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A Tulio ed Annamaria

Il giorno piú bello? . . .Oggi.
La cosa piú facile? . . . Sbagliarsi.

L’ostacolo piú grande? . . . La paura.
Lo sbaglio peggiore? . . .Arrendersi.

La radice di tutti i mali? . . . L’ egoismo.
La distrazione piú bella? . . . Il lavoro.

La peggiore sconfitta? . . . Lo scoraggiamento.
I migliori insegnanti?. . . I bambini.

La prima necessitá?. . . Parlare con gli altri.
La cosa che piú fa felici? . . . Essere di aiuto agli altri.

Il Mistero piú grande? . . . La morte.
Il peggiore difetto? . . . Il malumore.

La persona piú pericolosa?. . . Il bugiardo.
Il sentimento piú dannoso?. . . Il rancore.

Il regalo piú bello? . . . Il perdono.
La cosa di cui non se ne puó fare a meno? . . . La casa.

La strada piú rapida? . . . Il cammino giusto.
La sensazione piú gratificante? . . . La pace interiore.

Il gesto piú efficace? . . . Il sorriso.
Il migliore rimedio? . . . L’ ottimismo.

La maggiore soddisfazione? . . . Il dovere compiuto.
La forza piú potente del mondo? . . . La fede.

Le persone piú necessarie? . . . I genitori.
La cosa piú bella di tutte? . . . L’ AMORE!

Maria Teresa di Calcutta
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Abstract

The expansion of a Gene Regulatory Network (GRN) by finding additional causally-related
genes, is of great importance for our knowledge of biological systems and therefore relevant
for its biomedical and biotechnological applications.

Aim of the thesis work is the development and evaluation of a bioinformatic method for
GRN expansion. The method, named PC-IM, is based on the PC algorithm that discovers
causal relationships starting from purely observational data. PC-IM adopts an iterative
approach that overcomes the limitations of previous applications of PC to GRN discovery.

PC-IM takes in input the prior knowledge of a GRN (represented by nodes and re-
lationships) and gene expression data. The output is a list of genes which expands the
known GRN. Each gene in the list is ranked depending on the frequency it appears causally
relevant, normalized to the number of times it was possible to find it. Since each frequency
value is associated with precision and sensitivity values calculated using the prior knowl-
edge of the GRN, the method provides in output those genes that are above the value of
frequency that optimize precision and sensitivity (cut-off frequency).

In order to investigate the characteristics and the performances of PC-IM, in this
thesis work several parameters have been evaluated such as the influence of the type and
size of input gene expression data, of the number of iterations and of the type of GRN.
A comparative analysis of PC-IM versus another recent expansion method (GENIES) has
been also performed.

Finally, PC-IM has been applied to expand two real GRNs of the model plant Ara-
bidopsis thaliana.

Keywords[bioinformatics, iterative method, PC algorithm, expansion, causal relation-
ship, gene regulatory network, FOS-GRN]
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Chapter 1

Introduction

The genome is the entire genetic material (DNA or RNA in many types of virus) of an
organism (both unicellular and multicellular). It plays a central role in the control of all
cellular processes (e.g. the response of a cell to environmental signals, the differentiation
of cells and groups of cells in the unfolding of developmental programs, the replication of
the DNA preceding cell division). The central dogma of molecular biology says that the
genetic material (DNA) is transcribed into RNA (transcription process) and then trans-
lated into protein (translation process). This is the basic mechanism of gene expression
and it relies upon a unidirectional flow of the genetic information. Gene expression is
finely regulated within the cell [Lewin and Dover, 1994] both at transcription and trans-
lation levels and this control is essential to maintain cell homeostasis and to allow the
organism life. Proteins may function as:

- transcription factors binding to regulatory sites of other genes;

- enzymes catalyzing metabolic reactions;

- structural components of the cell;

- components of signal transduction pathways.

Different proteins may regulate the same gene or may form a single gene regulatory
complex. Two genes can have a causal interaction without having a physical interaction.
In fact there are indirect regulations via proteins and metabolism [Lauria and di Bernardo,
2010]. This variety of phenomena that regulates gene expression can be represented by
Gene Regulatory Network (GRN).

GRNs are the complex systems that are formed from the regulatory interactions (causal
relationships) between DNA, RNA and proteins. The final expression of a gene is deter-
mined from these regulatory interactions between genes and proteins. In a biological cell
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Figure 1.1: Example of a gene regulatory network.
Protein B and C independently activate gene D by binding to different regulatory sites on the
promoter of gene D. Protein D represses gene C and interacts with protein A to activate gene B.

there are positive and negative regulations. In the positive regulation (or activation) the
regulator activates the target genes, instead in the negative regulation (or inhibition) the
regulator inhibits the target genes. Figure 1.1 reports an example of the gene regulatory
network. More complex graphical conventions to represent cellular networks are proposed
by Kohn [1999] and Kohn et al. [2006].

One of the objectives of molecular biology is to understand the regulatory mechanisms
behind biological processes. This implies that a full description of a GRN determines
the identification of the genes comprised in it, the comprehension of the gene connections
(functional relations) and the elucidation of the kind of relationships between the genes
of the GRN. A correct description of a GRN is of the greatest importance since it will
allow either predicting the behavior of the system under perturbation or manipulating it
for a specific aim [Bansal et al., 2007]. The problem is that the knowledge of biological
systems is incomplete, therefore the construction of putative biological models and GRNs
are necessarily based on incomplete information.

An approach to this problem is to adopt the principles of reverse engineering. Reverse
engineering is the process that, starting from iterative experimentation (for example gene
expression data) on an unknown system, arrives to the reconstruction of GRNs. Figure 1.2
is a schematic drawing of the process of reverse engineering. The strategy starts from
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Figure 1.2: General reverse engineering to infer GRNs.
(taken from [Gardner and Faith, 2005]).

experiments of cell perturbation with various treatments. In the second step, the aim is
to measure the expression of the transcripts. Subsequently, a learning algorithm infers
the model of transcription regulation using the expression data. The final result is the
gene regulatory network.

This approach requires large data sets and extensive computational resources, because
there is a big number of network architectures that are compatible with the same ex-
periment results (set of expression data) [Tegner et al., 2003]. Luckily, in recent times
the quantity of information that is available for reverse engineering is enormous. In fact,
the genome projects have rapidly generated large datasets of sequences of genes and pro-
teins that govern cellular behavior. Moreover 20 years ago [Schena et al., 1996] [Chee
et al., 1996] [Lockhart et al., 1996] gene expression microarrays permitting of simultane-
ously measure thousands of transcripts [Schwarz, 1978]. The array technology has several
limitations [Marioni et al., 2008]:

- background levels of hybridization limit the accuracy of expression measurements,
particularly for transcripts present in low abundance;

- probes differ considerably in their hybridization properties and this affects the com-
parison of hybridization results across arrays;

- arrays are limited to measure abundance of transcripts with relevant probes on the
array;

- arrays do not allow to measure DNA methylation and other DNA modifications.

Sequencing-based approaches to measure gene expression levels have the potential to
overcome these limitations (454 Life Sciences -Roche- [Margulies et al., 2005], Illumina-
Solexa sequencing- [Bennett et al., 2005]). Despite this, microarrays are still widely used,
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because the new technologies are complex and data available on public sites are still
limited both in quantity and in number of different organisms analysed.

1.1 Objective of the Thesis

The aim of this thesis work is the development of a method to expand a characterized Gene
Regulatory Network, called Local Gene Network (LGN) in the following. The expansion
leads to the identification of new genes that are related with the known genes of the LGN.
These are listed in a final expansion gene list which reports as well an estimate of their
reliability. The expansion genes are obtained analyzing all the genes of interest given in the
input list together with the corresponding gene expression data loaded by the user. Before
expanding a LGN, the whole input gene list is subdivided in subgroups (called tiles). Each
tile contains different genes of the input gene set, but all include the genes of the LGN.
The whole expansion procedure is iterated i times and the final output takes into account
the output of all the iterations. Subsequently, the reliability is determined by an intrinsic
performance evaluation. This step requires to calculate precision and sensitivity within
the genes of the LGN and then to project these values on the new genes. The procedure
is called PC-Iterative Method (PC-IM). The term PC indicates that our algorithm uses
the causal discovery algorithm developed by Spirtes and Glymour (PC algorithm) [Spirtes
and Glymour, 1991], instead the "iterative"term indicates that the analysis of the whole
input gene-set is repeated more times. Though our method was designed to use the PC
algorithm, this does not exclude that the algorithm may change. In fact the user can
substitute the PC algorithm with the algorithm that he prefers.

Novel aspects
The innovative contribution of this thesis is mainly related to the LGNs expansion task
as mentioned above. In particular it is innovative how the task is treated (use of the LGN
knowledge, type of gene expression data) and the type of obtained output.

• Task and method

The LGN expansion idea originates from two considerations. The first is that, often,
a biological researcher has prior knowledge about relevant genes and their involvement
in a LGN and he is willing to expand this knowledge. The expansion is obtained, at the
beginning, with hypotheses formulation about other putative interactions of these genes
with new genes and subsequently with the in vivo validation of this hypothesis by new
experiments. The hypotheses can be formulated with bioinformatic systems (use of al-
gorithms to infer regulatory networks, in silico coexpression analysis of gene expression
data). The second consideration is that quite often the LGNs proposed by the commonly
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used algorithms are complex, and thus it is difficult for a researcher to design the appro-
priate biological experiment to validate the results. In fact in vivo validation requires the
characterization of all the genes of the new gene network. The techniques commonly used
to measure gene expression on a large scale (such as microarray experiments) can not be
used, because, often, they are the input of the algorithm. Other useful techniques to vali-
date the in silico results are, for example, the chip-seq tecnique, which studies the binding
sites of the transcription factor or the manipulation of a specific gene in the homologous
or heterologous system (knock-out or over expression). In general these approaches can be
used only to test few genes, because they require long times and they are labor intensive
and costly.

In literature, a big number of articles try to infer new gene networks by identifying
new causal relationships among genes [Penfold and Wild, 2011]. These articles describe
algorithms, as were described in Chapter 2, or website platforms (also called web-based
tools) which are big collections of different types of data (publications, information about
gene annotation, gene expression and chemical data) used to reverse engineering putative
gene-gene interactions. There are two principal classes of website platforms. The first
class comprises the web-based tools that use prior knowledge about a GRN as scaffold
and then use gene expression data to validate the relationships between genes (e.g. BAR
[Toufighi et al., 2005], BioGRID [Stark et al., 2006], GeneMANIA [Mostafavi et al., 2008]).
It is important to underline that the GRN scaffold derives from the published information
and it may not contain all the gene-gene interactions because it may not represent the
only true biological network that involves the studied genes. In fact, it is possible to
miss gene-gene interactions that can be associated with specific phenotypes or specific
development conditions, which are not present in any publication. It is also possible that
the same genes are involved in more GRNs. The second class, instead, is represented
by web platforms that use a combination of information deriving from public databases
and gene expression data to infer GRNs (Predictive Networks [Haibe-Kains et al., 2012],
bioPIXIE [Myers et al., 2005]).

The task of GRN expansion is recent and therefore few publications are available up to
now. This fact highlights the importance and novelty of this topic. One of the first algo-
rithms developed for GRN expansion was GENESYS [Tanay et al., 2001]. Subsequently
other methods were proposed; namely Growing algorithm [Hashimoto et al., 2004], Gat-
Viks and Ron Shamir [Gat-Viks and Shamir, 2007], BN+1 [Hodges et al., 2010], ANAP
[Wang et al., 2012] and GENEIES [Kotera et al., 2012]. All these systems have in common
with our method PC-IM the task, but differ in the approach used for the expansion.

GENESYS (GEnetic Network Expansion SYStem) [Tanay et al., 2001] is an algo-
rithm that uses gene expression data to expand a known LGN. It proceeds with three
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steps:

1. Standardization of the data of the input dataset;

2. Use of a priori information about LGN to obtain the fitness function. The fitness
function is the criterion wich guides the selection of the expansion genes;

3. Expansion of the LGN analyzing a gene at a time and using the fitness function as
selection criterion.

Growing algorithm [Hashimoto et al., 2004] uses the gene expression data to expand
little LGNs (one or more genes) and prior knowledge about these LGNs is not mandatory.
This method can be divided in two steps:

1. Measure of three parameters which reflect the strength of the connection between
two genes. These parameters are measured between genes of the LGN, between the
genes external to the LGN and between genes of the LGN and genes outside the
LGN;

2. Combination of these three parameters in an unique criterion subsequently used to
expand the LGN.

Gat-Viks and Ron Shamir [Gat-Viks and Shamir, 2007] in the 2007 have developed
a system that uses gene expression data and prior knowledge to expand LGNs [Gat-Viks
and Shamir, 2007]. Gene expression data must derive from experimental procedures (gene
silencing or enhancement of the gene expression). There are three steps:

1. Modeling the prior knowledge. This implies that an evaluation model is created
using a priori information about LGN, Bayesian scoring matrix and probabilistic
modeling;

2. Generation of the predicted evaluation model from the experimental gene expression
data;

3. Comparison of the predicted and observed evaluation model to discover the expan-
sion genes of the LGN.

BN+1 [Hodges et al., 2010] is a system that uses the gene expression data and prior
knowledge to expand a LGN. The steps are the following:

1. Generation of multiple cores Bayesian Networks (core BN) using gene expression
data, prior knowledge of the LGN and the log posterior score;
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2. Selection of the core BN with the highest log posterior score [Heckerman et al., 1995].
This core BN will be the LGN to expand;

3. Expansion of the core BN adding a gene at a time. The final expansion gene list
will contain only those genes that improve the score determined in the second step.

GENIES [Kotera et al., 2012] discovers the new genes related with a specific LGN
using a kernel function [Kotera et al., 2012]. It uses a priori information about LGN and
different type of data in combination or alone (gene expression data, protein localization
data, phylogenetic profile, kernel matrix based on the gene expression profile, kernel ma-
trix based on the protein localization profile and kernel matrix based on the phylogenetic
profile). It works in three steps:

1. Transformation of each data set in a kernel similarity matrix;

2. Mapping of the knowledge about LGN in a feature space (training process) equipeed
with the Euclidean distance [Yamanishi et al., 2005].

ANAP [Wang et al., 2012] is a tool that was developed only for Arabidopsis thaliana.
It integrates 11 Arabidopsis protein interaction databases, 100 interaction detection meth-
ods, 73 species that interact with Arabidopsis and 6.161 references [Wang et al., 2012].
This tool may expand the network only using the interaction detection methods present
in its database, instead PC-IM and other methods listed above use the data loaded by
the user (gene expression or other type of data).

• Usage of the LGN prior knowledge

Another innovative aspect of PC-IM is the step in which the prior knowledge of the LGN
is used. All methods mentioned above use the prior knowledge at the beginning of the
expansion process. Instead PC-IM uses a priori information in two different moments.
At the beginning it uses, as prior knowledge, only the names (genes identifications) of
LGN’s genes to add them to the tiles. These genes will be the only genes present in all
the subdivision of the input gene-list, instead the other genes will be present only in a
single tile. Subsequently, the LGN knowledge will be used, at the end, to estimate the
precision of the genes in the output expansion gene list. Practically, the genes of the
LGN are treated as any other gene when applying PC-IM, while in the other expansion
methods (GENESYS, Growing algorithm, Gat-Viks and Ron Shamir algorithm, BN+1,
ANAP and GENIES), the prior knowledge of the LGN is used to construct a scoring
matrix to be improved with the addition of the expansion genes.

• Intrinsic performance evaluation
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PC-IM differs from the algorithms cited above also for the criterion used to select the
final expansion gene list.

PC-IM uses the normalized frequency to determine which genes will be included in
the expansion gene list of a LGN. The frequency corresponds to the number of times that
a gene is found to expand a LGN with respect to the times that the same gene could
be found. Each gene, not included in the LGN, can be present just once for iteration,
namely it is present in only one tile. The frequency calculated on the LGN genes is used
as a cut-off frequency to select the other genes.

GENESYS uses the fitness value. This is a numerical value that expresses the perfor-
mance of an individual against other different individuals. In case of the expansion task
the individuals that are presumed to have higher fitness values are the genes in the LGN,
while the other individuals are the external genes [Liang et al., 1998]. Growing algo-
rithm uses the strength of a connection to expand a LGN. This strength is determined
from the coefficient of determination [Hashimoto et al., 2004].

"The coefficient of determination gives an indication of the degree to which a set of
variables improves the prediction of a target variable relative to the best prediction in the
absence of any conditioning observations "[Hashimoto et al., 2004].

Gat-Viks and Ron Shamir algorithm uses the Bayesian score [Gat-Viks and Shamir,
2007]. It is used as selection criterion of the model predictions to the data.

BN+1 uses the log of the BDe. This is the natural log posterior and its specific
formulation is in Hodges et al. [2010].

GENIES uses the Euclidean distance to obtain the expansion genes. The Euclidean
distance is calculated between genes of the LGN and between the hypothetical expansion
gene and LGN genes. The Euclidean distance between the LGN genes is the threshold to
select other genes [Kotera et al., 2012].

• Gene expression data: observational data

In PC-IM, the inference of the GRN is based on a particular type of gene expression
data called observational data. This type of gene expression data is present in public
databases, but it is rarely used for inference of networks. In fact there are two different
strategies to determine GRNs from gene expression data. One relies on data measured
in a perturbed biological system (experimental perturbed data) [Davidson et al., 2002],
the other on the natural variation of expression levels of the same gene in different cells
(observational data) [Chu et al., 2003] [Yoo et al., 2002].

The experimental approach is based on the suppression or the enhancement of the
expression of one or more genes using transgenesis or natural mutants, and the measure-
ment of how the gene expression is influenced [Davidson et al., 2002]. With this method
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is relatively easy to identify the genes involved in the GRN and it has proved fruitful in
unraveling small parts of a regulatory network. However, this approach has some disad-
vantages. It provides information only about the effects of one or few manipulated genes
and its gene targets. Moreover, in complex organisms, such as human and plants, this
type of data is difficult to obtain due to the long time to collect them and to ethical issues.

The second approach relies on observational data, and it overcomes these problems.
In fact it permits to determine multiple relationships without any experimental inter-
vention. The observational data are obtained merely observing a phenomenon (natural
variation of the expression level) when the organism is in the natural (or optimal) de-
velopment condition and when is under stress condition (water stress, cold stress, salt
stress). In this case the GRN is inferred from statistical dependencies and independences
among the measured expression level [Chu et al., 2003] [Yoo et al., 2002]. Despite the
abundance of observational data present in the public databases only few algorithms use
them [Spirtes et al., 2001] [Pearl, 2002] [Emmert-Streib et al., 2012], since they require
elaborate statistical procedures.

The development of a system able to infer gene networks starting from observational
data is of great importance since it allows to exploit the big availability of the data stored
in public databases. This is an innovative aspect of this work. Moreover, this is also
important because it allows to use public data and to find new genes involved in a specific
LGN in a early stage of the biological investigation. This possibility offers the advantage
of using new information to specifically design the experiment for novel genes validation.

• Final output

An innovative contribution of this thesis is the formulation of an alternative strategy to
expand a Local Gene Network (LGN) by identifying only the additional genes that are
related with at least one LGN-gene. In other terms PC-IM returns an expansion gene
list, without specifying which genes of the LGN have a direct relationship with the genes
in the expansion gene list.

In the expansion process of a LGN, as the inference of a GRN, there are two important
steps. The first step regards the identification of the genes that expand the LGN. The
second regards the identification of the causal relationships between the new genes and
the LGN genes. Causal relationships are defined by the connection between two genes
(relationship) and the orientation of this connection (causal direction). If y and x are two
genes, and in particular y is affected by x (the presumed cause), there are three conditions
that determine the exact causality (direction of the relationship) between these two genes
[Kenny, 1979]:

1. x must precede y temporally;
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2. x must be reliably correlated with y (beyond chance);

3. the relation between x and y must not be explained by other causes.

Nevertheless these three conditions are necessary, but not sufficient to find all possible
causal relationships. This because there are cases (reciprocal causation and simultaneous
causation) that are not explained by these conditions [Antonakis et al., 2010].

Reciprocal causation: in gene networks, there is a possibility that two variables are
reciprocally cause and effect. This occurs when the expression of gene x activates gene y
and the encoded protein inhibits the expression of gene x. A biological example is the lac
operon [Van Hoek and Hogeweg, 2007]. In the lac operon an increased concentration of
lactose in the cell causes an increase of the lac operon activity. Simultaneously an increase
of the activity of this operon decreases the lactose cellular quantity.

Simultaneous causation is the activation of a target gene by the action of more genes
together. For example this happens in tryptophan synthesis. In this case a trypthophan
operon controls the synthesis of the enzymes that produce tryptophan. The operon is
regulated by a repressor that alone is inactive, but is induced when it combines with a
specific molecule [Hamon et al., 1981].

These two considerations show that it is very difficult to find by in silico analysis the
exact causal relationship between two genes. It is easier to identify the list of genes that
expands a LGN. Moreover this information (the list of genes) is enough to design in vivo
validation experiments. The experiments will help in validating the new genes and to
discover the causal relationships between the genes and the LGN genes. For the above
reasons we choose the expansion task, (focusing on the list of the expansion genes and
not on the causal relationship), rather than discovery of new GRNs.

1.2 Structure of the Thesis

The thesis is composed of four main Chapters. Chapter 2 presents an overview of the
different types of reverse engineering algorithms in Section 2.1 and a detailed description
of the PC algorithm and its related applications in Section 2.2. Section 2.3 a description
of the methods used to expand LGN is reported. The other three Chapters describe
the results of my PhD work. Chapter 3 reports the description of PC-Iterative Method
(PC-IM). Chapter 4 presents the Evaluation of PC-IM. It starts with a section dedicated
to a preliminary evaluation in which the expression data for testing the performance of
the method are selected (Section 4.1) and the choice of the PC algorithm is motivated
(Section 4.2). Afterwards in Section 4.3 an evaluation of the PC-IM is presented. This
includes the assessment in terms of the performance of the single parts of our method.
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Finally Chapter 5 is focused on the real expansion of a specific Local Gene Network with
PC-IM and two case studies are described.
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Chapter 2

State of the art

Causation is a relationship between an event (the cause) and another event (the effect).
The second event (the effect) is interpreted as a consequence of the first event and it
can have more than one cause [Spirtes et al., 2001]. Causation has three properties; it is
transitive, irreflexive and antisymmetric.

- if X is a cause of Y and Y is a cause of Z, then X is also a cause of Z (transitive
property);

- an event X cannot cause itself (irreflexive property);

- if X is a cause of Y then Y is not a cause of X (antisymmetric property).

Causal inference is the process used to obtain conclusions about presence/absence of
causal relationships between events. To draw to these conclusions statistic means are
used [Spirtes et al., 2001]. To represent causality we can use a directed graph. A directed
graph consists of a set of vertices (e.g. genes) and a set of directed edges (e.g. relationship
between genes), where each edge is an ordered pair of vertices. In Figure 2.1 an example
of a directed graph G1 is depicted and below we report the terminology associated to the
graph.

- the vertices are {A, B, C, D, E};

Figure 2.1: Example of a directed graph G1.
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- the edges are {B → A, B → C, D → C, C → E};

- B is parent of A, because there is an oriented edge from B to A;

- A is child of B;

- A and B are adjacent, because there is an edge between the two variables;

- a path is a sequence of adjacent edges (A ← B → C);

- a directed path is a sequence of adjacent edges all pointing in the same direction (B
→ C → E);

- C is collider on the path because both edges on the path are directed into C;

- E is descendent of B (and B is an ancestor of E), because there is a directed path
from B and E. Each node is ancestor and descendent of itself.

When a directed graph does not have cycles, then it is called directed acyclic graph
(DAG). This means that in the DAG there is no directed path from any vertex to itself.

The causality representation by directed graph and/or DAG presents some problems.
For example in the graph G1 considering A → C ← B we are not able to represent the
situation in which there are two different drugs (A and B) that reduce symptom C, and A
can reduce the symptom C also without B, instead B alone has no effect on C. Moreover
we are not able to represent the situation in which there are two independent variables
A and B with two states. For example A is a battery and the two states are charged and
uncharged; B is a switch and two states are on, off. A and B cause C (A → C ← B),
only when A and B are simultaneously verified (A indicates the battery charged and B
the switch on) [Spirtes et al., 2001]. These problems arise, because the relationships are
represented through the probability distribution associated with the graph [Spirtes et al.,
2001].

As mentioned in Chapter 1, the use of the transcript levels to identify regulatory
influences between genes is called reverse engineering (or inverse modeling or network
inference). There are two classes of reverse-engineering algorithms: those that search for
physical interactions and those which search for influence interactions [Gardner and Faith,
2005]. The aim of the physical interaction’s methods is to identify the binding motifs of
transcription factors and identify thus their target genes (gene-to-sequence interaction).
Influence interaction methods, instead, seek to relate the expression of a gene to the
expression of the other genes in the cell (gene-to-gene interaction). In this work the
ensemble of these influence interactions constitute a gene network. In this section we
present a brief review of the principal algorithms developed to find influence interactions.

Obtaining a gene network from influence interactions is useful for multiple purposes:
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Figure 2.2: Classification of different algorithms based on their specific domain of
application (adapted from Lauria and di Bernardo [2010])

1. identification of the genes that regulate each other with multiple (direct and/or
indirect) interactions;

2. prediction of the response of a network to perturbations;

3. identification of the real physical interactions. This identification is obtained by the
integration of the gene network with additional information from sequence data and
other experimental data (i.e. chromatin immuno-precipitation [Das et al., 2004] or
yeast two-hybrid assay [Bartel and Fields, 1997])

2.1 Gene network inference algorithms: a review

PC-IM was developed with the PC algorithm, but theoretically it can be used also with
other algorithms. For this reason in this section a review of the main algorithms used to
infer gene networks is included.

Figure 2.2 shows the different domains of application of the most used algorithms
according to the type of experiments that have generated the input data.
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In the algorithm’s description we will use the following variables:

i are the genes;

N is the total number of genes;

xi is the expression measurement of gene i ;

X is the set of expression measurements for all the genes;

M is the total number of time points (or different conditions) of the expression mea-
surements;

aij is the interaction between gene i and j.

In the undirected graph, the direction is not specified and aij = aji, instead when aij 6= aji
we have a directed graph. A directed graph can also be labeled with a sign and strength
for each interaction aij > 0 means that there is activation, instead aij = 0 means there
is no interaction and aij < 0 indicates the repression). The choice of the type of graph
(directed or undirected) depends on the inference algorithm.

2.1.1 Clustering algorithms

Clustering algorithms divide the genes in groups (clusters). In each group there are genes
with similar expression profiles (coexpressed genes). The coexpression between genes does
not imply, however, the direct interaction among these genes [Lee et al., 2004]. In fact
genes that are coexpressed can be related together by one or more intermediaries (indirect
relationships). For this reason the clustering algorithms are not properly network inference
algorithms, but are rather used to visualise and analyse gene expression data. Moreover
the coexpression analysis can be used to deduce the function of genes from other genes in
the same cluster [Eisen et al., 1998].

The most common clustering algorithm is the hierarchical clustering [Eisen et al.,
1998]. It searches to obtain a single tree where the branch lengths reflect the degree of
similarity between the genes. The connection between genes is assessed by a pairwise
similarity function (for example Pearson correlation). The highest value of the pairwise
correlation coefficient indicates that there is a relationship between the pair of genes [Eisen
et al., 1998].

Another algorithm is the signature algorithm [Ihmels et al., 2002]. It is specialized
to identify transcription modules starting from gene expression data. The transcription
module is a group of genes that are co-regulated in particular experimental conditions.
This algorithm enables gene classification, namely a clusterization of genes into different
groups [Ihmels et al., 2002].
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Figure 2.3: Boolean model used to represent the relationship between input and
output transcripts (taken from Gardner and Faith [2005]).

2.1.2 Network Inference Algorithms

The inference of GRNs from expression data is a difficult task, mainly because the number
of variables is much larger than the number of observations. Following a description of
the most common algorithms developed to this aim.

Boolean network models
Kauffman proposed the first Boolean model [Kauffman, 1969]. They represent genetic
networks as interconnected binary elements, with each of them connected to a series of
others [Kauffman, 1969]. In the GRN the binary elements are the genes and each element
can have two binary states, inactive (0) or active (1) and the interaction between the
elements are modeled as Boolean rules. This mean that, if fully connected, a Boolean
network with N genes will present 2N gene expression patterns. This number is very
high and requires large amount of experimental data [Gardner and Faith, 2005]. For this
reason, it is assumed that networks are sparsely connected and this shows the importance
to specify the connectivity. Moreover the Boolean network can be represented as a directed
graph, where the edges are represented by Boolean functions (simple Boolean operations,
e.g. AND, OR, NOT). In general a repressor is equivalent to a NOT function, whereas
cooperatively acting activators are represented with the AND function. In this way, the
Boolean variables (where the states of genes can be 1 or 0) are determined at time t+1
by the state of the network at time t, the value of the K inputs and the logical function
assigned to each gene. Figure 2.3 is an example of Boolean model in which the OR logic
function is illustrated. In this representation there are three transcripts X1, X2 and X3

and K has value 2. This implies that the possible networks, with the three variables, are
4.

The final aim of the Boolean method is to identify a Boolean function for each gene
in the network that it explains the model. This class of algorithms have been used to
describe different biological pathway, including signalling pathway [Shymko et al., 1997]
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[Genoud et al., 2001] and bacterial degradation processes [Serra and Villani, 1997]. In
the literature various Boolean algorithms have been proposed. One of this is REVEAL
(REVerse Engineering ALgorithm; [Liang et al., 1998]). "REVEAL was developed to
allow for multiple discrete states as well as to let the current state depend not only on
the prior state but also on a window of previous states"[Hecker et al., 2009].

Bayesian network models
Bayesian Network (BN) models are graphical representations of joint probabilistic distri-
butions of a set of random variables Xi (i.e. gene, protein or other cellular elements).
A BN has two components [Pe’er, 2005], the first component is a DAG that represents
the relationships between the variables. Its vertices are the random variables Xi and the
edges represent the influence of one variable on another. The second component, denoted
with θ describes a conditional probability distribution for each variable Xi.

The principal limitation of the BN is the absence of cycles in the network as well as the
explicit treatment of causality among the variables. The absence of cycles derive from the
use of the DAG to represent the network. This is a problem, because the cycle systems are
relevant in biological systems (for example the feedback loops among the B-C variables in
Figure 1.1). The other issue is that BNs represent the probabilistic dependencies among
variables and not causality. This mean that the parents of a node are not necessarily also
the direct causes of its behaviour, in our case its gene expression [Bansal et al., 2006].
To overcome these limitations the Dynamic Bayesian Network (DBN) was developed [Yu
et al., 2004]. DBNs can establish the direction of causality because they incorporate
temporal information [Yu et al., 2004], but they need a large quantity of input data, such
as gene expression data. These data, in molecular biology, is often limited, in particular
for complex organisms.

An algorithm based on the Bayesian Network formalism is Banjo (Bayesian Net-
work Inference with Java Objects). It implements both BN and DBN [Yu et al., 2004].
Hartemink and colleagues developed Banjo [http://www.cs.duke.edu/~amink/software/
banjo/2008-06-20] [Yu et al., 2004]. The output of Banjo is a signed directed graph indi-
cating regulation among genes. To this aim Banjo infers the parameters of the conditional
probability density distribution for each network structure explored. An overall network’s
score is computed using the scoring metric Bayesian Dirchlet equivalence (BDe) in the
Banjo’s Evaluator module. At the end the output network will be the one with the best
score (Banjo’s Decider module) [Bansal et al., 2006].

Differential Equation Model
The Differential Equation Model is a deterministic approach that describes gene regulation
as a function of other genes in terms of Ordinary Differential Equations (ODEs). To reach
this aim a set of ODEs are provided for each gene. In the set of ODEs, each equation

http://www.cs.duke.edu/~amink/software/banjo/ 2008-06-20
http://www.cs.duke.edu/~amink/software/banjo/ 2008-06-20
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describes the variation in time of the concentration of a particular transcript, xi, as a non
linear function fi of the concentrations of the other transcripts [Gregoretti et al., 2010]:

xi(t) = fi(xi(t), u; θ) (2.1)

xi = [xi, ..., xN ]

i = 1...N

Where t is the time in which the transcripts are measured, x(t) is a vector whose
components are the concentrations of the transcripts xi measured at time t, ui(t) is the
external perturbation applied at gene i at time t, θ is a set of parameters describing the
interactions between genes. With this system the edges, among the variables, represent
causal interaction, and not statistical dependencies as the other methods [Bansal et al.,
2006].

This type of reverse-engineering algorithms is used to reconstruct gene-gene interaction
starting from the steady state of gene transcript concentration (i.e. RNA expression
measurements or time series measurements) and its subsequent external perturbation.

Two algorithms based on ODE are Network Identification by multiple Regression (NIR
[Gardner et al., 2003]) and Microarray Network Identification (MNI [di Bernardo et al.,
2005]). Both are based on the same equation [Bansal et al., 2006]:

N∑
i=1

aijxj = −biu (2.2)

if bi represents the effect of the external perturbation on xi and there are M time
points, then this equation 2.3 derives from the equation:

xitk =
N∑
j=1

aijxj(tk) + biu(tk)with
{
k = 1...M (2.3)

when the case of steady-state data and xi(tk) = 0 the i-th gene becomes time inde-
pendent.

The NIR supposes that the data x (transcript concentrations) and u (the perturbation)
are normally distributed with known variance [Gregoretti et al., 2010]. It uses, as input
data, the gene expression data following each perturbation experiment and the knowledge
of which genes have been directly perturbed in each perturbation experiment [Gardner
et al., 2003].

MNI algorithm needs, as input data, microarray experiments that are a result from
any kind of perturbations. MNI does not require knowledge of biu [Bansal et al., 2006].
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The particularity of MNI is that it uses the inferred network to filter the gene expression
profile after a treatment with a compound, to determine pathway and genes direct target
of the compound. For the details of NIR and MNI algorithms see di Bernardo et al. [2005].

Another ODE algorithm is the Time Series Network Identification (TSNI [Bansal et al.,
2006]). TSNI identifies the gene network when the gene expression data are dynamic. This
mean that, unlike NIR and MNI, xi(tk) 6= 0 and M time points following the perturbation
are measured. The complete description of the TSNI is presented in Bansal et al. [2006].

Information theoretic approach (Association networks)
Information theoretic approaches assign interactions to pairs of transcripts that exhibit
high statistical dependence in their responses in all experiments in a training data set.
To measure dependence, the two most common strategies are Pearson correlation and
Mutual Information (MI). The Pearson correlation assumes linear dependence between
variables, instead MI measures the degree of dependence between two variables (genes).
In fact given two variables, MI determines the ratio between the probability to find two
variables together with the probability to find each variable individually [Fernandes and
Gloor, 2010]. Mutual Information MIij between genes i and j is computed as:

MIij = Hi +Hj −Hij (2.4)

where H is the entropy and it is defined as:

Hi = −sumn
k=1p(xk) log(p(xk)) (2.5)

the higher the entropy the more the gene expression levels across the experiments are
randomly distributed. To find the LGN, MI is computed for each pair of genes and its
value is included into the range [0,1]. Higher value of MI (value close to 1) indicate that
two gene are non-randomly associated to each other [Bansal et al., 2006]. The value of
MI becomes 0 when two variables xi and xj are statistically independent. MI is more
general than Pearson correlation coefficient but this property does not prevent to get
almost identical results [Steuer et al., 2002]. In the information theoretic approaches,
the edges in the network represent only a statistical dependency and not a direct causal
interaction between the variables.

ARACNE
The Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE) was de-
veloped for the reverse engineering of human trascriptional networks from gene expression
data [Basso et al., 2005] [Margolin et al., 2006]. In particular is was developed for the
reconstruction of trascriptional networks of human B cells [Basso et al., 2005] [Margolin
et al., 2006]. Subsequently ARACNE has been also used to predict metabolic network
from high throughput metabolite profiling data [Nemenman et al., 2007]. ARACNE as-
sumes that each gene expression level is a random variable and the mutual relationships
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between pairs of variables can be obtained by statistical dependencies. In this way it
defines an edge as an irreducible statistical dependency between gene expression profiles.

This algorithm can be divided in two main steps at the and the output is an adjacency
matrix, namely a matrix which reports the candidate interactions.

Step 1: identification of candidate interactions by estimating Mutual Information
(MI) (Equation 2.6) for all pairs of gene in the geneset, I(gi, gj) = Iij. This is an infor-
mation theoretic measure of relatedness that is zero if the joint distribution between the
expression level of gene i and j satisfies P (gi, gj) = P (gi)P (gj). Then ARACNE excludes
all the pairs for which the null hypothesis of mutually independent genes cannot be ruled
out.

Step 2: ARACNE filters the statistical dependencies, eliminating those with MI values
below the appropriate threshold I0. This allows for removing the most indirect candidate
interactions using a know information theoretic approach: the Data Processing Inequality
(DPI). DPI is a property of MI that states if gene g1 and g3 interact only by another gene
(g2), then I(g1, g3) ≤ min(I(g1, g2); I(g2, g3)) [Cover and Thomas, 2006]. This implies
the removal of the least one of the three MIs, because it can come only from indirected
interactions.

2.2 The PC algorithm

The PC algorithm tries to find the causal relationships between the variables. Peter
Spirtes and Clark Glymour developed the algorithm for the social science domain and
its name comes from their names (PC: Peter and Clark) [Spirtes and Glymour, 1991].
It assumes a Bayesian causal network model and it makes use of valid statistical testing
to produce a DAG as output. It comprises three steps. In the first step it applies the
conditional independent test to discover relationships between variables. In the other
steps it tries to orientate these relationships without creating cyclic structures. Before
describing in details the PC algorithm and considering its modifications it is necessary to
introduce some preliminary definitions.

Causally sufficient criteria
A set of variables V is causally sufficient when no two members of V are caused by a
third variable both in V. Zhang and Spirtes, [Zhang and Spirtes, 2008], emphasize that
"the idea, of the causally sufficient criteria, is that X is direct cause of Y relative to the
given set of variables when it is possible to find some pair of interventions of the variables
other than Y that differ only in the value they assign to X but will result in different
post-intervention probability of Y"[Zhang and Spirtes, 2008]. With the sentence "X is
cause of Y"we mean that an intervention on X, makes a difference to the probability of
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Figure 2.4: Representation and classification of the variables of a DAG G.
A. representation of the variables of a DAG G. B. classification of the variables of a DAG G.

Y.
For example Figure 2.4-A shows a representation of a DAG G and Figure 2.4-B a table

with the classification of the variables of G. The DAG G has 5 variables (A, B, C, D and
E) and the arrowheads between the variables are oriented edges. In G (Figure 2.4-A ) the
set B, C, D, E is not causally sufficient, because there is another variable A, not included
in the set, which is a direct cause of the B and D variables.

Conditional independence
The definition of conditional independence is as follows: "Two random variables X and
Y are conditional independent given a set Z of variables on distribution P, written as
IP (X, Y |Z), if P (X|Y,Z) = P (X|Z) and P (X|Z) 6= 0, P (Y |Z) > 0, where P (X|Z) means
the conditional probability of X given Z. In an other way we can say that X and Y are
conditional, by independent when P (X|Y,Z) = P (X|Z)P (Y |Z). This mean that if X and
Y are independent conditioned on the Z, then does not provide any information about Y
once given knowledge of Z and vice versa [Spirtes et al., 2001]."

With only the causally sufficient criteria it is very difficult to find the best DAG from
a given sample, since the number of possible DAGs is greater than the exponential of
the number of observed variables. To reduce the number of possible DAGs, the Bayesian
models use together other two different assumptions: Causal Markov Condition (CMC)
and Causal Faithfulness Condition (CFC).

Causal Markov Condition (CMC)
The CMC states that given a set of variables whose DAG G represents the causal structure
of these variables, each variable is independent of its non-descendents conditional on its
directed causes (its parents in graph G) [Ramsey et al., 2012]. In particular in Figure 2.4-
A, the CMC entails that if there is no edge between two variables A and D in a DAG
G, then A and D are conditional independent on some subset of the other variables Z
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(Z = B,C) (IP (D,A|B,C). In addition to the example between the variables A and D
there are other conditional independence relations entailed by CMC:

IP (A, ∅|∅);

IP (B,C|A);

IP (C,B|A);

IP (E, {B,C,A}|D)

These relations may originate other conditional independence relations; for example
IP (E,A|{B,C}). Another interesting consideration is that the CMC alone implies the
principle of the common cause. In fact if two variables X and Y are not conditionally
independent on ∅(∼ (X, Y |∅)), then, according to the CMC, we have three possibilities:
X is cause of Y, or Y is cause of X, or it exists a third variable that is the common cause
of both X and Y (common cause).

Causal Faithfulness Condition (CFC or Stability Condition)
The CFC says that given a set of variables V and DAG G is the causal graph, DAG G is
the true causal graph when it is the exact map of the distribution probability (PV) of the
variables in the set V. The probability distribution P entailed by a causal graph G satisfies
the CFC if and only if every conditional independence relation true in P is entailed by the
CMC applied to G [Zhang and Spirtes, 2008]. Under the CFC, conditional independence
relations give direct information about the structure of the graph. In Figure 2.4-A with
the CFC we can conclude that there is no direct edge between A and D if a statistical test
indicates that A is independent of D conditional on Z(Z = {B,C}) [Zhang and Spirtes,
2008].

Assuming together the CMC and CFC it is possible to reduce the total number of
DAGs, because they entail that conditional independency holds in the population if and
only if the true causal DAG entails it by application of the Markov condition. To explain
this concept we suggest to see the example present in the paper by Zhang and Spirtes
[2008] (Figure 1 from paper Zhang and Spirtes [2008]). Given the DAG G in Figure 2.4-A,
the CFC entails that IP (D,A|∅).

d-separation
There is a method to ascertain whether the CMC and/or CFC entail conditional in-
dependence relation. The method is called d-separation (d means dependence), it is a
graph-theoretical approach and is defined as follows.

Two variables X and Y are d-separated by a node set Z if and only if every path
between X and Y is blocked. A path is blocked when there is an intermediate variable
Z ∈ Z such that:
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Figure 2.5: Different types of connections considered in the d-separation step.

1. the connection through Z is tail-to-tail or head-to-tail and Z has received evidence,
or;

2. the connection through Z is head-to-head (or v-structure) and neither Z or any of
Z’s descendants have received evidence.

The different types of connections are represented in Figure 2.5 in which each nodes
of the different graph represent a variable and each arrowhead is an oriented edge.

2.2.1 Description of the PC algorithm

The PC algorithm reconstructs the causal structure of the variables described by the
input data, starting from the assumptions of the Causal Markov Condition, faithfulness
and causal sufficiency of a graph. The PC algorithm works by progressively removing the
edges from a complete undirected graph built on the variables given in the input data,
until no more edges can be deleted, according to a function that decides when to delete
the edge. The graph so obtained is called skeleton and it is then oriented according to
the d-separation rules.

The PC algorithm receives a set V of random variables in input and it works in three
phases described in the pseudo-code in Figure 2.6 and in the representation in Figure 2.7.

Phase 1: find the skeleton by deleting edges between independent variables
The PC algorithm starts generating a complete undirected graph G’ from the set of
variables V. Each node in the G’ is a variable of V thus from now the variables will be
called also nodes. Subsequently, the PC algorithm starts to remove the edges in G’ testing
the set of Adj(X). The idea is that if the set of independences is faithful to a graph, then
there is not a link between variables X and Y, if and only if there is a subset S of adjacent
nodes of X (Adj(X)) such that I(X, Y |S) [Spirtes et al., 2001]. For each pair of variables
in the subset S, SX − Y will contain such a set, if it is found.

In particular in this Phase the PC algorithm uses the Partial Correlation Coefficient
(PCC) to estimate conditional independencies. This parameter corresponds to the corre-
lation coefficient between the dependent and independent variables when all the effect of
the other variables are removed [Kalisch and Bühlmann, 2007].
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Figure 2.6: Pseudocode of the PC algorithm.
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Figure 2.7: PC algorithm schematic representation.

Phase 2: orient v-structures (head-to-head)
The orientation of the edges in G’ proceeds by examining sets of three variables {X, Y, Z}
such that in G’ there are the unoriented links between X and Z and between Y and Z,
but the link between X and Y does not exists. Then if Z is not included in SepSet(X,Y),
the PC algorithm orients the edges from X to Z and from Y to Z creating a v-structure
(head-to-head): X → Z ← Y [Spirtes et al., 2001].

Phase 3: orient the remaining unoriented edges using rules
In the Phase 2 not all link between nodes are oriented, so in this phase the PC algorithm
tries to orient the rest of the edges. To arrive to this aim it follows two rules:

- Cycles have to be avoided;

- New v-strucuters have to be avoided.

2.2.2 Proposed modifications of the PC algorithm

The PC algorithm as such was applied on gene expression data [Wimburly et al., 2003]
and more recently it has been improved in its different Phases (Figure 2.8). In Phase 1
PPC was substituted with Conditional Mutual Information by Zhang et al. [2012] and
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Figure 2.8: Schematic representation of the differences between the original PC algo-
rithm and its modified versions.

the way in which the interactions between the nodes in the complete undirected graph are
removed has changed [Wang et al., 2010]. In Phases 2 and 3 the way in which the edges
are oriented was changed [Ramsey et al., 2012] [Ebrahimi et al., 2012]. In this section all
these versions of the PC algorithm are reviewed.

Conservative PC algorithm (CPC) [Ramsey et al., 2012]
This algorithm aims to improve the PC algorithm in the orientation phase [Ramsey
et al., 2012]. Ramsey highlights how the CFC assumption is formed from two com-
ponents Adjacency-Faithfulness and Orientation-Faithfulness and how the causal Markov
and Adjacency-Faithfulness conditions fail to orient the edges between the variables. An
example shows this fact: consider three variables < A,B,C > where A is independent
from C (A⊥ C) and A⊥C|B (A → B → C). In this situation the Causal Markov and
Adjacency-Faithfulness are both satisfied, but Orientation-Faithfulness is not true for
this triple.

The PC algorithm removes the edge between A and C, because A ⊥ C, but orients the
edges in this way A→B←C, because B is not in SepSet found in Phase 1. To overcome
this problem CPC algorithm in Phase 2 tests for each triple < A,B,C > which are the
potential parents of A and C and not which are collider or non-collider. The Phase 2
in CPC is as follows. Let G a graph resulting from Phase 1, for each unshielded triple
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< A,B,C >, check all subsets of A’s and C’s potential parents:

a. if B is not in any set conditioned on which A, and C are independent, orient A-B-C
as A→B←C;

b. if B is in all sets conditioned on which, A and C are independent, leave A-B-C as it
is;

c. otherwise, mark the triple as "unfaithful"by underlining the triple. This mean that
there are possible different DAGs (A→B→C, A←B→C, A←B←C, A→B←C).

Low PC algorithm (LPC) [Wang et al., 2010]
This algorithm was developed to make easier the application of the PC algorithm on
large gene expression datasets. In fact the PC algorithm requires an high number of tests,
because all possible combinations of the conditioning set have to be examined. For this
reason LPC uses the procedures of the PC algorithm, but it executes only the low-order
Conditional Independence (CI) tests. In fact, in LCP, the number of CI tests is limited by
the k specified by the user. The limited order of the CI tests reduces the computational
complexity, but does not improve the sample size to analyse. In fact both these two
algorithms (PC algorithm and LPC) have the best performances with sample sizes of 100
and 1000 variables [Wang et al., 2010].

LCP has two phases: CI test and orientation phase. In the first phase a limited
number of CI tests is executed in comparison to the PC algorithm. The number of CI tests
depends on k and the value of k is given as input data together with the dataset D (e.g.
microarray with n genes an m measurements). In the second phase (orientation phase),
the neighbor number of connected node pairs is checked before applying orientation rules,
because the neighbor number of connected nodes is linked with the k value. If the k
value is equivalent to n-2, where n is the number of genes in the input dataset D, the
LPC algorithm is equivalent to the PC algorithm. Therefore we can say that LPC is a
generalization of the original algorithm (in the sense that it constrains the search with ao
additional parameter) and not a variation.

Path Consistency Algorithm with Conditional Mutual Information (PCA-
CMI) [Zhang et al., 2012]
PCA-CMI is a method used to infer GRNs from gene expression data based on the PC
algorithm, but it substitutes PCC [Kalisch and Bühlmann, 2007] with Conditional Mutual
Information (CMI) [Zhang et al., 2012].

Many GRN inference algorithms are based on Mutual Information (MI). They start
by computing the pairwise MI between pairs of genes, then the MI values are elaborated
to identify the regulatory relationships [Altay and Emmert-Streib, 2010] [Fernandes and
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Gloor, 2010]. In particular for two discrete variables X and Y , MI measures the depen-
dency between X and Y and is defined as:

MI(X, Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(2.6)

In case the two variables are independent p(x, y) = p(x)p(y).
MI presents the advantage of measuring non-linear dependency (more common in

biology) and it is able to deal with thousands variables in the presence of a limited number
of samples [Meyer et al., 2007]. The problem is that MI is able to test pairs of genes not
considering that there are more than two co-regulators. To overcome this problem Zhang
et al. [2012] have proposed Conditional Mutual Information (CMI). This parameter is
able to identify the joint regulations by exploiting the conditional dependency between
genes of interest. CMI, in fact, is the expected value of the Mutual Information between
two variables X and Y, given that a third variable Z or a set of variables Z has occurred.
It can be defined as:

CMI(X, Y |Z) =
∑
x∈X

∑
y∈Y

∑
z∈Z

p(x, y, z) log
p(z)p(x, y, z)

p(x, z)p(y, z)
(2.7)

where p(x, y, z) indicates the joint probability.
Limited Separator set in the PC algorithm (LSPC) [Ebrahimi et al., 2012]

The LSPC algorithm aims to improve the way in which the edges are oriented in the
Phase 2 and 3 of the PC algorithm. The main difference between these two algorithms is
the choice of the separator set between the nodes of the graph G resulting from the Phase
1 of the PC algorithm.

PC considers as separator set of two vertices X and Y, all nodes that are present in
the Adj(X) and Adj(Y). For LSPC the separator set is formed from all variables mostly
repeated in the walks between X and Y. This method appears to improve the PC al-
gorithm, because it reduces statistical errors in the step of edges orientation [Ebrahimi
et al., 2012].

2.3 Methods for network expansion

GENESYS (GEnetic Network Expansion SYStem) [Tanay et al., 2001] is an algorithm
that computes the fitness function of the LGN and then adds genes and relationships to
find an expansion of the LGN that improves the fitness (Figure 2.9). In this system a
biological network (or model) is defined from a set U of variables (e.g. genes or proteins), a
set C of values (states) that the variables may attain, and functional dependence between
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Figure 2.9: Overview of the GENESYS algorithm.

the variables is described by the function f v : C|U | → C for each v ∈ U (the value of v at
time t depends on the values of its input variables at time (t-1)). The prior knowledge is
used at the beginning to describe a model space. This is defined by the quadruple (U, C,
Fbio, Gbio), where U and C are the sets defined above, Fbio is the class of the candidate f v

and Gbio is a class of dependency graphs on U . Fbio and Gbio are used to limit the model
space and incorporate the prior knowledge of the LGN.

Fitness evaluation is a critical step to LGN expansion. The fitness function uses the
idea presented in Liang et al. [1998] and it must perform well in term of sensitivity,
precision and computing efficiency. In GENESYS there are two types of fitness: local and
global. The local fitness function evaluates the fitness of the experimental data to the
function fv of a single variables v, while the global function evaluates the overall network.
Summarizing GENESYS starts from the LGN (G’) and outputs G”, namely the LGN
expansion (G’⊆G”). The fitness value of G’ is determined and then one gene at a time
(v∈ U) is added to G’ and the new fitness is calculated. Only the genes that have an
improvement of fitness respect to the raw G’ are selected and included in the G” [Tanay
et al., 2001].

Hashimoto et al. [2004] developed the Growing algorithm that uses gene expression
data to discover subnetworks of a large network, in which genes must to have two principal
characteristics:

- genes of the subnetwork must be significantly related between them;

- genes of the subnetwork must be not strongly conditioned by genes outside the
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Figure 2.10: Parameters generated by Growing algorithm
S is a gene of a LGN and Y is a set of all genes excluded S. Figure 2.10-a. represents the from
impact of Y to S. Figure 2.10-b. presents the depiction of the to impact of Y to S. Figure 2.10-c.
shows the measure of the strength of edge from genes external to S to Y (adapted from Hashimoto
et al. [2004]).

subnetwork

In particular this method starts from a little initial group of genes (’seed’) and then adds
new genes expanding the seed in a greater subnetwork. To reach this aim, the Growing
algorithm proceeds modeling a GRN as a directed graph in which at each relationship
between the variables is associated a coefficient of determination. "The coefficient of
determination measures the degree to which a set of variables improves the prediction
of a target variable relative to the best prediction in the absence of any conditioning
observations"[Hashimoto et al., 2004].This means that the influence is used to measure
the strength of a relationship and with the term σX(Y ) is indicated the sum of influences
of the genes in X on the set of genes Y. In particular if S is a a gene of a LGN and Y is a
set of all genes excluded S then are measured three coefficient of determination:

- σfrom,S(Y): the collective strength of connection from the to the target set of genes
Y;

- σto,S(Y): the impact (strength of connection) of Y to S;

- σout,S(Y): the measure of the strength of edge from genes external to S to Y

Figure 2.10 represents the three determination coefficients that are computed from Grow-
ing algorithm. Once computed σfrom,S(Y), σto,S(Y) and σout,S(Y) the algorithm combines
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them in a unique measure that is the final strength measure of the gene selection. In fact
are selected those genes of the subnetwork that improve the value of the strength with
respect to the values of genes of the LGN.

Gat-Viks and Ron Shami system. In 2007 Gat-Viks and Ron Shamir developed
a system (Figure 2.11) that, starting from prior knowledge of a LGN, adds interactions
between the genes of the LGN and it expands the LGN with additional genes and relative
relationships [Gat-Viks and Shamir, 2007]. It starts from prior biological knowledge and
it formalizes this in the Bayesian network in which each variable (node) can have several
discrete states and then it obtains the Bayesian scoring matrix. The method finds the
discrete function which represents the different relationships between genes of the LGN.
The next step consists in generating two evaluation models starting from different levels
of expression: observed and predicted. The observed expression level derives from a
measurement in biological experiments (gene expression data, measures of the metabolism
and/or, proteins). The predicted expression level, instead, is the probabilistic expectation
of the variable given the model and the experimental data (gene expression data of the
genetic perturbation). In the final steps these two expression levels are compared and the
disagreement, between observed and predicted expression levels, indicates the possible
edge to be added on the LGN. The new score of the Bayesian matrix with these new
edges is calculated and if its score is bigger of the score of the original model the edge
is added to the LGN. The same method is used to expand a LGN. Each hypothetical
expansion gene is added to the LGN and the new scoring matrix is recalculated [Gat-Viks
and Shamir, 2007].

BN+1 [Hodges et al., 2010] (Figure 2.12) is an expansion algorithm created to discover
genes, not included in the LGN, that generates the best network score when a gene is
added to an existing core network topology. This system uses prior knowledge of the LGN
and gene expression data as the starting point to generate a bayesian network, termed
core BN. The criterion used to arrive to this core BN is the log posterior score. BN+1
starts from the known genes (genes of the LGN) and uses the independent simulation to
generate randomly networks with these genes. Each network is scored using log of the
Bayesian Dirichlet metric (BDe) [Heckerman et al., 1995] and the posterior distribution
is estimated. Finally a consensus network, also called core network, is generated from
the random networks considering the best log posterior score. At this step, for the core
network, the direction is determined: the directional edges represent those edges that
appear to have the same direction in all the random networks. Instead the undirected
relationships are the edges that appear in all the random networks, but which different
directions. The expansion step adds a gene at a time to the core network and the new
scores are computed. The gene added is present in the expression data used in input data.
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Figure 2.11: Representation of the Gat-Viks and Ron Shamir methodology
(adapted from Gat-Viks and Shamir [2007]).
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Figure 2.12: Schematic representation of the BN+1 expansion algorithm
derived from Hodges et al. [2010].

At the end, the genes that expand the LGN will be those that improve the core network
score.

GENIES [Kotera et al., 2012] discovers the new genes related with a specific LGN
using different type of data in combination or alone. These data are: gene expression data,
protein localization data, phylogenetic profile, kernel matrix based on the gene expression
profile, kernel matrix based on the protein localization profile and kernel matrix based
on the phylogenetic profile. Initially this method use a kernel function to transform
data sets in a kernel similarity matrix (e.g. correlation coefficient matrix), where each
element corresponds to a gene-gene similarity [Kotera et al., 2012]. Subsequently, GENIES
proceeds with a training process in which the elements of the LGN (genes or proteins)
are mapped in a feature space, where interacting elements are close to each other and the
Euclidean distance is calculated [Yamanishi et al., 2005]. Euclidean distance is considered
to be the indicator of the presence/absence of edges and it will set the threshold. After the
training process the next step is the test process for the testing. In this phase, other genes
(not included in the LGN) are mapped in the Feature space and only genes that have
a Euclidean distance above the threshold will be in the final Gene Network [Yamanishi
et al., 2005]. Figure 2.13 is a schematic drawing of all phases of GENIES.
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Figure 2.13: Overview of GENIES(taken from Kotera et al. [2012].
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Chapter 3

PC-Iterative Method (PC-IM)

The PC-Iterative method (PC-IM) has been developed during this thesis work to expand
a known Local Gene Network (LGN) taking advantage of an algorithm already existing in
literature. The expansion involves the discovery of genes related to the genes of the LGN.
These new genes are found from the analysis of thousands of genes. For example PC-IM
can analyse all the genes of a gene expression experiment and/or of a whole genome. The
analysis foresees to use the gene expression data of all input genes (LGN-genes and other
genes) and takes advantage from the algorithm capacity of infering causal relationships
between LGN-genes and other genes. Finally PC-IM gives a list of genes that expands
the known LGN.

The algorithm used in PC-IM is the PC algorithm, specifically the PC algorithm im-
plementation included in the R-package pcalg (R-package pcalg: //www.r-project.org)
[Kalisch et al., 2010]. One problem of the PC algorithm is the possibility to analyse
together only a limited number of variables (1000 genes maximum to have a good effi-
ciency) [Wang et al., 2010]. For this reason our method divides the input gene-set in
subsets (tiles). All the tiles have the same size and all of them contain the genes of the
LGN.

Another important feature of PC-IM is the intrinsic evaluation of its performances.
This property allows an estimation of the precision of the final expansion gene list of the
LGN. The intrinsic evaluation is computed in terms of the following measures:

PPV =
TP

(TP + FP )
(3.1)

Se =
TP

(TP + FN)
(3.2)

1− Sp = FP

(FP + TN)
(3.3)

//www.r-project.org
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Where TP, FP, TN and FN are the number of true positive, false positives, true
negatives and false negatives, respectively. The TP is the number of genes correctly
predicted by PC-IM, FP is the number of incorrectly predicted genes, TN is the number
of correctly identified genes that are not involved in the expansion of LGN and FN is
the number of true expansion genes missed from the algorithm. Se is the Sensitivity
(or Recall) and it represents the ability to retrieve in the prediction an edge or a node
when this is present in the real network. PPV indicates the Positive Predicted Value
(or Precision), namely the accuracy on the inferred network. 1-Sp is the false positive
rate (FPR) and it refers to the rate of genuine negatives considered to be positives. The
parameters Se and 1-Sp are used to plot the Receiver Operating Characteristic curves
(ROC) and the area under this curve (AUC) is calculated. In addition to the ROC curve,
the Precision versus Recall (PR) curve is determined together with the minimum distance
(dmin) between each point of this curve from the point of (1,1) coordinates. At the end of
the process, to establish the final list of the expansion genes, PC-IM will make the best
compromise between values of the AUC and dmin. PC-IM can be divided in five steps as
represented in Figure 3.1.

The five steps are:

Step 1: tiles creation;

Step 2: run of the PC algorithm;

Step 3: frequencies computation;

Step 4: intrinsic performances assessment;

Step 5: cut-off frequency application.

Before describing the steps we list data and parameters necessary to run PC-IM:
Input data:

kngenes are the genes of LGN that will be expanded;

knedges are the relationships between genes of the LGN that will be expanded (op-
tional input data);

obs-gene are expression data. A nxm gene expression matrix containing n genes in
m cases.

Parameters:

t is the size of the tiles, namely the number of genes in each tile;
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i is the number of iterations. This number specifies the times the whole genome is
divided into tiles ;

D is the number of sub-networks of LGN (subLGN);

d is the size of the subLGNs.

Output:

Expansion-genes is a list of genes that expands the LGN with their relative frequency.

Step 1: Tiles creation
The genes of the genome are randomly divided in non overlapping tiles of size t. Each
tile is merged with the set of genes of the input LGN. This operation is repeated i times.
Adding the LGN genes to each tile permits to potentially infer the causal relationships of
these genes with the other genes of the genome.
Step 2: run of the PC algorithm
PC runs on each tile using the gene expression data. As a result it gives a network (nodes
and relationships) for each run. From these networks are extracted the sub-networks that
include both the genes and relationships within the LGN genes and between LGN genes
and the external ones, namely genes in the original tile and consequently not included in
the LGN.
Step 3: frequencies computation
PC-IM creates a unique list of genes called expansion list. This list contains all the
genes present in at least one single sub-network. For each gene in the expansion list, the
algorithm calculates the frequency. This absolute frequency of a gene is the number of
times that the gene is present in the sub-networks. PC-IM computes both the absolute
and the normalized frequency. The latter is obtained dividing the absolute frequency
of a gene with the number of times that the same gene could be found, that is how
many times it was present in the tiles. Usually this number coincides with the number
of iterations. For example if i=100 and x gene has 90 as absolute frequency, then the
normalized frequency will be 0.9.
Step 4: intrinsic performances assessment
In this step PC-IM assesses its own performance and establish the minimum normalized
frequency value necessary to have the best expansion performance. The assessment is
done using the information of the original LGN. Initially from the LGN are extracted D
subLGNs of size d. With this operation the genes of the expansion list are split in three
different categories:

subLGN genes: genes of the LGN;
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INTRA genes: genes of the LGN, that are not included in the subLGN;

EXTRA genes: the additional genes randomly selected from the genome.

Now the evaluation parameters are calculated considering the expansion of each subLGN.
A gene in the list will be considered to be positive if it is among the other genes of the LGN
that are let in the subLGN (intra gene) and negative if it is among the genes (extra gene).
This operation is repeated for each of the D subLGNs and for each relevant frequency
value. In practice, we use as Gold Standard the information on the LGN given in the
input data. The evaluation measures are Positive Predictive Value (PPV or Precision),
Sensitivity (Se) and False Positive Rate (FPR). Mathematically, they are defined by:

PPV =
TPintra

(TPintra + FPextra)
(3.4)

Se =
TPintra

(TPintra + FNintra)
(3.5)

FPR =
FPextra

(FPextra + (TNintra + TNextra))
(3.6)

where TP, FP, FN and TN are the number of the true positive, false positive, false negative
and true negative respectively. The terms intra and extra have the same meaning specified
above. The Se and FPR with different frequencies are used to plot ROC curve and the
area under ROC curve (AUC). PPV and Se values are used to plot the Precision-Recall
(PR) curve and the minimum distance (dmin) from point (1,1) is calculated. This step
returns the frequency that gives the maximum value of AUC and the minimum value of
dmin or that gives the best compromise between the higher AUC value and the smaller
dmin value.
Step 5: cut-off frequency applications In this last step PC-IM determines which
genes, in the gene expansion list, will be returned as the final output of the method. The
selection applies the cut-off frequency computed at Step 4 as a cut-off frequency on the
gene expansion list computed at Step 3. The final list of genes is returned. The cut-off
frequency is the minimum frequency that the genes, in the gene expansion list, must have
in order to be considered involved in the expansion of the LGN.

PC-IM pseudocode is reported below:
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Figure 3.1: Schematic representation of PC-IM.
Numbers into the hexagonal boxes are the ordered steps of this method. 1 is the "Tiles creation",
2 is "run of the PC algorithm", 3 is "frequencies computation", 4 is "intrinsic performances
assessment"and 5 is "cut-off frequency applications".
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Input data:

kngenes := genes of the LGN that will be expanded
knedges := relationships between genes of the LGN that will be expanded
obs_data := n x m expression matrix (n nodes and m cases)

Parameters:

t := tiles size
i := number of iterations
D := number of sub-networks of LGN (subLGN)
d := subLGNs size

Output:

Expansion_genes := list of genes that expands the LGN with their relative frequency

Step1: Tiles creation� �
1 n_num:= rownames of obs_data (initial set of genes of cardinality n)
2 n_lgn:= genes number of the kngenes
3 genes⊆{n_num \ kngenes}
4 N_sub := (length(n)-n_lgn)/t
5 p := i*N_sub
6 create a list R[p]
7 create a list pgenes[N_sub]
8 l:= 1
9 z:= 1
10 while (l<i) {
11 while(z<N_sub){
12 pgenes[z] := randomly choose (n-n_lgn) elements from genes and add

kngenes
13 z:= z+1
14 }
15 R[l] := pgenes[N_sub]
16 l:= l+1
17 }� �

Step2: run of the PC algorithm:� �
18 create a list pcpred[p]
19 l:=1
20 while (l<p) {
21 exp_data⊂obs_data , where
22 exp_data r x m , r < n and r = |R[l]|
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23 exp_data = rows(exp_data= R[l]) Λ (columns (exp_data) =
columns(obs_data))

24 run PC algorithm on exp_data
25 pcpred[l]:= results of PC run
26 }
27 create a gene network M in which there are all the results of the pcpred� �

Step3: frequencies computation:� �
28 G is a list of all genes in the M gene networks that have a

relationships with kngenes
29 i:=1
30 while (z<|G|) {
31 F_G := number of times in which the gene in position G[z] appears in

the R list;
32 f_G := number of times in which the gene position G[z] appears in the

M gene network;
33 freq_ratio := f_G / F_G
34 add a G[z] the freq_ratio
35 z := z+1
36 }
37 order G respect to the freq_ratio� �

Step4: intrinsic performances assessment:� �
39 create a list subLGN[D]
40 l := 1
41 while (l<D) {
42 subLGN[l] = randomly choose d elements from kngenes
43 l := l+1
44 }
45 delta := (max(G[freq_ratio ])-min(G[freq_ratio))/100
46 freq_% := (G[freq_ratio]-max(G[freq_ratio ]) +100*( delta))/delta
47 create a list New_freq
48 New_freq = add freq_% to G
49 rls_intraLGN := relationships among genes of the LGN
50 while (l<100) {
51 New_freq[freq_%] = [l]
52 z := 1
53 while (z<D) {
54 TP_FN[z] = {kngenes\subLGN[z]}∩{subLGN[z]∩rls_intraLGN}
55 TP_FP[z]⊂G that excludes the genes without relationships with genes

of subLGN[z] and also genes of the subLGN[z] that have a
relationships with other genes of the subLGN[z]

56 TP[z] = TP_FN[z]∩TP_FP[z]
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57 TN[z] = {obs_gene[n]\{ subLGN[z]∪TP_FN[z]}}
58 z := z+1
59 }
60 TP_FP_mean := mean of TP_FN[l]
61 TP_FP_mean := mean of TP_FP[l]
62 TN_mean := mean of TN[l]
63 New_Freq[l] := add {TP_FN[l]∩TP_FP[l]∩TN[l]} to New_Freq[l]
64 l := l+1
65 }
66 compute ROC curve on New_Freq
67 d(ROC) := distance of point [0, 1] of ROC curve
68 compute PR curve on New_Freq
69 d(PR) := distance of the point [1, 1] of PR curve
70 cut -off := value of New_Freq[freq_%] which correspond to min(d(PR))� �

Step5: cut-off frequency applications:� �
71 ntw_expd⊆{G \ kngenes}
72 create list Expansion_genes
73 delta := (max(ntw_expd[freq_ratio ])-min(ntw_expd[freq_ratio))/100
74 freq_% := (ntw_expd[freq_ratio]-max[ntw_exp[freq_ratio ])+100* delta)/

delta
75 add freq_% to ntw_expd
76 Expansion_genes⊂ntw_expd(ntw_expf[freq_ %]≥cut -off)� �

The difference between our method and the other expansion algorithms are described in
the Section 2.3 and are schematized in Table 3.1.

PC-IM GENESYS Growing-
algorithm

Viks-and-
Shamir-
algorithm

BN+1 GENIES

Authors Coller et al. (Eu-
ropean Patent
application
EP13151728.6 (of
date 17 January
2013))

[Tanay et al.,
2001]

[Hashimoto et al.,
2004]

[Gat-Viks and
Shamir, 2007]

[Hodges et al.,
2010]

[Kotera et al.,
2012]

Prior
knowledge of
the LGN

start and final
step

start point start point start point start point start point

Type of input
data

gene expression
data

gene expression
data

gene expression
data

different type of
data

gene expression
data

different type of
data

Analyzed genes all tiles genes at a
time

one at a time one at a time one at a time one at a time one at a time

Selection
criterion for
expansion
genes

Frequency Fitness function Coefficient of de-
termination

Bayesian score Log BDe Euclidean dis-
tance

Table 3.1: Comparison of different LGN expansion algorithms.



Chapter 4

Evaluation of the PC-Iterative Method
(PC-IM)

This chapter describes both the procedure, used to analyse the PC-IM method, as well
as the results of this evaluation.

4.1 Preliminary evaluation 1: in silico vs in vivo

Once a new algorithm or a new method is developed is necessary to test its performance
(in terms of PPV and Se) and to compare it with those of the other algorithms proposed
by the literature. To test and compare algorithms is possible to choose between two
type of data: in vivo or in silico data. The aim of this preliminary evaluation is to
understand which of these two type of data better suits the evaluation of PC-IM. The
type of the gene expression data is chosen comparing the PC algorithm performances
versus ARACNE algorithm performances on in silico data (DREAM) versus in vivo data
(M3D and GEO). To weight the difference of the inference GRN with in silico from in
vivo data we have compare Positive Predictive Value (PPV or Precision) (Formula 3.1)
and Sensitivity (Se or Recall) (Formula 3.2).

4.1.1 In silico data

In silico data derive from mathematical equations and simulate the value of in vivo data.
This type of data may be generated by the programmer of the algorithm for its testing
or can be downloaded from free websites.

The Dialogue on Reverse Engineering Assessment and Methods (DREAM) project
[Stolovitzky et al., 2007] [Stolovitzky et al., 2009] is an example of in silico data that can be
freely downloadable from the website (http://wiki.c2b2.columbia.edu/dream/index.

http://wiki.c2b2.columbia.edu/dream/index.php/The_DREAM_Project
http://wiki.c2b2.columbia.edu/dream/index.php/The_DREAM_Project
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php/The_DREAM_Project). DREAM data are divided in Challenges, each one represents
a different biological task (e.g. inference of gene networks, prediction of protein-protein
interactions). Moreover in each Challenge there are in silico data and their relative Gold
Standards (GS) [Stolovitzky et al., 2007].

In this section we chose the Challenge about inference of gene networks, in particular
we have used Challenge 2 of DREAM4: In Silico Network Challenge [Marbach et al., 2009].
This Challenge is divided in three sub-challenges that differ in the size of the network.
Each sub-challenge contains five types of datasets (wild-type, knockout, knockdowns,
multifactorial perturbations and time-series) and five GS networks (ones for each type
of the datasets). The GS networks are gene networks that have been described in same
organisms and are considered therefore the Gold truth in terms of relationships between
the network elements (genes). Each dataset present the simulated data for two organisms:
Escherichia coli and Saccharomyces cerevisiae.

The sub-challenges are three (InSilico-Size10, In Silico-Size100 and InSilico-Size100-
Multifactorial) and are formed in this way:

- InSilico-Size10: it contains five networks of 10 genes (size 10);

- InSilico-Size100: it contains five networks of 100 genes. In this sub-challenge
the multifactorial perturbation datasets are not included as they are the subject of
another sub-challenge (InSilico-Size100-Multifactorial);

- InSilico-Size100-Multifactorial: it contains five networks of 100 genes (as InSilico-
Size100), but it presents only the multifactorial dataset;

The datasets are:

- Wild-type: in silico data of the unperturbed network;

- Knockout: in silico data in which each k-th data line is the steady-state of the
network after knockout (deletion) of gene k. An independent deletion is present for
the all the k genes of the network;

- Knockdowns: in silico data where a knockdown of every gene of the network is sim-
ulated. The expression values are obtained with reducing by half the transcription
rate of the corresponding gene;

- Multifactorial perturbations: in silico data which correspond to the steady-state
levels of variations of the network, obtained by applying multifactorial perturbations
to the original network;

http://wiki.c2b2.columbia.edu/dream/index.php/The_DREAM_Project
http://wiki.c2b2.columbia.edu/dream/index.php/The_DREAM_Project
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- Time-series: time course data of the network changes after a perturbation. The
perturbation (strong increase or decrease of the gene basal activation) do not regard
all genes, like in multifactorial perturbation, but only a third of them. For networks
of size 10 we considered 5 different time series, for networks of size 100 we considered
10 time series. Each time series comprises 21 time points.

From all these available sub-challenges and datasets we have used only the sub-
challenges InSilico-Size10 and InSilico-Size100 and the Time-series dataset. The names
of the different Gene Regulatory Networks (GRNs) tested are summarized in Table 4.1
where rep1 and rep2 are the names for the GRN of the Escherichia coli. rep3, rep4 and
rep5 are the GRN-name for the Saccharomyces cerevisiae.

Size GRN (nr genes) Escherichia coli Saccharomyces cerevisiae

10 rep1; rep2 rep3; rep4; rep5

100 rep1; rep2 rep3; rep4; rep5

Table 4.1: Description of the DREAM4-Challenge 2 (time series) GRN.
The GRN name identifies only the organism and not the size of GRN.

In Table 4.2 and Table 4.3 the results given by the two tested algorithms (PC and
ARACNE) with in silico gene expression data DREAM 4, Challenge 2 (time series) are
reported. In the case of the regulatory network of 10 genes, ARACNE shows a PPV greater
than the PC algorithm (rep1 and rep2 in Table 4.2; rep3, rep4 and rep5 in Table 4.3).
In the case of the transcriptional regulatory network with 100 genes ARACNE has only
a slightly better PPV. Looking at Sensitivity, the PC algorithm is in most trials better
than ARACNE and this is more evident with a small number of genes (rep1 and rep2 in
Table 4.2; rep 3, rep4 and rep5 in Table 4.3).

4.1.2 In vivo data

In vivo data derive from real biological experiments (e.g. the in vivo data in case of
expression data are usually from microarray hybridizations) and they are freely available
in specialized repositories. Since the GS DREAM data derive from real biological networks
we have chosen to compare results from the in silico data of Saccharomyces cerevisiae with
the in vivo data of this organism. In particular we have used two different types of in
vivo data, to test if there exist differences, in the algorithms’ output, according to the
type of in vivo gene expression data. In the first analysis we have considered the networks
GRN rep3, rep4 and rep5 of DREAM 4 Challenge 2 and the expression data available
on the m3d (http://m3d.bu.edu/norm/) [Faith et al., 2008] database. The m3d, is a

http://m3d.bu.edu/norm/
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size of GRN algorithm TP FP FN PPV Se

10 (rep1) PC 10 5 5 0.667 0.667

10 (rep1) ARACNEC 3 0 12 1.000 0.200

10 (rep2) PC 5 8 11 0.385 0.313

10 (rep2) ARACNE 3 1 13 0.750 0.188

100 (rep1) PC 28 156 148 0.152 0.159

100 (rep1) ARACNE 23 116 153 0.165 0.131

100 (rep2) PC 14 156 235 0.082 0.056

100 (rep2) ARACNE 10 116 239 0.079 0.040

Table 4.2: Description of DREAM4-Challenge 2 (time series data of Escherichia coli).
DREAM4, Challenge 2, time series, Escherichia coli transcriptional regulatory network (rep1 and
rep2) and two different sample size with 10 genes (size 10) and 100 genes (size 100).

size of GRN algorithm TP FP FN PPV Se

10 (rep3) PC 6 5 9 0.545 0.400

10 (rep3) ARACNE 4 1 11 0.800 0.267

10 (rep4) PC 7 5 6 0.583 0.538

10 (rep4) ARACNE 5 0 8 1.000 0.385

10 (rep5) PC 10 5 2 0.667 0.833

10 (rep5) ARACNE 7 0 5 0.538 0.583

100 (rep3) PC 36 134 159 0.212 0.185

100 (rep3) ARACNE 37 89 158 0.294 0.190

100 (rep4) PC 30 163 181 0.155 0.142

100 (rep4) ARACNE 29 109 182 0.210 0.137

100 (rep5) PC 35 155 158 0.184 0.181

100 (rep5) ARACNE 33 100 160 0.248 0.171

Table 4.3: Description of DREAM4-Challenge 2 (time series data of Saccharomyces
cerevisiae).
DREAM4, Challenge 2, time series, Saccharomyces cerevisiae transcriptional regulatory network
(rep3, rep4 and rep5) and two different sample size with 10 genes (size 10) and 100 genes (size
100).

specific repository for Saccharomyces cerevisiae, containing 904 array experiments. In the
second case we analysed only GRN rep3 of DREAM 4 Challenge 2. The size of this LGN
is 10 genes and the type of relationships and regulatory interaction between the LGN is
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reported in Table 4.4. Gene expression data were selected from the GEO Database (http:
//www.ncbi.nlm.nih.gov/gds?term=saccharomyces). We have selected only those gene
expression data that appeared to be inherent with the specific GRN (Table 4.5).

index gene index gene type regulation

G1 YBR182C G2 YHL027W +

G2 YHL027W G4 YGR249W -

G2 YHL027W G6 YPR065W -

G3 YGL162W G2 YHL027W -

G3 YGL162W G4 YGR249W -

G3 YGL162W G5 YPL177C -

G5 YPL177C G7 YIL101C -

G6 YPR065W G3 YGL162W +

G6 YPR065W G7 YIL101C -

G7 YIL101C G1 YBR182C -

G7 YIL101C G4 YGR249W +

G7 YIL101C G8 YJR147W +

G8 YJR147W G4 YGR249W +

G9 YOR113W G7 YIL101C +

G10 YOR363C G7 YIL101C +

Table 4.4: Description of the 10 genes of the GRN 3, DREAM4-Challenge 2 and
relative type of interactions among these genes.

In the first analysis, with m3d gene expression data, the sensitivity of PC appared to
be than that of ARACNE with 10 genes in the GRN, instead with 100 genes sensitivity
values between PC and ARACNE are comparable (Table 4.6). For both algorithms the
values of the sensitivity are lower than those obtained with in silico data. In fact when
the size of GRN is 10 genes, PC algorithm sensitivity ranges between (0.231-0.400) with
in vivo data and between (0.400-0.833) with in silico data, while for ARACNE ranges
between (0.077-0.250) with in vivo data and between (0.267-0.583) with in silico data.
In case of 100 genes in the GRN, PC ranges between (0.005-0.072) for the in vivo data
and between (0.142-0.185) for the in silico data. ARACNE ranges between (0.005-0.081)
and (0.137-0.190) for the in vivo and in silico data respectively. The value of PPV with
in vivo data is also smaller that with in silico data for both algorithms and also in this
case ARACNE shows the best value of PPV. The range values of PPV with 10 genes in
the GRN are (0.214-0.429) and (0.545-0.677) for the PC algorithm with in vivo and in
silico data respectively. Instead for ARACNE they are (0.500-0.600) with in vivo data

http://www.ncbi.nlm.nih.gov/gds?term=saccharomyces
http://www.ncbi.nlm.nih.gov/gds?term=saccharomyces
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GEO Code type of experiments number of experiements

GDS112 HS 15

GDS36 HS 8

GDS34 HD 10

GDS16 HS 36

GDS2343 HS 8

GDS1711 HS 12

GDS33 osmotic 10

GDS20 osmotic 12

GDS2002 anaerobic 30

GDS3030 anaerobic 6

Table 4.5: Description of the gene expression data from GEO database.
The GEO database represented are inherent with the genes present in the Table 4.4. (HS is Heat
Shock gene observational expression data; osmotic means osmotic gene observational expression
data; Anaerobic is Anaerobic gene observational expression data)

and (0.583-1.00) with in silico data. When the GRN has 100 genes PPV ranges observed
for the PC are (0.006-0.990) and (0.155-0.212) and for ARACNE they are (0.007-0.115)
and (0.210-0.294) with in vivo and in silico data respectively.

In the second analysis that uses gene expression data related to the genes of the GRN,
we have observed a change in PPV and Se behaviour. This is evident in Table 4.7. In
this case the value of PPV of ARACNE and PC are comparable but in one case, with
osmotic gene expression data, PC has greater PPV than ARACNE. Moreover the range
of the PC algorithm PPV values has improved with respect to in silico data, (0.308-0.800)
for GEO dataset (in vivo data) versus (0.545-0.677) in silico data and 10 genes in the
GRN. Instead this range value has worsened for ARACNE, (0.500-n.d.) versus (0.583-
1.00), in vivo versus in silico data (n.d. means not determined). For the sensitivity, PC
algorithm showed the best performances and, similarly to what observed with the m3d
gene expression data, the sensitivity values are decreasing with this type of data for both
algorithms. The PC ranges are between (0.267-0.333) for in vivo data (GEO Dataset)
and (0.400-0.833) with in silico data. For ARACNE the ranges are between (0.067-0.133)
and (0.267-0.583) for in vivo and in silico data respectively.

4.1.3 Discussion of the results of preliminary evaluation 1

In the preliminary evaluation 1 we have tested the two algorithms PC and ARACNE
in their ability to infer GRNs starting with two different type of gene expression data:
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size of GRN algorithm TP FP FN PPV Se

10 (rep3) PC 6 8 9 0.429 0.400

10 (rep3) ARACNE 3 2 12 0.600 0.200

10 (rep4) PC 3 11 10 0.214 0.231

10 (rep4) ARACNE 1 1 12 0.500 0.077

10 (rep5) PC 3 12 8 0.250 0.333

10 (rep5) ARACNE 3 2 9 0.600 0.250

100 (rep3) PC 14 128 181 0.099 0.072

100 (rep3) ARACNE 12 164 183 0.068 0.062

100 (rep4) PC 13 143 198 0.083 0.062

100 (rep4) ARACNE 17 131 194 0.115 0.081

100 (rep5) PC 1 155 192 0.006 0.005

100 (rep5) ARACNE 1 147 192 0.007 0.005

Table 4.6: DREAM4-Challenge 2, Saccharomyces cerevisiae. In vivo data (m3d gene
expression data). Number of Experiments: 904.

in silico and in vivo. The aim of this test was to understand which is the type of data
were more useful to explore the properties of PC-IM. The results show that the values of
the performances (PPV and Se) change appreciably between in silico and in vivo data
and also depending on the different in vivo data. This underlines how the method of
generation of in silico data influences the comparison between the algorithms and how it
can introduce biases in judging an algorithm’s performances.

In vivo data have the advantage that they are obtained from real hybridization exper-
iments and this overcomes the possibility to advantage the performances of an algorithm
by creating ad hoc datasets. However in vivo data have the problem of the absence of a
Gold Standard. In fact, when we infer the GRN from in vivo data, there are not true out-
puts to evaluate the algorithm’s performances against. Nevertheless to validate PC-IM,
in the expansion task (and not inference) of a GRN, called Local Gene Network (LGN),
we chose the in vivo data.

4.2 Preliminary evaluation 2: PC algorithm versus ARACNE
algorithm performing LGN expansion

In the preliminary evaluation 2 we compared the performances of PC and ARACNE on
a real LGN expansion task using in vivo data. In step 2 of PC-IM is possible to choose
any algorithm to expand the LGN. With this test we show why we use the PC algorithm.
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size algorithm TP FP FN PPV Se

HS PC 4 9 11 0.308 0.267

HS ARACNE 2 3 13 0.400 0.133

osmotic PC 4 1 11 0.800 0.267

osmotic ARACNE 1 1 14 0.500 0.067

anaerobic PC 4 5 11 0.444 0.268

anaerobic ARACNE 0 0 15 n.d. 0.000

HS+osmotic+anaerobic PC 5 9 10 0.357 0.333

HS+osmotic+anaerobic ARACNE 2 3 13 0.400 0.133

Table 4.7: DREAM4-Challenge 2, Saccharomyces cerevisiae, rep3, size 10. In vivo
data (GEO). (HS is Heat Shock gene observational expression data; osmotic means osmotic
gene observational expression data; anaerobic is anaerobic gene observational expression data;
HS+ osmotic+ Anaerobic is sum of the gene observational data submitted before, n.d. means
not determine)

The choice of these two algorithms was made for the following reasons:

- PC is an algorithm developed in the social science field and its application to gene
network inference starting from gene expression data is quite recent [Spirtes and
Glymour, 1991];

- ARACNE can be applied also on complex networks and, in theory, it can be run to
infer networks of any dimension [Margolin et al., 2006];

- PC and ARACNE do not require a priori assumptions, such as unrealistic network
models or data derived from perturbation experiments;

- PC and ARACNE use different strategies to find interactions between the variables.

The ARACNE algorithm (Section sec-ch2-NetwInfAlgo) was downloaded from http:
//amdecbioinfo.cu-genome.org/html/caWorkBench/upload/aracne.zip. Instead for
the PC algorithm we used the Rpackage pcalg [Kalisch et al., 2010] that is publicly
available (with open source code). The different strategies used by PC and ARACNE, to
infer the interactions between the variables, is summarized in Figure 4.1.

4.2.1 Local Gene Network (LGN)

The choice to use in vivo data and a real LGN for the test implies the selection of an
organism genetically well characterized, namely an organism for which the genes of the
genome are known, gene expression data are available and some of its LGNs have been

http://amdecbioinfo.cu-genome.org/html/caWorkBench/upload/aracne.zip
http://amdecbioinfo.cu-genome.org/html/caWorkBench/upload/aracne.zip


Preliminary evaluation 2: PC algorithm versus ARACNE algorithm performing LGN expansion53

Figure 4.1: Scheme of the different strategies used by the PC and ARACNE algo-
rithms.
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validated by laboratory experiments. For these reasons, we have selected, as the organism
Arabidopsis thaliana; the model for higher plants.

A known LGN of Arabidopsis thaliana is the Floral Organ Specification (FOS-GRN)
which has been characterized and validated with specific mutants [Espinosa-Soto et al.,
2004] [Sanchez-Corrales et al., 2010]. FOS-GRN comprises 15 genes and 54 causal rela-
tionships (Figure 4.2-c). This gene network is involved in the early differentiation of the
inflorescence and of the floral organs and it integrates all previous knowledge on the ABC
model [Coen et al., 1991]. The ABC model says explain how the so-called ABC-genes
(AP1, AP2, AP3, PI and AG) as single activity or in combination cause the differentia-
tion of the floral organs (sepals, petals, stamens and carpels). The ABC genes and other
essential genes of this process (for example the SEP genes SEP1, SEP2 and SEP3) [Jack,
2001] are included in FOS-GRN (Figure 4.2-b). The ABC-genes are divided in three
classes (A, B and C) with different activity. Genes of Class A are AP1 and AP2, genes of
Class B are AP3 and PI and gene of Class 3 is AG. In particular the activity of genes of
Class A specify the sepals; activity of genes of Class A and B specify petals and genes of
Class B and C specify stamens (Figure 4.2-b). The ABC genes need also the SEP genes.
All the three SEP genes are necessary for petals, sepals and carpels development, while
SEP1 and SEP2 are enough for sepals development.

4.2.2 Gene Expression Data

As in vivo data we have chosen the observational gene expression data from Arabidopsis
thaliana available at the Plant Expression Database (PLEXdb) [http://www.plexdb.
org]. The final dataset contains 9 observational microarray experiments for a total of
393 hybridization with the Arabidopsis thaliana GeneChip R©Arabidopsis ATH1 Genome
Array (Table 4.8) (TIGR) which is based on the Affymatrix platform and contains 22,500
probe sets representing approximately 24,000 gene sequences. The advantage of selecting
gene expression data from a single database (PLEXdb) was the fact of having all the data
normalized with the same protocol.

4.2.3 Geneset Generation

In order to expand a LGN, PC-IM subdivides the whole gene list given in input (e.g. the
genes of whole genome or those present on the microarry) in tiles, each one containing the
genes belonging to the LGN and the other genes extracted randomly from the input gene
list. This entire operation is repeated i times (i : number of iterations). This strategy
allows:

- to use, in the step 2 of PC-IM, also infered algorithms that can analyse a limited

http://www.plexdb.org
http://www.plexdb.org
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Figure 4.2: Representation of the flower organs, ABC model and FOS-GRN of Ara-
bidopsis thaliana.
a. The flower organs. The words in bold are the organs specified by the ABC model. b.
The ABC model (labeled boxes) and SEP genes (violet boxes). c. The FOS-GRN controls the
early differentiation of inflorescence and floral organs in Arabidopsis thaliana. Positive and nega-
tive interactions are represented by continuous and discontinuous arrows, respectively [Sanchez-
Corrales et al., 2010]. se: sepal, pe: petal, st: stamen, ca: carpel, AG: AGAMOUS, AGL8:
AGAMOUS-LIKE 8, AP1: PETALA1, AP2: APETALA 2, AP3: APETALA 3, EMF1: EM-
BRYONIC FLOWER 1, FT: FLOWERING LOCUS T, LFY: LEAFY, PI: PISTILLATA, SEP:
SEPALLATA, TFL1: TERMINAL FLOWER 1, UFO: UNUSUAL FLORAL ORGANS, WUS:
WUSCHEL
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Name Type Number

AT4 Arabidopsis thaliana gene expression during floral transition
and early flower development

40

AT6 Loss of a callose synthase results in salicylic acid-dependent
disease resistance

16

AT8 Expression analysis of Arabidopsis suspension cells during su-
crose starvation

9

AT10 Arabidopsis thaliana gene expression after 6 days in shoot
induction medium

30

AT12 Gene expression and carbohydrate metabolism through the di-
urnal cycle

22

AT13 Impact of Type III effectors on plant defense responses 27

AT17 Indole acetic acid treatment-dose response and time course 24

AT18 The mechanisms involved in the interplay between dormancy
and secondary growth in Arabidopsis

36

AT40 Expression Atlas of Arabidopsis Development (AtGenExpress) 189

Table 4.8: Description of the gene expression experiments from PLEXdb used to test
the PC-IM.

number of variables (e.g. the PC algorithm performans at best with 1000 variables
[Wang et al., 2010]);

- to change the LGN surrounding;

- the parallelization of the algorithm which runs on different tiles in different iterations.

For the preliminary evaluation 2, five subsets of the ATH1 genes (called tiles) were
created with different dimension: 50, 100, 200, 500 and 1000 genes. Each of this tile
includes the 15 genes of the FOS-GRN and other additional genes randomly selected
from the GeneChip R©Arabidopsis ATH1 Genome Array. The number of these additional
genes is different in the different tiles. In fact the tiles with 50, 100, 200, 500 and 1000
genes incorporate respectively 35, 85, 185, 485 and 985 random genes.

4.2.4 subLGNs Generation and Performances Evaluation

To evaluate the algorithms performances for the LGN expansion we would need a Gold
Standard. In the PC-IM this problem is solved by choosing as LGN a well characterized
gene network, dividing it into subLGNs of the same size and looking at the performance
parameters (PPV, Se, Sp, ROC curve and PR curve) between nodes of the subLGN and
other LGN genes not present in the subLGNs (for details: Chapter 3-step4 of the PC-IM).

The same procedure was used to test PC and ARACNE algorithms. In particular, 100
subLGNs of three different sizes (3, 5 and 10 genes) have been created. As in the step
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4 of PC-IM, the subLGNs derive from the LGN and were obtained extracting randomly
the genes of the FOS-GRN. For each subLGN, the genes of the LGN are divided in two
categories: INTRA and EXTRA genes. For each size of subLGN we run 100 replicates.

The evaluation criteria are: Positive Predictive Value (PPV or Precision; Formula 3.4),
Sensitivity (Formula 3.5), False Positive Rate (FPR; Formula 3.6), Number of total genes
(Formula 4.1) and Delta (Formula 4.2):

Number of total genes =

(TPintra + FPintra + FNintra + TNintra) + (TPextra + FPextra + FNextra + TNextra) (4.1)

Delta = (TPintra+FPintra+FNintra+TNintra)− (TPextra+FPextra+FNextra+TNextra)

(4.2)

4.2.5 Results

We have used subLGNs of 3 different size (3, 5 and 10 genes) and 5 different size od tiles
(50, 100, 200, 500 and 1000 genes). There are 4 repetitions for each different size of the
tiles and 100 replicates for each size of the subLGN.

Figure 4.3 shows the results of this preliminary evaluation 2 (Section 4.2). Figure 4.3-a
shows the total number of genes found by the algorithms. With tiles of 50 genes, PC and
ARACNE find a comparable number of genes, instead with tiles of other sizes ARACNE
finds more nodes than PC. Figure 4.3-b represents the Delta criterion (Formula 4.2) to
compare the two algorithms. The best performances are when the Delta value is positive
or less negative, because this means that the algorithm finds more intra nodes than extra
nodes. PC has Delta values close to zero for any tile size, while ARACNE is more variable
and in general displays negative values. The difference in the Delta value is more evident
with tiles of 500 genes. In this case, ARACNE has the most negative Delta value and the
biggest difference with PC. Figure 4.3-c and Figure 4.3-d show PPV (Formula 3.4) and
Se (Formula 3.5) respectively. The PPV of PC is greater of ARACNE, except in the case
of tiles with 1000 genes (Figure 4.3-c). The Se of ARACNE is greater then that of PC
(Figure 4.3-d), except in the following cases:

- with subLGN with 10 genes and tiles with 200 and 1000 genes, PC and ARACNE
have similar Se values;

- with subLGN with 5 genes and tiles with 500 genes , PC and ARACNE have similar
Se values;

- with 10 genes in the subLGN and 500 genes into the tiles PC has greater Se with
respect to ARACNE.
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Figure 4.3: Results of the preliminary evaluation 2.
In green is the PC algorithm and in blue is ARACNE. The different lines are the different size
of the LGN (3, 5 and 10 genes, represented by cube, asterisk and triangle respectively). a. Tot-
Nodes curve: total number of genes found by the algorithms b. Delta curve: the Delta criterion
c PPV curve d Se curve.



Evaluation of PC-IM 59

4.2.6 Discussion of the preliminary evaluation 2

The expansion nodes for a certain LGN, found by an in silico approach, need to be followed
by an in vivo validation. This step which consists in complex laboratory experiments (for
example yeast two-hybrid experiments for the validation of paired physical interaction, or
the generation of genetic mutations) due to the time and costs required can be afforded
only for a limited number of genes. Moreover both PC and ARACNE do not have 100 %
precision and sensitivity values (see results of preliminary evaluation 1, Figure 4.3-PPV
curve and Figure 4.3-Se curve). In case the performances in terms of precision (PPV)
between different algorithms are comparable (e.g. Figure 4.3-PPV curve and Figure 4.3-
Se curve with some size of tiles) then is preferable to choose the algorithm that finds
the smaller number of positive genes (Figure 4.3-Tot_Nodes curve) and has a major
value of Delta. The combination of these two parameters (number of total genes and
Delta) improves the probability to choose true expansion genes, limiting the insuccess
rate validation experiments.

4.3 Evaluation of PC-IM

PC-IM performances have been evaluated using the same in vivo gene expression data
and LGN of Section ??, namely 393 hybridization experiments from plexdb database and
FOS-GRN of Arabidopsis thaliana LGN. The aim of this evaluation was to understand
whether the performances of the method are depending on input gene expression data on
type of LGN or on the other parameters (i.e. number of iteration (i) and tile size (t)).
For these reasons the following evaluations will consider the:

- Effect of the tile size t ;

- Effect of the iteration number i ;

- Effect of the frequency (value determined in step 5 of PC-IM);

- Effect of the gene expression type;

- Effect of the LGN (random LGN vs real LGN).

Finally we compared the performances of PC-IM with those of GENIES [Kotera et al.,
2012].

4.3.1 Effect of the tile size t

In step 1 of PC-IM the input gene list is divided into tiles of a size t that is specified by
the user. In this section we investigate the changes in PC-IM output with different values
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of t and we identify the t value that gives the best performances.
This analysis is made on five different tile sizes: 50, 100, 200, 500 and 1000 genes. The

number of iteration i is 100 and the dimension of the subLGN d is 10. Figure 4.4 shows
the results of this test and it indicates that the lowest dmin in the PR curve found for t =
50 genes (red line) and t = 100 genes (magenta line) (Figure 4.4-PR curve and Table 4.9).
Instead the biggest values of AUC are associated with tile sizes of 200, 500 and 1000 genes
(Figure 4.4-ROC curve and Table 4.9). Nevertheless the differences between the biggest
and smallest values of AUC of the ROC curves and dmin of the PR curves are in the order
of the hundredths (Table 4.9). This means that the size of the tile does not affect the
methods performances and that the tiles can have size ranging between 200-1000 genes.

50 genes 100 genes 200 genes 500 genes 1000 genes

AUC 0.662 0.663 0.710 0.706 0.700

dmin 0.481 0.496 0.547 0.560 0.562

Table 4.9: Value of AUC and dmin with different tile size.
The size of the tile (number of genes) is indicated in the first row.

In the next steps of PC-IM evaluation we used a fixed tile size of 1000. This choice
derives from the above considerations of the AUC and dmin values and from the results
(Figure 4.3-PPV curve) with different subLGNs sizes which showed that this tile size is
not affected by changes in the dimension of subLGN.

4.3.2 Effect of the number of iterations i

A parameter that have to be set is the iterations number i that is the number of times
the procedure of the tiles generation from the input gene-list, is repeated. This parameter
permits:

- to increase the number of combinations between intra and extra genes, into the tiles ;

- to parallelize step 1 to step 4 of the algorithm.

To study the effect of the number of iterations i on PC-IM results we used different i
values (1, 5, 10, 15, 20, 25, 50, 75 and 100), d = 10 (where d is the size of the subLGN)
and t = 1000. At the end of this analysis we will choose the i value that is the best
compromise between biggest AUC and smallest dmin.

In Figure 4.5 the ROC and PR curves for this test are presented. The results show
that at similar values of percentage frequency, 1-Sp (Figure 4.5-ROC curve) and PPV
(Figure 4.5-PR curve) are comparable and not affected by the number of iterations. In-
stead the Se value increases with the increase of the number of iterations. This means
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Figure 4.4: ROC and PR curve of the tile size t effect.
Each colour is a different size of tile t and each point is a different percentage value of frequency
% (frequency calculates in the step 5 of the PC-IM).

that the number of iterations has an higher effect on the number of false negatives with
respect to the number of true positives and increasing the i value decreases the number
of false negatives, but it does not change significantly the number of true positives, (PPV
is comparable with different i). The reason for the decrease of false negatives is that with
high i, the number of the total tiles to be tested increases. With total tiles we mean the
number of the tiles for an iteration multiplied by the number of total iterations. The
greater the number of the total tiles, the higher will be the number of different genes
combinations (intra and extra) as well as the selectivity of the method. This permits
PC-IM to reduce the number of false negatives.

Number of i 1 5 10 15 20 25 50 75 100

AUC 0.730 0.747 0.727 0.683 0.683 0.719 0.713 0.683 0.700

dmin 0.834 0.676 0.738 0.723 0.724 0.611 0.573 0.533 0.562

Table 4.10: Values of AUC and dmin with different iteration number
The size of the tiles (number of genes) is indicated in the first row.
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Figure 4.5: ROC and PR curveof iteration number i effect.
Each colour is a different number of iteration and each point corresponds to a different percentage
value of frequency % (frequency calculates in the step 5 of the PC-IM).

In this test i = 100 is the iteration value that has the best compromise between the
biggest value of AUC and smallest value of dmin (Table 4.10) and for this reason will be
our choice for the future expansion of the LGN.

4.3.3 Effect of the type of gene expression data

In the preliminary results 1 (Section 4.1) it was shown that the type of gene expression
data has a great influence on the performances of the algorithms. This happened both
when comparing in silico data versus in vivo data and when comparing two different
type of in vivo data. In this section we test if this effect is observed also with PC-
IM. For this reason PC-IM is used on different combinations of in vivo expression data.
These combinations are called SubSets and are generated starting from the 393 gene
expression data described in Section 4.2.2. These SubSets are different for the number of
hybridization experiments and for the presence or not of gene expression data related to
the LGN to be expanded. We analysed three SubSets (SubSet A, SubSet B and SubSet
C) with the following composition:

- SubSet A is formed by the AT4, AT6, AT8, AT10, AT12, AT13, AT7, AT18 and
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Figure 4.6: ROC and PR curves for the dependence on different SubSets A, B and C.
Each colour is a different set of gene expression data (SubSet) and each points is a different
percentage value of the frequency (frequency calculates in the step 5 of PC-IM).

AT40 hybridization experiments;

- SubSet B is formed by the AT6, AT8, AT10, AT12, AT13, AT7, AT18 and AT40
hybridization experiments;

- SubSet C is formed by the AT4 hybridization experiments.

Table 4.11 reports the performances of PC-IM with the different SubSets. The evalu-
ated parameters are the cut-off frequency, AUC and dmin. The cut-off frequency indicates
the value of frequency calculated and used by PC-IM to expand the LGN. The AUC and
dmin reported in the table correspond to the selected cut-off frequency. In this test the
LGN is the FOS-GRN, d = 10, t = 1000 and i = 100.

The results showed in Table 4.11 and in Figure 4.6 clearly indicate that PC-IM gives
different outputs with different gene expression data.

With 353 gene expression datasets not including data related to the flowering process,
we have obtained the best value of sensitivity (Figure 4.6-ROC curve: green line) but the
worse value of PPV (Figure 4.6-PR curve: green line). This suggests that with expression
data unrelated to the studied LGN, PC-IM finds a high number of expansion genes and
consequently less false negatives, but also more false positives.



64 Evaluation of the PC-Iterative Method (PC-IM)

SubSet A SubSet B SubSet C

Type of Hybridization
Experiments

Flowering + noFlowering noFlowering Flowering

Total number of Hybridization
Experiments

393 353 40

cut-off frequency 61.0 1.0 71.5

AUC 0.533 0.285 0.782

dmin 0.562 1.030 0.852

Table 4.11: PC-IM performances with different gene expression data (SubSets A, B
and C).
The term "Flowering "indicates gene expression data related to the flowering process, instead
"noFlowering"means unrelated with flowering.

In the case of 393 hybridization experiments (flowering related and not related ex-
pression data) the value of sensitivity (Figure 4.6-ROC curve: blue line) is comparable
with the one of SubSet C (40 hybridization experiments specific of the flowering process)
(Figure 4.6-PR curve: magenta line), but PPV is better than that observed with the
other two SubSets (Figure 4.6-PR curve). These results show how the presence of the
non-specific biological experiments helps PC-IM to reduce the number of false positives.

4.3.4 Effect of the LGN (Real LGN vs Random LGN)

In this step we want to test the robustness of PC-IM comparing its performances in the
inference of two different LGNs and the relative subLGNs. The first LGN we have chosen is
the FOS-GRN, namely a real biological LGN. The second LGN is a random LGN (Random
LGN), obtained by randomly selecting the LGN genes from the genes of the input dataset.
Real LGN and Random LGN have the same size (number of genes) and the same number
of relationships. In the Random LGN, also the relationships between the genes of the
LGN are obtained randomly. In particular, in this case, we have originated three different
combinations of 54 relationships among genes, in order to have three repetitions.

The input gene expression dataset is formed by the 393 hybridizations of the ATH1
GeneChip, number of iterations i = 100 and tile size t = 1000. The results are show in
Table 4.12. The results clearly demostrate that PPV, Se and cut-off frequency obtained
with FOS-GRN are much greater than those obtained with the Random LGN. In addition
dmin observed for FOS-GRN is lower with respect to the dmin observed for the Random
LGN.

These values indicate that PC-IM is influenced by the nature of LGN. In fact when we
use the Random LGN, PC-IM finds expansion genes with lower precision and sensitivity.
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PPV max s.d. Se max s.d dmin (PR
curve)

cut-off
frequency

FOS-GRN 0.82230 - 0.46700 - 0.56200 62

Random LGN 0.00016 ± 8.37e-06 0.09133 ± 0.004619 1.35100 4

Table 4.12: PC-IM performances in expanding FOS-GRN or a Random LGN.
(s.d. is standard deviation).

4.3.5 Effect of the frequency value

The choice of the cut-off frequency (step 4 of PC-IM) determines the final LGN expansion
gene list (step 5 of PC-IM). The selection of the cut-off frequency is done by identification
of the frequency value that maximizes AUC (from ROC curve) and minimizes dmin (from
PR curve). When it is not possible, to reach the maximun and the minimun of these two
parameters then the cut-off frequency is the best compromise to optimize them.

To test the quality of the output selected from the cut-off frequency, a validation of the
final expansion gene list was necessary. This validation was based on a bibliographic search
that compared the genes provided by PC-IM in the expansion list with the information
present in the literature. According to the bibliographic search we divided the genes, of
the expansion list, in four classes:

- Class 1: genes related to the LGN;

- Class 2: genes not directly related with the LGN, but related with genes into the
Class 1;

- Class 3: genes unrelated with the LGN;

- Class 4: genes not supported by references.

In Class 3 is important to clarify that there are genes involved in metabolic processes
different to the metabolic process in which the LGN is taking part according to the state
of art knowledge. This does not exclude completely that those genes are related with the
genes of the LGN. In fact, we can say only that in Class 3 there are genes that do not
have, in the literature, evidence to be related with the LGN. For Class 4, instead, we can
not make any consideration, because in literature there is no information that help us to
understand if PC-IM expansion genes are correct.

For this evaluation we run PC-IM on the FOS-GRN LGN using the following param-
eters: t = 1000, i = 100, d = 10. The results are shown in Figure 4.7. The Se and PV
curves (Figure 4.7-PPV and Se curve) depict the variation of PPV and Se with different
values of frequency (0-100). The black line indicates the frequency selected, by PC-IM,
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Figure 4.7: PPV-Se curve and ranking of the FOS-GRN expansion.

to have the final expansion gene list. Figure 4.7-ranking shows the distribution of the
expansion gene list (314 genes) into the four classes (Class 1, Class 2, Class 3 and Class
4). The expansion list is the output of PC-IM and it is obtained using 62% as cut-off
frequency. This value derives from the intrinsic evaluation of the PC-IM (black line in
Figure 4.7- PPV and Se curve).

Class1 Class 2 Class 3 Class 4

number of genes 54 60 41 159

Table 4.13: Distribution of the expansion FOS-GRN genes into four classes.
(Class 1 = genes related with flowering; Class 2 = genes not directly related with flowering, but
with Class 1; Class 3 = genes Unrelated with flowering; Class 4 = genes without references).

The cut-off frequency obtained by PC-IM is 62% and at this frequency the total number
of expansion genes is 314. The distribution of these 314 genes into the four Classes is
showed in Table 4.13.

At the highest values of frequency the total number of genes in the PC-IM output is
very low (the sensitivity estimated from PC-IM is around 10-20%) (Figure 4.7-PPV and
Se curve). Moving towards lower frequency values will increase the sensitivity, but will
not affect the PPV values until a frequency value of 62% is reached. At lower frequency
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indeed, PPV decreases dramatically, while Se reaches a plateau. PC-IM will then select
the 62% frequency as cut-off frequency.

The top part of the ranking (higher frequency values) is mainly populated by genes of
Class 1 followed by those belonging to Class 2 and 3, until genes of Class 4 are very few
(Figure 4.7.ranking). This behaviour is a clear indication that the genes at the top of the
expansion list are very likely to bestrongly related to the LGN.

In the lower part of the ranking the situation changes. The genes in Class 4 start to
be included at higher rate than the genes of the other Classes, in the output list.

In this particular case, FOS-GRN, the turning point is at about position 40 of the
ranking.

It is worth to mention, however, that the proportion of "true "genes (Class 1 + Class
2) remain higher than that of "false"genes until position 220 of the ranking.

4.3.6 Comparison of PC-IM versus GENIES

As a last step of the evaluation procedure we decided to compare PC-IM with the com-
petitor method GENIES, a recently published method for LGN expansion.

The analysis compares PPV, Se, Sp, ROC and PR curves. To evaluate the algorithms’
performances, the LGN was divided in 100 subLGNs. Each subLGN was obtained ran-
domly choosing genes from the LGN. The genes in the subLGN are divided in two classes:
INTRA and EXTRA. The INTRA genes are those genes that belong to the LGN, in-
stead the EXTRA genes are those present in the input data, but are not included in
the LGN. Once obtained the Gold Standards the evaluation criteria are obtained using
Equations 3.4, 3.5 and 3.5 to calculate PPV, Se and Sp respectively.

For this comparison we have chosen three different LGNs, called LGN 1, LGN 2 and
LGN 3. These LGNs differ for their size and for the organism they belong. The description
of the three LGNs is reported below and summarized in Table 4.14.

LGN 1 LGN 2 LGN 3

Organism Arabidopsis thaliana Saccharomyces cerevisiae Saccharomyces cerevisiae

Size of the LGN 15 133 14

Size of the subLGN 10 86 9

Number of subLGNs 100 100 100

Expression array
[genes; experiments]

[22810; 393] [544; 157] [3370; 397]

Table 4.14: Description of the three different LGNs used to compare the performances
of PC-IM and GENIES.

LGN 1
The network is the FOS-GRN of the Arabidopsis thaliana (see section 4.2.1). The FOS-
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GRN comprises 15 genes related with mutation experiments carried out in Arabidopsis
thaliana [Espinosa-Soto et al., 2004] [Sanchez-Corrales et al., 2010]. The expression data
derives from the plexdb database (www.plexdb.org) and consists of 393 hybridization
experiments (see section 4.2.2). The parameters used to run PC-IM were tile size of 1000
genes and number of iterations equal to 100. For the comparison of the methods the size
of the subLGNs was set to 10.

LGN 2
LGN 2 contains 133 genes of Saccharomyces cerevisiae and the expression data are formed
by 157 experiments and 544 genes. LGN and gene expression data are available on
the GENIES website (http://www.genome.jp/tools/genies/help.html) and are those
used as example to explain the method.

In this case the parameters, to test PC-IM, were t = 200 and i = 100. Since the
number of genes in the expression dataset are 544, a tile size of 200 genes permits to have
a good number of different genes surrounding the LGN. This is important, because we
have observed previously that PC-IM output is affected by the gene composition of the
tiles. This is due to the use of the d-separation criterion (Chapter 2). The d-separation
criterion finds the v-structures between the variables, then changing the combination of
nodes makes possible to find new v-structures.

LGN 3
LGN 3 is formed by genes involved in the glycolysis pathway of yeast (Saccharmoyces
cerevisiae). These 14 genes listed in Table4.15 have been taken from the website Sacc-
ahromyces Genoma Database (SGD) (http://pathway.yeastgenome.org/YEAST/NEW-IMAGE?
type=PATHWAY&object=GLYCOLYSIS&detail-level\=2&detail-level=3&detail-level=
2) and the pathway is showed in Figure 4.8. The expression data are 397, derived
from the SGD database (http://www.yeastgenome.org/download-data/expression)
and are listed in Table 4.16. The choice of the type of expression data was done ran-
domly, except for GSE7820_set0_ family, GSE7820_set1_ family, GSE7820_setA_ fam-
ily, GSE8898_setA_ family and GSE9232_setA_ family that are related to the glycolysis
pathway. The number of expression data and the size of the LGN are comparable with
the number of the gene expression data (393) and LGN size (15 genes of the FOS-GRN)
of FOS-GRN expansion. The reason for this choice was to verify whether PC-IM givs
comparable performances to those obtained in the expansion of FOS-GRN, when pro-
vided with similar input data (size of LGN and number of expression data). For PC-IM
we have chosen to use i = 100 and two different sizes of tile: 200 and 500.

GENIES can be used on the website http://www.genome.jp./tools/genies/. Re-
quirements are partial knowledge of the metabolic network (LGN or input data set) and
any ”profile” of genes (or proteins) (e.g. gene expression profile, protein subcellular local-

www.plexdb.org
http://www.genome.jp/tools/genies/help.html
http://pathway.yeastgenome.org/YEAST/NEW-IMAGE?type=PATHWAY&object=GLYCOLYSIS&detail-level \ =2&detail-level=3&detail-level=2
http://pathway.yeastgenome.org/YEAST/NEW-IMAGE?type=PATHWAY&object=GLYCOLYSIS&detail-level \ =2&detail-level=3&detail-level=2
http://pathway.yeastgenome.org/YEAST/NEW-IMAGE?type=PATHWAY&object=GLYCOLYSIS&detail-level \ =2&detail-level=3&detail-level=2
http://www.yeastgenome.org/download-data/expression
http://www.genome.jp./tools/genies/
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Figure 4.8: The glycolysis pathway in Saccharomyces cerevisiae
(taken from SGD (Saccharomyces Genome Database) http://www.yeastgenome.org/).

http://www.yeastgenome.org/
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Standard Name Systematic Name

PGI1 YBR196C

PFK2 YMR205C

PFK1 YGR240C

FBA1 YKL060C

TPI1 YDR050C

TDH1 YJL052W

TDH2 YJR009C

TDH3 YGR192C

PGK1 YCR012W

GPM1 YKL152C

ENO2 YHR174W

ENO1 YGR254W

PYK2 YOR347C

CDC19 YAL038W

Table 4.15: List of genes involved in the glycosilic pathway.

ization profiles and phylogenetic profiles). In GENIES, each genes or protein input data
set is transformed into the kernel similarity matrix by a kernel function [Kotera et al.,
2012] and the user can select the kernel matrix and the algorithm to be used for LGN ex-
pansion. For this reason, we have compared PC-IM with different combinations of kernel
matrix and algorithm. These combinations are listed in Table 4.17.

Figure 4.9 shows that GENIES_11 (GENIES with exponential kernel and penalized
kernel matrix regression) GENIES_12 (exponential kernel matrix and em-algorithm) and
GENIES_3 (exponential kernel matrix combined with kernel canonical correlation anal-
ysis) have had apparently better performances respect to PC-IM. The values of dmin of
the GENIES_11, GENIES_12 and GENIES_3 are all 0.249, instead the value of dmin of
PC-IM is 0.562. However in the gene expansion list (not selected with cut-off) of these
three combinations of GENIES, there are no genes, while in the gene expansion list of
PC-IM, before the selection by cut-off frequency, there are 4086 genes.

The minimum value of dmin in the expansion of LGN2 is 0.417. This value is obtained
with GENIES algorithm and in particular with the combinations of kernel matrix and
algorithms present in GENIES_3, GENIES_11 and GENIES_12 (Figure 4.10). The
dmin value of PC-IM is 0.527. The three combinations of GENIES have in the final
expansion list (before the selection with cut-off) only 1 gene, instead PC-IM gives 422
genes in the expansion list (without cut-off frequency selection).

In the case of LGN3 expansion the minimum value of dmin is 0.463 and this is obtained
with PC-IM and t = 500. The GENIES combinations with minimum value of dmin (0.543)
are GENIES_3, GENIES_11 and GENIES_12 (Figure 4.11). In this case PC-IM (t=500)
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Figure 4.9: ROC curve and PR curve of LGN1.
Comparison of PC-IM with different version of GENIES see Table 4.17.

Figure 4.10: ROC curve and PR curve of LGN 2.
Comparison of PC-IM with different version of GENIES see Table 4.17.
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Figure 4.11: ROC curve and PR curve of LGN 3.
Comparison of PC-IM with different version of GENIES see Table 4.17.

produces a gene expansion list (without cut-off frequency selection) of 449 extra genes,
instead in the expansion lists of GENIES_3, GENIES_11 and GENIES_12 there are 0
extra genes.

In conclusion PC-IM has performed much better than GENIES in finding genes outside
the LGN.

4.3.7 Conclusion of the PC-IM Evaluation

PC-IM is a method to expand GRNs. Its evaluation comprised the analysis of the effect
of the tile size (Section 4.3.1), the number of iterations (Section 4.3.2), the type and
the number of the gene expression data (Section 4.3.3) and the LGN (Section 4.3.4). In
addition an evaluation of the output data has been done to investigate the effect of the
frequency (Section 4.3.5). This is an intrinsic parameter generated by PC-IM and used
to output the final gene expansion list.

The subdivision of the input geneset in tiles permits to analyse very large genesets
such as the whole genome of a species and to test different genes around the LGN’s genes.
The evaluation of the size of the tiles shows that 100 and 1000 are the number of genes
that permits to obtain the best performances. This confirms the findings on the LPC
(Low PC algorithm) reported by Wang et al. [2010]. In the range of tile size 100-1000 we
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have chosen t = 1000 for two reasons. First, t =1000 gives the best compromise between
ROC and dmin and second, with this value of tile size is possible to expand LGNs greater
than 15 genes. In fact, in this case (t = 1000) we have more external genes with respect
to the LGN.

The iterations have the aim to repeat the expansion on the whole geneset more times
and than to select only the expansion genes that have been outputted in many iterations.
This means that the iteration number is important to estimate of the cut-off frequency. We
have found that a number of iterations equal or greater than 50 gives the best performances
in terms of PPV and Se.

Gene expression data is another important parameter to be considered. Gene expres-
sion data can change for the their number (e.g. number of the hybridization experiments
in a microarray) and for their type (they can be related or not with the LGN). In the
choice of the type of gene expression data, there are three possibilities: all experiments
are specific for the LGN (e.g. the hybridization experiments are related to the flower and
the LGN is the FOS-GRN), the experiments regard the biological topic of the LGN or
the experiments are a mix of two previous situations. These three categories using the
gene observational gene expression data present in the plexdb database [www.plexdb.org].
This test has underlined how the best performances were detained by PC-IM when using
a high number of experiments that were a mix of specific and not specific experiments.

To estimate the robustness of the methodology two different LGNs have been tested:
a Real LGN (FOS-GRN) and a Random LGN. The Random LGN was obtained randomly
selecting its genes from the input geneset. In the case of the Random LGN the values
of the performance parameters were very small, demonstrating that PC-IM realizes that
the LGN is not a real LGN. This test shows the robustness of the method and that its
performances depend on the type of LGN.

As last evaluation we have estimated the validity of the intrinsic performance evalua-
tion and if the cut-off frequency intrinsically estimated is a good parameter to select the
final gene expansion list. The results show that the cut-off frequency allows for selecting
the gene list that is the best compromise between PPV and Se. In the absence of ex-
perimental validations is not possible to project, with certainty, this intrinsic estimate of
PPV and Se to the expansion gene list.

The comparison between PC-IM and GENIES shows that GENIES gives the best
expansion performances within the LGN, but it does find almost no extra genes. Moreover
in GENIES, to get to the best performances is necessary to test different combinations
between kernel matrix and algorithms (http://www.genome.jp./tools/genies/). From
these considerations is evident that GENIES can not be used to expand a LGN with extra
genes and that GENIES is not easy to be used by a user with little informatic knowledge.

www.plexdb.org
http://www.genome.jp./tools/genies/
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PCL filename reference number
of con-
ditions

tags

GSE7820_set0_family [Medintz et al., 2007] 6 filamentous growth, nitrogen uti-
lization, signaling

GSE7820_set1_family [Medintz et al., 2007] 6 filamentous growth, nitrogen uti-
lization, signaling

GSE7820_setA_family [Medintz et al., 2007] 12 filamentous growth, nitrogen uti-
lization, signaling

GSE8898_setA_family [Jansen et al., 2005] 6 evolution, fermentation, respiration

GSE9232_setA_family [Daran-Lapujade et al., 2007] 9 carbon utilization, fermentation,
oxygen level alteration, respiration

2010.Bernstein00 HDACrpd3sin3hda1 [Bernstein et al., 2000] 6 chromatin organization, histone
modification

2010.Yoshimoto02 Ca.flt.knn.avg [Yoshimoto et al., 2002] 24 cellular ion homeostasis, chemica,
stimulus, signaling

GSE10066_setA_family [Abbott et al., 2008] 12 chemical stimulus, oxygen level al-
teration, stress

GSE10073_setA_family [Agarwal et al., 2008] 6 chemical stimulus, cofactor
metabolism

GSE10521_setA_family [Azzouz et al., 2009] 25 carbon utilization, diauxic shift,
fermentation, respiration

GSE1311_setA_family [Singh et al., 2005] 21 stress

GSE1312_setA_family [Singh et al., 2005] 21 stress

GSE4272_set0_family [Auld et al., 2006] 17 proteolysis, transcription

GSE5027_setA_family [Barbara et al., 2007] 12 carbon utilization, fermentation

GSE6018_set0_family [Benton et al., 2006] 12 DNA damage stimulus

GSE6018_set1_family [Benton et al., 2006] 13 radiation

GSE8335_set00_family [Berry and Gasch, 2008] 8 osmotic stress, stress

GSE8335_set01_family [Berry and Gasch, 2008] 8 oxidative stress, stress

GSE8335_set02_family [Berry and Gasch, 2008] 8 oxidative stress, stress

GSE8335_set03_family [Berry and Gasch, 2008] 4 osmotic stress, stress

GSE8335_set04_family [Berry and Gasch, 2008] 4 oxidative stress, stress

GSE8335_set05_family [Berry and Gasch, 2008] 8 oxidative stress, stress

GSE8335_set06_family [Berry and Gasch, 2008] 6 osmotic stress, stress

GSE8335_set07_familyy [Berry and Gasch, 2008] 5 heat shock, stress

GSE8335_set08_family [Berry and Gasch, 2008] 5 osmotic stress, stress

GSE8335_set09_family [Berry and Gasch, 2008] 5 heat shock, stress

GSE8335_set10_family [Berry and Gasch, 2008] 5 stress

GSE8335_set11_family [Berry and Gasch, 2008] 5 heat shock, stress

GSE8335_set12_family [Berry and Gasch, 2008] 5 osmotic stress, stress

GSE8335_set13_family [Berry and Gasch, 2008] 5 heat shock, stress

GSE8624_set0_family [Aragon et al., 2008] 26 stationary phase maintenance

GSE8624_set1_family [Aragon et al., 2008] 20 stationary phase maintenance

GSE8900_setA_family [Aguilera et al., 2006] 18 carbon utilization, chemical stimu-
lus|nitrogen utilization, respiration

GSE9376_setA_family [Smith and Kruglyak, 2008] 30 carbon utilization, evolution

Table 4.16: Description of SGD expression data
(http://www.yeastgenome.org/download-data/expression) and used to expand the LGN3.

http://www.yeastgenome.org/download-data/expression
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name of combination kernel matrix algorithm type

GENIES_1 linear kernel kernel matrix regression

GENIES_2 Gaussian RBF kernel kernel matrix regression

GENIES_3 Exponential kernel kernel matrix regression

GENIES_4 Polynomial kernel kernel matrix regression

GENIES_5 Linear kernel Penalize kernel matrix regression

GENIES_6 Linear kernel em-algorithm

GENIES_7 Linear kernel kernel canonical correlation analysis

GENIES_8 Gaussian RBF kernel penalized kernel matrix regression

GENIES_9 Gaussian RBF kernel em-algorithm

GENIES_10 Gaussian RBF kernel kernel canonical correlation analysis

GENIES_11 exponential kernel penalized kernel matrix regression

GENIES_12 exponential kernel em-algorithm

GENIES_13 exponential kernel kernel canonical correlation analysis

GENIES_14 polynomial kernel penalized kernel matrix regression

GENIES_15 polynomial kernel em-algorithm

GENIES_16 polynomial kernel kernel canonical correlation analysis

Table 4.17: Different combination of kernel matrix and algorithms of GENIES.
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Chapter 5

Expansion of the Local Gene Networks
with PC-IM: two case studies.

Once tested that PC-IM has good ability in expanding a LGN, the method was applied
in the expansion of two real LGNs of Arabidopsis thaliana:

- the flowering network AtFOS-GRN which was also used to test the PC-IM;

- the flavonoid network (AtFlavonoids)

5.1 The Arabidopsis thaliana Floral Organ Specification- Gene
Regulatory Network

The first case study dealt with the expansion of the FOS-GRN of Arabidopsis thaliana
(AtFOS-GRN). This network is formed by 15 genes and it is involved in flower develop-
ment. Its complete description is presented in Section 4.2.1. The parameters used for
PC-IM in this run were:

- tiles size t = 1000;

- iteration number i = 100;

- subLGNs size d = 10;

- gene expression data reported in Section 4.2.2.

PC-IM produced a list of 314 genes expanding FOS-GRN. At this step the validation
of the expansion was performed by an exhaustive bibliographic search. The genes, of the
final output list, were assigned to four different classes, as described in Section 4.3.5:

- Class 1: genes related to flowering;
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- Class 2: genes not directly related with flowering, but related to genes of Class 1;

- Class 3: genes unrelated with flowering;

- Class 4: genes not supported by references.

The complete expansion genes list of FOS-GRN is detailed in Table 5.2. Genes are
ordered by ranking. The ranking is obtained considering how many times a gene is present
in the output list of each iteration. The great number of genes of Class 4, indicates that
the knowledge in the literature does not cover all the genes in the expanded FOS-GRN. It
is worth to mention that on other hand, these genes of Class 4 represented a new potential
source of knowledge.

5.1.1 PC-IM Output versus Random Output

Since the exhaustive bibliographic search did not completely cover the whole expansion
list given by PC-IM, we included another test to evaluate the PC-IM results. This test
tries to answer the question: "Is the performance of PC-IM in terms of PPV and e) similar
to that observed using a list of randomly selected genes as Random Output? "

The Random Output has 314 genes, namely the same number of genes of the PC-IM
Output. The 314 genes have been obtained by applying the method on randomly selected
genes from ATH1 GeneChip. The analysis was repeated 10 times, thus giving 10 Random
Outputs.

To compare the two outputs we used as reference (Gold Standard) a set of genes
involved in flower development, but not included in FOS-GRN. This set of genes was
obtained running the ANAP tool [Wang et al., 2012] on the FOS-GRN. ANAP tool is
a platform of Arabidopsis thaliana by which is possible to select different databases or
different interaction detection methods to generate networks [Wang et al., 2012]. To get
our Gold Standard we have selected only the interaction detection methods. Starting from
FOS-GRN it was possible to obtain different Gold Standard combining various methods
by the drop-down menu called network filtering. The first Gold Standard (Gold Standard
A) of 151 genes was obtained by selecting all entries present in the network filtering (100
interaction detection methods). In the second Gold Standard (Gold Standard B) there
are only 36 genes and it was obtained by selecting only the ”hybridization experiment”
entries in the network filtering. These hybridization experiments correspond to three
Interaction Detection Methods. The hybridization screenings are based on molecular
biology techniques used to discover interactions between molecules (e.g. protein-protein
and DNA-protein interactions). The Gold Standard B was generated starting from in
vivo experiments and therefore should be more realistic compared to Gold Standard A.
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The PC-IM Output and Random Output were compared by a Likelihood Ratio (LR)
test, typically used to compare the fit of two models, the null model (Gold Standard in our
case) and the alternative model (the two different Output in our case). It is used in the
diagnostic field to assess how good a diagnostic test (pre-test) is and to help in selecting
an appropriate diagnostic tests or sequence of tests. The Positive LR (LR+) indicates the
probability to have a positive result in a diseased subject respect to the same probability
in a healthy subject:

LR+ =
sensitivity

(1− specificity)
(5.1)

If LR+ is positive and higher than 1.0 the probability that the diagnostic test is correct
increases. If LR+ is equal to 1.0 the diagnostic test does not give any information on the
disease prediction.

Gold Standard A Gold Standard B

PC-IM Outputs 8.58 10.23

Random Output 1.06 0.81

Table 5.1: Comparison of the LR+ value of PC-IM (314 PC-IM genes) and the LR+
value of Random Output genes (314 random genes).

In Table 5.1 the results of the LR+ test are showed. It is interesting to note that LR+
values of the PC-IM Output are much higher than 1.0, while LR+ values of the Random
Output are very close to 1.0. This means that PC-IM results gave a gene expansion
list that has a good probability to be correct. Respect to Gold standard A, with gene
lists of the Gold Standard B, the LR+ of the PC-IM Output increases, while the LR+
of Random Output decreases. This analysis shows that the expansion of list FOS-GRN
given by PC-IM is significantly not the same as if was generated by a randomly.

Table 5.2: 314 expansion genes of FOS-GRN.

rnk AffyID GeneID Description Class Reference

1 245819_at AT1G26310 CAL (CAULIFLOWER) 1 [Grandi et al., 2012]

2 254391_at AT4G21590 ENDO3 (ENDONUCLEASE 3) 1 [Gómez-Mena
et al., 2005];
[Schmid et al.,
2003]

3 259089_at AT3G04960 similar to unknown protein
[Arabidopsis thaliana] (TAIR:
AT4G27980.1)

1 [Gómez-Mena
et al., 2005]

Table 5.2: 314 expansion genes of FOS-GRN.



80 Expansion of the Local Gene Networks with PC-IM: two case studies.

4 260355_at AT1G69180 CRC (CRABS CLAW) 1 [Lee et al., 2005]

5 266505_at AT2G47830 cation efflux family protein /
metal tolerance protein, putative
(MTPc1)

2 expressed in carpel
(TAIR)

6 264041_at AT2G03710 SEP4 (SEPALLATA4) 1 [Ditta et al., 2004]

7 267460_at AT2G33810 SPL3 (SQUAMOSA PRO-
MOTER BINDING PROTEIN-
LIKE 3)

1 [Deng et al., 2011];
[Yamaguchi et al.,
2009]

8 250467_at AT5G10100 TPPI (TREHALOSE-6- PHP-
SPHATE PHOSPHATASE)

1 [Iturriaga et al.,
2009]; [Li et al.,
2008]

9 256780_at AT3G13640 RNaseL inhibitor protein 1 2 [Van Leene et al.,
2010]

10 264444_at AT1G27360 SPL11 (SQUAMOSA PRO-
MOTER BINDING PROTEIN-
LIKE 11)

1 [Chen et al., 2010];
[Yamaguchi et al.,
2009]

11 255609_s_at AT4G01180 XH/XS domain-containing pro-
tein

2 [Ausin et al., 2009]

12 267144_at AT2G38110 ATGPAT6/GPAT6
(GLYCEROL-3- PHOSPHATE
ACYLTRANSFERASE 6)

1 [Li et al., 2012]

13 266888_s_at AT2G44750 TPK2 (THIAMIN PYROPHOS-
PHOKINASE 2)

2 [Ajjawi et al., 2007]

14 247956_at AT5G56970 CKX3 (CYTOKININ OXIDASE
3)

1 [Holst et al., 2011]

15 261499_at AT1G28430 CYP705A24 (cytochrome
P450, family 705, subfamily A,
polypeptide 24)

1 [Mizutani and
Ohta, 2010]

16 262231_at AT1G68740 EXS (ERD1/XPR1/SYG1) fam-
ily protein PHO

3 -

17 251543_at AT3G58770 similar to hypothetical
protein [Vitis vinifera]
(GB:CAN63610.1)

2 [Causier et al.,
2010]

18 253258_at AT4G34400 DNA binding / transcription fac-
tor

2 [Zhang et al., 2005]

Table 5.2: 314 expansion genes of FOS-GRN.
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19 253488_at AT4G31610 REM1 (REPRODUCTIVE
MERISTEM 1)

1 [Ståldal et al.,
2012]; [Swami-
nathan et al.,
2008]

20 263605_at AT2G16480 SWIB complex BAF60b domain-
containing protein

3 -

21 247869_at AT5G57520 ZFP2 (ZINC FINGER PRO-
TEIN 2)

1 [Cai and Lash-
brook, 2008]

22 262642_at AT1G62690 unknown protein 3 -

23 253712_at AT4G29330 DER1 (DERLIN-1) 3 -

24 261375_at AT1G53160 SPL4 (SQUAMOSA PRO-
MOTER BINDING PROTEIN-
LIKE 4)

1 [Wang et al., 2009]

25 255448_at AT4G02810 similar to unknown protein
[Arabidopsis thaliana] (TAIR:
AT1G03170.1)

1 [Wahl et al., 2010]

26 249939_at AT5G22430 similar to unknown protein
[Arabidopsis thaliana] (TAIR:
AT2G27385.1)

1 [Sliwinski et al.,
2006]; [Zik and
Irish, 2003]

27 250570_at AT5G08170 ATAIH/EMB1873 (AGMATINE
IMINOHYDROLASE)

3 -

28 257034_at AT3G19184 DNA binding 4 -

29 249614_at AT5G37300 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT2G38995.1)

3 -

30 264489_at AT1G27370 SPL10 (SQUAMOSA PRO-
MOTER BINDING PROTEIN-
LIKE 10)

1 [Fornara and Coup-
land, 2009]

31 257051_at AT3G15270 SPL5 (SQUAMOSA PRO-
MOTER BINDING PROTEIN-
LIKE 5)

1 [Wang et al., 2009]

32 264752_at AT1G23010 LPR1 (LOW PHOSPHATE
ROOT1)

3 -

33 247718_at AT5G59310 LTP4 (LIPID TRANSFER
PROTEIN 4);

3 -

34 266319_s_at AT3G10280 fatty acid elongase 3-ketoacyl-
CoA synthase

2 [Bach and Faure,
2010]

Table 5.2: 314 expansion genes of FOS-GRN.
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35 260438_at AT1G68290 ENDO 2 (ENDONUCLEASE 2) 2 [Yu et al., 2005]

36 248227_at AT5G53820 Late embryogenesis abundant
protein (LEA) family protein

2 [Bies-Etheve et al.,
2008]

37 263277_at AT2G14110 haloacid dehalogenase-like hy-
drolase domain-containing pro-
tein

4 -

38 256259_at AT3G12460 DEDDy 3’-5’ exonuclease
domain-containing protein

3 -

39 266814_at AT2G44910 HB-4 (homeobox-leucine zipper
protein 4)

1 [Zhang et al., 2005]

40 248167_at AT5G54530 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT1G61667.1)

4 -

41 260097_at AT1G73220 AtOCT1 (ORGANIC
CATION/CARNITINE
TRANSPORTER1)

3 -

42 252175_at AT3G50700 AtIDD2
(INDETERMINATE(ID)-
DOMAIN 2)

1 [Seo et al., 2011]

43 254663_at AT4G18290 KAT2 (K+ ATPase 2) 3 -

44 256597_at AT3G28500 60S acidic ribosomal protein P2
(RPP2C)

2 [Wang et al., 2009]

45 251986_at AT3G53310 REM16 (REPRODUCTIVE
MERISTEM 16)

1 [Wynn et al., 2011]

46 247447_at AT5G62730 proton-dependent oligopeptide
transport (POT) family protein

4 -

47 265261_at AT2G42990 GDSL-motif lipase/hydrolase
family protein

2 [Shi et al., 2011b]

48 257943_at AT3G21840 ASK7 (SKP1-LIKE 7) 3 -

49 259616_at AT1G47960 C/VIF1 (Cell wall/Vacuolar In-
hibitor of Fructosidase 1)

4 -

50 248752_at AT5G47600 heat shock protein-related 4 -

51 253309_at AT4G33790 acyl CoA reductase, putative 3 -

52 250982_at AT5G03150 JKD (JACKDAW) 3 -

53 255730_at AT1G25460 oxidoreductase family protein 4 -

54 261514_at AT1G71870 MATE efflux family protein 4 -

Table 5.2: 314 expansion genes of FOS-GRN.
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55 255956_at AT1G22015 DD46 (putative beta-1,3-
galactosyltransferase 5)

2 [Bemer et al., 2008]

56 267528_at AT2G45650 AGL6 (AGAMOUS LIKE-6) 1 [Rijpkema et al.,
2009]; [Hsu et al.,
2003]

57 248496_at AT5G50790 nodulin MtN3 family protein 2 [Wellmer et al.,
2006]

58 258506_at AT3G06520 agenet domain-containing pro-
tein

4 -

59 253266_s_at AT4G34080 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT2G45260.1)V

4 -

60 251563_at AT3G57880 C2 domain-containing protein 4 -

61 260787_at AT1G06230 GTE4 (GLOBAL TRANSCRIP-
TION FACTOR GROUP E4)

3 -

62 262835_at AT1G14660 ATNHX8 (Na+/H+ exchanger
8)

3 -

63 266855_at AT2G26920 ubiquitin-associated (UBA)/TS-
N domain-containing protein

4 -

64 245458_at AT4G16970 kinase 4 -

65 257504_at AT1G52250 dynein light chain type 1 family
protein

4 -

66 247758_at AT5G59120 ATSBT4.13; subtilase 2 [Tung et al., 2005]

67 261925_at AT1G22540 proton dependent oligopeptide
transport (POT) family protein

4 -

68 250684_at AT5G06650 GIS2 (GLABROUS INFLORES-
CENCE STEMS 2)

3 -

69 259802_at AT1G72260 THI2.1 (THIONIN 2.1) 3 -

70 263567_at AT2G15440 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT5G67210.1)

4 -

71 265672_at AT2G31980 cysteine proteinase inhibitor 2 4 -

72 257579_at AT3G11000 similar to kelch repeat-
containing protein

2 [Wang et al., 2009]

73 259133_at AT3G05400 sugar transporter ERD6-like 12 4 -

74 254175_at AT4G24050 short-chain dehydrogenase/re-
ductase (SDR) family protein

4 -

Table 5.2: 314 expansion genes of FOS-GRN.
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75 245485_at AT4G16230 GDSL-motif lipase/hydrolase
family protein

4 -

76 259421_at AT1G13910 leucine-rich repeat family pro-
tein

4 -

77 260461_at AT1G10980 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT1G61670.1)

4 -

78 246310_at AT3G51895 SULTR3;1 (SULFATE TRANS-
PORTER 1)

2 [Zuber et al., 2010]

79 255957_at AT1G22160 senescence-associated protein-
related

4 -

80 264907_at AT2G17280 phosphoglycerate mutase family
protein

4 -

81 252495_at AT3G46770 transcriptional factor B3 family
protein

1 [Romanel et al.,
2011]; [Romanel
et al., 2009]

82 247403_at AT5G62740 band 7 family protein 4 -

83 263011_at AT1G23250 caleosin-related 4 -

84 245087_at AT2G39830 zinc ion binding 4 -

85 249219_at AT5G42400 ATXR7 (TRITHORAX-
RELATED7)

1 [Berr et al., 2009]

86 254558_at AT4G19185 nodulin MtN21 4 -

87 263886_at AT2G36960 TKI1 (TSL-KINASE INTER-
ACTING PROTEIN 1)

3 -

88 246962_s_at AT5G24800 ATBZIP9/BZO2H2 (BASIC
LEUCINE ZIPPER O2 HO-
MOLOG 2)

3 -

89 263546_at AT2G21550 bifunctional dihydrofolate
reductase-thymidylate synthase,
putative

3 -

90 259809_at AT1G49800 unknown protein 4 -

91 253151_at AT4G35670 glycoside hydrolase family 28
protein

4 -

92 251991_at AT3G53340 nuclear transcription factor Y
subunit B-10

2 [Siefers et al., 2009]

93 247469_at AT5G62165 AGL42 (AGAMOUS LIKE 42) 1 [Dorca-Fornell
et al., 2011]

Table 5.2: 314 expansion genes of FOS-GRN.
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94 248251_at AT5G53220 similar to unnamed pro-
tein product [Vitis vinifera]
(GB:CAO69343.1)

4 -

95 260733_at AT1G17640 RNA recognition motif (RRM)-
containing protein

4 -

96 256664_at AT3G12040 DNA-3-methyladenine glycosy-
lase (MAG)

4 -

97 245488_at AT4G16270 peroxidase 40 (PER40) (P40) 2 [Cosio and Dunand,
2010]

98 245275_at AT4G15210 ATBETA-AMY (BETA-
AMYLASE) 5

2 [Wilson et al., 2005]

99 255906_at AT1G17790 DNA-binding bromodomain-
containing protein

4 -

100 265689_at AT2G24310 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT5G47170.1)

4 -

101 246380_at AT1G57750 CYP96A15/MAH1 (MID-
CHAIN ALKANE HYDROXY-
LASE 1)

3 -

102 255644_at AT4G00870 basic helix-loop-helix (bHLH)
family protein

2 [Hu et al., 2003]

103 245031_at AT2G26360 binding 4 -

104 245842_at AT1G58430 RXF26 1 [Shi et al., 2011b]

105 262905_at AT1G59730 ATH7 (thioredoxin H-type 7) 4 -

106 262680_at AT1G75880 EXL1 (extracellular lipase 1) 2 [Updegraff et al.,
2009]

107 262675_at AT1G75930 EXL6 (extracellular lipase 6) 2 [Updegraff et al.,
2009]

108 260024_at AT1G30080 glycosyl hydrolase family 17 pro-
tein

4 -

109 251863_at AT3G54870 MRH2 (morphogenesis of root
hair 2)

3 -

110 262443_at AT1G47655 Dof-type zinc finger domain-
containing protein

2 [Kaufmann et al.,
2009]

111 264137_at AT1G78960 ATLUP2 (LUPeol synthase 2) 4 -

112 264180_at AT1G02190 CER1 protein 1 [Gómez-Mena
et al., 2005]

Table 5.2: 314 expansion genes of FOS-GRN.
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113 248918_at AT5G45890 SAG12 (SENESCENCE-
ASSOCIATED GENE 12)

3 -

114 254791_at AT4G12910 SCPL20 (serine
carboxypeptidase-like 20)

2 [Huang et al., 2009]

115 253518_at AT4G31400 N-acetyltransferase 2 [Jiang et al., 2010]

116 256116_at AT1G16858 CPuORF55 (Conserved peptide
upstream open reading frame 55)

4 -

117 255199_at AT4G07390 PQ-loop repeat family protein /
transmembrane family protein

2 [Xiang et al., 2011]

118 251560_at AT3G57920 SPL15 (squamosa promoter-
binding protein)

1 [Deng et al., 2011]

119 259334_at AT3G03790 ankyrin repeat family protein 3 -

120 266922_s_at AT2G45950 ASK20 (ARABIDOPSIS SKP1-
LIKE 20)

2 [Zhao et al., 2003]

121 261068_at AT1G07450 tropinone reductase, putative 3 -

122 263741_at AT2G20620 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT4G29550.1)

4 -

123 265180_at AT1G23590 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT1G23600.1)

4 -

124 252692_at AT3G43960 cysteine proteinase, putative 4 -

125 255768_at AT1G16705 p300/CBP acetyltransferase-
related protein-related

1 [Han et al., 2006]

126 256239_at AT3G12470 DEDDy 3’-5’ exonuclease
domain-containing protein

4 -

127 250475_at AT5G10180 AST68 (Sulfate transporter 2.1) 3 -

128 261575_at AT1G01130 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT5G47170.1)

4 -

129 249865_at AT5G22820 binding 4 -

130 250977_at AT5G03070 binding 4 -

131 258652_at AT3G09910 AtRABC2b/AtRab18C (Ara-
bidopsis Rab GTPase homolog
C2b)

4 -

Table 5.2: 314 expansion genes of FOS-GRN.
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132 266605_at AT2G46020 ATBRM/BRM/CHR2 (ARA-
BIDOPSIS THALIANA
BRAHMA)

1 [Smaczniak et al.,
2012]

133 264992_at AT1G67300 hexose transporter, putative 4 -

134 265441_at AT2G20870 cell wall protein precursor 1 [Cai et al., 2007];
[Maizel et al., 2005]

135 257944_at AT3G21850 ASK9 (ARABIDOPSIS SKP1-
LIKE 9)

2 [Takahashi et al.,
2004]

136 248572_at AT5G49800 similar to unnamed pro-
tein product [Vitis vinifera]
(GB:CAO46940.1)

4 -

137 262874_at AT1G65020 similar to unnamed pro-
tein product [Vitis vinifera]
(GB:CAO62149.1)

4 -

138 249144_at AT5G43270 SPL2 (SQUAMOSA PRO-
MOTER BINDING PROTEIN-
LIKE 2)

2 [Usami et al., 2009]

139 266171_at AT2G38880 ATHAP3/ATNF-
YB1/HAP3/HAP3A (NU-
CLEAR FACTOR Y SUBUNIT
B1)

1 [Cai et al., 2007]

140 248559_at AT5G50012 CPuORF36 (Conserved peptide
upstream open reading frame 36)

4 -

141 256654_at AT3G18880 ribosomal protein S17 family
protein

4 -

142 245571_at AT4G14695 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT4G22310.1)

2 [Hu and Vick, 2003]

143 254667_at AT4G18280 glycine-rich cell wall protein-
related

4 -

144 257158_at AT3G24360 enoyl-CoA hydratase/isomerase
family protein

4 -

145 252200_at AT3G50280 transferase family protein 4 -

146 256418_at AT3G06160 transcriptional factor B3 family
protein

2 [Romanel et al.,
2009]

147 258082_at AT3G25905 CLE27 (CLAVATA3/ ESR-
RELATED 27)

1 [Jun et al., 2010];
[Wijeratne et al.,
2007]
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148 248368_at AT5G51950 glucose-methanol-choline
(GMC) oxidoreductase fam-
ily protein

4 -

149 264066_at AT2G27880 AGO 5 (ARGONAUTE protein) 1 [Tucker et al., 2012]

150 267431_at AT2G34870 MEE26 (maternal effect embryo
arrest 26)

2 [Kinoshita et al.,
2010]

151 249942_at AT5G22300 NIT4 (NITRILASE 4) 4 -

152 262604_at AT1G15060 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT1G73750.1)

4 -

153 255054_s_at AT4G09740 ATGH9B14 (GLYCOSYL HY-
DROLASE 9B14)

2 [Kang et al., 2008]

154 256219_at AT1G56260 similar to hypothetical pro-
tein OsI_024078 [Oryza
sativa (indica cultivar-group)]
(GB:EAZ02846.1)

3 -

155 257118_at AT3G20180 metal ion binding 4 -

156 255345_at AT4G04460 aspartyl protease family protein 4 -

157 248022_at AT5G56510 APUM12 (PUMILIO 12); RNA
binding

4 -

158 254197_at AT4G24040 ATTRE1/TRE1 (TREHALASE
1)

1 [Müller et al., 2001]

159 250491_at AT5G09780 transcriptional factor B3 family
protein

2 [Romanel et al.,
2009]

160 250288_at AT5G13350 auxin-responsive GH3 family
protein

4 -

161 259382_s_at AT3G16430 jacalin lectin family protein 3 -

162 252128_at AT3G50870 MNP (MONOPOLE); transcrip-
tion factor

2 [Zhang et al., 2005]

163 247747_at AT5G59000 zinc finger (C3HC4-type RING
finger) family protein

2 [Wang et al., 2009]

164 248985_at AT5G45160 root hair defective 3 GTP-
binding (RHD3) family protein

3 -

165 253108_at AT4G35900 FD 1 [Wigge et al., 2005]

166 267481_at AT2G02780 leucine-rich repeat transmem-
brane protein kinase, putative

3 -
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167 256381_at AT1G66850 protease inhibitor/seed stor-
age/lipid transfer protein (LTP)
family protein

2 [Dou et al., 2011]

168 248941_s_at AT5G45460 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT5G45470.1)

4 -

169 257402_at AT1G23570 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT1G23580.1)

2 [Yang et al., 2007]

170 266772_s_at AT4G16540 heat shock protein-related 4 -

171 247041_at AT5G67180 AP2 domain-containing tran-
scription factor

[Deng et al., 2011]

172 246045_at AT5G19430 zinc finger (C3HC4-type RING
finger) family protein

4 -

173 257509_at AT1G63190 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT1G63200.1)

4 -

174 259294_at AT3G05330 hypotetical protein 4 -

175 266073_at AT2G18770 signal recognition particle bind-
ing

4 -

176 263738_at AT1G60060 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT5G53900.2)

4 -

177 257124_at AT3G20040 ATHXK4; ATP binding / hexok-
inase

4 -

178 266190_at AT2G38840 guanylate-binding family protein 4 -

179 251635_at AT3G57510 ADPG1 (endo-
polygalacturonase 1)

2 [Shi et al., 2011b];
[Qi et al., 2011b]

180 261511_at AT1G71770 PAB5 (POLY(A)-BINDING
PROTEIN)

2 [Yang et al., 2007]

181 259054_at AT3G03480 CHAT (ACETYL COA:(Z)-
3-HEXEN-1-OL ACETYL-
TRANSFERASE)

4 -

182 266139_at AT2G28085 auxin-responsive family protein 4 -

183 245349_at AT4G16690 esterase/lipase/thioesterase fam-
ily protein

2 [Yang et al., 2008]

Table 5.2: 314 expansion genes of FOS-GRN.
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184 265107_s_at AT1G63380 short-chain dehydrogenase/re-
ductase (SDR) family protein

4 -

185 264481_at AT1G77200 AP2 domain-containing tran-
scription factor TINY, putative

4 -

186 246025_at AT5G21150 Argonaute family protein 9 2 [Olmedo-Monfil
et al., 2010]

187 249005_at AT5G44630 terpene synthase/cyclase family
protein

1 [Tholl et al., 2005]

188 254494_at AT4G20050 QRT3 (QUARTET 3) 2 [Kang et al., 2008]

189 254234_at AT4G23680 major latex protein-related /
MLP-related

4 -

190 264342_at AT1G12080 contains domain PTHR22683
(PTHR22683)

2 [Alves-Ferreira
et al., 2007]

191 250636_at AT5G07520 GRP18 (Glycine rich protein 18) 2 [Alves-Ferreira
et al., 2007]

192 256783_at AT3G13670 protein kinase family protein 4 -

193 261919_at AT1G65980 TPX1 (THIOREDOXIN-
DEPENDENT PEROXIDASE
1)

4 -

194 260374_at AT1G73960 TAF2 (TBP-ASSOCIATED
FACTOR 2)

2 [Mougiou et al.,
2012]

195 246513_at AT5G15680 binding 4 -

196 259799_at AT1G72290 trypsin and protease inhibitor
family protein / Kunitz family
protein

2 [Bektas et al., 2012]

197 263092_at AT2G16210 transcriptional factor B3 family
protein

2 [Wijeratne et al.,
2007]

198 245371_at AT4G15750 invertase/pectin methylesterase
inhibitor family protein

2 [Ma et al., 2012]

199 245769_at AT1G30220 ATINT2 (INOSITOL TRANS-
PORTER 2)

2 [Aluri and Büttner,
2007]

200 258116_at AT3G14520 terpene synthase/cyclase family
protein

1 [Ro et al., 2006]

201 264204_at AT1G22710 SUC2 (SUCROSE-PROTON
SYMPORTER 2)

1 [Corbesier et al.,
2007]

Table 5.2: 314 expansion genes of FOS-GRN.
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202 249687_at AT5G36150 ATPEN3 (PUTATIVE PENTA-
CYCLIC TRITERPENE SYN-
THASE 3)

1 [Posé et al., 2011]

203 259533_at AT1G12530 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT1G56420.1)

4 -

204 256293_at AT1G69440 AGO7 (ARGONAUTE7) 1 [Tantikanjana
et al., 2009]

205 248883_at AT5G46190 KH domain-containing protein 4 -

206 249020_at AT5G44800 CHR4/MI-2-LIKE (chromatin
remodeling 4)

1 [Smaczniak et al.,
2012]

207 257011_at AT3G14070 CAX9 (CATION EXCHANGER
9)

3 -

208 249379_at AT5G40460 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT3G27630.1)

4 -

209 260701_at AT1G32330 ATHSFA1D (Heat Shock tran-
scription FSctor A1D)

3 -

210 265531_at AT2G06200 AtGRF6 (GROWTH-
REGULATING FACTOR
6)

2 [Kaufmann et al.,
2009]

211 248073_at AT5G55720 pectate lyase family protein 2 [Maizel et al., 2005]

212 260241_at AT1G63710 CYP86A7 (cytochrome P450,
family 86, subfamily A, polypep-
tide 7)

2 [Maizel et al., 2005]

213 254028_s_at AT4G25850 oxysterol-binding family protein 4 -

214 257129_at AT3G20100 CYP705A19 (cytochrome
P450, family 705, subfamily A,
polypeptide 19)

4 -

215 264500_at AT1G09370 enzyme inhibitor/ pectinesterase 4 -

216 265151_at AT1G51340 MATE efflux family protein 4 -

217 251696_at AT3G56590 putative protein 4 -

218 254287_at AT4G22960 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT4G11860.1)

4 -

Table 5.2: 314 expansion genes of FOS-GRN.
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219 261726_at AT1G76270 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT1G20550.1)

4 -

220 248642_at AT5G49120 senescence-associated protein-
related

4 -

221 259972_at AT1G76420 CUC3 (CUP SHAPED
COTYLEDON3)

1 [Li et al., 2010]

222 248246_at AT5G53200 TRY (TRIPTYCHON) 4 -

223 262150_at AT1G52520 FRS6 (FAR1-related sequence 6) 1 [Lin and Wang,
2004]

224 263869_at AT2G22000 PROPEP6 (Elicitor peptide 6
precursor)

4 -

225 264830_at AT1G03710 cysteine protease inhibitor 4 -

226 249103_at AT5G43600 N-carbamyl-L-amino acid hydro-
lase, putative

4 -

227 254573_at AT4G19420 pectinacetylesterase family pro-
tein

4 -

228 254574_at AT4G19430 unknown protein 2 [Wang et al., 2009]

229 262122_at AT1G02790 PGA4 (POLYGALACTUR-
ONASE 4)

4 -

230 264016_at AT2G21220 auxin-responsive protein, puta-
tive

4 -

231 246250_at AT4G36880 CP1 (CYSTEINE PRO-
TEINASE1)

4 -

232 258488_at AT3G02420 similar to hypothetical
protein [Cleome spinosa]
(GB:ABD96906.1)

4 -

233 260876_at AT1G21460 nodulin MtN3 family protein 2 [Wellmer et al.,
2006]

234 261150_at AT1G19640 JMT (JASMONIC ACID CAR-
BOXYL METHYLTRANS-
FERASE)

4 -

235 246312_at AT1G31930 XLG3 (EXTRA-LARGE GTP-
BINDING PROTEIN 3)

3 -

236 259659_at AT1G55170 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT3G14750.1)

4 -

Table 5.2: 314 expansion genes of FOS-GRN.
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237 263386_at AT2G40150 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT3G55990.1)

4 -

238 255014_at AT4G09960 STK (SEEDSTICK) 1 [Favaro et al., 2003]

239 259221_s_at AT3G03530 NPC4 (NONSPECIFIC PHOS-
PHOLIPASE C4)

3 -

240 250630_at AT5G07400 FHA (forkhead-associated) 1 [Koornneef et al.,
1998]

241 256128_at AT1G18140 LAC1 (Laccase 1) 4 -

242 265943_at AT2G19570 CDA1 (CYTIDINE DEAMI-
NASE 1)

4 -

243 247717_at AT5G59320 LTP3 (LIPID TRANSFER
PROTEIN 3)

3 -

244 257679_at AT3G20470 encodes a glycine-rich protein
that is expressed more abun-
dantly in immature seed pods
than in stems and leaves. Ex-
pression is not detected in roots
or flowers

2 [Mangeon et al.,
2010]

245 256286_at AT3G12180 cornichon family protein 4 -

246 246601_at AT1G31710 copper amine oxidase, putative 3 -

247 248111_at AT5G55330 membrane bound O-acyl trans-
ferase (MBOAT) family protein
/ wax synthase-related

4 -

248 253987_at AT4G26270 phosphofructokinase family pro-
tein

4 -

249 252142_at AT3G51120 zinc finger (CCCH-type) family
protein

4 -

250 256149_at AT1G55110 ATIDD7 (ARABIDOP-
SIS THALIANA
INDETERMINATE(ID)-
DOMAIN 7)

4 -

251 260540_at AT2G43500 RWP-RK domain-containing
protein

3 -

252 260006_at AT1G68000 ATPIS1 (Arabidopsis thaliana
phosphatidylinositol synthase 1)

3 -

Table 5.2: 314 expansion genes of FOS-GRN.
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253 250408_at AT5G10930 CIPK5 (CBL-INTERACTING
PROTEIN KINASE 5)

4 -

254 256743_at AT3G29370 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT5G39240.1)

4 -

255 254737_at AT4G13840 transferase family protein 4 -

256 262278_at AT1G68640 PAN (PERIANTHIA) 1 [Irish, 2010]

257 251448_at AT3G59845 NADP-dependent oxidoreduc-
tase, putative

4 -

258 259673_at AT1G77800 PHD finger family protein 4 -

259 259472_at AT1G18910 protein binding / zinc ion bind-
ing

4 -

260 247154_at AT5G65710 HSL2 (HAESA-LIKE 2) 2 [Shi et al., 2011a]

261 257701_at AT3G12710 methyladenine glycosylase fam-
ily protein

4 -

262 260921_at AT1G21540 AMP-binding protein, putative 4 -

263 260203_at AT1G52890 ANAC019 (Arabidopsis NAC
domain containing protein 19)

4 -

264 250588_at AT5G07660 structural maintenance of chro-
mosomes (SMC) family protein

4 -

265 252469_at AT3G46920 protein kinase family protein 4 -

266 264621_at AT2G17700 protein kinase family protein 4 -

267 249611_at AT5G37370 ATSRL1; binding 4 -

268 251979_at AT3G53140 O-diphenol-O-methyl trans-
ferase, putative

4 -

269 245982_at AT5G13170 nodulin MtN3 family protein 2 [Wellmer et al.,
2006]

270 245307_at AT4G16770 oxidoreductase, 2OG-Fe(II) oxy-
genase family protein

4 -

271 263443_at AT2G28630 beta-ketoacyl-CoA synthase
family protein

4 -

272 258932_at AT3G10150 ATPAP16/PAP16 (purple acid
phosphatase 16)

1 [Zhu et al., 2005]

273 262083_at AT1G56100 pectinesterase inhibitor domain-
containing protein

4 -

274 264934_at AT1G11880 unknown protein 3 -

Table 5.2: 314 expansion genes of FOS-GRN.
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275 264057_at AT2G28550 RAP2.7/TOE1 (TARGET OF
EAT1 1)

1 [Yant et al., 2010];
[Krizek et al., 2000]

276 264902_at AT1G23060 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT1G70950.1)

4 -

277 265166_at AT1G23640 pseudogene, hypothetical pro-
tein, contains Pfam profile
PF02713: Domain of unknown
function DUF220

4 -

278 255822_at AT2G40610 ATEXPA8 (ARABIDOPSIS
THALIANA EXPANSIN A8)

4 -

279 247068_at AT5G66800 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT3G50640.1)

4 -

280 262275_at AT1G68710 haloacid dehalogenase-like hy-
drolase family protein

4 -

281 250732_at AT5G06480 MD-2-related lipid recognition
domain-containing protein / ML
domain-containing protein

4 -

282 249758_at AT5G24350 similar to unnamed pro-
tein product [Vitis vinifera]
(GB:CAO48609.1)

4 -

283 253861_at AT4G27680 MSP1 protein 1 [Nonomura et al.,
2003]

284 256777_at AT3G13780 similar to SMAD/FHA
[Medicago truncatula]
(GB:ABN05826.1)

4 -

285 253818_at AT4G28330 ATP binding / ATPase, coupled
to transmembrane movement of
substances

4 -

286 263306_at AT2G12480 SCPL43; serine carboxypepti-
dase

4 -

287 262549_at AT1G31290 PAZ domain-containing protein
/ piwi domain-containing protein

2 [Liu et al., 2011]

288 247560_at AT5G61090 proline-rich family protein 4 -

289 264019_at AT2G21130 peptidyl-prolyl cis-trans iso-
merase / cyclophilin (CYP2) /
rotamase

4 -

Table 5.2: 314 expansion genes of FOS-GRN.
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290 256254_at AT3G11290 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT2G19220.1)

4 -

291 248553_at AT5G50170 C2 domain-containing protein /
GRAM domain-containing pro-
tein

4 -

292 248442_at AT5G51280 DEAD-box protein abstrakt, pu-
tative

3 -

293 257089_at AT3G20520 glycerophosphoryl diester phos-
phodiesterase family protein

4 -

294 248763_at AT5G47550 cysteine protease inhibitor, puta-
tive / cystatin, putative

4 -

295 255057_at AT4G09840 unknown protein 4 -

296 262728_at AT1G75820 CLV1 (CLAVATA 1) 1 [Lenhard and Laux,
2003]; [Clark et al.,
1993]

297 248154_at AT5G54400 methyltransferase 4 -

298 257299_at AT3G28050 nodulin MtN21 family protein 4 -

299 264367_at AT1G03350 BSD domain-containing protein 4 -

300 264906_at AT2G17270 mitochondrial substrate carrier
family protein

4 -

301 263434_at AT2G28610 PRS (PRESSED FLOWER) 1 [Matsumoto and
Okada, 2001]

302 245521_at AT4G15880 ESD4 (EARLY IN SHORT
DAYS 4)

1 [Quesada et al.,
2005]

303 248694_at AT5G48340 similar to unnamed pro-
tein product [Vitis vinifera]
(GB:CAO70880.1)

4 -

304 245676_at AT1G56670 GDSL-motif lipase/hydrolase
family protein

4 -

305 266512_at AT2G47690 NADH-ubiquinone
oxidoreductase-related

4 -

306 249761_at AT5G23970 transferase family protein 4 -

307 254201_at AT4G24130 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT1G56580.1)

2 [Maizel et al., 2005]

Table 5.2: 314 expansion genes of FOS-GRN.
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308 248236_at AT5G53870 plastocyanin-like domain-
containing protein

4 -

309 253676_at AT4G29570 cytidine deaminase, putative /
cytidine aminohydrolase, puta-
tive

4 -

310 257925_at AT3G23170 similar to unknown protein 4 -

311 264396_at AT1G12050 fumarylacetoacetase, putative 4 -

312 265007_s_at AT1G61563 RALFL8 (RALF-LIKE 8) 4 -

313 248069_at AT5G55650 unknown protein 4 -

314 258346_at AT3G22690 pentatricopeptide (PPR) repeat-
containing protein

4 -

Table 5.2: 314 expansion genes of FOS-GRN. [rnk = ranking]

5.2 The Arabidopsis thaliana flavonoid pathway(AtFlavonoids)

In the second case study, we chose the flavonoid biosynthesis pathway as LGN to be
expanded with PC-IM . The flavonoid pathway is well studied in plants, because these
compounds are numerous (alone are 4.5% of the plant metabolism) [Routaboul et al.,
2012] [Harborne and Williams, 2000] and are involved in many physiological mechanisms.
For example they are involved in flower and fruit color [Winkel-Shirley, 2001], in abiotic
defense responses (as UV protection, water and cold stresses [Ryan et al., 2002]; [Winkel-
Shirley, 2001]) and in the interactions between plant and other biological organisms (other
plants, microbes and animals) [Harborne and Williams, 2000]. Although it has been
studied and characterized in numerous plant species, we chose for the Arabidopsis thaliana
expansion test since it is plant the model species. Several mutants of genes involved in
flavonoid synthesis are also available [Routaboul et al., 2012].

The flavonoid pathway is presented in Figure 5.1. The LGN was defined selecting a
subgroup of 21 genes represented by blue squares in Figure 5.1 and listed in Table 5.3.
We did not choose all the genes present in Figure 5.1, in order to see if these genes were
included with other new genes in the expansion gene list of PC-IM.

The PC-IM parameters adopted in the expansion of the LGN were:

- tiles size t = 1000;

- iteration number i = 100;

- subLGNs size d = 14;
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Probe GeneID Abbreviation Description

245126_at AT2G47460 MYB12 Myb domani protein 12; DNA bind-
ing / transcription activator/ tran-
scription factor

247354_at AT5G63590 FLS Flavonol synthase; flavonol syn-
thase

248185_at AT5G54060 UFGT UDP-GLUCOSE:FLAVONOID
3-O-GLUCOSYL TRANSFERASE;
transferase, transferring glycosyl
groups

248200_at AT5G54160 OMT O-METHYLTRANSFERASE 1

249215_at AT5G42800 DFR DIHYDROFLAVONOL 4-
REDUCTASE

249704_at AT5G35550 TT2 Transparent Testa 2; DNA binding
/ transcription factor

249739_at AT5G24520 TTG1 Transparent Testa Glabra1; nu-
cleotide binding

249851_at AT5G23260 TT16 Transparent Testa 16; transcription
factor

250207_at AT5G13930 CHS CHALCONE SYNTHASE; TT4
(Transparent Testa 4); naringenin-
chalcone synthase

250533_at AT5G08640 FLS FLAVONOL SYNTHASE

250558_at AT5G07990 F3’H flavonoid 3’-monooxygenase/ oxy-
gen binding; TT7 (Transparent
Testa 7)

251223_at AT3G62610 MYB11 myb domain protein 11; DNA bind-
ing / transcription factor

251504_at AT3G59030 MATE-TT12 Transparent Testa 12; antiporter/
solute:hydrogen antiporter/ trans-
porter

251827_at AT3G55120 CHI chalcone-flavonone isomerase 1;
A11/CFI/TT5 (Transparent Testa
5); chalcone isomerase

252123_at AT3G51240 F3H F3H (Transparent Testa 6); narin-
genin 3-dioxygenase

252534_at AT3G46130 MYB111 myb domain protein 111; DNA
binding / transcription factor

254283_s_at AT4G22870; AT4G22880 LDOX (leucoanthocyanidin dioxygenase),
putative / anthocyanidin synthase,
putative

255056_at AT4G09820 TT8 TT8 (Transparent Testa 8); DNA
binding / transcription factor

259751_at AT1G71030 MYBL2 Arabidopsis myb-like 2; DNA bind-
ing / transcription factor

262528_at AT1G17260 AHA10 AUTOINHIBITED H(+)-ATPASE
ISOFORM 10; ATPase

264401_at AT1G61720 ANR BANYULS

Table 5.3: Description of the genes of Arabidopsis thaliana flavonoids LGN.
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Figure 5.1: Scheme of the phenylpropanoid biosynthetic pathway of Arabidopsis
thaliana.
The flavonoids pathway is part of phenylpropanoid pathway and it starts from the conversion of
4-coumaroyl-CoA in naringenin chalcone, leading o the production of three main classes of com-
pounds, Flavonols, Proanthocyanidins and Anthocyanins (black boxes). Enzymes are indicated
in bold upper-case letters and regulatory genes are indicated in parentheses and/or in red colour
(Figure modified from Routaboul et al. [2012]).

- gene expression data are reported in Section 4.2.2.

The tile size was the same adopted in Section 4.3.1.
The value d was obtained maintaining the same ratio between the size of the LGN

and the size of subLGN considered in the previous expansion (FOS-GRN).
PC-IM performances are summarized in Figure 5.2. The minimum value dmin is ob-

tained with frequency values within the range (60-71)%. If dmin gives not an unique value
of frequency, the selected cut-off value will be the mean of the range frequency values
with the same dmin value. In the case of the AtFlavonoids LGN the cut-off frequency
was: 65.5 %. The cut-off value is represented with black line in Figure 5.3-PPV and Se
curve. Values of PPV and Se were 59.00 % and 26.00 %, respectively at the selected
cut-off frequency.
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PC-IM gave a final expansion genes list of 382 genes. To evaluate if the 382 genes
were related to the flavonoid pathway, a bibliographic search was done (Table 5.4). The
classification of the 382 genes followed the same criteria presented in Section 4.3.5 (Fig-
ure 5.3).

Figure 5.2: ROC curve and PR curve of the phenylpropanoid pathway.

5.3 Discussion

In this Chapter two different LGNs of Arabidopsis thaliana were expanded with PC-
IM. The first LGN (FOS-GRN) regards flower development, while the second LGN (At-
Flavonoids) is a subnetwork of the flavonoid pathway.

The parameters used in the PC-IM runs and the gene expression data, give as input,
were the same for both LGNs.

The intrinsic performances of the FOS-GRN expansion (PPV= 82.23 %, Se = 46.70
%, Figure 4.7-PPV and Se curve) are greater than those of AtFlavonoids LGN (PPV =
59.00 %, Se = 26.00 %, Figure 5.3-PPV and Se curve). The lower value of PPV and
Se of the AtFlavonoids expansion can be explained on the basis of the gene expression
data used: among the 393 hybridization experiments, 40 concerned flower development
(AT4, Section 4.2.2), while no gene expression data specific for the flavonoid pathway
were present. It is worth to mention that twenty hybridization experiments were related
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Figure 5.3: PPV-Se curve and ranking curve of the flavonoids expansion.

to plant defense responses (AT13, 4.2.2) and it is known that flavonoids are also involved
in plant defense response [Ryan et al., 2002]; [Winkel-Shirley, 2001].

In both expansion gene lists we can distinguish the top ranking genes from the other.

- top ranking genes (higher frequency value). For these genes the values of PPV and
Se are higher respect to those estimated by PC-IM during the intrinsic performance
assessment. Indeed the number of genes belonging to Class 1 and Class 2 is much
greater than that of genes Class 3 and Class 4 (Figure 4.7-ranking, Figure 5.3-
ranking);

- other genes (lower frequency values). In this case the number of genes obtained
combining Class1 and Class 2 is bigger than the number of genes of Class 3, but not
of Class 4. This means the expansion genes provided by PC-IM are indeed related
to the LGN, but knowledge is missing to finally validate them.

PC-IM gives as output a list of hypothetical candidate genes to the expansion of a
specific LGN. This is the starting point to design an in vivo experiment to evaluate the
real connection of the new genes with the LGN. In general, the in vivo experiments
are expensive, both in terms of time and costs. Starting from this consideration, PC-
IM gives an intrinsic evaluation performance to estimate the goodness of the PC-IM
results. To support the reliability of the expanded gene list, the estimated performance
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is done with a cautionary approach. The cautionary term indicates that the estimate
of the intrinsic performances is made considering as FP all the genes found by PC-IM
and not included in the LGN and as TP only genes belonging to LGN (Chapter 3-Step4:
intrinsic performances assessment). This criterium, has a major effect on PPV calculation
(Formule 3.1 and Formule 3.4).

Aim of this Chapter was to validate the output of PC-IM (expansion gene list) and
to understand if the intrinsic evaluation performance is a good parameter to be used for
selecting the expansion gene list. Unfortunately, the bibliographic search can not be the
sole criterium for having a definitive validation due to the lack of information and to the
specificity of some articles. The insufficient availability of information is underlined by
the high number of genes in Class 4. About the specificity issues, it might well be that
for genes belonging to Class 3, there are not yet specific studies linking them to the LGN.
This implies that in vivo experiments should be planned to test the real involvement of a
gene in the expanded LGN.
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Table 5.1: Description of 382 expansion genes of the flavonoids pathway.

rnk AffyID locus annotation Class reference

1 259844_at AT1G73560 protease inhibitor/seed stor-
age/lipid transfer protein (LTP)
family protein

4 -

2 253276_at AT4G34050 caffeoyl-CoA 3-O-
methyltransferase, putative

1 [Do et al., 2007];
[Besseau et al.,
2007]

3 262083_at AT1G56100 pectinesterase inhibitor domain-
containing protein

4 -

4 263845_at AT2G37040 PAL1 (PHE AMMONIA LYASE
1)

1 [Olsen et al., 2008]

5 248365_at AT5G52500 similar to unknown protein 4 -

6 262545_at At1g31250 proline-rich family protein 4 -

7 264500_at AT1G09370 protease inhibitor/seed stor-
age/lipid transfer protein (LTP)
family protein

4 -

8 245624_at AT4G14090 UDP-glucoronosyl/UDP-
glucosyl transferase family
protein

1 [Tohge et al., 2005];
[Gonzalez et al.,
2007]

9 265091_s_at AT1G03940 transferase family protein 1 [Tohge et al., 2005]

10 253724_at AT4G29285 LCR24 (Low-molecular-weight
cysteine-rich 24)

4 -

11 267620_at AT2G39640 glycosyl hydrolase family 17 pro-
tein

1 [Marinova et al.,
2007]

12 245560_at AT4G15480 UGT84A1 (UDP-
glycosyltransferase)

1 [Yonekura-
Sakakibara et al.,
2008]; [Stracke
et al., 2007]

13 256924_at AT3G29590 AT5MAT (anthocyanin 5-O-
glucoside-O-malonyltransferase)

1 [D Auria et al.,
2007]

14 257878_at AT3G17150 plant invertase/pectin
methylesterase inhibitor domain-
containing protein

4 -

15 266572_at AT2G23840 HNH endonuclease domain-
containing protein

4 -

Table 5.1: Description of 382 expansion genes of the flavonoids pathway.
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16 245892_at AT5G09370 protease inhibitor/seed stor-
age/lipid transfer protein (LTP)
family protein

4 -

17 265248_at AT2G43010 PIF4 (PHYTOCHROME IN-
TERACTING FACTOR 4)

2 [Huq and Quail,
2002]

18 252958_at AT4G38620 MYB4 (myb domain protein 4) 1 [Preston et al.,
2004]; [Zhao et al.,
2007]

19 263892_at AT2G36890 ATMYB38/MYB38/RAX2
(myb domain protein 38)

3 -

20 258352_at AT3G17600 IAA31 (auxin-responsive protein
IAA31)

2 [Peer and Murphy,
2007]

21 249063_at AT5G44110 POP1: ABC transporter I family
member 21

1 [Molas et al., 2006]

22 267470_at AT2G30490 ATC4H/C4H/CYP73A5 (CIN-
NAMATE 4-HYDROXYLASE,
CINNAMATE-4-
HYDROXYLASE)

2 [Zhao et al., 2007];
[Besseau et al.,
2007]

23 261181_at AT1G34580 sugar transporter protein 5 1 [Tohge et al., 2005]

24 250251_at AT5G13670 nodulin MtN21 family protein 4 -

25 250794_at AT5G05270 chalcone-flavanone isomerase
family protein

1 [Winkel-Shirley,
2002]

26 262396_at AT1G49470 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT1G55230.1)

4 -

27 267262_at AT2G22990 SNG1 (SINAPOYLGLUCOSE
1)

2 [Ruegger and
Chapple, 2001];
[Fraser et al., 2007]

28 254786_at AT4G12890 gamma interferon responsive
lysosomal thiol reductase family
protein / GILT family protein

4 -

29 256937_at AT3G22620 protease inhibitor/seed stor-
age/lipid transfer protein (LTP)
family protein

2 [Hoang et al., 2012]

30 247262_at AT5G64440 ATFAAH (ARABIDOPSIS
THALIANA FATTY ACID
AMIDE HYDROLASE)

2 [Thors et al., 2009]

31 247785_at AT5G58820 subtilase family protein 4 -
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32 249576_at AT5G37690 GDSL-motif lipase/hydrolase
family protein

2 [Riemann et al.,
2008]

33 254474_at AT4G20390 integral membrane family pro-
tein

4 -

34 260048_at AT1G73750 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT1G15060.1)

4 -

35 263988_at AT2G42830 SHP2 (SHATTERPROOF 2) 2 [Dardick et al.,
2010]; [Scheible
et al., 2004]

36 249061_at AT5G44550 integral membrane family pro-
tein

4 -

37 261933_at AT1G22410 2-dehydro-3-
deoxyphosphoheptonate al-
dolase, putative

2 [Rohde et al., 2004]

38 254336_at AT4G22050 aspartyl protease family protein 3 -

39 253580_at AT4G30400 zinc finger (C3HC4-type RING
finger) family protein

2 [Serrano and
Guzmán, 2004]

40 253679_at AT4G29610 cytidine deaminase, putative /
cytidine aminohydrolase, puta-
tive

4 -

41 255403_at AT4G03400 DFL2 (DWARF IN LIGHT 2) 2 [Takase et al., 2003]

42 245371_at AT4G15750 invertase/pectin methylesterase
inhibitor family protein

2 [Bolouri-
Moghaddam et al.,
2010]

43 264557_at AT1G09550 pectinacetylesterase, putative 2 [Marín-Rodríguez
et al., 2002]

44 266736_at AT2G46960 CYP709B1 (cytochrome P450,
family 709, subfamily B,
polypeptide 1)

2 [Huang et al., 2006]

45 258590_at AT3G04280 ARR22 (ARABIDOPSIS RE-
SPONSE REGULATOR 22)

1 [Horák et al., 2008];
[Deikman and
Hammer, 1995]

46 254394_at AT4G21630 subtilase family protein 4 -

47 264214_s_at AT1G65330 PHE1 (PHERES1) 3 -

48 257934_at AT3G25420 SCPL21 (serine
carboxypeptidase-like 21)

2 [Fraser et al., 2007]
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49 266004_at AT2G37330 ALS3 (ALUMINUM SENSI-
TIVE 3)

2 [Larsen et al., 2004]

50 262589_s_at AT1G15150 MATE efflux family protein 4 -

51 259107_at AT3G05460 sporozoite surface protein-
related

4 -

52 253699_at AT4G29800 PLA IVD/PLP8 (Patatin-like
protein 8)

4 -

53 248110_at AT5G55320 membrane bound O-acyl trans-
ferase (MBOAT) family protein
/ wax synthase-related

4 -

54 250083_at AT5G17220 ATGSTF12 (GLUTATHIONE
S-TRANSFERASE 26)

1 [Tohge et al., 2005]

55 247697_at AT5G59810 ATSBT5.4; subtilase 3 -

56 245501_at AT4G15620 integral membrane family pro-
tein

4 -

57 255142_at AT4G08390 SAPX; L-ascorbate peroxidase 3 -

58 246125_at AT5G19875 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT2G31940.1)

4 -

59 250230_at AT5G13900 protease inhibitor/seed stor-
age/lipid transfer protein (LTP)
family protein

2 [Hoang et al., 2012]

60 248593_at AT5G49180 pectinesterase family protein 4 -

61 264078_at AT2G28470 BGAL8 (BETA-
GALACTOSIDASE 8)

3 -

62 245628_at AT1G56650 PAP1 (PRODUCTION OF AN-
THOCYANIN PIGMENT 1)

1 [Tohge et al., 2005];
[Broun, 2005]

63 264934_at AT1G61090 hypothetical protein 4 -

64 246749_at AT5G27830 similar to hypothetical
protein [Vitis vinifera]
(GB:CAN74239.1)

4 -

65 253204_at AT4G34460 AGB1 (GTP BINDING PRO-
TEIN BETA 1

3 -

66 254561_at AT4G19160 binding 4 -

67 258457_at AT3G22425 IGPD; imidazoleglycerol-
phosphate dehydratase

2 [Glynn et al., 2005]
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68 248260_at AT5G53240 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT5G55270.1)

4 -

69 262549_at AT1G31290 PAZ domain-containing protein
/ piwi domain-containing protein

4 -

70 248405_at AT5G51480 SKS2 (SKU5 SIMILAR 2) 3 -

71 247515_at AT5G61740 ATATH14 (ABC2 homolog 14) 2 [Morris and Zhang,
2006]

72 247747_at AT5G59000 zinc finger (C3HC4-type RING
finger) family protein

2 [Kosarev et al.,
2002]

73 245204_at AT5G12270 oxidoreductase, 2OG-Fe(II) oxy-
genase family protein

2 [Van Damme et al.,
2008]

74 264898_at AT1G23205 invertase/pectin methylesterase
inhibitor family protein

2 [Zhang et al., 2007]

75 267218_at AT2G02515 unknown protein 4 -

76 253186_at AT4G35270 RWP-RK domain-containing
protein

4 -

77 245734_at AT1G73480 hydrolase, alpha/beta fold fam-
ily protein

3 -

78 260599_at AT1G55940 CYP708A1 (cytochrome P450,
family 708, subfamily A,
polypeptide 1)

2 [Huang et al., 2006]

79 265290_at AT2G22590 glycosyltransferase family pro-
tein

1 [Stracke et al.,
2007]

80 245090_at AT2G40900 nodulin MtN21 family protein 2 [Ranocha et al.,
2010]

81 253657_at AT4G30110 HMA2 (Heavy metal ATPase 2) 3 -

82 257147_at AT3G27270 similar to DNA-binding
storekeeper protein-related
[Arabidopsis thaliana]
(TAIR:AT5G14280.1)

4 -

83 265355_at AT2G16760 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT2G47370.1)

4 -

84 260873_at AT1G21580 hydroxyproline-rich glycoprotein
family protein

3 -

85 247463_at AT5G62210 embryo-specific protein-related 4 -
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86 245264_at AT4G17245 zinc finger (C3HC4-type RING
finger) family protein

2 [Gechev et al.,
2008]

87 264610_at AT1G04645 self-incompatibility protein-
related

4 -

88 254146_at AT4G24260 ATGH9A3/KOR3 (ARA-
BIDOPSIS THALIANA GLY-
COSYL HYDROLASE 9A3)

2 [Mølhøj et al., 2001]

89 259042_at AT3G03450 RGL2 (RGA-LIKE 2) 2 [Lee et al., 2010]

90 261220_at AT1G19970 ER lumen protein retaining re-
ceptor family protein

3 -

91 246161_at AT5G20900 JAZ12/TIFY3B
(JASMONATE-ZIM-DOMAIN
PROTEIN 12)

2 [Qi et al., 2011a]

92 253135_at AT4G35830 ACO1 (aconitate hydratase 1) 2 [Gupta et al., 2012]

93 265590_at AT2G20160 MEO (MEIDOS); ubiquitin-
protein ligase

3 -

94 254151_at AT4G24390 F-box family protein (FBX14) 3 -

95 260761_at AT1G49150 unknown protein 4 -

96 249497_at AT5G39220 hydrolase, alpha/beta fold fam-
ily protein

3 -

97 263156_at AT1G54030 GDSL-motif lipase, putative 2 [Riemann et al.,
2008]

98 244974_at ATCG00700 PSII low MW protein 3 -

99 266625_at AT2G35380 peroxidase 20 (PER20) (P20) 1 [Yamasaki et al.,
1997]

100 245101_at AT2G40890 CYP98A3 (cytochrome
P450, family 98, subfamily
A,polypeptide 3)

2 [Besseau et al.,
2007]

101 257628_at AT3G26290 CYP71B26 (cytochrome P450,
family 71, subfamily B, polypep-
tide 26)

2 [Huang et al., 2006]

102 253277_at AT4G34230 CAD5 (CINNAMYL ALCOHOL
DEHYDROGENASE 5)

2 [Thévenin et al.,
2011]; [Besseau
et al., 2007]

103 265359_at AT2G16720 MYB7 (myb domain protein 7) 2 [Causier et al.,
2012]
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104 256283_at AT3G12540 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT2G39690.1)

4 -

105 245467_at AT4G16610 zinc finger (C2H2 type) family
protein

2 [Dinkins et al.,
2012]

106 253127_at AT4G36060 transcription factor bHLH11 4 -

107 251443_at AT3G59940 kelch repeat-containing F-box
family protein

3 -

108 248297_at AT5G53100 oxidoreductase, putative 4 -

109 267198_at AT2G30810 gibberellin-regulated family pro-
tein

2 [Herridge, 2012]

110 248619_at AT5G49630 AAP6 (AMINO ACID PERME-
ASE 6)

2 [Hunt et al., 2010]

111 248791_at AT5G47350 palmitoyl protein thioesterase
family protein

3 -

112 261792_at AT1G15950 CCR1 (CINNAMOYL COA RE-
DUCTASE 1)

1 [Thévenin et al.,
2011]; [Besseau
et al., 2007]

113 260389_at AT1G74055 unknown protein 4 -

114 244999_at ATCG00190 Chloroplast DNA-dependent
RNA polymerase B subunit

4 -

115 245158_at AT2G33130 RALFL18 (RALF-LIKE 18) 4 -

116 258760_at AT3G10780 emp24/gp25L/p24 family pro-
tein

3 -

117 246966_at AT5G24850 CRY3 (CRYPTOCHROME 3) 2 [Huang et al., 2006];
[Onda et al., 2008]

118 250022_at AT5G18210 short-chain dehydrogenase/re-
ductase (SDR) family protein

4 -

119 249502_s_at AT5G39280 ATEXPA23 (EXPANSIN A23) 4 -

120 253064_at AT4G37730 ATBZIP7 (BASIC LEUCINE-
ZIPPER 7)

4 -

121 255357_at AT4G03930 pectinesterase 42 2 [Chen et al., 2011]

122 253956_at AT4G26700 ATFIM1 (fimbrin 1) 3 -

123 263473_at AT2G31750 UGT74D1 (UDP-GLUCOSYL
TRANSFERASE 74D1)

4 -

124 255127_at AT4G08300 nodulin MtN21 family protein 2 [Ranocha et al.,
2010]
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125 266196_at AT2G39110 protein kinase, putative 4 -

126 256773_at AT3G13630 unknown protein 4 -

127 261271_at AT1G26795 self-incompatibility protein-
related

4 -

128 261609_at AT1G49740 phospholipase C 2 [Agullo et al., 1997]

129 246087_at AT5G20580 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT2G06005.1)

4 -

130 251968_at AT3G53100 GDSL-motif lipase/hydrolase
family protein

2 [Riemann et al.,
2008]

131 263982_at AT2G42860 unknown protein 4 -

132 262989_at AT1G23420 INO (INNER NO OUTER) 2 [Gallagher and
Gasser, 2008]

133 256528_at AT1G66140 ZFP4 (ZINC FINGER PRO-
TEIN 4)

2 [Causier et al.,
2012]

134 262516_at AT1G17190 ATGSTU26 (Glutathione S-
transferase (class tau) 26)

2 [Nutricati et al.,
2006]

135 266386_at AT2G32370 DNA binding / transcription fac-
tor

4 -

136 253017_at AT4G37970 mannitol dehydrogenase, puta-
tive

1 [Kim et al., 2007]

137 255691_at AT4G00370 ANTR2 (anion transporter 2) 3 -

138 265253_at AT2G02020 proton-dependent oligopeptide
transport (POT) family protein

2 [Weichert et al.,
2012]

139 251071_at AT5G01950 ATP binding / kinase/ protein
serine/threonine kinase

4 -

140 245305_at AT4G17215 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT5G47635.1)

4 -

141 249567_at AT5G38020 S-adenosyl-L-
methionine:carboxyl methyl-
transferase family protein

4 -

142 244904_at ATMG00670 hypothetical protein 4 -

143 255777_at AT1G18630 GR-RBP6 (glycine-rich RNA-
binding protein 6)

3 -
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144 250907_at AT5G03670 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT2G36420.1)

4 -

145 253890_s_at AT4G27585 band 7 family protein 3 -

146 262432_at AT1G47530 ripening-responsive protein, pu-
tative

2 [Thompson et al.,
2010]

147 254791_at AT4G12910 SCPL20 (serine
carboxypeptidase-like 20)

2 [Fraser et al., 2007];
[Floerl et al., 2012]

148 254965_at AT4G11090 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT4G23790.1)

4 -

149 260948_at AT1G06100 fatty acid desaturase family pro-
tein

3 -

150 264247_at AT1G60160 potassium transporter family
protein

3 -

151 266118_at AT2G02130 LCR68/PDF2.3 (Low-
molecular-weight cysteine-rich
68)

2 [Siddique et al.,
2011]

152 262726_at AT1G43640 AtTLP5 (TUBBY LIKE PRO-
TEIN 5)

3 -

153 265954_at AT2G37260 TTG2 (TRANSPARENT
TESTA GLABRA 2)

1 [Ishida et al., 2007]

154 256994_s_at AT3G25830 ATTPS-CIN (TER-
PENE SYNTHASE-LIKE
SEQUENCE-1,8-CINEOLE)

2 [Chen et al., 2004]

155 259576_at AT1G35330 zinc finger (C3HC4-type RING
finger) family protein

4 -

156 265846_at AT2G35770 SCPL28 (serine
carboxypeptidase-like 28)

2 [Fraser et al., 2007]

157 260066_at AT1G73610 GDSL-motif lipase/hydrolase
family protein

4 -

158 265224_at AT2G36710 pectinesterase family protein 4 -

159 255281_at AT4G04970 ATGSL1 (GLUCAN SYN-
THASE LIKE-1)

3 -

160 260166_at AT1G79840 GL2 (GLABRA 2); DNA bind-
ing / transcription factor

3 -
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161 247696_at AT5G59780 MYB59 (myb domain protein
59)

4 -

162 260851_at AT1G21890 nodulin MtN21 family protein 4 -

163 261308_at AT1G48480 RKL1 (Receptor-like kinase 1) 2 [Tarutani et al.,
2004]

164 262744_at AT1G28680 transferase family protein 4 -

165 248022_at AT5G56510 APUM12 (ARABIDOPSIS
PUMILIO 12)

3 -

166 249856_at AT5G22980 SCPL47 (serine
carboxypeptidase-like 47)

2 [Fraser et al., 2007]

167 250416_at AT5G11220 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT1G64870.1)

4 -

168 257943_at AT3G21840 ASK7 (ARABIDOPSIS SKP1-
LIKE 7)

3 -

169 262503_at AT1G21670 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT1G21680.1)

4 -

170 267361_at AT2G39920 acid phosphatase class B family
protein

4 -

171 255073_at AT4G09090 glycosyl hydrolase family protein
17

4 -

172 248011_at AT5G56300 GAMT2; S-adenosylmethionine-
dependent methyltransferase

2 [Varbanova et al.,
2007]

173 257944_at AT3G21850 ASK9 (ARABIDOPSIS SKP1-
LIKE 9)

3 -

174 247430_at AT5G62610 basic helix-loop-helix (bHLH)
family protein

4 -

175 253096_at AT4G37330 CYP81D4 (cytochrome P450,
family 81, subfamily D, polypep-
tide 4)

4 -

176 257855_at AT3G13040 myb family transcription factor 4 -

177 256186_at AT1G51680 4CL1 (4-COUMARATE:COA
LIGASE 1)

1 [Harding et al.,
2002]

178 259871_at AT1G76800 nodulin, putative 3 -

Table 5.1: Description of 382 expansion genes of the flavonoids pathway.



Discussion 113

179 246627_s_at AT2G45300 3-phosphoshikimate 1-
carboxyvinyltransferase /
5-enolpyruvylshikimate-3-
phosphate / EPSP synthase

2 [Chen et al., 2006];
[Logemann et al.,
2000]

180 260913_at AT1G02500 SAM1 (S-adenosylmethionine
synthetase 1)

3 -

181 247568_at AT5G61260 chromosome scaffold protein-
related

4 -

182 263638_at AT2G25310 carbohydrate binding 4 -

183 260990_at AT1G12180 similar to heat shock protein-
related [Arabidopsis thaliana]
(TAIR:AT5G47600.1)

4 -

184 260753_at AT1G49230 zinc finger (C3HC4-type RING
finger) family protein

4 -

185 254564_at AT4G19170 NCED4 (NINE-CIS-
EPOXYCAROTENOID
DIOXYGENASE 4)

3 -

186 258503_at AT3G02500 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT5G16030.1)

4 -

187 249556_at AT5G38195 protease inhibitor/seed stor-
age/lipid transfer protein (LTP)
family protein

4 -

188 261533_at AT1G71690 similar to unknown protein [Ara-
bidopsis thaliana]

4 -

189 249549_at AT5G38180 protease inhibitor/seed stor-
age/lipid transfer protein (LTP)
family protein

4 -

190 248910_at AT5G45820 CIPK20 (CBL-INTERACTING
PROTEIN KINASE 20)

3 -

191 248764_at AT5G47640 CCAAT-box binding transcrip-
tion factor subunit B (NF-
YB) (HAP3 ) (AHAP3) family
(Hap3b)

3 -

192 261134_at AT1G19630 CYP722A1 (cytochrome P450,
family 722, subfamily A,
polypeptide 1)

4 -
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193 256453_at AT1G75270 DHAR2; glutathione dehydroge-
nase (ascorbate)

3 -

194 253434_at AT4G32500 AKT5 (Arabidopsis K+ trans-
porter 5)

4 -

195 263258_at AT1G10540 xanthine/uracil permease family
protein

4 -

196 245832_at AT1G48850 EMB1144 (EMBRYO DEFEC-
TIVE 1144)

4 -

197 254307_at AT4G22400 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT4G18320.1)

4 -

198 253579_at AT4G30610 BRS1 (BRI1 SUPPRESSOR 1) 2 [Zhou and Li, 2005]

199 262238_at AT1G48300 similar to hypothetical
protein [Vitis vinifera]
(GB:CAN81152.1)

4 -

200 247025_at AT5G67030 ABA1 (ABA DEFICIENT 1) 2 [Barrero et al.,
2008]; [Hemm
et al., 2004]

201 262259_s_at AT1G53870 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT1G53890.1)

4 -

202 257130_at AT3G20210 DELTA-VPE (delta vacuolar
processing enzyme)

2 [Nakaune et al.,
2005]

203 248217_at AT5G53560 ATB5-A (Cytochrome b5 A) 3 -

204 254957_at AT4G10970 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT4G23910.1)

4 -

205 263010_at AT1G23330 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT1G10740.1)

4 -

206 250633_at AT5G07460 PMSR2 (PEPTIDEMETHIO-
NINE SULFOXIDE REDUC-
TASE 2)

4 -

207 251520_at AT3G59410 protein kinase family protein 3 -

208 248337_at AT5G52310 COR78 (COLD REGULATED
78)

3 -
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209 253433_s_at AT4G28365 plastocyanin-like domain-
containing protein

4 -

210 246180_at AT5G20840 phosphoinositide phosphatase
family protein

4 -

211 251497_at AT3G59060 PIL6 (PHYTOCHROME-
INTERACTING FACTOR
5)

2 [Hornitschek et al.,
2012]

212 245488_at AT4G16270 peroxidase 40 (PER40) (P40) 4 -

213 265605_at AT2G25540 CESA10 (CELLULOSE SYN-
THASE 10)

2 [Li et al., 2013]

214 252829_at AT4G40060 ATHB-16/ATHB16 (ARA-
BIDOPSIS THALIANA HOME-
OBOX PROTEIN 16)

2 [Lechner et al.,
2011]

215 250719_at AT5G06250 transcription factor 2 [Causier et al.,
2012]

216 251466_at AT3G59340 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT3G59310.1)

4 -

217 251888_at AT3G54190 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT2G38630.1)

4 -

218 253574_at AT4G31030 contains domain
PROKAR_LIPOPROTEIN
(PS51257)

4 -

219 249477_s_at AT5G38940 ion binding / metal ion binding
/ nutrient reservoir

4 -

220 250517_at AT5G08260 SCPL35 (serine
carboxypeptidase-like 35)

4 -

221 254777_at AT4G12960 gamma interferon responsive
lysosomal thiol reductase family
protein / GILT family protein

3 -

222 251374_at AT3G60390 HAT3 (homeobox-leucine zipper
protein 3)

3 -

223 245999_at AT5G20650 COPT5 (copper transporter 5) 3 -

224 264338_at AT1G70300 KUP6 (K+ uptake permease 6) 3 -

225 248639_at AT5G48930 transferase family protein 1 [Hoffmann et al.,
2004]
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226 258047_at AT3G21240 4CL2 (4-coumarate:CoA ligase
2)

1 [Harding et al.,
2002]

227 246466_at AT5G17010 sugar transporter family protein 4 -

228 261925_at AT1G22540 proton-dependent oligopeptide
transport (POT) family protein

4 -

229 267240_at AT2G02680 DC1 domain-containing protein 4 -

230 255554_at AT4G01897 similar to unnamed pro-
tein product [Vitis vinifera]
(GB:CAO40169.1)

4 -

231 266963_at AT2G39450 ATMTP11/MTP11; cation
transmembrane transporter/
manganese ion transmem-
brane transporter/ man-
ganese:hydrogen antiporter

3 -

232 251735_at AT3G56090 ATFER3 (FERRITIN 3) 2 [Tarantino et al.,
2003]

233 259489_at AT1G15790 similar to protein binding / tran-
scription cofactor [Arabidopsis
thaliana] (TAIR:AT1G15780.1)

4 -

234 262436_at AT1G47610 transducin family protein / WD-
40 repeat family protein

4 -

235 259853_at AT1G72300 leucine-rich repeat transmem-
brane protein kinase, putative

2 [Amano et al., 2007]

236 248793_at AT5G47240 ATNUDT8 (Arabidopsis
thaliana Nudix hydrolase
homolog 8)

3 -

237 253305_at AT4G33666 unknown protein 4 -

238 264383_at AT2G25080 ATGPX1 (GLUTATHIONE
PEROXIDASE 1)

2 [Chang et al., 2009]

239 249198_s_at AT5G42350 kelch repeat-containing F-box
family protein

4 -

240 258116_at AT3G14520 terpene synthase/cyclase family
protein

4 -

241 247765_at AT5G58860 CYP86A1 (cytochrome P450,
family 86, subfamily A, polypep-
tide 1)

2 [Höfer et al., 2008]
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242 247035_at AT5G67110 ALC (ALCATRAZ) 2 [Groszmann et al.,
2011]

243 247921_at AT5G57660 zinc finger (B-box type) family
protein

3 -

244 266110_at AT2G02080 ATIDD4 (ARABIDOP-
SIS THALIANA
INDETERMINATE(ID)-
DOMAIN 4)

4 -

245 246419_at AT5G17030 UDP-glucoronosyl/UDP-
glucosyl transferase family
protein

1 [Yonekura-
Sakakibara et al.,
2008]

246 266672_at AT2G29650 inorganic phosphate transporter,
putative

2 [Wang et al., 2011]

247 259292_at AT3G11560 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT5G06220.1)

4 -

248 264066_at AT2G27880 argonaute protein, putative /
AGO, putative

3 -

249 245573_at AT4G14730 Bax inhibitor-1 family protein 3 -

250 260124_at AT1G36340 UBC31 (UBIQUITIN-
CONJUGATING ENZYME
31)

4 -

251 248789_at AT5G47440 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT4G17350.1)

4 -

252 266169_at AT2G38900 serine protease inhibitor, potato
inhibitor I-type family protein

4 -

253 255574_at AT4G01420 CBL5 (CALCINEURIN B-LIKE
PROTEIN 5)

3 -

254 261826_at AT1G11580 ATPMEPCRA; pectinesterase 3 -

255 260024_at AT1G30080 glycosyl hydrolase family 17 pro-
tein

4 -

256 245809_at AT1G58440 XF1 (SQUALENE EPOXI-
DASE 1)

2 [Posé et al., 2009]

257 256985_at AT3G13540 ATMYB5 (MYB DOMAIN
PROTEIN 5)

2 [Li et al., 2009]

258 246374_at AT1G51840 protein kinase-related 4 -

Table 5.1: Description of 382 expansion genes of the flavonoids pathway.
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259 256137_at AT1G48690 auxin-responsive GH3 family
protein

4 -

260 261164_at AT1G34470 permease-related 4 -

261 255954_at AT1G22090 EMB2204 (EMBRYO DEFEC-
TIVE 2204)

4 -

262 258130_at AT3G24510 Encodes a defensin-like (DEFL)
family protein

4 -

263 264026_at AT2G21060 ATGRP2B (GLYCINE-RICH
PROTEIN 2B)

3 -

264 250804_at AT5G05030 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT5G11660.1)

4 -

265 260655_at AT1G19320 pathogenesis-related thaumatin
family protein

4 -

266 250467_at AT5G10100 trehalose-6-phosphate phos-
phatase, putative

4 -

267 245389_at AT4G17480 palmitoyl protein thioesterase
family protein

4 -

268 264271_at AT1G60270 pseudogene, glycosyl hydrolase
family 1

4 -

269 261855_at AT1G50510 indigoidine synthase A-like pro-
tein

4 -

270 253769_at AT4G28560 RIC7 (ROP-INTERACTIVE
CRIB MOTIF-CONTAINING
PROTEIN 7)

4 -

271 263995_at AT2G22540 MADS-box protein SVP 2 [Seo et al., 2009]

272 245020_at ATCG00540 Encodes cytochrome f apopro-
tein

4 -

273 254693_at AT4G17880 basic helix-loop-helix (bHLH)
family protein

2 [Fernández-Calvo
et al., 2011]

274 256948_at AT3G18930 zinc finger (C3HC4-type RING
finger) family protein

4 -

275 255432_at AT4G03330 SYP123 (syntaxin 123); SNAP
receptor

3 -

276 245929_at AT5G24760 alcohol dehydrogenase, putative 4 -

277 247113_at AT5G65960 similar to CM0216.310.nc [Lotus
japonicus] (GB:BAF98215.1)

4 -

Table 5.1: Description of 382 expansion genes of the flavonoids pathway.
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278 249259_at AT5G41660 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT3G44430.1)

4 -

279 260806_at AT1G78260 RNA recognition motif (RRM)-
containing protein

4 -

280 253582_at AT4G30670 contains domain
PROKAR_LIPOPROTEIN
(PS51257)

4 -

281 264853_at AT2G17260 GLR2 (GLUTAMATE RECEP-
TOR 2)

3 -

282 266086_at AT2G38060 transporter-related 4 -

283 258903_at AT3G06410 nucleic acid binding 4 -

284 267226_at AT2G44010 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT3G59880.1)

4 -

285 265053_at AT1G52000 jacalin lectin family protein 4 -

286 247468_at AT5G62000 ARF2 (AUXIN RESPONSE
FACTOR 2)

2 [Smaczniak et al.,
2012]

287 251022_at AT5G02150 binding 4 -

288 267394_s_at AT2G44550 ATGH9B10 (ARABIDOP-
SIS THALIANA GLYCOSYL
HYDROLASE 9B10)

4 -

289 267122_at AT2G23550 hydrolase 4 -

290 255730_at AT1G25460 oxidoreductase family protein 4 -

291 267552_at AT2G32770 ATPAP13/PAP13; acid phos-
phatase

3 -

292 262103_at AT1G02940 ATGSTF5 (Arabidopsis thaliana
Glutathione S-transferase (class
phi) 5)

3 -

293 264643_at AT1G08990 PGSIP5 (PLANT
GLYCOGENIN-LIKE STARCH
INITIATION PROTEIN 5)

4 -

294 253166_at AT4G35290 GLUR2 (Glutamate receptor 2) 3 -

295 251295_at AT3G62000 O-methyltransferase family 3
protein

4 -

296 247795_at AT5G58620 zinc finger (CCCH-type) family
protein

3 -

Table 5.1: Description of 382 expansion genes of the flavonoids pathway.



120 Expansion of the Local Gene Networks with PC-IM: two case studies.

297 248202_at AT5G54220 Encodes a defensin-like (DEFL)
family protein

4 -

298 263027_at AT1G24010 Identical to Uncharacter-
ized protein At1g24010
[Arabidopsis Thaliana]
(GB:P0C0B1;GB:Q9LR93)

4 -

299 247796_at AT5G58782 dehydrodolichyl diphosphate
synthase, putative / DEDOL-
PP synthase, putative

3 -

300 250360_at AT5G11360 ATP binding / protein kinase 4 -

301 250168_at AT5G15320 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT3G01130.1)

4 -

302 251674_at AT3G57250 emsy N terminus domain-
containing protein / ENT
domain-containing protein

4 -

303 257039_at AT3G19160 ATIPT8 (Arabidopsis thaliana
isopentenyltransferase 8); adeny-
late dimethylallyltransferase

2 [Takei et al., 2004]

304 264297_at AT1G78710 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT2G31110.2)

4 -

305 265986_at AT2G24230 leucine-rich repeat transmem-
brane protein kinase, putative

4 -

306 255028_at AT4G09890 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT2G47480.1)

4 -

307 260153_at AT1G52760 esterase/lipase/thioesterase fam-
ily protein

3 -

308 250701_at AT5G06839 bZIP family transcription factor 2 [Murmu et al.,
2010]

309 261848_at AT1G11590 pectin methylesterase, putative 4 -

310 248652_at AT5G49270 COBL9/MRH4/SHV2
(COBRA-LIKE 9, SHAVEN
2)

3 -

311 246887_at AT5G26250 sugar transporter, putative 3 -

312 267256_s_at AT2G23000 SCPL10 (serine
carboxypeptidase-like 10)

2 [Fraser et al., 2007]

Table 5.1: Description of 382 expansion genes of the flavonoids pathway.
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313 250477_at AT5G10190 transporter-related 4 -

314 266257_at AT2G27820 PD1 (PREPHENATE DEHY-
DRATASE 1)

2 [Cho et al., 2007]

315 250381_at AT5G11610 exostosin family protein 4 -

316 245304_at AT4G15630 integral membrane family pro-
tein

3 -

317 259568_at AT1G20490 AMP-dependent synthetase and
ligase family protein

4 -

318 254682_at AT4G13640 UNE16 (unfertilized embryo sac
16)

2 [Klopffleisch et al.,
2011]

319 260630_at AT1G62340 ALE1 (ABNORMAL LEAF
SHAPE 1)

3 -

320 248761_at AT5G47635 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT2G40113.1)

4 -

321 250234_at AT5G13420 transaldolase, putative 4 -

322 246919_at AT5G25460 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT5G11420.1)

4 -

323 248042_at AT5G55960 similar to unnamed pro-
tein product [Vitis vinifera]
(GB:CAO45175.1)

4 -

324 246716_s_at AT5G28960 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT5G28910.2)

4 -

325 254906_at AT4G11180 disease resistance-responsive
family protein / dirigent family
protein

4 -

326 259567_at AT1G20500 4-coumarate–CoA ligase-like 4 4 -

327 248154_at AT5G54400 methyltransferase 4 -

328 254900_at AT4G11510 RALFL28 (RALF-LIKE 28) 4 -

329 252342_at AT3G48950 glycoside hydrolase family 28
protein / polygalacturonase
(pectinase) family protein

4 -

330 247383_at AT5G63410 leucine-rich repeat transmem-
brane protein kinase, putative

4 -

Table 5.1: Description of 382 expansion genes of the flavonoids pathway.
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331 251984_at AT3G53260 PAL2 (phenylalanine ammonia-
lyase 2)

1 [Olsen et al., 2008]

332 266234_at AT2G02350 SKIP3 (SKP1 INTERACTING
PARTNER 3)

3 -

333 257654_at AT3G13310 DNAJ heat shock N-terminal
domain-containing protein

3 -

334 266808_at AT2G29995 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT1G07175.1)

4 -

335 263177_at AT1G05540 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT1G30160.2)

4 -

336 247416_at AT5G63070 40S ribosomal protein S15, puta-
tive

4 -

337 249491_at AT5G39130 germin-like protein, putative 4 -

338 255294_at AT4G04750 carbohydrate transmembrane
transporter/ sugar:hydrogen ion
symporter

4 -

339 264010_at AT2G21100 disease resistance-responsive
protein-related / dirigent
protein-related

4 -

340 255687_at AT4G00640 unknown protein 4 -

341 245097_at AT2G40935 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT3G18470.1)

4 -

342 256872_at AT3G26490 phototropic-responsive NPH3
family protein

4 -

343 261487_at AT1G14340 RNA recognition motif (RRM)-
containing protein

4 -

344 255025_at AT4G09900 hydrolase, alpha/beta fold fam-
ily protein

4 -

345 262939_s_at AT1G79530 GAPCP-1; glyceraldehyde-3-
phosphate dehydrogenase

3 -

346 263128_at AT1G78600 zinc finger (B-box type) family
protein

1 [Datta et al., 2008]

347 258342_at AT3G22800 leucine-rich repeat family pro-
tein / extensin family protein

4 -

Table 5.1: Description of 382 expansion genes of the flavonoids pathway.
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348 251133_at AT5G01240 amino acid permease, putative 2 [Yang et al., 2012]

349 252365_at AT3G48350 cysteine proteinase, putative 3 -

350 256328_at AT3G02360 6-phosphogluconate dehydroge-
nase family protein

2 [Swatek et al., 2011]

351 256491_at AT1G31500 endonuclease/exonuclease/phosphatase
family protein

4 -

352 266311_at AT2G27130 protease inhibitor/seed stor-
age/lipid transfer protein (LTP)
family protein

4 -

353 247110_at AT5G65830 leucine-rich repeat family pro-
tein

4 -

354 254202_at AT4G24140 hydrolase, alpha/beta fold fam-
ily protein

4 -

355 252831_at AT4G39980 DHS1 (3-DEOXY-
D-ARABINO-
HEPTULOSONATE 7-
PHOSPHATE SYNTHASE
1)

4 -

356 253394_at AT4G32770 VTE1 (VITAMIN E DEFI-
CIENT 1)

2 [Semchuk et al.,
2009]

357 255345_at AT4G04460 aspartyl protease family protein 4 -

358 253463_at AT4G32105 galactosyltransferase 4 -

359 261247_at AT1G20070 unknown protein 4 -

360 248371_at AT5G51810 AT2353/ATGA20OX2/GA20OX2
(GIBBERELLIN 20 OXIDASE
2)

2 [Rieu et al., 2007]

361 264504_at AT1G09430 ACLA-3 (ATP-citrate lyase A-3) 2 [Fatland et al.,
2005]; [Fatland
et al., 2002]

362 261907_at AT1G65060 4CL3 (4-coumarate:CoA ligase
3)

1 [Ehlting et al.,
2002]

363 265645_at AT2G27370 integral membrane family pro-
tein

4 -

364 247713_at AT5G59330 Encodes a Protease in-
hibitor/seed storage/LTP
family protein [pseudogene]

4 -

Table 5.1: Description of 382 expansion genes of the flavonoids pathway.
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365 259598_at AT1G27980 pyridoxal-dependent decarboxy-
lase family protein

2 [Nishikawa et al.,
2008]

366 251448_at AT3G59845 NADP-dependent oxidoreduc-
tase, putative

4 -

367 248795_at AT5G47390 myb family transcription factor 4 -

368 255798_at AT2G33255 hydrolase 4 -

369 245130_at AT2G45340 leucine-rich repeat transmem-
brane protein kinase, putative

4 -

370 250473_at AT5G10220 ANN6 (ANNEXIN ARA-
BIDOPSIS 6)

3 -

371 258960_at AT3G10590 myb family transcription factor 4 -

372 267125_at AT2G23580 hydrolase, alpha/beta fold fam-
ily protein

3 -

373 263114_at AT1G03130 PSAD-2 (photosystem I subunit
D-2)

2 [Yu et al., 2008]

374 253886_at AT4G27710 CYP709B3 (cytochrome P450,
family 709, subfamily B,
polypeptide 3)

2 [Huang et al., 2006]

375 251750_at AT3G55710 UDP-glucoronosyl/UDP-
glucosyl transferase family
protein

4 -

376 259129_at AT3G02150 PTF1 (PLASTID TRANSCRIP-
TION FACTOR 1)

2 [Baba et al., 2001]

377 250909_at AT5G03700 PAN domain-containing protein 4 -

378 259441_at AT1G02300 cathepsin B-like cysteine pro-
tease, putative

4 -

379 266578_at AT2G23910 cinnamoyl-CoA reductase-
related

4 -

380 264352_at AT1G03270 similar to unknown pro-
tein [Arabidopsis thaliana]
(TAIR:AT4G14240.1)

4 -

381 265511_at AT2G05540 glycine-rich protein 4 -

382 263203_at AT1G05490 CHR31 (chromatin remodeling
31)

3 -

Table 5.4: Description of 382 expansion genes of the
flavonoids pathway. [rnk = ranking]
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Conclusions

In recent years, algorithms used to expand gene regulatory network (Section 2.3) appeared
together with algorithms used to infere gene regulatory network (Section 2.1). The ex-
pansion can be done at two levels. At the first level, object of the expansion is to find
new genes and the relationships between these genes and the genes of the gene network.
At the second level, the aim is simpler, that is identifying new genes which expand the
known network without taking care of the relationships.

PC-IM, the method proposed in this thesis, has been developed for this second purpose.
Its main characteristics are:

- use of a priori information about a known gene regulatory network (Local Gene
Network (LGN));

- possibility to consider all the genes of the input dataset (e.g. all genes of a genome
or all genes (or probes) of a gene expression experiment);

- use of observational gene expression data;

- intrinsic capacity to estimate its performances;

- iteration, namely each whole procedure of LGN expansion is repeated a number of
times i ;

- possibility to exchange the PC-algorithm with another algorithm.

PC-IM can deal with a large number of genes (all the genes of the input dataset),
because it divides the input gene list in tiles of the same size. The genes of the LGN
(intra genes) are present in each tile, while the genes of the input list (extra genes) are
present only in one tile for each iteration. After the run, the PC-algorithm output is a list
of extra genes and intra genes for each single iteration. A frequency value is also given for
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each single gene of the list. All the lists are then combinated and a normalized frequency
value is calculated.

The intrinsic evaluation of the performances is obtained by estimation of PPV, Se and
1-Sp paramteters. Values of these parameters are obtained dividing the LGN in different
subLGNs and estimating precision, sensitivity ans specificity of the expansion between
the genes of each subLGNs and the other genes of the LGN. The prior knowledge about
LGN is used to calculate the number of TP, FP, FN and TN. Finally, PC-IM, finds the
cut-off frequency value that gives an expansion genes list with maximum performances
(Chapter 3). This cut-off frequency is applyed on the final output of PC-IM. The final
output is a list of extra genes related with the genes of the LGN.

In Chapter 4 preliminary evaluation tests (Section 4.1 and Section 4.1.2) and PC-IM
evaluation tests (Section 4.3) were performed.

The aims of the preliminary evaluation tests were:

- evaluate the influence of the type of gene expression data (in silico or in vivo gene
expression data);

- judge the opportunity to use the PC algorithm in running PC-IM.

The results showed that the values of precision and sensitivity change appreciably
between in silico and in vivo data and between different in vivo data. These changes
underline the importance of the choice of the type of gene expression data and how the
generation of the in silico data can influence the performance of algorithms. Our choice,
to use in vivo gene expression data, derives from this consideration and from the fact that
in public databases there is a large availability of observational gene expression data.

The aims of the evaluation tests (Section 4.3) were:

- selection of PC-IM parameters (tile size), number of iterations, type of gene expres-
sion data that give the best intrinsic performances;

- understand how the topology of the LGN influences the performances of PC-IM
(Section 4.3.4);

- comparison of PC-IM with another recently proposed expansion method (GENIES)
(Section 4.3.6).

The evaluation of the tile size showed that 100 and 1000 is the number of genes that
gives the best instrinsic performance with PC. The size of the tiles clearly depends on the
algorithm used in PC-IM. Our result with PC confirmed the results obtained by Wang
et al. [2010].
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The iteration evaluation showed that the best performances are reached when the
iteration numer is equal or greater than 50.

The evaluation of PC-IM highlighted also the importance of the data. A mix between
expression data related with the metabolism is part of the LGN and gene expression data
related to it.

The study, on the effect of the type of LGN, indicated that PC-IM is robust on this
regard. In fact PC-IM provides significantly different results when as input is given a real
LGN or a random LGN (Section 4.3.4).

The comparison between PC-IM and GENIES showed that GENIES gives the best
expansion performances of the subLGNs, but it does not find extra genes. Moreover in
GENIES, to get to the best performances is necessary to test different combinations be-
tween kernel matrix and algorithms. From these considerations was evident that GENIES
is not suitable tool to expand a LGN with extra genes and that GENIES is not easy to
use for a user without informatic knowledge.

Chapter 5 reports applications of PC-IM to expand two different LGNs (Section 5.1
and Section 5.2) of Arabidopsis thaliana.

The validation of the expansion genes, given as output by PC-IM and selected by cut-
off frequency value, was done by bibliographic search. In particular it was seen that the
top ranking expansion genes were very correlated in genes related to the metabolism the
LGN was part of. The final proof of the proposed expansion list will come from in vivo
experiments, which shall confirm or not whether the new genes are functionally related
to the starting LGN.
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Dissemination of results
The results of this thesis work have been disseminated by:

- Poster presentation:
Coller E., Malacarne G., Moser C., Blanzieri E., Application of the PC algorithm
to infer regulatory networks from observational gene expression data. CMSB2010,
September 29-October 1, 2010, Trento, Italy.

- Patent application:
European Patent application EP13151728.6 (of date 17 January 2013)
Title: SYSTEMS AND METHODS FOR DETERMINING SUITABLE ENTITIES
FOR EXPANDING ESTABLISHED CAUSALMOLECULAR BIOLOGICAL NET-
WORKS AND FOR DETERMINING SIGNIFICANT CAUSAL RELATIONSHIPS
BETWEEN ENTITIES OF ESTABLISHED CAUSAL MOLECULAR BIOLOGI-
CAL NETWORKS AND CANDIDATE ENTITIES.
Inventors: Enrico Blanzieri, Emanuela Coller, Giulia Malacarne, Claudio Moser
Applicants: Fondazione Edmund Mach (San Michele all’Adige, Italy) and Universitá
degli Studi di Trento.

- Journal article (in preparation)
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