
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

MANAGING THE UNCERTAINTY OF THE

EVOLUTION OF REQUIREMENTS MODELS

Le Minh Sang Tran

Advisor Committee

Fabio Massacci, Professor John Mylopoulos, Professor

Università degli Studi di Trento Università degli Studi di Trento

Haralambos Mouratidis, Professor

University of Brighton

Ketil Stølen, Professor

University of Oslo, SINTEF ICT

2013

ABSTRACT
“...There are known unknowns: that is to say,

there are things that we now know we don’t know..."

Donald Rumsfeld, United States Secretary of Defense

E
VOLUTION is an inevitable phenomenon during the life time of a long-lived software

systems due to the dynamic of their working environment. Software systems thus

need to evolve to meet the changing demands. A key point of evolution is its uncer-

tainty since it refers to potential future changes to software artifacts such as requirements

models. Thus, the selection of evolution-resilient design alternatives for the systems is a sig-

nificant challenge.

This dissertation proposes a framework for modeling evolution and reasoning about it

and its uncertainty in requirements models to facilitate the decision making process. The

framework provides evolution rules as a means to capture requirements evolution, and a set

of evolution metrics to quantify design alternatives of the system. This enables more useful

information about to what extent design alternatives could resist to evolution. Thus, it helps

decision makers to make strategic moves.

Both evolution rules and evolution metrics are backed up with a formal model, which is

based on a game-theoretic interpretation, so that it allows a formal semantics understanding

of the meaning of the metrics in different scenarios.

The proposed framework is supported by a series of algorithms, which automates the cal-

culation of metrics, and a proof-of-concept Computer Aided Software Engineering (CASE)

tool. The algorithms calculate metric values for each design alternative, and enumerate pos-

sible design alternatives with the best metric values, i.e., winner alternatives. The algorithms

have been designed to incrementally react to every single change made to requirements

models in an efficient way.

The proposed framework is evaluated in a series of empirical studies that took place over

a year to evaluate the modeling part of the framework. The evaluation studies used scenar-

ios taken from industrial projects in the Air Traffic Management (ATM) domain. The studies

involve different types of participants with different expertise in the framework and the do-

main. The results from the studies show that the modeling approach is effective in capturing

the evolution of complex systems. It is reasonably possible for people, if they are supplied

with appropriate knowledge (i.e., knowledge of method for domain experts, knowledge of

domain for method experts, and knowledge of both domain and method for novices), to

build significantly large models, and identify possible ways for these models to evolve. More-

over, the studies show that obviously there is a difference between domain experts, method

experts, and students on the “baseline" (initial) model, but when it comes to model the

changes with evolution rules, there is no significant difference.

The proposed framework is not only applicable to requirements model, but also other

system models like risk assessment. The framework has been adapted to deal with evolving

risks in long-lived software systems at a high level of abstraction. It thus could work with

many existing risk-assessment methods.

In summary, the contribution of this dissertation to the early phase of system develop-

ment should allow system designers to improve the evolution resilience of long-lived sys-

tems.

ACKNOWLEDGEMENTS

I owe my great thanks to many people, without whom, this dissertation could not be finished.

First and foremost, I profoundly thank my PhD supervisor, Professor Fabio Massacci. I

was fortunate enough to be under his guidance. I would like to thank him for all of his ad-

vice, his patience, and his guidance over the past five years and beyond. I thank him for his

countless hours providing ideas, explanation and feedback, also his listening and helping me

to formulate initial ideas. I learnt from him the passion in doing research. During my grad-

uate studies, I have received invaluable support from him to travel widely (summer schools,

project meetings and conferences) to communicate with many researchers worldwide.

I am grateful to Professors John Mylopouslous for his support, invaluable comments and

discussion since the very first days of my doctorate. His courses – Requirements Engineering

and Conceptual Modeling – have provided me the essential background in this work.

I would like to express my gratitude to Professor Ketil Stølen, my mentor during my in-

ternship at SINTEF. I appreciate his precious guidance, his time spending as chair of PhD

committee, and his encouragement for me to go running, which I now seriously practise. I

also would like to thank the many people at SINTEF, particularly Bjørnar Soulhalg, who have

helped me a lot too during my internship there.

I am thankful to Professor Haralambos Mouratidis, another PhD committee member. I

was very impressed when I received his feedback on the draft of my dissertation. I believed

that he had spent a plenty of time to read every word of my dissertation, and gave me a list

of extremely helpful suggestions.

I am grateful to Dr. Federica Paci, who co-authored an article which is an essential part

of my dissertation. Many thanks to other co-authors who contributed to publications, and

to my colleagues and my friends at University of Trento, in particular Bruno Crispo, Jennifer

Horkoff, Elda Paja, Tong Li, Katsiaryna Labunets and Luca Allodi for helpful feedback, sug-

gestions, and encouragement. My sincere thanks also go to the staffs Luca Valenzin, Michela

Angeli, Elisa Chiarani, Andrea Stenico, and Francesca Belton for helping me with adminis-

trative stuffs so that I could channel my time into my work.

I am also in debt to many MSc students who followed the course Security Engineering

2011-2012 at the University of Trento, as well as to the ATM experts and consultants who

participated in the empirical studies of the modeling approach reported in this dissertation.

I would like to acknowledge in particular Valentino Meduri, Alessandra Tedeschi, Massimo

Felici and Stephane Paul. Without their contribution, I would not be able to finish the eval-

uation of my proposed approach.

I also wish to express my thanks to anonymous reviewers whose the feedback was daunt-

ing to me at the first sight, but indeed was fruitful criticism that helped me to improve my

research resulting in the publications, which are included in this dissertation.

Many thanks to all of my friends in Trento, in Viet Nam and elsewhere for the pleasure

and nice time which make up my social life. I apologize for not listing your names because it

would be unfair for anyone, whom I might forget to mention by mistake.

Thanks to my sweetheart Viet Hung Nguyen for his true love and endless care. I thank

him for giving me advice and encouragement, and lifting the spirits up for both of us during

this tough time.

Finally, my deepest thanks to my family for their unconditional love, unbounded pa-

tience and endurance through years when I was far away. Although they may not completely

understand the things that I am working on, they remained supportive and proud of my at-

tainments.

This work has received financial support from the SecureChange FP7 project and the

NESSoS FP7 project funded by the European Commission, and University of Trento.

CONTENTS

Contents i

List of Tables vii

List of Figures ix

Acronyms xiii

I Motivation and Background 1

1 Introduction 3

1.1 Contributions . 5

1.2 Terminology . 6

1.3 Structure of the Dissertation . 6

1.4 Publications . 10

1.4.1 Publications Reported in the Dissertation 10

1.4.2 Additional Publications . 11

2 Research Roadmap 13

2.1 Problem Characterization and Research Questions 13

2.1.1 The Need of Managing the Evolution Uncertainty of Requirements Mod-

els . 13

2.1.2 Research Questions and Success Criteria 14

2.2 Strategies for Evaluation . 17

2.3 Framework Overview . 19

2.4 Chapter Summary . 22

3 State-of-the-Art 23

3.1 Evolution Perspectives . 23

3.2 Studies on Requirements Evolution . 25

3.2.1 Studies on Impacts of Evolution . 27

i

ii CONTENTS

3.2.2 Studies on Reaction on Evolution . 28

3.3 Studies on Empirical Evaluation . 29

3.3.1 Empirical Research Methodologies . 29

3.3.2 Empirical Studies on Requirements Evolution 30

3.4 Studies on Selecting Risk Countermeasures . 32

3.5 Chapter Summary . 34

4 Application Scenarios 35

4.1 The SWIM Scenario . 37

4.2 The AMAN Scenario . 39

4.3 Chapter Summary . 40

II Framework Details 41

5 The Proposed Framework 43

5.1 Modeling the Requirements Evolution . 45

5.2 Semantics of Evolution Probability: a Game-Theoretic Interpretation 47

5.3 Semantics of Reasoning about the Evolution Uncertainty 49

5.4 Formal Rules for Complex Evolution Scenarios 52

5.4.1 Evolution in Large Requirements Model 53

5.4.2 Continuous Evolution in Requirements Models 54

5.5 Chapter Summary . 56

6 Automated Reasoning Support 59

6.1 Hypergraph Requirements Model . 60

6.1.1 A Formalization of Hypergraph . 60

6.1.2 Hypergraph Representation for Existing Modeling Languages’s Con-

structs . 64

6.2 Algorithms . 65

6.2.1 Generating the DATs . 66

6.2.2 Calculating Metrics for a Design Alternative 71

6.2.3 Updating the DATs due to Incremental Changes 72

6.3 The Complexity of Algorithms . 73

6.4 Proofs of Algorithm Complexity . 78

6.4.1 Proof of Proposition 1 . 78

CONTENTS iii

6.4.2 Proof of Lemma 1 . 78

6.4.3 Proof of Lemma 2 . 78

6.4.4 Proof of Lemma 3 . 80

6.4.5 Proof of Theorem 1 . 82

6.4.6 Proof of Theorem 2 . 83

6.4.7 Proof of Theorem 3 . 83

6.5 Chapter Summary . 83

7 Unicorn: Tooling and the First (Self) Evaluation 85

7.1 Features Overview . 85

7.2 Architectural Overview . 87

7.3 Screen Shots . 90

7.4 Performance Simulation of the Algorithms . 92

7.5 A Self-Evaluation Case Study . 94

7.6 Chapter Summary . 95

8 Empirical Evaluation of the Framework with Third-Party 111

8.1 Requirements Evolution in Si* Modeling Language 113

8.2 Evaluation Method . 116

8.2.1 Research Objectives . 116

8.2.2 Experimental Design . 117

8.2.3 Experimental Procedure . 118

8.2.3.1 Study 1: Preliminary Study within the Research Group 119

8.2.3.2 Study 2: Workshops with ATM experts 120

8.2.3.3 WS1: The Training Workshop 120

8.2.3.4 WS2: The Evaluation Workshop 120

8.2.3.5 WS3: The Application Workshop 121

8.2.3.6 Study 3: Study with Master Students 122

8.3 Quantitative Data Analysis . 122

8.3.1 Preparation for an Analysis of Variance 124

8.3.2 Results . 125

8.4 Discussion . 129

8.4.1 Method’s Effectiveness . 129

8.4.2 Impact of Knowledge of Domain and Knowledge of Method 130

8.4.3 Implications for the Method . 131

iv CONTENTS

8.5 Threats to Validity . 131

8.6 Lessons Learnt . 133

8.7 Chapter Summary . 135

III Applying the Proposed Framework to Evolving Risks 137

9 Early Dealing with Evolving Risks in Software Systems 139

9.1 Terminology . 141

9.2 The Risk-Evolution Approach . 142

9.2.1 Step 1 – Identify Evolving Contexts . 143

9.2.2 Step 2 – Perform Risk Assessment . 145

9.2.3 Step 3 – Model Context Evolution . 146

9.2.4 Step 4 – Perform Evolution Analysis . 148

9.3 The Running Example . 149

9.4 Chapter Summary . 153

10 Selecting Cost-Effective Risk Countermeasures 155

10.1 The Proposed Method . 156

10.1.1 Input Assumptions . 157

10.1.2 Detailing of Step 1 – Annotate Risk Model 158

10.1.3 Detailing of Step 2 – Countermeasure Analysis 159

10.1.4 Detailing of Step 3 – Synergy Analysis . 160

10.2 The Calculus . 161

10.2.1 Rules for Risk Graphs . 161

10.2.2 Rules for Treatment Diagrams . 162

10.3 Exemplification in CORAS . 164

10.3.1 eHealth Running Example: Patient Monitoring 165

10.3.2 Applying Step 1 – Annotate Risk Model 166

10.3.3 Applying Step 2 – Treatment Analysis . 168

10.3.4 Applying Step 3 – Synergy Analysis . 169

10.4 Modeling Evolution in Risk Graph . 170

10.4.1 Challenges in Modeling Evolution in Risk Graph 171

10.4.2 Modeling the Evolution . 172

10.5 Chapter Summary . 175

CONTENTS v

IV Discussion and Conclusion 177

11 Discussion 179

11.1 Fulfillment of the Success Criteria . 179

11.1.1 The Modeling Approach of the Framework 180

11.1.2 The Reasoning Approach of the Framework 182

11.2 How to Apply the Proposed Framework . 183

11.3 How The Proposed Framework Relates to State-of-the-Art 184

11.3.1 Requirements Evolution . 184

11.3.2 Empirical Studies . 186

11.3.3 Selecting Countermeasure Alternatives for Evolving Risks 187

12 Conclusion 189

12.1 Summary . 189

12.2 Limitations and Future Work . 191

References 193

LIST OF TABLES

2.1 Success Criteria. 15

2.2 Evaluation activities to fulfill success criteria. 18

3.1 Overview of Research Methodology . 29

4.1 Technical documents of the scenario. 36

4.2 The evolution of ISS-ENT (including IKMI and IDS), BP, and their possible design

alternatives. 38

5.1 The asset value of Company based on different decisions 49

5.2 Qualitative metrics for design alternatives of the running example. 52

6.1 Data structures and algorithms for the metric calculation. 67

7.1 Descriptive statistics of the hypergraph. 95

8.1 Participants’ knowledge in the empirical studies. 119

8.2 Data about the Type of Participants and the Artifacts Generated. 123

8.3 Scale for expert assessment on the quality of requirements and evolution rules. . . 123

8.4 Kruskal Wallis Summary . 126

8.5 Wilcoxon Rank-Sum Test Summary -Pairwise Comparison among Type of Partic-

ipants. 127

8.6 Hypothesis testing results . 129

9.1 The steps of the proposed risk-evolution approach. 144

9.2 The Max Belief and Residual Disbelief. 153

10.1 Analysis for the risk LMD. 171

10.2 The global treatment alternatives in synergy analysis. 172

11.1 Summary of the success criteria fulfillment. 180

vii

LIST OF FIGURES

2.1 The framework overview and associated evaluation activities. 20

3.1 The evolution perspectives of requirements evolution. 25

5.1 The conceptual model of the proposed framework. 44

5.2 The observable and controllable evolution. 47

5.3 The protocol of the game explaining the sematic of the evolution probability. . . . 48

5.4 An example of the long tail problem. 50

5.5 Example of combining two observable evolution rules. 54

5.6 Observable rules in a continuous evolution requirements model. 55

6.1 The hypergraph requirements model of the SWIM scenario. 62

6.2 Some modeling constructs in different modeling languages and their equivalence

in the hypergraph. 63

6.3 The requirements model of ISS-ENT modeled by existing languages and by hyper-

graph. 64

7.1 The constructs to modeling requirements evolution in UNICORN. 87

7.2 The overall architecture of the UNICORN tool. 89

7.3 The class diagram of the Universal Data Model . 89

7.4 The compact syntax of the construct definition file. 90

7.5 A fragment of a construct definition file. 90

7.6 The requirements model of the scenario with evolution rules. 91

7.7 The evolution analysis on the requirements model of the scenario. 91

7.8 An example of generated hypergraph for simulation. 92

7.9 The complexity of the simulation hypergraphs. 93

7.10 The execution time of the algorithms on simulation hypergraphs. 94

7.11 Requirements diagram for Airspace Navigation Service Provider (ANSP) actor. . . 96

7.12 Requirements diagram for Planning Controller (PLC) actor. 97

7.13 Requirements diagram for Air Traffic Control Center (ATCC) actor. 98

7.14 Requirements diagram for Admin actor. 99

ix

x List of Figures

7.15 Requirements diagram for Executive Controller (EC) actor. 100

7.16 Requirements diagram for Conflict Tools System (CTS) actor. 101

7.17 Requirements diagram for Flight Data Processing System (FDPS) actor. 102

7.18 Requirements diagram for Aircraft actor. 103

7.19 Hypergraph requirements diagram for Airspace Navigation Service Provider (ANSP)

actor. 103

7.20 Hypergraph requirements diagram for Planning Controller (PLC) actor. 104

7.21 Hypergraph requirements diagram for Air Traffic Control Center (ATCC) actor. . . 105

7.22 Hypergraph requirements diagram for Admin actor. 106

7.23 Hypergraph requirements diagram for Executive Controller (EC) actor. 107

7.24 Hypergraph requirements diagram for Conflict Tools System (CTS) actor. 107

7.25 Hypergraph requirements diagram for Flight Data Processing System (FDPS) actor. 108

7.26 Hypergraph requirements diagram for Aircraft actor. 109

8.1 Chronology of the family of empirical studies . 113

8.2 An excerpt of the goal model for the Sector Team. 114

8.3 The graphical representation of the observable for goal g3. 115

8.4 Third ATM workshop. 121

8.5 The quality of requirements models and evolution rules produced by students. . . 124

8.6 Size of Baseline and Size of Changes for Type of Participants 125

8.7 Number of Rules and Branches for Participants Type. 128

9.1 The conceptual model of the proposed risk-evolution approach. 143

9.2 The evolution perspectives of contexts . 145

9.3 Risk level and Residual risk level. 146

9.4 The context evolution model. 147

9.5 The architecture of the Messaging Service within SWIM. 150

9.6 The evolution of Messaging Service. 152

10.1 Steps of the proposed method. 157

10.2 Conceptual model. 157

10.3 Risk graph. 158

10.4 Countermeasure with treats relation. 158

10.5 Effect dependency relation. 158

10.6 Decision diagram. 160

10.7 Architectural sketch of Patient Monitoring scenario (from [NES11, Figure 3.2]) . . 165

List of Figures xi

10.8 Risk diagram of the scenario. 166

10.9 Annotated diagram . 167

10.10Annotated treatment diagram with frequencies propagated. 169

10.11Decision diagrams of risks in the eHealth scenario. 170

10.12The meta-model of evolutionary risk graph. 173

10.13An example of modeling evolution in risk graph. 174

ACRONYMS

AHP Analytic Hierarchical Process

AMAN Arrival Manager

ANSP Airspace Navigation Service Provider

ATCC Air Traffic Control Center

ATCO Air Traffic Controller

ATM Air Traffic Management

ATSU Air Traffic Service Unit

CASE Computer Aided Software Engineering

CTS Conflict Tools System

DMAN Departure Manager

EC Executive Controller

FAA United State Federal Aviation Authority

FDPS Flight Data Processing System

GUI Graphical User Interface

ICT Information and Communication Technology

PLC Planning Controller

RBT Reference Business Trajectory

RE Requirements Engineering

SESAR European Single European Sky ATM Research Initiative

SWIM System Wide Information Management

TCC Tactical Controller

xiii

Part I

Motivation and Background

1

C
H

A
P

T
E

R

1
INTRODUCTION

“...There are known unknowns: that is to say,
there are things that we now know we don’t know..."

Donald Rumsfeld, United States Secretary of Defense

This chapter presents the motivation of this dissertation. It also summarizes the ma-

jor contributions of this work, as well as published/in submission publications on

which the dissertation is built.

T
HE term software evolution has been introduced in 1980 by Lehman in his work[Leh80a;

Leh80b], and was widely adopted since the 90s. In the domain of software systems

[Pro96; Has+05; LL98; Rus+99; ZO97], evolution refers to a process of continually up-

dating software systems in accordance to changes in their working environments such as

business requirements, regulations and standards. Recent studies in software evolution at-

tempt to understand causes, processes, and effects of the phenomenon [AP03; KS99; LaM+08];

or focus on the methods and tools that manage the effects of evolution [Sof05; Sou+11;

Has+05]; or offset their effects in advance. The aim of this dissertation focuses on the last

setting.

A key observation underpinning this dissertation is that while some changes (i.e., evo-

lution) are unpredictable, many others can be predicted albeit with some uncertainty be-

3

4 CHAPTER 1. INTRODUCTION

cause they will be the result of a process. A representative example is Air Traffic Manage-

ment (ATM). The increment in both quantity and complexity of air traffic requires a better

collaboration among ATM systems and actors across air spaces and nations. To address this

requirement, Europe has launched several long-term projects 1 2 and programs 3 4, which

include: introducing new cooperation regulations, ATM business processes; improving ex-

isting ATM systems (e.g., Arrival Management – AMAN, Department Management – DMAN);

introducing new infrastructure for information interchange (i.e., System Wide Information

Management – SWIM[Adm09]), and so on. The requirements of these systems may evolve in

many directions and at different levels from organizational, architectural, to operational as-

pects. Such evolutions are known to be possible, yet unknown whether they would happen:

the known unknowns.

Unfortunately, a company that produces or procures software for these systems cannot

wait until all unknowns in the standardization [old: SWIM standardization] become known.

The process of tendering and organizational restructuring requires a significant amount of

time and planning. Therefore decision makers must essentially bet on the final solution

and possibly minimize the risks that the solution (i.e., design alternative, implementation

choice) would turn out to be wrong and require last minute acquisitions. For instance, while

the European Single European Sky ATM Research Initiative (SESAR) and the United State

Federal Aviation Authority (FAA), in [Pro08; Fed09; Adm09], have listed a number of design

alternatives for SWIM (both architectural and technical), which satisfy different high level

decisions, still there is no means to support the choice of an optimal alternative that could

minimize the risk of wrong local choices.

While many approaches have been proposed to perform the management or consistency

checking on requirements evolution, there has been less effort on delivering an explicit mod-

eling and reasoning framework to assist decision makers to select a good design alternative.

In the realm of requirements evolution, a “good" design alternative is an evolution-resilient

one. An evolution-resilient design alternative, in the context of this dissertation, is under-

stood as a design alternative that has more chances to be operational even if evolution hap-

pens, or requires less modification to be operational due to evolution.

We need to capture what Loucopoulos and Kavakli [LK99] identify as the knowledge

about “what the current state is", “where the desired state to-be is in the future", and “alter-

1http://www.sesarju.eu/
2http://www.swim-suit.aero/swimsuit/
3http://www.eurocontrol.int/services/arrival-manager
4http://www.eurocontrol.int/surveillance/cascade

1.1. CONTRIBUTIONS 5

native designs" for the desired future state. In this respect, it is important to provide a sound

quantitative analysis, which is one of the current weaknesses (see Dalal et al. [Dal+04] for a

discussion) of many existing approaches.

As an effort to bridge the gap, this thesis proposes a framework that provides support for

modeling and reasoning about the uncertainty of requirements evolution, and at the utmost

importance, assisting the decision makers in the selection of a “good" design alternative with

respect to evolution.

1.1 Contributions

The major contribution of this dissertation is a framework dealing with evolution in require-

ments models. The proposed framework includes:

• A set of notions to model the uncertainty of requirements evolution. We propose evolu-

tion rules, which include observable rule and controllable rule, as a mean to capture the

uncertainty in requirements evolution. The former kind captures potential evolution

and its uncertainty. The latter kind captures different design alternatives that fulfill re-

quirements. These evolution rules are used to capture the evolution in requirements

models at high level of abstraction. They could be adapted to different requirements

engineering languages.

• A set of quantitative metrics for reasoning on the evolution uncertainty. With respect

to evolution, we propose three quantitative metrics to assess how well a design alter-

native could be able to resist to evolution. In other word, we measure the probability

by which the implementation of a system using the given design alternative could be

operational when evolution happens. The proposed metrics are based on evolution

rules. Therefore they could be also applied to abstract requirements model.

• A series of algorithm automating the reasoning. To make the proposed framework more

feasible in practice, we develop a series of algorithms that automate the reasoning on

requirements evolution. To maintain the generality of the framework, we propose hy-

pergraph as a means to express requirements models. Based on hypergraph the algo-

rithms enumerate possible design alternatives and calculate their metrics values. Thus

it could help to facilitate the decision making process.

• A prototype of proof-of-concept CASE tool. We implement a prototype of a CASE tool

as a proof-of-concept for the proposed framework. The CASE tool allows users to cus-

6 CHAPTER 1. INTRODUCTION

tomize graphical constructs that are used to model requirements models. It also im-

plements the proposed algorithms to perform automated reasoning on requirements

evolution.

• A modeling and reasoning approach on risk evolution. We extend the proposed ap-

proach for requirements evolution to the realm of risk management. We propose a

generic method to select cost-effective countermeasures for software risks based on

risk graph. We then adapt evolution rules to cope with evolution in risk graphs, and

integrate the proposed metrics to the reasoning process to select cost-effective and

evolution-resilient countermeasures for risks in software systems.

1.2 Terminology

Evolution Potential changes make to software artifacts (e.g., requirements models) after de-

ployment of system-to-be.

Evolution uncertainty The uncertainty of whether an evolution actually applies to given

circumstances.

Requirements evolution Potential changes make to requirements after deployment of system-

to-be.

System-to-be The system as it should be when it will be built and operated.

System-to-be-next After deployment of system-to-be, new requirements or problems may

arise. We may need to consider the next system versions are likely to be. The system

versions beyond the system-to-be are the systems-to-be-next.

1.3 Structure of the Dissertation

The dissertation is organized into four parts. The first part focuses on the introductory basics

consisting of following chapters:

• Chapter 1: Introduction . This chapter presents the motivation and the summarize of

major contributions of this dissertation.

1.3. STRUCTURE OF THE DISSERTATION 7

• Chapter 2: Research Roadmap . This chapter discusses the global research questions

that drive the research plan for this dissertation. This chapter also summarizes the pro-

posed framework to deal with requirements evolution, as well as how various artifacts

in later chapters are fitted into the framework.

• Chapter 3: State-of-the-Art . This chapter discusses in detail related works in the field

of requirements evolution. Particularly, it presents different approaches in require-

ments evolution modeling, requirements evolution management, and relevant analy-

sis techniques, such as inconsistency checking, change impact analysis. The chapter

also gives a comparison between the proposed framework and its closed approaches

in the literature.

Referred publication(s): This chapter has been partially published in:

– Michael Felderer, Basel Katt, Philipp Kalb, Jan Jürjens, Martín Ochoa, Federica Paci, Le Minh Sang

Tran, Thein Than Tun, Koen Yskout, Riccardo Scandariato, Frank Piessens, Dries Vanoverberghe,

Elizabeta Fourneret, Matthias Gander, Bjørnar Solhaug, and Ruth Breu. “Evolution of Security

Engineering Artifacts: A State of the Art Survey”. In: International Journal of Secure Software

Engineering (2014). To appear.

• Chapter 4: Application Scenarios . This chapter summarizes the two scenarios that

we employ to illustrate the proposed framework, and to conduct evaluation studies.

The scenarios are both extracted from the ATM domain. The first one, which is taken

from the SecureChange FP7 project, concerns the evolution of both business processes

and support-tools of Air Traffic Controllers (ATCOs), particularly, changes in the arrival

management process and the introduction of Arrival Manager (AMAN). The second

scenario is taken from the SWIM project where evolution occurs at the infrastructure

for information interchange and collaboration among ATM systems across airspaces

and nations.

The second part presents the body of framework that is conveyed in following chapters:

• Chapter 5: The Proposed Framework . This chapter presents the framework, which

includes a modeling approach (with evolution rules) and reasoning approach (with

evolution metrics). Evolution rules have two kinds: observable rule to capture the evo-

lution of requirements, and controllable rule to capture the reaction of designers to

address such evolution by various choices to implement a system. This chapter also

presents a game-theoretic interpretation for the semantics of the evolution probabil-

ity. Evolution metrics are Max Belief, Residual Disbelief, and Max Disbelief, which are

8 CHAPTER 1. INTRODUCTION

to assess quantitatively design alternatives, and hence, to facilitate the selection of an

evolution-resilient design alternative.

Referred publication(s): This chapter has been partially published in:

– Le Minh Sang Tran and Fabio Massacci. “Dealing with Known Unknowns: Towards a Game-

Theoretic Foundation for Software Requirement Evolution”. In: Proceedings of the 23th Confer-

ence On Advanced Information Systems Engineering (CAiSE’11). 2011, pp. 62–76

– Le Minh Sang Tran and Fabio Massacci. Dealing with Known Unknowns: a General Approach for

Modeling and Reasoning on Requirements Evolution. Tech. rep. (to be submitted to the Software

and Systems Modeling (SOSYM) journal). University of Trento, 2013

• Chapter 6: Automated Reasoning Support . This chapter presents a set of algorithms

that automates the analysis and the incremental calculation of metrics described in

chapter 5. Requirements models and evolution rules are represented by a hypergraph

structure. The algorithms perform calculation and propagation values from leaf nodes

to the root. The propagated values at the root are used to calculate values of the met-

rics. This chapters also presents the computational complexity of the proposed algo-

rithms with proofs.

Referred publication(s): This chapter under submission, which is part of:

– Le Minh Sang Tran and Fabio Massacci. Dealing with Known Unknowns: a General Approach for

Modeling and Reasoning on Requirements Evolution. Tech. rep. (to be submitted to the Software

and Systems Modeling (SOSYM) journal). University of Trento, 2013

• Chapter 7: Unicorn: Tooling and the First (Self) Evaluation . This chapter provides an

overview about the proof-of-concept CASE tool, namely UNICORN, that implements

the modeling and reasoning described in previous chapters. UNICORN takes advan-

tage on the Eclipse plugin infrastructure platform to enhance its extendability. The

tool is logically organized into two parts, one for modeling and another one for rea-

soning. Both are developed to maximize the extendability. We also discuss a perfor-

mance simulation of the proposed algorithms, as well as a self-evaluation study on a

large example taken from an industrial project.

Referred publication(s): This chapter has been published in:

– Le Minh Sang Tran and Fabio Massacci. “UNICORN: A Tool for Modeling and Reasoning on the

Uncertainty of Requirements Evolution”. In: CAiSE Forum. 2013, pp. 161–168

• Chapter 8: Empirical Evaluation of the Framework with Third-Party . This chapter

presents a series of empirical studies that aim to evaluate the modeling approach of

1.3. STRUCTURE OF THE DISSERTATION 9

the proposed framework. These studies follow the Goal-Question-Metric template and

orient to different types of participants: researchers, domain experts, and students. All

the studies lasted for more than a year. The important outcome from these studies

shows that the proposed framework is effective in capturing requirements evolution

of complex systems.

Referred publication(s): This chapter has been published in:

– Fabio Massacci, Deepa Nagaraj, Federica Paci, Le Minh Sang Tran, and Alessandra Tedeschi. “As-

sessing a Requirements Evolution Approach: Empirical Studies in the Air Traffic Management Do-

main”. In: Proceedings of the 2nd International Workshop on Empirical Requirements Engineering

(EmpiRE’12). 2012, pp. 49–56

– Fabio Massacci, Federica Paci, Le Minh Sang Tran, and Alessandra Tedeschi. “Assessing a Re-

quirements Evolution Approach: Empirical Studies in the Air Traffic Management Domain”. In:

Journal of Systems and Software (2013). Article in press

The third part shows how the proposed framework could be applied on other aspects of

software evolution. Therefore we aim to migrate the proposed framework in requirements

evolution into the realm of security risk management. We choose to adapt the framework

on the risk assessment process as the importance of early risk identification and mitigation

is well known. Since software systems might evolve, their risk pictures consequently might

also evolve. Nonetheless, most major approaches in the field do not explicitly support the

modeling and analysis on the evolution of risks. This drives the focus in the next part of the

dissertation that consists of following chapters:

• Chapter 9: Early Dealing with Evolving Risks in Software Systems . Founded on chapter

5, this chapter presents a risk-evolution approach that adapt the proposed framework

to early deal with evolving risks. The main objective is to assist the decision makers to

select an evolution-resilient countermeasure alternative with respect to evolving risks.

Referred publication(s): This chapter has been partially published in:

– Le Minh Sang Tran. “Early Dealing with Evolving Risks in Long-Life Evolving Software Systems”.

In: Advanced Information Systems Engineering Workshops – CAiSE Workshops. 2013, pp. 518–523

• Chapter 10: Selecting Cost-Effective Risk Countermeasures . This chapter proposes a

risk-graph based method to select cost-effective countermeasure alternative. We ex-

tend the risk graph to incorporate the risk mitigation information. We further apply

the risk-evolution approach in Chapter 9 to the proposed method to enable a more

10 CHAPTER 1. INTRODUCTION

fine-grain risk evolution modeling. Since risk graph is an abstraction of several model-

driven risk analysis techniques, this work provides an evidence that the proposed risk-

evolution approach could work on these risk analysis techniques.

The work in this chapter is supported by the Mobility Program of the NESSoS FP7

project, under the supervision of Prof. Ketil Stølen.

Referred publication(s): This chapter has been partially published in:

– Le Minh Sang Tran, Bjørnar Solhaug, and Ketil Stølen. “An Approach to Select Cost-Effective Risk

Countermeasures”. In: Data and Applications Security and Privacy XXVII - 27th Annual IFIP WG

11.3 Conference, (DBSec 2013). 2013, pp. 266–273

Finally, the last part provides discussion with respect to research questions and success

criteria and conclusion for the dissertation:

• Chapter 11: Discussion . This chapter discusses the fulfillment of success criteria, as

well as how the proposed framework relates to the literate. This chapter also proposes

a potential steps to apply the framework in the software development process.

• Chapter 12: Conclusion . This chapter summarizes the major contributions of the dis-

sertation and describes possible future directions based on the results.

1.4 Publications

1.4.1 Publications Reported in the Dissertation

• Le Minh Sang Tran. “Requirement Evolution: Towards a Methodology and Frame-

work.” In: CAiSE Doctoral Consortium 2011. London, 2011

• Le Minh Sang Tran and Fabio Massacci. “Dealing with Known Unknowns: Towards a

Game-Theoretic Foundation for Software Requirement Evolution”. In: Proceedings of

the 23th Conference On Advanced Information Systems Engineering (CAiSE’11). 2011,

pp. 62–76

• Le Minh Sang Tran and Fabio Massacci. Dealing with Known Unknowns: a General Ap-

proach for Modeling and Reasoning on Requirements Evolution. Tech. rep. (to be sub-

mitted to the Software and Systems Modeling (SOSYM) journal). University of Trento,

2013

1.4. PUBLICATIONS 11

• Le Minh Sang Tran and Fabio Massacci. “UNICORN: A Tool for Modeling and Reason-

ing on the Uncertainty of Requirements Evolution”. In: CAiSE Forum. 2013, pp. 161–

168

• Fabio Massacci, Deepa Nagaraj, Federica Paci, Le Minh Sang Tran, and Alessandra

Tedeschi. “Assessing a Requirements Evolution Approach: Empirical Studies in the

Air Traffic Management Domain”. In: Proceedings of the 2nd International Workshop

on Empirical Requirements Engineering (EmpiRE’12). 2012, pp. 49–56

• Fabio Massacci, Federica Paci, Le Minh Sang Tran, and Alessandra Tedeschi. “Assessing

a Requirements Evolution Approach: Empirical Studies in the Air Traffic Management

Domain”. In: Journal of Systems and Software (2013). Article in press

• Le Minh Sang Tran, Bjørnar Solhaug, and Ketil Stølen. “An Approach to Select Cost-

Effective Risk Countermeasures”. In: Data and Applications Security and Privacy XXVII

- 27th Annual IFIP WG 11.3 Conference, (DBSec 2013). 2013, pp. 266–273

• Le Minh Sang Tran. “Early Dealing with Evolving Risks in Long-Life Evolving Software

Systems”. In: Advanced Information Systems Engineering Workshops – CAiSE Work-

shops. 2013, pp. 518–523

1.4.2 Additional Publications

• Viet Hung Nguyen and Le Minh Sang Tran. “Predicting Vulnerable Software Compo-

nents using Dependency Graphs”. In: International Workshop on Security Measure-

ment and Metrics (MetriSec’10). 2010

• Katsiaryna Labunets, Fabio Massacci, Federica Paci, and Le Minh Sang Tran. “An Ex-

perimental Comparison of Two Risk-Based Security Methods”. In: Proceedings of the

ACM / IEEE International Symposium on Empirical Software Engineering and Measure-

ment (ESEM). 2013

• Le Minh Sang Tran and Fabio Massacci. An Approach for Decision Support on the Un-

certainty in Feature Model Evolution. Tech. rep. (under submission to CAiSE’14). Uni-

versity of Trento, 2013

C
H

A
P

T
E

R

2
RESEARCH ROADMAP

This chapter presents the high level research questions for the whole dissertation, as

well as success criteria for research questions. The chapter also provides an overview

of the proposed framework in this work to address those questions.

T
HIS chapter characterizes the problem and the global research questions of this dis-

sertation, and the research activities to address these questions. This chapter is orga-

nized as follows. Section 2.1 presents problem characterization and research ques-

tions that drive the rest of the dissertation. Section 2.2 shows the evaluation strategies for

invented artifacts. Section 2.3 briefly discusses the proposed framework in this work. Finally

Section 2.4 summarizes the chapter.

2.1 Problem Characterization and Research Questions

2.1.1 The Need of Managing the Evolution Uncertainty of Requirements

Models

Long-lived systems are built to satisfy a set of mandatory requirements in a period of time,

and operate under assumptions of working environment and context. However, reality might

change and evolve. Nowadays, evolution is an inevitable phenomenon [Set+04] [Lam09b,

13

14 CHAPTER 2. RESEARCH ROADMAP

Chap. 6] during the life time of a long-lived software systems due to the dynamic of their

working environments. Consequently, software systems might be unstable or non-operational.

Evolution refers to potential changes in future to software artifacts such as requirements

models. Requirements evolution could be understand as potential future changes to require-

ments models, for example, new requirements might arise, some current requirements may

become obsoleted. Such changes could cause the systems stop working properly and lead to

significant economic loss. Fortunately, we can anticipate possibilities of these changes with

the help of expertise knowledge in the domain. They are known, but which possibilities of

changes could happen is unknown. Hence, a key point of evolution is its uncertainty. Evo-

lution might or might not occur due to some external factors such as changes in regulation,

law, and standards. These factors usually cannot be controlled by either software developers

or stakeholder. The uncertainty of evolution however could be partially predicted with the

aid of domain expertise knowledge, for instance ATM experts could foresee new standards,

regulations in the ATM domain in next few years. The likelihood of occurrence of evolution

thus could be estimated.

As requirements might change and evolve over time, systems might be non-operational

because some mandatory requirements are not satisfied. It is essential for long-lived sys-

tems that they need to be still operational during their lifetime. Requirements evolution thus

should be taken into account during the software development process. However, many ex-

isting requirements modeling languages (e.g., Tropos, KAOS) provide neither notations nor

tools to capture evolution in requirements models.

There are some efforts to extend these original modeling languages to support the evo-

lution in software development [CH11; MD00; FB01]. However, none of them pays attention

to the uncertainty of evolution. Additionally, these studies are still lacking of a systematic

and quantitative reasoning to support decision makers in order to choose a system design

alternative that is more resilient to potential evolution.

An evolution-resilient design alternative, in the context of this dissertation, is understood

as a design alternative that has more chances to be operational even if evolution happens,

or requires less modification to be operational due to evolution.

2.1.2 Research Questions and Success Criteria

The ultimate objective is to provide a framework that leverages on the uncertainty of evo-

lution to aid the selection of evolution-resilient design alternatives. For this objective, we

target following research questions in this dissertation:

2.1. PROBLEM CHARACTERIZATION AND RESEARCH QUESTIONS 15

Table 2.1: Success Criteria.

RQ Success Criteria

RQ1
SC1 A modeling approach that is:

SC1.1 Able to effectively capture the requirements evolution and its uncertainty.

SC1.2 Accompanied with a formal semantics of the evolution uncertainty.

SC1.3 Potentially applicable to a variety of requirements and system models.

RQ2
SC2 A reasoning approach that is:

SC2.1 To provide a set of metrics with formal semantics for reasoning about evolu-

tion uncertainty.

SC2.2 Able to automate (with formal analysis and tool-support) the reasoning that

can enumerate and quantitatively assess individual design alternatives.

SC2.3 Able to support the incremental modeling of evolution.

RQ1 How to effectively capture the uncertainty of evolution in requirements models and its

uncertainty?

RQ2 How to perform reasoning about the evolution uncertainty to support decision makers?

To satisfy the above questions, we propose a framework that could capture the require-

ments evolution and evolution uncertainty. The framework provides a quantitative analysis

that support the identification and assessment of design alternatives. To facilitate the evalu-

ation of the proposed framework, in Table 2.1 we identify several success criteria with respect

to research questions. The details are as follows:

Addressing RQ1. The proposed framework should include a modeling approach that is:

• SC1.1 Able to effectively capture the requirements evolution and its uncertainty. The

modeling approach should take into account a key issue in requirements evolution,

identified by Lam and Loomes [LL98], which is multiple change. This issue refers

16 CHAPTER 2. RESEARCH ROADMAP

to the situation that there are many parallel, competing changes. To address future

changes, a requirements model is revised to a new revision. Due to parallel and com-

peting changes, the new revision could have many variants. When evolution actually

happens, only one variant holds.

An important assumption that drives the modeling approach is that we only consider

predictable changes (i.e., the known) whose occurrences are not sure for 100%, but

could be estimated at some level of uncertainty (i.e., the unknown). We do not take

into account unknown changes that could not be predicted, and their occurrences

are unknown as well. In short, this work focuses on known-unknown evolution, not

unknown-unknown ones, which are analyzed in different direction (see works of Ernst

et al. [Ern+11; Ern+09]).

• SC1.2 Accompanied with a formal semantics of the evolution uncertainty. The evolu-

tion uncertainty is represented as evolution probability. This probability has clearly

not a frequentist because we cannot measure the frequency of an evolution since it

might occur only once. Thus it is necessary to an interpretation of evolution uncer-

tainty to understand the semantics of this uncertainty. Such interpretation and under-

standing are very helpful for elicitation and evaluation of acquired evolution uncer-

tainty.

• SC1.3 Potentially applicable to a variety of requirements and system models. There are

many existing Requirements Engineering (RE) languages for modeling requirements.

The modeling approach does not aim to provide a new RE language, but it should be a

set of notions and concepts that could be able to adapt to a particular RE language and

make it possible to deal with evolution. Evolution might happen not only in require-

ments models, but also in other system models such as product line modeling or risk

assessment. It thus is better that the modeling approach could be adapted to support

the modeling of evolution also for other kinds of artifacts.

Addressing RQ2. The proposed framework should include a reasoning approach that is:

• SC2.1 To provide a set of metrics with formal semantics for reasoning about evolution

uncertainty. It is important that the reasoning approach could facilitate the selection

of evolution-resilient design alternatives. For this purpose, it is necessary to have a set

of metrics that quantitatively estimate to what level of evolution-resilience a design

alternative could be. The metrics should also be backed up with a formal semantics.

2.2. STRATEGIES FOR EVALUATION 17

• SC2.2 Able to automate (with formal analysis and tool-support) the reasoning that can

enumerate and quantitatively assess individual design alternatives. Requirements mod-

els are usually big and complex, so does the requirement evolution. It is also important

that the reasoning is automated (fully or partially). Thus the proposed reasoning ap-

proach should include a set of algorithms that enumerate design alternatives, as well

as calculate the metrics for each design alternative.

• SC2.3 Able to support the incremental modeling of evolution. While developing com-

plex software systems, the iteration approach is usually preferred than the legacy wa-

terfall approach. Therefore the process of modeling and reasoning about requirements

evolution could also have several iterations where changes are identified incremen-

tally. The reasoning approach therefore should be support the incremental modeling

of evolution. It should efficiently deal with this incremental behavior rather than start

over the analysis from ground up.

2.2 Strategies for Evaluation

In this section we discuss some evaluation activities that are usually taken into consideration

while evaluating an RE methodology or artifact. These evaluation activities are described as

follows:

E1 Self-evaluation study (sometimes called “case study”): the author(s) of the research

applies the methodology or use the artifact in a complex, real life scenario. The pur-

pose of this study is to show that the artifact can capture most of the important fea-

tures of the scenario. This approach is used in [Bry+09; Sol+07; Erd+13].

E2 Empirical study: the author(s) of the research conduct empirical study(ies) with third

people who apply the methodology or use the artifact in complex, real life scenar-

ios. The purpose of this study is to show how other people could use the proposed

methodology (or artifact) to capture most of the important features of the scenarios.

This approach is used to study other characteristics of the methodology (or artifact)

such as effectiveness, applicability, perceived ease of use, intend to use. This approach

is used in [Ncu+07; MR05; Mai+04; Vil+10].

E3 Formal semantics: the author(s) of the artifact proposes an independently motivated

formal artifacts that can be used to characterize some features of the original artifact.

18 CHAPTER 2. RESEARCH ROADMAP

Table 2.2: Evaluation activities to fulfill success criteria.

Modeling Reasoning

SC1.1 SC1.2 SC1.3 SC2.1 SC2.2 SC2.3

E1 Self-evaluation study X X X

E2 Empirical study X X X

E3 Formal semantics X X X

E4 Tool construction X X X X

E5 Algorithmic complexity analysis X X

E6 Simulation experimental algorith-

mic analysis

X

The purpose of this evaluation is to show that the mathematical underpinnings of the

original artifact can be explained and characterized by a known framework. This ap-

proach is used in [Jür02; Hau+03; LS06]

E4 Tool construction: the author(s) of the artifact constructs a proof-of-concept tool that

implements the artifact. This is to partially show the applicability of the artifact. It

might be also used to study the empirical applicability of the artifact (e.g., via empirical

simulation). This approach is used in [Dal11; Ali10].

E5 Algorithmic complexity analysis: the purpose of this evaluation activity is to show the

worst case complexity of the approach and to identify the cause of intractability. This

approach is used in [Mas+06].

E6 Simulation experimental algorithmic analysis: the purpose of this evaluation activity

is to provide an approximation to the performance of the proposed algorithms. This

approach is used in [Dal11].

Not all evaluation activities are equally suited or equally accepted to prove the efficacy

and applicability of a research artifact. For example in RE, a Self-evaluation study (E1) and

a Tool construction (E4) are the most popular evaluation techniques followed by a Formal

semantics (E3) and frequently by empirical studies [CF+09].

In contrast, for reasoning techniques Formal semantics (E3) and Algorithmic complexity

analysis (E5) are studied first followed by Tool construction (E4) and Simulation experimen-

tal algorithmic analysis (E6). This diverse preference for evaluation can be explained by the

2.3. FRAMEWORK OVERVIEW 19

diverse expectations of the corresponding artifacts: a modeling artifact is expected to “ease”

the work of the analyst and hence it is crucial for Self-evaluation study (E1) and Empirical

study (E2). On the opposite side, a reasoning algorithm should not be sensitive to the human

pressing the button, but only to the “shape" of the problem (i.e., problem dependence, not

human dependence). In Table 2.2 we have clustered the evaluation activities in two groups

(one for modeling and another one for reasoning).

2.3 Framework Overview

Figure 2.1 presents an overview about the proposed framework and various activities to eval-

uate it. In the figure, the framework artifacts are represented by rectangles, and evaluation

activities are depicted as parallelograms connected to relevant artifacts. The input of the

framework is a requirements model in a particular RE language and anticipated evolution

with its likelihoods of occurrences. The output of the framework is a set of design alterna-

tives quantified by evolution metrics. Below we describe the artifacts of the framework:

• Evolution Rules (see Section 5.1) to serve as concepts and notations to capture the evo-

lution in requirements models at high level of abstraction.

• Game-Theoretic Interpretation (see Section 5.2) for the evolution uncertainty. The evo-

lution uncertainty, which is further referred to as evolution probability, is the belief of

domain experts about the chance to be materialized of evolution in future. It is a kind

of subjective probability. Thus we need a semantics backing up for evolution proba-

bility that could be helpful to facilitate the elicitation and evaluation of these probabil-

ities. This interpretation is also used to provide the semantics of evolution metrics.

• Evolution Metrics (see Section 5.3) that leverages on evolution uncertainty to support

the decision makers in the selection of evolution-resilient design alternatives for the

system. The evolution-resilience is defined as the probabilities to be operational re-

gardless of evolution. The semantics of evolution metrics are also accounted by the

game-theoretic interpretation.

• Hypergraph Requirements Model (see Section 6.1) We employ hypergraph to represent

requirements models. This structure is not a substitution of any existing RE languages,

but it could capture necessary information for the automated reasoning. Thus it could

be transformed from a requirements model expressing in a particular RE language.

20 CHAPTER 2. RESEARCH ROADMAP

Evolution Rules
(Observable Rule,
Controllable Rule)

Game-Theoretic Interpretation

Requirements Model +

Anticipated Evolution

Hypergraph

Requirements Model

Incremental

Algorithms

Evolution Metrics
(Max Belief, Deferral Disbelief,

Max Disbelief)

Conduct empirical

studies

Perform formal

analysis

Implement

CASE tool

Adapt the framework

to evolving risks

Requirements Models with

Evolution Rules

The Proposed Framework

Design Alternatives +

Evolution Metrics Values

Framework artifact

Evaluation activity

Legend

Provide formal

semamtics

Provide model and

case study

input/output

Run simulation

Figure 2.1: The framework overview and associated evaluation activities.

When transforming requirements models into hypergraphs, only requirements and

necessary information about requirements satisfaction are transformed.

• Incremental Algorithms (see Chapter 6) to automate the enumeration of design alter-

natives and the calculation of evolution metrics. These algorithms take a hypergraph

requirements model as input.

Figure 2.1 also illustrates various activities to evaluate the proposed framework. The or-

der of evaluation activities in the figure does not represent the actual order of execution of

these activities.

• Provide formal semantics (E3, see Section 5.2–5.4). We have provided a formal seman-

tic for the proposed evolution rules and evolution metrics. This is to ensure that they

2.3. FRAMEWORK OVERVIEW 21

do make sense. We also provided a formal mathematic model to back up the proposed

metrics.

• Perform formal analysis (E5, see Section 6.3, 6.4). To evaluate the algorithms, we de-

scribed a set of mathematical properties and their proof of the algorithms. The details

of properties and algorithms are presented in Section 6.4. To evaluate that the devel-

oped algorithms could be applied to different RE languages, we have proposed several

transformation patterns transforming i*, KAOS, and SysML requirements models to

hypergraphs. We also adapt the proposed framework in i* language to conduct the

empirical studies mentioned above.

• Implement CASE tool (E4, see Chapter 7). To further evaluate the framework, we have

implemented a CASE tool, namely UNICORN. The tool consists of a Graphical User

Interface (GUI) for hypergraph requirement model, and an implementation of the al-

gorithms.

• Provide model and case study (E1, see Section 7.4, 7.5). We have conducted a self-

evaluation study to evaluate the proposed framework. We applied the proposed frame-

work to model the evolution in a requirements model of a case study taken from an

industrial project. Notably, here the term “case study”, which is also used by other RE

researchers, is different from the case study used in the field of empirical experiments

(see further Table 3.1).

• Run simulation (E6, see Section 7.4). We have run a simulation on an implementa-

tion of the algorithms. The simulation is to study the empirical performance of the

algorithms with respect to the complexity of input hypergraphs (or the complexity of

requirements models).

• Conduct empirical studies (E2, see Chapter 8). To evaluate the high level semantics

of the evolution rules we have conducted an empirical study with domain experts to

obtain their feedback about using evolution rules to model requirements evolution.

To evaluate the effectiveness of the proposed framework, we have conducted other

empirical studies with researchers, domain experts, and master students.

• Adapt the framework to evolving risks (E1, see Chapter 9 , 10). We demonstrate the

applicability of the proposed framework in other field of software engineering rather

than RE by apply the proposed framework to deal the evolution of risks in long-lived

system.

22 CHAPTER 2. RESEARCH ROADMAP

2.4 Chapter Summary

This chapter discussed the research objective of this dissertation. The objective was re-

fined into three research questions. The focus of the research questions was to propose a

framework that supports modeling and reasoning about the uncertainty of evolution in re-

quirements models; and how to evaluate the proposed framework. Based on the research

questions, we have elaborated an overview of the proposed framework with various artifacts

needed for the framework, as well as different aspects to evaluate it. The next Chapter 3 will

provide a background about different evolution perspectives and summarize studies that are

relevant for this dissertation.

C
H

A
P

T
E

R

3
STATE-OF-THE-ART

This chapter provides a background about different evolution perspectives that we

address in this work. The chapter also briefly summarizes relevant studies in the field

of requirements evolution, as well as empirical studies on requirements from which

we learn to conduct evaluation study for the proposed framework. We also briefly re-

view studies in the risk assessment area where we later adapt the proposed framework

to early address evolving risks.

P
AST studies do strongly impact present work. Thus in this chapter we briefly review

recent studies relating to the purpose to understand the status of the art. Based

on this understanding we build the proposed framework. This chapter is organized

as follows. Section 3.1 presents a background about different evolution perspectives. Sec-

tion 3.2 reviews past studies in the field of requirements evolution. Section 3.3 reviews em-

pirical studies on requirements. Section 3.4 review studies in the field of risk analysis. Sec-

tion 3.5 concludes the chapter.

3.1 Evolution Perspectives

Evolution in a requirements model is basically studied within a time period. This study pe-

riod may be short (one year), or very long (ten years or more) depending on the life time of

23

24 CHAPTER 3. STATE-OF-THE-ART

the software system. Depended on the scenarios about how to study evolution, we have dif-

ferent evolution perspectives. Lund et al. [Lun+11a, Chap. 15] describe three evolution per-

spectives in risk analysis, including: maintenance, before-after, continuous evolution. Out of

these, the maintenance evolution perspective mostly relates to the outdate of a document

(e.g., requirements model) of an existing system. Since this work mostly focuses on the early

solution of requirements evolution, this evolution perspective is not being considered in this

work.

We can adapt the last two evolution perspectives in the proposed framework to deal with

evolution in requirements models as follows.

• Before-After evolution perspective predicts future contexts by anticipating planned and

unplanned changes in the current requirements models at the end of the study period.

Multiple possibilities of evolutions are considered. Each can have its own likelihood of

occurrence. For example, the ATM 2000+ Strategic Agenda [Eur03] and SESAR Initia-

tive [SES08] have outlined the direction of the ATM developments in a period 2010 to

2020 to have one or more of variants of new queue management tools including Arrival

Manager (AMAN), Departure Manager (DMAN) or Surface Manager (SMAN).

• Continuous evolution perspective predicts the evolution of the current context over

time based on planned gradual changes. In this perspective, the entire study period

is divided into several milestones. At each milestone, potential changes in the require-

ments model are anticipated. Multiple possibilities of evolution are also allowed.

The major difference between this continuous evolution perspective and the one with

similar name described in [Lun+11a, Chap. 15] is that: while the latter considers only one

possibility of evolution at certain time points in future; the former enables multiple possi-

bilities of evolution at certain time points. The former will collapse to the latter if there is

only one possibility of evolution in each time point. Therefore, the definition of continuous

evolution perspective here is the generalization of Lund et al. [Lun+11a]’s one.

Figure 3.1 visualizes the evolution perspectives. In this figure, a requirements model is

depicted as a cloud. Figure 3.1(a) illustrates the before-after evolution perspective where

a requirements model might evolve to one of possibilities models at the end of the study

period. Meanwhile, Figure 3.1(b) exemplifies the continuous evolution perspective. In this

illustration, at time t0 the original requirements model is RM0, which can evolve to one of

RMi at time t1. The evolution continuously happens. And at the end of the study period,

time tn , the origin model could be one of RMk j .

3.2. STUDIES ON REQUIREMENTS EVOLUTION 25

RM0

RM1 RM2 RMn

(a) Before-after evolution

RM0

RM1m RM2n RMkt

t0 t1 t2 tn

RM12

RM11

RM22

RM21

RMk2

RMk1

(b) Continuous evolution

Figure 3.1: The evolution perspectives of requirements evolution.

3.2 Studies on Requirements Evolution

Lam and Loomes [LL98] present the EVE (Evolution Engineering) framework, which includes

a meta model and a process model to deal with requirements evolution. They classify changes

into the following types:

• Environment change (E-change): these are changes that occur within the environment

where the target software system is working, e.g., the introduction of new laws, changes

in business agreement.

• Requirement change (R-change): these are changes in requirements and derived from

environment changes, e.g., new requirements arrive, current requirements are modi-

fied or deleted.

• Viewpoint change (V-change) also called ‘impact’: these are impacts on the ‘life’ of

stakeholders once R-changes are implemented. For example, the introduction of AMAN

will change the way the arrival sequence is computed (i.e., instead of computed by the

26 CHAPTER 3. STATE-OF-THE-ART

PLC); the SWIM will change the way of communication from telephone-based to an

ICT-based infrastructure among ATM actors.

• Design change (D-change): these are changes in the design of the system implied by

requirement change, e.g., the introduction or removal of a function, control.

The authors also mention seven key issues that need to be addressed by requirements

evolution studies. Those issues include:

• Modeling evolution: this is the most important and a fundamental issue. This refers to

the way to model, represent, and reason about evolutions.

• Change analysis: this is to study about the nature of change to answer ‘why’ and ‘where

from’ questions about changing requirements.

• Impact assessment approaches: this is to assess the impact of changing requirements

on other domains, such as social, environmental and cultural issues.

• Risk assessment: this refers to risk assessment in relation to requirements changes.

• Multiple change: this is the ability to consider many changes that are parallel, and

possibly competing. These changes may be originated from environmental changes.

• Extended traceability: this is concerned with establishing relationships between engi-

neering artifacts during software maintenance.

• Tool support: this is concerned with tool to provide support for requirements evolution

such as change management tool, traceability tool, and so on.

We can broadly classify relevant studies about requirements evolution into impact of evo-

lution, and reaction on evolution with respect to their major contributions. Studies on the

impact of evolution aim at identifying potential consequences on artifacts (such as models,

specifications) and violation of consistency or security properties. Studies on the reaction to

evolution propose reactions to requirements evolution. Bellow we briefly review the related

studies.

3.2. STUDIES ON REQUIREMENTS EVOLUTION 27

3.2.1 Studies on Impacts of Evolution

Russo et al. [Rus+99] propose an analysis and revision approach to restructure requirements

to detect inconsistency and manage changes. The main idea is to allow evolutionary changes

to occur first, and then in the next step, verify their impact on requirements satisfaction.

The restructuring includes three activities: (1) decomposing the specification into parts, (2)

representing those parts within viewpoints (in four templates: hierarchic tree, input-output

flow, data-flow diagram, state transition diagram), and (3) enriching the viewpoints with

rules that express relationships between different specification fragments. The impact anal-

ysis includes steps to check consistency and completeness, tracking changes in the original

requirements specification. However, their approach is manually performed.

Hassine et al. [Has+05] present an approach to change impact analysis, which refers to

identify potential consequences of a change, or estimate what needs to be modified to ac-

complish a change. Their approach applies both slicing and dependency analysis at the Use

Case Map specification level to identify the potential impact of requirements changes on

the overall system. The resulting output includes scenarios and components that subject

to change. Chechik et al. [Che+09] and Lin et al. [Lin+09] focus on change propagation.

Chechik et al. [Che+09] assist users in propagating changes across requirements, design,

and implementation artifacts. They use the UML model-based approach and provide auto-

mated propagation for changes between requirements and design models via relationships

between them. The relationship between models are formalized by OCL rules. The auto-

mated change propagation between models localizes the regions in models that should be

modified. However, the work is limited to activity diagrams and sequence diagrams of UML

language. Lin et al. [Lin+09] capture requirements changes as series of changes in specifi-

cations. They propose algorithms for managing all possible atomic requirements changes

to a sequence-based specification. The algorithms address atomic requirements changes

and push them through changes in specifications, maintain old specifications over time and

evolved into new specifications with least rework.

Fabbrini et al. [Fab+07] work on requirements expressed in natural language. They ad-

dress the inconsistency between requirements that belong to different evolutionary stages

(or evolution steps). Their approach employs Formal Concept Analysis theory to verity the

requirements consistency. Requirements of different evolutionary stages have a traceability

link to others. By checking the inconsistency, they may detect the error in evolution from

one requirement in a stage to another requirement in a different stage.

The authors in [Pro12; Ber+11] present the SECMER methodology for requirements evo-

28 CHAPTER 3. STATE-OF-THE-ART

lution management developed in the context of the SecureChange project 1. The methodol-

ogy addresses the before-after evolution perspective and provides support for:

• Modeling requirements evolution: requirements models of the ‘before’ or ‘after’ situa-

tion are depicted in the Si* language.

• Change management based on evolution rules: security properties are modeled as

patterns by Si* language. Any changes made to the requirements model is checked

with the argument validity to detect the violations or fulfilment of security properties.

If a security property is violated, an alert prompting human intervention is automati-

cally issued with possibly suggested corrective actions.

• Argumentation-based security analysis: this provides evidence if a security property is

preserved by evolution or not.

3.2.2 Studies on Reaction on Evolution

Apart from the above approaches that aim to manage requirements evolution (such as check-

ing inconsistency, propagating changes, and change impact) at design time. There exists a

number of approaches aiming to support the system evolution driven by requirements evo-

lution [Bri+06; ZO97; Sou+11; Ern+11]. Some of these works focus on the design phase while

others target the deployment and execution phases.

Brier et al. [Bri+06] present a manual change analysis process in which a situation ‘before-

the-change’ is changed into a situation ‘after-the-change’. They adopted the diagrammatic

notation from Problem Frame to model these situations. The approach however did not go

further with any specific reasoning for change rather captures the part of before model that

is changed.

Zowghi and Offen [ZO97] work at meta level to capture intuitive aspects of managing

changes to requirements models. Their approach involves modeling requirements models

as theories and reasoning changes by mapping changes between models.

Among the work focusing on run-time, Souza et al. [Sou+11] propose a systematic method

for adaptive software system. In this approach, the dynamic behavior of the system is gov-

erned by of a set of (in)equations called qualitative differential constraints. The authors char-

acterize the controllability space for a software system defined in terms of a requirements

model, variation points, control variables and indicators. All of these are correlated with

qualitative differential constraints.
1http://www.securechange.eu/

3.3. STUDIES ON EMPIRICAL EVALUATION 29

Table 3.1: Overview of Research Methodology

Evaluation Method Description

Case Study Monitor a phenomenon in its real context

Experiment Investigate a testable hypothesis

Survey Collect standardized information from a specific population

Ethnography Study a community and community’s members social interactions

Action Research Study the experience while solving a problem

Assertion Use ad-hoc evaluation techniques

Lessons Learned Examine qualitative data from complete projects

Benchmarking Test performance running several tests

Screening Feature-based evaluation done by a single individual

Effects Analysis Use expert opinion to assess the quantitative effects of methods/tools

Project Monitoring collect and store data during project development

Field Study Monitor and collect data about different projects simultaneously

Literature Research Analyze papers and other documents publicly available

Legacy Data Examine data from completed projects trying to identify trends

Ernst et al. [Ern+11] focus on unknown-unknown evolution, i.e., evolution that we do

not know what it is, and when it happens. Instead of finding a solution anticipating evolu-

tion, the authors in [Ern+11] study a class of algorithms using AI Truth Maintenance Systems

(ATMS) to find new solutions that use as much as possible of the old solution (i.e., maximize

familiarity), and minimize the number of tasks that need to be implemented (i.e., minimize

effort).

3.3 Studies on Empirical Evaluation

In order to have a glance on the types of empirical studies so that we can learn to conduct

the evaluation for the proposed framework (see Chapter 8 later), we first overview the exist-

ing empirical research methodologies and introduce a set of terms in the field of empirical

research. Then, we discuss the works reporting empirical studies on requirements evolution.

3.3.1 Empirical Research Methodologies

Different taxonomies [RH09; Eas+07; Kit96; ZW98; Bas+86] have been proposed to classify

empirical research methodologies in software engineering. In Table 3.1 we summarize the

major research methodologies from the taxonomies in [RH09; Eas+07; Kit96; ZW98; Bas+86].

30 CHAPTER 3. STATE-OF-THE-ART

Runeson and Host [RH09] identify four classes of empirical research methods: case study,

which is an empirical inquery that investigates a contemporary phenomenon within a real-

life context; survey that is a collection of standardized information from a specific population

by means of a questionnaire or interview; experiment is an investigation of a testable hypoth-

esis when one or more independent variables are manipulated to measure their effect on

one or more dependent variables; action research aims to solve a real-world problem while

simultaneously studying the experience of solving the problem. Easterbrook et al. [Eas+07]

also count ethnographic studies among the major research methodologies. Ethnographic re-

search studies based on field observations a community of people to understand how the

members of that community make sense of their social interactions. Kitchenham [Kit96]

also consider case study, experiment and survey as classes of empirical research methodolo-

gies, but it also identify screening, effects analysis, and benchmarking as classes of research

methods. Screening is a feature-based evaluation done by a single individual who not only

determines the features to be assessed and their rating scale but also does the assessment.

Effects analysis is a method that uses expert opinion to assess the quantitative effects of dif-

ferent methods and tools. Benchmarking is a process of running a number of standard test-

s/trials using a number of alternative tools/methods (usually tools) and assessing the relative

performance of the tools in those tests.

Zelkowitz and Wallace [ZW98] enrich the taxonomies proposed in [RH09; Eas+07; Kit96]

with new classes of empirical research methodologies: project monitoring, assertion, and

field study, literature research, legacy data, and lessons learned. Project monitoring focus on

the collection and storage of data that occurs during project development. An assertion is

an experiment where the designer of a new technology is both experimenter and subject

of study2. A field study monitors and collects data about different projects simultaneously.

Literature research analyzes papers and other documents publicly available. Legacy data

is method that examines data from completed projects trying to identify trends. Lessons

learned examine data from complete projects to identify qualitative aspects that can be used

to improve further developments.

3.3.2 Empirical Studies on Requirements Evolution

Below we briefly review studies that are closely related to the empirical studies, which are

later described in Chapter 8.

2A subject of study is an agent that is studied and collected data on.

3.3. STUDIES ON EMPIRICAL EVALUATION 31

Villela et al. [Vil+10] present on quasi-experiment in the field of Ambient Assisted Liv-

ing to study the adequacy and feasibility of PLEvo-Scoping method [Vil+08]. That method is

based on a software evolution model to help requirements engineers and product managers

identify the unstable features of an embedded system and their potential needed adapta-

tions. It allows to identify and prioritize likely future adaptation needs and to select solu-

tions to deal with them. Their quasi-experiment follows the Goal-Question-Metric template

[BR88] and involves three kinds of roles: method expert, stakeholder, and domain expert.

The quasi-experiment took place in the form of two two-days workshops where two groups

consisting of three domain experts applied PLEvo-Scoping. The first part of each workshop

was dedicated to the presentation of the application domain, and the quasi-experiments

task. Both quantitative and qualitative measures were used to evaluate the adequacy and

the feasibility of the method. However, due to the small number of subjects, the authors

were not able to perform any statistical tests.

McGee and Greer [MG11] conducted a case study [RH09] to assess if a change taxonomy

proposed by the authors helps to understand the consequences of requirements change,

why and when it happens. The study was conducted during the execution of a software

development project in the government sector and involved 15 software developers and

analysts. Data on requirements changes were collected during the different phases of the

software development life cycle. The quality of changes was assessed by a researcher and a

project manager. The authors defined quantitative metrics to answer their research ques-

tions like the number of changes and the cost of changes and used hypothesis testing to

evaluate the hypotheses related to their research questions.

Another study on requirements evolution by Herrmann et al. [Her+] is one of the pioneer

in specifying the delta requirements without having to describe complete system in details.

Herrmann et al. investigates the applicability of TORE, a requirements engineering approach

to identify delta requirements for an engineering tool. Delta requirements refer to changes in

requirements identified when comparing the as-is system with the system-to-be. The study

measures improvements in the as-is-analysis, the to-be-analysis, and the prioritization of

requirements.

Maiden et al. [Ncu+07; MR05; Mai+04], have presented several case studies in the ATM

domain to validate RESCUE, a scenario-driven requirements engineering process. In the

studies, the authors ran several creativity workshops with ATM experts with different exper-

tise to study how RESCUE helps to discover stakeholder and system requirements. The work-

shops were organized in three main phases: a training phase about RESCUE, a brainstorm-

ing phase, and then an application phase where the experts applied RESCUE to discover re-

32 CHAPTER 3. STATE-OF-THE-ART

quirements for different ATM tools (e.g., DMAN, CORA-2, and MSP). During the workshops,

color-coded idea cards, post-it notes, A3 papers have been used to collect the results. The

authors claimed that, although not all the workshop sessions were a success, the overall pro-

cess definitely was – as it helped to set up a common understanding and facilitated the in-

teraction among people involved.

3.4 Studies on Selecting Risk Countermeasures

Mehr and Forbes [MF73] suggest that “risk management theory needs to merge with tradi-

tional financial theory in order to bring added realism to the decision-making process". In

line with the suggestion, Cost-benefit analysis (CBA) is often used with risk management to

assess the effectiveness of risk countermeasures [AP01; Boa+01; Sen00]. Major CBA steps

include: a) develop measures to mitigate a certain problem b) develop measure alternatives

c) estimate the impact and cost of each measure d) compare the benefit and costs for each

measure alternative e) conduct a sensitive analysis of the uncertainty of estimated benefit

and cost f) recommend a cost-effective measure alternative for implementation.

In risk management, decision on different risk countermeasure alternatives has been

emphasized in many studies [Sto+02; Nor10; WHO09]. The guideline in [Sto+02] proposes

cost-benefit analysis to optimally allocate resources and implement cost-effective controls

after identifying all possible countermeasures. This encompasses the determination of the

impact of implementing (and not implementing) the countermeasures, and the estimated

costs of them. Another guideline [WHO09] provides a semi-quantitative risk assessment.

The probability and impact of risks are put into categories, which are assigned with scores.

The differences between the total score for all risks before and after any proposed risk re-

duction strategies relatively show the efficiency among strategies, and effectiveness of their

costs. It also suggests that the economic costs for baseline risks should be evaluated using

one of the following methods: Cost-Of-Illness, Willingness-To-Pay, Qualified-Adjusted Life

Years, Disability-Adjusted Life Years. These methods have been designed to assess cost of

risks, but not cost of countermeasures.

Butler [But02] proposes the Security Attribute Evaluation Method (SAEM) to evaluate al-

ternative security designs. It employs a four-step process, namely benefit assessment, threat

index evaluation, coverage assessment, and cost analysis. This approach focuses mostly on

the consequence of risks rather than cost of countermeasures.

Chapman and Leng [CL04] describes a decision methodology to measure the economic

performance of risk countermeasure alternatives. The methodology is based on two kinds of

3.4. STUDIES ON SELECTING RISK COUNTERMEASURES 33

analysis (baseline and sensitivity), four methods of economic evaluation, and a cost-accounting

framework. The cost is broken down into several dimensions and types. The advantage is

to provide a clear economic justification among countermeasure alternatives. However, it

does not differentiate alternatives based on their suitability to mitigate risks. In other words,

the methodology focuses on the cost-difference aspect but does not take into account the

benefit-difference (in terms of level of risks reduced) among alternatives.

There exist studies on Real Options Thinking [Kul+99; AK99; LS07] to articulate and com-

pare different security solutions in terms of their business value. These solutions however

are on the management aspect such as postpone, abandon, or continue to invest in secu-

rity. Norman [Nor10] advocates the use of Decision Matrix to agree on countermeasure al-

ternatives. A Decision Matrix is a simple spreadsheet, which contains a list of countermea-

sures, and a list of risks, which those countermeasures mitigate. For each countermeasure,

there are estimates with respect to cost, effectiveness, and convenience. The countermea-

sure effectiveness is measured by metrics contained within the Sandia Vulnerability Assess-

ment Model. That approach is however not clearly defined, and all metrics are developed as

spreadsheets, which are complicated to implement and follow.

Houmb et al. [Hou+12] introduce SecInvest, a security investment support framework

that derives a security solution fitness score to compare alternatives and decide whether

to invest or to take the associated risk. SecInvest relies on an eight-step trade-off analysis,

which employs existing risk assessment techniques for risk level. SecInvest scores alterna-

tives with respect to their cost and effect, trade-off parameters, and investment opportu-

nities. However, that approach does not provide a systematic way to assess the effects of

alternatives on risks, either not take into account the dependency among countermeasures

in an alternative.

Existing risk assessment methods, such as some mentioned above, mostly perform on a

target software system at a particular point in time. However, when software evolves, risks

might also evolve. Lund et al. [Lun+11b] and Solhaug and Seehusen [SS13] propose gen-

eral techniques and guidelines for managing risk in changing systems. In particular, they

proposed a risk assessment method for long-lived evolving system that includes assessment

steps, language for the modeling and documentation of changing risks, and techniques for

tracing evolution from requirements models to risk models. This is one of the pioneers in

the field of evolving risks.

34 CHAPTER 3. STATE-OF-THE-ART

3.5 Chapter Summary

This chapter presented a background understanding about the state-of-the-art. In the sub-

sequent chapters, we will discuss about the application scenarios from which we exemplify

the notions and concepts of the proposed framework. These scenarios also serve for the

evaluation purpose of the framework.

C
H

A
P

T
E

R

4
APPLICATION SCENARIOS

This chapter describes application scenarios taken from industrial projects in the

ATM domain. These scenarios are used to exemplify all principle and concepts in

the proposed framework, and to conduct a series of empirical studies to evaluate the

proposed framework.

I
N order to improve the comprehension of the proposed framework, we try to exemplify

as much as possible principles and concepts. All examples are taken from industrial

projects in the ATM domain. In this chapter we discuss application scenarios from

which examples are built. To the brevity, we only focus on parts of systems rather the en-

tire projects.

Software systems in the ATM domain usually are very long lasting lifetime and evolvable.

Due to the continuous increasing of the air traffic, as well as the increasing of security, de-

pendability, and performance requirements, these software systems have to face to many

kinds of changes during their long lifetime. These systems must be able to accommodate

for changes in the controlled process, such as improved aircraft performance, to host new

controller supporting tools, and be compatible with possible new control procedures and

rules applied by the controllers. Therefore, good designs that early consider (as much as

possible) potential future changes will increase the reliability of ATM systems and provide

smooth operations in air traffic controller.

35

36 CHAPTER 4. APPLICATION SCENARIOS

Table 4.1: Technical documents of the scenario.

Name Document Title Description

SC-D1.1(1) Description of the sce-

narios and their require-

ments

describes in detail the requirements for the ATM scenario.

Changes concerning to the introduction of AMAN are also

elaborated.

SWIM-D1.2.1(2) Information Content and

Service Requirements

describes an overview of SWIM, ATM information con-

tent requirements and services requirements.

SWIM-D1.6.1(2) SWIM Prototype Re-

quirements for Iteration

describes the system context that the SWIM will face and

support, including a set of usecases, scenarios where

SWIM integrates with other systems. Requirements for

the prototype iteration are also elaborated.

SWIM-D2.3.1(2) SWIM-SUIT information

models and services

describes existing ATM information systems, and future

SESAR ATM system, as well as the role of SWIM network

in the SESAR ATM architecture. Evolution of the SWIM

services is also elaborated.

SWIM-TECH(3) Segment 2 Technical

Overview

describes in detail the functional architecture of SWIM,

including architecture options, design solutions, and

technologies.

Sources:

(1)http://www.securechange.eu/content/deliverables
(2)http://www.swim-suit.aero/swimsuit/projdoc.php
(3)http://www.faa.gov/about/office_org/headquarters_offices/ato/service_

units/techops/atc_comms_services/swim/documentation/media/Segment%202/

SegmentTechnicalOverview_10709.pdf

We employ these scenarios in this dissertation because we have good contacts with prac-

titioners (each has more than 10-year experience in the ATM domain in the context of the

Secure Change project1. This would ease the conduction of the empirical evaluation, and

make the outcomes of the evaluation more realistic.

Table 4.1 presents a list of technical documents from which ATM scenarios are taken.

These documents are provided by Deep Blue Srl, an Italian consultancy company special-

ized in human factors, safety and evaluation of ATM concepts and systems, which actively

participates in the SESAR Initiative.

1http://www.securechange.eu/

http://www.securechange.eu/content/deliverables
http://www.swim-suit.aero/swimsuit/projdoc.php
http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/atc_comms_services/swim/documentation/media/Segment%202/SegmentTechnicalOverview_10709.pdf
http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/atc_comms_services/swim/documentation/media/Segment%202/SegmentTechnicalOverview_10709.pdf
http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/atc_comms_services/swim/documentation/media/Segment%202/SegmentTechnicalOverview_10709.pdf
http://www.securechange.eu/

4.1. THE SWIM SCENARIO 37

This chapter is organized as follows. Section 4.1 describes the SWIM scenario from which

illustrative examples for the framework are taken. Section 4.2 briefly presents the ATM ap-

plication scenarios that we employ to conduct a series of empirical evaluation studies to

evaluate the proposed framework.

4.1 The SWIM Scenario

The System Wide Information Management (SWIM) [Adm09] is an information manage-

ment infrastructure, which connects all ATM actors (both human and non-human) from

aircrafts to ground facilities. It allows seamless information interchange and the capability

of finding the most appropriate source of information while catering for information secu-

rity requirements.

FAA has proposed a logical architecture of SWIM that consists of several functional blocks.

Among these blocks, we focus on the possible evolution of the Enterprise Information Sys-

tem Security (ISS-ENT), and External Boundary Protection (BP)[Adm09, section 5.6]. To keep

the running example simple and illustrative, we only present a small subset of requirements

and requirements evolution of both ISS-ENT and BP. Interested readers are referred to [Adm09,

section 5.6] for further details.

The ISS-ENT plays as part of the underlying infrastructure used by enterprise systems.

The ISS-ENT includes two sub parts: Identities and Keys Management Infrastructure (IKMI)

and Intrusion Detection System (IDS). The IKMI concerns the management of keys and iden-

tities of system entities including all SWIM’s actors (both human and non-human). The IDS

detects if there is intrusion within the network and thereby prevents potential attacks as

much as possible. The two corresponding requirements of IKMI and IDS are: Enable iden-

tities and keys management infrastructure (RQ-E1), and Enable intrusion detection (RQ-E2).

The BP controls the connection and information exchange between entities within en-

terprise systems, and with external entities. The corresponding requirement of BP is Enable

external boundary protection (RQ-B1).

Domain experts in the field of ATM have foreseen the potential changes in the working

environment where the number of actors (both airspace applications and ATM users) might

quickly increase. Consequently, both the ISS-ENT and BP might need to scale up with a large

number of entities to be managed. Due to such changes, the experts have identified sev-

eral possibilities that might occur. Then, changes in requirements and components to fulfill

requirements are identified in each possibility.

38 CHAPTER 4. APPLICATION SCENARIOS

Table 4.2: The evolution of ISS-ENT (including IKMI and IDS), BP, and their possible design

alternatives.

Part Possibility Belief Requirements Alternatives

IKMI IKMI-P1 10% RQ-E1 OpenLDAP (C1)

Oracle Identity Directory (C2)

IKMI-P2 20% RQ-E1, RQ-E3 C2

IKMI-P3 30% RQ-E1, RQ-E4 C1, Ad-hoc Singe-sign on (C3)

C2

IKMI-P4 40% RQ-E1, RQ-E3, RQ-E4 C2

IDS IDS-P1 60% RQ-E2 Host-based IDS (C4)

Network-based IDS (C5)

IDS-P2 40% RQ-E2, RQ-E5 C5

BP BP-P1 40% RQ-B1 Ad-hoc BP (C6)

Common-gateway BP (C7)

BP-P2 40% RQ-B1,RQ-B2 C6, C2, Centralized Policy Decision Point

(C8)

C7, C2,C8

BP-P3 20% RQ-B1,RQ-B2,RQ-B3 C7, C2,C8

Where: RQ-E1: Enable identities and keys management infrastructure, RQ-E2: Enable intru-

sion detection, RQ-E3: Support scalable IKMI , RQ-E4: Support Single sign-on (SSO), RQ-E5:

Support scalable, centralized intrusion detection, RQ-B1: Enable external boundary protec-

tion, RQ-B2: Support scalable BP, RQ-B3: Provide BP overall security assessment

Note: all numbers in this table are imaginary for the illustration purpose only.

Table 4.2 summarizes evolution possibilities, changes, and components to fulfill require-

ments in ISS-ENT and BP. The first column Part indicates different parts, namely, IKMI, IDS,

and BP, where evolution might occur. Since these parts are relatively independent, we as-

sume the evolution among them is independent. The second column Possibility lists pos-

sible scenarios (or possibilities) that evolution might happen in future. Each possibility is

4.2. THE AMAN SCENARIO 39

associated with an expertise belief that the corresponding scenario will happen; this belief is

denoted in the third column Belief. Notably, all belief numbers in this table are imaginary for

the illustration purpose. The two next columns (Requirements and Alternatives) describe re-

quirements with respect to evolution, and different design alternatives (or implementation

choices) to fulfill the requirements. Each alternative occupies one row in the table.

According to Table 4.2, IKMI could evolve to one of the four possibilities, namely IKMI-

P1, IKMI-P2, IKMI-P3, and IKMI-P4. The first possibility IKMI-P1 has one requirement RQ-E1

and indicates the scenario where no change happens in future. Its belief is 10%. It has two

design alternatives C1 and C2 respectively. In this table, we refer to Ci as component. The

second possibility IKMI-P2 indicates a future scenario that has the requirement RQ-E1 and

a new requirement Support scalable IKMI (RQ-E3). The third possibility IKMI-P3 indicates a

scenario that has RQ-E1 and a new requirement Support Single sign-on (SSO) (RQ-E4). The

fourth possibility IKMI-P4 indicates a scenario that has RQ-E1 and both new requirements

RQ-E3 and RQ-E4.

Similarly, the IDS has two possibilities (IDS-P1 and IDS-P2); the BP has three possibilities

(BP-P1, BP-P2 and BP-P3). The first possibility of each part indicates a future scenario where

no change happens.

As IKMI, IDS, BP are independent, we have in total 24 possibilities to be considered for

SWIM. These possibilities are associated with expertise beliefs about the probabilities that

they might happen. The decision maker now faces the question: “how to select a design

alternative that is better resilient to evolution than others?".

4.2 The AMAN Scenario

The context of this scenario is the evolution in air traffic management procedures planned

by the SESAR research programme, which is building the future European air traffic man-

agement system. The scenarios focus on the introduction of a new queue management tool,

AMAN, and the introduction of a new data transport infrastructure, SWIM, that will replace

the current phone-communication lines.

Before the introduction of the AMAN, the flight arrival management operations are per-

formed by the Sector Team composed by two controllers, the Tactical and Planning Con-

trollers. This is done with the support of the CWP (Controller Working Position). The con-

trollers have to compute the arrival sequence for the flights and give clearances for landing

to the pilots flying in their sector on the basis of the information displayed by the CWP such

as air traffic, radar data, weather condition, etc provided by different ATM actors. The com-

40 CHAPTER 4. APPLICATION SCENARIOS

munication among these actors takes places over a dedicated and secure communication

line.

After the introduction of AMAN, the AMAN provides support to controllers by automat-

ically generating the arrival sequence. The AMAN may also provide other functionalities,

such as generation of advisories for aircrafts, or metering capabilities for a runway, or sup-

port runway allocation (at airports with multiple runway configurations). At the organiza-

tional level, the introduction of the AMAN requires the introduction of a new type of con-

troller, namely, the Sequence Manager who will monitor and modify sequences generated by

AMAN, and will provide information and updates to Sector Team. At the operational level, all

ATM actors (including AMAN) communicate via SWIM, a new network for the management

and sharing of information. This communication would provide authenticity, integrity and

availability that should be comparable with the one provided by the dedicated communica-

tion lines (e.g., phone) currently used by controllers.

4.3 Chapter Summary

This section described two application scenarios in the ATM domain. Both were taken from

real industrial projects. The first scenario was about SWIM, an information management

infrastructure that connects all ATM subsystems from aircrafts to ground facilities. In this

scenario we focused on the enterprise security services and boundary protection services.

We employed this scenario to illustrate the proposed framework (see chapter 5).

The second scenario was about the AMAN scenario, which we mostly focused on the

evolution in requirements model at high level abstraction concerning the introduction of

AMAN. We employed this scenario to conduct evaluation studies for the framework (see

chapter 8).

In the next chapter, we are going to describe the proposed framework where we discuss

how we model evolution in requirements models and the formal semantic of the modeling

approach.

Part II

Framework Details

41

C
H

A
P

T
E

R

5
THE PROPOSED FRAMEWORK

The chapter proposes a framework that tackles the fundamental issue of modeling

and reasoning about requirements evolution to aid the selection of evolution-resilient

design alternative. The modeling support captures requirements evolution in terms

of controllable and observable rules. The reasoning support provides three quanti-

tative metrics to identify which requirements must be implemented to guarantee the

best chances of success (Max Belief) or minimize the risk of wasting money (Resid-

ual Disbelief and Max Disbelief). The formal semantics of the evolution uncertainty

and evolution metrics, as well as the underpinning formal mathematical model of

the metrics are also discussed. The applicability of the framework is illustrated with

an example from the development of the SWIM platform in Air Traffic Control.

R
EQUIREMENTS evolution is unavoidable for any long-lived system due to changes in

business objectives, regulations, standards, environment or threats. In many cases,

these changes are not completely unknown. For instance, the ongoing discussion

in a standard body might feature two or three proposals, albeit it might not be clear which

one will finally win. Therefore, when having a number of possible design alternatives for the

system, decision makers need to select one that is evolution-resilient.

The proposed framework aims at dealing with the uncertainty of the requirements evolu-

tion to support the selection of such design alternatives. The intuition is to provide: a mod-

eling support mechanism to capture the requirements evolution of the system ‘as-is’, and

43

44 CHAPTER 5. THE PROPOSED FRAMEWORK

an automated reasoning support mechanism to aid the selection of an evolution-resilient

system design alternative.

Figure 5.1 briefs the conceptual model of the proposed framework. Requirements evo-

lution is modeled by Evolution Rule. There are two kinds of rules: Observable Rule and

Controllable Rule. The former kind captures potential changes and their uncertainty (i.e.,

likelihood of occurrence). The latter kind captures different design alternatives that fulfill

requirements. Hypergraph Requirements Model is a representation used to express require-

ments models. The evolution rules are also incorporated into this hypergraph. We introduce

several Reasoning Algorithms that reason on the hypergraph to derive possible Design Alter-

natives and calculate different Evolution Quantitative Metrics for each alternative. There are

three quantitative metrics: Max Belief, Residual Disbelief, and Max Disbelief.

The rest of this chapter is organized as follows. Section 5.1 describes evolution rules to

capture requirements evolution. Section 5.2 discusses an interpretation of evolution uncer-

tainty based on game-theoretic approach. Section 5.3 presents evolution metrics and their

semantics that support the reasoning on evolution uncertainty. Section 5.4 discusses the for-

mal rule and revised evolution metrics for complex scenarios of evolution in requirements

evolution. Finally Section 5.5 summarizes this chapter.

Hypergraph

Requirements Model

Reasoning Algorithm

Evolution Rule

Controllable

Rule

Observable

Rule

Design Alternative

Evolution

Quantitative Metric

Max

Belief

Residual

Disbelief

annotates

reasons on

quantifies

derives

* 1

1

*

*1

1

*

Max

Disbelief

MODELING SUPPORT

REASONING SUPPORT

The conceptual model of the framework is illustrated using UML class diagram. The round rectangles denotes

entities. The shaded background groups entities for evolution modeling support, and entities for evolution

reasoning support.

Figure 5.1: The conceptual model of the proposed framework.

5.1. MODELING THE REQUIREMENTS EVOLUTION 45

5.1 Modeling the Requirements Evolution

This section describes how we capture the evolution in requirements models for a simple

evolution scenario – the before-after evolution perspective (see Section 3.1) where an orig-

inal requirements model could evolve to many possibilities during the study period. More

complex evolution scenarios will be discussed later in Section 5.4.

Requirements evolution includes both planned and unplanned changes. The unplanned

changes are unexpected, but happen in a system-to-be at a certain time in future (i.e., a

system to-be-next). They might happen due to external factors and are not under the control

of domain experts or the company who builds the system. These factors could be either

changes in regulation, business goals or agreements; or new demands in the market; or new

concepts or changes in standards, and so on. Though unplanned changes are out of control,

they can be foreseen at some level of uncertainty, which we call evolution probability. The

evolution probability is the belief by which a change (or changes) might occur in future.

The occurrence of planned changes, as name suggested, is expected. Still it might not be

100% for sure due to some unexpected reasons and/or aforementioned factors. For instance,

we may plan to integrate a new function into the SWIM next year, but then we might not

do that due to some financial issues. Hence they still have a likelihood of occurrence (i.e.,

evolution probability), albeit this likelihood is usually high (more than 90%, for example) as

they are intentional.

These planned and unplanned changes with their evolution probabilities are captured

by observable rules, which are described as follows.

Definition 5.1 (observable rule). An observable rule of a requirements model (or sub model)

RM, denoted as ro(RM), is a set of triples (i.e., evolution possibilities) RM
pi−→ RMi where pi is

the probability that RM evolves to RMi . The possibilities in a rule are complete and mutual

exclusive.

ro(RM) =
{

RM
pi−→ RMi

∣∣∣∣∣ pi > 0∧
n∑

i=1
pi = 1

}
(5.1)

where n is the number of evolution possibilities.

To satisfy the requirements of the system-to-be and potential systems-to-be-next, several

design alternatives could be developed. A design alternative and its related concepts are

described as follows:

Definition 5.2. Given a requirements model RM:

46 CHAPTER 5. THE PROPOSED FRAMEWORK

• A mandatory requirement is a requirement that must be satisfied in order to ensure that

the system is working properly.

• A design alternative D is a set of model entities such that their implementation will

satisfy all mandatory requirements.

• A primitive design alternative D∗ is a design alternative where removing any member

of the set makes it no longer a design alternative.

• The complete set of primitive design alternatives ΣD∗
RM is the set of all primitive design

alternatives.

• The complete set of design alternatives is the set of all design alternatives.

These design alternatives of a requirements model (either for system-to-be or systems-

to-be-next) are captured by controllable rules, as described as follows.

Definition 5.3 (controllable rule). A controllable rule of a requirements model (or sub model)

RM, denoted as rc (RM), is a set of pairs RM −→ D∗
j , where D∗

j is a primitive design alternative of

RM.

rc (RM) =
{

RM −→ D∗
j | D∗

j ∈ΣD∗
RM

}
(5.2)

We simplify notation and use the arrow (−→) to denote both observable and controllable rules

rather than a different symbol. The label on top with the probability should be enough to

distinguish them.

Example 5.1 (evolution rules) Figure 5.2 visualizes the evolution rules of the IDS part within

the ISS-ENT (see Table 4.2, Section 4.1). The requirements model is denoted by a rectangle

with three compartments that respectively depict the name of the requirements model, a list

of its mandatory requirements, and a list of primitive design alternatives.

In this example, the name of requirements model is IDS-P1. It currently has one require-

ment: RQ-E2. To fulfill this requirement, we have two design alternatives: Host-based IDS

(C4), or Network-based IDS (C5). Due to the evolution described in Section 4.1, the IDS

could either remain unchanged (first possibility, IDS-P1), or will evolve to a scenario (sec-

ond possibility, IDS-P2) that has two requirements: RQ-E2 and Support scalable, centralized

intrusion detection (RQ-E5). To fulfill these requirements, there is one design alternative: C5.

The expertise belief for IDS-P1 to occur is 60%, and for IDS-P2 is 40%.

The observable rule corresponding to Figure 5.2 is written as follows:

ro(IDS) =
{

IDS-P1
0.6−−→ IDS-P1, IDS-P1

0.4−−→ IDS-P2
}

5.2. SEMANTICS OF EVOLUTION PROBABILITY: A GAME-THEORETIC INTERPRETATION47

requirements

design alternatives

IDS-P1

RQ-E2

C4 C5

40% of chance to evolve

requirements

design alternatives

IDS-P2

RQ-E2 RQ-E5

C5

60% of chance to be
unchanged

A (part of) requirements model is represented as a rectangle with three compartments: the top for the model

name, the middle for list of requirements, and the bottom for list of primitive design alternatives. The solid

arrow connects two requirements models (or to the model itself) to indicate the possibility that the source

model might evolve to the target model with a certain level of belief (probability).

Figure 5.2: The observable and controllable evolution.

The controllable rules for these possibilities are written as follows:

rc (IDS-P1) = {IDS-P1 −→ {C4} , IDS-P1 −→ {C5}}

rc (IDS-P2) = {IDS-P2 −→ {C5}}

Importantly, IDS-P1 might also have another design alternative such as {C4, C5}. This de-

sign alternative is not a primitive one and belongs to the complete set of design alternatives.

However, in the controllable rule we capture only the primitive design alternatives as speci-

fied above.

5.2 Semantics of Evolution Probability: a Game-Theoretic

Interpretation

In the proposed framework, the evolution uncertainty is represented as evolution probabil-

ities captured in observable rules. The high level semantics of evolution probability is the

likelihood that an evolution might happen in given circumstances. However, we still need a

more detail semantics for evolution probabilities, which turns to be necessary to aid the elic-

itation of these values. In other words, the semantics behind the claim that “the probability

to have a head (or tail) while tossing a coin is 50%” is well-known and measurable, which is if

48 CHAPTER 5. THE PROPOSED FRAMEWORK

Game has n round, each round is about a software component Ci

FOR i = 1 to n

Domain Expert announces pi ∈ [0,1]

Company announces decision di : 1: make now, -1: buy later

The Market announces ri ∈ [0,1]

The cumulative asset value of Company is

Ai = Ai−1 +di (ri −pi)

Figure 5.3: The protocol of the game explaining the sematic of the evolution probability.

one tosses a coin 100 times, he/she has the head (or tail) of the coin about 50 times. So what

does it mean for saying “the probability of an evolution is 50%"?

To answer such question, this section describes a game similar to one discussed by Shafer

et al. [Sha+09] to account for the evolution probability. In this game there are three players:

Domain Expert, Company, and Market. The sketch of this game is denoted in Figure 5.3.

In this protocol, Company wants to have software component Ci , and asks the Domain

Expert for his opinion about the value of Ci in future. This pricing information also includes

the expert’s estimate that the component might turn out to be useless.

• At the first step, Domain Expert announces pi , which is his opinion about a fair price

of Ci . So near-zero value of pi means Ci will likely be useless, according to Domain

Expert.

• At the second step, Company has to select between two options:

– Either “buy later": Company decides to buy Ci later from suppliers at the Market’s

price and sets aside pi in its books to buy Ci .

– Or “make now": Company decides to tender in order to make Ci now at price pi .

• At the third step, Market announces ri , which is the real price of software component

Ci .

At the end of a round, the Company ends up with either a software asset or a monetary

asset. The value of the software asset is determined by the market price. Table 5.1 exhibits

all possible round-ending cases where Company could either win or lose the round upon to

the decision made in the second step.

5.3. SEMANTICS OF REASONING ABOUT THE EVOLUTION UNCERTAINTY 49

Table 5.1: The asset value of Company based on different decisions

“make now" (di = 1) “buy later" (di =−1)

ri < pi software costs pi but values only ri <
pi (lose)

stashed cash pi exceeds price ri on

market (win)

ri > pi software has value ri > pi cost paid to

produce it (win)

cash on books pi < ri money needed to

buy software on market (lose)

The law of large numbers here corresponds to say that if unlikely events happen then

Company has a strategy to multiply the value of its assets by a large amount. Suppose

pi ¿ ri , then the belief on events that should not happen (smaller pi means that the com-

ponent should be useless) is wrong: these allegedly unlikely events do indeed happen. By

systematically betting against the Domain Expert and making the software at pi , the Com-

pany can multiply the value of its assets. The pi is the evolution probability.

5.3 Semantics of Reasoning about the Evolution Uncertainty

This section introduces three quantitative metrics to evaluate design alternatives with re-

spect to evolution uncertainty, as well as the underpinning mathematical model of these

metrics. The three quantitative metrics, namely, Max Belief, Residual Disbelief, and Max Dis-

belief are as follows.

Max Belief (MaxB): measures the maximum belief that a design alternative D would be us-

able after evolution happens. According to the discussed game semantics, Max Belief

is the maximum amount of money to allocate if you want to “make now" a call of ten-

der (and trust the domain expert).

Residual Disbelief (ResD): is the complement of total belief that a design alternative D is us-

able after evolution happens. It is the (maximum) amount of money that you would be

able to save if you postpone the decision (“buy later” so that you do not spend money

on potential useless software).

Max Disbelief (MaxD): measures the maximum belief such that a design alternative D is

useless after evolution happens. Max Disbelief partially supports the action “buy later”

that postpones the implementation of D. It is the max belief in the evolution where D

is utterly useless. Thus, it could be used as an approximation of Residual Disbelief.

50 CHAPTER 5. THE PROPOSED FRAMEWORK

0.05

requirements

design alternatives

RM 1

Ci

requirements

design alternatives

RM 2

Ci

requirements

design alternatives

RM

requirements

design alternatives

RM 11

Ci

requirements

design alternatives

RM 12

Cj

0.05
0.05

0.45

………...

The requirements model RM might evolve to one of twelve possibilities, where RM evolves to RM12 with highest

probability 0.45. So, Cj has probability of 0.45 to be useful. Ci occurs in all remaining possibilities, which make

for 0.55. However, the probability that an individual possibility where Ci is useful will actually happen is only

0.05.

Figure 5.4: An example of the long tail problem.

The Max Belief and Residual Disbelief might differ substantially in some cases, in par-

ticular in presence of a heavy tail of probabilities. This problem, firstly coined by Anderson

[And04], is present when a larger than normal population rests within the tail of the distri-

bution.

Example 5.2 (long tail) Figure 5.4 shows an example of long tail where a requirements

model RM might evolve to a number of possibilities with very low probabilities (say, eleven

possibilities from RM1 to RM11 with 0.05 each), and another extra possibility with a domi-

nating probability (say, RM12 with 0.45). From RM1 to RM11, Ci is a design alternative suit-

able for all of them. Cj is a design alternative only for RM12. Suppose that Ci and Cj are

disjoint each other. According to the metric definitions, Ci is quantified with a triplet of

Max Belief, Residual Disbelief, and Max Disbelief: 〈0.05,0.45,0.45〉; and Cj is quantified with

〈0.45,0.55,0.05〉. Clearly, if ones’ preferences are based on risk minimization, then buying

later Ci could be a good choice. Yet this would be missing the opportunity to make now Cj.

Some people might put their bets on the long tail [And04], while others do the other way

round [Elb08]. We do not take a stand in this debate. Instead, we provide values of both Max

Belief (i.e., the head) and Residual Disbelief (i.e., the tail). One can use these values to select

the “best-for-him/her" option.

5.3. SEMANTICS OF REASONING ABOUT THE EVOLUTION UNCERTAINTY 51

For a requirements model RM with observable rule ro(RM) = {〈RM
pi−→ RMi 〉|i = 1..n}. Let

D be a design alternative of RM , we have:

MaxB(D)
de f= max

{〈RM
pi−→RMi 〉∈ro (RM)|∃D∗∈ΣD∗

RMi
:D∗⊆D}

pi

ResD(D)
de f= 1− ∑

{〈RM
pi−→RMi 〉∈ro (RM)|∃D∗∈ΣD∗

RMi
:D∗⊆D}

pi

MaxD(D)
de f= max

{〈RM
pi−→RMi 〉∈ro (RM)|6∃D∗∈ΣD∗

RMi
:D∗⊆D}

pi

(5.3)

These metrics provide a quantitative assessment that supports the selection of design

alternatives for a requirements model RM at design time. The optimal design alternative

should have a good trade-off between its Max Belief, Residual Disbelief, and Max Disbelief

measures. The default implementation for the preference criteria is “higher max belief, lower

residual disbelief and lower max disbelief". Such decision orientation can be explained using

the game discussed in Section 5.2. In this way, the system implemented by this alternative

has a higher chance of success, and minimizes the risk of wasting money with less modi-

fication when evolution happens. Risk averse principals might choose another alternative.

From an algorithmic perspective it is only important to have a preference relation between

triplets of metrics.

Example 5.3 (quantitative metrics) With reference to Table 4.2, Table 5.2 reports all possi-

ble combinations of design alternatives of each part and their metrics’ values. The first col-

umn is the identifier of the global design alternative obtained by combining the correspond-

ing design alternatives of individual parts, which are reported in the next three columns. The

last three columns are the metrics’ values of a global design alternative. Notably, we elimi-

nate some redundant combinations such as {C1, C6, C2, C8} because both {C1} and {C2} are

design alternatives of IKMI. Therefore it is not necessary to have them both in a global design

alternative.

According to Table 5.2, the global design alternatives #5–#12 have the highest Max Belief,

the global alternative #12 has the lowest Residual Disbelief, and the lowest Max Disbelief as

well. Thus, the alternative #12 is the best one according to the selection criteria discussed

previously.

52 CHAPTER 5. THE PROPOSED FRAMEWORK

Table 5.2: Qualitative metrics for design alternatives of the running example.

No. Design Alternatives
Max Belief Residual Disbelief Max Disbelief

IKMI IDS BP

1 C1 C4 C6 2.4% 97.6% 9.6%

2 C1 C4 C7 2.4% 97.6% 9.6%

3 C1 C5 C6 2.4% 96.0% 9.6%

4 C1 C5 C7 2.4% 96.0% 9.6%

5 C2 C4 C6 9.6% 76.0% 9.6%

6 C2 C4 C7 9.6% 76.0% 9.6%

7 C2 C4 C6,C2,C8 9.6% 52.0% 6.4%

8 C2 C4 C7,C2,C8 9.6% 40.0% 6.4%

9 C2 C5 C6 9.6% 60.0% 9.6%

10 C2 C5 C7 9.6% 60.0% 9.6%

11 C2 C5 C6,C2,C8 9.6% 20.0% 4.8%

12 C2 C5 C7,C2,C8 9.6% 0.0% 0.0%

13 C1,C3 C4 C6 7.2% 90.4% 9.6%

14 C1,C3 C4 C7 7.2% 90.4% 9.6%

15 C1,C3 C5 C6 7.2% 84.0% 9.6%

16 C1,C3 C5 C7 7.2% 84.0% 9.6%

5.4 Formal Rules for Complex Evolution Scenarios

The requirements evolution in real world systems could be very complicated in two dimen-

sions: scale and time. The former appears when the requirements model is too large and

complex. It is therefore mostly impossible to analyze the evolution in the entire require-

ments model as a whole. The latter determines the case that evolution might occur multi-

ple times in a requirements model over time. Additionally, an evolution might depend on

the previous occurrence of evolution. This section discusses how these complex evolution

scenarios could be addressed by using evolution rules described in previous sections. This

section also provides the underpinning mathematical models beyond these scenarios.

5.4. FORMAL RULES FOR COMPLEX EVOLUTION SCENARIOS 53

5.4.1 Evolution in Large Requirements Model

Requirements models for real systems are typical too large to study evolution in require-

ments model. The current design principle of software systems typically divides a big re-

quirements model into several sub models (or sub parts) representing separated functional

modules. Hence instead of studying evolution in a big requirements model as a whole, we

could analyze evolution in its sub models. Evolution in these sub models could be latter

combined to represent evolution in the global requirements model. To the simplicity we

assume that evolution in a part is independent with evolution in others.

Local evolution rules in independent sub parts could be combined to achieve the global

evolution rules for the global requirements model. The rationale of this combination is the

effort to reuse the notions of Max Belief, Residual Disbelief, and Max Disbelief without any

extra treatment. In the following we discuss how to combine evolution rules from two inde-

pendent sub parts.

Given two independent sub parts SM and SM ′ of a requirements model. The evolution

rules for these parts are respectively ro(SM), ro(SM ′) (observable rules), and rc (SM), rc (SM ′)
(controllable rules) as follows:

ro(SM) =
{

SM
pi−→ SMi

∣∣∣∣∣pi > 0∧
n∑

i=1
pi = 1

}
(5.4)

ro(SM ′) =
{

SM ′ p ′
j−→ SM ′

j

∣∣∣∣∣p ′
j > 0∧

m∑
j=1

p ′
j = 1

}
(5.5)

rc (SM) =
{

SM −→ D∗
t

∣∣∣D∗
t ∈ΣD∗

SM

}
(5.6)

rc (SM ′) =
{

SM ′ −→ D∗
k

∣∣∣D∗
k ∈ΣD∗

SM ′
}

(5.7)

Let RM be the combined model of two parts SM and SM ′. The evolution rules of RM are

formulated as follows:

ro(RM) =
{

SM ∪SM ′ pi ·p ′
j−−−→ SMi ∪SM ′

j

∣∣∣∣SM
pi−→ SMi ∈ ro(SM)∧SM ′ p ′

j−→ SM ′
j ∈ ro(SM ′)

}
(5.8)

rc (RM) =
{

SM ∪SM ′ −→ D∗
i

∣∣∣D∗
i ∈ΣD∗

SM∪SM ′
}

(5.9)

Example 5.4 Recall to Table 4.2, Figure 5.5 illustrates an example of combining evolution

rules in two sub parts IKMI and IDS.

54 CHAPTER 5. THE PROPOSED FRAMEWORK

40%

60%

requirements

design alternatives

IDS-P1

RQ-E2

C4 C5

requirements

design alternatives

IDS-P2

RQ-E2 RQ-E5

C5

(a) IDS observable rule

requirements

design alternatives

IKMI-P4

RQ-E1 RQ-E3

C2

RQ-E4

requirements

design alternatives

IKMI-P2

RQ-E1 RQ-E3

C2

requirements

design alternatives

IDS-P3

RQ-E1 RQ-E4

C1,C3 C2

requirements

design alternatives

IKMI-P1

RQ-E1

C1 C2

10%

20%

30%

40%

(b) IKMI obervable rule

requirements

design alternatives

IKMI-P3,IDS-P1

RQ-E1 RQ-E4

RQ-E2

C1,C3,C4

C1,C3,C5

C2,C4

C2,C5

requirements

design alternatives

IKMI-P2,IDS-P1

RQ-E1 RQ-E3

RQ-E2 I

C2,C4 C2,C5

IKMI-P1,IDS-P1

requirements

design alternatives

RQ-E1 RQ-E2

C1,C4 C1,C5

C2,C4 C2,C5

requirements

design alternatives

IMKI-P1,IDS-P2

RQ-E1

C1,C5 C2,C5

RQ-E2

RQ-E5

requirements

design alternatives

IKMI-P2,IDS-P2

RQ-E1 RQ-E3

C2,C5

RQ-E2 RQ-E5

requirements

design alternatives

IKMI-P3,IDS-P2

RQ-E1 RQ-E4

C2,C5

RQ-E2 RQ-E5

C1,C3,C5

requirements

design alternatives

IKMI-P4,IDS-P1

RQ-E1 RQ-E3

C2,C4

RQ-E4 RQ-E2

C2,C5

requirements

design alternatives

IKMI-P4,IDS-P1

RQ-E1 RQ-E3

RQ-E4 RQ-E2

C2,C5

RQ-E5

6%

4%

12%

8%

18%

12%

24%

16%

(c) IKMI+IDS observable rule

Figure 5.5: Example of combining two observable evolution rules.

5.4.2 Continuous Evolution in Requirements Models

The continuous evolution in requirements models is described in the continuous evolution

perspective previously discussed in Section 3.1. Here, during the study period, the require-

ments models keep evolving at multiple time points. We refer to this evolution perspective

5.4. FORMAL RULES FOR COMPLEX EVOLUTION SCENARIOS 55

ro0,1

ro1,3ro1,2

p13p12
p11

p21 p22 p23 p26p24 p25 p27 p28
p29

ro1,1

RM0

1

RM1

1

RM2

1

RM1

3RM1

2

RM2

2
RM2

3 RM2

4 RM2

5
RM2

6 RM2

7
RM2

8 RM2

9

Figure 5.6: Observable rules in a continuous evolution requirements model.

as multi-step evolution (or continuous evolution) where in each step, the evolution is cap-

tured by also using the evolution rules described in Section 5.1. For the sake of brevity, we

can assume that there is only one observable rule in a requirements model at a certain time

regardless of its complexity. This makes sense because if there are many observable rules

in different parts of the model, they eventually could be merged into a global, unique one

for the whole model as discussed in Section 5.4.1. Thus the continuous evolution could be

captured seamlessly by using the evolution rules where the original requirements model in

a step s is one of a possibility requirements model in the accessor step s −1.

Example 5.5 Figure 5.6 illustrates a two-step evolution, in which observable rules are de-

noted as dotted boxes. The original model lays on top part of a box, and all potential evolu-

tions are in sub boxes laid at the bottom. There are directed edges connecting the original

model to potential evolutions. The label on each edge represents the probability such that

original model evolves to target model. In Figure 5.6, an original requirements model RM 0
1

evolves to either RM 1
1 , RM 1

2 or RM 1
3 . Subsequently, RM 1

i evolves to RM 2
j , where i=1..3 and

j=1..9.

We extend formulae in (5.3) to formulate the calculation of Max Belief, Residual Dis-

belief, Max Disbelief in the sense of continuous evolution. Given a requirements model

RM , and its design alternative D, we respectively denote MaxB∗(D|RM), ResD∗(D|RM), and

MaxD∗(D|RM) as the Max Belief, Residual Disbelief, and Max Disbelief of D with respect to

the continuous evolution of RM , as the following formulae show.

56 CHAPTER 5. THE PROPOSED FRAMEWORK

MaxB∗(D|RM) =

is-DA(D,RM) RM does not evolve,

max{
〈RM

pi−→RMi 〉∈possibility(D, RM)
} pi ·MaxB∗(D|RMi) otherwise.

(5.10)

ResD∗(D|RM) =

1− is-DA(D,RM) RM does not evolve,

1− ∑
{
〈RM

pi−→RMi 〉∈possibility(D, RM)
} pi · (1−ResD∗(D|RMi)) otherwise.

(5.11)

MaxD∗(D|RM) =

1− is-DA(D,RM) RM does not evolve,

max{
〈RM

pi−→RMi 〉∈ro (RM)\possibility(D, RM)
} pi ·MaxD∗(D|RMi) otherwise.

(5.12)

where

• is-DA(D,RM) is a function that returns 1 if D is a design alternative of RM , or returns 0

otherwise;

• possibility(D,RM) =
{
〈RM

pi−→ RMi 〉 ∈ ro(RM) |is-da(D,RMi)
}

is the set of evolution pos-

sibilities of the evolution rule of RM such that D is a design alternative in the evolved

models RMi .

5.5 Chapter Summary

This chapter has presented a new concept that is evolution rule. There are two kinds of evo-

lution rules: observable rule and controllable rule. We employed evolution rules to capture

the uncertainty of evolution in requirements model by the concept evolution probability.

Requirements models in this chapter were treated as high level of abstraction, which were

collection of entities and relations. Therefore we could use evolution rules to capture the

uncertainty of evolution in requirements model expressing in many RE languages.

The evolution probability were a kind of subjective probability. Its semantics was further

explained by a game-theoretic interpretation. Based on evolution probability, we proposed

three different evolution metrics: Max Belief, Residual Disbelief, and Max Disbelief to es-

timate the resilience of a design alternative with respect to evolution. These metrics were

useful measures to support the selection of a good evolution-resilient design alternative.

5.5. CHAPTER SUMMARY 57

We also discussed two complex scenarios of evolution: evolution in big requirements

models, and continuous evolution. In the former, we suggested to study evolution in inde-

pendent sub-models of the original one then combined them later. In the latter, we extended

the formulae of evolution metrics to address the continuous evolution in requirements mod-

els.

In the next chapter, we are going to describe a series of algorithms to automate the cal-

culation of proposed evolution metrics for design alternatives of requirements models.

C
H

A
P

T
E

R

6
AUTOMATED REASONING SUPPORT

This chapter describes a mechanism to automate the calculation of the quantitative

metrics in the proposed framework. For this purpose, we employ hypergraph as a

means to capture requirements models where evolution rules are incorporated. Based

on this, we develop a series of algorithm to do the calculation. The algorithms support

the incremental calculation that automatically reacts on each change made to the

requirements model so that users could immediately see the change of metrics at the

minimum calculation effort. Moreover, we also present a formal analysis on these

algorithms.

T
HE previous chapter has described the framework to address the known-unknown

in requirements evolution. The framework has proposed a couple of quantitative

metrics, as well as mathematic formulae to calculate them. However, it is almost

impossible to do this manually for evolution in a large scale requirements model. Therefore

having an automated reasoning support is an essential criterion of success of the proposed

framework. This chapter describes a series of algorithms to calculate metric values. These

algorithms are designed to support the incremental calculation so that any change made by

designers could be immediately reflected in change to metric values in an efficient way.

Moreover, since the proposed framework does not stick to any particular language, we

thus need a universal means to represent requirements model in which evolution rules are

incorporated. For this purpose, we employ hypergraph as a means to convey requirements

59

60 CHAPTER 6. AUTOMATED REASONING SUPPORT

models. The hypergraph does not intentionally substitute any RE languages. Hence, it only

contains enough information for the reasoning purpose.

This chapter is organized as follows. Section 6.1 presents hypergraph,and how we re-

cast some existing requirements modeling languages to hypergraph. Section 6.2 describes

the algorithms to incrementally calculate the quantitative metrics. Section 5.4 analyzes the

computational complexity of the algorithms. Section 6.4 provides formal proofs for proposi-

tion, lemmas, and theorems.

6.1 Hypergraph Requirements Model

In order to automate the reasoning about requirements evolution, we employ directed hy-

pergraph [Aus+83] as a structure to represent requirements models. With reference to Fig-

ure 5.1 (Section 5), the Hypergraph Requirements Model is a representation used to express

requirements models. A requirements model in an existing modeling language (e.g., KAOS

[Lam09a], i*[Yu99], SysML [Sys]) could be transformed into a hypergraph for the execution

of the algorithms. This transformation preserves the information about requirements sat-

isfaction, but removes other information to keep the hypergraph simple. In this section,

we describe a formalization of hypergraph (Section 6.1.1), and hypergraph equivalences of

graphical constructs in some modeling languages (Section 6.1.2).

6.1.1 A Formalization of Hypergraph

A hypergraph, according to [Aus+83], comprises of nodes and hyperarcs. Nodes represent

requirements, and hyperarcs represent relations between nodes. We define refines relations

that connect a source requirement node to a target requirement node; the target require-

ment is satisfied if the source one is satisfied. If a target requirement requires more than

one source requirement in order to be satisfied, we employ an extra compound node in the

middle. Then a refines relation is divided into:

• component-edge refines connects a source requirement node to a target compound

node.

• target-edge refines connects a source requirement node, or a source compound node

to a target requirement node.

6.1. HYPERGRAPH REQUIREMENTS MODEL 61

Then a controllable rule is implicitly represented when a target node is reached by refines

hyperarc(s) (i.e., the target requirement has various design alternatives). Selecting different

incoming arcs means selecting different design alternatives for a target node.

To represent observable rules, we need to introduce a new type of nodes – observable

node, and a new type of relations – evolves relation. An observable node bijectively indicates

an observable rule; and an evolves relation connects an observable node and a requirement

node to represent for the occurrence of one evolution possibility.

The observable node is also able to participate in a refines relation as a source requirement

node. We then need to extend the concept of the component-edge refines and the target-edge

refines mentioned above. Hence, a component-edge refines could connect a source observ-

able node to a target compound node; and a target-edge refines could connect a source ob-

servable node to a target requirement node.

To this extent, we formally define a hypergraph as follows.

Definition 6.1 (hypergraph requirements model). A hypergraph requirements model HRM is

a tuple
〈

N ∪Nc ∪No , H ∪Hc ∪Ho ,r oot ,µ
〉

where:

• N is a set of requirements nodes.

• Nc is a set of compound nodes.

• No is a set of observable nodes.

• H ⊆ (N ×N)∪ (Nc ×N)∪ (No ×N) is a set of target-edge refines relations.

• Hc ⊆ (N ×Nc)∪ (No ×Nc) is a set of component-edge refines relations.

• Ho ⊆ N ×No is a set of evolves relations

• r oot ∈ N ∪No is the root node of the hypergraph.

• µ is a function that assigns the evolution probability to an evolves relation.

Example 6.1 (hypergraph requirements model) Figure 6.1 presents the hypergraph of

SWIM scenario (see Section 4.1). In hypergraph, different graphical notations are used to

emphasize the distinction between leaf requirements (rectangles) and others (round rect-

angles). Leaf requirements might also be referred to as components. Diamonds represent

observable nodes. To visualize relationships, plain edges are component-edge refines rela-

tions; arrows are target-edge refines ones (target requirements correspond to arrow heads).

62 CHAPTER 6. AUTOMATED REASONING SUPPORT

ISS-ENT

o1 o2 o3

IKMI-P1 IKMI-P2 IKMI-P3 IDS-P1 IDS-P2 BP-P1 BP-P2 BP-P3IKMI-P4

RQ-E1 RQ-E3 RQ-E4 RQ-E2 RQ-E5 RQ-B1 RQ-B2 RQ-B3

C1 C2 C3 C4 C5 C6 C7 C8 C2

SWIM

observable
node

target-edge
refines relation

compound
node evolves

relation

o1:1,
0.1

o1:2,
0.2

o1:3,
0.3

o1:4,
0.4 o2:1,

0.6
o2:2,
0.4

o3:1,
0.4 o3:2,

0.4

o3:3,
0.2

component-edge refines
relation

identifier of
evolution
possibility

evolution
probability

Rectangles represent leaf requirements; round rectangles denote intermediate requirements. Diamonds are

observable nodes. Red circles depict compound nodes.

Figure 6.1: The hypergraph requirements model of the SWIM scenario.

The evolves relations are also plain edges, but decorated with the evolution probability and

the identifier of the evolution possibility to distinct with component-edge refines relations.

We distinguish each evolution possibility by a unique identifier, which is the combina-

tion of the name of the observable node and the index of the evolution possibility in the

corresponding observable rule. An example of such identifiers is illustrated in Figure 6.1 as

o3:3, where o3 is the name of the observable node.

We revise the definition of a design alternative for an arbitrary node in the hypergraph as

follows.

Definition 6.2 (design alternative in hypergraph). Let t be a node in a hypergraph HRM.

• D is a design alternative of t if and only if D be a set of leaf nodes in HRM and:

• t ∈ D, or

• ∃〈x, t〉 ∈ H ∪Ho such that D is a design alternative of x, or

• t ∈ Nc such that for all 〈x, t〉 ∈ Hc , D is a design alternative of x.

6.1. HYPERGRAPH REQUIREMENTS MODEL 63

ISS-ENT

RQ-E1

C1 C2

SWIM

OR

ISS-ENT
«requirement»

ISS-ENT ISS-ENT

RQ-E1

C1 C2
«component»

C2
«component»

C1

«Satisfy» «Satisfy»

«requirement»

RQ-E1
RQ-E1

C1 C2

ISS-ENT

IKMI IKMI

ISS-ENT «requirement»

ISS-ENT

«requirement»

IKMI
«requirement»

IDSIDSIDS

AND

ISS-ENT

IDSIKMI

actor SWIM owns goal

ISS-ENT

goal (no actor

specified)

requirement (no actor

specified)

requirement node with

actor SWIM as a tag

goal ISS-ENT AND-

decompose to IKMI, IDS
goal ISS-ENT AND-

decompose to IKMI, IDS

requirement ISS-ENT contains

IKMI and IDS

requirement ISS-ENT

refines to IKMI, IDS

goal RQ-E1 OR-

decomposes to C1, C2

 goal RQ-E1 is

assigned to either C1,

or C2

requirement RQ-E1 is satisfied by

either C1, or C2

requirement RQ-E1 refines

to either C1, or C2

i*/Tropos KAOS SysML Hypergraph

SWIM

AMAN

SWIM

Data

exchanged

actor AMAN delegates the

execution of goal Data

Exchange to actor SWIM

Data

Exchanged

AMAN

Data

Exchanged

SWIM

requirement Data Exchanged@AMAN

refines to requirement Data

Exchanged@SWIM

Figure 6.2: Some modeling constructs in different modeling languages and their equivalence

in the hypergraph.

• D∗ is a primitive design alternative of t if and only if: D∗ is a design alternative of t ,

and no proper subset of D∗ is a design alternative of t .

64 CHAPTER 6. AUTOMATED REASONING SUPPORT

SWIM

OR

AND

IDSIKMI

RQ-E1 RQ-E2

C1
C2 C4

C5

OR

ISS-ENT

(a) i*/Tropos

IKMI

ISS-ENT

C1 C2 C3 C4

IDS

IKMI IKMI

(b) KAOS

«component»

C4

«component»

C5

«component»

C2

«component»

C1

«Satisfy» «Satisfy» «Satisfy»

«Satisfy»

«requirement»

ISS-ENT

«requirement»

IKMI

«requirement»

IDS

«requirement»

IKMI
«requirement»

IKMI

(c) SysML

C1 C2 C5C4

ISS-ENT

SWIM

IKMI

SWIM

IDS

SWIM

RQ-E1

SWIM

RQ-E2

SWIM

(d) Hypergraph

Figure 6.3: The requirements model of ISS-ENT modeled by existing languages and by hyper-

graph.

6.1.2 Hypergraph Representation for Existing Modeling Languages’s

Constructs

Modeling constructs in different requirements modeling languages can be casted to hyper-

graph’s constructs. In this section, we select three languages i*/Tropos[Yu96], KAOS[Lam09b],

and SysML[Sys] to illustrate the equivalences between some constructs of these languages

and those of hypergraph.

Figure 6.2 presents a set of transformation patterns of three RE languages: i*/Tropos,

KAOS, and SysML to hypergraph. By using these patterns we can convert a requirements

model in the these languages to hypergraph. As we only need information concerning the

fulfillment of requirements, we transform such information only and ignore unnecessary

other information. Concretely, a goal/task (i*/Tropos, KAOS) or a requirement (SysML) is

6.2. ALGORITHMS 65

casted to a requirement node in hypergraph. The ownership between an actor and a goal

(i*/Tropos) is denoted as a tag associated to the requirement node in hypergraph. AND-

decompose relations (i*/Tropos, KAOS), and containment relations (SysML) are casted to re-

fine relations. An OR-decompose relation is casted into several refines ones. Assign relations

(KAOS) and satisfy relations (SysML) are also casted to refine relations.

The transformation from a requirements model to hypergraph could be done automati-

cally via pattern-based transformation engine, the VIATRA2 framework described in [VB07].

As an illustration for the transformation, Figure 6.3 exhibits equivalent forms of the re-

quirements model for ISS-ENT in i*/Tropos (a), KAOS (b), SysML (c), and hypergraph (d).

6.2 Algorithms for Design Alterative Identification and

Metric Calculation

The basic idea behind the algorithms is to propagate metric values from leaf nodes to the

root node in a hypergraph and cache their value at intermediate nodes. By term propagate,

we mean a bottom-up approach where we first calculate metrics for leaf nodes, then calcu-

late (or generate) metric values of a parent node based on its children. To be clear, recall to

Definition 6.1, in a relation 〈s, t〉 ∈ H ∪Hc ∪Ho of a hypergraph, we refer to the source node

s as child node, and the target node t as parent node.

This idea allows for an incremental calculation of metrics where there are changes in the

graph. It is important for practical usage as we envision the framework to support the design

process where the designer experiments with alternatives, or refines evolution probabilities

or adding new evolution as additional information from the environment becomes available.

We only need to re-calculate the metric values at nodes affected by changes and propagate

the new calculation up to the root, while leaving metric values at other nodes untouch. This

is essentially better than redoing the whole calculation from ground up.

The intermediate data structure used for the metric calculation is a list of design alter-

natives annotated with extra information. We refer to this list as Design Alternatives Table

(DAT). The definition of an annotated design alternative is as follows.

Definition 6.3 (annotated design alternative). An annotated design alternative D of a node t

is a tuple
〈

D,mb,r d ,md ,φ
〉

, where:

• D is a design alternative of t ,

66 CHAPTER 6. AUTOMATED REASONING SUPPORT

• mb,r d ,md are the values of Max Belief, Residual Disbelief, and Max Disbelief of D,

respectively.

• φ is a set of identifiers of evolution possibilities that D supports (i.e., D is a design alter-

native in these possibilities).

Each node has its own DAT containing all of the annotated design alternatives for itself.

As the root node is normally the top requirement for a requirements model, the DAT of the

root node contains all of the annotated design alternatives to be selected for the system.

Aside from DAT, the algorithms use some additional data structures for the calculation

such as VISIT to maintain the processing status of a node (i.e., 1-processed, 0-otherwise);

READY to determine whether a node is ready to process (i.e., there is enough data for pro-

cessing). These data structures are also used to avoid reprocessing a processed node. Ta-

ble 6.1 summarizes them and a list of algorithms needed for the metric calculation. The

metric calculation is divided into following phases:

• Generating the DATs (section Section 6.2.1): generate DATs for all nodes in a hypegraph

by propagating DATs from the leaf nodes to the top.

• Calculating metrics for a design alternative (Section 6.2.2): calculates metric values for

a design alternative based on DAT of the root node.

• Updating the DATs due to incremental changes (Section 6.2.3): incrementally updates

DATs with respect to changes in a hypergraph. It avoids from-scratch regeneration for

incremental changes made to the hypergraph once DATs have been properly gener-

ated.

We further discuss the computational complexity of algorithms in Section 6.3.

6.2.1 Generating the DATs

The algorithm generateDAT() (see Algorithm 1) takes a hypergraph as input and gener-

ates DAT for every node in two steps. First, the algorithm sets up ready-to-process status for

every node by updatingREADY. Concretely, for every leaf node x, it is immediately ready (i.e.,

READY[x] = 0) and queued to Q. For each of other nodes, its ready-to-process status is set

to the number of incoming edges to it. Second, the algorithm invokes propagateDAT()

to generate all DATs.

6.2. ALGORITHMS 67

Table 6.1: Data structures and algorithms for the metric calculation.

The names of data structures are in uppercase; the names of algorithms are in lowercase.

Name Description

VISIT[x] maintains the processing status of a node (1 if a node is processed).

READY[x] maintains the readiness-for-process of a node (0 if a node is ready).

DAT[x] maintains the DAT of the node x.

Q is a queue holding a list of ready-to-process nodes.

generateDAT() generates DAT for every node from scratch.

propagateDAT()propagates DATs from nodes in Q to the root.

updateDAT() handles the incremental changes to update the DATs of affected nodes.

1 procedure generateDAT(HRM: hypergraph)
2 precondition
3 postcondition
4 DAT[x]: is initialized for every node x in HRM

5 begin
6 makeQempty();
7 for each node x ∈HRM do
8 if x is leaf then
9 READY[x] ←0;

10 enqueue(Q, x);
11 else
12 READY[x] ←number of incoming edges to x
13 propagateDAT(HRM);
14 end

Algorithm 1: Generating DAT for every node in a hypergraph.

The algorithm propagateDAT() (see Algorithm 2) takes a hypergraph as input, gener-

ates DAT for queued nodes in Q, and propagates these DATs to the root node. To simplify the

presentation of the algorithm, following operators are defined:

• p: the complement value of a probability p.

p = 1−p (6.1)

68 CHAPTER 6. AUTOMATED REASONING SUPPORT

1 procedure propagateDAT(HRM: hypergraph)
2 precondition
3 Q : contains all ready-to-process nodes.
4 READY: is properly set to the readiness of every node.
5 postcondition
6 DAT : contains proper DATs of all nodes.
7 begin
8 markAllNodesUnvisited(); {for every node x, set VISIT[x] ←0}

9 while Q 6= ; do
10 x ←dequeue(Q);
11 if (VISIT[x] = 0) {check whether node is ready, but not visited}

12 VISIT[x] ←1; {mark node visited}

13 if x is leaf node then
14 DAT[x] ←{〈{x} ,1,0,0,;〉};
15 else
16 DAT[x] ←; ;
17 {calculate DAT[x] based on incoming edges of x, i.e., x's children}

18 if x is an observable node then
19 for each 〈z, x 〉 ∈HRM do DAT[x] ←DAT[x] merge µ(〈z, x 〉)· DAT[z];
20 else if x is a requirement node then
21 for each 〈z, x 〉 ∈HRM do DAT[x] ←DAT[x] ∪ DAT[z];
22 else {x is a compound node}

23 for each 〈z, x 〉 ∈HRM do DAT[x] ←DAT[x] join DAT[z];
24 for each 〈x, t 〉 ∈HRM do {outgoing edges of x}

25 READY[t] ←READY[t] − 1;
26 if READY[t] = 0 then
27 enqueue(Q, t);
28 end

Algorithm 2: Propagating DAT in a hypergraph.

• πn : extracts the nth (1-based) element in a tuple. To improve the readability, we sub-

stitute n by a symbolic name. For example, let D = 〈
D,mb,r d ,md ,φ

〉
be an annotated

design alternative, π2.D and πmb .D both return the Max Belief value of D.

• p ·DAT(x): represents the multiplication of a probability value to all annotated design

alternatives in a DAT(x).

p ·DAT(x) = {〈
Di , p ·mbi ,1−p · r d i , p ·md i ,φi

〉
|〈

Di ,mbi ,r d i ,md i ,φi
〉 ∈ DAT(x)

}
(6.2)

6.2. ALGORITHMS 69

• consolidate: this operator takes two inputs, D as an annotated design alternative, and

DAT(x) as design alternatives table at node x. The operator updates the metrics’ val-

ues of D with respect to DAT(x). We calculate the metrics of D with reference to their

definitions as of (5.3). The consolidate operator is formulated as follows.

consolidateDAT(x) D
def= 〈

πD .D,mb,r d ,md ,φ
〉

(6.3)

in which:

mb = max
{
πmb .Di |Di ∈ supportDAT(x)(D)

}
r d = 1− ∑

r d∈rdDAT(x)(D)

r d

md = max
{
πmb .Di |Di ∈ DAT(x) \ supportDAT(x)(D)

}
φ= ⋃

φi∈ΦDAT(x)(D)
φi

where:

• supportDAT(x)(D) = {Di ∈ DAT(x)|πD .Di ⊆πD .D} is a set of annotated design alter-

natives in DAT(x), which are subsumed by D. An annotated design alternative Di

is subsumed by D j if πD .Di ⊆πD .D j .

• ΦDAT(x)(D) = {
πφ.Di |Di ∈ supportDAT(x)(D)

}
is a set of identifiers of evolution pos-

sibilities where πD .D is one of their design alternatives.

• rdDAT(x)(D) = {
minπr d .Di |Di ∈ supportDAT(x)(D)∧πφ.Di ∈ΦDAT(x)(D)

}

We overload the consolidate operator to take one input, a DAT(x). This operator up-

dates the metrics’ values of every annotated design alternative D in DAT(x).

consolidate(DAT(x))
def= {

consolidateDAT(x) Di |Di ∈ DAT(x)
}

(6.4)

• join: combines two annotated design alternatives Di = 〈
Di ,mbi ,r d i ,md i ,φi

〉
and

D j =
〈

D j ,mb j ,r d j ,md j ,φ j
〉

, as the following formula shows:

Di joinD j =
〈

Di ∪D j ,mbi ·mb j ,1− r d i · r d j ,0,φi ∪φ j

〉
(6.5)

Note that the Max Disbelief of the result design alternative is set to 0 because this value

will be calculated later via the consolidate operator. We also overload the join operator

70 CHAPTER 6. AUTOMATED REASONING SUPPORT

to combine two DATs of two nodes x1, x2, namely DAT(x1) and DAT(x2) respectively. In

this operation, we combine each annotated design alternative of DAT(x1) to each of

DAT(x2).

DAT(x1) joinDAT(x2)
def= consolidate

{
Di joinD j |Di ∈ DAT(x1),D j ∈ DAT(x2)

}
(6.6)

• merge: merges two DATs of two nodes x1 and x2.

DAT(x1)mergeDAT(x2)
def= consolidate(DAT(x1)∪DAT(x2)) (6.7)

In the Algorithm 2, the propagateDAT() dequeues a node x from Q and processes it.

For each dequeued node x, it checks processing status VISIT[x] to ensure that every node

is processed at most once (line 11–12).

When x is a leaf node, it is the only one design alternative for itself (i.e., we implement

it and it is satisfied). Hence, DAT(x) has only one entry, which is 〈{x} ,1,0,0,;〉 (line 13–14).

The Max Belief is 1 because of 100% chance of it being the case, both Residual Disbelief and

Max Disbelief are assigned to 0 because of 0% chance of it being useless. The last element is

an empty set since there is no evolution possibility.

When x is not a leaf node, the algorithm computes the DAT(x) based on the DAT of its

children (line 17–23) as follows:

D AT (x) =

merge
〈z,x〉∈Ho

µ(〈z, x〉) ·DAT(z) x is an observable node (6.8a)⋃
〈z,x〉∈H

DAT(z) x is a requirement node (6.8b)

join
〈z,x〉∈Hc

DAT(z) x is a compound node (6.8c)

Note that (6.8a–6.8c) are the net results of the for loops at line 19, 21, and 23 respectively

because the DAT of the parent node is initialized with the empty set at line 16.

Then, the algorithm iterates every parent node t of x to update the ready-to-process sta-

tus of t by counting down READY[t] by 1. If t is ready (i.e., READY[t] = 0), t is queued to Q

for processing in subsequence loops, see line 24–27.

Example 6.2 This example shows how to apply (6.8a–6.8c) in the propagation of DATs.

We exemplify the DAT propagation in a part of the hypergraph represented in Figure 6.1.

Concretely, we propagate DAT from leaf nodes C2,C6–C8 to the observable node O3. At the

beginning, DATs of leaf nodes are initialized as follows:

DAT(Ci) = {〈{Ci } ,1,0,0,;〉} , where: i ∈ {2,6,7,8}

6.2. ALGORITHMS 71

Applying (6.8b), we have DAT(RQ-B1) calculated as follows:

DAT(RQ-B1) = DAT(C6)∪DAT(C7)

= {〈{C6} ,1,0,0,;〉 ,〈{C7} ,1,0,0,;〉}

Applying (6.8c) then (6.8b), we have DAT(RQ-B3) calculated as follows:

DAT(RQ-B3) = {〈{C2,C7,C8} ,1,0,0,;〉}

Similarly, we have DAT of BP-Pi (i = 1...3) calculated as follows:

DAT(BP-P1) = {〈{C6} ,1,0,0,;〉 ,〈{C7} ,1,0,0,;〉}
DAT(BP-P2) = {〈{C2,C6,C8} ,1,0,0,;〉 ,〈{C2,C7,C8} ,1,0,0,;〉}
DAT(BP-P3) = {〈{C2,C6,C7,C8} ,1,0,0,;〉 ,〈{C2,C7,C8} ,1,0,0,;〉}

Applying (6.8a), we have DAT(O3) calculated as follows:

DAT(O3) = {〈{C6} ,0.4,0.6,0.4, {O3:1}〉 ,〈{C7} ,0.4,0.6,0.4, {O3:1}〉
〈{C2,C6,C8} ,0.4,0.2,0.2, {O3:1,O3:2}〉 ,

〈{C2,C7,C8} ,0.4,0,0, {O3:1,O3:2,O3:3}〉
〈{C2,C6,C7,C8} ,0.4,0,0, {O3:1,O3:2,O3:3}〉}

6.2.2 Calculating Metrics for a Design Alternative

When the algorithmgenerateDAT() accomplishes, the DAT of the root node holds a list of

all possible annotated design alternatives obtained by hypergraph traversing. This facilitates

the selection of design alternatives by their metric values.

Besides these alternatives, we are also able to calculate the metrics of an arbitrary design

alternative. Let D be a design alternative, DAT(x0) be the DAT of the root node x0, the metric

values of D are obtained by consolidating an annotated design alternative constructed from

D as follows: 〈
D,mb,r d ,md ,φ

〉= consolidateDAT(x0) 〈D,0,1,1,;〉 (6.9)

The metric values of D are the corresponding values of the annotated alternative: MaxB(D) =
mb,ResD(D) = r d , and MaxD(D) = md . Notably, D could also be a set of arbitrary compo-

nents. If D is not a valid design alternative in any evolution possibility, the Max Belief and

Residual Disbelief of D are 0 and 1 respectively with reference to (6.3).

72 CHAPTER 6. AUTOMATED REASONING SUPPORT

1 procedure updateDAT(HRM : hypergraph, n : node)
2 precondition
3 DAT : has been generated by propagateDAT().
4 postcondition
5 DAT : is updated with respects to changes in node n
6 begin
7 makeQemtpy();
8 markAllNodesUnvisited();
9 enqueue(Q, n);

10 {firstly, we determine which nodes should have their DAT updated.}

11 while Q 6= ; do
12 x ←dequeue(Q);
13 if (VISIT[x] = 0)
14 VISIT[x] ←1;
15 for each 〈x, t 〉 ∈HRM do {outgoing edges of x}

16 READY[t] ←READY[t] + 1;
17 enqueue(Q, t);
18 {secondly, update the DAT of identified node}

19 READY[n] = 0; {mark node n ready for recalculating DAT}

20 enqueue(Q, n);
21 propagateDAT(HRM);
22 end

Algorithm 3: Handling incremental changes.

6.2.3 Updating the DATs due to Incremental Changes

Once the DATs of all nodes have been properly generated, any changes made to the graph

will trigger an incremental update of DATs. We develop the algorithm updateDAT() (see

Algorithm 3) to handle incremental changes in a hypergraph. It takes two inputs: a hyper-

graph, and a node from which it and its parents need DATs updated. There are following

kinds of changes in a hypergraph:

• Add/remove a node: in the former case, we pass the added node to the algorithm to

have its DAT generated. In the latter case, all relations from/to the removed node

should also be removed. As a result, this case is handled indirectly by handling the

removal of these relations.

• Add/remove/modify an evolves relation: in all cases, we pass the observable node as-

sociated with the changed evolves relation to the algorithm to update the DATs of the

6.3. THE COMPLEXITY OF ALGORITHMS 73

observable node and its parents.

• Add/remove a refines relation: for component-edge refines relation, we pass the parent

compound node to the algorithm; for target-edge refines relation, we pass the parent

requirement node.

We do not explicitly consider the kind of changes that users modify a node including

requirement node, observable node, and compound node. A node in hypergraph does not

have any attributes that directly impact to the calculation of DATs. Thus we do not need to

handle the modification of nodes in the incremental update of DATs. For the similar reason,

we also do not consider the modification of refines relations in this algorithm.

Similar to the generation of DAT, Algorithm 3 also has two steps. For the first step, the

algorithm identifies nodes and their number of children, which need their DATs updated due

to the change (line 7–17). This step starts by visiting the input node n. For a visiting node

x, the number of unprocessed children of each x’s parent node (i.e., READY[]) is increased

by 1. Then, the algorithm recursively visits all x’s parent nodes. It employs the data structure

VISIT to ensure that every node in the input hypergraph is visited at most once. For the

second step, it invokes propagateDAT() to update DATs.

6.3 The Complexity of Algorithms

This section analyzes the computational complexity of the algorithms discussed in Section 6.2.

To improve the readability of the section, we move all proofs of proposition, lemmas, and

theorems in this section to the consecutive one (see further Section 6.4)

While propagating DATs from leaf nodes up to the root node, the number entries of the

DAT (i.e., DAT size) of a parent node is increasing rapidly (linear at observable nodes and

requirement nodes, and exponential at compound nodes). Consequently, the complexity of

the algorithms described in previous sections is exponential in both time and space.

Proposition 1. The complexity of the algorithmgenerateDAT() and the algorithmupdateDAT()

is O(n2 ·max |DAT|4), where |DAT| is the DAT size of a node in the hypergraph.

Proof. See Section 6.4.1.

If the input graph forms a k-ary fully connected lattice structure, it could have approx-

imately n+1
k leaf nodes. Thus, the maximum number of design alternatives, which equals

74 CHAPTER 6. AUTOMATED REASONING SUPPORT

max |DAT|, is 2
n+1

k . As a result, the complexity of the propagateDAT() is O(n2 ·24n). This

phenomenon is due to design alternatives competing across different evolution possibilities.

We address this exponential problem by preventing the explosion of the DAT size. Instead

of keeping all annotated design alternatives in a DAT, we only keep annotated design alter-

natives Di of which πD .Di is a primitive design alternative within its evolution possibility as

the following formula shows:

filterDAT(x) = {
Di ∈ DAT(x)

∣∣∀D j ∈ DAT(x) :πφ.Di ⊇πφ.D j →πD .Di ⊆πD .D j
}

(6.10)

The intuition behind this filter is that: first, Di supports all possibilities that D j supports

and more; second, the implementation of D j requires all components to implement Di plus

some other components. Therefore, Di is more efficient than D j . As a result, the maximum

DAT size is equal to the sum of all primitive alternatives in all evolution possibilities.

Example 6.3 In Example 6.2, the DAT(BP-P3) includes two annotated design alternatives:

〈{C2,C7,C8} ,1,0,0,;〉 and 〈{C2,C6,C7,C8} ,1,0,0,;〉. The former has a primitive design alter-

native, while the latter has not. Hence we can eliminate the latter from DAT(BP-P3).

We revise the equation (6.8a–6.8c) to calculate a DAT of a parent node based on its chil-

dren’s DATs as follow:

D AT (x) =

filter(merge
〈z,x〉∈Ho

µ(〈z, x〉) ·DAT(z)) for observable node (6.11a)

filter(
⋃

〈z,x〉∈H
DAT(z)) for requirement node (6.11b)

filter(join
〈z,x〉∈Hc

DAT(z)) for compound node (6.11c)

The algorithm propagateDAT() is rewritten as propagateDAT*(), see Algorithm 4,

to reflect the new formulation. In Algorithm 4, we change line 19, 21, 23 where we ap-

ply the filter per each DAT. Hereafter, we define that algorithm generateDAT*() and

updateDAT*() are almost identical togenerateDAT() andupdateDAT() respectively.

One exception in the revised algorithms is that they call propagateDAT*() instead of

propagateDAT().

When the total number of primitive design alternatives is still very big, we extend the

filter to keep only winner annotated design alternatives, and eliminate all others (i.e., loser

annotated design alternatives). A winner annotated design alternative has one of its metrics’

6.3. THE COMPLEXITY OF ALGORITHMS 75

1 procedure propagateDAT*(HRM: hypergraph)
2 precondition
3 Q : contains all ready-to-process nodes.
4 READY: is properly set to the readiness of every node.
5 postcondition
6 DAT : contains proper DATs of all nodes.
7 begin
8 markAllNodesUnvisited(); {for every node x, set VISIT[x] ←0}

9 while Q 6= ; do
10 x ←dequeue(Q);
11 if (VISIT[x] = 0) {check whether node is ready, but not visited}

12 VISIT[x] ←1; {mark node visited}

13 if x is leaf node then
14 DAT[x] ←{〈{x} ,1,0,0,;〉};
15 else
16 DAT[x] ←; ;
17 {calculate the DAT[x] based on incoming edges of x, i.e., x's children }

18 if x is an observable node then
19 for each 〈z, x 〉 ∈HRM do DAT[x] ←filter(DAT[x] merge µ(〈z, x 〉)· DAT[z]);
20 else if x is a requirements node then
21 for each 〈z, x 〉 ∈HRM do DAT[x] ←filter(DAT[x] ∪ DAT[z]);
22 else {x is a compound node}

23 for each 〈z, x 〉 ∈HRM do DAT[x] ←filter(DAT[x] join DAT[z]);
24 for each 〈x, t 〉 ∈HRM do {outgoing edges of x}

25 READY[t] ←READY[t] − 1;
26 if READY[t] = 0 then
27 enqueue(Q, t);
28 end

Algorithm 4: Propagating DAT in a hypergraph.

values be the best, i.e., highest Max Belief, lowest Residual Disbelief, or lowest Max Disbe-

lief. Importantly, we consider the win-lose relationship with respect to metrics individually,

because debating whether a Max Disbelief winner is better than a Residual Disbelief (or Max

Disbelief) winner is similar to the aforementioned long-tail problem that we try to avoid (see

Section 5.3).

The intuition behind such filter is that: when we calculate the DAT of a parent node by

combining DATs of its children, the combination of winner annotated design alternatives in

child DATs will produce a winner annotated design alternative in the parent DAT as shown

76 CHAPTER 6. AUTOMATED REASONING SUPPORT

in the following lemmas.

Lemma 1. Once a DAT of a node is calculated, the DAT and the metrics’ values of its annotated

design alternatives are unchanged given that the hypergraph does not change.

Proof. See Section 6.4.2

Lemma 2. When merging two design alternative tables DAT(x) and DAT(y) by using the merge
operator defined in equation (6.7), a winner annotated design alternative D in the merged de-

sign alternative table corresponds to a winner in the either DAT(x), or DAT(y) if:

• D is a Max Belief winner, or

• D is a Residual Disbelief winner and annotated design alternatives between DAT(x) and

DAT(y) are disjoint, or

• D is a Max Disbelief winner.

Proof. See Section 6.4.3

Lemma 3. When combining two design alternative tables DAT(x) and DAT(y) by using the

join operator defined in equation (6.6), a winner annotated design alternative D in the joined

design alternative table is always the combination of two winners in DAT(x) and DAT(y) if:

• D is a Max Belief winner, or

• D is a Residual Disbelief winner and annotated design alternatives between DAT(x) and

DAT(y) are disjoint, or

• D is a Max Disbelief winner.

Proof. See Section 6.4.4

Therefore, when we filter out all loser alternatives from a DAT and keep only winner ones,

we can assure that all annotated design alternatives in the DAT of the root node are ones that

have the best metric values according to Lemma 2, Lemma 3.

Lemma 2 and 3 hold for Max Belief and Max Disbelief winner, however they might not

hold for Residual Disbelief winner in the case that annotated design alternatives in child

DATs are not disjoint. This explains why the lattice structure generates an exponential com-

plexity. In order to obtain a correct result, we need to proceed as follows:

6.3. THE COMPLEXITY OF ALGORITHMS 77

• Before generating DATs, we firstly compute a set of “candidate" solutions (or candi-

dates, for short) for every node in the hypergraph, which are the union of candidates

of all child nodes below it. The candidate of a leaf node is the node itself.

• Then, for every observable node, we compute a set of “multiple-run" candidates for

this node, which are intersection of candidates of pairwise child nodes.

• For every child node of an observable node, we propagate down the multiple-run can-

didates of the observable node intersecting with the candidates of the child node.

When the child node is an observable node, what is propagated further down is the

union of the “local" multiple-run candidates and the multiple-run candidates from

the parent.

• Hence, while generating DATs, for every node we have a set of multiple-run candidates.

In the revised algorithm, each time a filter operation is applied at a node, we keep the

winner alternatives and other alternatives that are entirely in the multiple-run candi-

dates of the node. At a result, the DAT of every node x has at most 3+2|MR(x)| alterna-

tives, which are winners for each metric plus all possible multiple-run candidates.

Theorem 1. The algorithm generateDAT*() is polynomial in the number of nodes O(n2)

and exponential in O(max |MR(n)|), where |MR(n)| is the maximum number of multiple-run

candidates.

Proof. See Section 6.4.5

If this is still unsatisfactory, we can use only Max Belief as a criterion to select the winner.

We refer to such filter as 1-Max Belief winner filter operator, as shown as below:

filtermb DAT(x) = {
Di ∈ DAT(x)| 6 ∃D j ∈ DAT(x) :πmb .D j ≥πmb .Di

}
(6.12)

Theorem 2. The algorithm generateDAT*() using the filter operator as of (6.12) termi-

nates in polynomial time in the number of nodes O(n2).

Proof. See Section 6.4.6

Theorem 3. When the algorithm generateDAT*() terminates, each entry in the DAT of

the root node is either a Max Belief winner, or a Residual Disbelief winner, or a Max Disbelief

winner.

Proof. See Section 6.4.7

78 CHAPTER 6. AUTOMATED REASONING SUPPORT

6.4 Proofs of Algorithm Complexity

6.4.1 Proof of Proposition 1

Proposition 1. The complexity of the algorithmgenerateDAT() and the algorithmupdateDAT()

is O(n2 ·max |DAT|4), where |DAT| is the size of a DAT of a node in the hypergraph.

Proof. In generateDAT() (Algorithm 1), the complexity of the makeQempty() at line 6

is O(1). The for loop at line 7 repeats at most n, where n is the total number of nodes in

a hypergraph. Then the complexity of this for loop is O(n). As a result, the complexity of

generateDAT() depends on that of propagateDAT() (i.e., Algorithm 2). Likewise, we

also have the complexity of updateDAT() depends on propagateDAT().

Algorithm 2 consists of two loops: one for setting the process status of all nodes (line

8), and another one for processing node (line 9–27). The former iterates every node and

sets its visited status to 0. Hence the complexity of this loop is O(n). The latter while loop

processes all nodes in queueQ. Since every node is processed at most once, which is enforced

in line 11–12, thiswhile loop repeats at most n times. In each loop, the algorithm computes

the DAT for the processing node x (line 17–23), the propagates this DAT to parent nodes (line

24–27).

With reference to (6.6), (6.7), the complexity of the join and merge operators are O(max |DAT|4),

O(max |DAT|2) respectively, where |DAT| is the size of a DAT. Asides, a node has maximum

n −1 connections. Thus, the for loops at line 19 (or line 21, or 23) and 24 are at most n −1

iterations. Thus, the upper bound of the complexity of the while loop is O(n2 ·max |DAT|4).

Therefore, the complexity of Algorithm 2 is O(n2 ·max |DAT|4).

6.4.2 Proof of Lemma 1

Lemma 1. Once a DAT of a node is calculated, the DAT and the metrics’ values of its annotated

alternatives are unchanged given that the hypergraph does not change.

Proof. According to Algorithm 2, a DAT of a node x is ready to calculate when all its children’s

DATs are property calculated (see line 26). One it has been calculated, its status is updated

to visited (see line 12). Hence its DAT will not be touch later due to the check in line 11.

6.4.3 Proof of Lemma 2

Lemma 2. When merging two design alternative tables DAT(x) and DAT(y) by using the merge
operator defined in equation (6.7), a winner annotated design alternative D in the merged de-

6.4. PROOFS OF ALGORITHM COMPLEXITY 79

sign alternative table corresponds to a winner in the either DAT(x), or DAT(y) if:

• D is a Max Belief winner, or

• D is a Residual Disbelief winner and annotated design alternatives between DAT(x) and

DAT(y) are disjoint, or

• D is a Max Disbelief winner.

Proof. Let DAT(z) = DAT(x)mergeDAT(y) be the merged design alternative table of DAT(x)

and DAT(y). Suppose that DZ is a winner annotated design alternative in DAT(z).

Case 1 (DZ is a Max Belief winner), we have:

πmb .DZ = max
DZ i∈DAT(z)

πmb .DZ i

From (6.3)(6.4)(6.7), we have:

∃D ∈ DAT(x)∪DAT(y) :πmb .DZ =πmb .D∧πD .DZ =πD .D

Suppose that D is not a winner in neither DAT(x) nor DAT(y), it implies:

∃D′ ∈ DAT(x)∪DAT(y) :πmb .D′ >πmb .D =πmb .DZ

⇒∃DZ
′consolidateDAT(z)D′ ∈ DAT(z) :πmb .DZ

′ >πmb .DZ

This contradicts to the premise that DZ is a Max Belief winner.

Case 2 (DZ is a Residual Disbelief winner), we have:

πr d .DZ = min
DZ i∈DAT(z)

πr d .DZ i

In the case that alternatives are disjoint between DAT(x) and DAT(y), we have:

∃D ∈ DAT(x)∪DAT(y) :πr d .D =πr d .DZ

if D is not a Residual Disbelief winner, it implies that:

∃D′ ∈ DAT(x)∪DAT(y) :πr d .D′ <πr d .D

⇒∃DZ
′ = consolidateDAT(z)(D

′) :πr d .DZ
′ <πr d .DZ

This contradicts to the premise that DZ is a Residual Disbelief winner.

80 CHAPTER 6. AUTOMATED REASONING SUPPORT

Case 3 (DZ is a Max Disbelief winner), we have:

πmd .DZ = min
DZ i∈DAT(z)

πmd .DZ i

Similarly, from (6.3)(6.4)(6.7), we have one of following cases hold.

– Case 3a: ∃D ∈ {Di ∈ DAT(x)|πD .Di =πD .DZ } such that:πmd .D = 0, or

πmd .D = max
{
πmb .D j |D j ∈ DAT(x)∧πD .D j 6⊆πD .DZ

}=πmd .DZ

If πmd .D = 0, obviously X is a Max Disbelief winner. Otherwise, suppose that X is

not a Max Disbelief winner, it implies that:

∃D′ ∈ {
D′|D′ ∈ DAT(x)∧πD .D′ 6=πD .DZ

}⊂ DAT(z) :πmd .D′ <πmd .D

This contradicts to the premise that Z is a Max Disbelief winner.

– Case 3b: ∃D ∈ {
Di ∈ DAT(y)|πD .Di =πD .DZ

}
. Similarly we also have D is a Max

Disbelief winner.

6.4.4 Proof of Lemma 3

Lemma 3. When combining two design alternative tables DAT(x) and DAT(y) by using the

join operator defined in equation (6.6), a winner annotated design alternative D in the joined

design alternative table is always the combination of two winners in DAT(x) and DAT(y) if:

• D is a Max Belief winner, or

• D is a Residual Disbelief winner and annotated design alternatives between DAT(x) and

DAT(y) are disjoint, or

• D is a Max Disbelief winner.

Proof. Let Dw
x = 〈

Dw
x ,mbw

x ,r d w
x ,md w

x ,φw
x

〉
, Dl

x =
〈

D l
x ,mbl

x ,r d l
x ,md l

x ,φl
x

〉
respectively de-

note winner and loser alternatives in DAT(x). Similarly, Dw
y ,Dl

y respectively denote winner

and loser alternatives in DAT(y).

Let DAT(z) = {
Dx joinDy |Dx ∈ DAT(x),Dy ∈ DAT(y)

}
, the application of operator consolidate

on DAT(z) will be the output of combining DAT(x) and DAT(y) by using join operator.

consolidateDAT(z) = DAT(x) joinDAT(y)

6.4. PROOFS OF ALGORITHM COMPLEXITY 81

An annotated design alternative in DAT(z) is a combination of either two loser annotated de-

sign alternatives (denoted as Dz0), or a loser and a winner1 (denoted as Dz1), or two winners

(denoted as Dz2). We have:

Dz0 =
〈

D l
x ∪D l

y ,mbl
x ·mbl

y ,1− r d l
x · r d l

y ,0,φl
x ∪φl

y

〉
Dz1 =

〈
D l

x ∪Dw
y ,mbl

x ·mbw
y ,1− r d l

x · r d w
y ,0,φl

x ∪φw
y

〉
Dz2 =

〈
Dw

x ∪Dw
y ,mbw

x ·mbw
y ,1− r d w

x · r d w
y ,0,φw

x ∪φw
y

〉
Case 1 (Max Belief winner/loser: mbw

x > mbl
x), we have

mbl
x ·mbl

y −mbw
x ·mbw

y ≤ mbl
x ·mbw

y −mbw
x ·mbw

y

= mbw
y (mbl

x −mbw
x) < 0

⇒Dz2 is a winner alternative in DAT(z).

Applying similar proof in Case 1 (Lemma 2) we have Dz2 is also a winner in consolidateDAT(z).

Case 2 (Residual Disbelief winner/loser: r d w
x < r d l

x), we have

1− r d l
x · r d l

y −
(
1− r d w

x · r d w
y

)
≥ 1− r d l

x · r d w
y −

(
1− r d w

x · r d w
y

)
= r d w

y · (r d w
x − r d l

x) = r d w
y · (r d l

x − r d w
x) ≥ 0

⇒Dz2 is a winner alternative in DAT(z).

Applying similar proof in Case 2 (Lemma 2) we have Dz2 is also a winner in consolidateDAT(z)

if alternatives in DAT(z) are disjoint.

Case 3 (Max Disbelief winner/loser: md w
x < md l

x)

Let D̂l
x =

{
Dx ∈ DAT(x)|πD .Dx 6⊆πD .Dl

x

}
be the set of annotated design alternatives that

are not supported by Dl
x . Similarly, we also have: D̂w

x ,D̂z0,D̂z2. We have:

D̂z0 ⊆ (D̂l
x ×DAT(y))∪ (DAT(x)× D̂l

y)

=
{
Dx joinDy

∣∣∣Dx ∈ D̂l
x ,Dy ∈ DAT(y)

}
∪

{
Dx joinDy

∣∣∣Dx ∈ DAT(x),Dy ∈ D̂l
y

}
D̂z2 ⊆ (D̂w

x ×DAT(y))∪ (DAT(x)× D̂w
y)

1Because join is a commutative operator, DAT(x) joinDAT(y) is equivalent to DAT(y) joinDAT(x). Therefore,

the combination of a loser in DAT(x) with a winner in DAT(y) is similar to the combination of a winner in

DAT(x) with a loser in DAT(y).

82 CHAPTER 6. AUTOMATED REASONING SUPPORT

Hence, when we apply consolidate on DAT(z), the Max Disbelief of Dz0, and Dz2 is as

follows:

MaxD(Dz0) = max
(a︷ ︸︸ ︷

max{πmd .Dx |Dx ∈ D̂l
x} ·max

{
πmd .Dy |Dy ∈ DAT(y)

}
,

max{πmd .Dx |Dx ∈ DAT(x)} ·max{πmd .Dy |Dy ∈ D̂l
y }︸ ︷︷ ︸

b

)

MaxD(Dz2) = max
(c︷ ︸︸ ︷

max{πmd .Dx |Dx ∈ D̂w
x } ·max

{
πmd .Dy |Dy ∈ DAT(y)

}
,

max{πmd .Dx |Dx ∈ DAT(x)} ·max{πmd .Dy |Dy ∈ D̂w
y }︸ ︷︷ ︸

d

)

Since Dl
x ,Dl

y are Max Disbelief losers, Dw
x ,Dw

y are winners, we have:

max
{
πmd .Dx

∣∣∣Dx ∈ D̂l
x

}
> max

{
πmd .Dx

∣∣∣Dx ∈ D̂w
x

}
max

{
πmd .Dy

∣∣∣Dy ∈ D̂l
y

}
> max

{
πmd .Dx

∣∣∣Dy ∈ D̂w
y

}
It implies: a > c,b > d ⇒ MaxD(Dz0) > MaxD(Dz2)

Similarly, we have MaxD(Dz1) > MaxD(Dz2). Therefore, we have Dz2 is a Max Disbelief

winner.

6.4.5 Proof of Theorem 1

Theorem 1. The algorithm generateDAT*() is polynomial in the number of nodes O(n2)

and exponential in O(max |MR(n)|), where |MR(n)| is the maximum number of multiple-run

candidates.

Proof. Similar to the proof of Proposition 1, we have the complexity of generateDAT*()

depends on the complexity of propagateDAT*() (i.e., Algorithm 4).

Algorithm 4 is almost identical to Algorithm 2, except calling to filter() each time child

DATsare merged or combined. Basically, filter() could be a loop on all entries in a DAT. Thus

its complexity is O(max |DAT|) where max |DAT| is the maximum DAT size. Similar to proof

of Proposition 1, the complexity of Algorithm 4 is O(n2 ·max |DAT|5)

As discussed, max |DAT| = 3+2max |MR(n)|. Hence the complexity of the algorithm is O(n2+
n2 ·25·max |MR(n)|).

6.5. CHAPTER SUMMARY 83

6.4.6 Proof of Theorem 2

Theorem 2. The algorithm generateDAT*() using the filter operator as of (6.12) termi-

nates in polynomial time in the number of nodes O(n2).

Proof. Similar to the proof of Proposition 1, we have the complexity of the algorithm is:

O(n2 ·max |DAT|5). Here we select only one Max Belief winner, max |D AT | = 1. Therefore,

the complexity of the algorithm is O(n2).

6.4.7 Proof of Theorem 3

Theorem 3. When the algorithm generateDAT*() terminates, each entry in the DAT of

the root node is either a Max Belief winner, or a Residual Disbelief winner, or a Max Disbelief

winner.

Proof. Base case: for node x is a leaf, the DAT(x) has one single entry which consists of x

itself. This entry is obvious a winner.

Induction case: for node y is a non-leaf node; and y have children nodes xi such that

DAT(xi) contains all winners. If y is a compound node, the DAT(y) is computed by com-

bining all DAT(xi) by using join operator. According to Lemma 3, all winners in DAT(y) are

composed from winners in DAT(xi). It means all winners in DAT(y) are actually winners even

when all losers are removed from DAT(xi).

Similarly, if y is a requirement node or an observable node, the DAT(y) is computed

by combining all DAT(xi) by using merge operator. According to Lemma 2, all winners in

DAT(y) are composed from winners in DAT(xi). It means all winners in DAT(y) are actually

winners even when all losers are removed from DAT(xi).

6.5 Chapter Summary

This chapter presented a series of algorithms that incrementally calculate quantitative met-

rics in the proposed framework described in chapter 5. The algorithms were incremen-

tal as they recalculated the metrics according to any changes made to the requirements

model based on the previous calculation. Thus it could minimize the calculation effort for

such changes. The algorithms relied on hypergraph as a structure to capture requirements

models. The computational complexity of the algorithms were also analyzed and formally

proved.

84 CHAPTER 6. AUTOMATED REASONING SUPPORT

In the next chapter, we are going to present UNICORN, a proof-of-concept prototype of

the CASE tool that provides a GUI editor for hypergraph requirements model, and imple-

ments the algorithms described in this chapter.

C
H

A
P

T
E

R

7
UNICORN: TOOLING AND THE FIRST (SELF)

EVALUATION

This chapter presents UNICORN, a CASE tool for modeling and reasoning about the

uncertainty of requirements evolution. The tool provides graphical constructs as well

as different views of requirements evolution to assist users to model requirements evo-

lution. The tool also supports the evolution analysis in which facilitate the selection

of design alternative. We additionally conduct a performance simulation for the im-

plementation of the algorithms, and a self-evaluation study on a large example.

T
HE chapter is organized as follows. Section 7.1 presents an overview of major features.

Section 7.2 describes the high level architecture of the tool. Section 7.3 illustrates how

the tool apply for the example previous discussed in Section 5.1. Section 7.4 presents

a simulation to the performance of the tool. Section 7.5 illustrates the application of the tool

in a large example. Section 7.6 summarizes this chapter.

7.1 Features Overview

UNICORN is an Eclipse-based prototype that aims to demonstrate the proposed framework

described in Chapter 5 in terms of modeling and reasoning. The tool is provided as a set of

EMF-based Eclipse plug-ins written in Java, relying on standard EMF technologies such as

85

86 CHAPTER 7. UNICORN: TOOLING AND THE FIRST (SELF) EVALUATION

GMF, Xtext. The features of the tool can be categorized into two major categories: Modeling

support and Reasoning support.

The modeling support includes features necessary to model requirements evolution. Im-

portant features in this category are as follows:

• Support requirements evolution modeling. The GUI editor of UNICORN provides sev-

eral constructs to draw a hypergraph for a requirements model with evolution rules.

The structure of hypergraph supported by UNICORN allows users to model the evolu-

tion from any requirements from the very top most requirements (i.e., root require-

ments) to the leaf ones. Figure 7.1 illustrates a simple example consisting of three re-

quirements, where the top requirement evolves to other one.

• Support different views. Several views are supported to assist designers. In particular,

Normal View shows the complete requirements with evolution rules; Evolution View

presents only evolving parts of the model; and Original View displays the requirements

model without any evolution.

• Support large model. A large requirements model can be partitioned into several sub

models. Sub models are edited in separated windows. Each model can reference to

other models. Changes in a model will be automatically reflected to other models.

• Support customization and extension. The graphical constructs of UNICORN are highly

customizable. Adding a new constructs with custom figures and attributes, or modify-

ing existing constructs can be done via configuration files and the plug-in architecture.

This enables UNICORN to support the modeling of requirements in other RE languages

without changing the UNICORN source code.

Figure 7.1 presents the basic constructs by which we draw requirements models in UNI-

CORN. A requirement entity represents a requirement. A refines relation connects a re-

quirement to other requirement. It means that the parent requirement can be fulfilled if its

child is fulfilled. If more than one children are required, these children connect to an extra

compound node, which in turn connects to the parent requirement. By allowing several re-
fines relations to connect to a requirement, we can model the different design alternatives

of a controllable rule. An observable entity represents an observable rule where the origi-

nal requirement is connected by an evolves relation. Evolution possibilities are connected

by evolution possibility relations. Elements in other diagram could be referenced by special

construct off-diagram reference.

7.2. ARCHITECTURAL OVERVIEW 87

Figure 7.1: The constructs to modeling requirements evolution in UNICORN.

In Figure 7.1, the original requirements model Before has three requirements: 1, 2, and

3. 1 is refined to 2 and 3. Therefore, Before has one design alternative, which is {2, 3}. Before

might evolve to a possibility Afteri in which 4 is refined to either 5 or 6. The evolution prob-

ability for this evolution is 0.6. Besides, Before might remain unchanged with the probability

of 0.4. The observable and controllable rules captured by this figure are as follows.

ro(Before) =
{

Before
0.6−−→ Afteri ,Before

0.4−−→ Before
}

rc (Before)) = {
Before −→ {2, 3}

}
rc (Afteri) = {

Afteri −→ {5} ,Afteri −→ {6}
}

The reasoning support provides an environment for developing automated analyses on

requirements models. For example, the graphical models could be transformed into a data

structure that facilitates the analysis. The traceability between the modeling constructs and

transformed data structure is also maintained. Currently, we have implemented following

analysis:

• Evolution analysis: This analysis walks through the entire requirements models and

calculate quantitative metrics (Max Belief, Residual Disbelief, and Max Disbelief) for

each design alternative. The analysis can incrementally update the metric values with

respect to changes in the model as soon as the user changes the models.

7.2 Architectural Overview

The tool architecture is specially designed to support a high level of customization and ex-

tension. Figure 7.2 presents the overall architecture of the UNICORN tool. In this figure, com-

88 CHAPTER 7. UNICORN: TOOLING AND THE FIRST (SELF) EVALUATION

ponents are depicted by rectangles. The headed-arrow connections denote the interaction

between components where the source components invoke (or use) the target ones. These

components are briefly described as follows:

• The Universal Data Model is a common storage for the constructs of all models. Since

graphical constructs could be defined by users (e.g., add new construct with custom

attributes, or add new attributes to existing constructs), the Universal Data Model is a

meta-meta model (see Figure 7.3).

• The Language Registry maintains definitions of graphical constructs in requirements

models, as well as conversion rules to transform the data model to other data struc-

tures used by analysis. The construct definitions and conversion rules are defined in

configuration files, which are fully customizable.

• The Data Service uses the construct definitions in the Language Registry to allow other

components to manipulate the data stored in the data model.

• The GUI Service is in charge of manipulating graphical objects and data model. It em-

ploys the Custom GUI components to create several GUI objects (e.g., construct fig-

ures, themes, and so on) consumed by the GUI Editor, which is a front-end graphical

editor.

• The Model Conversion Engine uses the conversion rules stored in the Language Reg-

istry to convert the requirements model to the underlying data structures used by the

custom analysis.

• The Custom Analysis is a set of analyses run on the editing requirements model. Each

custom analysis has a Visualizer to show the analysis result.

Figure 7.3 describes the class diagram of the Universal Data Model. The Element is an

abstract class representing any element in the model, which could be either an entity, or a

relation. An Entity could be a requirement, or an observable node. A relation captures the

relationship between entities. An Attribute is a special kind of element, holding the attribute

value of an element.

Figure 7.4 shows the syntax of the construct definition file in the Extended Backus-Naur

format. To keep the syntax tidy and clear we do not provide complete definition of some non-

terminal production rule such as expression, as well as common terminal symbols such as

identifier (ID). The definition file begins with a keyword language followed by an ID, which

7.2. ARCHITECTURAL OVERVIEW 89

Language Registry

Universal Data Model

Construct Definitions

Model Conversion Rules

Data Service

GUI ServiceCustom GUI

Figures

Themes

Layouts

...

GUI Editor

Model Conversion Engine

Incremental Converter

TracerConverter

Custom Analysis

Evolution
Analysis

...

Visualizer

Analysis 2nd Visualizer

Analysis nth Visualizer

Modeling Support Reasoning Support

Figure 7.2: The overall architecture of the UNICORN tool.

Element

Entity Relation

1
*

Attribute * 1
1

1

*
*

source

target

Figure 7.3: The class diagram of the Universal Data Model

.

is the language name and a set of elements. An element is either an entity or a relation.

Each element has a set of attributes, which has name, data type (optional), and initial value.

Figure 7.5 exhibits an example where the requirement construct is defined with respect

to the grammar denoted in Figure 7.4. The requirement construct is an entity whose graph-

ical representation is a round rectangle with a label inside. The label is to show and edit the

name and the description of this requirement. There is one text field Actor in requirement.
The initial value of this field is a blank.

90 CHAPTER 7. UNICORN: TOOLING AND THE FIRST (SELF) EVALUATION

1 language ::= "language" ID (element)* ";"
2 element ::= ("entity"|"relation") ID "{" attribute * "}"
3 attribute ::= ("field")? ID (":" type)? "=" expression ";"
4 tag ::= ID ":" expression
5 type :: = "string"|"float"|"date"|"boolean"|ID

Figure 7.4: The compact syntax of the construct definition file.

1 entity requirement {
2 figure = new RoundRectFigure() { Size=(50,60),
3 addChildFigure(new CenterLabelFigure("req_name"), DOCK_FILL)};
4 req_name_parser = {pattern="[{0}]\n{1}", fields=(Name, Description)};
5 field Actor: string = "";}

Figure 7.5: A fragment of a construct definition file.

7.3 Screen Shots

We demonstrate the features supported by the tool in a scenario previously described in Sec-

tion 4.1. The scenario concerns the evolution in the requirements models of the ISS-ENT and

BP [Adm09, section 5.6]. In this scenario we focus on the authentication and the implemen-

tation of boundary protection (BP) services.

Modeling requirements evolution. Figure 7.6 illustrates the requirements model with evo-

lution rules of the scenario. The model says that the requirement RQ-0 is refined to both

RQ-1 and RQ-2. RQ-1 is later refined to RQ-3, and so on. RQ-1 has an evolution rule where

RQ-1 might remain unchanged with probability 0.4, or might evolve such that RQ-1 will be

refined, in a new way, into RQ-3, RQ-4, and RQ-5. The rest of the diagram can be read in the

similar manner. Due to space limit, some screen shots (e.g., different views) are not provided.

Interested readers are referred to the web site of the tool 1.

Reasoning about requirements evolution. Figure 7.7 shows the evolution analysis on the

requirements model of the scenario, in which the evolution metrics for each design alterna-

tive are calculated. The analysis result is shown in two tabs. The first tab reports possible

alternatives derived from the model and their corresponding evolution metrics. The second

tab displays the DAT, which is an internal structure stored at every node in the model to cal-

1http://disi.unitn.it/~tran/pmwiki/pmwiki.php/Main/Unicorn

http://disi.unitn.it/~tran/pmwiki/pmwiki.php/Main/Unicorn

7.3. SCREEN SHOTS 91

Figure 7.6: The requirements model of the scenario with evolution rules.

Figure 7.7: The evolution analysis on the requirements model of the scenario.

culate the evolution metrics. Additionally, users can specify their own alternative, and have

its evolution metrics calculated.

92 CHAPTER 7. UNICORN: TOOLING AND THE FIRST (SELF) EVALUATION

To improve the readability, only incoming connections for the root and a selected (gray) node are

shown.

Figure 7.8: An example of generated hypergraph for simulation.

Any changes in the diagram will be automatically reflected in the analysis result. Since

the analysis on requirements evolution is incremental, only changed nodes in the model are

recalculated. This improves the overall performance of the tool.

7.4 Performance Simulation of the Algorithms

In this section, we describe a simulation to assess the performance of the above algorithms.

Particularly, we randomly generate several hypergraphs, then we run the algorithms on these

hypergraphs and measure the execution time. The performance of the algorithms can be

evaluated by the execution time of the algorithms on hypergraphs with different complexi-

ties.

The complexity of a generated hypergraph is represented by the number of requirements

n, the maximum level of refinement (or depth) h, and average degree of nodes d . To the

simulation purpose, we generate hypergraphs in different scales: small (50 requirements),

medium (500 requirements), large (1,000 requirements), and very large (5,000 requirements).

For each scale, we generate 40 hypergraphs with the level of refinement h ranged from 3 to

10.

A generated hypergraph at scale of n requirement nodes and h levels of refinement is

generated as follows. Firstly, we create a matrix (h −1)× l of requirement nodes, where l is

the number of leaf nodes: l ≈ (n−1)
(h−1) . Secondly, we create a root node that refines to all nodes

in the first row of the matrix. Thirdly, for every node x at row i th (i = 1..h −2), we create r

refines relations (r is a random number from 1 to l) that connect to l nodes at row i +1.

7.4. PERFORMANCE SIMULATION OF THE ALGORITHMS 93

●●●●

50 500 1000 5000

#r
eq

ui
re

m
en

t +
 c

om
po

un
d

no
de

s
(lo

g1
0

sc
al

e)

#requirement nodes (approx.)

10
0

10
00

10
00

0

50 500 1000 5000

0
10

0
20

0
30

0
40

0

av
er

ag
e

of
 n

od
e

de
gr

ee

#requirement nodes (approx.)

Left: the distribution of total nodes (requirement + compound nodes) in hypergraphs. Right: the distribution

of the average degree per node in hypergraphs.

Figure 7.9: The complexity of the simulation hypergraphs.

Example 7.1 Figure 7.8 exemplifies a generated hypergraph at scale n = 40, and refinement

level h = 6. The hypergraph is the matrix 4×4 of requirement nodes. The figure also demon-

strates a node with 2 refines relations (r = 2).

Figure 7.9 shows the complexity of generated hypergraphs in terms of total nodes (in-

clude requirement nodes and compound nodes) per each scale, and the average degree (i.e.,

the number of incoming and outgoing connections) per node in hypergraphs.

Figure 7.10 reports the simulation performance of the algorithms on generated hyper-

graphs in terms of the execution times. The simulation is performed on a Windows 7 ma-

chine with duo-core 2.7GHz CPU, and 6GB of RAM. For small and medium models (the

number of requirements is around 500) the execution time is almost immediately (less than

1 seconds). For large models (the number of requirements is around 1,000), it is a bit longer,

but still quite fast (less than 3 seconds). The execution time significantly increase for very

large models (the number of requirements is around 5,000) where the total number of nodes

(requirements and compounds) is more than 10,000 and the average degree per node is more

than 300. However, the absolute execution time is still relative fast (approximately 10 section

for 50% of the cases). Clearly, it is an evidence that the algorithm has very good performance

with respect to the complexity of hypergraphs.

94 CHAPTER 7. UNICORN: TOOLING AND THE FIRST (SELF) EVALUATION

●●

●

50 500 1000 5000

0
5

10
15

ex
ec

ut
io

n
tim

e
(s

ec
)

#requirement nodes (approx.)

Figure 7.10: The execution time of the algorithms on simulation hypergraphs.

7.5 A Self-Evaluation Case Study

In this section we conduct a case study for the tool in both modeling and reasoning about

evolution in requirements model. Notably, the term case study here is as same as the one

used by other RE researchers, but is not the one defined in the field of empirical evaluation.

In this case study, we take a big requirements model in Si* language (approximately 150

goals), transform this model into hypergraph , and run the algorithms to enumerate design

alternatives and calculate their evolution metrics. We then report the execution time of the

algorithms. The details of this self-evaluation are described as follows.

Scenario. The scenario is from the ATM domain, which concerns the management and

resolution of conflicts in the trajectories of aircrafts. The scenario is briefed as follows. Each

flight has its own trajectory in the airspace, called Reference Business Trajectory (RBT). Oc-

casionally, there is conflict among these RBTs. Upon conflict detection, the Air Traffic Ser-

vice Unit (ATSU) notifies the conflict to all downstream ATSUs and negotiates for a new RBT

alternative provisional. Finally, ATSU notifies the involved aircrafts the new RBT alterantive.

In this evaluation we mostly focus on the evolution of security requirements in the above

scenario.

7.6. CHAPTER SUMMARY 95

Table 7.1: Descriptive statistics of the hypergraph.

Number Min Max Average

Number of Nodes 178 – – –

Depth 26 – – –

Number of observable rules 5 – – –

Number of controllable rules 16 3 4 3.25

Number of OR branches 27 2 5 2.45

Number of design alternatives 864 – – –

Modeling. The modeling includes two phases. At first we model the requirements from

this scenario using Si*. Here, instead of working on a very big model with unreadable text, we

divide the model into sub models of requirements assigned to particular actors in the system.

The Si* diagrams for the requirements model of the scenario are illustrated in Figure 7.11–

7.18.

In the next phase, we analyze potential changes of the requirements model of the sce-

nario to identify evolution rules. Then we apply the proposed framework to model evolu-

tion. We manually transform the requirements model plus evolution rules into a hypergraph

requirements model. We use UNICORN to model this hypergraph. Also, we divided the hy-

pergraph requirements model into several sub diagrams. Cross-diagram references are done

via Off-diagram reference constructs. Figure 7.19–7.26 present these diagrams.

Reasoning. We run the evolution analysis implemented in UNICORN on the hypergraph.

Table 7.1 presents some descriptive statistics of the hypergraph. The analysis take approx-

imately 4 seconds on a 2x2.2 GHz Windows 7 machine with 6MB of RAM. A variant imple-

mentation of the algorithms, which keeps only winner alternatives (see Section 6.3), takes

about 0.2 second on the same machine. Both implementations suggest 11 design alterna-

tives with most optimal evolution metrics values (i.e., highest Max Belief, lowest Residual

Disbelief, and lowest Residual Disbelief).

7.6 Chapter Summary

We have presented UNICORN, a tool for modeling and reasoning about requirements evolu-

tion. By modeling support, UNICORN provided several customizable graphical constructs to

model the requirements evolution. By reasoning support, UNICORN provided an environ-

96 CHAPTER 7. UNICORN: TOOLING AND THE FIRST (SELF) EVALUATION

Figure 7.11: Requirements diagram for Airspace Navigation Service Provider (ANSP) actor.

ment where the graphical notation could be transformed to a data structure facilitating the

analysis. UNICORN demonstrated this by implementing an analysis for requirements evolu-

tion.

To continue evaluating the proposed framework, in the next chapter we study the effec-

tiveness of the proposed framework, particularly the modeling approach by conducting a

series of empirical studies with many kinds of participants who are different levels of exper-

tise knowledge in both ATM domain and the proposed framework.

7.6. CHAPTER SUMMARY 97

Figure 7.12: Requirements diagram for Planning Controller (PLC) actor.

98 CHAPTER 7. UNICORN: TOOLING AND THE FIRST (SELF) EVALUATION

Figure 7.13: Requirements diagram for Air Traffic Control Center (ATCC) actor.

7.6. CHAPTER SUMMARY 99

Figure 7.14: Requirements diagram for Admin actor.

100 CHAPTER 7. UNICORN: TOOLING AND THE FIRST (SELF) EVALUATION

Figure 7.15: Requirements diagram for Executive Controller (EC) actor.

7.6. CHAPTER SUMMARY 101

Figure 7.16: Requirements diagram for Conflict Tools System (CTS) actor.

102 CHAPTER 7. UNICORN: TOOLING AND THE FIRST (SELF) EVALUATION

Figure 7.17: Requirements diagram for Flight Data Processing System (FDPS) actor.

7.6. CHAPTER SUMMARY 103

Figure 7.18: Requirements diagram for Aircraft actor.

Figure 7.19: Hypergraph requirements diagram for Airspace Navigation Service Provider

(ANSP) actor.

104 CHAPTER 7. UNICORN: TOOLING AND THE FIRST (SELF) EVALUATION

Figure 7.20: Hypergraph requirements diagram for Planning Controller (PLC) actor.

7.6. CHAPTER SUMMARY 105

Figure 7.21: Hypergraph requirements diagram for Air Traffic Control Center (ATCC) actor.

106 CHAPTER 7. UNICORN: TOOLING AND THE FIRST (SELF) EVALUATION

Figure 7.22: Hypergraph requirements diagram for Admin actor.

7.6. CHAPTER SUMMARY 107

Figure 7.23: Hypergraph requirements diagram for Executive Controller (EC) actor.

Figure 7.24: Hypergraph requirements diagram for Conflict Tools System (CTS) actor.

108 CHAPTER 7. UNICORN: TOOLING AND THE FIRST (SELF) EVALUATION

Figure 7.25: Hypergraph requirements diagram for Flight Data Processing System (FDPS)

actor.

7.6. CHAPTER SUMMARY 109

Figure 7.26: Hypergraph requirements diagram for Aircraft actor.

C
H

A
P

T
E

R

8
EMPIRICAL EVALUATION OF THE

FRAMEWORK WITH THIRD-PARTY

In this chapter, we report the results of the empirical evaluation on the modeling ap-

proach of the proposed framework. The studies involve participants who have differ-

ent level of knowledge of the framework and of the ATM domain. The results from the

studies show that the modeling approach is effective in capturing evolution of com-

plex systems. In addition, domain knowledge and method knowledge do not have an

observable effect on the effectiveness of the framework.

T
HIS chapter presents the results of an empirical evaluation conducted on the evolu-

tion modeling approach of the proposed framework (previously proposed in chapter

5). The evaluation aimed to assess the effectiveness of the approach in modeling re-

quirements evolution and whether the effectiveness depends on the analyst’s level of knowl-

edge of the approach and of the application domain. To this end, three empirical studies had

been conducted with different types of participants, namely domain experts, researchers,

and students, with different level of knowledge of the modeling approach and of the appli-

cation domain.

As context for the evaluation, the ATM domain was chosen for three main reasons. First,

ATM systems are complex and critical systems that are going through significant architec-

tural, organizational, and operational changes as planned by the SESAR [EUR03]. Second,

111

112 CHAPTER 8. EMPIRICAL EVALUATION OF THE FRAMEWORK WITH THIRD-PARTY

change management is a critical issue in the ATM domain. The need of system engineering

techniques to support change management is well recognized [Gra+09]. Last but not least

there is a significant body of research about empirical evaluations of requirements engineer-

ing approaches in the ATM domain [MR05; Mai+04; Ncu+07]. For example, in [Mai+04], De-

parture Manager (DMAN), a system for managing departure of aircrafts, is used as context

of evaluation. This makes it easier to benchmark the evaluation studies. In the empirical

evaluation, we have focused on changes associated with the introduction of a new decision

supporting tool, AMAN, and SWIM in the ATM domain.

Figure 8.1 summarizes how the empirical evaluation studies in this chapter developed

along a two-year horizon. First, a study had been conducted within the researchers who

have proposed the approach to model evolving requirements. Then, the envelope has been

pushed further by carrying out a series of workshops with domain experts and industry prac-

titioners as in [Ncu+07]. Last, a study with MSc students was conducted.

The researchers (or also called method experts, interchangeably) have a good knowledge

of method (i.e., the modeling approach proposed in chapter 5), but their knowledge of do-

main is limited. In contrast, domain experts (or also called practitioners, interchangeably)

have a good knowledge of the domain, but their knowledge of the method is limited. The

students are novices as their knowledge of domain and method are both limited.

The results from the studies show that the modeling approach is effective in capturing

evolution of complex systems. In fact, the studies showed that it is reasonably possible

for people different than the method’s own inventor (such as students or domain experts)

to build significantly large models, and identify possible ways for these models to evolve.

Moreover, the studies have shown that for domain experts, method experts, and novices,

if they are supplied with appropriate knowledge (i.e., knowledge of method for domain ex-

perts, knowledge of domain for method experts, and knowledge of both domain and method

for novices), they can model the evolution modeling with no significant difference.

This chapter is structured as follows. Section 8.1 briefly discusses how we apply the pro-

posed modeling approach in Si* modeling language. We describe the research methodology

in Section 8.2. Section 8.3 presents the analysis of the data collected during the studies.

Section 8.4 summarizes the main findings. Section 8.5 discusses the threats to validity. Sec-

tion 8.6 presents lessons learnt from the studies. Section 8.7 summarizes the chapter.

8.1. REQUIREMENTS EVOLUTION IN SI* MODELING LANGUAGE 113

ATM Workshop
Visit to ATM

Simulation Center

Preliminary Study within
the Research Group

WS1
Training Workshop
with ATM Experts

WS2
Evaluation Workshop

with ATM Experts
WS3

Application Workshop
with ATM experts

Study with Master
Students

2010
Sep Oct Nov Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec Jan

2011
Dec

2012

Figure 8.1: Chronology of the family of empirical studies

8.1 Requirements Evolution in Si* Modeling Language

The evolution modeling approach discussed in chapter 5 is independent from any partic-

ular RE modeling language. In the evaluation studies, we use the Si* language [Mas+10] to

represent requirements models. Si* is founded on the concepts of actor, goal, task, resource

and the relations AND/OR decomposition, means-end, and delegation. An actor is an active

entity that models humans as well as software agents and organizations. A goal captures a

strategic interest that actor wants to be achieved. A task represents a particular course of

actions that produces a desired effect. It can be executed to satisfy a goal. A resource is an

artifact produced/consumed by a goal or a task. AND/OR decomposition is used to refine a

goal into sub-goals. The AND-decomposition means that the parent goal will be achieved if

all its sub-goals are achieved or satisfied. The OR-decomposition, instead, means the par-

ent goal will be achieved if at least one of its subgoals are achieved. The branches of a goal

decomposition represent different design alternatives to fulfill the top goal. A delegation re-

lation between two actors marks a formal passage of responsibility (delegation execution) or

authority (delegation permission) from an actor (delegator) to the actor receiving the respon-

sibility/authority (delegatee) to achieve a goal or to provide a resource.

Actors, goals, tasks and resources are graphically represented as circles, ovals, hexagons

and rectangles, respectively. Delegation of execution and delegation of permission relations

are graphically modeled as edges labeled with De and Dp, respectively.

We will now illustrate the concept of evolution rules using a simplified version of the

application scenarios introduced in section 4.2 of chapter 4.

Example 8.1 (Before Model) Recall to the evaluation scenarios described in Section 4.2,

Figure 8.2 presents an excerpt of the goal model for the Sector Team before the introduc-

tion of AMAN. In the Sector Team’s goal model we do not decompose the top goals into

114 CHAPTER 8. EMPIRICAL EVALUATION OF THE FRAMEWORK WITH THIRD-PARTY

[3] Arrival sequence
delivered to aircrafs

[4] Advisories
to aircrafts
prepared

[5] Advisories to
aircrafts delivered

Sector
Team

AND

[1] Arrival sequence
managed

[2] Arrival sequence
optimally generated

AND

Figure 8.2: An excerpt of the goal model for the Sector Team.

operational tasks to keep the model simple and easy to read. The top goal is g1:“Arrival se-

quence managed”, which is and-decomposed into g2:“Arrival sequence optimally generated”

and g3:“Arrival sequence delivered to aircrafts”. The latter goal g3 is further and-decomposed

into g4:“Advisories to aircrafts prepared” and g5:“Advisories to aircrafts delivered”.

To represent an observable rule in a Si* model, we introduce a new graphical construct,

which is the container of the before and after models. When a model is large and complex,

wrapping the entire model inside a container is sometimes hard to follow. Therefore, we

recommend to analyze the evolution in sub parts of the models. However, if a big model is

unavoidable, it requires the modeling tool to have a large-model support mechanism. The

prototype for modeling requirements evolution (see Chapter 7) addresses this problem by

dividing a large model into several diagrams. A diagram then can link to others by using a

special modeling construct – Off-diagram Reference, see Section 7.1.

Controllable rules are implicitly represented by OR decomposition, a native Si* graphical

construct that allows designers to express alternative sub-goals to implement a parent goal.

Therefore, in Si*, we represent controllable rules by means of OR decompositions.

Example 8.2 (Evolution Rules) We now illustrate how the Sector Team’s goal model in Fig-

ure 8.2 can evolve. We focus on goal g3:“Arrival sequence delivered to aircrafts". We call Before

the sub-model rooted at g3. The figure represents one observable rule and one controllable

rule. The observable rule

ro(Before) =
{

Before
0.4−−→ After1,Before

0.35−−→ After2,Before
0.25−−→ Before

}
consists of three evolution branches: each branch corresponds to the arrow that links the be-

fore model Before to one of the after models After1,After2 and Before. In the first evolution

8.1. REQUIREMENTS EVOLUTION IN SI* MODELING LANGUAGE 115

Before

After2

0.25

0.35 0.4

After1

[3] Arrival sequence
delivered to aircrafs

[4] Advisories
to aircrafts
prepared

[5] Advisories
to aircrafts
delivered

Sector
Team

AND

[1] Arrival sequence
managed

[2] Arrival sequence
optimally generated

AND

[4] Advisories
to aircrafts
prepared

OR

AMAN

[9] Basic
advisory
generator

[10] Detail
Advisory
generator

[3] Arrival sequence
delivered to aircrafs

[4] Advisories
to aircrafts
prepared

[5] Advisories
to aircrafts
delivered

Sector
Team

AND

[1] Arrival sequence
managed

[2] Arrival sequence
optimally generated

AND

[3] Arrival sequence
delivered to aircrafs

[5] Advisories
to aircrafts
delivered

AND

AMAN
[11] Detail

advisories to
aircrafts prepared

[10] Detail
Advisory
generator

[1] Arrival sequence
managed

[2] Arrival sequence
optimally generated

AND

[11] Detail
advisories to

aircrafts prepared

Sector

Team

The rectangles with label on top are the containers of Before and After model. The label is the name of the

contained model. Each container has a chevon at the bottom to collapse/expand its content. The arrows

labeled with probability connecting two containers determines that the source model evolves to the target

model.

Figure 8.3: The graphical representation of the observable for goal g3.

possibility, g4 is delegated to AMAN. This dependency is presented by the line labeled with

De connecting goal g4 to the actor AMAN. The actor AMAN satisfies g4 by either g9:“Basic

advisory generator", or by g10:“Detail advisory generator". The probability that this possibility

becomes true is 0.4. In the second evolution possibility, Before might evolve to After2 where

a new goal g11:“Detail advisories to aircrafts prepared" replaces g4. The g11 is also delegated

to AMAN, and it is fulfilled by g10:“Detail advisory generator". The probability that this possi-

bility occurs is 0.35. The third evolution possibility is that the model Before does not change

with probability 0.25.

The controllable rule is represented by the OR-decomposition of g4 into goals g9 and

g10 in After1. This rule has only two branches corresponding to the branches of the OR-

decomposition.

116 CHAPTER 8. EMPIRICAL EVALUATION OF THE FRAMEWORK WITH THIRD-PARTY

8.2 Evaluation Method

In this section we present the research questions and hypotheses (Section 8.2.1), and the

protocol followed to conduct the evaluation studies (Section 8.2.2).

8.2.1 Research Objectives

Following the Goal-Question-Metric template [BR88], the goal of the studies is to assess if

the method proposed in Chapter 5 is effective in capturing potential evolution of complex

system requirements and whether effectiveness is influenced by knowledge of the domain

or the method itself. Given the goal of the evaluation (see also RQ1 – Section 2.1, and E2 –

Section 2.2), the main questions to be answered are:

RQ3 Is the approach effective in modeling requirements evolution of complex systems?

RQ4 How does effectiveness of the approach is impacted by knowledge of domain and knowl-

edge of method?

The definition of effectiveness is borrowed from the Method Evaluation Model proposed

by Moody [Moo03] where the effectiveness of a method is defined as how well it achieves its

objectives. Effectiveness can be measured by evaluating the quantity and/or quality of the

results (output measures). Thus, to measure the effectiveness of the method to answer RQ3

we use the following variables that correspond to the main characteristics of evolution rules,

the main outcome of the method’s application:

• size of baseline. It is the number of unique model elements and interconnections in

the before model of an observable rule.

• size of change. It is number of unique model elements and interconnections across all

after models that are not in the before model or disappeared from the before model of

an observable rule.

• number of evolution rules.

• number of branches for evolution rules.

The calculation of these variables is illustrated using a simplified version of the scenarios

introduced in section 8.1.

8.2. EVALUATION METHOD 117

Example 8.3 (Counting Dependent Variables) The dependent variables for the evolution

rule described in Example 8.2 can be computed as follows:

• size of baseline = 8, which includes 1 actor (Sector Team), 5 unique goals (g1–g5), 2

AND-decompositions (g1 decomposes to g2, g3; and g3 decomposes to g4, g5).

• size of change =11, which includes 1 new actor (AMAN) + 1 deleted goal (g4) + 3 new

unique goals (g9, g10, g11) + 2 De-dependency + 1 new OR-decomposition + 2 new

AND-decompositions (g3 decomposes to g5, g11; g11 decompose to g10) + 1 deleted

AND-decomposition (g3 decomposes to g4, g5).

• number of evolution rules = 2, which includes 1 observable rule, and 1 controllable rule

(g4 OR-decomposes to g9, g10.)

• number of branches for evolution rules: the observable rule has 3 branches, and the

controllable rule has 2 branches.

To investigate the second research question RQ4, we use as control variables the method

knowledge and the domain knowledge of subjects participating in the studies. We also de-

fined the following set of null hypotheses Hn.m0: n denotes the research question to which

the hypothesis is related, m denotes the progressive hypothesis number, and 0 denotes that

it is a null hypothesis.

H2.10 There is no difference in the size of baseline identified by researchers, practitioners and

master students.

H2.20 There is no difference in the size of changes identified by researchers, practitioners and

master students.

H2.30 There is no difference in the number of evolution rules identified by researchers, prac-

titioners and master students.

H2.40 There is no difference in the number of branches for evolution rules identified by re-

searchers, practitioners and master students.

8.2.2 Experimental Design

The protocol consists of three main phases:

118 CHAPTER 8. EMPIRICAL EVALUATION OF THE FRAMEWORK WITH THIRD-PARTY

• Training.

– Participants are administered a questionnaire to collect information about their

level of expertise in requirement engineering, security and on other methods they

may know.

– Participants have to attend lectures about the modeling approach and on the

ATM evolution scenarios depending on their expertise.

– Participants are given a training material consisting of the slides used for intro-

ducing the modeling approach and documents describing the evolution scenar-

ios and their requirements.

• Application.

– Participants work alone or in groups and apply the modeling approach to the

ATM evolution scenarios.

– At the end of the application phase, participants have to deliver a report docu-

menting the application of the method.

• Evaluation.

– Participants are requested to evaluate the modeling approach through focus group

interviews.

– An ATM domain expert evaluates the report delivered by the participants to assess

the quality of the models and the evolution rules drafted by them.

8.2.3 Experimental Procedure

We have conducted three studies with different kinds of participants. Following the termi-

nology in [NB12], first, we run a preliminary study where the participants were the same

researchers who have proposed the approach: the researchers have a good knowledge of the

approach but are domain limited. Second, we have conducted a study with domain experts

(a.k.a practitioners) who are novice to the approach, but have a very good knowledge of the

ATM domain. Third, we have conducted a study with master students who are method and

domain limited (i.e., they have little prior knowledge of the approach and of the ATM do-

main).

Table 8.1 summarizes the participants and their knowledge for each study. By ‘domain

knowledge’ (or knowledge of domain), we mean the participants’ level of expertise to the

8.2. EVALUATION METHOD 119

Table 8.1: Participants’ knowledge in the empirical studies.

Study Participants Method Knowledge Domain Knowledge

Study 1 Researchers Good Limited

Study 2 Domain Experts Limited Good

Study 3 Master Students Limited Limited

scenarios during the course of the evaluation studies. For the participants who do not have

any prior domain knowledge, we provide the scenario documents (see Table 4.1) in advance.

Similarly, by ‘method knowledge’ (or knowledge of method), we also mean the level of exper-

tise of participants to the modeling approach (in Section 5.1). We provide training workshop

or lectures to participants in advance. To conduct the studies, we have followed a mixed

research approach that combines hypothesis testing with focus group interviews.

In what follows, for each study, we describe the participants, and the setting of the study.

8.2.3.1 Study 1: Preliminary Study within the Research Group

Participants Three researchers have participated in the experiment. All of them had a

background in requirement engineering and security, and were involved in the design of

the approach to model and reason on requirements evolution.

Setting The researchers have first gained knowledge about the domain by attending half a

day workshop about ATM procedures and tools, and safety and security issues in ATM orga-

nized by Deep Blue. Deep Blue also provided to the research team documentation about

ATM process, AMAN and SWIM architecture and their functional and non functional re-

quirements. After the training on the ATM domain, the researchers were engaged in three

modeling sessions that took place at the University of Trento, each of the duration of half

a day. During these sessions, the researchers worked independently and modeled several

evolutionary scenarios following the approach to model requirements evolution. The sce-

narios considered include the introduction of the AMAN; the introduction of the ADS-B, a

new surveillance tool used to determine aircrafts’ positions, the introduction of the SWIM,

and the introduction of the AMAN and SWIM to connect AMAN with queue management

tools in other airports. For each of the evolutionary scenarios, the researchers have drawn

an original model Before and identified an evolution possibility A f teri . The Before model

and the After models have been modeled in the Si* language [Mas+10].

120 CHAPTER 8. EMPIRICAL EVALUATION OF THE FRAMEWORK WITH THIRD-PARTY

8.2.3.2 Study 2: Workshops with ATM experts

The study was organized into three separated workshops held in April 2011 (WS1), June 2011

(WS2), and September 2011 (WS3). The workshops involved both researchers and ATM ex-

perts. The role of researchers was to facilitate the workshop and make observations. The role

of ATM experts was to apply the modeling approach and provide feedback about its effec-

tiveness to model requirements changes.

• Training workshop (WS1) trained the participants on the modeling approach.

• Evaluation workshop (WS2) focused on the evaluation of the quality of the models and

the evolution rules drawn by the researchers.

• Application workshop (WS3) asked ATM experts to apply the approach.

8.2.3.3 WS1: The Training Workshop

Participants Seven ATM experts have participated in WS1: four of them are Deep Blue

consultants with various background (e.g., Computer Science, Human Factors, Safety and

Security) who have worked in several projects related to the ATM domain. The other three

ATM experts have been working for an European Air Navigation Service Provider with dif-

ferent roles and responsibilities: one is a system administrator, while the other two are air

traffic controllers. The ATM experts have also extensive experience with the evaluation of

new operational concepts [EUR10] and are currently involved in various SESAR evaluations.

Setting The workshop started with a training session to introduce the experts to the re-

quirements engineering domain and the modeling approach for evolving requirements. Then,

ATM experts assessed the representation of changes (in terms of goals), the likelihood of par-

ticular change scenarios and the representation of such changes. Then, the research team

held a focus group with the participants to identify possible evolution rules.

8.2.3.4 WS2: The Evaluation Workshop

Participants Eight ATM experts participated in the second ATM workshop: seven partici-

pants were the same from the first workshop plus one additional participant who works as

ATM manager.

8.2. EVALUATION METHOD 121

Figure 8.4: Third ATM workshop.

Setting During the workshop, the researchers have shown the original model and the pos-

sibility of evolution model After they have drawn in Study 1. The quality of the requirements

models and of the evolution rules has been discussed and the models have been revised

with the domain experts. At the end of the workshop, the researchers conducted a semi-

structured interview to collect preliminary feedbacks on the approach.

8.2.3.5 WS3: The Application Workshop

Participants The third workshop had eleven participants: a security engineer from indus-

try and ten ATM experts. The ATM experts were the same as the other workshop plus two

other Deep Blue consultants who have expertise in Security and Safety for ATM systems.

Setting The workshop started with a brief presentation of the scenario to which the experts

had to apply the modeling approach to requirements evolution and a summary of the steps

they had to follow. The participants were divided into four heterogeneous groups (in terms of

expertise). Each group had to draw an original model and one possibility of evolution model

After using the Si* tool. At the end of the workshop, the research team engaged the partici-

pants into a focus group where the participants have provided additional feedback about the

modeling approach. The application phase and the focus groups session have been audio-

video recorded (see Figure 8.4). Due to the limited time availability of the participants, the

122 CHAPTER 8. EMPIRICAL EVALUATION OF THE FRAMEWORK WITH THIRD-PARTY

application phase did not terminate with the third workshop but continued remotely over a

three months period going from September to November 2011.

8.2.3.6 Study 3: Study with Master Students

Participants Eleven students enrolled in the Master in Computer Science at the Univer-

sity of Trento participated in the study. They had a background in Security Engineering and

Information Systems.

Setting Students were trained about the approach for evolving requirements during the

Security Engineering course and they were introduced to the ATM domain. As additional

materials, they received three documents describing AMAN and SWIM users requirements,

SWIM content and information services, and AMAN and SWIM core architecture. Then, the

participants were divided in four groups. Each group chose a possible scenario associated

with the introduction of AMAN and SWIM network, and had to apply the approach for evolv-

ing requirements. After examining the scenarios, they drafted Si* models representing the

requirements of the chosen scenario, and identified controllable and observable evolution

rules. The participants were not observed during the application phase. Thus, to collect data

about the application phase, students were asked to deliver a report describing in details the

application of the approach and the generated models.

8.3 Quantitative Data Analysis

We collected the artifacts produced by researchers, domain experts and students as sum-

marized in Table 8.2. The table reports for researchers, domain experts and students the

mean and standard deviations of size of baseline, size of changes, and number of branches

for controllable and observable rules.

To take into account the quality of the evolution rules and requirements models gener-

ated by students and researchers, we asked to a Deep Blue consultant who was expert in

the ATM domain to assess the quality of the requirements and evolution rules. The level of

quality was evaluated on a four-item scale as specified in Table 8.3.

Based on this scale, the groups who have got an assessment Valuable or Specific were

classified as good groups because they have produced evolution rules and requirements

models of good quality. On the contrary, the groups who were assessed Generic or Unclear

were considered as not so good (bad) groups. Figure 8.5 reports the final assessments in the

8.3. QUANTITATIVE DATA ANALYSIS 123

Table 8.2: Data about the Type of Participants and the Artifacts Generated.

Some standard deviation values for practitioners are not available because we have only one group of practi-

tioners in the evaluation studies in this chapter.

practitioner researcher student

Effect mean std.dev mean std.dev mean std.dev

Size of Baseline 188.00 0.00 28.67 13.49 156.88 69.62

Size of Change 14.67 4.73 16.67 9.42 9.33 5.47

Number of Observable Rules 3.00 – 2.00 1.00 6.00 2.94

Number of Branches per Observable Rule 2.00 0.00 2.17 0.41 3.42 0.83

Number of Controllable Rules 3.00 – 2.00 1.00 13.00 7.16

Number of Branches per Controllable Rules 2.00 0.00 2.00 0.00 2.27 0.49

Total Number of Rules 6.00 – 4.00 2.00 19.00 10.10

Table 8.3: Scale for expert assessment on the quality of requirements and evolution rules.

Scale Requirements Quality Evolution Rules Quality

Unclear Not clear which are the requirements

for the scenario

Not clear which are the evolution rules

for the scenario

Generic Requirements are present but they are

not specific for the scenario

Evolution rules are present but they are

not specific for the scenario

Specific Requirements are present and they are

related to the scenario

Evolution rules are present and they are

related to the scenario

Valuable Requirements are present and propose

real solutions for the scenario

Evolution rules are present and propose

real evolution possibilities for the sce-

nario

124 CHAPTER 8. EMPIRICAL EVALUATION OF THE FRAMEWORK WITH THIRD-PARTY

Unclear Generic Specific

SG3
SG1

SG4

SG2

Valuable

Requirements Quality

E
v
o
lu

ti
o
n

 R
u
le

 Q
u
a

lit
y

Unclear

Generic

Specific

Valuable

SG is the acronym for Student Group.

Figure 8.5: The quality of requirements models and evolution rules produced by students.

matrix where the columns are the different quality levels of identified requirements models,

and the rows are those of identified evolution rules. Among four groups of students, three

have identified most of specific and important requirements and requirements evolution of

the ATM scenarios. The last group was even better. They recognized valuable requirements

and evolution rules from the scenarios. This implies that the artifacts produced by students

are good enough for the purpose of this work. The quality of the models produced by the

researchers was assessed that have good quality on requirements and evolution by the ATM

experts during the second workshop.

8.3.1 Preparation for an Analysis of Variance

We wanted to determine the differences between the size of baseline, size of the change for

evolution rules, the number of branches for evolution rule, and the number of evolution

rules produced by researchers, practitioners, and students by means of the analysis of vari-

ance (ANOVA). In order to apply ANOVA, we first checked that its assumptions are satisfied.

All the p-values in the following results are given under the assumption that the significance

level α = 0.05.

Dependent Variables are Normally Distributed To check whether the dependent variables

are normally distributed we used the Shapiro-Wilk test [RW11] for normality. For all depen-

dent variables the p-value returned by Shapiro-Wilk test is lower than 0.05, and thus the

8.3. QUANTITATIVE DATA ANALYSIS 125

●

●●●

●

●●

●●

●

●●●●

●●●●●

●

●●

●
●

0 50 100 150 200 250

5
10

15
20

25
30

Size of Baseline

S
iz

e
of

 C
ha

ng
es

●

practitioner
researcher
student

(a) Size of Change vs. Size of Baseline

practitioner researcher student

5
10

15
20

25
30

S
iz

e
of

 C
ha

ng
es

(b) Size of Change for Participants Type

Figure 8.6: Size of Baseline and Size of Changes for Type of Participants

variables are not normally distributed.

Homogeneity of Variances We test the homogeneity of the variances with Flinger-Killen

test. The test results are not significant with p≥ 0.05, except for the total number of branches.

The assumption on homogeneity of variances is thus met for all the dependent variables

except for the total number of branches.

Observations Independence By design, the observations about the different types of par-

ticipants are totally independent of each other.

8.3.2 Results

Since the assumptions on normal distribution are not satisfied, we cannot use ANOVA. We

need to apply Kruskal-Wallis test, which is the non-parametric alternative to ANOVA when

ANOVA assumptions are not met.

126 CHAPTER 8. EMPIRICAL EVALUATION OF THE FRAMEWORK WITH THIRD-PARTY

Table 8.4: Kruskal Wallis Summary

Effect Degree of Freedom Kruskal Wallis χ2 p-value

Size of Baseline 2 15.842 0.000

Size of Change 2 6.342 0.042

Number of Observable Rules 2 4.652 0.098

Number of Controllable Rules 2 5.622 0.060

Total Number of Rules 2 5.622 0.060

Number of Branches for Observable Rule 2 12.786 0.002

Number of Branches for Controllable Rule 2 2.801 0.246

Size of baseline and Size of change First, we compared the size of baseline and size of

changes identified by researchers, practitioners and students. Figure 8.6(a) shows that re-

searchers have sketched requirement models of lower size but have considered changes of

small, medium and big size. Similarly, practitioners have produced a single big requirement

model and changes of similar complexity of researchers. Students have produced two dif-

ferent kind of artefacts: some group of students produced small models and small changes;

other groups identified one big model and changes of increasing complexity like practition-

ers. Obviously, the figure shows a difference between domain experts, students, and re-

searchers on the baseline of the models. However, looking at Figure 8.6(b), which reports

the distribution of size of changes, we could observe that the size of change among partici-

pants might not as much different as the size of baseline.

The results of Kruskal-Wallis test reported in Table 8.4 confirmed the observation. The

results are statistically significant both for the size of baseline (p-value = 0.000) and the size

of changes (p-value =0.042). However, in Table 8.5, a pairwise comparison conducted using

Wilcoxon rank-sum test shows that the difference between the size of baseline is statistically

significant only for the pair researcher – student (p-value = 0.000). Instead, the difference

between the size of change is not statistically significant for any pairs of participant types.

Number of evolution rules We then compared the difference in the number of evolution

rules across the different types of participants. Figure 8.7(a) shows the median of the number

of evolution rules in total and for type of rules (observable and controllable) produced by the

researchers, practitioners and students. Students produced obviously more evolution rules

than researchers and practitioners; while researchers and practitioners produced around the

same number of rules. The same holds if we consider the number of controllable rules, but

8.3. QUANTITATIVE DATA ANALYSIS 127

Table 8.5: Wilcoxon Rank-Sum Test Summary -Pairwise Comparison among Type of Partici-

pants.

Since we perform three comparisons per each effect, the Bonferroni-corrected significant level α is
0.05/3 = 0.017.

Effect Pair of Participant Types p-value

Size of Baseline practitioner researcher 0.025

practitioner student 0.171

researcher student 0.000

Size of Change practitioner researcher 1.000

practitioner student 0.111

researcher student 0.035

Number of Observable Rules practitioner researcher 0.637

practitioner student 0.468

researcher student 0.074

Number of Controllable Rules practitioner researcher 0.637

practitioner student 0.400

researcher student 0.057

Total Number of Rules practitioner researcher 0.637

practitioner student 0.400

researcher student 0.057

Number of Branches for Observable Rule practitioner researcher 0.637

practitioner student 0.016

researcher student 0.003

Number of Branches for Controllable Rule practitioner researcher 0.000

practitioner student 0.340

researcher student 0.175

Total Number of Branches practitioner researcher 0.556

practitioner student 0.051

researcher student 0.023

not the number of observable rules. In fact, researchers, practitioners and students have

identified around the same number of observable rules.

We checked with Kruskal-Wallis test (Table 8.4) if these results are statistically significant.

128 CHAPTER 8. EMPIRICAL EVALUATION OF THE FRAMEWORK WITH THIRD-PARTY

practitioner

researcher

student

practitioner

researcher

student

practitioner

researcher

student

2

3

4

6

8

12

17

All Rules Observable Controllable

M
ed

ia
n

nu
m

be
rs

 o
f r

ul
es

(a) Number of Rules for Participants Type

practitioner
researcher

student practitioner
researcher

student

practitioner

researcher
student

2

3

4

All Rules Observable Controllable

M
ed

ia
n

nu
m

be
rs

 o
f b

ra
nc

he
s

(b) Number of Branches for Participants Type

The short horizonal lines show the median of the total number of evolution rules (a), and median of

the total number of branches per rules (b) for type of participants and type of evolution rule.

Figure 8.7: Number of Rules and Branches for Participants Type.

The differences in the number of observable rules (p-value = 0.098), number of controllable

rules (p-value = 0.060), and total number of rules (p-value = 0.060) identified by researchers,

practitioners and students are not statistically significant. These results are confirmed by the

pairwise comparison that we have run with Wilcoxon rank-sum test as shown in Table 8.5.

Number of branches for evolution rules Last, we compared the difference in the number

of branches for evolution rules across the different type of participants. Figure 8.7(b) reports

the median of the number of branches. Obviously, students perform better than researchers

and practitioners with respect to the number of branches for observable rules. They pro-

duced more branches of observable rules than those of controllable rules (although in Fig-

ure 8.7(a) we see that they produced less observable rules than controllable ones). With

respect to the total number of branches for all rules and the total number of branches for

controllable rules, there is no observable difference between students, practitioners and re-

searchers.

In Table 8.4, the results of the Kruskal-Wallis test show that the difference in the number

of branches per observable rules (p-value = 0.002) is statistically significant. This does not

hold for the number of branches for controllable rules (p-value = 0.246). In Table 8.5, the

8.4. DISCUSSION 129

Table 8.6: Hypothesis testing results

No Hypothesis Result

H2.10 No difference in the size of baseline sketched by re-

searchers, practitioners and master students.

Rejected

H2.20 No difference in the size of changes identified by re-

searchers, practitioners and master students

Non conclusive

H2.30 No difference in the number of evolution rules identified

by researchers, practitioners and master students.

Accepted

H2.40 No difference in the number of branches for evolution

rules identified by researchers, practitioners and master

students

Rejected (for

the number of

branches for ob-

servable rules)

pairwise comparison with Wilcoxon rank-sum test shows that the total number of branches

for observable rules is significant difference for the pair practitioner – student (p-value =

0.016) and researcher – student (p-value = 0.003). The difference in the number of branches

for controllable rules is statistically significant only for the pair practitioner – researcher (p-

value = 0.000). For the total number of branches, there is no statistically significant difference

in any pairs of participant types.

8.4 Discussion

This section summarizes the main findings from the studies we conducted (see Table 8.6).

8.4.1 Method’s Effectiveness

As shown in Table 8.2, researchers, practitioners and students were able to produce require-

ments models of medium size and identify new requirements associated with the introduc-

tion of the SWIM and the AMAN. In addition, the evaluation of the quality of the models

carried by the ATM expert shows that participants were able to recognize and identify evo-

lution rules specific to the introduction of the SWIM and the AMAN. Since the number and

the quality of the requirements model and evolution rules identified by the participants was

reasonably good, we can conclude that the proposed framework is effective in modeling re-

quirements evolution.

130 CHAPTER 8. EMPIRICAL EVALUATION OF THE FRAMEWORK WITH THIRD-PARTY

8.4.2 Impact of Knowledge of Domain and Knowledge of Method

Impact on Size of Baseline The results of Kruskal-Wallis test (see Table 8.4) and of the

Wilcoxon rank-sum test (see Table 8.5) show that the size of initial requirement models pro-

duced by students is higher than the one of researchers. Thus, null hypothesis H2.1.0 can

be rejected. We could also conclude that domain knowledge and method knowledge do not

have an observable effect on the size of baseline variable for two main reasons: a) students

who have limited knowledge of the method have produced bigger models than researchers

who are method aware; b) students have produced initial requirements models with similar

size to the one of the models produced by practitioners who are domain aware.

Impact on Size of Change The Kruskal-Wallis test (see Table 8.4) shows that there is a sta-

tistically significant difference in the size of changes identified by researchers, practitioners

and students. However, this result is not supported by the Wilcoxon rank-sum test (see Ta-

ble 8.5), which shows there is no statistically significant difference between any of the pairs

of type of participants. Thus, we have not enough evidence to accept or reject hypothesis

H2.2.0. Based on the results of the Wilcoxon rank-sum test we may conclude that domain

knowledge and method knowledge do not determine the size of change.

Impact on Number of Evolution Rules With respect to the number of evolution rules,

both the Kruskal-Wallis test (see Table 8.4) and the Wilcoxon rank-sum test (see Table 8.5)

show that there is no statistically significant difference among researchers, practitioners and

students. Thus, H2.3.0 can be accepted and we can conclude that domain knowledge and

method knowledge do not have an effect on the number of evolution rules.

Impact on Number of Branches for Evolution Rules Both the Kruskal-Wallis test (see Ta-

ble 8.4) and the Wilcoxon rank-sum test (see Table 8.5) show that there is a statistically signif-

icant difference in the number of branches for observable rules. Students produced observ-

able rules with significantly more branches than the one of researchers and practitioners. As

a result, H2.4.0 is rejected for the number of branches of observable rule. The students’ do-

main knowledge and method knowledge are limited, it is expected that they would identify

less branches than other participant types. However, as mentioned, we have here an evi-

dence that the students performed better than researchers and practitioners with respect to

the total number of branches for rule. Thus, we could conclude that domain knowledge and

method knowledge do not have an observable effect on the identification of a higher number

of evolution scenarios.

8.5. THREATS TO VALIDITY 131

8.4.3 Implications for the Method

During the focus group interviews, the ATM experts reported important aspects of the ap-

proach that require further investigation. They all pointed out that it is not possible to predict

all the possible changes in advance especially for complex systems such as ATM systems:

“Sometimes, when you apply you discover a third change that is better than the one you

have predicted”, ATM Manager

“The model may be good but when you switch from theory to practice you realize that

there are many situations that you did not consider”, ATM Manager.

“We are talking about very complex systems. You don’t know from the beginning all the

actors involved in the process. There are always certain changes that you cannot predict

due to the complexity of the system”, Senior Deep Blue consultant.

The ATM experts went further and suggested that an iterative approach should be ap-

plied to identify all the possible evolution alternatives:

“It should be an iterative process ”, and “you need to have more iterations if you want to

reach 100%. You cannot foreseen everything at the beginning”, ATM expert.

We have addressed this suggestion in the proposed framework by proposing an incre-

mental reasoning support (described in Chapter 6). This will efficiently enables a multi-

round modeling and reasoning of evolution where potential changes are iteratively identi-

fied.

The ATM experts also suggested that the graphical representation should be simplified

because it does not scale very well for complex systems such as ATM systems. They re-

marked that an incremental approach should be used to draw the rules. We noted this issue

concerning the graphical representation of observable rules (see Figure 8.3). It is difficult to

graphically represent observable rules if we treat requirements at a high level of abstraction.

Instead, we have proposed alternative representations depending on RE languages. For ex-

ample, in goal based languages like i*, KAOS, we suggested the use of additional construct

such as observable node to determine the evolution of a particular goal in a goal model (see

Figure 7.1); in risk graph, we suggested the use of tags associated to risk graph elements (see

Figure 10.13(b)).

8.5 Threats to Validity

We discuss the four main types of threats to validity [Woh+12] in what follows.

132 CHAPTER 8. EMPIRICAL EVALUATION OF THE FRAMEWORK WITH THIRD-PARTY

Conclusion validity Conclusion validity is concerned with issues that affect the ability to

draw the correct conclusion about the relations between the treatment and the outcome of

the experiment. The main threat to conclusion validity relevant for the studies is low sta-

tistical power. The sample size must be big enough to come to correct conclusions. We

performed a post-hoc power analysis for the Kruskal-Wallis test and Wilcoxon rank-sum test

for the three users’ cohorts. The size of the sample is too small to have a power of 0.80.

Therefore, it will be necessary to run the experiment again with more subjects for each user’s

cohorts - researchers, practitioners and students.

Internal validity Internal validity is concerned with issues that may indicate a causal rela-

tionship between the treatment and the outcome, although there is none. A threat to inter-

nal validity can be the use of different application scenarios across the three study groups.

Different scenarios may generate a bias in this experiment as effects might be due to (or can-

celed by) the varying difficulties of the scenarios. To mitigate this risk we have asked prac-

titioners to identify scenarios that were close in complexity according to their opinion. An

important reason behind the use of different scenarios was to avoid a problem that emerged

in previous pilot studies: when a scenario is repeatedly used (and therefore progressively re-

fined) domain experts tend to focus on the adequacy of the requirements models at object

level rather than at meta-level. For example, by reconsidering the same scenario twice or

assessing the work of the students in comparison with their own, practitioners might have

spent several minutes discussing whether the right sentence for the goal in Figure 8.2 was

“detailed advisory”, and evaluate a model as inadequate because “specific advisory” should

have been used in its place. By using different scenarios the evaluation focused on the forest

rather than the trees. We believe that the advantages far outweigh the risks.

Another threat to internal validity is related to the use of Si* as requirement modeling lan-

guage. The feedback provided by the ATM experts on the possible adoption of the graphical

representation to model requirements evolution in the ATM domain can be biased by the

fact that the requirements model were drawn in the Si* requirements language. Si* graphical

notation tends to get very complex even for simple models and this aspect may have influ-

enced the feedback of the ATM experts. We should organize another study using a different

requirements language to evaluate whether the feedbacks depend on the use of Si*.

Construct validity Construct validity concerns generalizing the result of the experiment to

the concept and theory behind the experiment. The main threat to construct validity in the

experiment of this chapter was represented by a communication gap between the research

8.6. LESSONS LEARNT 133

team and the domain experts. Research team and domain experts might use same terms

with different meanings and this can lead to misunderstandings; therefore, wrong or unre-

lated feedback might be provided. For example, the distinction between goal and resource

was difficult to understand for the experts. A resource in the requirements engineering do-

main is an artifact produced/consumed by a goal, which captures a strategic interest of a

stakeholder that is intended to be fulfilled. In the ATM domain, a goal has the same mean-

ing that resource has in the requirements engineering domain and this lead to confusion.

To mitigate this threat we have included a “mediator” who occasionally reformulated ques-

tions of the research team for the domain experts and reformulated domain experts’ feed-

back for the researchers. The mediator role in this experiment was played by a member of

Deep Blue who has a solid Information and Communication Technology (ICT) background

(PhD in Compute Science), and is very strong experience in the ATM domain (20+ year ex-

perience as senior consultant). Before running the studies, we have several discussion with

this member to ensure that he can fully understand the proposed framework.

External validity External validity concerns the ability to generalize experiment results

outside the experiment settings. External validity is thus affected by the objects and the

subjects chosen to conduct the experiment. We reduced the threats to external validity by

making the experimental environment as realistic as possible. In fact, as object of the ex-

periment we have chosen a real evolutionary application scenario proposed by Deep Blue, a

consulting company, which is actively involved in SESAR Initiative.

However, a threat to external validity of the experiment results is represented by the use

of Si* as requirements modeling language. To generalize these results beyond this empirical

evaluation, we should run other controlled experiments where different requirements mod-

eling languages – problem frames, natural language, tables – are used by subjects to draw the

evolution rules.

8.6 Lessons Learnt

In this section we highlight a number of aspects that we should take into account to continue

our research.

• Subjects’ Selection. The selection of domain experts strongly influences the relevance

of feedback collected and the satisfaction of the success criteria chosen for the case

studies. In the case studies, the selected domain experts had a different background

134 CHAPTER 8. EMPIRICAL EVALUATION OF THE FRAMEWORK WITH THIRD-PARTY

and so we were able to collect feedback about the approach to requirements evolution

from different perspectives. However, an issue of the domain is the separation between

ATM organizations and IT suppliers. They have different and often competing stakes.

In future studies, we think that one should evaluate the approach separately with two

groups of ATM organizations and IT supplier, and identify methods to firewall feedback

by different groups. This might highlight competitive advantages that one group might

gain over the other by adopting the method.

• Language Gaps. Another interesting lesson concerns the foreign language gap. The

level of engagement of the domain experts depends on two main factors: the means

to provide feedback, and the language in which such feedback needs to be provided.

Our workshop sessions included Hungarians, Indians, Italians, Norwegians, and Viet-

nameses; juggling between languages made our meetings lively. Albeit obvious in

hindsight, this was not mentioned in the previous work by N. Maiden and others [MR05;

Mai+04; Ncu+07] because their studies were clearly English-to-English. A possible so-

lution is that the domain experts can discuss in their mother tongue and then provide

summary feedback in English, but this hampers the immediacy of the feedback, and

“minority opinions” might not be reported (we noticed this phenomenon during the

workshops). The mediator was a useful tool to mitigate the internal validity threats

also in this setting.

• Determinants of Users’ Technology Acceptance. A major factor in the level of engage-

ment of domain experts is the perceived compliance with the practice in industry. In

the ATM domain, the discussion was facilitated by the existence of a model repre-

sentation (influence diagrams), which was very close to goal models. When we pro-

posed the same approach to another company, a show-stopper in the discussion with

a practitioner was simply “We use DOORS” (and therefore cannot use and should not

waste time evaluating requirements models in format different than DOORS). This was

purely a syntactical limitation, not a semantical or methodological one: we could have

perfectly used DOORS to link requirements expressed by goal models, but our tool

simply did not do it, as we thought this was just “Engineering”. This is indeed true if

we considered limiting our evaluation to an experiment (as noted in [CF+09] this is

what the vast majority of RE papers report). Being able to syntactically interface with

these tools (even for just gathering requirements IDs to label goals), is essential to ob-

tain better perceived compliance and thus a better engagement and case-study based

evaluation. As future work, we would like to organize a controlled experiment to evalu-

8.7. CHAPTER SUMMARY 135

ate if perceived compliance is a motivating factor that leads to an individual’s intention

to use a methodology.

• Evolution Probability Setting. An aspect of the approach that deserves further inves-

tigation concerns the definition of a systematic process to obtain evolution probabili-

ties. Typically, decision-makers are not able to provide probability that an event occurs

but just the frequency with which the event happens [Lun+11a, Chap. 10.2.1]. Even

when they are able to provide probabilities, they are subjective and contain a high de-

gree of personal bias. In fact, the probability that an event occurs differs from person

to person. We could explore the use of game theory e.g., Clarke-Tax mechanism to as-

sess evolution probabilities based on the probabilities of an event specified by different

decision makers.

8.7 Chapter Summary

In this chapter we reported the results of three studies that we have conducted in the ATM

domain to evaluate the effectiveness and the impact that domain knowledge and method

knowledge on effectiveness of the proposed framework.

The main findings from the studies were that the approach is effective in modeling re-

quirements evolution. In fact, the studies showed that since researchers, practitioners and

students were able to produce significantly big requirements models, and identify possible

ways for these models to evolve. In addition, domain knowledge and method knowledge

did not have an observable effect on the effectiveness of the approach, since there was no

statistically significant difference between the artifacts produced by students who have lim-

ited knowledge about both domain and method, and researchers who were method aware

and practitioners who were domain aware. Determining which are aspects that can have

an effect on the effectiveness the proposed framework will be the subject of a separate case

study.

In the subsequent chapters we are going to present how to apply the proposed frame-

work in an other field – risk assessment. This will be an evidence for the applicability of the

proposed framework.

Part III

Applying the Proposed Framework to

Evolving Risks

137

C
H

A
P

T
E

R

9
EARLY DEALING WITH EVOLVING RISKS IN

SOFTWARE SYSTEMS

Existing risk assessment methods often rely on a context of a target software system at

a particular point of time. Such contexts of long-lived software systems tend to evolve

over time. Consequently, risks might also evolve. Therefore, in order to deal with

evolving risks, decision makers need to select an appropriate risk countermeasure al-

ternative that is more resilient to evolution than others. To facilitate such decision,

we propose a pioneer method taking the uncertainty of evolutions and outputs of a

risk assessment to produce additional information about the evolution resilience of

countermeasure alternatives.

S
ECURITY risk analysis concludes with a set of recommended options for mitigating un-

acceptable risks [ISO09]. In order to treat risks, decision makers (or managers) have

to make decisions on proper countermeasures to implement. However, such invest-

ment decisions may be complicated. An organization needs the best possible information

on risks and countermeasures to decide what is the best investment. This involves deciding

which countermeasures offer a good trade-off between benefit and spending. The expendi-

ture required to implement the countermeasures, together with their ability to mitigate risks,

are factors that affect the selection. Inappropriate and over-expensive countermeasures are

money lost. Therefore, a systematic method that helps to reduce business exposure while

139

140 CHAPTER 9. EARLY DEALING WITH EVOLVING RISKS IN SOFTWARE SYSTEMS

balancing countermeasure investment against risks is needed. Such a method should help

answering questions like “(1): How much is it appropriate to spend on countermeasures?" and

“(2): Where should spending be directed?" as highlighted by Birch and McEvoy [BM92].

Unfortunately, there exists little support for the prescriptive and specific information

that managers require to select cost-effective risk countermeasures. Several cost estima-

tion models have been proposed, but most are only loosely coupled to risk analysis. For

example, the Security Attribute Evaluation Method (SAEM)[But02] is well-suited to evaluate

risk reduction, but is very vague on the issue of cost effectiveness. Likewise, [WHO09] sug-

gests several methods to assess cost of risks (e.g., Cost-Of-Illness, Willingness-To-Pay), but

none of these methods provide specific support to evaluate countermeasure expenditure.

Chapman and Leng [CL04] propose a framework that justifies mitigation strategies based on

cost-difference, but does not take the benefit-difference (i.e., level of risk reduction) between

strategies into consideration.

Effective decision-making requires a correct risk model incorporating multi-aspect infor-

mation on countermeasures and a method to select between cost-effective countermeasure

alternatives. The multi-aspect information should contain the knowledge about the coun-

termeasures themselves, their associated expenditures and suitability to mitigate risks, as

well as the impacts they may have on each other.

Such effective decisions are much more important in the context of long-lived software

systems, which keep evolving to continuously satisfy changing business needs, new regula-

tions, or the introduction of new technologies. Such evolutions might expose the software

systems to new risks, and might make the output of the current risk analysis on the software

systems become partially obsoleted. Consequently, the software systems might be no longer

secure.

The results of a software system risk assessment are typically valid under a given context,

which is a particular system configuration, and under certain requirements and assump-

tions about the target system at a particular point of time. Once a particular risk assessment

is completed, countermeasures are proposed and decision makers (or managers) face the

question of selecting an appropriate countermeasure alternative (i.e., a set of countermea-

sures) to be implemented in order to mitigate unacceptable risks. However, when the context

evolves, risks might also evolve. Previously acceptable risks might become unacceptable or

vice versa, or new risks emerge [Lun+11a, Chap. 15]. For example, any risk mitigated by SHA-

0 based countermeasure was acceptable before 2004, but might be unacceptable later since

9.1. TERMINOLOGY 141

SHA-0 was efficiently attacked1. Thus, a current countermeasure alternative may no longer

be appropriate and it is necessary to develop new ones to address the evolving or newly

emerging risks. This might include adding additional security requirements as a protection

to ensure the system security, or the creation of completely new security controls. Obviously,

implementing new ones to replace for obsoleted ones may be more expensive than having

one that still may be appropriate for evolving risks. The decision makers then face an alike

question of selecting appropriate countermeasure alternative, yet in the extent of evolution

of the context and evolving risks.

While there exist several established risk assessment methods e.g., [Lun+11a; ML05; Nor10;

Sch99; Sto+02; Tra+13b], few provide support for a systematic selection on risk counter-

measure alternatives [Tra+13b; Sto+02; Nor10], and even less for dealing with evolving risks

[Lun+11b]. Traditional risk assessment methods typically perform on a context at a particu-

lar point of time and hence cannot guarantee the continuous validity of the risk assessment

results in an evolving context. Concerning evolutions, in [Lun+11b; SS13], the authors pro-

posed a general technique and guideline for managing risk in changing systems. However,

they did not mention the uncertainty of evolution (i.e., likelihood of occurrence), and how

to use this information to support the decision making process.

As an effort to fill some of that void, this chapter adapts the framework described in Chap-

ter 5 to introduce a risk-evolution approach. The focus of this chapter is not on how to obtain

the uncertainty information, but rather on how to make use of them to produce additional

factors to support the decision making process. Instead, the risk-evolution approach adapts

the evolution rules (modeling) and evolution metrics (reasoning) to the evolving risks. The

purpose of this risk-evolution approach is to quantify countermeasure alternatives in terms

of evolution metrics, and hence assist the selection of an evolution-resilient countermeasure

alternative.

This chapter is organized as follows. Section 9.1 presents common terms in this chapter.

Section 9.2 describes the risk-evolution approach. Section 9.3 exemplifies the approach in a

case study. Section 9.4 summarizes the chapter.

9.1 Terminology

• Context: includes all required information to do risk assessment such as assumptions

about the working environment, requirements model, targets to be protected and so

1http://en.wikipedia.org/wiki/SHA-0#SHA-0, site visited on March, 2013

142 CHAPTER 9. EARLY DEALING WITH EVOLVING RISKS IN SOFTWARE SYSTEMS

on. It is the premises for and the background of the risk analysis, as well as the pur-

poses of the analysis and to whom the risk analysis is addressed [Lun+11a, Chap. 5].

According to ISO 31000:2009, a context includes all external factors (e.g., regulatory,

environment) and internal factors (e.g., business process, policies, standards, system

functions, reference models).

• Before context: is the current context at the current time.

• After context: is the future context with potential changes.

9.2 The Risk-Evolution Approach

The proposed risk-evolution approach relies on a key concept: context. The context here is

for risk assessment. We employ the definition of context from [Lun+11a, Chapter 5] where a

context is “the premises for and the background of the risk analysis. This includes the pur-

poses of the analysis and to whom the risk analysis is addressed". A context can be implied to

include all required information to do a risk assessment for a software system, for instance,

requirements model of the software system, domain assumptions, the targets needed to pro-

tect and so on. The elements in a context, however, may change and evolve over time due

to numerous reasons e.g., introduction of new requirements, threats; changes in security

standards, regulation. This makes the context changed.

Figure 9.1 presents the conceptual models, expressed as a UML class diagram, on which

the risk-evolution approach builds. A Context Evolution Model is a collection of evolution

rules, which captures the evolutions of context. An Evolution Rule is either Observable Rule,

or Controllable Rule. The former captures the evolutions of a context. The latter captures all

possible alternatives addressing risks within a context. Further discussion on evolution rules

is provided in Section 9.2.3. An Evolution Rule has one before context and many after con-

texts. A Context is one mentioned before. A context can be enriched with the output of the

risk assessment. A Risk Countermeasure Alternative includes a collection of countermea-

sures, and a list of risks with residual risk levels after applying the countermeasures. Each

risk countermeasure alternative is quantified with Evolution Metric(s), which are detailed in

Section 9.2.4.

Table 9.1 briefs the steps of the proposed risk-evolution approach. The details of these

steps are elaborated next.

9.2. THE RISK-EVOLUTION APPROACH 143

Context Evolution

Model
Evolution Rule

Observable Rule
Controllable

Rule

Context
Risk Countermeasure

Alternative

Evolution Metric

Max

Belief

Deferral

Belief

1*

1 *

1 *

*

before after

enriches 1 quantifies

Figure 9.1: The conceptual model of the proposed risk-evolution approach.

9.2.1 Step 1 – Identify Evolving Contexts

This step takes all documents about the planned and potential changes of the system as in-

puts. We consider four different evolution perspectives: maintenance, before-after, and con-

tinuous evolution, which are discussed in [Lun+11a, Chap. 15]. The maintenance perspective

relates to the outdate of a risk document of an existing system. Hence it is not the focus of

this work. The before-after perspective predicts future contexts by anticipating planned and

unplanned changes in the current context. The continuous evolution perspective predicts

the evolution of the current context over time based on planned gradual changes.

We abuse the notation of before and after contexts to represent these evolution perspec-

tives (except the maintenance one). Figure 9.2(a) demonstrates the before-after evolution

perspective. A context is depicted as a rectangle with child compartments. The first compart-

ment shows the context name, and the second compartments exhibits the changes compar-

ing to the before context. In this perspective, a before context might have many possibilities

to evolve to other after contexts, denoted as evolution possibility. At the end of the day, exact

one possibility materializes. Each evolution possibility associates with an evolution prob-

ability, which is the likelihood that a possibility materializes. Figure 9.2(b) illustrates the

continuous evolution perspective where changes happen continuously. The before context

at current time t0 might evolve an after context at time t1, which might continuously evolve

at time t2, and so forth.

After contexts can be identified by using any input document that describes potential

changes (either planned or unplanned) in the current context. Unplanned changes could be

anticipated by domain experts by using several techniques such as brainstorming with chalk

and blackboard, or techniques for requirements changes anticipation. Readers are referred

144 CHAPTER 9. EARLY DEALING WITH EVOLVING RISKS IN SOFTWARE SYSTEMS

Table 9.1: The steps of the proposed risk-evolution approach.

Step 1 Identify evolving contexts:

DESCRIPTION Identify all possible changes that would change the risk picture of the

system. Changes could be planed or not.

INPUT any document of changes in context.

OUTPUT set of contexts, including the current and evolved ones. Evolved con-

texts are associated with evolution possibilities.

Step 2 Perform risk assessment:

DESCRIPTION Apply an existing risk assessment method on each identified context.

Also, the risk countermeasure alternatives are expected to as a part of

output of the risk assessment method.

INPUT contexts identified in Step 1

OUTPUT risk countermeasure alternatives

Step 3 Model context evolution:

DESCRIPTION Establish the context evolution model from the identified contexts and

their correponsing risk countermeasure alternatives by using evolution

rules.

INPUT contexts with evolution probabilities (Step 1), risk countermeasure al-

ternatives (Step 2)

OUTPUT context evolution model

Step 4 Perform evolution analysis:

DESCRIPTION Run the evolution analysis on the established context evolution model

to calculate the evolution metrics for each risk countermeasure alterna-

tives to support the decision making process.

INPUT context evolution model

OUTPUT context evolution model quantified by evolution metrics

to [Lam09b, Chap. 6] for a more detailed discussion of these techniques. The evolution

probabilities are the experts’ belief that evolution possibilities might happen. The probabil-

ity semantics is accounted by using the game-theoretic approach described in Section 5.2.

9.2. THE RISK-EVOLUTION APPROACH 145

...

Context: Before

Context: After1
 Change #1
 Change #2

Context: After2
 Change #3
 Change #4

Context: Aftern
 Change #(m-1)
 Change #m

context name
Changes comparing
to the before context

(a) Before-after evolution

... ...

Context:
After1

 Change #1
 Change #2

Context:
Before

Context: Aftern

 Change #(m-1)
 Change #m

(time t0) (time t1) (time tn)

(b) Continuous evolution

Figure 9.2: The evolution perspectives of contexts

9.2.2 Step 2 – Perform Risk Assessment

In this step, we employ a state-of-the-art risk assessment method (e.g., Attack Trees [Sch99],

Cause-Consequence Diagrams [ML05], and CORAS [Lun+11a]) to perform risk assessment

for identified contexts. The outcome of this step is list of risk countermeasure alternatives,

which are also the output of a risk assessment method.

A risk countermeasure alternative includes a list of countermeasures, and the residual

risks (with residual risk level) of a system after implementing the countermeasures. A coun-

termeasure could be a security controls (e.g., technology, policy), or a high level security

requirement that mitigates risks. A risk level is a pair of the likelihood by which a risk might

occur, and its impact. Based on risk level, a risk is categorized, such as acceptable or un-

acceptable. A residual risk level is the risk level after implementing countermeasures. Fig-

ure 9.3(a) depicts an example risk matrix where the risk R1 is unacceptable and the risk R2
is acceptable. Figure 9.3(b) shows the reduction of R1 where the risk level of R1 is reduced

from unacceptable to acceptable by applying the countermeasure C1. This risk reduction

146 CHAPTER 9. EARLY DEALING WITH EVOLVING RISKS IN SOFTWARE SYSTEMS

may also be represented in text format, for example, R1: 〈l , I 〉 C 1−−→ 〈
l ′, I ′

〉
, where 〈l , I 〉 and〈

l ′, I ′
〉

are the risk levels without and with applying countermeasure C1 . We intentionally

do not specify the scales of likelihood and impact in Figure 9.3 because some might prefer

qualitative while others might prefer to have quantitative scales.

These information can be provided by many state-of-the-art risk assessment methods

such as Fault Tree Analysis [IEC90], Event Tree Analysis [Iec], Attack Trees [Sch99], Cause-

Consequence Diagrams [Rob+01; ML05], Bayesian networks [Cha91], and CORAS [Lun+11a].

Hence the proposed method is compatible with these methods.

When performing risk assessment on after contexts, we can do either a full risk assess-

ment from scratch, or an incremental risk assessment taking advantage on the risk assess-

ment on the before context. Needless to say, the former strategy does not use resources ef-

ficiently. The latter is better since it only addresses the changed parts of the after context

comparing to the before context [Lun+11a, Chap.15].

9.2.3 Step 3 – Model Context Evolution

This step takes the identified contexts and their corresponding risk countermeasure alterna-

tives to establish the context evolution model. We employ the modeling from Section 5.1 to

model the context evolution in terms of evolution rules. There are two kinds of rules: observ-

able rule and controllable rule. The former captures the way how the context evolves. The

latter captures different alternatives to address risks in each context. An evolved context, as

aforementioned, is foreseen with a certain evolution probability. For the sake of simplicity,

we assume that the evolving contexts identified in Step 1 are complete and mutual exclusive.

In other words, exact one of the after contexts materializes at the end.

Let C be a context, and Ci be the i th after context of C , and ca j be a risk countermeasure

alternative of C . The observable rule ro(C) and controllable rules rc (C) are described as

acceptable
unacceptable

likelihood

im
p
ac
t

R1

R2

(a) Risk matrix

acceptable
unacceptable

likelihood

im
p
a
ct R1

R1

C1

R2

(b) Residual risk level

Figure 9.3: Risk level and Residual risk level.

9.2. THE RISK-EVOLUTION APPROACH 147

p1

p2

p3

Risk countermeasure
alternative

Context: After1

 No change happens

Alternative 1 Alternative 2

Context: After2

 Change #1

Alternative 1 Alternative 2

Context: After3

 Change #2

Alternative 1 Alternative 2 Alternative 3

Context: Before

Alternative 1 Alternative 2

Context: After4

 No change happens

Alternative 1 Alternative 2

Context: After5

 Change #3

Alternative 1 Alternative 3

p4

p5

Figure 9.4: The context evolution model.

follows.

ro(C) =
{

C
pi−→Ci

∣∣∣∣∣ n∑
i=1

pi = 1

}
(9.1)

rc (C) = {
C −→ ca j

∣∣ j = 1..m
}

(9.2)

where n is the number of after contexts of C ; pi is the evolution probability for which C

evolves to Ci ; m is the number of risk countermeasure alternatives of C . The sum of all pi is

1 since the after contexts are complete and mutual exclusive.

The before-after evolution perspective is represented by an observable rule. The continu-

ous evolution perspective is represented as a sequence of observable rules where the current

context of an observable rule is the after context of another observable rule, so on and so

forth.

Figure 9.4 shows a graphical visualization of the context evolution model of the contin-

uous evolution perspective. The observable rule is denoted by connections from a before

context to after contexts. The decorators on the connections are the evolution probabili-

ties. To denote the controllable rule, the rectangles representing context are extended with

a new compartment containing risk countermeasure alternatives, which are represented by

round rectangles. The controllable rule then is understood as different risk countermeasure

alternatives of a context.

148 CHAPTER 9. EARLY DEALING WITH EVOLVING RISKS IN SOFTWARE SYSTEMS

9.2.4 Step 4 – Perform Evolution Analysis

This step performs an evolution analysis on the context evolution model. The analysis em-

ploys evolution metrics from Section 5.3. In particular for the field of evolving risks, the evo-

lution metrics aim to quantify to what extent a risk countermeasure alternative can resist the

evolution. This analysis relies on three quantitative metrics: Max Belief, Residual Disbelief,

and Max Disbelief.

Max Belief (MaxB): is the maximum belief that a risk countermeasure alternative will be ap-

propriate if evolution happens. By term appropriate, we mean the residual risks after

applying the countermeasure alternative in the evolved contexts will still be accept-

able. So, the system will still be safe.

Residual Disbelief (ResD): is the belief that a risk countermeasure alternative will be inap-

propriate after evolution happens. It is also the belief by which the implementation

of the risk countermeasure alternative should be delayed until the context is clearly

known.

Max Disbelief (MaxD): is the maximum belief that a risk countermeasure alternative will be

inappropriate if evolution happens.

We define a binary function appropriate() that takes two inputs: a context C , and a risk

countermeasure alternative ca, to produce 1 if ca is appropriate within C , or 0 otherwise.

The Max Belief and Residual Disbelief of ca for the before-after evolution of the context C

are as follows.

MaxB(ca|C) = max
{〈C

pi−→Ci 〉∈ro (C)|appropriate(Ci ,ca)=1}

pi (9.3)

ResD(ca|C) = 1− ∑
{〈C

pi−→Ci 〉∈ro (C)|appropriate(Ci ,ca)}

pi (9.4)

MaxD(ca|C) = max
{〈C

pi−→Ci 〉∈ro (C)|appropriate(Ci ,ca)=0}

pi (9.5)

For the continuous evolution of the context C , we extend concept Max Belief, Residual

Disbelief, and Max Disbelief to Continuous Max Belief (MaxB∗), Continuous Residual Disbe-

lief (ResD∗), and Continuous Max Disbelief (MaxD∗). The formulas of these extended met-

9.3. THE RUNNING EXAMPLE 149

rics are as follows.

MaxB∗(ca|C) =

appropriate(C ,ca) if C does not evolve,

max
{〈C

pi−→Ci 〉∈ro (C)|appropriate(Ci ,ca)=1}

pi ·MaxB∗(ca|Ci) otherwise.

(9.6)

ResD∗(ca|C) =

1−appropriate(C ,ca) if C does not evolve,

1− ∑
{〈C

pi−→Ci 〉∈ro (C)|appropriate(Ci ,ca)=1}

pi · (1−ResD∗(ca|Ci)) otherwise.

(9.7)

MaxD∗(ca|C) =

appropriate(C ,ca) if C does not evolve,

max
{〈C

pi−→Ci 〉∈ro (C)|appropriate(Ci ,ca)=0}

pi ·MaxD∗(ca|Ci) otherwise.

(9.8)

In (9.6)(9.7), by saying the context C does not evolve, we mean that no evolving context

of C is identified. This does not mean C stops evolving, but its evolution may be ignored in

the analysis due to some reason.

After this analysis, each risk countermeasure alternative is quantified with two evolu-

tion metrics: Max Belief, Residual Disbelief, and Max Disbelief. Together with the benefit

and cost of a risk countermeasure alternative, these evolution metrics can support design-

ers in selecting the most evolution-resilient alternative for the system. To the perspective of

evolution-resilience, a better alternative is one that has a higher Max Belief, a lower Residual

Disbelief, and a lower Max Disbelief.

9.3 The Running Example

This section exemplifies the proposed method by a running example taken from an indus-

trial project in the ATM domain: the SWIM project [Pro08; Adm09]. The SWIM project aims

to provide consistent, efficient, transparent, and secure means for information interchange

among ATM systems. This example focuses on the Messaging Service, a part of SWIM, which

is responsible for a common and reliable layer to exchange messages within the SWIM ar-

chitecture.

Figure 9.5 illustrates the Messaging Service (MSG) architecture. In side the MSG, The

Mediator component is in charge of message transformation. The Message Routing is in

150 CHAPTER 9. EARLY DEALING WITH EVOLVING RISKS IN SOFTWARE SYSTEMS

Messaging Service

Web
Service

Web
Service

Internal
Services

Other ATM
Services

External
Services

SWIM

Security
Gateway

Airport VPN

Mediator

Message Routing

Figure 9.5: The architecture of the Messaging Service within SWIM.

charge of point-to-point message transmission. Internal Services within SWIM can directly

connect to the MSG. The communications between other ATM Services, External Service

and MSG are done through the Web Service interface, and are subject to the supervision

of the Security Gateway. Hereafter, we apply steps in the proposed method on the running

example.

Applying Step 1: For simplicity, we do not show the before context. Instead, we only de-

scribe anticipated changes that might happen in the before context:

C1 The business rules might become more complex, therefore more expressive policies

are required to protect confidential resources.

C2 The ATM network might change from private network to public internet.

Since these changes are independent, either only C1, or only C2, or both might happen.

Consequently, the following after contexts are identified with corresponding probabilities of

occurrence:

• After1 (C1): no change will happen – 0.10.

• After2 (C2): only C1 will happen – 0.30.

• After3 (C3): only C2 will happen – 0.35.

9.3. THE RUNNING EXAMPLE 151

• After4 (C4): both C1 and C2 will happen – 0.25.

Applying Step 2: We perform risk assessment for all identified contexts. We only consider

one risk resulting from the risk assessment on the before context of MSG: “unwanted access to

confidential resources" (R1). The corresponding countermeasure, in a high level of abstrac-

tion, is: “implements authentication/authorization mechanism" (SR-1). It is further refined

into three operational countermeasure alternatives: ca1:X.509+SAML2, ca2:Kerberos+LDAP3,

and ca3:SAML+XACML4. Each countermeasure alternative includes two components: one

for authentication (the first component), and another one for authorization (the last one).

We use RLV1, RLV1’, and RLV1” to respectively represent for the residual risk level of R1
after applying ca1, or ca2, or ca3

We do not describe the risk assessment on after contexts, but discuss only the difference

between the risk assessment output of these contexts and that of the before context, as shown

below.

• C 1: as same as the before context.

• C 2: a new risk is identified: “unauthorized access to confidential resources because the

authorization mechanism cannot capture expressive policies"5 (R2). The countermea-

sure for R2 is: “implement a high expressive authorization mechanism" (SR-2). The

refined countermeasure alternative will be either ca2, or ca3. Similarly, the residual

risk levels of R2 by applying ca2 and ca3 are respectively denoted as RLV2 and RLV2’.

• C 3: a new risk is identified: “system collapses due to the malicious attacks on centralized

key server" (R3). The countermeasure for R3 is: “implement a robust key management

mechanism" (SR-3). The refined countermeasure alternatives will be either ca1, or

ca3. Similarly, the residual risk levels of R3 by applying ca2 and ca3 are respectively

denoted as RLV2 and RLV2’.

• C 4: both risks R2 and R3 are identified. Consequently, the only refined countermea-

sure alternative will be SAML+XACML. The residual levels of R2 and R3 are denoted

as RLV2, and RLV3 respectively.

2Security Assertion Markup Language
3Lightweight Directory Access Protocol
4eXtensible Access Control Markup Language
5This is a limit of SAML[RR09, chapter 6]

152 CHAPTER 9. EARLY DEALING WITH EVOLVING RISKS IN SOFTWARE SYSTEMS

Messaging Service (Before)

X.509 +
SAML

Kerberos
+ LDAP

SAML +
XACML

Messaging Service (After1)

X.509 +
SAML

Kerberos
+ LDAP

SAML +
XACML

Messaging Service (After2)

X.509 +
SAML

Kerberos
+ LDAP

SAML +
XACML

 Expressive policies required No change happens

Messaging Service (After3)

X.509 +
SAML

Kerberos
+ LDAP

SAML +
XACML

 ATM network uses public internet

Messaging Service (After4)

X.509 +
SAML

Kerberos
+ LDAP

SAML +
XACML

 Expressive policies required
 ATM network uses public internet

0.1 0.3 0.35 0.25

Figure 9.6: The evolution of Messaging Service.

Applying Step 3: Let C0 be the before context, the evolution rules are as follows:

ro(()C0) =
{
C0

0.1−−→C1,C0
0.30−−→C2,C0

0.35−−→C3,C0
0.25−−→C4

}
,

rc (()C1) = {
C1 −→

〈{
X.509,SAML

}
,RLV1

〉
,C1 −→

〈{
Kerberos,LDAP

}
,RLV1

〉
,

C1 −→
〈{

SAML,XACML
}

,RLV1
〉}

,

rc (()C2) = {
C2 −→

〈{
Kerberos,LDAP

}
,RLV1, RLV2

〉
,C2 −→

〈{
SAML,XACML

}
,RLV1, RLV2

〉}
,

rc (()C3) = {
C3 −→

〈{
X.509,SAML

}
,RLV1, RLV3

〉
,C3 −→

〈{
SAML,XACML

}
,RLV1, RLV3

〉}
,

rc (()C4) = {
C4 −→

〈{
SAML,XACML

}
,RLV1, RLV2, RLV3

〉}
Figure 9.6 exhibits the context evolution model of the running example. In the figure, to

improve the readability, we represent the risk countermeasure alternative by its correspond-

ing countermeasures.

Applying Step 4: From (9.3)(9.4), we calculate the Max Belief, Residual Disbelief, and Max

Disbelief of each risk countermeasure alternative. The results are reported in Table 9.2.

From the evolution-resilient perspective, the alternative SAML + XACML is the best since

it has the highest Max Belief, the lowest Residual Disbelief and the lowest Max Disbelief . The

alternative X.509 + SAML places the second, and the last one Kerberos + LDAP is the third.

These information are combined with the residual risks to support the countermeasure se-

lection.

9.4. CHAPTER SUMMARY 153

Table 9.2: The Max Belief and Residual Disbelief.

Risk Countermeasure Alternative

Counermeasures Residual Risks MaxB ResD MaxD

ca1:X.509 + SAML R1:RLV1, R3:RLV3 0.35 0.55 0.30

ca2:Kerberos + LDAP R1:RLV1’, R2:RLV2 0.30 0.60 0.35

ca3:SAML + XACML R1:RLV1”, R2:RLV2’, R3:RLV3’ 0.35 0 0

9.4 Chapter Summary

In this chapter, we considered a target software system in a period of time with different con-

texts. We captured the evolution of risks, and then reason on their uncertainties to quantify

evolution-resilient countermeasure alternatives in terms of three evolution metrics.

It would be even more beneficial for decision makers if we can also provide more infor-

mation to assess these countermeasure alternatives within a particular context at a partic-

ular point of time. Hence, in the next Chapter 10 , we go deeper into the risks of the target

software system at a particular context. We shall evaluate every countermeasure alternative

in a context in terms of cost and benefit.

C
H

A
P

T
E

R

10
SELECTING COST-EFFECTIVE RISK

COUNTERMEASURES

This chapter proposes a method to integrate the cost assessment into risk analysis to

aid the selection of cost-effective risk countermeasures. The proposed method makes

use of a risk graph model annotated with potential countermeasures, estimates for

their cost and effect. A calculus is then employed to reason about this model in order

to support decision by means of decision diagrams. We exemplify the instantiation

of the method in the CORAS method for security risk analysis. We also enrich the

capacity of evolution modeling and reasoning to the proposed method by applying

the risk-evolution approach described in the previous chapter.

T
HE previous chapter has presented a risk-evolution approach that operates on any

risk assessment methods. This is an advantage of it, but the representation the evo-

lution is limited in a very generic way. This chapter presents a method that support

the selection of cost-effective risk countermeasures based on risk graph. Then we apply the

proposed risk-evolution approach to the method. Since we base the method on risk graph,

which is generic enough to represent for many risk assessment methods, the risk-evolution

approach (Chapter 9) plus the method in this chapter could deliver a more fine-grain rep-

resentation of evolution in risk assessment, while still enabling the capability to deal with

evolution.

155

156 CHAPTER 10. SELECTING COST-EFFECTIVE RISK COUNTERMEASURES

The organization of this chapter is as follows. In Section 10.1 we present the proposed

method, including the steps, the modeling support and the analysis techniques. Section 10.2

details the calculus for propagating and aggregating reduction effect and effect dependency.

Section 10.3 exemplifies the method in CORAS. Section 10.4 discusses how to model evo-

lution in risk graph and how to perform reasoning about evolution. Finally, Section 10.5

summarizes this chapter.

10.1 The Proposed Method

As illustrated in Figure 10.1, the proposed method takes a risk model resulting from a risk

assessment and the associated risk acceptance criteria as input and delivers a set of rec-

ommended countermeasure alternatives as output. Hence, the method assumes that risk

assessment has already been conducted, i.e. that risks have been identified, estimated and

evaluated and that the overall risk analysis process is ready to proceed with the risk treat-

ment phase. We moreover assume that the risk analysis process complies with the ISO 31000

risk management standard [ISO09], in which risk countermeasure is the final phase. The

method consists of three main steps as follows:

STEP 1 Annotate risk model: Identify and document countermeasures. The results are docu-

mented by annotating the risk model taken as input with relevant information includ-

ing the countermeasures, their cost, their reduction effect (i.e., effect on risk value), as

well as possible effect dependencies (i.e., countervailing effects among countermea-

sures).

STEP 2 Perform countermeasure analysis: Enumerate all countermeasure alternatives and reeval-

uate the risk picture for each alternative. The analysis makes use of the annotated risk

model and a calculus for propagating and aggregating the reduction effect and effect

dependency along the risk paths.

STEP 3 Perform synergy analysis: Perform synergy analysis for selected risks based on deci-

sion diagrams. The outcome is recommended countermeasure alternatives, which

cost-effectively mitigate the selected risks.

Figure 10.2 presents the conceptual model, expressed as a UML class diagram [Rum+04]

on which the proposed method builds. A Risk Model is a structured way of representing an

unwanted incident and its causes and consequences using graphs, trees or block diagrams

[Rob+01], or tables [Lun+11a]. An unwanted incident is an event that harms or reduces the

10.1. THE PROPOSED METHOD 157

STEP 3.
Perform synergy

analysis

STEP 1.
Annotate risk

model

STEP 2.
Perform

countermeasure analysis

[INPUT]
Risk Model and

Risk Acceptance Criteria

[OUTPUT]
Recommended

Countermeasure
Alternative

Figure 10.1: Steps of the proposed method.

Risk Model

Calculus

Annotation

Countermeasure

Expenditure

Dependency
Relation

Decision Diagram

reasons about

* *1

Effects Relation

1

1

annotates derives
1

Figure 10.2: Conceptual model.

value of an asset, and a risk is the likelihood of an unwanted incident and its consequence for

a specific asset [ISO09]. A Countermeasure mitigates risk by reducing its likelihood and/or

consequence. The Expenditure includes the expenditure of countermeasure implementa-

tion, maintenance and so on. The Reduction Effect captures the extent to which a counter-

measure mitigates risks. The Reduction Effect could be the reduction of likelihood, and/or

the reduction of consequence of a risk. The Effect Dependency captures the countervailing

effect among countermeasures that must be taken into account in order to understand the

combined effect of identified countermeasures. The Calculus provides a mechanism to rea-

son about the annotated risk model. Using the Calculus, we can perform countermeasure

analysis on annotated risk models to calculate the residual risk value for each individual risk.

A Decision Diagram facilitates the decision making process based on the countermeasure

analysis.

10.1.1 Input Assumptions

The input required by the proposed method is a risk model generated by a risk assessment,

and the corresponding risk acceptance criteria. To ensure that the method is compatible

with several risk modeling techniques, we expect the risk model could be understood as a

risk graph instantiation. A risk graph [Bra+10] is a common abstraction of several established

risk modeling techniques such as Fault Tree Analysis (FTA) [IEC90], Event Tree Analysis (ETA)

[Iec], Attack Trees [Sch99], Cause-Consequence diagrams [Rob+01; ML05], Bayesian net-

works [Cha91], and CORAS risk diagrams [Lun+11a]. Hence, the method complies with these

158 CHAPTER 10. SELECTING COST-EFFECTIVE RISK COUNTERMEASURES

v1

[f1, co1]

v2

[f2, co2]

v3

[f3, co3]
v4

[f4, co4]

v6

[f6, co6]
v5

[f5, co5]

v7

[f7, co7]

fa

fb

fc

fd

ff

fe

Figure 10.3: Risk graph.

v
cm
[e]

pr, cr

Figure 10.4: Countermeasure with treats relation.

v

cm1

epr, ecr
cm2

Figure 10.5: Effect dependency relation.

risk modeling techniques, and can be instantiated by them.

A risk graph is a finite set of vertices and relations (see Figure 10.3). Each vertex v rep-

resents a threat scenario, i.e., a sequence of events that may lead to an unwanted incident,

and can be assigned a probability p, and a consequence co. A leads-to relation from v1 to v2

means that the former threat scenario may lead to the latter. Probabilities on the relations

are conditional probabilities indicating the likelihood of the former to lead to the latter when

the former occurs.

10.1.2 Detailing of Step 1 – Annotate Risk Model

This step annotates the input risk model with required information for further analysis. There

are four types of annotation as follows:

Countermeasure: In risk graphs, countermeasures are represented as rectangles. In Fig-

ure 10.4 there is one countermeasure and this is named cm.

Expenditure: In risk graphs, expenditure is expressed within square brackets following

the countermeasure name (e in Figure 10.4). This is an estimated of the total amount of

money spent to ensure the mitigation of countermeasure including expenditure of imple-

mentation, deployment, maintenance, and so on.

10.1. THE PROPOSED METHOD 159

Reduction effect: In risk graphs, reduction effect is represented by a dashed arrow deco-

rated by two numbers (pr and cr in Figure 10.4). It captures the mitigating effect of a coun-

termeasure in terms of reduced likelihood (i.e., probability reduction - pr), reduced conse-

quence (i.e., consequence reduction - cr), or both. Both pr and cr are relative percentage

values, i.e., pr,cr ∈ [0,1].

Effect dependency: In risk graphs, effect dependency is represented by a dash-dot arrow

with solid arrowhead decorated by two numbers (effect on probability reduction (epr), and

effect on consequence reduction (ecr) in Figure 10.5). It captures the impact of a countermea-

sure to the reduction effect of another, i.e., it can increase or decrease pr and/or cr of another

countermeasure. The epr impacts pr while the ecr impacts cr. Both epr and ecr are relative

percentage values, i.e., epr,ecr ∈ [0,1].

10.1.3 Detailing of Step 2 – Countermeasure Analysis

The countermeasure analysis in this step is conducted for every individual risk of the anno-

tated risk model. The analysis enumerates all possible countermeasure combinations, called

countermeasure alternatives (or alternatives for short) and evaluates the residual risk value

(i.e., residual consequence and probability) with resect to each alternative to determine the

most efficient one. Residual risk value is obtained by propagating the reduction effect along

the risk model to get the revised risk values. To this purpose, we have developed a calculus

with propagation rules. An example of rule is shown as below.

Rule 2.1 (Countermeasure) If there is a treats relation from countermeasure cm to vertex

v(p,co) with probability reduction pr and consequence reduction cr , we have:

cm
pr,cr−−−→ v v(p,co)

v(p ·pr ,co · cr)

Rule 2.1 applies to countermeasures as depicted in Figure 10.4. The probability reduction

pr on the probability p of the scenario means that p is reduced by pr ∈ [0,1]. Hence, p is

multiplied by pr = 1−pr . Likewise for the consequence reduction. The complete list of rules

is available in [Tra+13b].

From the leftmost threat scenarios (i.e., scenarios that have only outgoing leads-to re-

lations), probabilities assigned to threat scenarios are propagated to the right. During the

propagation, probabilities assigned to leads-to relations and reduction effects of counter-

measures are taken into account. Finally, the propagation stops at the rightmost threat sce-

160 CHAPTER 10. SELECTING COST-EFFECTIVE RISK COUNTERMEASURES

S0

S1

S2

S3

c1

c2

c1

c2

Frequency

C
o

n
se

q
u

e
n

ce

C1 – countermeasure 1
C2 – countermeasure 2

Risks in this area are
acceptable

Risks in this area are
not acceptable

Figure 10.6: Decision diagram.

narios (i.e., scenarios that have only incoming leads-to relations). Based on the results from

the propagation, the residual risk value is computed.

Decision Diagram (Figure 10.6) is a directed graph used to visualize the outcome of a

countermeasure analysis. A node in the diagram represents a risk state, which is a triplet

of probability, consequence, and countermeasure alternatively of the risk in analyzed. The

probability and consequence are respective the X and Y coordinate of the node. The coun-

termeasure alternative is annotated on the path from the initial state S0 where no counter-

measure applied to the node. Notice that we ignore all states whose residual consequence

and probability are both greater than those of S0 since it is useless to implement such coun-

termeasures.

10.1.4 Detailing of Step 3 – Synergy Analysis

The aim of the synergy analysis is to recommend a cost-effective countermeasure alternative

for mitigating all risks, namely global countermeasure alternative. Such recommendation is

based on the decision diagrams for the individual risks (generated in Step 2), and the risk

acceptance criteria, and the overall costs (OC) of global countermeasure alternatives, which

are calculated as follows:

OC(ca) = ∑
r∈Rca

rc(r)+ ∑
cm∈ca

cost(cm) (10.1)

where ca is a global countermeasure alternative; Rca is the set of risks with respect to the

global countermeasure alternative ca; rc() is a function that yields the loss (in monetary

10.2. THE CALCULUS 161

value) due to the risk taken as argument (based on its probability and consequence); cost()

is a function that yields the expenditure of the countermeasure taken as argument.

The synergy analysis is decomposed into three following substeps:

STEP 3A Identify global countermeasure alternatives : Identify the set of global countermea-

sure alternatives C A for which all risks are acceptable with respect to the risk accep-

tance criteria. Decision diagrams of individual risks can be exploited for identifying

C A.

STEP 3B Evaluate global countermeasure alternatives : If no such global countermeasure al-

ternative is identified (C A =;), do either of the following:

– Identify new countermeasures and go to Step 1, or

– Adjust the risk acceptance criteria and go to Step 3A

If some global countermeasure alternatives are identified (C A 6= ;), select a global

countermeasure alternative ca ∈C A with the lowest overall cost OC(ca).

STEP 3C Decide cost-effective global countermeasure alternative: : If OC(ca) is acceptable (for

the customer company in question) then terminate the analysis. Otherwise, identify

more (cheaper and/or more effective) countermeasures and go to Step 1.

The above procedure may of course be detailed further based on various heuristics. For

example, in many situations, with respect to Step 3A, if the global countermeasure alterna-

tive ca ∈ C A, then we do not have to consider other global countermeasure alternative ca′

such that ca′ ⊆ ca. However, we do not go into these issues here.

10.2 The Calculus

10.2.1 Rules for Risk Graphs

In this section, we present the formal calculus for risk graphs. The calculus extends the cal-

culus presented in [Bra+10] with rules to deal with treatment effect and dependency. Note

that for all rules there is an implicit assumption that the premises and the conclusion are

type-correct.

Rule 1.1 (Relation) If there is a direct relation from v to v ′, we have:

v(p) v
p ′
−→ v ′

(v u v ′)(p ·p ′)

162 CHAPTER 10. SELECTING COST-EFFECTIVE RISK COUNTERMEASURES

Rule 1.2 (Mutually exclusive vertices) If the vertices v and v ′ are mutually exclusive, we

have:

v(p) v ′(p)

(v t v ′)(p)

Rule 1.3 (Statistical independent vertices) If the vertices v and v ′ are statistically indepen-

dent, we have:

v(p) v ′(p ′)
(v t v ′)(p +p ′)

Rule 1.4 (Countermeasure) If the countermeasure cm treats vertex v , we have:

cm
pr,cr−−−→r v vt (p,co) ¬∃r ′ : cmr ′ ∈ t

vt∪{cmr }(p ·pr ,co · cr)

Rule 1.5 (Effect dependency) If there is an effect dependency from a countermeasure cm′

to a treats relation, we have:

cm′ epr,ecr−−−−−→
(
cm

pr,cr−−−→ v
)

cm′ 6∈ r

cm
pr+epr,cr+ecr−−−−−−−−−−→r∪{cm′} v

10.2.2 Rules for Treatment Diagrams

In this section, we present the formal calculus for treatment diagrams. The calculus contains

Rule 2.1 to Rule 2.4 from CORAS calculus [Lun+11a, Chapter 13], and new introduced rules

to deal with treatment effect and dependency. In the context of treatment diagrams of this

work, we work with frequency instead of probabilities. Hence, we replace p with f , pr with

f r , and epr with e f r from Rule 2.1 to Rule 2.10.

Rule 2.1 (Initiate) For a threat t and scenario/incident v related by the initiates relation,

we have:

t
f−→ v

(t u v)(f)

10.2. THE CALCULUS 163

Rule 2.2 (Leads-to) For the scenarios/incidents v1 and v2 related by the leads-to relation,

we have:

v1(f) v1
l−→ v2

(v1 u v2)(f · l)

Rule 2.3 (Mutually exclusive scenarios/incidents) If the scenarios/incidents v1 and v2 are

mutually exclusive, we have:

v1(f) v2(f)

(v1 t v2)(f)

Rule 2.4 (Independent scenarios/incidents) If the scenarios/incidents v1 and v2 are sepa-

rate and statistically independent, we have:

v1(f1) v2(f2)

(v1 t v2)(f1 + f2)

Rule 2.5 (Treatment on scenario) If the treatment tms treats the scenario v , we have:

tms
f r−→r v vt (f) ¬∃r ′ : tmsr ′ ∈ t

vt∪{tmsr }(f · f r)

Rule 2.6 (Treatment on risk) For treatment tms that mitigates the risk v , we have:

tms
f r,cr−−−→r v vt (f ,co) ¬∃r ′ : tmsr ′ ∈ t

vt∪{tmsr }(f · f r ,co · cr)

Rule 2.7 (Treatment on leads-to relation) If the treatment tms treats the leads-to relation

relating the scenario v and the scenario/risk v ′, we have:

tms
f r−→r (v

f−→ v ′)

tms
f r−→r (v u v ′)

164 CHAPTER 10. SELECTING COST-EFFECTIVE RISK COUNTERMEASURES

Rule 2.8 (Treatment on initiate relation) If the treatment tms treats the initiate relation

relating the threat t and the scenario v , we have:

tms
f r−→r

(
t

f−→ v

)
tms

f r−→r (t u v)

Rule 2.9 (Treatment on threat) If the treatment tms treats the threat t and t initiates the

scenario v , we have:

tms
f r−→r t t

f−→ v

tms
f r−→r (t u v)

Rule 2.10 (Effect dependency) If the treatment tms′ affects the treats relation connecting

the treatment tms and a scenario/risk v , we have:

tms′
e f r,ecr−−−−−→

(
tms

f r,cr−−−→ v

)
tms′ 6∈ r

tms
f r+e f r,cr+ecr−−−−−−−−−−→r∪{tms′} v

10.3 Exemplification in CORAS

As a demonstration of applicability, this section instantiates the proposed method into the

CORAS method for security risk analysis[Lun+11a] and exemplifies how the resulting ex-

tended CORAS method and language can be used to select cost-efficient risk countermea-

sures in an example drawn from a case study within the eHealth domain [Ome+12].

The risk model in the CORAS method is captured by so-called risk diagrams. A risk di-

agram is a causality graph consisting of potential causes (i.e., threats) that might (or might

not) exploit flaws, weaknesses, or deficiencies (i.e., vulnerabilities) causing a series of events

(i.e., threat scenarios) to happen, which could lead to unwanted incidents with certain likeli-

hood and concrete consequence (i.e., risks) to a particular asset. Threat scenarios and risks

are also called core elements in the risk diagram notation.

10.3. EXEMPLIFICATION IN CORAS 165

Patient

Diagnostic sensors

(wearable)

Handheld device

IdP
eHealth
Server

Browser of

Patient

Clinical Application

EHR DB

The patient has one or more monitoring devices in the form of wearable sensors. They provide data

to an application in a handheld device, which does some processing on the data, aggregates the

results and sends them to the eHealth Server. The patient and his devices are authenticated by an

Identity Provider (IdP).

Figure 10.7: Architectural sketch of Patient Monitoring scenario (from [NES11, Figure 3.2])

In the risk diagram, there are two kinds of relationships with assigned likelihoods: ini-

tiate and leads-to relations. The former connects a threat to a core element, and the latter

connects a core element to another core element. Likelihoods assigned to initiate relations

can be either probabilities or frequencies, whereas, likelihoods assigned to leads-to relations

are conditional likelihoods.

Any risk diagram can be understood as an instantiation of a risk graph; such conver-

sion is formally defined in [Bra+10]. To make the instantiation more comprehensible, we

also present a running example that exploits an eHealth scenario proposed by the NESSoS

project[NES11] to exemplify the resulting extended CORAS method.

10.3.1 eHealth Running Example: Patient Monitoring

As illustrated in Figure 10.7, patients’ behaviors and symptoms are monitored in realtime.

This provides an improved basis for disease diagnoses and tailored therapy prescription reg-

iments. Patients are equipped with sensors that continuously collect patients data and send

these data to a handheld smart device (e.g., smart phone). This smart device, in turn, sends

the patient data to external eHealth servers where the patients’ eHealth Records (EHRs) are

updated.

The CORAS risk diagram in Figure 10.8 presents a partial result from a risk analysis of the

166 CHAPTER 10. SELECTING COST-EFFECTIVE RISK COUNTERMEASURES

Handheld could not

connect to sensors

[40:10y]

Someone else is

wearing the sensors

[40:10y]

Data acquisition is

suspended

[32:10y, 2500$]

Loss of integrity of

monitored data

[36:10y, 5000$]

Unstable

handheld SW

Insufficiencies in binding

agreement on terms of use
Patient

Lack of

authentication

mechanism

Transmission of

monitored data is

interrupted

[33:10y]

Loss of monitored data

[26.4:10y, 5000$]

Provisioning of

Monitoring Service

Security of EHR

Data

Human

threat

Non-human

threat

Threat

scenario

Vulnerability

Risk

Asset

40:10y

40:10y

0.8

0.9

0.8

0.9 0.8

Handheld SW

failure

Handheld HW

failure

Handheld goes down

[10:10y]

Unstable/unreliable

handheld HW

10:10y

Network connection

 goes down

[30:10y]

Network failure
Unstable/unreliable

network connection

30:10y

Figure 10.8: Risk diagram of the scenario.

Patient Monitoring scenario [Ome+12]. In this risk diagram, network failure exploits the vul-

nerability unstable/unreliable network connection to initiate network connection goes down.

Likewise, handheld HW failure exploits the vulnerability unstable/unreliable handheld HW

to initiate handheld goes down. Both handheld goes down as well as network connection goes

down may lead to the transmission of monitored data is interrupted. This, consequently, may

lead to loss of monitored data, which impacts the provisioning of monitoring service. The rest

of the diagram is interpreted in the similar manner.

We assume in the following that this diagram is a consistent and complete documenta-

tion of risks identified during the risk assessment. We moreover use frequencies to estimate

likelihoods of core elements. Reasoning about frequencies in the risk and treatment assess-

ment is also supported by the proposed calculus.

10.3.2 Applying Step 1 – Annotate Risk Model

In this step, we annotate the CORAS risk diagrams according to Step 1 to create CORAS treat-

ment diagrams. Note that in CORAS, countermeasures are referred to as treatments.

Treatment annotation: treatments can apply to most of the elements in a treatment di-

agram, including all types of core elements, threats, and vulnerabilities. Figure 10.9 shows

10.3. EXEMPLIFICATION IN CORAS 167

Network connection
goes down

[30:10y]

Network
failure

Unstable/unreliable network
connection

Ensure sufficient QoS from
network provider

[15000$:10y]

Implement redundant
network connection

[5000$:10y]

0.7L

0.3L

30:10y

0.7L

Treatment

Cost of Treatment

Reduction Effect

Effect dependency

Figure 10.9: Annotated diagram

an example in which a treatment implement redundant network connection treats the sce-

nario network connection goes down, which was initiated by network failure by exploiting the

vulnerability unstable/unreliable network connection.

Expenditure annotation: the treatment expenditure, annotated as value inside the treat-

ment bubble, is the total expenditure spent for a treatment in a period of time. For instance,

in Figure 10.9, the expenditure for implementing a redundant network connection is 5000$

in ten year.

Reduction effect annotation: following Step 1, reduction effect in the CORAS instantia-

tion is annotated on treats relations as a pair
〈

f r,cr
〉

, where f r,cr are frequency reduction

and consequence reduction, respectively. For example, in Figure 10.9, the frequency of net-

work failure is thirty times in ten years, annotated as 30:10y . In a CORAS diagram, we suffix

the value of f r and cr with the letter ‘L’ and ‘C’, respectively, to distinguish between them.

The treatment implement redundant network connection only reduces the frequency (not

consequence) of unreliable network connection by 0.7 at cost 5000USD:10y . This means the

reduced frequency is (1−0.7) ·30:10y = 9:10y .

Effect dependency annotation: in Figure 10.9, to mitigate network connection goes down,

we could ensure sufficient Quality-of-Service (QoS) from network provider with the cost of

15000USD:10y . This, however, reduces the effect of a redundant connection. These two

treatments are countervailing. Ensuring such QoS will reduce the reduction effect of a re-

dundant connection by 0.3 as annotated in the figure.

As summary, Figure 10.10 shows the treatment diagram resulting from annotating the

risk diagram in Figure 10.8. Note that the likelihood annotations in Figure 10.10 are after the

168 CHAPTER 10. SELECTING COST-EFFECTIVE RISK COUNTERMEASURES

application of the analysis of Step 2, which is explained next.

10.3.3 Applying Step 2 – Treatment Analysis

The analysis employs an instantiated version of the calculus for risk graphs. Here, we ex-

emplify the propagation of likelihoods and reductions through an example taken from the

annotated treatment diagram of the eHealth scenario. Particularly, we show how to do the

propagation for risk “Loss of Monitored Data" (LMD). The result is presented in Figure 10.10.

For clarity, we use following acronyms for text in the diagram:

• TDI: “Transmission of monitored Data is Interrupted"

• NCD: “Network Connection goes Down"

• HGD: “Handheld Goes Down"

• NF: “Network Failure"

• HHW: “Handheld HW failure"

• IRN: “Implement Redundant Network connection"

• EQS: “Ensure sufficient QoS from network provider"

• IRH: “Implement Redundant Handheld"

Here we describe the frequency propagated for LMD. First, NF initiates NCD with fre-

quency 30:10y . The treatment IRN would reduce this frequency by 0.7L. However, due to

the effect dependency of EQS to IRN, the likelihood reduction of IRN is changed to 0.7L ·(1−
0.3L) ≈ 0.5L. Hence, IRN reduces the frequency propagated to NCD to 30:10y · (1− 0.5) =
15:10y . EQS would reduce the frequency of NCD by 0.7L. So, the frequency propagated to

NCD is 15:10y ·(1−0.7) = 4.5:10y . Second, HHW initiates HGD with frequency 10:10y . This is

propagated to HGD. IRH treats HGD with likelihood reduction 0.7L. Hence, frequency prop-

agated to HGD is 10:10y · (1−0.7) = 3:10y . Since NCD and HGD are independent and both

of them lead-to TDI, the frequency propagated to TDI is 4.5:10y ·0.8+3:10y ·0.9 = 6.3:10y .

Finally, the propagated frequency of LMD is 6.3:10y ·0.8 = 5.04:10y .

Likewise we can calculate the frequencies of the entire diagram. Figure 10.10 shows the

complete diagram with frequencies calculated and annotated. Note that in Figure 10.10 we

have calculated the likelihoods when all treatments are taken into account. However, due

10.3. EXEMPLIFICATION IN CORAS 169

Handheld could not
connect to sensors

[16:10y]

Someone else is wearing
the sensors

[24:10y]

Data acquisition is
suspended

[12.8:10y, 2500$]

Loss of integrity of
monitored data

[4.32:10y, 5000$]

Unstable handheld
SW

Insufficiencies in binding
agreement on terms of use

Patient Lack of authentication
mechanism

Transmission of monitored
data is interrupted

[6.3:10y]

Loss of monitored data
[5.04:10y, 5000$]

Provisioning of
Monitoring Service

Security of EHR Data

Sign contract on
conditions of use

[3000$:10y]

Use biometric
authentication
[10000$:10y]

Update to latest
stable handheld SW

[1000$:10y]

0.3L

0.8L

0.2L

0.8

0.9

0.8

0.8

0.9

40:10y

40:10y

Handheld SW
failure

0.6C

0.5L

Implement
redundant handheld

[2500$:10y]

0.7L

0.33L

0.5L

Network connection
goes down
[4.5:10y]

Network failure
Unstable/unreliable network

connection

Ensure sufficient QoS
from network provider

[15000$:10y]

Implement redundant
network connection

[5000$:10y]

0.7L
0.7L

0.3L

30:10y

Handheld HW failure

Handheld goes down
[3:10y]

Unstable/unreliable handheld
HW

10:10y

Figure 10.10: Annotated treatment diagram with frequencies propagated.

to the effect dependencies it may be that implementing all treatments is not the optimal

alternative.

Figure 10.11 presents decision diagrams of risk LMD and LID (i.e., Loss of Integrity of

monitored Data). The detail result of the countermeasureanalysis for risk LMD is provided

in Table 10.1.

10.3.4 Applying Step 3 – Synergy Analysis

To facilitate the synergy analysis described in Step 3, we define the rc() function in (10.1) as

follows: rc(r) = co· f , where co is the consequence and f is the frequency of the risk r . Having

decision diagrams for individual risks, the synergy analysis described in Step 3 is detailed as

below.

170 CHAPTER 10. SELECTING COST-EFFECTIVE RISK COUNTERMEASURES

0 5 10 15 20 25 30

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

Risk: Loss of Monitored Data

Frequency (in 10 years)

C
o

n
s
e
q

u
e

n
c
e

S0S1S2S3
S4

S5
S6S7 IRH

IRN

EQS

IRN

EQS

IRH

EQS

IRH

IRN
IRN

IRN

EQS

Treatment Abbreviation

IRH-Implement redundant handheld

IRN-Implement redundant network connection

EQS-Ensure sufficient QoS from network provider

(a)

0 10 20 30 40

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

Risk: Loss of Integrity of monitored Data

Frequency (in 10 years)

C
o

n
s
e
q

u
e

n
c
e

S0S1

S2S3

SCO

UBAUBA

SCO
Treatment Abbreviation

SCO-Sign COntract on conditions of use

UBA-Use Biometric Authentication

(b)

Figure 10.11: Decision diagrams of risks in the eHealth scenario.

STEP 3A We identify the set of global treatment alternatives based on the decision diagrams

generated in the previous step and the expenditures of treatments. For each risk,

we select the alleged cost-effective treatment alternatives. In particulary, we choose

S3LMD {I RH , I RN } (i.e., state S3 of risk LMD), and S7LMD
{

I RH , I RN ,EQS
}
; for risk

DAS, we choose S3D AS {U SW, I RH }, and S2D AS {I RH }; for risk LID, we choose S3LI D {I RH , I RN }

and S2LI D {U B A}. We assume all of these alternatives are acceptable with respect to the

acceptance criteria.

STEP 3B We calculate the overall cost for each global treatment alternative using (10.1). Ta-

ble 10.2 reports the overall costs for these alternatives. According to this table, we select

GS1 due to its smallest overall cost.

STEP 3C For the sake of simplicity, we assume that customers are satisfied with the recom-

mendation. Therefore, GS1 will be chosen for implementation.

10.4 Modeling Evolution in Risk Graph

This section applies the risk-evolution approach described in Chapter 9 to the proposed

countermeasure assessment method in this chapter to enable the modeling and reasoning

about evolution in the proposed method.

10.4. MODELING EVOLUTION IN RISK GRAPH 171

Table 10.1: Analysis for the risk LMD.

The name of each treatment alternative is shown in the first column (Risk State). The Frequency column is

number of occurrences in ten years. Both Frequency and Consequence columns are values after considering

the treatments.

Ensure sufficient QoS from network provider

Implement Redundant Network connection

Implement Redundant Handheld

Risk/Risk State Treatment Frequency Consequence

Risk : Loss of Monitored Data

S0 26.4 5000

S1 • 21.36 5000

S2 • 12.96 5000

S3 • • 7.92 5000

S4 • 12.96 5000

S5 • • 7.92 5000

S6 • • 10.08 5000

S7 • • • 5.04 5000

10.4.1 Challenges in Modeling Evolution in Risk Graph

A naïve approach to graphically model the context evolution into risk model, i.e., risk graph,

is to maintain risk graphs with respects to identified contexts in separated models. This ap-

proach is very easy to achieve without any modification to existing risk method. However it

raises following challenges:

• Synchronization. We need to maintain multiple copies of the risk model, which equal

the number of identified contexts. These models could share a large common por-

tion. Therefore, any changes made to the shared part should be manually synchro-

nized among models. Usually, a big and complex risk model is divided into diagrams.

The number of diagrams to be maintained thus is multiplied by the number of iden-

tified contexts. Consequently, keeping these diagrams synchronized across contexts

tends to be an overwhelm, frustrating, and error-prone task if it is done manually.

• Different views support. The use of separated model per each context seems to be bet-

172 CHAPTER 10. SELECTING COST-EFFECTIVE RISK COUNTERMEASURES

Table 10.2: The global treatment alternatives in synergy analysis.

Individual Risk

Global Treatment Alternative LID LMD DAS Overall Cost

GS1{UBA,SCO,IRH,IRN,USW} S3 S3 S3 101740

GS2{UBA,SCO,IRH,IRN,EQS,USW} S3 S7 S3 102340

GS3{UBA,IRH,IRN,USW} S2 S3 S3 104500

GS4{UBA,IRH,IRN,EQS,USW} S2 S7 S3 105100

GS5{UBA,SCO,IRH,IRN} S3 S3 S2 108740

GS6{UBA,SCO,IRH,IRN,EQS} S3 S7 S2 109340

GS7{UBA,IRH,IRN} S2 S3 S2 111500

GS8{UBA,IRH,IRN,EQS} S2 S7 S2 112100

ter for local view of the evolution in each identified context, but apparently does not

support well a global view of the evolution of the entire system. For example, users

might want to see what will change during the evolution, and what are the differences

among different evolution possibilities.

A modelling approach for evolution in risk graph should carefully consider these two

challenges to better facilitate the evolution analysis of evolving risks.

10.4.2 Modeling the Evolution

We propose an extension to the conceptual model of the proposed risk-evolution approach

described in Figure 9.1. The extension is to capture the evolution in risk graphs, see Fig-

ure 10.12, which is referred to as the meta-model of the evolutionary risk graph. This meta-

model is presented as a UML class diagram. In Figure 10.12, a class is represented by a rect-

angle. The class name is inside the rectangle, and is followed by class members (if any),

which are italic text, and are separated from the class name. The name of an abstract class is

also in italic. The text formation for the class name determines the type of the class: normal-

case text denotes a node, lower-case text denotes a relation, and underline text depicts a

decoration of either node or relation.

In this meta-model, an Evolutionary Risk Graph is a collection of Elements. The Element

abstract class represents all evolvable elements in a risk graph, which could be either an ab-

stract Vertex, or an abstract Relation. With reference to Section 10.1.2, there are two kinds of

10.4. MODELING EVOLUTION IN RISK GRAPH 173

Context

 name

Evolutionary

Risk Graph

Vertex

 name

Element
elements

1
*

relation

Threat

Scenario
Countermeasure leads-to treats

effect

dependency

source

1

*

target

1

*1

Evolution

Decorator

0

context
*

*

1 element

Threat Scenario

Decorator

 f

 co

Countermeasure

Decorator

 e

leads-to Decorator

 f

treats Decorator

 fe

 ce

effect dependency

Decorator

 fd

 cd

Figure 10.12: The meta-model of evolutionary risk graph.

vertices – Threat Scenario and Countermeasure, and three kinds of relations – leads-to, treats,

and effect dependency. All evolvable properties of these kinds of Elements are decorated sep-

arately in Evolution Decorator. Each decorator keeps a link to a Context where the decorator

is valid in. If a decorator does link to any Contexts, it means the Element associated to this

decorator does not evolved within the study period. There are five types of decorators with

respect to five types of Elements, i.e., Threat Scenario Decorator, Countermeasure Decorator,

leads-to Decorator, treats Decorator, and effect dependency Decorator. Each type of decora-

tor has corresponding property members, for instance leads-to Decorator has a member f ,

which represents the conditional probability of a leads-to relation (see Section 10.1.2).

Example 10.1 Figure 10.13 illustrates an example of modeling evolution in a risk graph.

On the left hand side, Figure 10.13(a) presents the context reference model (see section Sec-

tion 9.2.3), where the current context Before could evolves to After1, or After2 with the levels

174 CHAPTER 10. SELECTING COST-EFFECTIVE RISK COUNTERMEASURES

Context: After1

 Change #1

 Change #2

Context: After2

 Change #3

 Change #4

Context: Before

p1
p2

p0

(a) Context evolution model

v2

cm1

[e1]

v1

[f1, co1]

cm2

v3

[f3,co3]

f13

f12-1 after1

f12-2 after2

e2-1 after1

e2-2 after2

pr1,cr1 after1

pr2,cr2 after2

f2-1,co2-1 after1

f2-2,co2-2 after2

epr1,ecr1 after1

epr2,ecr2 after2

(b) Risk graph with evolution decorator

Figure 10.13: An example of modeling evolution in risk graph.

of belief are p1, p2, respectively. Additionally, Before might be unchange with the belief of p0.

On the right hand side, Figure 10.13(b) shows the risk graphs with evolution decorators

annotated to modeling the evolution with respect to the context evolution model presented

on the left. In Figure 10.13(b), two threat scenarios v1, v2, and the countermeasure cm1 ap-

pear in all contexts, and stay unchange regardless of evolution. Thus, their corresponding

properties are displayed inside their node shape. Meanwhile, the threat scenario v2 and the

countermeasure cm2 appear in both After1 and After2 contexts, but not in the Before context.

The properties of v2 and cm2 are therefore displayed separately where different values might

be applied for different contexts. Consequently, the leads-to relation from v1 to v2, the treats

relation from cm2 to v2, and the effect dependency relation from cm2 are decorated accord-

ingly. We additionally change the color of evolved elements to emphasize the evolution.

By modeling this way, evolution is incorporated into a single risk graph. Therefore, it

avoids the synchronization challenge. However it might increase the complexity of the orig-

inal risk graph. The different view support challenge could be addressed with the help of the

graphical modeling tool, which will show or hide elements according to the expected view.

For example, if users want to see the original risk graph, all evolved elements of which their

decorators do not associate to the Before context will be hidden. Similar filter could be apply

if users only want to see the risk graph in the After1 context.

10.5. CHAPTER SUMMARY 175

10.5 Chapter Summary

We have presented a risk-graph-based countermeasure assessment method to select a cost-

effective countermeasure alternative to mitigate risks. The method required input in the

form of risk models represented as risk graphs. The method analysed risk countermeasures

with respect to different properties such as the amount of risk mitigation (Reduction Effect),

how countermeasures affect others (Effect Dependency), and how much countermeasures

cost (Countermeasure Expenditure). We have developed a set of formal rules extending the

existing calculus for risk graphs. These new rules propagated the likelihoods and conse-

quences along risk graphs thereby facilitating a quantitative countermeasure analysis on

individual risks, and a synergy analysis on all the risks. The outcome was a list of coun-

termeasure alternatives quantitatively ranked. These alternatives were represented not only

in tabular format, but also in graphical style (Decision Diagram).

We have exemplified the method to CORAS by an example of the eHealth domain to

select cost-effective treatments. Notations and rules have been adapted to comply with

CORAS. The example demonstrated that the method could work with existing defensive risk

analysis methods whose risk models could be converted to risk graphs.

We have enriched the method with the capacity of modeling on evolution in risk graph.

This is done by applying the risk-evolution approach in Chapter 9 to the method.

In the next part, we are going to evaluate how the proposed artifacts could meet the de-

sired success criteria and summarize the entire dissertation.

Part IV

Discussion and Conclusion

177

C
H

A
P

T
E

R

11
DISCUSSION

This chapter discusses how the proposed artifacts and evaluation activities presented

in the previous chapters could fit the success criteria. The chapter also discusses the

relation of the proposed framework to the literature.

T
HIS chapter discusses how the proposed framework could fulfill success criteria de-

scribed in Section 2.1 (Section 11.1), and we presents a set of steps to apply the pro-

posed framework within the development of software system (Section 11.2). Addi-

tionally we discuss how the framework relates to the literature (Section 11.3).

11.1 Fulfillment of the Success Criteria

Table 11.1 summarizes the fulfillment of success criteria by evaluation activities described

in Section 2.2. In this table, “done" and “partly" mean that the evaluation activity has fully

or partly met the success criteria, respectively; “todo" means that the evaluation activity will

be considered as future work. The detailed discussion is provided in the subsequent subsec-

tions.

179

180 CHAPTER 11. DISCUSSION

Table 11.1: Summary of the success criteria fulfillment.

Modeling Reasoning

Evaluation Activity SC1.1 SC1.2 SC1.3 SC2.1 SC2.2 SC2.3

(E1) Provide model and case study done todo

(E2) Conduct empirical study done todo todo

(E3) Provide formal semantics done done done

(E5) Perform formal analysis done done

(E4) Implement CASE tool done(1) partly(2) done(3) done(3)

(E6) Run simulation partly

(E1) Adapt the framework to evolving risks done todo

SC1.1 Able to effectively capture the requirements evolution and its uncertainty.

SC1.2 Accompanied with a formal semantics of the evolution uncertainty.

SC1.3 Potentially applicable to a variety of requirements and system models.

SC2.1 To provide a set of metrics with formal semantics for reasoning about evolution uncertainty.

SC2.2 Able to automate (with formal analysis and tool-support) the reasoning that can enumerate and quantitatively assess

individual design alternatives.

SC2.3 Able to support the incremental modeling of evolution.

(1): provide GUI for modeling and reasoning.

(2): provide GUI templates for modeling.

(3): provide implementation for reasoning.

11.1.1 The Modeling Approach of the Framework

SC1.1 Able to effectively capture the requirements evolution and its uncertainty. We have

fulfilled this success criteria by carrying out two evaluation activities on the evolution rules,

which are used to model requirements evolution and its uncertainty.

• We have run a self-evaluation for these rules on a “big” requirements model taken from

an industrial project (see Section 7.5). This is an instance of Self-evaluation study (E1).

• We conducted a series of empirical studies on participants with various levels of ex-

pertise knowledge. We have analyzed artifacts produced by participants. The analysis

outcomes have revealed that the proposed framework is effective in modeling require-

ments evolutions. Moreover, the prior domain knowledge and framework knowledge

do not significantly impact the effectiveness of the framework. The details of the study

11.1. FULFILLMENT OF THE SUCCESS CRITERIA 181

settings as well as the analysis of artifacts are presented in Chapter 8 . This is the ma-

terialization of Empirical study (E2).

SC1.2 Accompanied with a formal semantics of the evolution uncertainty. We have ful-

filled this success criteria by proposing an interpretation for the evolution uncertainty. The

interpretations is based on game theory. We explain the evolution uncertainty by the game

between three different players: Domain Expert, Company, and Expert. The semantics of

evolution uncertainty is accounted by the belief of Domain Expert on the monetary value,

which he/she is willing to pay for the implementation that addresses a particular forecasted

changes. This interpretation is detailed in Section 5.2.

SC1.3 Potentially applicable to a variety of requirements and system models. We have

partially fulfilled this success criteria as follows:

• We considered requirements models by which we apply evolution rules to capture evo-

lution at a very high level of abstraction. A requirements model is treated as a col-

lection of entities and relations. This level of abstraction could present requirements

models in any graphical RE languages. The proposed evolution rules could capture

evolution in such level of abstraction of requirements models. Thus they could be able

to do so for any requirements models in any graphical RE languages. This is detailed

in Section 5.1.

• We have adapted the proposed framework to another field rather than RE – the risk

assessment realm. The adapted variant of the proposed framework could be able to

early dealing evolving risks in software systems. The adapted framework is built upon

any existing risk assessment methods, which could produce outputs that are compli-

ant with the adapted framework. The details of this adapted framework are presented

in Chapter 9 . This is an instance of Self-evaluation study (E1).

• We have proposed a generic risk assessment method to support the selection of cost-

effective risk countermeasure alternatives. The proposed risk assessment method is

built upon risk graph, thus it can represent for any risk assessment methods, which

are compliant with risk graph. We then apply the adapted framework to the proposed

risk assessment method. Thus it is an evidence that adapted framework for risk evo-

lution is also able to apply to many risk assessment methods. The detail of the risk

assessment method and the application of the adapted framework to this method are

182 CHAPTER 11. DISCUSSION

discussed in Chapter 10 . Moreover, we have also adapted the proposed framework

to the field of software product line engineering, in particular the evolution of feature

model. However we do not present that work here, but in a separated technical report

[TM13a].

11.1.2 The Reasoning Approach of the Framework

SC2.1 To provide a set of metrics with formal semantics for reasoning about evolution un-

certainty. We have fulfilled this success criteria by proposing three evolution metrics, namely

Max Belief, Residual Disbelief, and Max Disbelief. The formal definition of these metrics as

well as their semantics are presented in Section 5.3.

SC2.2 Able to automate (with formal analysis and tool-support) the reasoning that can

enumerate and quantitatively assess individual design alternatives. We have fulfilled this

success criteria by proposing a series of algorithms to perform the reasoning about evolution

uncertainty. We employ hypergraph as an intermediate data structure to represent require-

ments models. We do not intend to substitute any RE languages by this hypergraph, but

transform requirements models in a particular RE language to hypergraph. This transforma-

tion only preserves information about the fulfillment of top requirements. Based on hyper-

graph we develop algorithms to identify design alternatives and compute evolution metrics

for these alternatives.

We have performed a formal analysis on the soundness and complexity of the algorithms.

The details of algorithms and their formal analysis are described in Chapter 6 . Moreover,

we have implemented a proof-of-concept prototype of a CASE tool in which we implement

these algorithms. The details of this prototype are described in Chapter 7 .

We have conducted a benchmark of the algorithms on a large example (of approximately

150 goals with 5 observable rules). The example yields a number of 864 design alternatives.

Such number is too large for a manual selection of alternatives. Additionally, we have run a

simulation on the performance of the algorithms, see Section 7.4

SC2.3 Able to support the incremental modeling of evolution. We have fulfilled this suc-

cess criteria by employing a caching mechanism for the calculation of proposed metrics.

We develop algorithms that handle incremental modification made to requirements models.

These algorithms will trigger different reactions corresponding to different actions of mod-

ification. These reactions will update the data for metric calculation for the only modified

11.2. HOW TO APPLY THE PROPOSED FRAMEWORK 183

parts of the requirements models instead of redoing the computation from ground up. This

enables an efficient computation of metrics with respect to incremental modification made

to the requirements models. The details of these algorithms are discussed in Section 6.2.3.

11.2 How to Apply the Proposed Framework

In this section, we propose potential steps to apply the proposed framework. Basically these

steps are hooked into the software development process, particularly, where the require-

ments model has just been produced. Each time an alternative decision or a potential evolu-

tion is identified, they could be captured by using the techniques of the underlying method.

The detail of the steps are as follows:

INPUT. The input is a requirements model (expressing in a particular RE language), and all

possible changes to the model as well as their likelihoods of occurrences. Since there

could be many parallel and competing changes, a revision of the input requirements

model may have many variants.

STEP 1. In this step, changes are examined to revise the input requirements model to pro-

duce the future revision of requirements model for the system-to-be-next. The input

requirements model and variants of its future revisions together with the likelihoods

of occurrences changes are formulated into observable rules.

STEP 2. In this step, different design alternatives of both input requirements model and its

future variants are derived to formulate controllable rules. These design alternatives

could be automatically derived in some RE languages (e.g., i*, KAOS).

STEP 3. In this step, the proposed metrics are calculated for each of design alternatives. The

design alternatives and their metrics values are used to support the decision making

process. The following cases might happen:

STEP 3A. If decision maker could choose a design alternative, move forward to next

phase of the development process.

STEP 3B. If decision maker could not choose any design alternatives, go to either STEP

1 to elaborate more design alternatives, or STEP 2 to revise future revisions of the

input requirements model.

OUTPUT. The output includes all artifacts generated in these steps, which are an evolution-

ary requirements model of the system (i.e., the input requirements model plus variants

184 CHAPTER 11. DISCUSSION

of its future revision and evolution rules), and a ‘good’ design alternative by decision

maker.

Whenever a new change is identified, we might need to start over from STEP 1 to STEP 3

to select a new design alternative.

The framework will involve following actors: designer, domain expert, and decision maker.

The roles of these actors within the proposed framework are identified as follows:

• The domain expert could be a trained consultant who possesses deep knowledge about

the domain. S/he will forecast potential changes in future to the system, as well as

his/her belief about the likelihoods of occurrences of these changes.

• The designer evaluates the foreseen changes from domain expert to formulate possible

evolution possibilities of the system. For each possibility, the designer may revise the

original requirements model (i.e., the model built upon the current requirements and

the current settings of the working environment) so that the new revision could cope

with the expected new changes.

The designer is also responsible for performing the reasoning on evolution uncertainty

to aid decision maker.

• The decision maker takes different design alternatives and the reasoning output from

the designer to choose a design alternative for the next step of the system-to-be-next.

11.3 How The Proposed Framework Relates to

State-of-the-Art

11.3.1 Requirements Evolution

Among four types of change categorized by Lam and Loomes [LL98], we capture the require-

ment change and design change as observable evolution and controllable evolution. We do

not capture the environment change and viewpoint change since this work mostly focuses

on the evolution of software artifact (i.e., requirements model) rather than environment and

viewpoint changes. While they have a meta and a process model but did not go beyond that

than, we have a conceptual model supported by an automated reasoning. Among seven key

issued, the proposed framework satisfies the ‘modeling evolution’, ‘multiple change’, and ‘tool

support’; and the application of the proposed framework on risk domain partially addresses

11.3. HOW THE PROPOSED FRAMEWORK RELATES TO STATE-OF-THE-ART 185

the ‘risk assessment’ issue. We do not address the change analysis’ not extended traceability

as we do not focus on the nature of change and we only work on the requirements model

artifact. The impact assessment approaches on other social domains would be an interesting

direction for future work.

In comparison to studies on impacts of evolution [Rus+99; Has+05; Che+09; Lin+09], the

proposed framework is different in the perspective that we assess the impact of potential

changes in advance, rather than after changes happen. However, it is not limited that one

can use the approaches in [Has+05; Che+09; Lin+09] to link the modeled requirements to

changes in specification since these work complement to the proposed framework in this

dissertation.

Fabbrini et al. [Fab+07] work on plain text requirements and use the Formal Analysis

Context to detect the requirements inconsistency between different the evolution steps. In-

stead, we work on requirements models expressed by an existing RE language. We also have

different evolution steps as they have; however, we focus on the modeling the requirements

evolution uncertainty and reason about them to aid the selection of evolution-resilient de-

sign alternative but not checking the inconsistency.

The SECMER methodology [Pro12; Ber+11] detects the violation of security properties.

Security properties in Si* requirements model are ensured on-the-fly as the modifications

are being made. We also address the ‘before-after’ evolution perspective. The methodol-

ogy however does not capture the evolution uncertainty while we do. We do not focus on

ensuring security properties but selecting evolution-resilient design alternatives in advance.

The ‘before-after’ evolution perspective that we address is similar to the idea of situa-

tion ‘before-the-change’ and situation ‘after-the-change’ mentioned by Brier et al. [Bri+06].

However, their approach only captured the part of before model that is changes, but did not

have any further specific reasoning about that. In the proposed framework, we do not only

have modeling notions to capture evolution, but also a conceptual model and a reasoning

backed up by automated algorithms.

The approach of Zowghi and Offen [ZO97] involves modeling requirements models as

theories and reasoning changes by mapping changes between models. However, this ap-

proach has a significant overhead for the encoding of requirement models into logic. In

contrast, the proposed framework can operate transparently on requirements models.

Ernst et al. [Ern+11] focus on unknown-unknown evolution, i.e., evolution that we do

not know what it is, and when it happens. Meanwhile, we focus effort on known-unknown

evolution, i.e., evolution that we know what it is, but do not know when it happens.

186 CHAPTER 11. DISCUSSION

11.3.2 Empirical Studies

Runeson and Host [RH09] propose a broader set of guidelines about how to conduct qual-

itative research. We have based the evaluation empirical studies on those guidelines. Fol-

lowing those guidelines, we have involved researchers, students, practitioners (i.e., domain

experts) with different expertise and used semi-structured interviews, questionnaires and

audio-video recordings to collect data in order to perform data triangulation. Kitchenham

[Kit96] identify screening, effects analysis, and benchmarking as classes of research methods.

We have used the screening method to evaluate the correctness of requirements produced

by students (in Section 8.2.3.6). We also employ the effects analysis method to process and

analyze the collected data.

Besides, there exist works reporting empirical studies on requirements evolution and the

one that use the ATM domain as evaluation context (see Section 3.3.2). These studies are

closely related to the empirical studies, which are described in Chapter 8.

A closely related work to the empirical evaluation studies (Chapter 8) is from Villela et

al. [Vil+10] who reported on a quasi-experiment to assess the adequacy and feasibility of

PLEvo-Scoping method [Vil+08]. The quasi-experiment took place in the form of two two-

days workshops with the participation of domain experts. They used both quantitative and

qualitative measures but did not have any statistical tests. Similarly, in the evaluation studies

we have adopted a workshop for evaluating with ATM domain experts the effectiveness of the

proposed framework to model requirements evolution and we have used both quantitative

and qualitative measure to assess its effectiveness. However, in the evaluation studies de-

scribed in Chapter 8 we were able to apply statistical hypothesis testing research approach

to check the statistical validity of the hypotheses related to the research questions.

Compare to the case study by McGee and Greer [MG11], we also followed the guideline

in [RH09] used hypothesis testing: we refined the research questions into a set of hypotheses

and identified quantitative metrics like the size of change and the number of evolution rules

to evaluate the effectiveness of the approach to model requirements evolution. In addition,

before testing the hypotheses, we asked an expert in the ATM domain to evaluate the quality

of the requirements models and of the requirements changes identified by the participants

of the studies (see Section 8.3).

In the quantitative analysis (see Section 8.3), we employ the idea of delta requirements

(by Herrmann et al. [Her+]) to study the complexity evolution rules where we focus on how

big the change is in each evolution rule identified. We use the notion of delta requirements

(i.e., requirements evolution) to define the quantitative metric size of requirements change

11.3. HOW THE PROPOSED FRAMEWORK RELATES TO STATE-OF-THE-ART 187

associated with the evolution rules identified by the participants of the studies. We used this

metric to evaluate the effectiveness of the approach in modeling requirements evolution.

As claimed by Maiden et al. [Ncu+07; MR05; Mai+04], the workshop sessions can help

to set up a common understanding and facilitated the interaction among people involved.

We therefore adopt workshops with a similar structure to conduct the study with ATM ex-

perts (see Section 8.2.3.2). With respect to the creativity workshops by Maiden et al., the

workshops in Chapter 8 consists of a training and application phase. We did not have a

brainstorming phase that has been replaced with an evaluation phase where the quality of

researchers’ models was evaluated by the ATM domain experts. In addition, in the evalua-

tion studies we identified quantitative metrics and used statistical hypothesis testing to as-

sess the effectiveness of the proposed approach in modeling requirements evolution, while

in the studies by Maiden et al., qualitative data were used to evaluate the RESCUE method.

A survey of the literature on empirical studies related to requirements change shows that

there is little research that uses an empirical basis to understand the impact of requirements

evolution, why and when it happens and to assess the effectiveness of methods to manage

requirements change. As far as we are aware of, this study is one of the few studies that has

used quantitative metrics and hypothesis testing to assess possible requirements changes

and the effectiveness of the proposed framework to model such changes.

11.3.3 Selecting Countermeasure Alternatives for Evolving Risks

We are aware of few studies about evolving risks by Lund et al. [Lun+11b] and Solhaug and

Seehusen [SS13]. They proposed general techniques and guidelines for managing risk in

changing systems. However, they did not mention the uncertainty of evolutions (i.e., likeli-

hood of occurrence), and how to use this information to support the decision making pro-

cess.

Applying the proposed framework to evolving risk in Chapter 9 is a pioneer effort to fill

that gap. The basic difference between [Lun+11b; SS13] and the work reported in Chapter 9

is that they aimed to assess the changing risk on evolving systems, we aim to evaluate how

well a countermeasure alternative could resist evolution during a period of time. These are

two complementary aspects of evolving risks. Furthermore, their work only discussed the

support in the before-after evolution perspective, meanwhile, we target both the before-after

and continuous evolution perspectives. We make use of the potential changes in the current

context and their uncertainty, together with the output of the risk assessment to support

decision makers to select the most appropriate countermeasure alternative to implement.

188 CHAPTER 11. DISCUSSION

We have metrics (Max Belief, Residual Disbelief, Max Disbelief) to evaluate the evolution-

resilience of the risk countermeasure alternatives, which are the outputs of assessment.

Furthermore, the proposed method in Chapter 10 provides more information for the

decision makers to select cost-effective countermeasure alternatives for a target software

system within a particular context at a particular point of time. We have analyses (treat-

ment analysis, synergy analysis) and decision diagrams to provide more insights about cost-

effectiveness of countermeasure alternatives. The proposed method may be seen as a special

case or refinement of the process suggested by Mehr and Forbes [MF73].

There exist guideline and methods [Sto+02; WHO09; But02] to evaluate countermeasure

alternatives in terms of cost. However, these methods have not been designed to assess cost

of countermeasures but rather cost (or consequence) of risks. The decision methodology of

Chapman and Leng [CL04] includes analyses, methods, and framework for economic eval-

uation of countermeasure alternatives. However, it does not take into account the level of

risk reduced by different alternatives. We are different from these work [Sto+02; WHO09;

But02; CL04] since we take all information such as consequence of risks, cost of counter-

measures, and level of residual risk to assess cost-effective countermeasure alternatives. The

work of Norman [Nor10] also covers these information; however the artifacts are developed

as spreadsheets, which are complicated to implement and follow. Meanwhile, the proposed

method is a well-defined process and backed up with a reasoning; and the introduced arti-

facts are graphical. As the alternatives are more focused on the technical aspect, the output

of the proposed method could be taken as the input for Real Options Thinking based assess-

ment [Kul+99; AK99; LS07].

The SecInvest framework by Houmb et al. [Hou+12] is closely related to the method de-

scribed in Chapter 10 because it also employs existing risk assessment techniques for risk

level. It scores countermeasure alternatives with respect to their cost and effect, trade-off

parameters, and investment opportunities. While we provide a systematic way to assess the

effects of alternatives on risks, also take into account the dependency among countermea-

sures in an alternative, they however do not. The proposed method is sufficiently generic

to be integrated within many existing risk analysis methods. We have demonstrated this by

instantiating in the CORAS method for security risk analysis [Lun+11a] with concrete illus-

trative examples.

C
H

A
P

T
E

R

12
CONCLUSION

This chapter summarizes the proposed artifacts and evaluation activities conducted

in the dissertation. Based on this, the chapter discusses potential future research di-

rections based on the outcomes of the dissertation.

W
E have presented a framework to deal with evolution in requirements models.

We have also showed that the proposed framework is not only applicable in the

domain of requirements evolution, but also helpful in the realm of risk manage-

ment. This chapter summarizes the major contributions of this dissertation (Section 12.1)

and discusses potential future research based on the results (Section 12.2).

12.1 Summary

A key contribution in this dissertation is the framework for modeling and reasoning about

evolution in requirements model in long-lived software systems. The aim of this framework

is to provide a means for studying requirements evolution. The framework includes evolu-

tion rules to capture evolution in requirements model, particularly observable rules for cap-

turing potential changes and their uncertainty, and controllable rules for capturing differ-

ent reactions from the designing aspect (i.e., design choices or design alternatives) to these

changes. By incorporating evolution in requirements models, we allow designers to have a

global view about the potential evolution of the system in future.

189

190 CHAPTER 12. CONCLUSION

The evolution uncertainty is represented as evolution probability, which is the belief

about the likelihood of occurrence of evolution. The evolution probability is associated with

a semantic described by a game-theoretic approach. This game semantics provides a better

understanding of evolution probabilities.

Based on evolution probability, we propose a set of metrics enabling quantitative reason-

ing on design alternatives to understand to what extent they can resist to evolution. In other

words, we measure the belief in the game between domain expert, company, and the mar-

ket that the implementation of a design alternative could still be operational when evolution

occurs.

Moreover, the proposed reasoning is supported by a series of algorithms that automate

the calculation of metrics, and a proof-of-concept CASE tool. The algorithms not only cal-

culate metric values for a particular design alternative, but also enumerate possible design

alternatives with the best metric values, i.e., winner alternatives. Additionally the algorithms

incrementally react to every single change made to requirements models. Thus, they provide

an instant view of a list of winner alternatives. This facilitates the decision making process.

We also provide the proofs for the soundness and complexity of reasoning algorithms.

The proposed framework has been evaluated with a series of empirical studies that took

place over a year to evaluate the modeling part of the framework. The evaluation studies re-

lied scenarios taken from industrial projects in the ATM domain. The studies involve differ-

ent types of participants with different expertise in the framework and the domain. The re-

sults from the studies showed that the modeling approach is effective in capturing evolution

of complex systems. It is reasonably possible for people, if they are supplied with appropriate

knowledge (i.e., knowledge of method for domain experts, knowledge of domain for method

experts, and knowledge of both domain and method for novices), to build significantly large

models, and identify possible ways for these models to evolve. Moreover, the studies have

shown that obviously there is a difference between domain experts, method experts, and

students on the “baseline" (initial) model, but when it comes to model the changes with

evolution rules, there is no significant difference.

We have adapted the proposed framework to the realm of risk assessment. We have pro-

posed an approach to deal with evolving risks. The proposed approach operates at high level

of abstraction. It could work with many existing risk-assessment methods. To address the

representation of the evolution rules in complex risk models, we further apply the proposed

risk-evolution approach to a risk assessment method. For this purpose, we have introduced

a risk-graph-based countermeasure assessment method, then apply the risk-evolution ap-

proach to this method. The evolution rules are represented in risk graphs by tags decorated

12.2. LIMITATIONS AND FUTURE WORK 191

directly to elements of risk graphs.

In short, the proposed framework could be able to help to improve the evolution re-

silience of long-lived framework systems in the early phase of software development. There-

fore the approach has potentially contributed to improve the sustainability of long-lived soft-

ware systems.

12.2 Limitations and Future Work

The proposed framework takes anticipated evolution and evolution uncertainty as inputs to

enrich the requirements model of a system-to-be. It is important that how evolution and its

uncertainty could be elicited. The evolution uncertainty is a kind of subjective probability.

The subjective probabilities are also exploited in other fields such as risk management. The

more precise the beliefs, the more precise the reasoning. Thus it is necessary to have a well-

defined process or guidance to achieve and evaluate these inputs. Lacking on this kind of

process is a limitation of the dissertation. Hence, a promising approach to evaluate evolution

uncertainty is based on the interpretation about uncertainty and the Analytic Hierarchical

Process (AHP), which is used in the literature to prioritize requirements.

We have evaluated the effectiveness of the proposed framework in the ATM domain with

the participation of researchers, ATM experts, and students. These studies are limited in a

single domain and a particular RE language. Further empirical studies to continue evaluate

the framework would be more interesting. In particular, future research could focus on the

following issues:

• Replicate the empirical studies in another domain rather than ATM, and with different

kinds of participants to see whether similar results could be obtained.

• Replicate the empirical studies with different RE languages rather than i*/Tropos to see

whether there is any impact to the chosen RE languages to the outcome of the studies.

• Evaluate different aspects of the framework rather that effectiveness, for example, whether

the method is easy to use (i.e., Perceived Ease Of Use), whether participants want to ap-

ply the method in practice (i.e., Intent of Use), so on and so forth. These aspects could

be obtained by performing interview (with and/or without predefined questionnaire)

with individual participants.

During the evaluation studies with ATM experts, we have suggested by users that a sim-

pler graphical representation of evolution rules would help in the cases of big and complex

192 CHAPTER 12. CONCLUSION

requirements models. This suggestion should be addressed while applying the proposed

framework to a particular RE language. The graphical representation of evolution rules ap-

parently depends on the RE language the framework applies to. For instance, in goal-based

languages the observable rules could be represented via a new construct (e.g., observable

node, see Chapter 7), the controllable rules are represented by the OR-decomposition; in

risk graph, the evolution rules are represented by additional tags decorated to elements of

risk graph. Therefore, it would be interesting to develop a more generic representation of

evolution rules that could be applied to different RE languages.

The proposed framework has presented artifacts to capture evolutions in requirements

models, and to facilitate the identification and assessment of design alternative. However,

the process to apply the proposed framework in the software development is still very pre-

liminary. More effort to extend the framework in this direction would be interesting.

The evolution metrics proposed by the framework is a single value for the entire period

where evolution is examined. To address this limitation, it might be more interesting to mea-

sure evolution metrics as a time series especially for the continuous evolution perspective.

By studying the evolution of evolution metrics we could provide extra information to support

the selection of design alternatives.

Moreover, the proposed evolution metrics measure the resilience of design alternatives

with respect to evolution. If the working environment of the system-to-be is too dynamic,

we might need additional metrics. For example, further research could focus on the analysis

that measures the cost to repair a design alternative.

We have proposed an adaptation of the proposed framework to address the evolution of

risks in long-lived systems. It would be interesting to conduct empirical evaluation with in-

dustry. The settings of the empirical studies described in Chapter 8 could be used at starting

points to conduct future empirical research.

We could also exploit the applicability of the proposed framework in the field of software

product line engineering. We have reported such application in a separated report [TM13a].

Another interesting direction based on this framework is to relax its input assumptions.

Currently, the framework requires all possible environment changes plus corresponding changes

in requirements models anticipated. However, in practice, we might have information about

potential changes, but not specific changes in requirements models. Thus, we need to ex-

tend and/or generalize the framework to make it able to deal with such situations.

REFERENCES

[Adm09] Federal Aviation Administration. System Wide Information Management (SWIM).

Segment 2 Technical Overview. Tech. rep. 2009.

[AK99] Martha Amram and Nalin Kulatilka. Real Options: Managing Strategic Invest-

ment in an Uncertain World. Havard Business School Press, Cambridge, Mas-

sachusetts, 1999.

[Ali10] Raian Ali. “Modeling and Reasoning about Contextual Requirements: Goal-based

Framework”. PhD thesis. University of Trento, 2010.

[And04] Chris Anderson. “The Long Tail”. In: Wired (2004).

[AP01] M. D. Adler and E. A. Posner. Cost-benefit analysis. Legal, economic and philo-

sophical perspectives. University of Chicago Press, Chicago, 2001.

[AP03] Annie I. Antón and Colin Potts. “Functional Paleontology: The Evolution of User-

Visible System Services”. In: IEEE Transactions on Software Engineering 29(2)

(2003), pp. 151–166.

[Aus+83] G. Ausiello, A. D’Atri, and D. Saccà. “Graph algorithms for functional depen-

dency manipulation”. In: Journal of the ACM 30 (1983), pp. 752–766.

[Bas+86] V R Basili, R W Selby, and D H Hutchens. “Experimentation in software engi-

neering”. In: IEEE Transactions on Software Engineering 12.7 (July 1986), pp. 733–

743.

[Ber+11] Gábor Bergmann, Fabio Massacci, Federica Paci, Thein Than Tun, Dániel Varró,

and Yijun Yu. “SeCMER: A Tool to Gain Control of Security Requirements Evo-

lution”. In: ServiceWave. 2011, pp. 321–322.

[BM92] David G.W. Birch and Neil A. McEvoy. “Risk analysis for Information Systems”.

In: Journal of Information Technology 7 (1992), pp. 44–53.

[Boa+01] A. E. Boardman, D. H. Greenberg, A. R. Vining, and D. L. Weimer. Cost-benefit

analysis. Concepts and practice. Ed. by Second edition. Prentice Hall, Upper

Saddle River., 2001.

[BR88] V.R. Basili and H.D. Rombach. “The TAME project: towards improvement-oriented

softwareenvironments”. In: IEEE Transactions on Software Engineering 14.6 (1988),

pp. 758–773.

193

194 REFERENCES

[Bra+10] Gyrd Braendeland, Atle Refsdal, and Ketil Stølen. “Modular analysis and mod-

elling of risk scenarios with dependencies”. In: J. Syst. Softw. 83.10 (Oct. 2010),

pp. 1995–2013.

[Bri+06] J. Brier, L. Rapanotti, and J.G. Hall. “Problem-based analysis of organisational

change: a real-world example”. In: Proceedings of the 2006 international work-

shop on Advances and applications of problem frames (IWAAPF’06). ACM, 2006.

[Bry+09] Volha Bryl, Fabiano Dalpiaz, Roberta Ferrario, Andrea Mattioli, and Adolfo Vil-

lafiorita. “Evaluating procedural alternatives: a case study in e-voting”. In: EG

6.2 (2009), pp. 213–231.

[But02] Shawn A. Butler. “Security Attribute Evaluation Method: a Cost-Benefit Approach”.

In: Proceedings of the International Conference on Software Engineering (ICSE’02).

Orlando, Florida: ACM, 2002, pp. 232–240.

[CF+09] Nelly Condori-Fernández, Maya Daneva, Klaas Sikkel, Roel Wieringa, Oscar Di-

este, and Oscar Pastor. “Research Findings on Empirical Evaluation of Require-

ments Specifications Approaches”. In: Proceedings of the 12th Workshop on Re-

quirements Engineering (WER’09). Valparaiso University Press, 2009, pp. 121–

128.

[CH11] Isabelle Côté and Maritta Heisel. “A UML Profile and Tool Support for Evolu-

tionary Requirements Engineering”. In: Proceedings of the 15th European Con-

ference on Software Maintenance and Reengineering (CSMR’11). 2011.

[Cha91] E. Charniak. “Bayesian networks without tears: making Bayesian networks more

accessible to the probabilistically unsophisticated”. In: AI Magazine 12 (4) (1991),

pp. 50–63.

[Che+09] Marsha Chechik, Winnie Lai, Shiva Nejati, Jordi Cabot, Zinovy Diskin, Steve East-

erbrook, Mehrdad Sabetzadeh, and Rick Salay. “Relationship-based change prop-

agation: A case study”. In: Proceedings of the 2009 ICSE Workshop on Modeling

in Software Engineering (MISE’09). IEEE Computer Society, 2009, pp. 7–12.

[CL04] Robert E. Chapman and Chi J. Leng. Cost-Effective Responses to Terrorist Risks

in Constructed Facilities. Tech. rep. U.S. Department of Commerce, Technology

Administration, National Institute of Standards and Technology, 2004.

[Dal+04] Nikunj P. Dalal, William J. Kolarik, and Eswar Sivaraman. “Toward an Integrated

Framework for Modeling Enterprise Processes”. In: Communications of the ACM

47.3 (2004), pp. 83–87.

REFERENCES 195

[Dal11] Fabiano Dalpiaz. “Exploiting Contextual and Social Variability for Software Adap-

tation”. PhD thesis. University of Trento, 2011.

[Eas+07] S. Easterbrook, J. Singer, M.A. Storey, and D. Damian. Selecting Empirical Meth-

ods for Software Engineering Research. Ed. by F. Shull and J. Singer. Springer,

2007.

[Elb08] Anita Elberse. “Should You Invest in the Long Tail?” In: Harvard Business Review

(2008).

[Erd+13] Gencer Erdogan, Fredrik Seehusen, Ketil Stølen, and Jan Aagedal. “Assessing

the Usefulness of Testing for Validating the Correctness of Security Risk Mod-

els Based on an Industrial Case Study”. In: Proceedings of the 2nd International

Workshop on Quantitative Aspects in Security Assurance. 2013.

[Ern+09] Neil A. Ernst, John Mylopoulos, and Yiquiao Wang. “Requirements Evolution

and What (Research) to Do about It”. In: Lecture Notes in Business Information

Processing 14 (2009), pp. 186–214.

[Ern+11] Neil A. Ernst, Alexander Borgida, and Ivan Jureta. “Finding incremental solu-

tions for evolving requirements”. In: Proceedings of the 19th IEEE International

Requirements Engineering Conference (RE). 2011, pp. 15–24.

[Eur03] Eurocontrol. ATM Strategy for the Years 2000+ vol. I and vol. II. Eurocontrol.

2003.

[EUR03] EUROCONTROL. EUROCONTROL, ATM Strategy for the Years 2000+. 2003.

[Fab+07] Fabrizio Fabbrini, Mario Fusani, Stefania Gnesi, and Giuseppe Lami. “Control-

ling Requirements Evolution: a Formal Concept Analysis-Based Approach”. In:

Proceedings of the International Conference on Software Engineering Advances

(ICSEA’07). 2007, p. 68.

[FB01] Robert France and Jame Bieman. “Multi-View Software Evolution: A UML-based

Framework for Evolving Object-Oriented Software”. In: Proceedings of the IEEE

International Conference on Software Maintenance (ICSM’01). 2001, pp. 386–

395.

[Fel+14] Michael Felderer, Basel Katt, Philipp Kalb, Jan Jürjens, Martín Ochoa, Federica

Paci, Le Minh Sang Tran, Thein Than Tun, Koen Yskout, Riccardo Scandari-

ato, Frank Piessens, Dries Vanoverberghe, Elizabeta Fourneret, Matthias Gan-

der, Bjørnar Solhaug, and Ruth Breu. “Evolution of Security Engineering Arti-

facts: A State of the Art Survey”. In: International Journal of Secure Software En-

gineering (2014). To appear.

196 REFERENCES

[Gra+09] Rober Graham, Nadine Pilon, Harmut Koelman, and Paul Ravenhill. “Perfor-

mance Framework and Influence Model in ATM”. In: Proceedings of the 28th

Digital Avionics Systems Conference (DASC’09). IEEE/AIAA. 2009, 2.A.5–1 –2.A.5–

11.

[Has+05] J. Hassine, J. Rilling, J. Hewitt, and R. Dssouli. “Change impact analysis for re-

quirement evolution using use case maps”. In: Proceedings of the 8th Interna-

tional Workshop on Principles of Software Evolution (IWPSE’05). 2005, pp. 81–

90.

[Hau+03] Øystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and Ketil Stølen. “Why

Timed Sequence Diagrams Require Three-Event Semantics”. In: Scenarios: Mod-

els, Transformations and Tools. 2003, pp. 1–25.

[Her+] Andrea Herrmann, Armin Wallnöfer, and Barbara Paech. “Specifying Changes

Only — A Case Study on Delta Requirements”. In: Proceedings of the 15th In-

ternational Working Conference on Requirements Engineering: Foundation for

Software Quality (REFSQ’09). Springer-Verlag, pp. 45–58.

[Hou+12] Siv Hilde Houmb, Indrajit Ray, and Indrakshi Ray. “SecInvest : Balancing Se-

curity Needs with Financial and Business Constraints”. In: Dependability and

Computer Engineering (2012), pp. 306–328.

[Iec] IEC 60300-3-9 Dependability management – Part 3: Application guide – Section

9: Risk analysis of technological systems – Event Tree Analysis (ETA). Interna-

tional Electrotechnical Commission. 1995.

[IEC90] IEC. IEC 61025 Fault Tree Analysis (FTA). International Electrotechnical Com-

mission. 1990.

[ISO09] ISO. ISO 31000 Risk management – Principles and guidelines. International Or-

ganization for Standardization. 2009.

[Jür02] Jan Jürjens. “UMLsec: Extending UML for Secure Systems Development”. In:

UML. 2002, pp. 412–425.

[Kit96] Barbara Ann Kitchenham. “Evaluating software engineering methods and tool

part 1: The evaluation context and evaluation methods”. In: ACM SIGSOFT Soft-

ware Engineering Notes 21.1 (Jan. 1996), pp. 11–14.

[KS99] C. F. Kemerer and S. Slaughter. “An empirical approach to studying software

evolution”. In: IEEE Transactions on Software Engineering 25.4 (1999), pp. 493–

509.

REFERENCES 197

[Kul+99] N. Kulatilaka, P. Balasubramanian, and J. Strock. Using Real Options to Frame

the IT Investment Problem. in: Real Options and Business Strategy Applications

to Decision-Making, Risk Publications. 1999.

[Lab+13] Katsiaryna Labunets, Fabio Massacci, Federica Paci, and Le Minh Sang Tran.

“An Experimental Comparison of Two Risk-Based Security Methods”. In: Pro-

ceedings of the ACM / IEEE International Symposium on Empirical Software En-

gineering and Measurement (ESEM). 2013.

[LaM+08] M.J. LaMantia, Y. Cai, A. MacCormack, and J. Rusnak. “Analyzing the Evolution

of Large-Scale Software Systems Using Design Structure Matrices and Design

Rule Theory: Two Exploratory Cases”. In: Proceedings of the 7th Working IEEE/I-

FIP Conference on Software Architecture (WICSA’08). 2008, pp. 83–92.

[Lam09a] Axel van Lamsweerde. Requirements Engineering: From System Goals to UML

Models to Software Specifications. John Wiley & Sons, 2009.

[Lam09b] Axel van Lamsweerde. Requirements Engineering: From System Goals to UML

Models to Software Specifications. A John Wiley and Sons Ltd. Publication, 2009.

[Leh80a] M.M. Lehman. “On understanding laws, evolution and conservation in the large

program life cycle”. In: Journal of Systems and Software 1.3 (1980), pp. 213–221.

[Leh80b] M.M. Lehman. “Programs, life cycles, and laws of software evolution”. In: Pro-

ceedings of IEEE 68.9 (1980), pp. 1060–1076.

[Lin+09] Lan Lin, Stacy J. Prowell, and Jesse H. Poore. “The impact of requirements changes

on specifications and state machines”. In: Journal Software – Practice & Experi-

ence 39.6 (2009), pp. 573–610.

[LK99] Pericles Loucopoulos and Evangelia (Vagelio) Kavakli. “Enterprise Knowledge

Management and Conceptual Modelling”. In: Proceedings of the 16th Interna-

tional Conference on Conceptual Modeling (ER’97). 1999, pp. 123–143.

[LL98] W. Lam and M. Loomes. “Requirements evolution in the midst of environmental

change: a managed approach”. In: Proceedings of the 2nd Euromicro Conference

on Software Maintenance and Reengineering (CSMR’98). 1998, pp. 121–127.

[LS06] Mass Soldal Lund and Ketil Stølen. “A Fully General Operational Semantics for

UML 2.0 Sequence Diagrams with Potential and Mandatory Choice”. In: FM

2006: Formal Methods, 14th International Symposium on Formal Methods. 2006,

pp. 380–395.

198 REFERENCES

[LS07] J. Li and X. Su. “Making Cost Effective Security Decision with Real Option Think-

ing”. In: Proceedings of the International Conference on Software Engineering

Advances (ICSEA2007). 2007.

[Lun+11a] Mass Soldal Lund, Bjørnar Solhaug, and Ketil Stølen. Model-Driven Risk Analy-

sis: The CORAS Approach. Springer, 2011.

[Lun+11b] Mass Soldal Lund, Bjørnar Solhaug, and Ketil Stølen. “Risk Analysis of Changing

and Evolving Systems Using CORAS”. In: FOSAD. 2011, pp. 231–274.

[Mai+04] Neil Maiden, Sara Jones, Sharon Manning, John Greenwood, and L. Renou. “Model-

Driven Requirements Engineering: Synchronising Models in an Air Traffic Man-

agement Case Study”. In: Proceedings of the 16th Conference On Advanced Infor-

mation Systems Engineering (CAiSE’04). Vol. 3084. LNCS. Springer Verlag, 2004,

pp. 3–21.

[Mas+06] Fabio Massacci, John Mylopoulos, and Nicola Zannone. “Hierarchical hippo-

cratic databases with minimal disclosure for virtual organizations”. English. In:

The VLDB Journal 15.4 (2006), pp. 370–387.

[Mas+10] Fabio Massacci, John Mylopoulos, and Nicola Zannone. “Security Requirements

Engineering: The SI* Modeling Language and the Secure Tropos Methodology”.

In: Advances in Intelligent Information Systems. Ed. by Zbigniew Ras and Li-

Shiang Tsay. Vol. 265. Studies in Computational Intelligence. Springer Berlin /

Heidelberg, 2010, pp. 147–174.

[Mas+12] Fabio Massacci, Deepa Nagaraj, Federica Paci, Le Minh Sang Tran, and Alessan-

dra Tedeschi. “Assessing a Requirements Evolution Approach: Empirical Studies

in the Air Traffic Management Domain”. In: Proceedings of the 2nd International

Workshop on Empirical Requirements Engineering (EmpiRE’12). 2012, pp. 49–

56.

[Mas+13] Fabio Massacci, Federica Paci, Le Minh Sang Tran, and Alessandra Tedeschi.

“Assessing a Requirements Evolution Approach: Empirical Studies in the Air

Traffic Management Domain”. In: Journal of Systems and Software (2013). Ar-

ticle in press.

[MD00] Tom Mens and Theo DŠHondt. “Automating Support for Software Evolution in

UML”. In: Automated Software Engineering 7, (2000), pp. 39–59.

[MF73] Robert I. Mehr and Stephen W. Forbes. “The Risk Management Decision in the

Total Business Setting”. In: Journal of Risk and Insurance 40 (1973), pp. 389–401.

REFERENCES 199

[MG11] S. McGee and D. Greer. “Software requirements change taxonomy: Evaluation

by case study”. In: Proceedings of the 19th IEEE International Requirements En-

gineering Conference (RE’11). 2011, pp. 25–34.

[ML05] S. Mannan and F.P. Lees. Lee’s Loss Prevention in the Process Industries. 3rd. Vol. 1.

Butterworth-Heinemann, 2005.

[Moo03] Daniel L. Moody. “The method evaluation model: a theoretical model for vali-

dating information systems design methods”. In: ECIS. 2003, pp. 1327–1336.

[MR05] Neil Maiden and Suzanne Robertson. “Integrating Creativity into Requirements

Processes: Experiences with an Air Traffic Management System”. In: Proceedings

of the 13th IEEE International Requirements Engineering Conference. IEEE Press,

2005, pp. 105–116.

[NB12] A. Niknafs and D.M. Berry. “The impact of domain knowledge on the effective-

ness of requirements idea generation during requirements elicitation”. In: Pro-

ceedings of the 20th IEEE International Requirements Engineering Conference

(RE’12). 2012, pp. 181–190.

[Ncu+07] Cornelius Ncube, James Lockerbie, and Neil Maiden. “Automatically Generating

Requirements from i* Models: Experiences with a Complex Airport Operations

System”. In: Proceedings of the 13th International Working Conference on Re-

quirements Engineering: Foundation for Software Quality (REFSQ’07). Vol. 4542.

LNCS. Springer Verlag, 2007, pp. 33–47.

[Nor10] Thomas L. Norman. Risk Analysis and Security Countermeasure Selection. CRC

Press, Taylor & Francis Group, 2010.

[NT10] Viet Hung Nguyen and Le Minh Sang Tran. “Predicting Vulnerable Software Com-

ponents using Dependency Graphs”. In: International Workshop on Security

Measurement and Metrics (MetriSec’10). 2010.

[Ome+12] Aida Omerovic, Anders Kofod-Petersen, Bjørnar Solhaug, Ingrid Svagård, and

Le Minh Sang Tran. Report on ESUMS Risk Analysis. Tech. rep. A23344. SINTEF

ICT, 2012.

[RH09] Per Runeson and Martin Host. “Guidelines for conducting and reporting case

study research in software engineering”. In: Empirical Software Engineering 14.2

(Apr. 2009), pp. 131–164.

[Rob+01] R.M. Robinson, K. Anderson, B. Browning, G. Francis, M. Kanga, T. Millen, and

C. Tillman. Risk and Reliability. An Introductory Text. 5th. R2A, 2001.

200 REFERENCES

[RR09] J.W Rittinghouse and J.F. Ransome. Cloud computing: implementation, man-

agement, and security. CRC Press, 2009.

[Rum+04] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language

Reference Manual, The (2nd Edition). Pearson Higher Education, 2004.

[Rus+99] A.M. Russo, B. Nuseibeh, and J. Kramer. “Restructuring Requirements Specifi-

cations”. In: IEE Proceedings - Software 146.1 (1999), pp. 44–53.

[RW11] Nornadiah Mohd Razali and Yap Bee Wah. “Power comparisons of shapiro-wilk,

kolmogorov-smirnov, lilliefors and anderson-darling tests”. In: Journal of Statis-

tical Modeling and Analytics 2.1 (2011), pp. 21–33.

[Sch99] Bruce Schneier. “Attack trees: modeling security threats”. In: Dr. Dobb Journal

of Software Tools 24 (12) (1999), pp. 21–29.

[Sen00] A. K. Sen. “The discipline of cost-benefit analysis”. In: Journal of Legal Studies

29 (2000), pp. 931–952.

[SES08] SESAR. SESAR D3 – The ATM Target Concept. Tech. rep. SESAR Initiative, 2008.

[Set+04] Raffaella Settimi, Jane Cleland-Huang, Oussama Ben Khadra, Jigar Mody, Wik-

tor Lukasik, and Chris DePalma. “Supporting Software Evolution through Dy-

namically Retrieving Traces to UML Artifacts”. In: Proceedings of the 7th Inter-

national Workshop on Principles of Software Evolution (IWPSE’04). 2004.

[Sha+09] Glenn Shafer, Vladimir Vovk, and Roman Chychyla. “How to base probability

theory on perfect-information games”. In: Bulletin of the European Association

for Theoretical Computer Science 100 (2009), pp. 115–148.

[Sof05] P Soffer. “Scope analysis: identifying the impact of changes in business process

models”. In: Software Process: Improvement and Practice 10.4 (2005), pp. 393–

402.

[Sol+07] Bjørnar Solhaug, Dag Elgesem, and Ketil Stølen. “Specifying Policies Using UML

Sequence Diagrams–An Evaluation Based on a Case Study”. In: Policies for Dis-

tributed Systems and Networks, 2007. POLICY ’07. Eighth IEEE International Work-

shop on. 2007, pp. 19–28.

[Sou+11] Vítor E. Silva Souza, Alexei Lapouchnian, and John Mylopoulos. “System iden-

tification for adaptive software systems: a requirements engineering perspec-

tive”. In: Proceedings of the 30th International Conference on Conceptual Model-

ing (ER’11). Brussels, Belgium, 2011, pp. 346–361.

REFERENCES 201

[SS13] Bjørnar Solhaug and Fredrik Seehusen. “Model-driven risk analysis of evolv-

ing critical infrastructures”. In: Journal of Ambient Intelligence and Humanized

Computing (2013), pp. 1–18.

[Sto+02] Gary Stoneburner, Alice Goguen, and Alexis Feringa. Risk Management Guide

for Information Technology Systems. Tech. rep. National Institute of Standards

and Technology. U.S Department of Commerce, 2002.

[Sys] "OMG Systems Modeling Language (OMG SysML), Version 1.2". 2010.

[TM11] Le Minh Sang Tran and Fabio Massacci. “Dealing with Known Unknowns: To-

wards a Game-Theoretic Foundation for Software Requirement Evolution”. In:

Proceedings of the 23th Conference On Advanced Information Systems Engineer-

ing (CAiSE’11). 2011, pp. 62–76.

[TM13a] Le Minh Sang Tran and Fabio Massacci. An Approach for Decision Support on

the Uncertainty in Feature Model Evolution. Tech. rep. (under submission to

CAiSE’14). University of Trento, 2013.

[TM13b] Le Minh Sang Tran and Fabio Massacci. Dealing with Known Unknowns: a Gen-

eral Approach for Modeling and Reasoning on Requirements Evolution. Tech.

rep. (to be submitted to the Software and Systems Modeling (SOSYM) journal).

University of Trento, 2013.

[TM13c] Le Minh Sang Tran and Fabio Massacci. “UNICORN: A Tool for Modeling and

Reasoning on the Uncertainty of Requirements Evolution”. In: CAiSE Forum.

2013, pp. 161–168.

[Tra+13a] Le Minh Sang Tran, Bjørnar Solhaug, and Ketil Stølen. “An Approach to Se-

lect Cost-Effective Risk Countermeasures”. In: Data and Applications Security

and Privacy XXVII - 27th Annual IFIP WG 11.3 Conference, (DBSec 2013). 2013,

pp. 266–273.

[Tra+13b] Le Minh Sang Tran, Bjørnar Solhaug, and Ketil Stølen. “An Approach to Select

Cost-Effective Risk Countermeasures Exemplified in CORAS”. In: CoRR (2013).

http://arxiv.org/abs/1302.4689.

[Tra11] Le Minh Sang Tran. “Requirement Evolution: Towards a Methodology and Frame-

work.” In: CAiSE Doctoral Consortium 2011. London, 2011.

[Tra13] Le Minh Sang Tran. “Early Dealing with Evolving Risks in Long-Life Evolving

Software Systems”. In: Advanced Information Systems Engineering Workshops –

CAiSE Workshops. 2013, pp. 518–523.

202 REFERENCES

[VB07] Dániel Varró and András Balogh. “The model transformation language of the

{VIATRA2} framework”. In: Science of Computer Programming 68.3 (2007). <ce:title>Special

Issue on Model Transformation</ce:title>, pp. 214 –234.

[Vil+08] Karina Villela, Joerg Dörr, and Anne Gross. “Proactively Managing the Evolu-

tion of Embedded System Requirements”. In: Proceedings of the 16th IEEE Inter-

national Requirements Engineering Conference (RE’08). IEEE Computer Society,

2008, pp. 13–22.

[Vil+10] Karina Villela, Jörg Dörr, and Isabel John. “Evaluation of a Method for Proac-

tively Managing the Evolving Scope of a Software Product Line.” In: Proceed-

ings of the 16th International Working Conference on Requirements Engineering:

Foundation for Software Quality (REFSQ’10). Vol. 6182. LNCS. Springer, June 22,

2010, pp. 113–127.

[Woh+12] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, and Björn Reg-

nell. Experimentation in Software Engineering. Springer, 2012, pp. I–XXIII, 1–

236.

[Yu96] Eric Siu-Kwong Yu. “Modelling strategic relationships for process reengineer-

ing”. PhD thesis. Toronto, Canada, 1996.

[Yu99] Eric Yu. Strategic Modelling for Enterprise Integration. 1999.

[ZO97] Didar Zowghi and Ray Offen. “A Logical Framework for Modeling and Reason-

ing About the Evolution of Requirements”. In: Proceedings of the 3rd Symposium

on Requirements Engineering (RE’97). RE ’97. 1997, pp. 247–257.

[ZW98] M.V. Zelkowitz and D.R. Wallace. “Experimental models for validating technol-

ogy”. In: Computer 31.5 (1998), pp. 23–31.

[EUR10] EUROCONTROL. European Operational Concept Validation Methodology, E-OCVM

Version 3.0. 2010.

[Fed09] Federal Aviation Administration. System Wide Information Management (SWIM)

Segment 2 Technical Review. Tech. rep. FAA, 2009.

[NES11] NESSoS project. Deliverable D11.2: Selection and Documentation of the Two

Major Application Case Studies. Tech. rep. 2011.

[Pro08] Program SWIM-SUIT. D1.5.1 Overall SWIM Users Requirements. Tech. rep. 2008.

[Pro12] Project SecureChange. Deliverable 3.3: ALGORITHMS FOR INCREMENTAL RE-

QUIREMENTS MODELS EVALUATION AND TRANSFORMATION. Tech. rep. 2012.

REFERENCES 203

[Pro96] Project PROTEUS. Deliverable 1.3: Meeting the challenge of changing require-

ments. Tech. rep. Centre for Software Reliability, University of Newcastle upon

Tyne, 1996.

[WHO09] WHO. Risk Characterization of Microbiological Hazards in Food - Guidelines.

WHO - World Health Organization, FAO - Food and Agriculture Organization of

the United Nations, 2009.

	Contents
	List of Tables
	List of Figures
	Acronyms
	Motivation and Background
	Introduction
	Contributions
	Terminology
	Structure of the Dissertation
	Publications
	Publications Reported in the Dissertation
	Additional Publications

	Research Roadmap
	Problem Characterization and Research Questions
	The Need of Managing the Evolution Uncertainty of Requirements Models
	Research Questions and Success Criteria

	Strategies for Evaluation
	Framework Overview
	Chapter Summary

	State-of-the-Art
	Evolution Perspectives
	Studies on Requirements Evolution
	Studies on Impacts of Evolution
	Studies on Reaction on Evolution

	Studies on Empirical Evaluation
	Empirical Research Methodologies
	Empirical Studies on Requirements Evolution

	Studies on Selecting Risk Countermeasures
	Chapter Summary

	Application Scenarios
	The SWIM Scenario
	The AMAN Scenario
	Chapter Summary

	Framework Details
	The Proposed Framework
	Modeling the Requirements Evolution
	Semantics of Evolution Probability: a Game-Theoretic Interpretation
	Semantics of Reasoning about the Evolution Uncertainty
	Formal Rules for Complex Evolution Scenarios
	Evolution in Large Requirements Model
	Continuous Evolution in Requirements Models

	Chapter Summary

	Automated Reasoning Support
	Hypergraph Requirements Model
	A Formalization of Hypergraph
	Hypergraph Representation for Existing Modeling Languages's Constructs

	Algorithms
	Generating the DATs
	Calculating Metrics for a Design Alternative
	Updating the DATs due to Incremental Changes

	The Complexity of Algorithms
	Proofs of Algorithm Complexity
	Proof of Proposition 1
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Chapter Summary

	Unicorn: Tooling and the First (Self) Evaluation
	Features Overview
	Architectural Overview
	Screen Shots
	Performance Simulation of the Algorithms
	A Self-Evaluation Case Study
	Chapter Summary

	Empirical Evaluation of the Framework with Third-Party
	Requirements Evolution in Si* Modeling Language
	Evaluation Method
	Research Objectives
	Experimental Design
	Experimental Procedure
	Study 1: Preliminary Study within the Research Group
	Study 2: Workshops with ATM experts
	WS1: The Training Workshop
	WS2: The Evaluation Workshop
	WS3: The Application Workshop
	Study 3: Study with Master Students

	Quantitative Data Analysis
	Preparation for an Analysis of Variance
	Results

	Discussion
	Method's Effectiveness
	Impact of Knowledge of Domain and Knowledge of Method
	Implications for the Method

	Threats to Validity
	Lessons Learnt
	Chapter Summary

	Applying the Proposed Framework to Evolving Risks
	Early Dealing with Evolving Risks in Software Systems
	Terminology
	The Risk-Evolution Approach
	Step 1 – Identify Evolving Contexts
	Step 2 – Perform Risk Assessment
	Step 3 – Model Context Evolution
	Step 4 – Perform Evolution Analysis

	The Running Example
	Chapter Summary

	Selecting Cost-Effective Risk Countermeasures
	The Proposed Method
	Input Assumptions
	Detailing of Step 1 – Annotate Risk Model
	Detailing of Step 2 – Countermeasure Analysis
	Detailing of Step 3 – Synergy Analysis

	The Calculus
	Rules for Risk Graphs
	Rules for Treatment Diagrams

	Exemplification in CORAS
	eHealth Running Example: Patient Monitoring
	Applying Step 1 – Annotate Risk Model
	Applying Step 2 – Treatment Analysis
	Applying Step 3 – Synergy Analysis

	Modeling Evolution in Risk Graph
	Challenges in Modeling Evolution in Risk Graph
	Modeling the Evolution

	Chapter Summary

	Discussion and Conclusion
	Discussion
	Fulfillment of the Success Criteria
	The Modeling Approach of the Framework
	The Reasoning Approach of the Framework

	How to Apply the Proposed Framework
	How The Proposed Framework Relates to State-of-the-Art
	Requirements Evolution
	Empirical Studies
	Selecting Countermeasure Alternatives for Evolving Risks

	Conclusion
	Summary
	Limitations and Future Work

	References

