user, then allows the

user to book the room, and finally suggests car renting service in that city.

Mobile context information (including the time, location, user preference,

previous services, etc.) can be used as input to provide more accurate infor-

mation for the successive service. In some situation where the connection

is unreliable, it can increase the service availability to predict the functions

that might be invoked and prefetch the correlated data onto mobile device

1http://developer.android.com/reference/android/content/Intent.html

3



CHAPTER 1. INTRODUCTION

[63]. It is more attractive if we have a framework that understands both

the requirements of the user and the resources availability provided by the

facilities, and the framework matches the requirements with resources and

starting a user-specific process to take care of the potential needs of the

user.

However, it is not easy to create such a framework. We need to cope

with the challenges caused by the capability difference and connectivity

vulnerability intrinsic to mobile devices and more specifically:

• The capabilities of devices are diverse. Devices are designed to per-

form different tasks by interacting with the information systems and

the physical environment. These devices with different capabilities

are scattered in the environment, constituting powerful but diverse

environments. It is difficult to develop applications and connect these

devices to exploit their capabilities.

• The connection across devices are unreliable and costly. Wireless con-

nection is unreliable due to the possible obstacle, interference and

device movement. And wireless connection is expensive in terms of

battery and sometimes also in terms of money.

• The connection topology of devices is complex and changeable. The

physical location of mobile devices are changing, thus the connectivity

on mobile devices are also changing. The changing topology makes it

difficult for application to route a task to the proper destination.

To solve these problems, we first need to answer these questions:

• How can we model the capacity to carry out computation and the

capability to provide services?

• How can we enable the scalable management of the environments,

allowing the environment to grow and shrink with the joining and

4
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leaving of devices?

• How can we provide an abstract description of environmental resources

and the tasks’ requirements, to ease the deployment of tasks in the

environment?

All these challenges are difficult with mobile devices in the environments.

1.2 State of the Art

With the advance of network technologies and the emergence of network

connected devices, developing software across heterogeneous devices has

been a challenge for researchers. In this section, we introduce the state of

the art of researches from relevant topics, including Service-Oriented Ar-

chitecture, Cloud Computing, Business Process Management and Wireless

Sensor Networks. Detailed comparison between existing work and ours will

be given later in Chapter 6.

Under the topic of Service-Oriented Architecture (SOA) [28, 76], a set of

concepts and tools are developed. Standards and protocols are proposed to

bridge the gap between the device interfaces and the business applications

[16]. Legacy softwares together with the underlying hardware resources are

bundled as autonomous services [76]. Services are invocable using an inter-

face description language (e.g., Web Service Definition Language (WSDL)

[17]). Implementations are hidden behind the interfaces. And services can

compose with each other to provide more complex functions. Web service

(WS) defines a Web-based communication interface to implement SOA

[4]. Researchers extend Service-Oriented Architecture to involve mobile

devices, either to consume or to provision the services [87, 37, 75].

Cloud Computing utilizes a group of networked servers to provide log-

ically centralized services [12, 11, 34]. According to the type of services

5
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provided, Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS),

and Software-as-a-Service (SaaS) are some of the popular concepts in cloud

computing industry [8, 71, 92]. There are also similar concepts such as “grid

computing” [33], “utility computing” [72]. The idea behind these concepts

is to provide computing resources as a on-demand, elastic and scalable util-

ity. Michael Armbrust stated in [8]: “This elasticity of resources, without

paying a premium for large scale, is unprecedented in the history of IT.”

According to [25], “The term mobile cloud computing was introduced not

long after the concept of cloud computing.” Mobile cloud computing refers

to the architecture that mobile devices offload resource-intensive comput-

ing tasks to the cloud infrastructures. There are researches that integrate

the resources available on mobile devices to provide various cloud services,

including image processing, natural language processing, crowd computing,

GPS/internal data sharing, sensor data application, multimedia search, so-

cial networking [30, 18, 81, 100, 52, 13].

However, existing researches fail to address some major concerns on

mobile devices. They seldom base on the heterogeneous resources on mobile

devices, but assume that mobile devices provide homogeneous functions,

such as computation, data store, or certain type of sensing. The diverse

capabilities of mobile devices are difficult to exploit.

And the security and privacy concerns on mobile devices still remain: on

one hand, devices owners may not be aware of to whom and how the devices

will be shared; on the other hand, resources users may not know where their

requested functions are actually provisioned, and to what extend the usage

footprint may be disclosed and/or logged.

6



1.3. OUR APPROACH: ENVIRONMENT-AS-A-SERVICE

1.3 Our Approach: Environment-as-a-Service

We propose a model of environment which allows the composition of en-

vironments and the task execution in composed environments. We name

the model “Environment-as-a-Service”, which is inspired by the concepts

(Infrastructure-as-a-Service, Platform-as-a-Service, Software-as-a-Service)

from cloud computing.

An Environment contains a collection of connected devices. It is mod-

eled as a service, which implies:

• An Environment is autonomous. An Environment has the necessary

resources to carry out the functions that it provides. Resources man-

agement and message exchange are performed within the Environ-

ment, but do not depend on external resources.

• An Environment provides a service: it can execute a set of functions in

the form of task execution via predefined interfaces. Powered by the

composing devices, an Environment can receive computational tasks

either from outside of the Environment or from an internal node, and

execute the tasks. The service offered by an Environment is ready-

to-use functions, so users do not need to worry about device utiliza-

tion, resource management, internal messaging, and other contained

services. Internal nodes or external users can utilize the published

functions on-demand, by assigning tasks to the Environment.

• Environments are composable. Because Environments are defined and

implemented under the same model and using the same architecture,

they are able to connect with each other to form larger Environments.

In a composed Environment, the children Environments remain au-

tonomous and their internal structures are not altered. So it is possible

to decompose into individual smaller Environments. Being compos-
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CHAPTER 1. INTRODUCTION

able and decomposable, Environments are able to scale up or shrink

down. The service provided is thus elastic and scalable.

An Environment is modeled as a graph: a vertex represents a device,

and an edge represents the capability of connecting two devices. An En-

vironment exposes an interface to outside, allowing the deployment and

execution of tasks/processes. It manages its internal resources, includ-

ing hardware devices and software APIs. Environments can compose into

larger Environment, while each composite Environment manages the re-

sources and routing on its level. By introducing such composite Environ-

ment model, we are able to model the complex environment with hetero-

geneous devices, and provide a solution for the resources management and

task routing across devices.

To implement the environment model, we explore different possible ar-

chitectures and compare the their strength and weakness dealing with dif-

ferent devices and tasks. These architectures include centralized architec-

ture, Peer-to-Peer architecture and hybrid architecture. Their differences

are discussed in detail in Chapter 3.

We adopt the hybrid architecture in our proof-of-concept framework,

because hybrid architecture fits better with this type of environment. De-

vices deployed in vicinity are more likely to interact with each other on

tasks, and they occasionally need to communicate with devices far way.

Based on the hybrid architecture, we design a protocol for service dis-

covery and task routing across environments, and a language to describe

the environments and the requirements of tasks. The hierarchical compos-

ite environments allow devices to join or leave the environments without

manual efforts to reconfigure or redeploy the applications, and provides a

unified, elastic and scalable service on top of the heterogeneous and unre-

liable devices.

The basic service discovery protocol simply returns the first deployment

8
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solution. We study further optimization considering the resources alloca-

tion efficiency, routing performance and robustness to mobile network or

device failure.

1.4 Contributions

Our contributions include:

• The model of Environment-as-a-Service, which provides a theoretical

foundation to manage the resources (especially on mobile devices) and

route the tasks/processes across connected devices.

• The study of architectures to support the Environment-as-a-Service

model. We explored the three possible architectures and adopted the

hybrid architecture for proof-of-concept framework.

• An implementation of proof-of-concept framework on Android plat-

form. The framework includes a language to describe the available

resources on devices and the requirement of task/process, an algo-

rithm to manage the resources and routing, and the implementation

on Android platform.

• The approach to optimize the resources discovery and task routing.

1.5 Structure of the Thesis

This thesis is organized as follows: In Chapter 2, we describe our model

of Mobile Environment, the composition of Environments, and a frame-

work to route tasks across Environments to the destination; In Chapter 3,

we discuss different architectures to integrate the devices, to support the

composition of environments; Chapter 4 presents the mechanism to enact

the process/task in destination Environment, and a mobile process engine

9
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prototype; Chapter 5 discusses optimization of task allocation and process

decomposition; Chapter 6 presents the related work; Chapter 7 concludes

the thesis, and discusses its limits and future work.

10



Chapter 2

Modeling Environment-as-a-Service

As we mentioned, mobile devices provide various capabilities to support

applications in different industries. To better utilize the capabilities on

mobile devices and reuse the domain knowledges encompassed in software

modules, one way is to decouple the implementation of software modules

and the high level business logic design on top of the available software

modules. Existing software architectures such as Service-Oriented Archi-

tecture (SOA) [28], focus more on stationary devices, assuming the con-

nectivity and availability of resources are stable. We need a more flexible

model to describe the resources on mobile devices and unreliable wireless

connectivities.

We propose the model of Environment-as-a-Service with the following

principles:

1. Hierarchical. In the complex industrial environments, organizations of

different level manage different scope of resources. The model should

allow different granularity of resources management.

2. Autonomous. In the model, a Environment manages the internal re-

sources and provides essential services without depending on external

resources.

3. Composable. To support the complex process deployment, Environ-

11
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ments should be able to compose with each other into large Environ-

ment and together provide different services.

2.1 Modeling an Environment

Definition 1 (Device) A device (denoted by D) is an electronic equip-

ment that can perform certain task(s) and is able to communicate with

other equipment. D denotes the set of all known devices.

Devices include a spectrum of wired and wireless-connected electronic

equipment, from sensors, actuators, to smartphones, personal computers,

and other complex electronic equipments.

Definition 2 (Capability) A capability of a device is a function that it

provides. We assume that all devices share the same taxonomy of capa-

bility description. Each device has a set of capabilities, and we model the

capabilities of a device as an attribute, denoted by Cap(D). The set of all

capabilities is denoted as CAP.

For example, for a printer D1: Cap(Di) = ′print′, and for a barcode

reader D2 with a LCD: Cap(D2) = ′readBarcode′,′ display′.

Each device has at least one connection method, which allows it to

connect to other devices those have the same connection method.

Definition 3 (Connectivity) We denote the set of all connection meth-

ods between devices as CON . Each device is able to communicate with

other devices over a set of connection methods: Con(Di) ⊆ CON . We

assume that the connection between devices is bi-directional: if a device Di

can directly start the communication and send information to device Dj,

Dj can also directly start the communication and send information to Di.

We indicate this relation as: Di ↔ Dj. Obviously, they need to have one

common connection method: Di ↔ Dj ⇒ Con(Di)
⋂

Con(Dj) 6= ∅.

12
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A group of devices can form an Environment, if and only if any two

devices can reach each other without passing any device that does not

belong to the same Environment:

A group of devices can form an Environment ⇔

∀Di, Dj ∈ Env, ∃Dx1
, Dx2

, ...Dxm
∈ Env, s.t.Di ↔ Dx1

∧

Dx1
↔ Dx2

∧ . . . ∧Dx(m−1) ↔ Dxm
∧Dxm

↔ Dj (2.1)

Definition 4 (Environment) An Environment comprises a group of el-

ements, which can be devices or other Environments, and the connections

among the elements. A tuple represents an Environment Env = (V,E,C):

a vertex Vi (∈ V ) represents a device or a nested Environment which is

an element of Env, and an edge (Vi, Vj) ∈ E represents the two devices

or environments that are connected (Vi ↔ Vj); for a Vc ∈ C ⊆ V , Vc is

the vertex (device or Environment) that serves as a controller in Env. We

denote the set of all Environments as E.

Definition 5 (Device joins an Environment) D ∈ Env represents that

a device D joins an Environment Env(V,E,C). As defined in Equation

(2.2), when a devices D joins an Environment Env, it means that either

(directly) it is vertex of the Environment Env, or (recursively) it joins an

Environment Env′ which is a vertex of the Environment Env:

D ∈ Env(V,E,C)⇔ D ∈ V or

∃Env′(V ′, E ′, C ′), s.t., D ∈ V ′ and Env′ ∈ V. (2.2)

Definition 6 (Atomic/Composite Environment) If the vertices of an

Environment are all devices, the Environment is an “Atomic Environ-

ment”. More formally:

Env(V,E,C) is atomic⇔ ∀Vi ∈ V, Vi ∈ D

13
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1

2

3
10

Figure 2.1: An Environment composed by Three Atomic Environments

If one or more vertices of an Environment are Environments, the Environ-

ment is said to be a “Composite Environment”. More formally:

Env(V,E,C) is composite⇔ ∃Vi ∈ V, Vi ∈ E

Since Atomic Environments are the finest elements that we consider, we

restrict Atomic Environments to have simple topology: there is exact one

controller, and it connects other devices in the Environment. A Composite

Environment can have one or more controllers. In Fig. 2.1, E1, E2 and

E3 are Atomic Environments, while E10 is Composite Environment.

2.1.1 Capability

The capability of an Environment is the union of capabilities of all its

devices.

Cap(Env(V,E)) =
⋃
Vi∈V

Cap(Vi)

The controller serves as a registry of all the capabilities of the devices in

the Environment. Given a request of a certain capability, the controller

is able to decide whether there are some devices in the Environment have

this capability and how to connect those devices.

2.1.2 Computational Capacity

Different from the diverse capabilities that devices provide (e.g., “print”,

“readBarcode”), we also model the generic computational power of devices

14
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as computational capacities.

Definition 7 (Computational Capacity) A Capacity of an Environ-

ment is a parameter that measures an aspect of generic computational re-

sources that it can provide. A set of capacities are specified at the same

time, with the only condition that their values can be aggregated:

{CC} can be a set of capacities⇔ ∀CCi ∈ {CC} ∃F

∀Env(V,E,C) CCi(Env) = F ({CCj(Vk)}CCj∈{CC},Vk∈V )) (2.3)

As example, we define three categories of Computational Capacities of

a controller: CPU, memory, availability. They can be substituted by other

parameters that are of interest, such as communication delay within the

Environment, remaining battery duration, cost of resource usage, etc. The

only restriction is that the set of capacity parameters should be able to be

aggregated (Equation (2.3)).

Definition 8 (Parameters) The device capabilities and computational ca-

pacities are called “parameters” of Environments.

A controller of an Environment has both internal and external respon-

sibilities: internally it manages the resources (children Environments) and

calculates the aggregated parameters of the Environment; externally it can

receive a task, replies whether the task is executable in the Environment,

and returns the execution results.

2.1.3 Connection Topology

We assume that in an Atomic Environment the contact point to outside is

the controller, because it controls all other devices in the Environment. A

controller has several connection methods for the outside. For example, a

smartphone can have Wi-Fi, 3G and Bluetooth connection, while a laptop

may only have Wi-Fi and Bluetooth.
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2.1.4 Atomic Environment as a Service

An Atomic Environment provides a service to the higher level application.

More specifically the Atomic Environment provides on top of the single-hop

wireless service discovery such as Bluetooth, OSGi [26], and Apple Bonjour

[6]. An Atomic Environment in our model provides the abstraction of the

capacities and capabilities of the hardware devices. In the latter section, we

are going to present an XML-based language to describe the Environments

as unified interfaces for task execution.

2.2 Composition of Environments

Multiple Environments can compose a higher level Environment. Depend-

ing on the trigger and configuration, the composition can be:

• Passive. The user or an application can trigger a composition and

specify the children Environments to be composed. The only condition

is that any two selected children Environments can reach each other

without passing other Environment, as defined in Equation 2.1.

• Active. The framework can automatically decide when to compose

the Environments, and it also works out the configuration of how to

compose.

Definition 9 (Environment Composition) Environment Composition

forms a new Composite Environment from a set of Environments ({Vi})
and the connections cross them. More formally, given:

{Vi} ⊆ E , and Ecross = {(Dj, Dk)}, Dj ∈ Va, Dk ∈ Vb, Va 6= Vb
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the Environment Composition results in:

Composition({Vi}, Ecross) = Env(V ′, E ′, C ′) =

∀Di, Dj ∈ {Vi},∃D′i, D′j ∈ V ′, the connectivity of Di, Dj

is the same as D′i, D
′
j (2.4)

Fig. 2.1 shows an example of an Environment Composition: given three

Atomic Environments (“1”, “2”, and “3”), and the new connections (1, 2)

and (2, 3), the Composition result is an Environment that comprises all

the Atomic Environments and the connections among them. Fig. 2.3

illustrates the composition result on top level.

Definition 10 (child/parent/sibling Environment) In a Composite En-

vironment Env(V,E), if Vi ∈ V and Vi ∈ E, then Vi is a child Environ-

ment of Env and Env is the parent Environment of Vi. If Vi, Vj ∈ V and

Vi, Vj ∈ E, Vi, Vj are each other’s siblings.

Definition 11 (descendent/ancestor Environment) Descendent En-

vironments of an Environment include: its children Environments; and

the children Environments of any of its descendent Environments. Ances-

tor Environments of an Environment include: its parent Environment; and

the parent Environment of any of its ancestor Environments.

In other words, Environments that are not Atomic Environments are

Composite Environment. The same condition as Equation (2.1) applies

for Composite Environments.

2.2.1 Aggregation of Computational Capacities and Capabilities

As shown in Equation (2.3), the set of capacities can be aggregated. We

defined the following set of capacities as an example: availability of the

Environment, highest/lowest CPU, highest/lowest memory size.
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These parameters can be aggregated effectively from the children Envi-

ronments, without involving the parameters from lower level Environments.

Each controller manages the aggregated parameters of its Composite Envi-

ronment and the parameters of its children. When changes happen within

an Environment, the changes propagate up to the top level Composite En-

vironment. Threshold can be applied to reduce the change propagation of

aggregated parameters.

2.2.2 Three Types of Environment Composition

As in the Definition 9, any output Environment comprises the same set

of Atomic Environments and connections as input is a valid Composition.

For the same input, there can be multiple valid Composition results. We

categorize all the possible compositions into three types:

• Hierarchical Composition. The input Environments keep their struc-

tures, and form a higher level Environment. Each input Environment

manages its children, and exposes its controller to others. Hierarchical

Composition generates a loosely coupled Environment, having these

benefits: a) it is easier to decompose into original input Environments;

b) the communication within input Environments is efficient, because

input Environment is tightly connected and remains unchanged in size;

c) each input Environment retains control of its descendants. How-

ever, the disadvantage is that the hierarchy is one more level deeper

and the communication across input Environments is less efficient;

and the composition algorithm is complex.

• Merge - under one controller. The input Environments break their

borders and form an Environment. The controller of one input Envi-

ronments becomes the new controller. The benefits of this type are:

a) the structure of output Environment is simple; b) the composition
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algorithm is simpler - we just need to rerun the composition algorithm.

The disadvantage is that the output Environment is larger, has higher

communication delay and is more vulnerable to controller failure.

• Merge - retaining multiple controllers. The input Environments break

their borders and form an Environment. All controllers of input En-

vironments retain as controllers of the new Environment and share

their control. This type of Composition has the following benefits: a)

more robust to failure; b) controllers partially retain control; c) the

communication is efficient in vicinity of a controller. However, it is

more complex to set up and maintain the routing information of the

network.

2.2.3 Routing in Composite Environment

In this subsection, we first show how a task is routed across Environments,

then describe how the routing tables are created and managed during Envi-

ronment composition and when the device connections are changed. Since

our Environment model is hierarchical, we describe the composition on one

level, and based on the assumption that: within any Environments (Ei),

the information is able to be delivered between any two children Environ-

ments of Ei.

For simplicity, we introduce the routing in single controller Environ-

ment. Routing in multi-controller Environment is similar except that mes-

sage to an unknown destination is broadcast to all controllers of the Envi-

ronment.

Fig. 2.2 shows our example of Environment composition.

Our routing is similar with traditional Internet routing protocols [70].

The differences include:

• Our model of Environments is hierarchical. An Environment only sees
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Table 2.1: Examples of Routing Tables

Table of Dest. Int. //Comment

RT7 6 a T1, neighbor

20 6 T2, to controller

RT6 4 a T1, neighbor

7 b T1, neighbor

10 c T1, neighbor

5 4 T3, direction to child

10 4 T1, neighbor of 20

10 6 T1, neighbor of 20

30 4 T1, neighbor of 20

100 10 T2, to controller

-100 30 T2, from controller

RT3 2 a T1, neighbor

20 b T1, neighbor

10 2 T2, to controller

RT2 1 a T1, neighbor

3 b T1, neighbor

20 1 T1, neighbor of 10

20 3 T1, neighbor of 10

30 20 T3, direction to child

RT4 5 a T1, neighbor

6 b T1, neighbor

30 c T1, neighbor

30 d T1, neighbor

20 6 T2, to controller

-20 5 T2, from controller

RT9 8 a T1, neighbor

20 b T1, neighbor

20 9 T1, neighbor of 30

100 20 T2, to controller
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1
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Figure 2.2: A more complex composition

of Environments

10

2030

1,3

4,6

4
8,9

Figure 2.3: The top level Composite En-

vironment

its parent, children and siblings. So the routing is also not from any

point to any point.

• Routing in Environments accompanies the Environment discovery.

Besides pure message routing, our routing is concerned about the

routing of tasks. Depending on task and Environment descriptions,

decisions need to be made before routing to parent/child Environment.

• The Environments are not always well-connected. Because of the dy-

namic nature of mobile devices, Environments and the connections

are unreliable. The routing information needs to reflect the changes

of connections in an efficient way.

Discovering a satisfying Environment

Our discovery algorithm is similar to the Domain Name System (DNS) [57].

As shown in Fig. 2.5, each Environment decides if it satisfies the require-
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ment of a task. If yes, it passes the task to a satisfying child Environment;

If not, it passes to the parent Environment.

Our example is based on the completed Composite Environment as

shown in Fig. 2.2. To better illustrate the process of discovering the Envi-

ronment, we simplify the graph into a tree (Fig. 2.4). Each node in the tree

is an Environment and its children nodes are the children Environments.

In the example, the Atomic Environment 7 generates a task, whose re-

quirements are only satisfied on Environment 9. Here are the steps to

discover the Environment (for convenience, when we say that an Environ-

ment performs a certain action, actually its controller performs the action):

a. Atomic Environment 7 checks its capacity and capability and decides

that it does not satisfy the requirements, then it passes the task to its

parent Environment 20;

b. Environment 20 checks its aggregated parameters and decides that it

does not satisfy the requirements, then it passes the task to its parent

Environment 100;

c. Environment 100 satisfies the requirement, then it finds the satisfying

child Environment 30 and passes the task;

d. Environment 30 finds the satisfying child Environment 9 and passes the

task;

e. Environment 9 is the Atomic Environment that satisfies the require-

ment, so it executes the task.

Routing across Environments

Now the problem is how the controllers route messages across Environ-

ments. We introduce Routing Tables (RT) in controllers. The controller of
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Figure 2.4: Tree of Environments

each Atomic Environment has a Routing Table. The Routing Table also

includes the information about the Composite Environment controlled by

this controller, if any.

Definition 12 A link is the connection between two Environments. There

are two types of links: Atomic Link is the connection between two Atomic

Environments; Composite Link is the connection between two Environ-

ments and at least one of them is Composite Environment.

A record in the Routing Table has two columns:

• Destination. The destination of a link. For an Environment, the

visible destinations include: neighbors within the same Composite

Environment (e.g., 4 knows 5 and 6); neighbors across Environment

border (e.g., 4 knows 10 and 30); its controller (e.g., 4 knows 20 is via

6); paths to its children Environments (e.g., 20 (6) knows paths to 4,

5, 7).

• Interface. The next intermediate target that leads to the destination.

Depending on the type of destination, the interfaces have different

meanings.
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function Discover(Env, T )

if Env.satisfies(T) then

return FindSatisfyingAtomicEnv(Env, T)

else if Env.hasParent() then

return Discover(Env.parent, T)

else

return null

end if

end function

function FindSatisfyingAtomicEnv(Env, T )

if Env.isAtomic() then

if Env.satisfies(T ) then

return Env

else

return null

end if

end if

for all childEnv ∈ Env do

if childEnv.satisfies(T ) then

re = FindSatisfyingAtomicEnv(childEnv, T )

if re 6= null then

return re

end if

end if

end for

return null

end function

Figure 2.5: Algorithm: Discover a satisfying Environment
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Table 2.2: Type of Routing Records

Type Description Type of Link Meaning Example

T1 to neigh-

bor

Atomic Connection interface

to the neighbor

4 to 5 via int. a

Composite The border Environ-

ment that connects to

the neighbor

20 to 30 via 4

T2 to/from

controller

The next hop leading

to the controller or the

reverse direction

4 towards 20 via 6,

and outwards via 5

T3 direction

to child

The next hop from a

controller to its child

20 (6) to 5 via 4, 100

(2) to 30 via 20

As shown in Table 2.2, there are three types of records in the Routing

Table of a controller:

• T1, neighbor Environment. The connections between neighbor En-

vironments define the whole network connectivity. For an Atomic

Environment E, a link to a neighbor in the same Environment is an

Atomic Link, and the corresponding T1 record points to the network

interface that connects to that neighbor; and a link to a neighbor out-

side the Environment is also an Atomic Link, but E only knows the

Composite Environment that it connects (e.g., 4 only knows 10 and

30, but it does not know 8, 9, or 1). For a Composite Environment,

the interface to a neighbor is its own child Environment on the border.

• T2, next hop towards controller, or the reverse. Each Environment

knows its next hop that leads to the controller, then a message can

be routed from any child Environment towards its controller. Each

Environment also knows the next hop that goes away from the con-

troller. When an Environment receives a message originated from the

controller and the destination is not itself, it passes the message to
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function GetNextHop(CurrentEnv, dest, source)

if dest == CurrentEnv then

next = SELF

else

interface = RT.lookup(dest)

if interface 6= null then

next = interface

else if source == CurrentEnv.controller then

next = RT.lookup( - CurrentEnv.controller)

else

next = ERROR

end if

end if

end function

Figure 2.6: Algorithm: Find the next hop to route a message

the interface that goes away from the controller.

• T3, direction to each non-neighbor child, if the controller also controls

a Composite Environment. When a controller sends a message to a

non-neighbor child, it passes the message to a neighbor toward that

direction. When an Environment on the path receives such a message

addressing for another Environment, it passes the message to the out-

ward direction. Then a controller is able to route a message to any

child.

Fig. 2.6 shows the algorithm of looking up the Routing Table in an En-

vironment. Because the connection information is encoded in the Routing

Table, the look up is straight forward: if the destination is current Envi-

ronment, it is done; otherwise if the destination is in the Routing Table,

then forward it; otherwise if it is from the controller, forward it to the

“away from controller” direction; otherwise the destination is unknown.
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Setting up the Routing Tables

When several Environments are composing a new Composite Environment,

connections are established in different levels of Environments. To repre-

sent the new connections, records are inserted into the Routing Tables of

the newly connected Environments.

The procedure can be divided into three phases:

• Connecting neighbor Atomic Environments. First, both Atomic En-

vironments (e.g., 4 and 1) along the new connection insert a new T1

record containing the destination and interface information into their

Routing Tables. However, the connection crosses the borders of ex-

isting Composite Environments, and they (4 and 1) cannot see each

other but only the top level Composite Environment that the other

belongs. For example 4 sees 10 and 1 sees 20. So 4 inserts a record

“10,c”, while 1 inserts “20,b”.

• Propagating neighbor connections to top level Environments. After

new connections are established in an Atomic Environment, this con-

nection propagates to the parent Environment. The new record uses

the child Environment who has propagated the connection as the in-

terface, because the controller already knows the path to this child En-

vironment. If the parent Environment has a parent Environment, the

connection propagates further up to the top level Environment before

composition. For example, the connection from 4 to 10 is propagated

to its controller 6. A new record “10,4” is inserted into RT6. Since 6

is already one of the top level Environments before composition, the

propagation stops here.

• Connecting controller in new top level Environment. After all con-

nections between neighbors are established, it is time to establish the
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Figure 2.7: Initialization an Environment with no Controller

connections between the new top level controller and its children En-

vironments. The protocol works in three steps: 1. (Flooding) first

the new controller sends its address along all its neighbors. When

one children Environment receives this message for the first time, it

spreads this message further to its neighbors increasing the distance

by 1, and inserts a T2 record to its Routing Table. If the children En-

vironment receives another controller message again, if the distance is

shorter than current routing record, it updates the record and spreads

the message; otherwise, it discards the message; 2. (Setting up paths)

At the end of the protocol, each children knows the next hop on the

shortest path to the controller. They send a message to the controller

to report. 3. The Environments those receive such message add a

record “away from” controller. When the messages arrive in the con-

troller, the controller adds routing records to its children, specifying

the next hop.
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Figure 2.8: Join an Environment with Controller

Figure 2.8 shows the communication when a new device A finds an

Environment with controller. Multiple neighbors can return a metric about

the distance to controller. Device A selects one neighbor to connect. Figure

2.7 shows the communication sequence when a new device A discovers other

devices in neighborhood but no controller is available. It is the procedure

of setting up an Environment. Controller election algorithm is executed

to elect a controller and set up the Environment. More discussion about

election algorithm will be given later in this chapter.

Mobility Support

As we mentioned before, the challenges brought by mobile devices include:

• The wireless connections are unreliable. Many factors, such as in-

terference, low battery etc. can compromise the wireless connection.

When a connection is lost, the routing information depending on this
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connection becomes invalid.

• The devices themselves are unreliable. When a device dies, the con-

nections linked to it becomes invalid. And the routing information

that it holds is lost.

• The devices may physically move to different locations, changing the

connection topology. Even when the connectivity between devices

remain unchanged, the movement of devices can cause the previous

Environment Composition depreciated.

Our composition considers the above challenges by corresponding Rout-

ing Table adjustment.

When the connection between two Atomic Environments is lost or a

device is dead: The routing records are removed in the remaining Atomic

Environments; If the connection crosses the Environment boundary and it

is the only connection from the Atomic Environment to the top level neigh-

bor, the controller of its parent Environment removes the record to that

neighbor; If it is the only connection from the controller, the disconnected

Atomic Environment asks all its neighbors for the distance to controller

and pick the shortest as the new record, and propagates the same update

along the previous path from controller; otherwise, the Routing Table of

controller remains unchanged. If a controller becomes unreachable, a new

controller is elected and the Routing Table is recreated by repeating the

Routing Table setup process.

When an Environment moves across composition boundary without in-

terrupting any connection between underlying devices, there may be the

following cases: If the Environment is not the controller, we only need to

notify the old neighbors of the moved Environment and its old/new con-

trollers; If the Environment is the controller, we also need to elect a new

controller and setup the new Routing Tables in the old Composite Envi-
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ronment. When the moved Environment was at the end of the path from

controller, the procedure becomes simpler, because it is not affecting the

T2 and T3 routing records of other Environments in the old Composite

Environment.

Controller Election in the Composite Environment

The controller is a role in the Composite Environment. A child Envi-

ronment serving as the controller of the Composite Environment has the

following responsibilities:

• It calculates and maintains the composite capacity and capability for

the Composite Environment as a whole. By aggregating the capacity

and capability parameters from children Environments, the controller

computes the composite parameters for the composite Environment.

When a child Environment or the parent Environment passes a task

with requirements on the capacity and capability of the Environment,

the controller needs to check if the Composite Environment that it

manages satisfies the requirements.

• It manages the index of capacities and capabilities of children Environ-

ments of the Composite Environment. If the Composite Environment

satisfies the requirement, the controller needs to find out which child

Environment satisfies the requirement. Then it passes the task to the

satisfying child Environment.

• It maintains the routing information to other children Environments

in the Composite Environment. One benefit of having a controller in

the network is that it simplifies the routing in the Composite Envi-

ronment. Since the task routing is always from child to parent Envi-

ronment or from parent to child, the children Environments only need

to know how to send a message to the controller, and how to pass a
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message from controller. The controller only needs to know the first

hop of the path that leads to each child Environment.

• It maintains the routing information to the neighbor Composite En-

vironments. When the Composite Environment becomes a child of

a higher level composite Environment, the controller needs to main-

tain the information of routing information to the neighbor Composite

Environment.

During the composition, a child Environment is elected as the controller

of the Composite Environment. There are algorithms to elect the controller

(coordinator) of a peer-to-peer network [35, 42, 97, 5]. Depending on the

characteristic of the network, several factors can be considered:

• The availability of the controller. The availability of the controller

is decided by its underlying Atomic Environment. If the availability

of devices in the network is the major concern, we can consider the

availability as the most important factor.

• (Degree Centrality) The connection degree of the controller. The con-

nection degree of the controller decides probability that the controller

is connected to the rest of the Environment. In the network with het-

erogeneous connections, we can attach weights to the connection to

calculate the connection degrees. If the reliability of connections in

the network is low, the connection degree can be the major concern

in controller election.

• (Closeness Centrality) The average distance from the controller to

other children Environments. The average distance to children Envi-

ronment affects the communication delay and cost. Instead of using

hops to measure the distance, more sophisticated metrics, such as the

delay or cost of the connection can be used to measure the distance.

32



2.3. ENVIRONMENT DESCRIPTION LANGUAGE

When the communication delay or cost is the major concern, the aver-

age distance to children Environments can be the factor that we need

to consider.

These factors can be combined into a single metric to address multiple

concerns in the controller election.

If we choose a metric that can be computed locally, e.g., the avail-

ability or connection degree, we can use a flooding-based protocol: Each

Environment computes its metric value and stores it in a buffer; Each En-

vironment sends its metric to all the neighbors, containing its metric value

and identity (ID); When an Environment receives a metric, if it is larger

than current buffered metric, the Environment refresh the buffer with the

greater value and sends the greater metric to all neighbors; otherwise, if

the received value is smaller, the Environment discards the received met-

ric; if the received value equals the buffered, the one with higher ID wins.

At the end, each Environment buffers the greatest value of metric and the

ID of that Environment. The election result is sent in broadcast in the

Composition Environment, so each child knows the controller.

2.3 Environment Description Language

We design an XML-based Environment Description Language (EDL), which

can describe the resources that an Environment can provide and the re-

sources that a task requires. EDL supports the composition of Environ-

ments: the description for the Composite Environment can be generated

from the descriptions of children Environments. By comparing the Envi-

ronment with requirement, the framework can decide whether the Envi-

ronment is able to execute the task.
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Figure 2.9: Console of a controller Figure 2.10: Barcode task received

Figure 2.11: Console of a child Figure 2.12: SMS task received

2.4 Implementation

We implemented a framework to verify the model and the algorithm de-

sign. The framework design is divided into two related parts: the overlay

network that manages the resources in Environments and routes process/-

tasks, which was discussed in this chapter; the process engine on atomic

Environment that executes the received process/tasks, which will be de-

scribed in Chapter 4,

The implementation is based on smartphones with Android operation

system. The communication between smartphones is via Bluetooth con-

nection. Figure 2.9 shows the console screen of a controller Environment
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who is capable of reading barcodes, and Figure 2.11 shows a child Envi-

ronment who is capable of sending message. In every Environment, a user

can start a task of sending Short Message Service, or reading barcode, and

the task will be routed to the Environment with required resources and

executed (as shown in Figure 2.10 and 2.12).

2.5 Conclusion

In this chapter, we presented the model of Environment-as-a-Service. An

Environment is modeled as a nested graph with the children Environments

as vertices and connections between children Environments as edges. An

Environment manages the resources and routing of tasks within the En-

vironment. Multiple Environments can compose into larger Environment.

The resources management and routing algorithms are also described. Part

of this chapter was published on IEEE Mobile Cloud conference 2014 [64].
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Chapter 3

Environment-as-a-Service

Architectures

In last chapter, we defined the model of Environment: a group of connected

devices is modeled into Environment. Environment is the building block of

our framework, and it is represented as a node in the graph. In this chapter,

we are going to discuss the architecture to organize the Environments in

the overlay network.

In this thesis, “architecture” refers to the overlay network structure on

top of the physical network of devices. Devices can connect with each other

using different types of links, such as Wi-Fi, Bluetooth, or wired connec-

tions. We base the framework on transportation layer, taking advance of

the existing connections for message exchange.

With the devices joining or leaving, the size of network can grow or

shrink, and the Environments dynamically compose or decompose. Given

the same collection of devices and connections among them, using the

same Environment-as-a-Service model, there are different architectures to

organize the devices. One essential difference is the scope of resources

allocation and routing information: which nodes establish and track the

resources allocation and routing information, and to which scope is the

information shared.
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In the Environment-as-a-Service model, resources include the hardware

capabilities and API access privileges on nodes. In the model, resources

are described as tags. Routing information is the information about the

connection topology. Depending on the routing mechanism, different infor-

mation is collected and used for routing. For example, in centralized and

hybrid architecture, the controller can maintain a map of destination-path;

while in P2P architecture, each node can maintain a table of destination-

nexthop.

We introduce different architectures of Environments, explaining the

resource allocation and message routing approach.

3.1 Three Architectures

According to the connection topology among devices, there can be three

different architectures: centralized (Fig. 3.1), peer-to-peer (Fig. 3.2) and

hybrid (Fig. 3.3). By analyzing their network characteristics, we make the

following analysis:

1. Centralized. A single central controller manages all resources and

routing across devices within one environment. Many current tasks/pro-

cess management systems adopt centralized architecture: a process

engine controls the workflow and the access to resources. In many in-

dustrial scenarios, we do have a center which manages all the resource

within the environment, and authorizes the access to resources. For

example, a hospital has the control of all its resources and autho-

rizes access privileges to possible users (doctors, patients, government

agents, etc.) From the implementation point of view, the centralized

architecture is also easier to design. The essential logic of resources

management is done on the controller and the other nodes only need

to perform a small set of actions; The trust and authorize problem is
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trivial here: each node just need to request the control to approve.

However, this architecture is not scalable from the aspect of system

performance. When the number of devices and users grows, it be-

comes inefficient to manage the resources, and the network becomes

too large to perform routing efficiently; From the development effort

aspect, it is easier to implement and the overhead of network setup is

small.

2. Peer-to-Peer (P2P). There are no controllers in Environments. All

children Environments share the information about resources and rout-

ing in the Composite Environment. P2P architecture can either be

flat, or hierarchical. In flat P2P architecture, there is only one Com-

posite Environment containing all the children Environments. And

each child shares part of the knowledge of resources and routing in-

formation about other Environments. Hierarchical P2P architecture

allows the composition of Environments, children Environments share

the resource and routing information of the parent, but it only knows

the aggregated information of its sibling Environments, but it does not

know the descendant Environments inside the sibling Environments.

P2P architecture is more robust to device or network failure due to

the redundancy of connectivity and network management. However,

the resource allocation can be slower and less effective, because no En-

vironment has complete vision of resources and routing information.

And the trust and authorize problem is more difficult to solve, because

there is no central authority in the network in the initial state.

3. Hybrid. Hybrid architecture combines the centralized control with

distributed Environment composition. Within each Composite Envi-

ronment, a controller manages the resource and routing of its children

Environments. Multiple Environments compose a higher level Com-
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posite Environment and the new controller is elected to manage the

resource and routing at the new composed Environment. Devices de-

ployed in vicinity are more likely to interact with each other in tasks,

and they occasionally need to communicate with several devices far

way. By dividing the network into sub-networks (Environments), hy-

brid architecture can perform better on heterogeneous networks. Our

first prototype adopts this architecture.

Because we are focusing on the deployment of task/process, the most

important usage of the resources allocation and routing protocol is to route

the task to the node with required capabilities. Considering the sequence

of resource allocation and task routing, There are two possible designs:

1. Lookup a destination node first, and then route the task to that des-

tination. The destination lookup and the task routing are separated.

The framework first initiates the resource discovery algorithm, finds

a destination node which satisfies the requirement. The result can be

in the form of node ID, or a piece of routing information (e.g., a path)

which leads to the destination. And then the task is routed to the

destination node.

2. Lookup a destination and route the task at the same time. The task

is also forwarded during the resource discovery process. When the

framework finds the destination node with satisfying capabilities, the

task is already at that node.

The first design avoids forwarding the task to unnecessary path, thus

reducing the traffic of task routing. The tasks go through less nodes, if it

is a concern of privacy or security. In the second design, resource discovery

and task routing are done at the same time. The total latency is shorter,

and it is easier to forward the task to multiple nodes if the framework

allows the execution on multiple nodes.
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Figure 3.1: Centralized Ar-

chitecture. All devices form

an Environment. A con-

troller (thick circle) man-

ages resources and routings

of all devices.

 

Figure 3.2: Hierarchical

P2P Architecture. No con-

troller. Children of an Envi-

ronment manage resources

and routing together. Chil-

dren can connect to outside

and expose aggregated in-

formation.

 

Figure 3.3: Hybrid Archi-

tecture. An elected con-

troller manages resources

and routing. Only con-

troller can connect with

outside. Our first prototype

adopts this architecture.

3.2 Centralized Architecture

As shown in Fig 3.1, in centralized architecture, there is only one controller.

The controller serves as the repository for resources on all devices, and

manages the routing information for the whole network.

The setup of the centralized architecture is straight forward. A node

is preconfigured as controller. Its ID can either be preconfigured in other

nodes. It can also be broadcast in the network, given that the network is

trustworthy.

3.2.1 Resources Management

During the setup phase of a node, it reports its available resources to the

controller. The controller inserts it in the resource table.

In the task allocation phase, the controller looks up the resource table

and allocates a node with available resources to execute the task.
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3.2.2 Routing

Different routing mechanisms can be used in centralized architecture. The

same routing mechanism described in last chapter also works under cen-

tralized architecture: the controller knows the next hop for a destination,

and a node knows the next hop to/from controller.

Another solution is to maintain the mapping of destination-path in the

controller, and each node maintains the next hop to the controller. When

a non-controller node receives a message, if the destination of a message is

the controller, it passes the message to the next hop to the controller; if the

destination is not to controller, the message contains a path from controller

to destination, and the node just passes the message as instructed by the

path. When a controller receives a message which is not addressed to itself,

it attaches the path to the message and passes it to the next hop.

During the network setup phase, each node detects its neighbors and this

information is flooded in the network. The controller collects the neighbor

information of all the nodes and generate the graph of the whole network.

Other routing protocols also work without treating the controller as a

center. However, routing mechanisms which take advantage of the central

controller are easier to implement and work better with the centralized

resources allocation algorithm.

3.3 Peer-to-Peer Architecture

In Peer-to-Peer (P2P) architecture, there is no central controller. Re-

sources and routing information are shared among all nodes in an Environ-

ment. P2P architecture can be either flat (only one level) or hierarchical

(multiple levels). On a single level, the resources management and routing

work in the same way for both flat and hierarchical P2P architectures. The

difference is that for hierarchical P2P, a task is first allocated to the top
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level node that satisfies the requirements, and then the same allocation

algorithm repeats in that node, until the task is allocated to the satisfying

atomic Environment.

3.3.1 Resources Management

There exist P2P resources management protocols [24, 5, 78, 74, 88, 101, 22].

One simple solution is to share all the resources information on each node.

It is expensive to set up and maintain the complete resources index on

each node. It generates more traffic to broadcast the resources information

during the setup phase, and it occupies larger storage space to store the

resource index. However, the resource discovery is fast, because it can be

done on a single node.

More sophisticated protocols (for example Distributed Hash Table [9,

48]) can distribute resources allocation information multiple nodes. But

the resources discovery need to communicate with other nodes and thus

takes longer time.

3.3.2 Routing

Many routing protocols proposed for P2P networks can also be used [55].

Most P2P routing protocols keep small portion of the routing information

per node, assuming the network is aggressively dynamic. However, the

lookup latency is large because several nodes need to be contacted. Other

P2P routing protocols keep more information per node to reduce the lookup

contacts.
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3.4 Hybrid Architecture

Hybrid architecture implementation was described in detail in previous

chapter. In hybrid architecture, each node implements the same set of

functions and potentially can work as a controller. In each Environment,

one node is assigned or elected as controller and manages the resources

and routing. Our first version implementation adopts hybrid architecture.

Hybrid architecture is easier to implement comparing to P2P architecture,

because it can adopt simpler resources management and routing algorithm;

and it is more scalable comparing to the centralized architecture, because

the controller is a role that each node can take over.

3.5 Comparison

In this section, we compare the above three different architectures focus-

ing on the aspect of resource management and message routing. We first

conclude the differences of architectures in Table 3.1.

Because centralized architecture and unstructured P2P architecture are

more common and easier to understand, we focus on the comparison of

hierarchical P2P and hybrid architecture.

Hybrid architecture has the same connectivity topology with hierarchi-

cal P2P architecture: so they have the same representation as nested graph.

A node in the graph is an Environment and it can be composed by lower

level Environments. The difference is whether there is a controller for each

Environment. The hierarchical P2P architecture does not have a controller

in an Environment, and the resource allocation and routing information is

shared by all children nodes of that Environment. The hybrid architecture

has a controller for each Environment, which manages the resources and

routing information for that Environment. With the controllers, the hybrid
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Centralized Unstructured

P2P

Hierarchical

P2P

Hybrid

Number

of Overlay

Network

Level

one one multiple multiple

Controller one controller in

the whole net-

work

no controller no controller one controller in

every Environ-

ment

Resource

Allocation

Informa-

tion

in controller shared by nodes shared by chil-

dren nodes of an

Environment

in controller of

an Environment

Routing by controller P2P protocols P2P protocols by controller

Table 3.1: Comparison of Architectures

architecture is easier to implement, because we do not need to manage the

complex P2P protocols.

Since hybrid architecture and hierarchical P2P architecture have the

same connectivity topology, we can use the same example network in Figure

2.2 to explain the different ways they handle the resource management and

routing. Assuming that both architectures form the same overlay networks

as shown in Figure 2.3, both architectures have the same resource tree as

shown in Figure 2.4.

For example, hybrid architecture uses Environment 10 (the controller

of whole composite Environment) to manage the resources (including re-

sources on Environment 10, 20, 30). When the composite Environment

(100) receives a task, the controller (10) is responsible to decide where

(Environment 10, 20 or 30) to assign the task. Then the task is routed

to the destination with the help of the routing information stored in the

controller.

In hierarchical P2P architecture, the resources information of Environ-
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ment 10, 20 and 30 are shared among themselves. When a task is received,

the P2P network formed by children Environments (10, 20, 30) of the com-

posite Environment (100) is responsible to locate the destination to pass

the task, using P2P protocols (such as flooding, or Distributed Hash Table

[9]). The task routing is done either at the same time with destination

lookup, or as the second step after the destination is known.

One common characteristic for hybrid architecture and hierarchical P2P

architecture is that the nodes are organized in multiple levels. Resource

management and routing are done first on separate levels, and then one

level in if the destination is reached or one level out if the destination cannot

be found. So the resource lookup and routing follows the same procedure

in the resource tree in Figure 2.4: The framework will first decide which

child Environment to look into, and then the task is passed one level down.

If no child Environment satisfies the task, the task will be passed to the

parent until to the top level Environment.

3.6 Justification of Adopting Hybrid Architecture

We adopt hybrid architecture in our framework to fit our usage scenario.

The framework is designed for use mainly in smaller areas with a few or-

ganizations involved, for example a healthcare system with government

agents, several hospitals and patients’ houses. Centralized architecture

does not satisfy the requirement that more than one organization are man-

aging their devices and services. Unstructured P2P architecture also has

difficulty to control the access to resources that belong to different orga-

nizations. Only the hierarchical P2P architecture and hybrid architecture

divide the network into subsets which fits the management convenience or

different organizations. Because we are able to divide the network into

subsets, the size of each sub-network is not large, and centers naturally
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exist in each organization, the hybrid architecture fits most with its con-

troller design, while hierarchical P2P architecture has high complexity in

the P2P protocols implementation. So we adopt hybrid architecture in the

framework.
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Chapter 4

Deploying Processes and Tasks onto

Mobile Devices

In previous chapters, we described the model of Environment-as-a-Service

and the architectures. With the resource management function, the frame-

work can allocate the required resources in the composite Environment.

With the routing function, any two nodes in the framework can communi-

cate with each other. Process and task deployment are based on these two

functions: we define a task’s requirements on resources and the resources

availability in the Environment using the resource management function;

and the communication for controlling the Environments and deploying

the tasks are based on the routing mechanism.

In this chapter, we are going present how we deploy the processes and

tasks, after they are assigned and routed to a destination Environment

that satisfies the requirements.

Traditional business process have two forms of composition: orchestra-

tion and choreography [62]. In orchestration, a process engine controls

the workflow of process execution across domains, whereas in choreogra-

phy, each participant obeys the predefined rules and fulfills their roles in

the process. Our framework works differently with both orchestration and

choreography: a process or task is forwarded to the atomic Environment
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without a central process engine, and executed in the destination Environ-

ment by a lightweight process engine. On the framework level, a process

is first deployed in a way similar to choreography: the deployment logic is

predefined but a central process engine is not necessary; After a process is

deployed onto the atomic Environments, the process engine executes the

process or task on the devices which compose the atomic Environment.

We designed a lightweight process engine in atomic Environment, which

executes the received process or task. The process engine supports the

automatic assignment and distributed execution of tasks on wireless con-

nected devices within an atomic Environment. The contributions of this

chapter include:

• A mobile process management approach for design and execution of

business processes on mobile devices. The approach is based on four

phases: service preparation, process design, activity assignment and

activity execution;

• An extension of the Business Process Model and Notation (BPMN)

2.0 specification [60] to allow context-aware activity assignment, par-

ticularly: to model context constraints on activity assignment and

execution, and model invocations of services offered by mobile devices

inside business process models;

• A mobile process engine that executes processes on Android smart-

phones, a UI Framework for rendering user interfaces on mobile de-

vices and a server that parses the extended BPMN processes and

manages activity assignment.
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4.1 Scenario

Our motivating scenario for executing processes/tasks on mobile devices

is from a real-world project called MOPAL [21] in which nurses deliver

healthcare services at patient’s house with the assistance of mobile devices.

The services are configured and monitored by a coordinator located in

the hospital that schedules and assigns the healthcare services (i.e. a list

of tasks for each patient) that nurses need to deliver. Task assignment

considers criteria such as nurses’ qualifications, their location and service

history in order to obtain the most efficient task execution and meet the

requirements of the healthcare service.

The nurses receive the tasks and instructions elicited by a coordinator,

such as the list of patients and the activities to perform on mobile de-

vices through specific developed applications. One of such mobile-assisted

healthcare service is given by the blood pressure examination. In such sce-

nario the nurses use the mobile device to perform a set of tasks and collect

patients’ blood pressure data through the following sequence of steps:

1. The application allows the nurse to search for a patient by the Social

Security Number (SSN). It then loads patients data and shows them

to the nurse.

2. The nurse, once measured the blood pressure enters the data filling

specific forms.

3. If the pressure is too high, the application shows a warning mes-

sage and suggests to the nurse to give to the patient an appropriate

medicine. Otherwise this step is skipped.

4. The application composes a report recording the measured blood pres-

sure and whether the medicine has been administered.
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5. After the nurse confirms, the report summarizing the set of activities

is sent to the hospital.

6. Finally the coordinator can examine the activities and can update the

task-lists for next visits.

Developing applications that support such care delivery scenarios is not

cost effective and is time consuming because of the need to support many

different healthcare processes and provide a high degree of customization.

In our real-world project the design and development suffered many diffi-

culties due to the need for flexible task definition, assignment and execution

and frequent updates of the mobile applications on all mobile devices to

ensure that all of them were running the last versions.

The task-intensive nature of analyzed healthcare services suggested the

need for a more flexible assistance process definition approach using tech-

nologies such as BPMN. Namely, process-modeling technologies such as

BPMN have been demonstrated to provide an appropriate solution for

fast changing contexts where the continuous evolution, monitoring and

improvement of performed activities represent a crucial requirement.

A process model of the described blood pressure measurement service is

shown in Figure 4.1. The coordinator’s lane defines the process of managing

the health examination service, and it runs on the central process engine

used by coordinators; nurses’ lane defines the process of carrying out the

health examination, and it runs on mobile devices used by nurses.

Although it is very easy to model such healthcare delivery process, there

are many challenges related to its potential execution on mobile devices

that is still unsupported by current BPMN frameworks. To achieve the

goal of business process assignment and distributed execution on mobile

devices, we are facing several challenges:

• Current BPMN 2.0 specification is inadequate to support process ex-
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ecution on mobile devices, as it does not exploit natively the func-

tionalities and services offered by mobile devices. Such service can

be any sensor-based collected information such as locations, network

status or phone signal or it can be specific service such as Short Mes-

sage Service (SMS) or calls that are present on mobile devices. The

set of basic services that can be accessed by the process execution on

a mobile device needs to be provided as a standard and lightweight

library.

• Network connection on mobile devices is not always reliable (e.g. if

the patients house is in a rural area). It is not acceptable to have loss

of functionalities or latencies due to a disconnection of network. To

tolerate the unreliable connection, the mobile process engine should

be able to execute process and related tasks in an offline modality.

Furthermore, it is needed a mechanism to prepare the required data

before disconnection and to synchronize the data with the server once

finished.

• Process and single activity assignments should be able to consider

context related information specific to mobile devices (e.g., current

location of the nurse or required qualification). The modeling frame-

work should support modeling of such context-aware constraints for

activity assignment and execution on mobile device. It is important to

exploit the available context information in order to assign the tasks

in a smart and automatic way.

• The process models executed on mobile should be compatible with cur-

rent BPMN 2.0 specification while supporting extra defined semantics

of constraints and services present on mobile devices.

To the best of our knowledge, none of existing state of the art tools and
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engines is able to face the identified challenges and to provide a comprehen-

sive solution to scenarios such as the one we faced in MOPAL project [21].

It is inefficient to run traditional process engines on mobile devices where

computational resources are restricted. Mobile devices have slower CPUs,

smaller Random-Access Memories (RAMs), and restrictions on energy con-

sumption. Therefore a custom mobile engine and modeling framework is

needed.

4.2 Mobile Process Management Approach

We tackle the previously described challenges by identifying a methodology

that describes a sequence of steps performed by different participants each

of them having different competencies and using different tools.

The four steps of our methodology identify the phases starting from

requirements analysis to process execution. In particular it starts with

the service preparation phase in which the developers prepare the services

following the requirement analysis; then domain experts, with the help of

developers, can compose and annotate processes on top of these services

according to the business requirements; finally, the semi-automated assign-

ment of tasks and process execution on mobile devices are performed by

the framework.

4.2.1 Services Preparation

To understand how the business processes execution can be achieved on

mobile devices, we need to analyze what are the implications of the shift

of the execution environment; from desktop/server to mobile. We ana-

lyze these aspects according to the availability and location of the services

invoked by the processes, classifying the services involved in the mobile

business processes execution into two categories:
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1. Services provided by local device: some mobile platforms (e.g. An-

droid) allow the cross-application invocations and thus allowing the

mobile engine to easily invoke local services and available applications

on the device. In our project we consider the Android platform which

allows applications to broadcast “intent” to start another application.

Such “intents” can be triggered by the processes running on mobile

devices to interact with applications. To facilitate such interaction we

provide custom BPMN extensions that are executed on mobile process

engine to support the execution of mobile specific tasks/events.

On platforms that restrict the cross application communication, differ-

ent solutions need to be designed such as using URL style invocation,

or by implementing the required services within the process engine

instead of using the ones available on the device.

2. External services: web services, or any other external resources, can

be invoked by processes deployed on the mobile engine. For example,

Web Services represent a popular implementation standard that are

exposed through standard services interfaces defined by WSDL [17].

We provide the possibility to invoke such external resources from the

mobile engine through the definition of specific modeling elements that

are described later.

In service preparation phase, developers do not need to implement by

themselves the required code to invoke the mobile specific services from the

business processes. Our framework facilitates their invocation by providing

a specific library of the mobile process engine that is used to access to them.

Despite the diversity of existing mobile platforms and devices, most

popular mobile platforms provide a standard set of essential functions to

access to email, calendar, browser, location sensor, motion sensor, etc.

We provide developers with the library to access to some commonly used
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services and in particular. Currently, we provide the following components

inside our process engine:

• FormService turns the process description into a form that shows pre-

defined instructions to perform a task, accepts user input, and guides

the task performer through the given process.

• EmailService composes an email draft and initializes the mandatory

fields (e.g., receiver, subject, body) to incoming parameters.

• ShortMessageService enables editing and sending a Short Message to

other phone numbers.

• BarcodeService scans and recognizes a barcode or QR Code (Quick

Response Code).

We plan to publish our platform under an open source license and thus

allowing developers to implement additional accesses to services available

on the mobile platforms and to share their services with others in need.

To invoke external services, we provide process components to invoke

Web Services that are exposed through WSDL interfaces and RESTful

services:

• SOAPService sends a request to a Web Service with SOAP protocol

[95] and receives the response.

• RESTfulService similarly to SOAPService, it sends a request to a

RESTful service [31] and parses the response.

As for the local services, also in this case we want to enable developers

to develop custom code to invoke other types of existing remote services

(e.g., legacy systems, or APIs in the cloud) from the mobile process engine.
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Figure 4.2: Process Design Phase

4.2.2 Process Design

Once the services have been prepared in the previous steps of our ap-

proach, the business process modeling can take place. We do not provide

at this stage a specific process modeling framework allowing users to use

any process editor (e.g. Signavio [85]) that is compliant with BPMN 2.0

specification.

Figure 4.2 shows the sequence of steps that need to be performed to

design the process model and add additional custom extensions to execute

it on the mobile engine. The design starts with the Domain Experts (e.g.

Doctor) that define the process model without any concrete execution se-

mantic specified. After the model is defined, Developers can export the

process models and customize them to be executed on our mobile engine.

When the context information and underlying services interfaces are de-

fined, developers can deploy it to the central process engine and be ready

to be deployed and executed on mobile devices.
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The first step is to annotate the process models using our BPMN ex-

tension to support the automatic activity (simple tasks or sub-processes)

assignment and distributed execution on mobile engine. Our extensions of

the BPMN 2.0 specification consist of two aspects:

1. Constraints - specification and annotation of process models to be

executed on the mobile engine. In this phase, the available context

information on mobile devices (e.g. geolocation) and the information

on task performers (e.g. nurse qualifications) need to be specified

with the help of domain experts. With the help of developers, domain

experts are able to specify the constraints that need to be satisfied

before assigning the tasks and before executing the process on mobile

devices. The context information on mobile devices are captured and

provided by the mobile process engine.

2. Services - invocation definition. As already mentioned, the list of

available service is exposed through a developed library inside the

mobile process engine. Domain experts only need to consider the

business logic and the interaction between the process execution and

task performers. Developers will take care of configuration details of

the services, such as invocation and data exchange interfaces across

services. The framework supports parameter passing from task to

task.

Once the process is designed and the process model is customized with

annotations designed specially to exploit the characteristics of mobile de-

vices, the process tasks can be assigned to performers.

4.2.3 Activity Assignment

The activity assignment on mobile devices is done in four steps and can

be represented as a state diagram shown in Figure 4.3. The steps are:
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Figure 4.3: Activity Assignment

automatic pre-assignment by the assignment application, confirmation of

assignment manually by coordinator, dispatch to mobile device, and the

update of execution result.

1. Pre-assignment. When the coordinator starts to schedule the pro-

cess execution, the framework checks if a task is annotated with assign-

ment constraint. If yes, then the task enters the state of to-be-assigned.

For each task in the to-be-assigned state, the framework filters the list

of available performers and recommends the best matching ones. The

state of the task is then changed to pre-assigned.

2. Assignment confirmation. By default, the pre-assigned tasks need

to be confirmed by the coordinator to be assigned. Optionally, the task

assignment tool can configured to by-pass the manual confirmation.

3. Dispatching to mobile device: Now the framework is ready to

send the process model to the mobile device. When the process is

successfully sent to the performer, it enters the dispatched state.

4. Result Update. Depending on the execution result, a dispatched

process can either be closed upon successful execution, or return to

the to-be-assigned state when the execution fails and automatic re-

assignment is enabled.

Once assigned, the whole activity can be executed on mobile process

engine and results committed and synchronized with the central engine.
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Figure 4.4: Activity Execution on Mobile Device

4.2.4 Activity Execution on Mobile Devices

The activity (single task or sub-process) execution on mobile devices is

performed by the process engine and the task performers.

Figure 4.4 shows the interaction between the central server and mobile

devices process engine. When the performer receives the process on her

device, she can read the descriptions of the tasks assigned to her explaining

when to start the tasks and how to execute them. When the performer

starts the task execution, the mobile process engine checks if the execution

constraint matches the task constrains and if the task can be executed

under current context situation. If the execution constrains are satisfied,

the performer can follow the instructions attached to the assigned tasks

(e.g. FormService or EmailService) on the mobile device while the process

engine will execute all the other service tasks such (e.g. SOAPService) or

triggering of events.

Current engine implementation does not enforce the automatic return-

ing of activity execution results and process state. It is up to the domain

experts to decide when and how a process should return collected data to

the central server. As it is shown in Figure 4.1, it can be easily defined in

the process model how to send back the execution result inside the Send

Event elements that interacts with the central engine.
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4.3 An Extension of BPMN

We extend the BPMN 2.0 specification to support the definition of con-

straint for assigning and executing sub-process on mobile device, and to

enable the mapping of tasks and events to mobile specific services.

The extension is defined in the extensionElements, thus does not al-

ter the predefined elements in process definitions. The traditional process

editors and engines can still work with the process models that contains

extensionElements defined by this extension, only that the extended se-

mantics are ignored.

4.3.1 Context constraints for activity assignment and execution

We defined two categories of context constraints according to when the

checking is performed: activity assignment and activity execution.

Assignment constraints. Activity assignment constraints are checked

by the mobile server when the coordinator is seeking proper worker to

bind to the activity execution instance. This assures the activity is sent

to the mobile device of a worker who satisfies the constraints for later

execution. Such constraints can impose requirements on: mobile worker

(e.g., roles, qualifications, affiliation), or mobile devices configuration (e.g.,

CPU capacity, free storage available, availability of specific APIs), or on

any other context information (e.g., current geography location) available

at the time of activity assignment. If there is no constraint to assign the

activity, an assignment constraint with expression = true is defined to

annotate that it is an activity to assign to mobile devices.

Execution constraints. Activity execution constraints are checked

when the process engine on mobile device is going to start the execution

of an activity. These execution constraints can impose requirements on

context information available on mobile devices when starting the activity
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execution (e.g., current geography location, time).

Comparing these two categories of constraints, the assignment con-

strains are about relatively stable parameters characterizing the device

and the user along process execution; while the execution constraints can

be more transient parameters, since the mobile process engine is going to

verify these conditions at the last second before process execution.

The difference can be illustrated with an example: the same parameter

of geographic location can appear both in assignment constraint or execu-

tion constraint. When it is an assignment constraint, it is more reasonable

to be the “low definition” location (e.g. the city where the mobile work is

in). When it is an execution constraint, it can be “high definition” location

(e.g. the position of mobile worker at patient’s house).

It should be noted that the context constraints that we defined can also

be expressed with conditional flows. In particular condition expression can

be associated with exclusive gateway’s outgoing flows to decide which path

to take. However, we decided that it is better to detach those constraints

that do not alter the structure of business process but only enable/disable

the execution of the process. There are two reasons: the process structure

is simpler and easier to evolve; it can exploit the rich context information

available on mobile devices, and still remain interchangeable with tradi-

tional processes.

4.3.2 Services provided on mobile devices

We define a service element to map tasks and events to mobile specific

services. The service element can be inserted in extensionElements of

tasks and events. An attribute class is defined in service element, which

specifies the supporting component on mobile process engine. When the

mobile process engine is finishing the execution of a task or event, the value

of sub-elements in service will be passed to the next task or event.
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Our BPMN extension syntax allows third-parties to define their own

services. They can extend our mobile process engine or even implement

their own engine to support the defined service. The XML schema of

sub-elements for services is not restricted. It is up to the correspond-

ing component on mobile process engine to consume the sub-elements of

service.

So far, our mobile process engine has provided FormService, EmailService,

SmsService, BarcodeService, and SOAPService. More services are un-

der development.

4.3.3 Example usage of extension

Below is a fragment of the subProcess definition, for the blood pressure

examination scenario:

Fragment of Blood Pressure Examination Process Model

<subProcess name="Health examination">

<extensionElements>

<mpe:constraint type="assignment" expression=

"performer.hasNurseQualification=true"/>

<mpe:constraint type="execution" expression=

"time.hour&gt;9&amp;&amp;time.hour&lt;10"/>

</extensionElements>

<task name="Measure blood pressure">

<extensionElements>

<mpe:service class="it.unitn.disi.peng.process.

engine.service.FormService">

<mpe:text id="hint" value=

"Enter the measured value of blood pressure (mm Hg)" />
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<mpe:text id="label_patient_id" value="Patient ID:"/>

<mpe:input id="patient_id" type="text" />

<mpe:text id="label1" value="Contraction"/>

<mpe:input id="contraction" type="text" />

<mpe:text id="label2" value="Relax"/>

<mpe:input id="relax" type="text" />

<mpe:input id="submit" type="submit" value="Submit"/>

</mpe:service>

</extensionElements>

</task>

<!-- More tasks, events, flows etc. -->

</subProcess>

The extension elements in this subProcess define: the condition for

assigning this subProcess is that the performer should have a nurse qualifi-

cation; the condition for executing this subProcess is that the time should

be between 9:00 and 10:00 AM; and the component on mobile process en-

gine that supports the execution of task “Measure blood pressure” is the

FormService; other tasks and irrelevant attributes are omitted here due

to limited space.

4.4 Mobile Process Engine and UI Framework

The framework that we have developed to support the mobile process defi-

nition, BPMN extensions injection to exploit mobile devices characteristics

and the process execution includes the following components:

• A lightweight process engine for smartphones with Android operating

system.

• A UI Framework that renders the user interfaces on mobile device
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Figure 4.5: Mobile Process Engine

according to the FormService definition. It manages also invocations

of existing Android services such as mail service.

• A remote central server that hosts the process, checks the annotations,

and assigns activities to the matched performers.

4.4.1 Mobile Process Engine

To test the process execution on mobile devices and to solve the identified

challenges of process mobility under partially connected environment, we

developed the mobile process engine for Android operating system. We

implemented the engine as a standalone Java library that parse the BPMN

2.0 XML file and executes a subset of BPMN modeling elements.

Figure 4.5 shows the deployment phase of the processes from central

server to the mobile process engine. It shows also a high-level architecture

of the engine. When the process is deployed on the device, the engine uses

XPath [94] library to parse the process definitions. It checks annotated

execution constraints and verifies if their execution is supported on the

current device. The contextual information is gathered from device sensors

66



4.4. MOBILE PROCESS ENGINE AND UI FRAMEWORK

Service

FormService EmailService SOAPService

BpmnElementSubProcess

Task Event Gateway

FormElement

Input SelectHiddenText

ExecutionConstraint

ConstraintExpression

RESTfulService

1..*1

0..1

1

1..*

1

1..*

1

0..11

Figure 4.6: Subset of classes in Mobile Process Engine

and saved in the process session or internal database. Data required for

the process execution are loaded at deployment time from central server

and saved on the device local database that uses a SQLite instance [86]

that is natively available on Android operating system.

Figure 4.6 shows the internal structure of the mobile process engine.

Starting from the left we can see how a sub-process, that is deployed and

executed on a device, is composed by one or many BPMN elements. El-

ements can be Tasks, Events or standard BPMN gateways that are used

to control the flow of the process models. BPMN elements can implement

a service. The current version supports the FormService, EmailService,

SOAPService or RESTfulService.

When the performer starts the task execution, the mobile process engine

checks if the execution constrains attached to the SubProcess, matches the

current context information that is collected from the device sensors. If the

execution constrains are satisfied, the performer can execute the process.

67



CHAPTER 4. DEPLOYING PROCESSES AND TASKS ONTO MOBILE DEVICES

Figure 4.7: Measure blood

pressure

Figure 4.8: Give medicine Figure 4.9: Send response

4.4.2 UI Framework

The services that interact with users are supported by the mobile process

engine. They include the interactive form service that implements the

graphical interface to interact with activity performer, the email service

that is used to compose and send the email, the short message service that

sends short messages, and a barcode service that recognizes barcodes and

QR codes.

Figure 4.7 and 4.8 show the usage of the FormService tasks to input

patients’ data, administer the medicine, and confirm the measurement data

before sending them with an email in Figure 4.9 to the coordinator.

4.4.3 Controller of Atomic Environment

The coordinator application runs on the controller of the atomic Envi-

ronment on which an Activiti [1] process engine is deployed. The central

process engine supports the process definition and it has been extended

to support the parsing of context constraints by checking and automating

the activity assignment. As previously mentioned, the supported context

constraints include: constraints on environment such as time and geoloca-
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tion; constraints on performer profile where any profile attributes defined

by domain experts and coordinators can be used to match the activity

assignment.

4.5 Conclusion

In this chapter, we presented the Business Process deployment and execu-

tion framework on mobile devices. We designed an extension of BPMN,

which allows the annotation of constraints of processes/tasks and availabil-

ity of resources on devices. With the constraints and resources availability

defined, it is possible to deploy the subprocesses/tasks on devices regarding

the constraints. The BPMN extension includes the way to map between

tasks definition and the implementation on Android system. We imple-

mented a lightweight Business Process Engine for mobile devices, support-

ing a few common tasks and a UI framework. With the BPMN extension

and mobile process engine, the controller in an atomic Environment can

deploy the process and execute it on the devices that it manages. This

chapter was published in [67].
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Chapter 5

Task Allocation Strategies and

Optimization

In previous chapters, we described the model of Environment-as-a-Service,

the architecture design and the implementation of process/task execution.

The implemented framework proves the correctness and feasibility of the

model and design. When the framework finds a satisfying Environment,

However, we have not discussed the performance optimization of the frame-

work so far. In this chapter, we focus on the framework performance:

Based on the implemented framework, we explore various task allocation

strategies to improve performance. We also bring up several techniques as

possible enhancements of the framework.

5.1 Constraint Satisfaction

In the Environment-as-a-Service model, requirements of tasks and the re-

sources constraints are defined as key-value pairs. We compare the require-

ments and constraints, and get a result in boolean value: either the re-

sources satisfy the requirements, or not. Enforcing the strict requirements

ensure that the process/tasks are enacted under the condition decided by

the domain experts. However, there are two limitations of applying strict
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requirements:

1. The framework cannot decide the best node to allocate the task, when

more than one nodes satisfy the requirements.

2. The framework cannot describe and enact tasks which can degrade

when the required resources are not fully available.

To describe how much an Environment satisfies a requirement in a finer

granularity, we extend the satisfaction between a task requirement and an

Environment. In previous model, we define the requirements of tasks, and

the constraints of resources. An Environment satisfies a task if and only if

it match all the requirements of a task.

We have only two values for the satisfaction between a task and an

Environment: true or false. To provide an indicator to differentiate the

Environments with the same matching result (satisfied, or not), we need

an indicator with finer grain value.

5.1.1 Optional Requirement

We first introduce the optional requirement of a task, which is not com-

pulsory but a “good-to-have” condition.

Definition 13 (Optional Requirement) An optional requirement of a

task is a condition of task such that: if it is not satisfied, it does not

affect the executability of the task; while if it is satisfied, the task has better

performance given that other conditions remain the same.

An optional requirement of a task can be a constraint on a parameter

which is not in other requirements. In this case, that parameter is not

essential for the execution of the task. An optional requirement can also

be about the same parameter defined in a requirement. In this case, that
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parameter is essential for the task execution and the essential value is

defined in the requirement; additionally the optional requirement defines

a higher standard to execute the task.

5.1.2 Satisfaction Factor

As we mentioned, we need a value to compare the satisfaction between

task and Environment. We call such value Satisfaction Factor.

Definition 14 (Satisfaction Factor) Satisfaction Factor (denoted by sf)

is a value sf ∈ [0, 1] that indicates how much all the requirements of a task

are satisfied in an Environment.

Satisfaction Factor is a function of task and Environment (sf(t, e)).

Domain experts or developers can define the evaluation of Satisfaction

Factor arbitrarily, as long as the conditions below establish. For any task

t, t′, and any Environment e, e′:

• Condition 1: e satisfies t, and e′ does not satisfy t′ ⇒ sf(e, t) >

sf(e′, t)

• Condition 2: Both e and e′ satisfy t, e satisfies all the Optional Re-

quirements those are satisfied by e′, and e′ does not satisfy at least one

Optional Requirement which is satisfied by e′ ⇒ sf(e, t) > sf(e′, t)

• Condition 3: Neither e nor e′ satisfies t, e satisfies all the requirements

those are satisfied by e′, and e′ does not satisfy at least one requirement

which is satisfied by e ⇒ sf(e, t) > sf(e′, t)

There are two possible ways to define how to evaluate the Satisfaction

Factor given a task and an Environment:

1. The domain experts or developers define the evaluation equation. The

design of evaluation equation need to meet the above conditions.
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function SatisfactionFactor(Env, T )

if Env.satisfies(T) then

sf = 1

if T.hasOptionalRequirement then

sf− = unsatisfied Optional Requirement number/total Optional Requirement number

end if

else

sf = 0− unsatisfied requirement number/total requirement number

end if

end function

Figure 5.1: Algorithm: calculate the Satisfaction Factor

2. The framework defines an equation to calculate the Satisfaction Fac-

tor. If the domain experts and developers do not specify the evaluation

equation, the framework adopts a simple but extendible algorithm to

calculate the Satisfaction Factor. We describe the simple algorithm in

Figure 5.1. In this algorithm, the Satisfaction Factor is normalized,

thus it is possible to compare the Satisfaction Factor of any two pairs

of task-Environment.

From:

0 ≤ unsatisfied Optional Requirement # ≤ total Optional Requirement #

we can infer:

e satisfies t⇔ sf(e, t) ∈ [0, 1] (5.1)

By definition, we have:

e does not satisfy t⇔ 0 < unsatisfied requirement # ≤ total requirement #

we can infer:

e does not satisfy t⇔ sf(e, t) ∈ [−1, 0) (5.2)

Now, we can prove that this algorithm complies with the conditions for

Satisfaction Factor calculation:
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• Condition 1: Given e satisfies t, and e′ does not satisfy t′. From

Equation 5.1, we have sf(e, t) ≥ 0. From Equation 5.2, we have

sf(e′, t′) < 0. Then we have sf(e, t) > sf(e′, t′).

• Condition 2: Both e and e′ satisfy t, e satisfies all the Optional Re-

quirements those are satisfied by e′, and e′ does not satisfy at least

one Optional Requirement which is satisfied by e′ ⇒ (e, t) has less

unsatisfied Optional Requirements than (e′, t) ⇒ sf(e, t) > sf(e′, t).

• Condition 3: Neither e nor e′ satisfies t, e satisfies all the requirements

those are satisfied by e′, and e′ does not satisfy at least one requirement

which is satisfied by e⇒ (e, t) has less unsatisfied Requirements than

(e′, t) ⇒ sf(e, t) > sf(e′, t).

The Satisfaction Factor can be extended. Domain experts can assign

different weights to the requirements and Optional Requirements. For

example, if among the Optional Requirements, the network bandwidth is

most important to execute a data uploading task, the developer may want

to assign higher weight to the Optional Requirement on bandwidth.

5.2 Approximate Allocation vs. Optimal Allocation

With the definition of Satisfaction Factor, we can compare how much an

Environment satisfies the requirements and Optional Requirements of a

task.

Definition 15 Optimal Allocation An Optimal Allocation is an allocation

of process on a composite Environment, which has higher satisfaction than

any other allocation.

In this thesis, we calculate the satisfaction of a process by adding up

the Satisfaction Factor of all tasks. The resource allocation algorithm we
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introduced in previous chapters gives an approximate allocation instead of

optimal allocation. More exactly, it gives the first valid allocation that the

algorithm finds. Approximate Allocation can emphasize on different per-

formance parameters, including Satisfaction Factor, algorithm efficiency.

Furthermore, a process is not simply a set of unrelated tasks. Tasks in

a process are organized in structure, and there are control flow and data

flow dependence among tasks. Another consideration in task allocation is

the dependence among tasks.

5.3 Algorithm Complexity

Finding the optimal allocation for a task has no efficient solution, because

we need to examine all allocations. Fortunately, finding an allocation for

a task can be solved in logarithm time, using the resource allocation al-

gorithm. Finding an approximate allocation has intermediate complexity,

depending on what and to which extent the algorithm optimizes.

5.4 Optimization Technique: Data Prefetching

In last two sections, we discussed the optimization strategies of task alloca-

tion. Our current framework deploys and executes tasks in Environments

with required resources. Mobile Environments are important targeted de-

vices for the task deployment.

Previous sections in this chapter is about task allocation optimization,

studying the strategy to better allocate subprocesses and tasks across En-

vironments. This section is about a data prefetching technique which is

restricted in atomic Environment. The assumption is that a subprocess

or a set of tasks is already deployed in an atomic Environment. The data

prefetching algorithm predicts and fetches data into the atomic Environ-
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ment for later usage.

Due to the limitation of hardware resources on mobile devices, data

access to remote server greatly extends the functionalities of these mobile

applications. Unfortunately, the wireless connectivity is still unreliable for

current mobile devices, especially in developing countries, remote areas and

certain working environments (e.g., some areas in hospitals with wireless

signal restriction). On the other hand, more complex mobile applications

supported by remote server are designed. The demand of remote data

access on mobile devices is increasing rapidly. When the mobile worker is

working in an area with unreliable wireless connection, the operations that

depend on remote data access become unavailable.

Data prefetching has been proposed as a method to reduce the appli-

cation response latency caused by slow network communication. The data

prefetching systems predict the data objects that are going to be needed by

the application in the future, and retrieve them from the remote server into

the local cache before they are needed. The application can use the data

object in local cache if the needed data is prefetched there. By doing so,

the application can reduce the on-demand data access over the unreliable

connection and shorten the response latency.

However, data prefetching is a double-edge sword. The wrong predic-

tion causes the system to prefetch data objects that are never used by

the application. It brings unnecessary energy consumption, wastes net-

work data usage and congests the precious connection bandwidth. Careful

study must be done to balance the cost and benefit of data prefetching.

Current prefetching systems focus more on using the limited cache capacity

or network connection resources to prefetch as much data as possible. And

the design goal is more concerned about the hit ratio of the prefetching, or

the trade-off between access latency and prefetching cost.

However, with the recent development on hardware, storage capacity on
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on mobile devices is no longer a major concern. Under the context of mo-

bile workforces, power supply (in the working field or in car) is frequently

available to recharge the working device, and most working devices would

have sufficient or even unlimited data plan to use. The major concern

for mobile workers is the availability of essential services under various

contexts (connectivity, remaining battery amount, current working status,

etc.) The availability of services depends on data availability in run-time.

And the less important services can be delayed until the connectivity is

available again later.

In this section, we propose a model to modularize the mobile application

into operations, and to describe dependency on data objects. The model

allows the domain experts to specify the priorities of different operations.

On top of the model, two different algorithms are proposed to schedule the

prefetching of operations.

The Markov Chain based algorithm fits procedure-oriented applications

better. It modularizes the operations in mobile application as Markov

Chain. Based on the Markov Chain model, two strategies are studied:

Incremental Prefetching is more pessimistic, and focuses on value of next

one prefetched operation; while Complete Prefetching is more optimistic,

and considers not only the value of next prefetched operation itself but

also the additional value that it makes successive operations reachable.

Dependency Graph based algorithm is more suitable for content-oriented

applications. It can generate operation probabilities based on the Depen-

dency Graph or from execution history. Max priorities are passed through

operation dependencies, thus guarantees the dependencies are satisfied in

prefetched operations. Both algorithms differ from existing solutions in

exploiting the priority of operations specified by domain expert. And both

allow dynamic adjustment to adapt to changing contexts, such as connec-

tivity, power status.
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The data prefetching technique introduced in this section can apply to

applications constructed by different components, including the processes

on our framework. With the data prefetching technique, the framework

can accelerate the task execution in atomic Environments and increase the

service availability.

5.4.1 Scenario and Challenges

In this subsection, we are going to depict a motivating scenario of mobile-

assisted healthcare service and the challenges from it.

A hospital provides healthcare services to elderlies who are in high risk

of various health problems. Nurses are equipped with smartphones, and

mobile applications are developed to assist the periodical healthcare tasks.

A nurse follows similar routine every day: In the morning she arrives at

the hospital, fetches her working device - a smartphone installed with ap-

plication designed to assist home-visiting tasks. She launches the mobile

application, and receives a list of patients that she needs to visit, which is

planned by the hospital considering the locations of patients’ houses.

The nurse arrives at the first patient’s house and carries out the health-

care service with the assistance of the mobile application. The mobile

application executes the healthcare service tasks composed by operations

and guides the nurse through the process task by task. During the process,

the mobile application retrieves information from the server in hospital and

sends back the information entered by nurse or measured by connected de-

vices. After the task at a patient is finished, the nurse goes to the next

patient on the list. After all the patients on today’s list are visited, she

returns to the hospital.

By communicating with the remote server, the mobile application is able

to show more related information of the patients and collect the data in

real-time fashion. However, due to the limitation of current mobile devices
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and wireless network, there are several challenges from this scenario:

1. The patients’ residences can be sparsely distributed in the area, and

some of them can be in the location where wireless data connection

on phone is weak or even unavailable. And many patients are elderlies

and have not installed Wi-Fi access point in house. In these locations

where the connection is weak or lost, the nurse is not able to carry

on the tasks whenever the mobile application needs to access the data

from the server or send data back.

2. The data access latency makes the mobile application less responsive,

thus hinders the usability and user experience of the application.

3. The energy consumption due to the data communication drains the

limited battery of the mobile devices.

It is difficult to predict the data that are going to be required later

in runtime. The misconducted data prefetching creates unnecessary net-

work traffic and occupies precious mobile network bandwidth. Ad-hoc

design and tuning of data prefetching and synchronization are techniques

to overcome these challenges under different contexts [40, 54, 15]. These

approaches contributed in solving the challenges in their own settings.

However, mobile workforces first would like to ensure the availability of

essential service before try to improve responsiveness. To better utilize the

increased resources to tackle the challenges faced by mobile workforces, we

need a data prefetching solution focuses on increasing the availability of

essential operations. More specifically, we need:

• a model to modularize the mobile application. Data dependency of

the application modules and dependencies across modules need to be

specified. And it allows domain experts to specify the priorities of

operations;
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• a prefetching algorithm that considers the priority of application mod-

ules to be first-class citizen, and exploit both current and future avail-

able network bandwidth and cache capacity to maximize the avail-

ability of essential operations;

• a framework to handle the details of prefetching algorithm implemen-

tation, and still retains the control of operation priority for domain ex-

perts. Domain experts only need to define the priorities of operations.

Developers can help to specify the data dependencies of operations.

Then the framework takes care of other parameters (e.g., the prob-

abilities of operations) for the prefetching algorithm, generates the

prefetching schedule and makes necessary adjustment in run-time.

5.4.2 Model of Data and Operations

To support the data prefetching in mobile application, we first model the

data and specify the concerned parameters of data, then the application

is modularized into operations, and the parameters concerning the depen-

dencies are also defined. To be general, we separate the abstract models

with the framework design that adopts the models to carry out the data

prefetching. Thus, the data and operation models defined here are reusable

for different frameworks.

Data Objects

Here, we are only interested in the data objects that are going to be fetched

from the remote server onto the mobile devices. These data objects are

serializable, and it is up to the application to parse or parcel the data

objects. An data object is denoted by di, set of all communicated data D,

and data size Size(di).
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The framework is going to provide a data access Application Program-

ming Interface (API) for the application. So it can extract the data de-

pendency of operations from the application without extra efforts from the

developers. If the application does not know the data size before start-

ing prefetching algorithm, the algorithm can give a approximate solution,

which is also sufficient for our purpose.

Operation

We modularize a mobile application into operations. An operation con-

tains tightly-coupled computation, user interaction and data access. For

example, it can correspond to an Activity 1 in Android programming.

Here we focus on the remote data access, i.e., the operation fetches the

data from the remote server in runtime. When an operation needs to fetch

the data from the remote server using the API, we say that it depends on

that data object.

An operation is denoted with o, and the set of all operations in an

application is O. All data dependencies of an operation can be denoted

with a set of relation DataDependencies = {(oi, Di)|Di ⊆ D}.
Operation priority oi.priority is an essential parameter in our model.

In a large mobile application, the size of data required by all operations

is large. The scarce resources on mobile devices restricts the prefetching

of all the data required. However, in many cases, we are interested in

ensuring the availability of an essential operations. Assigning priorities to

operations is then necessary. Priority of an operation is the importance for

it to be available when it is needed, and it represents the business value

of that operation. So the domain experts need to specify the priorities of

different operations and the framework should not alter such specification

in runtime, unlike the dynamic adjustment of execution probability.

1http://developer.android.com/reference/android/app/Activity.html

82



5.4. OPTIMIZATION TECHNIQUE: DATA PREFETCHING

The priority is specified by domain expert as an integer ranging in [1, 10]

with 10 as the highest priority. For example, the doctor specifies that in a

blood pressure examination, the operation with the highest priority is to

record the blood pressure value, while the advices on food and exercise are

with lower priority.

The hospital can assign priorities to different tasks to be performed by

a nurse in a day. For example, the hospital assigned the priority of a task

tk in the nurse’s daily schedule to tk.priority and the doctor specified the

priority of an operation oi within the process tk to oi.priorityInProcess,

then the priority of the operation within the day is:

oi.priority = tk.priority ∗ oi.priorityInTask

The most valuable operation that worth the cost of data prefetching to

ensure its availability is then the operation that with the highest priority

and execution probability. More generally, the value of an operation can

be modeled as oi.value = oi.priority × oi.probability.

5.4.3 Markov Chain based Prefetching Algorithm

This subsection describes the prefetching algorithm based on Markov Chain.

It addresses the procedure-oriented applications which are more structured,

and the transition operations are well defined.

Using Markov Chain model, an execution instance of an application is a

random process of operations executions, and the probability of transitions

between operations depends only on current state (operation). In proce-

dural applications, it is often the case that the sequence of operations are

decided during the application development, and the probability to transit

to the next operation depends on current operation. This probability can

be extracted from the execution history. The set of transitions between
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Figure 5.2: Operation Dependency Graph. A vertex represents an operation oi, with

specified priority oi.priority labeled in the circle. An arrow represents a transition, with

probability oi.probability calculated by the framework labeled on the arrow. The number

below the vertex is the value of operation oi.value.

operations is denoted as:

T = {(oi, oj)|if current operation is oi, the next operation is possible to be oj}

Calculating Probabilities of Operations

Fig. 5.2. shows how an application is structured as operations and tran-

sition between operations. The probability of an operation being exe-

cuted is initially calculated from the operation execution sequence graph,

based on the provided probability of taking different branches. If such

branching probability is unknown, they are set to uniform distribution.

And after later iterations, the probabilities are adjusted according to the

execution history. The calculated conditional probabilities of transitions

are denoted as:P (oj|oi), and the probability of a transition is denoted as

P (oi, oj) = P (oi)× P (oj|oi)
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Scheduling Algorithm based on Markov Chain Model

Depending on the prefetching limitation, there are two different scheduling

algorithms for Markov Chain Model.

Algorithm 1 Incremental Prefetching Algorithm based on Markov Chain

function Schedule(O, T, o0)

PrefetchQueue← {o0}
PrefetchRecall← (o0, 1) . map, key: operation o; value: the probability that it is

executed and the execution sequence from o0 to o falls in PrefetchQueue

OpenOperations← NextOperations(o0)

while OpenOperations 6= ∅ do

find out the operation o ∈ OpenOperations with highest o.recall × o.priority

PrefetchQueue.push(o)

OpenOperations.remove(o)

for all o′ ∈ NextOperations(o) do

if o′ /∈ PrefetchQueue then

OpenOperations.add(o′)

PrefetchRecall.put(o′, o.recall)

else

PrefetchRecall.put(o′, o.recall)

for all o′′ ∈ {o′′|o′′ ∈ OpenOperations ∧ o′′ is reachable from o′} dox

PrefetchRecall.put(o′′, o.recall)

end for

end if

end for

end while

return PrefetchQueue

end function

Incremental Prefetching: Whenever possible (e.g., available cache size

increases due to resources release or network is idle), Incremental Algo-

rithm incrementally prefetches the next operation with the highest value

whenever it is possible. The incremental algorithm (Algorithm 1) only con-

siders the value of the next prefetched operation, but neglects the value of
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Algorithm 2 Complete Prefetching Algorithm based on Markov Chain

function Schedule(O, T, o0)

for all o ∈ O do

o.value = o.priority × o.probability

o.av = o.value

end for

Decided← ∅
while Decided 6= O do

take an undecided operation o that all its next operations are decided (o ∈
(O −Decided) ∧ ∀o′|(o, o′) ∈ T ⇒ o′ ∈ Decided)

for all {o′|(o, o′) ∈ T} do

o.av+ = o′.av × P (o|o′)
end for

Decided.add(o)

end while

Queue← {o0}
while Queue 6= O do

Among operations that are reachable in one hop from Queue, find the one with

max accumulative value av, and add to the Queue

end while

return Queue

end function
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Figure 5.3: Incremental Prefetching

(step 1) (The number below the vertex

is the value of operation): B and C are

one hop reachable and B has the high-

est value, so the prefetch B; then C and

D are one hop reachable and D has the

highest value, so prefetch D; prefetch

the last one - C.
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Figure 5.4: Complete Prefetching (step

1) (The pair of number below the ver-

tex is the value/(accumulated value) of

operation): B and C are one hop reach-

able and C has the highest accumulated

value, so the prefetch C; then B and D

are one hop reachable and D has the

highest accumulated value, so prefetch

D; prefetch the last one - B.

its successive operations. It is more suitable when only one operation can

be prefetched, or the responsiveness is more concerned than availability.

Complete Prefetching: Complete Algorithm (Algorithm 2) always con-

siders the value of successive operations when calculating the value, even

only one more operation can be prefetched. It is more suitable when more

operations can be prefetched, or the availability is more concerned than

responsiveness.

Dynamic Adjustment

The application execution transits to a new operation, dynamic adjustment

of prefetching can be applied. Both Incremental Algorithm and Complete

Algorithm can be adjusted instead of calculating all over again.

When a new schedule is calculated, the next step is to find out in the

prefetched operations:
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• The operations that are also in new schedule. The prefetching of these

operations are skipped.

• The operations that are not in new schedule but are still reachable.

The prefetched data of these operations remain in the cache until the

cache is full, then among them those with lowest MaxDependingV alue

are replaced by the new prefetched data.

• The operations that are no longer reachable. The prefetched data are

removed.

5.4.4 Dependency Graph based Prefetching Algorithm

Different from procedure-oriented applications, content-centric applications

are composed by loosely coupled operations: they can be executed in any

order as long as the dependency between operations are satisfied. Transi-

tion graph of the operations becomes less useful for these applications since

the number of transitions is large and the probabilities of each transition

is low. To better deal with prefetching of these applications, we propose

Value Passing Algorithm which is based on the Dependency Graph (DG)

among operations.

If an operation oi is available only if another operation oj is available,

we say that oi depends on oj, denoted by oi → oj.

oi → oj ⇐⇒ (oi is available ⇒ oj is available )

Dependency among operations can be extracted from the application

structure (e.g. oi needs to invoke oj to fulfil its task), or inferred from

the execution log (e.g., whenever oi is executed, oj is also executed), or

specified by developers. Loop is not allowed in our operation dependency

definition. If such loop exists, we can merge operations on the loop into

one, sacrificing some precision.
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The operation dependency relation is transitive: oi → oj ∧ oj → ok ⇒
oi → ok The closure set of OperationDependencies (ODC) is denoted by:

ODC = {(oi, oj)|oi is available ⇒ oj is available}

or equivalently:

(oi, oj) ∈ ODC ⇐⇒ oi → oj

DirectOperationDependencies (DOD) is the set of dependencies among

two operations that no third operation lies in between:

DOD = {(oi, oj)|oi → oj∧((∀ok | oi → ok∧ok → oj) ⇐⇒ (ok = oi∨ok = oj))}

Calculating Probabilities of Operations

Algorithm 3 Probability Generation Algorithm based on Dependency Graph

function GenerateProbabilities(O,DOD)

for all o ∈ O do

o.probability = 1/|O|
end for

Decided← {o|no other operation depends on o}
while Decided 6= O do

take one undecided operation that no other undecided operation depends on it:

o /∈ Decided ∧ ∀o′ /∈ Decided, (o′, o) /∈ DOD

o.probability = P (o or o1 or o2 or . . . or on) o1, o2, . . . , on directly depend on o

Decided.add(o)

end while

Normalize probabilities of all operations

end function

Probabilities of operations are calculated in three steps: assign initial

probability; accumulate probabilities according to the operation depen-

dency; finally normalize the probabilities (see Algorithm 3). There are

three ways to initialize the probabilities of operations:
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1. Simple Probability Generation. Without knowledge about the

probabilities of operations, we assume that the probabilities of the

intend to execute operations are equal. Operations gain extra prob-

ability because other operations depend on them. From operation

dependency, probabilities of operations are accumulated and normal-

ized.

2. Pre-assigned Probability Generation. This algorithm is similar

with Simple Probability Generation except that the initial probabili-

ties are specified by domain experts.

3. Probability extraction from execution history. When execu-

tion history data is sufficient, we can also extract the probabilities of

operations directly from it.
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Prefetching Scheduling Algorithm based on Dependency Graph

Once the probabilities of operations are decided, we are able to schedule

the prefetching of operations. The algorithm (Algorithm 4) is divided into

two steps:

1. Passing the priority of operations along the dependency relations. A

max dependent priority (mdp) is defined of an operation, representing

the max priority of those operations that depend on it.

2. The value of each operation is calculated by maxdependentpriority×
probability. And the prefetching algorithm schedules from operations

with the highest value.

Algorithm 4 Prefetching Scheduling Algorithm based on Dependency Graph

function Schedule(O,DOD)

for all o ∈ O do

o.mdp = o.priority

o.value = o.mdp× o.probability

end for

Decided← {o|no other operation depends on o}
while Decided 6= O do

take one undecided operation which is not depended by other undecided opera-

tion: o /∈ Decided ∧ ∀o′ /∈ Decided, (o′, o) /∈ DOD

o.mdp = max(o′.mdp) (o′, o) ∈ DOD

o.value = o.mdp× o.probability

Decided.add(o)

end while

Sort O according to value in descending order

end function

Dynamical Adjustment

After the prefetching is scheduled, the framework can greedily prefetch

as much as possible until the DataSizeLimit is met. However, the stor-
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age capacity of current smartphones is no longer a very scarce resource,

comparing to the network data usage and the battery consumption. It is

not always profitable to prefetch until the cache is full, under the circum-

stances where the energy and data usage is restricted. For example, in the

healthcare scenario, when the nurse has been working without charging for

a long time, the remaining battery may become a potential threat to the

availability of operations (and the whole device).

Looking back to the dependency graph based algorithm, operations on

the prefetching schedule has lower and lower value, and it becomes not

worth to prefetch any more, even the DataSizeLimit is not exhausted.

We introduce another constraint V alueThreshold to decide whether to

prefetch more operations. Since we know the max depending value of an op-

eration is larger or equal to all operations that depends on it: ∀oj|(oj, oi) ∈
DOD, oi.value ≥ oj.value. We can stop to prefetch when the algorithm

meets an operation with lower max depending value than the threshold.

When the context switches (an operation finishes, the mobile device

connects to a different network, or the power charger is plugged, etc.), a

new schedule is computed using these updated parameters:

• Initial operation is set to current operation. Operations that become

unreachable from current operation is pruned from the graph.

• Probability of operations. The probabilities of reachable operations

are updated.

• V alueThreshold considering the new context (connectivity, power sta-

tus). The V alueThreshold corresponding to different contexts can be

tuned in experiments.
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5.4.5 Simulation

We simulate both procedure-oriented and content-oriented mobile applica-

tions under Android Emulator and compare the performance of different

prefetching algorithms.

Markov Chain based Algorithms

The application simulates the same process in Figure 5.2. Data related

with each operation are simulated by a binary file with 10 K Byte of ran-

domly content. All the data are stored on a remote server, which is common

for mobile applications. Using the binary file with random content elim-

inate the possible distortion of simulation result caused by compression

techniques implemented in network. We simulate the unstable network by

adding random network delay in the emulator. When the delay is longer

than a threshold, we assume that this network connection fails.

Then we run the application for 50 times, which is sufficient for the

example process with 3 possible traces. The application makes random

decision to move to the next operation, according to the predefined proba-

bility at each branch. So the application takes a possible trace of operations

in each round. When the application is at an operation, it first checks in

the cache whether the data was prefetched. If the data was in the cache,

the operation succeeds, and the application runs the prefetching algorithm

to prefetch data for the next steps. If the data was not in the cache, we

assume that the operation fails and the application stops this round and

starts a new trace from the initial operation.

We set a cache size for each round, starting from 0 to 80 K Bytes

(large enough to prefetch the data for all operations). For each round, the

simulation outputs the sum of priorities of all the successfully executed

operations. Figure 5.7 shows the simulation result of Markov Chain based
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algorithms. X-axis represents the size limit of each prefetching (i.e., cache

size if we do not consider other limits such as network traffic limits or energy

consumption limit), and Y-axis represents the (average of 50 rounds) sum

of priorities of successful operations.

We compare the Complete Prefetching Algorithm, Incremental Prefetch-

ing Algorithm and Simple Prefetching Algorithm. Simple Prefetching Al-

gorithm prefetches the next-hop operations with highest probabilities at

each operation. We first observe from the diagram: when the cache size

is 0, no data can be prefetched so the application always fails, and the

sum of priorities is 0 for all algorithms; when the cache size is as large

as the total size of related data, the application is able to prefetch all the

data, so all the algorithms have the maximum sum of successful priorities,

and the values are equal. The difference is in the range between 0 and

maximum size: Both Markov Chain based algorithms have higher priority

sum than Simple Prefetching Algorithm; Complete Prefetching has similar

performance with Incremental Prefetching, and performs better when the

prefetch limit is 20 K Bytes or 50 K Bytes.

Dependency Graph based Algorithms

We implemented another Android application to simulate the content-

centric application corresponding to the Dependency Graph in Figure 5.5.

The simulation adopts the same procedure when executing an operation

as in the Markov Chain based Algorithm simulation: At each operation,

the application first checks whether the related data is cached. If not the

application fails; if yes the application runs the prefetching algorithm to

decide and prefetch data for the later operations.

One difference is that, for content-centric application simulation, the

application does not follow a predefined process but initiates operations

randomly. If the chosen operation depends on other operations, the appli-
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cation will execute the depended operations first. As the baseline, we also

implement a simple prefetching algorithm: it prefetches starting from the

operations that are depended by most operations.

Figure 5.8 shows the simulation result. When the prefetch size limit

(cache size) is 0, no operation will be successful. When the limit is large

enough to prefetch data for all operations, the priority sum is largest, and

different algorithms have the same result. When the limit is in between, our

Dependency Graph based Algorithm performs as well as Simple Algorithm

at some points, and outperforms it at other points.

5.4.6 Work Related with Data Prefetching

Data prefetching (or caching, which is related) has been a fundamental

approach to improve performance of different types of systems. It in-

volves predicting the possible demanded data for the applications, and

the mechanism to retrieve the data from the remote server onto the local

devices. Accompanied with data prefetching, another related technique is

data caching, which focuses on predicting the possible future reuse of the

already acquired data. While both prefetching and caching rely on the pre-
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diction of future data access, researches on prefetching in different types

of systems focus on balancing the cost and benefit of prefetching, due to

the possible increase in traffic and waste of energy.

Mobile Data Management

Trifonova and Ronchetti proposed an approach to hoard the learning ma-

terial on mobile devices [91]. For each learning session, it first predicts

the starting point to be the index page for the first time access, and then

ending point of last session for the later access. Then it predicts the re-

quired material along the learning process, according to the links across

pages. It uses user profile to capture the preference and style of different

groups of learners, and materials are prioritized to increase the chance of

more important materials to be hoarded. This approach is similar with our

Dependency based Algorithm. The difference is that Trifonova’s approach

exploits the rich domain knowledge on e-learning (learner profiling, learn-

ing material prioritizing); while our approach is more general and depends

only on the usage probability and user predefined priority.

For structured data, data ming techniques and materialized view are

popular techniques in predicting the data for prefetch or caching. For ex-

ample, the algorithms proposed by Agrawal and Srikant can extract asso-

ciation rules from database usage to decide which “basket” of data objects

should be prefetched as a batch [2]; Neto and Salgado proposed to mine

the SQL history of the mobile user and assign priority to a subset of data

for cache [59]. Jane et al. proposed to use association rule mining to de-

termine the data to prefetch and use Dual Valid Scopes to invalidate the

data in cache [47]. These researches focus more on the lower level data

record prediction, which is difficult in the changing context. Higgins et al.

proposed “Informed Mobile Prefetching” to let the application to inform

the intend of prefetch of data [44], then the prefetching system decides the
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intension with the highest value and prefetch the data opportunistically

according to the network status and available energy and data quota. The

“Informed Mobile Prefetching” inspired us with the abstract data access

API design and the idea of dynamic prefetching. While “Informed Mobile

Prefetching” requires extra development efforts to send prefetching intend,

and it also aims to trade off between latency and energy / traffic. Our

approach focuses on operation level prediction and our goal is to increase

the availability of operations.

Distributed File Systems

Accessing files under disconnections has been a research topic since the

early development of distributed file systems. Kistler and Satyanarayanan

proposed the three-state transition among “hoarding”, “emulation” and

“reintegration” of prefetching systems [49]. They studied the issues of de-

signing and implementing disconnected operation. SEER is another hoard-

ing framework for file systems [51]. It measures lifetime semantic distance

among files, clusters them into overlapping clusters and maintains mea-

surements and clusters as the file system evolves. Thanks to their pioneer

work, we can reuse the methodology of data reintegration, and focus on

the new challenges brought by the modern mobile devices. Different from

file prefetching, our approach address the availability of higher level opera-

tions, the actual data usage is performed by application through predefined

API. Today’s powerful mobile devices makes it possible and promising for

our prefetching approach.

World Wide Web

The fast response is one factor for the success of World Wide Web. The

data prefetching research in web application can be categorized into content-

based prefetching and history-based prefetching. Content-based prefetch-
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ing predict the future access by analyzing objects and links on the web

pages. [27] predict future requests based on keywords in anchor text of

URL. History-based prefetching uses dependency graph, Markov chain,

cost function, or data ming approaches to predict the future user request

[102]. Lymberopoulos et al. propose to use a machine learning approach

based on stochastic gradient boosting techniques to to predict the web ac-

cess on a per user basis [56]. Reda et al. proposed to a solution for user

to notify the kiosk by SMS to prefetch private data [77]. These studies

provide us inspiring ideas. Our major difference is that mobile workforce

applications has more clear scope of data access and structure of oper-

ations. Traditional web prefetching/caching techniques care more about

the access latency, and the intensiveness of network communication forces

them to conserve resources such as cache size and network bandwidth.

While we are more concerned on the availability of operations, and the

operation-oriented mobile working encourages the utilization of available

storage and traffic to improve the service availability.

5.4.7 Conclusion on Data Prefetching

The computational capability and wireless connectivity of mobile devices

are improving. Mobile devices constitute important part of the atomic

Environments in our model and framework. They increase the diversity of

executable tasks/processes and the service availability. However, the envi-

ronmental context of such mobile devices is becoming more complex, and

connectivity remains a threat to the availability of the mobile applications

used in field.

We proposed to differentiate the priority of different tasks/operations

in an application, and utilize the available resources (storage capacity, net-

work data usage etc.) to maximize the availability of essential operations.

Based on an abstract model, we design a framework and two different

98



5.5. TASK ALLOCATION IN RESOURCE-LIMITED ENVIRONMENTS

data prefetching scheduling algorithms. Markov Chain based algorithm has

more strength for applications that are procedure-oriented and structured

as sequential operations, while the Dependency Graph based algorithm is

more suitable for applications that are content-oriented and described by

operation dependency rules. Both algorithms take the priority of tasks/-

operations as input from the domain experts, infers the tasks/operation

execution probability, maximizes the availability of essential tasks/oper-

ations, and allows dynamic adjustment to changing contexts. Our data

prefetching algorithms were published in [66].

5.5 Task Allocation in Resource-limited Environments

In previous sections, we discussed the strategies and techniques to optimize

the execution performance of processes/tasks. To start from a simpler

setting, we had two assumptions in processes/tasks allocation:

1. Environments have sufficient resources in runtime for the allocated

processes/tasks, so multiples processes/tasks allocated in the atomic

Environment in the same time period can be executed.

2. All processes/tasks to be allocated are known at the beginning. Allo-

cation algorithm has the complete information about tasks and Envi-

ronments at initial state.

These assumptions establish in scenarios with smaller number of tasks.

They simplify the initial design and implementation of the framework.

However, when the number of processes/tasks to deploy and execute be-

comes too large, the Environments cannot deploy and execute them effi-

ciently. The first assumption does not establish.

In a continuously running framework, processes and tasks are generated

or assigned dynamically. One way to server the dynamically incoming
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processes is to hold them and execute them in a cycle. In a cycle, The

framework can collect a number of incoming processes and tasks, and then

deploy and execute them, after that start the next cycle. This method solve

the allocation problem but is inefficient because it holds the processes and

defers the execution of the earlier received process.

To improve the process/task allocation performance for resources-limited

Environments, we enhance the processes/tasks allocation to address the

limited resources, and further to cope with the dynamically incoming pro-

cesses/tasks.

5.5.1 Task Allocation Optimization for Resource-limited Envi-

ronments

The problem of allocating tasks in given Environments is similar with “Bin

Packing Problem”. [20] Bin Packing Problem is the problem of finding a

solution that uses least containers to pack a set of given objects. Our

problem is to find a solution that packs most objects (tasks) into a set of

given containers (Environments).

We use a vector to represent the requirements of a task: req =<

req1, req2, . . . , reqn >, and a vector to represent the resources available

on an Environment: res =< res1, res2, . . . , resn >. For example, if three

types of requirements are modeled: bandwidth, available memory size, and

availability of Bluetooth connection, we use < 100, 128, 1 > to represent

the requirements of a task which requires 100 (kbps) bandwidth, 128 (MB)

available memory size, and Bluetooth connectivity. We use < 800, 256, 1 >

to represent the resource of an Environment at a certain state, which has

800 (kbps) bandwidth, 256 (MB) available memory and Bluetooth connec-

tivity. The vectors are comparable but addition and subtraction does not

work, because allocating two or more tasks together may not occupy the

resources as the sum of them. To decide whether a task fits in an Envi-

100



5.5. TASK ALLOCATION IN RESOURCE-LIMITED ENVIRONMENTS

ronment, we need to detect the available resources on that Environment

in run-time, and compare it with the requirements of the task. The more

types of requirements are modeled, the higher dimension the vector has.

We have one assumption here: allocating a task in an Environment will

not make the previously allocated tasks unsatisfied. When we detect the

satisfaction in run-time, this assumption establishes, because the function

should return “unsatisfied” if the new task will hamper an allocated task.

Here is the formal statement of the problem: given a set of independent

tasks (T = {T1, T2, . . . , Tm}) and their priorities ({P1, P2, . . . , Pm}), vectors

((Req)) those represent the requirements of the tasks, a set of atomic En-

vironments (E), and a function to detect the run-time available resources

on the Environments (res(e)), find an allocation of tasks to Environments

with largest sum of priorites (A = {< t, e > |t ∈ T ∧ e ∈ E ∧ e satisfies t})
A trivial solution is to compare all the possible allocations to find out

the one with highest sum of task priorities allocated. For m tasks and n

Environments, each task can be allocated to one of the n Environments, or

not allocated. There are nm+1 possible allocations, so the time complexity

of this trivial solution is O(nm+1).

Base on the hybrid architecture that we adopted for the first version

of framework, we propose an approximate algorithm: we first sort the

tasks by priority, and then start to allocate from the task with highest

priority exploiting the function of controllers in hybrid architecture. When

a controller receives a task, it checks the resource tree to see if a child

Environment satisfies the requirements. If yes, the task is sent to that child

Environment; otherwise, the controller responds that this Environment

does not satisfy the task.

Sorting the tasks has the time complexity of m ∗ log(m), and allocating

the tasks in the hierarchical Environments has the time complexity of m ∗
log(n), so the overall time complexity of the algorithm is m ∗ log(m) +m ∗
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log(n), i.e. m ∗ (log(m) + log(n)).

The algorithm does not always produce the optimal solution. The trick

is on the algorithm for a controller to decide whether a child Environment

satisfies a task or not. Depending on the relationship between the controller

decision and the reality, we have four situations:

1. Controller decision matches the reality. It means that the controller

always make the correct decision about whether a child Environment

satisfies a task or not.

2. When a controller decides that a child Environment satisfies a task, it

is always correct. When a controller decides that a child Environment

does not satisfy a task, it is not always correct.

3. When a controller decides that a child Environment does not satisfies

a task, it is always correct. When a controller decides that a child

Environment satisfies a task, it is not always correct.

4. Whatever decision (a child Environment satisfy a task or not) a con-

troller makes, it is not always correct. In this case, the controller

make the “best effort” decision based on the incomplete information

on children Environment resources or incomplete calculation.

In situation 1, to get the exact result, the controller has to check all the

children Environments as well as all the descendants. The time complexity

of such operation is n, making the overall algorithm m ∗ n. In situation

2, 3 and 4, approximate algorithms can make fast decisions based on the

aggregated information on children Environments. Algorithm for situation

2 is too pessimistic, whereas algorithm for situation 3 is too optimistic.

An example algorithm is to use the upper/lower bound of the resources

in the children Environments in calculation. The error comes from the

variance on the resources of children Environments. When the children
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Environments have smaller variance on resources, the algorithm decision

error is smaller.

When multiple children Environments satisfy the same task, we apply

the Satisfaction Factor to select a child Environment with the highest Sat-

isfaction Factor.

To address the problem of limited resources, the algorithm needs to

track the available resource in run-time. One solution is to measure and

report the resources. When a task is allocated to an Environment or a

task execution is finished, the controller updates the amount of available

resources.

5.5.2 Task Allocation Optimization for Dynamically Incoming

Tasks

This problem is similar with the “Dynamic Bin Packing Problem”. “Bin

Packing Problem” is proven to be an NP-hard problem [20]. The difficulty

comes from the unpredictable arrival of tasks, because the previous sorting

solution fails without knowing all the tasks.

We propose the optimization algorithm based on the previous subsec-

tion. For those tasks which are known, we apply the same algorithm to

allocate them to the Environments. Later, when a new task arrives, we

find an Environment that satisfies the task. We run the algorithm twice,

first by checking the static resources, and second by checking the run-time

available resources. The two results are two candidate locations for the

new task: the first is the location where the task can be deployed when

the Environments have no other tasks running; and the second is the lo-

cation when the Environments are deployed with previous tasks. We can

deploy the new task onto either one of these locations if they are different.

Deploying onto the first location requires migrating at least one previous

deployed task out of the Environment, which causes an overhead. The
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decision depends on the comparison of cost and benefit of task migration,

and is not further discussed in this thesis.

5.5.3 Conclusion on Task Allocation Optimization

Optimizing tasks allocation is no easy task, because there are many factors

to consider: the priority of tasks, resources available on Environments,

satisfaction between task’s requirements and the Environment’s resources,

run-time status of task execution and Environments’ workload.

Finding the optimal allocation requires high time complexity. Approx-

imate solutions can exploit the hierarchical resources information of Envi-

ronments to reduce the time complexity of the allocation algorithm. The

price is that some tasks may miss to be allocated when the Environments

do have sufficient resources.

Allowing tasks to arrive and leave further complicates the problem. Our

algorithm handles this dynamic allocation well, although the performance

is to be tuned. More sophisticated optimization techniques were discussed

in [65].
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Chapter 6

Related work

The same as the structure of this thesis, our work can be divided into

several parts: model, architecture, task deployment and execution, opti-

mization. Works related with optimization techniques and algorithms such

as prefetching algorithms and task allocation, were discussed in Chapter

5, because they are specific topics and relatively independent of the rest

of the thesis. In this chapter, we discuss the related work focusing on

abstract model, overlay network architecture, and business process/tasks

deployment and execution on mobile.

6.1 Model

Modeling software systems has been a research topic for software engi-

neering and related communities. In the past years, research on service

science and engineering and cloud computing has developed a set of con-

cepts, methodologies, tools and prototypes, which inspire us on the model

of Environment-as-a-Service. We present the related work from different

aspects:
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6.1.1 Service on Devices

Researchers have invested efforts to abstract the physical interfaces of per-

vasive devices into software services. Abstract interfaces separate the soft-

ware development into different layers, and increase the reusability and

interoperability of software components.

Frameworks that involve devices were proposed for proprietary program-

ming lanuaguages. The industrial OSGi framework proposes a service

gateway to manage the devices as Java modules. It decouples the work

of system integrators and the devices developers, allowing discovery and

dynamic integration of devices in enterprise systems [26]. Based on OSGi

framework, Helal et al. developed the Gator Tech Smart House (GTSH),

which is an experimental smart home instrumented with a range of sensing

and smart technologies [41]. OSGi is only for Java platform, and there is

a center to manage the service lifecycle (install, uninstall, start, stop) and

a registry that manages the process of “publish, find, bind”. So it can be

used in cross-platform environment and without a unique center to mange

the resources. In contrast, our service model is not limited to a specific

platform (such as Java for OSGi), and Environments are designed to be

autonomous and composable with the resources management and routing

mechanism.

A recent software architecture is Service-Oriented Architecture [29].

It models software applications into pieces (services) which provide self-

contained functions to other applications. Services can be invoked across

the network via a vendor-independent protocol. Web Service is a common

implementation of the communication protocol for SOA. Tergujeff et al.

demonstrated that it is possible to consume Web Services on light-weight

J2ME-enabled mobile devices [90]. To use the resources on mobile devices,

we need to provide services on mobile devices, instead of only consuming
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services on network. Srirama et al. experimented to implement a Web

Service Host on smartphones [87]. Due to the resource limits, hosting the

traditional Web Services on mobile devices is expensive. As experimental

work, it did not mention specific functions on mobile devices. The privacy

and security concern is also not addressed.

“SODA” (Service Oriented Device Architecture) proposes an abstract

model to bridge the device interface and the SOA bus [23]. SODA uses

device adapters to talk with devices of proprietary or industry standard,

and provides interfaces complying Service-Oriented Architecture. SODA

focuses on converting physical devices into standard invocable services,

while the services discovery and composition are left to the traditional

Service-Oriented Architecture standards and tools. In our argument, tra-

ditional SOA tools are usually designed for stationery computers thus are

too “heavy” for mobile devices. And traditional way of service registry

management does not fit well with mobile devices, because they are unsta-

ble difficult to address. The resource scarcity and primitiveness to private

environments make people reluctant to convert their devices into services

and publish to a public (or even limited access within an organization) reg-

istry. Our framework supports mobile devices better, and provides finer

granularity management and access control for groups of devices, which

fits the organization hierarchy.

Huerta-Canepa et al. proposed a solution to share the resources on

mobile devices to provide virtual cloud services [45]. Depending on the

context, resource-intensive computation is offloaded to nearby mobile de-

vices via an ad-hoc network. The devices in vicinity are discovered in

P2P scheme. This approach does not solve the resource scarcity and se-

curity/privacy issues. With the cloud infrastructure and ever improving

wireless connection coverage, it becomes easier to offload the heavy com-

putation tasks to more powerful cloud infrastructure. Our approach is
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focused on exploiting the specific functions of devices in field.

Jae Yoo Lee et al. designed a framework to capture mobile context for

applications [53]. On client side, the framework has a three layer design

(physical, service, application), and it uses sensors on mobile devices to

collect and infer context situation for different application use. On server

side, it uses a Model-View-Controller (MVC) architecture to store the col-

lected context information as well as the context knowledge database. This

framework supports an interesting way of application development: define

rules to react on different contexts. However, the framework only provides

services on context sensing, and the effectiveness of rule-based application

development is not discussed.

6.1.2 Service Discovery

In their survey, Ververidis and Polyzos analyze existing research in service

discovery for Mobile Ad Hoc Networks (MANETs), and pointed out one

open issue is that these protocols and standards lack of interoperability

[93]. Chakraborty et al. proposed a de-centralized architecture to support

the service composition in ad-hoc environment. This approach modeled

devices as the basic components in the system and installed middleware

on these devices, thus it is not able to address the emerging devices with

limited capacities. And the one-layer architecture is not suitable for the

networks those are not managed by a unique organization [14].

Rasch, Li et al. proposed to personalize the service discovery based on

the context [73]. They proposed a model Hyperspace Analogue to Context

(HAC) to describe context, service, and user preference. The proposed

approach proactively captures the user’s context, and presents the most

relevant services in response to the change of context, services, or user

preferences. The approach provides useful hints to our future improvement

on context-aware service discovery. Despite the fact that it captures the
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disruption of services, it does not address the challenges of services running

on mobile devices, such as mobility and more strict access control.

6.1.3 Service Composition in Pervasive Environment

Kyusakov et al. deployed SOAP protocol directly on sensor nodes, trans-

lating into the lower level TCP/IP based API invocation [37]. It takes lots

of efforts to implement the invocation conversion from SOAP to TCP/IP.

And the problem of service discovery and management is still to be solved.

Ravindranath, Lenin, et al. [75] proposed a task execution framework

for non-expert users to compose tasks for single or multiple devices. How-

ever, the dependence across multiple devices needs to be hardcoded, which

is difficult at design time and prune to failure.

The aforementioned researches of service on devices focus on abstracting

individual devices and enabling service discovery in a single environment,

our model focus on composition of mobile environments as well as their

services, thus is more scalable to network size.

6.1.4 Distributed Application Processing on Mobile Devices

Cyber foraging is a technique to offload resource-intensive tasks from mo-

bile devices to more powerful surrogate devices nearby [80, 83, 84]. Flinn

reviewed the development of the cyber foraging research, and discussed

how cyber foraging systems partition and offload data and computation

[32]. Kristensen et al. designed a framework “Locusts” [50]. They mod-

eled computational tasks as directed graphs composed by services. The

resource-intensive services can be offloaded at runtime to surrogates. A

Lucusts daemon uses UDP broadcast over Wi-Fi to detect nearby surro-

gates. Ha et al. proposed “Just-in-time” provisioning for cyber foraging

[38]. It improves the Virtual Machine migration efficiency by provisioning
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a set of VM images of common systems, and a compressed binary differ-

ence that encompasses the customization such as installed libraries. This

VM-based solution is too “heavy” for mobile devices.

Balan et al. proposed a solution for developers to modify mobile ap-

plications to partition and offload computation to servers [10]. However,

the framework helps only in generating the API stubs. It requires devel-

opers to manually locate the part of application that worth offloading, and

reimplement the offloaded component on server.

6.2 Architecture

In Chapter 3, we presented three possible architectures for our framework:

centralized architecture, P2P architecture, and hybrid architecture. In this

section, we discuss the literatures on architectures, network topology and

communication protocols of different network systems, and compare with

our framework.

DNS (Domain Name System) decomposes domain name look up service

into different levels [57]. Each domain server resolves a part and forward

the look up request to the next subdomain server. DNS has a different en-

vironment setting: servers are well connected, and provide similar services.

Sensor Network Systems form ad-hoc networks from distributed resource-

restricted devices [3]. The sensor nodes usually have similar capacities and

share the same connection protocol. Traditional network routing proto-

cols enable the end-to-end message transmission [70]. Peer-to-peer (P2P)

systems enables resources sharing and allocating among peers [5].

The distributed network systems provide a set of useful protocols and

network structures. We adopt similar hierarchical controller design as DNS

and reuse underlying mechanisms (e.g., flooding, election) in WSNs and

P2P systems. However, our approach works on top of heterogeneous de-
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vices and targets for execution of tasks that have dependency among them.

Our proposal of Environment Composition and routing also addresses the

specific concern on unreliability of devices and connections.

6.3 Process Deployment and Execution on Mobile

Devices

Light-weight business process engines have been developed to support mo-

bile process execution. Sliver [39] is BPEL process engine for mobile device,

but as it stated, the task allocation and data distribution challenges are

not solved. The ROME4EU project [79] enables the single task assignment

from a team leader’s smartphone to other members’ phones. It does not

support assignment of process other than single tasks, and relies on the

network during process deployment. Presto [36] is a pluggable platform

that allows mobile users to perform different tasks depending on roles,

physical environment, and process state. Since its focus is on process de-

velopment on Internet of Things, physical deployment of process on mobile

device during run-time is not mentioned in the paper and the linked project

website.

Efforts have been investigated to tolerate the unreliability of mobile de-

vices in business process execution. Philips et al. designed a new workflow

language “NOW” to support dynamic service discovery and communication

to tolerate the communication or service failure in nomadic network [68].

Similarly, Mostarda et al. described an approach that can automatically

generate a distributed choreographic implementation of a logically central-

ized orchestration process [58]. Different from these works, our focus is

to enable dynamic activity assignment. Zaplata and Lamersdorf proposed

a process management resource sharing and billing mechanism [99]. But

it still depends on connection, if not worse due to its peer-to-peer process
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engine sharing. Our process engine differs in the distributed way of process

execution. Processes are decomposed into subprocesses or tasks, and then

assigned to the Environments with required resources for execution.

Another topic related with process enactment on mobile is context con-

straints of business process. It has been studied for business process task

access control [82, 96]. Our context constraints serve the similar purpose

of activity assignment and execution. The proposed model of context con-

straints differs from others in the separation of assignment constraints and

execution constraints. Under partially connected environment, this two-

step control on constraints diminishes invalid activity assignment at early

stage, and still enforces an accurate control of constraints on execution

context.
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Chapter 7

Conclusion, Limitations and Future

Work

7.1 Conclusion

More and more devices other than traditional computers, are becoming

“smart”. They include mobile phones, tablets, wearable devices, domestic

electronics, vehicles, etc. They have more powerful computational capac-

ity, and are connected with each other through different types of connec-

tion (WI-FI, Bluetooth, etc.). When these diverse devices are connected

together, there is high potential to create powerful, diverse, and valuable

applications for different industries. However, traditional software develop-

ment as well as recent research on is facing the difficulty in deploying onto

such complex environment: devices have different hardware configuration;

their connectivities are not reliable; their connection topologies changes

with the movement of physical devices; different users have different access

privilege to different groups of devices.

We studied the characteristics of these connected devices and proposed

a theoretical model of the network of devices. We modeled the connected

devices into hierarchical “Environments”, which provide services on top of

the underlying heterogeneous devices. To support infrastructural functions
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of Environment-as-a-Service model, we proposed the resource management

and message routing mechanism. Different network architectures are dis-

cussed, focusing on the resource management and message routing design

and performance regarding to scalability and protocol efficiency.

We developed a proof-of-concept framework, based on Android smart-

phones. It proves the feasibility of model, resource management and rout-

ing protocol. Tasks can be deployed onto the devices with required re-

sources. For atomic Environments, we designed and implemented a light-

weight process engine to orchestrate the enactment of assigned processes/-

tasks. Several examples of tasks are supported by the light-weight pro-

cess engine, including email, Short Message Service, barcode reading, form

generation (generate a form according to the specified parameters for user

interaction).

At the end, we presented the possible optimization for the framework,

including a data prefetching mechanism for facilitate the task execution

on atomic Environments, and approximate algorithms for dynamic task

allocation.

The innovation of this work includes:

• The theoretical Environment-as-a-Service model that abstracts the

heterogeneous devices to a hierarchical and composable structure.

• The process and task routing protocol design based on the resource

management.

• Implementation of a proof-of-concept framework based on the model.

Processes and tasks generated in any Environment can be allocated

to the destination Environment with required resources.

• A mobile process engine for process orchestration for Android smart-

phones.
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• A data prefetching mechanism for task execution on mobile devices

and an approximate algorithm to allocate tasks on resouce limited

devices.

7.2 Limitations

Our Environment-as-a-Service model adopts hybrid architecture with con-

trollers in Environments. The number of overlay network level and the

size of Environments cannot be too large. Otherwise it compromises the

performance of resource management and routing, because: the workload

of controller increases linearly with the Environment size; and the effec-

tiveness of resource allocation algorithm decreases when the network level

increases. Although the test of preliminary framework gained satisfying

result, we have not done test on large scale network to experiment the

maximum supported number of levels and size of Environments.

Current framework includes a set of predefined services, which are ready

to use for invocation and service composition. Tasks or processes can only

invoke predefined services so far. Although the framework is open, and

it allows new services definition and publishing, we have not implemented

the mechanism for service discovery for runtime.

We support limited set of business process structures. Some structures

require complex concurrency control and are not supported in current im-

plementation. Our learned the lesson that it is difficult to support tradi-

tional business process enactment on mobile devices due to the resource

limitation. We restricted the effort to supporting the essential set of BPMN

structures, and focused on the mobile specific services which are more at-

tractive.
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7.3 Future Work

In the future, the framework can be better improved by providing more

services, such as process/task deployment and execution accounting. The

Environment-as-a-Service model can be a real business model only with

the corresponding accounting.

We need to make the new services publication and discovery easier.

One idea is to build a market (like Apple AppStore [7] or Google Play

[69]), which allows the publication and acquisition of services/processes

developed by third party developers. It can motivate the process design

and encourage the reuse of good process design.

The performance study under large scale networks is yet to be evaluated.

More services can be implemented on mobile process engine to reduce the

repetitive implementation of common functions.
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