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SUMMARY - SOMMARIO

In the present PhD thesis an optimal problem suite is proposed as benchmark for the test of
numerical solvers. The problems are divided in four categories, classic, singular, constrained and
hard problems. Apart from the hard problems, where it is not possible to give the analytical solution
but only some details, all other problems are supplied with the derivation of the solution. The exact
solution allows a precise comparison of the performance of the considered software. All of the
proposed problems were taken from published papers or books, but it turned out that an analytic
exact solution was only rarely provided, thus a true and reliable comparison among numerical
solvers could not be done before. A typical wrong conclusion when a solver obtains a lower value
of the target functional with respect to other solvers is to claim it better than the others, but it is not
recognized that it has only underestimated the true value.
In this thesis, a cutting edge application of optimal control to vehicles is showed: the optimization
of the lap time in a race circuit track considering a number of realistic constraints. A new algorithm
for path planning is completely described for the construction of a quasi G2 fitting of the GPS data
with a clothoid spline in terms of the G1 Hermite interpolation problem. In particular the present
algorithm is proved to work better than state of the art algorithms in terms of both efficiency and
precision.

In questa tesi di dottorato di ricerca viene presentata una suite di problemi di controllo ottimo per
effettuare un confronto tra software che li risolvono numericamente. I problemi sono stati divisi
in quattro categorie, classici, singolari, vincolati e difficili. Tranne che per i problemi difficili, per i
quali non è possibile trovare la soluzione analitica a parte qualche dettaglio, tutti gli altri sono stati
corredati con la derivazione della soluzione esatta. La sua conoscenza permette di effettuare un
confronto preciso sulla performance dei software testati. Tutti i problemi proposti sono stati raccolti
da articoli pubblicati o da libri, tuttavia ne è emerso che solo raramente ne veniva presentata anche
la soluzione esatta, dunque finora un confronto realistico e corretto non è ancora stato possibile.
Una conclusione errata tipica è quella di considerare migliore un software che fornisce un valore
del target minore di quello dato da altri, non riconoscendo che sta solamente sottostimando il
valore corretto.
In questa tesi è presentata anche un’applicazione di punta del controllo ottimo applicato a veicoli:
l’ottimizzazione del tempo minimo sul giro di un veicolo su un tracciato di gara considerando
diversi vincoli realistici. Si descrive anche un nuovo algoritmo per il path planning che costruisce
un fitting quasi G2 con clotoidi1 dei dati GPS sfruttando la soluzione del problema di Hermite
di interpolazione G1. In particolare il presente algoritmo è dimostrato essere migliore degli altri
algoritmi stato dell’arte sia in termini di efficienza sia in termini di precisione.

1“quasi” means “almost”.
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1
I N T RO D U C T I O N A N D S C O P E

1.1 S TAT E O F A RT O F N U M E R I C A L M E T H O D S F O R O C P S

The concept of dynamic optimization is the natural extension of the theory of static optimization.
Some classic examples of static optimization problems are represented by the Linear Programming
(LP), the Quadratic Programming (QP), the integer/mixed integer programming (MIP), and the most
famous case of Nonlinear Programming (NLP). In all these problems, the unknowns variables are
defined over the real or integer numbers R,Z. The theory of dynamic optimization looks instead at
problems whose unknowns are real functions. The solution of this kinds of problems goes back to
the origin of differential calculus and has become an independent branch of research, first in the
Calculus of Variations, and nowadays, in the Optimal Control. The first results are due to Leonhard
Euler and to the Bernoulli brothers, who gave the foundations of the calculus of variations. In the
second half of the XIX century, other important names of Mathematics contributed to theorems of
existence as Jacobi and Weierstrass. The passage from calculus of variations to optimal control, is
attributed to the Russian mathematician Lev Pontryagin and to the American Richard Bellman in
the Fifties of the last century. The first is the founder of the indirect methods based on variational
observations, the second discovered the Dynamic Programming Principle of optimality (Dpp) which
gave birth to Dynamic Programming (DP). Later, a new family of numerical methods for the solution
of optimal control problems was introduced, it is the family of direct methods based on the direct
transcription of the optimal control problem (Figure 1.1). Suppose to tackle the following optimal

Numerical Methods for OCP

Direct Methods Indirect Methods DPP Methods

Direct Shooting

Multiple Shooting

Collocation

BVP IDP

Figure 1.1: The main subdivision of numerical methods for optimal control problems.
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2 I N T RO D U C T I O N A N D S C O P E

control problem, consider the time interval [a, b] and a finite sequence of transition points (corner
points) a < s̃1 < s̃2 < · · · < s̃nd < b and a functional to be minimized

minimize: J = ψ(x(a),x(b),p) +

nd∑
k=1

ψk(x+(s̃k),p) +

∫ b

a

F(x(s),u(s),p, s) ds,

ODE: f(x,x′,u,p, s) = 0,

BC: b(x(a),x(b),p) = 0,

at corner points there can be jump/transition conditions or various type of constraints

S(x−(s̃k),x+(s̃k), s̃k) = 0, k = 1, 2, . . . , nd,

Pk(x+(s̃k),p, s̃k) = 0, k = 1, 2, . . . , nd

where

x+(s̃k) = lim
h→0+

x(s̃k + h), x−(s̃k) = lim
h→0+

x(s̃k − h).

S(x−(s̃k),x+(s̃k), s̃k) = 0, k = 1, 2, . . . , nd,

Pk(x+(s̃k),p, s̃k) = 0, k = 1, 2, . . . , nd

1.1.1 Indirect Methods

The indirect methods are based on the classic theory of calculus of variations and on the famous
Pontryagin’s Maximum (Minimum) Principle (PMP). Starting from the necessary first order optimality
conditions they obtain a two-point (in general a multi-point) boundary value problem. It is derived
from the first variation of the Lagrangian function associated to the optimal control problem. An
equivalent derivation is possible taking derivatives of the Hamiltonian function. The boundary
conditions of this BV problem are given by the initial/final condition given by the problem itself,
other are yielded from the transversal condition of the adjoint variables. Of course, by the intrinsic
nature of the optimal control problems, a closed form analytical solution is seldom obtained, but
the indirect methods can produce it. In presence of path constraint or inequalities it is difficult
to apply the PMP to solve for an explicit formula for the control, this leads to state dependent
switches. The claimed disadvantage of the indirect method is that the resulting BV problems are
difficult to solve. This is not completely true, because today there are various techniques to solve
systems of differential equations. It is also mandatory to analyse the computed solution, because it
is only extremal but not necessary a minimum. This can be accomplished inspecting the problem
(convexity, second variation, etc). The advantages are given by the underlying philosophy of “first
optimize, then discretize”: the boundary value problem has dimension 2 × nx where nx is the
number of state variables, therefore even large scale systems are feasible.

1.1.2 Direct Methods

A different approach to OCPs is given by the direct methods which follow the philosophy of “first
discretize, then optimize” and are somehow the opposite of the indirect methods. Here the state
and the control variables are approximated by polynomial interpolation, the target functional itself is
approximated by a cost function. Hence the problem is discretized on a mesh, and the optimization
variables become the unknowns of a general nonlinear programming problem. There are three
main algorithms employed in the application of a direct method, the first is the shooting method
(single and multiple) which results in small NLP problems; the second is the pseudospectral method
(medium sized problem); the third is the collocation method, which is the most accurate at the price
of a very large NLP. The main advantage of the direct methods is that NLPs are widely studied and
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a plethora of state of art solution algorithms are available. Moreover it is easier to treat inequality
constraints because they have their natural equivalent form in the associated NLP problem. The
principal disadvantage is that direct methods produce only suboptimal or approximate solutions.
Nowadays they are very popular because they are easy to understand and apply (no calculus of
variations needed), they are also robust.

1.1.3 Dynamic Programming

The third family of numerical methods to solve an optimal control problem is given by algorithms
that make use of the Hamilton-Jacobi-Bellman equation. The idea behind this algorithms is the
Principle of Optimality, which states that any subarc of an optimal trajectory is also optimal. A grid
a = t0 < . . . < tN = b is introduced over the time interval [a, b], and by the principle of optimality,
on each subinterval [tk, tk+1] the restriction of the functional on that interval is optimized. The
resulting partial differential equation is solved recursively backwards starting at the end of the time
interval. Advantages of this method are that it searches the whole state space giving a global
optimum, can have optimal feedback controls precomputed, admits some analytical solutions (for
linear systems with quadratic cost), the so called viscosity solutions exist and are feasible for a
quite general class of nonlinear problems. The main disadvantage of Dynamic Programming is
that the resulting partial differential equation is in a high dimensional space and is in general non
tractable. This is what Bellman called the “curse of dimensionality”.

1.2 S C O P E O F T H E T H E S I S

The aim of the present PhD thesis is to propose a suite of optimal control problems together
with the derivation of their analytical solution in order to compare the quality of the numerical
results given by software numerical solvers. Those analytical solutions allow to understand the
difficulties faced by the solvers on some families of problems and give the insight for the design of
strategies that enhance the convergence of the numerical methods. The motivation of this study
was the validation of the OCP solver XOptima, proposed by the Mechatronic Research Group of
the University of Trento. The comparison was done with other three open source software, Acado
[HFD11], Gpops [RBD+10], Iclocs [FKvW10]. Acado is developed by the research group lead
by M. Diehl at the University of Leuven; Gpops is the solver proposed by A. Rao and his group
at the University of Florida, Gainesville and is used, among the others, by NASA; Iclocs is the
software presented by F. Falugi of Imperial College London; XOptima is presented by E. Bertolazzi
and F. Biral [BBDL03, BBDL05, BBDL07] and the focus of the thesis is to perform a deep test of
its features, starting from the easiest classic problems to the well known hardest problems like
the Hang Glider Problem [BNPS91], the third order singular problem proposed by Luus [Luu00]
that exhibits the chattering phenomenon discovered by Fuller, the optimization of the minimum
lap time for a high performance vehicle on a circuit track, the minimum time manoeuver for an
underwater vehicle [CSMV04]. With respect to these problems, it is possible to derive the analytic
exact solution only for the second one, for the hang glider it is only possible to compare the solution
with two cases1 found in literature (only [BNPS91] and [Bet01]), while for the minimum lap time,
we can compare the results with the real laps performed by professional drivers and pilots. A
relevant part of the thesis is devoted to the study of singular problems in sight of the analysis of
the Fuller problem of third order and its numerical treatment from the Sixties until nowadays. It
turns out that the formulation proposed by some authors since the Seventies can not exhibit the
chattering phenomenon as claimed, this is shown in the section of the problem Luus n.4. In the
present thesis it is recognized, for the first time, that the problem proposed in [FO77] is in facts the

1There are other numerical solutions for the Hang Glider problem on the user manuals of other software. They are
not considered here because they are not reliable, there is lack of information or some conditions of the problem are
violated.
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third order Fuller problem with an important modification, and that the solution of Luus is not just
a suboptimum, but is instead the true minimum. Finally, analytic and numeric details for a whole
family of singular problems are given.
Another contribution was the theoretical study of the second variation (taking into account general
initial and final conditions) of the functional to be minimized. The second variation leads to sufficient
conditions of optimality that can be checked a posteriori to ensure the presence of the minimum
point. It would be interesting, as a future work, to implement the derived second order conditions.
While solving OCPs, emerged a new idea on how to solve them with a different approach, which
tries to collect the main advantages of the three families of methods described above. As starting
point, it is desirable to split the single OCP in segments in order to solve more smaller problems
(called boxes). This is the idea of the DPP and of the direct methods, what they do not have is the
possibility to precompute the global control once and for the whole problem. The control is obtained
via the Pontryagin’s Maximum Principle or by solving explicitly the equation ∂H/∂u = 0 (where H
is the Hamiltonian of the problem), when possible. Another benefit inherited by the indirect method
is the additional knowledge of the adjoint variables (costate), that are not considered in the DPP or
in some direct methods. They provide a richer differential structure that can be exploited in the
solution of the problem.
The single boxes optimize many smaller optimal control problems, while the optimal control is fed

Global Control u(t) via Pontryagin’s PMP

(x(t),λ(t)) (x(t),λ(t)) (x(t),λ(t)) (x(t),λ(t))

Least Squares

Figure 1.2: The three logical layers of the proposed method.

globally by the Pontryagin’s Maximum Principle. The continuity of the functions and the satisfaction
of the various constraints are left to the low-level least squares optimizer. In this way, all the
knowledge available on the problem is used, everything will be contained in the boxes that will
have a fast feedback. The algorithm works like many black boxes that solve a piece of the original
OCP only on a small time interval. The boxes are connected in sequence imposing a nonlinear
least square problem to provide continuity of the global solution. The aim is to have very efficient
boxes that provide quick solutions for high speed computation of manoeuvers for vehicles. This
new algorithm is not described here because it is still improving and under verification. We limit
ourselves to report the numerical results obtained for some of the benchmark tests with the label
“present method”.
The third scope of this thesis is the application of the techniques described to the field of au-
tonomous vehicles, XOptima was born to solve the optimization problems that arose while op-
timizing the models of vehicles and the related environment. In the field of intelligent vehicles
the optimal control can be used to formulate and solve many interesting problems such as the
motion planning and optimal manoeuver tracking in a receding horizon scheme [BBDL+14]. The
first problem (Optimal motion planning) finds the optimal way to drive a vehicle from a point A to
point B along a strip of road. It turned out that the description of the road in curvilinear coordinates
(i.e. arc length and curvature) is efficient and quite convenient to impose the path constraints.
One common way to describe the road shape in curvilinear coordinates is using a clothoid spline
which has some good properties, the most important is that the curvature varies linearly with
the arc length, making a clothoid spline superior over other polynomial splines. In facts, it was
soon recognized, when using polynomials, that the curvature at the extrema of the intervals of
the subdivision was unacceptable. Clothoids are widely used in highways design and are herein
applied for the description of the geometry of the road. The problem with this transcendent curve
is that the numerical computation of its parameters is very unstable (see [BF14]). The quasi G2

fitting algorithm permits a very smooth trajectory (from the point of view of the curvature). However,
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from the practical point of view, the road shape can be derived from the GPS points in cartesian
coordinates. The cloud of points is then clustered and fitted with a spline of cubic Bezier curves.
From the Bezier spline the G1 information is gathered and furnished to the clothoid fitting algorithm.
The complete solution of the G1 Hermite interpolation problem with clothoids and with the quasi G2

interpolation with clothoids is exposed in Chapter 6 and can be found in [BF14]. An open source
implementation in Matlab can be found in [BF13].
An example of this techniques is given in the OCP of minimum lap time of a vehicle on a race track:
it combines an OCP with a complex dynamic system (both realistic and intrinsically unstable) with
a path generated with the above results.
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The concept of optimization is nowadays universal. Among the various way we can perform
an action, we are looking to the best way to do it, where the idea of “best” can change from
situation to situation. In mathematics optimization makes sense if we can describe the object of our
investigation with a model, that is, some equations or expressions. In sight of the Optimal Control
Problem we start with some basic definitions that will help in understanding the successive topics.
Once we have a model, depending on the situation, we can be interested in finding maximum or
minimum points (or more in general, trajectories) that optimize the model. They are called extremal
values but they do not need to exist. For example, on R, the function f(x) = x is unbounded and
on the open interval (−1, 1), although limited, does not have extremal points. On the other side, on
the interval [−1, 1], f assumes both maximum and minimum values. Another important remark
arises noticing that it is not enough to restrict the image to a limited set. In facts, depending on the
interval considered, a function can have only one extremal value or can assume it at more than
one point. The previous examples show that neither compactness nor continuity can alone ensure
the existence of extremal values. The presence of both these conditions leads to the theorem of
Weierstrass, which can be weakened for the case of semi continuous functions.
It is clear that even with simple functions we need some necessary and sufficient conditions to
ensure that f has a minimum or a maximum. The problem of finding the maximum of f is the
same of the problem of minimum of −f , so we focus only on minimum problems, see Figure 2.1.
Let us begin with the discussion on function classes from one to many real variables and then to
functionals.

7
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f(x)

x

max f(x)

min−f(x)

Figure 2.1: The maximum of f is the minimum of −f .

2.1 F U N C T I O N S O F R E A L VA R I A B L E

The space of work will be Rn or a subset Ω ⊆ Rn. We write x ∈ R for a real variable, and use
bold for vectors or matrices, x ∈ Rn. The components of vector x are x = (x1, . . . , xn)T , that is,
we consider column vectors with the only exception of the gradient of a function f : Rn → R, in

that case ∇f(x) =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
is a row vector. In general, the domain is described by some

equalities h(x) = 0 with h : Rn → Rnh and some inequalities g(x) ≥ 0 with g : Rn → Rng . The
set Ω is also called the feasible set and is defined as

Ω = {x ∈ Rn | h(x) = 0, g(x) ≥ 0}.

Depending on the context, we can have two main classes of functions: smooth and non smooth
functions. The first one, splits in continuous functions C0(Ω,R), with continuous first C1(Ω,R) or
second C2(Ω,R) derivatives. In particular cases we can have even higher derivatives or C∞(Ω,R)

functions. We will give only a brief survey of the non smooth case, because in our application there
will be some regularity. When dealing with Taylor’s expansions, we adopt here the small o notation.

Definition 2.1 (small o). Assume g(x) 6= 0 for all x 6= x0 in some interval containing x0, the notation

f(x) = o(g(x)) as x→ x0

means that

lim
x→x0

f(x)

g(x)
= 0.

Some texts use the big O notation for the remainder, this means the following. For a function
g(x) 6= 0 for all x 6= x0 in some interval containing x0, we say that f(x) = O(g(x)) as x→ x0 if and
only if there exist a constant A such that |f(x)| ≤ A|g(x)| for all x in a neighbourhood of x0.

2.1.1 One Real Variable

Definition 2.2. The function f has a local minimum at point x0 if for all x ∈ (x0 − δ, x0 + δ) with
δ > 0 is f(x) ≥ f(x0). The function f has a global minimum at point x0 on an interval [a, b] if
f(x) ≥ f(x0) for all x ∈ [a, b].
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In this definition there are no differentiability nor continuity assumptions. An easy necessary
condition for the smooth case is the following proposition.

Proposition 2.3 (Necessary condition). The necessary condition for a differentiable function f(x)

to have a local minimum at x0 is

f ′(x0) = 0.

An useful sufficient condition to ensure a minimum is given by the next proposition.

Proposition 2.4 (Sufficient condition). The sufficient condition for a twice differentiable function
f(x) to have a local minimum at x0 is

f ′(x0) = 0, f ′′(x0) > 0.

From these easy examples we see that even for a smooth function in one real variable there is
not a criterion for a local minimum both sufficient and necessary.
In some situations we do not have smooth functions, not even continuous functions, therefore we
need a way to characterize their minima. Loosing for the moment the hypothesis of continuity, we
observe that f : I → R, where I ⊂ R, has a minimum at x0 if

inf
I
f = f(x0).

It follows that f limited is a necessary condition, but we need a minimizing sequence {xn} ⊂ I

such that xn → x with

lim
n→∞

f(xn) = inf
I
f

such that there is a convergent subsequence to x0. We also need a second property, f has to be
lower semi-continuous at x0 (see Figure 2.2), i.e. for every ε > 0 there exists a neighbourhood U
of x0 such that f(x) ≥ f(x0)− ε for all x ∈ U , this can be written as

lim inf
x→x0

f(x) ≥ f(x0).

Sequential compactness and lower semi-continuity should be both present to ensure the existence

x0

f(x)

x

Figure 2.2: A lower semi-continuous function

of a minimum point. With this hypothesis, one can state the theorem of extreme values.
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Theorem 2.5 (Weierstrass). If a function f : [a, b] → (−∞,∞] is lower semi-continuous in [a, b]

then f is bounded below and attains its minimum.

Looking at a computational approach, these results only give existence of the minimum, but in
order to find it, when possible, we try to solve f ′(x) = 0 and check the nature of the stationary
points. The calculus of variations arises as a generalization of these concepts, and applies to
functionals. Before introducing functionals and optimal control, we discuss further the minimum
problems of real functions.
From standard calculus, using the Taylor expansion of a continuously differentiable function f(x),
we have

f(x+ ∆x) = f(x) + f ′(x)∆x+ o(∆x),

where o(∆x) is the Peano’s remainder which means that

lim
∆x→0

f(x+ ∆x)− f(x)− f ′(x)∆x

∆x
= 0.

This expansion extends to functions having m continuous derivatives.

f(x+ ∆x) = f(x) + f ′(x)∆x+
1

2
f ′′(x)∆x2 + · · ·+ i

m!
f (m)(x)∆xm + o(∆xm).

If f is twice differentiable, the conditions of minimum can be retrieved as follows,

f(x+ ∆x)− f(x) = f ′(x)∆x+
1

2
f ′′(x)∆x2 + o(∆x2).

The right-hand side has the form of a quadratic in ∆x, a∆x2 + b∆x + o(∆x2). If b = f ′(x) 6= 0,
for ∆x small enough, the sign of f(x + ∆x) − f(x) is determined by that of b∆x. If b > 0 we
have f(x + ∆x) − f(x) > 0 and we arrive back to the necessary condition. Suppose now that
b = f ′(x) = 0, then the term f ′′(x)∆x2 defines the value of the right-hand side when ∆x is
sufficiently small. So f ′′(x) > 0 is enough to ensure the presence of a minimum.

2.1.2 Many Real Variables

Now we extend some of the previous results and definitions to functions of n real variables. Let
x = (x1, . . . , xn)T .

Definition 2.6. The function f : Rn → R has a global minimum in x0 if

f(x0) ≤ f(x0 + ∆x)

holds for all nonzero ∆x = (∆x1, . . . ,∆xn) ∈ Rn. Point x0 is a local minimum if there exists a
radius r > 0 such that f(x0) ≤ f(x0 + ∆x) whenever ||∆x|| < r.

Proposition 2.7 (Necessary condition). The necessary condition for a differentiable function f(x)

to have a local minimum at x0 is

∂f

∂xi
(x)

∣∣∣∣∣
x=x0

= 0, i = 1, . . . , n.
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To express the sufficient second order condition, we need the extension of Taylor formula to n
variables. Let f(x) possess all continuous derivatives up to second order in some neighbourhood
of a point x and suppose x+ ∆x lies in this neighbourhood, then

f(x+ t∆x) = f(x) +
df(x+ t∆x)

dt

∣∣∣∣∣
t=0

t+
1

2

d2f(x+ t∆x)

dt2

∣∣∣∣∣
t=0

t2 + o(t2)

= f(x) +

n∑
i=1

∂f(x)

∂xi
∆xi +

1

2

n∑
i,j=1

∂2f(x)

∂xi∂xj
∆xi∆xj + o(||∆x||2).

Proposition 2.8 (Sufficient condition). The sufficient condition for a twice differentiable function
f(x) to have a local minimum at x0 is

d2f(x0 + t∆x)

dt2

∣∣∣∣∣
t=0

> 0

for ||∆x|| small enough. The associated quadratic form in the variables ∆xi is

1

2

(
∆x1 ∆x2 · · · ∆xn

)

∂2f(x)

∂x1∂x1
. . .

∂2f(x)

∂x1∂xn
...

. . .
...

∂2f(x)

∂xn∂x1
· · · ∂2f(x)

∂xn∂xn




∆x1

∆x2

...
∆xn

 =
1

2
∆xTH∆x.

The matrix H(x) is the Hessian matrix1. A sufficient condition for a local minimum is that H(x0) is
Symmetric Positive Defined (SPD).

2.1.2.1 Constrained Optimization

We need further theory when searching for minima on a constrained domain Ω ⊂ Rn.

Definition 2.9 (Active constraint). An inequality constraint gi(x) ≥ 0 is called active constraint
at x0 ∈ Ω if and only if gi(x0) = 0, and otherwise inactive. The index set A(x0) ⊂ {1, . . . , ng} of
active constraints is called active set.

Definition 2.10 (Constraint qualification). The linear independence constraint qualification holds
at x0 ∈ Ω if and only if all vectors (for the equalities h) ∇hj(x0) for j = 1, . . . nh and ∇gi(x0) for
i ∈ A(x0) are linearly independent.

We can now state the famous Karush-Kuhn-Tucker optimality conditions as first order necessary
and second order sufficient conditions. We introduce here also the Lagrangian function. Consider
the constrained minimization problem

minimize: f(x)

subject to: hi(x) = 0 i = 1, 2, . . . ,m

The solution algorithm prescribes to form the Lagrangian function

L(x,λ) = f(x)−
m∑
k=1

λkhk(x)

and to solve the nonlinear system ∇xL(x,λ) = 0T with h(x) = 0. The for each solution point
(x?,λ?) compute ∇h(x?) and check it is full rank, e.g. the rows are linearly independent. Compute

1H(x) is symmetric if f is smooth enough.



12 S TAT I C A N D DY N A M I C O P T I M I Z AT I O N

the matrix K, the kernel of ∇h(x?), i.e. ∇h(x?)K = 0. Then project the reduced Hessian
∇2
xL(x?,λ?) in the kernel of the constraints K:

H = KT∇2
xL(x?,λ?)K,

A necessary condition of optimality is that H is semi positive definite, a sufficient condition is that
H is positive defined, briefly written, the two conditions are respectively H � 0 and H � 0. The
next theorem proves those conditions.

Theorem 2.11 (Lagrange multipliers). Let f ∈ C2(Rn,R) a map and x? a local minimum of f(x)

satisfying the constraints h ∈ C2(Rn,Rm), i.e. h(x?) = 0. If ∇h(x?) is full rank, then there exists
m scalars λk such that

∇xL(x?,λ) = ∇f(x?)−
m∑
k=1

λk∇hk(x?) = 0T (A)

moreover, for all z ∈ Rn which satisfy ∇h(vX(s))z = 0 it follows

zT∇2
xL(x?,λ)z = zT

(
∇2f(x?)−

m∑
k=1

λk∇2hk(x?)

)
z ≥ 0 (B)

in other words the matrix ∇2
x

(
f(x?)− λ · h(x?)

)
is semi-SPD in the Kernel of ∇h(x?).

Proof. Let x? be a local minimum, then there exists ε > 0 such that

f(x?) ≤ f(x), for all x ∈ B with h(x) = 0, (2.1)

where B = {x | ‖x− x?‖ ≤ ε}. Consider thus, the functions sequence

fk(x) = f(x) + k ‖h(x)‖2 + α ‖x− x?‖2 , α > 0 (2.2)

with the corresponding sequence of (unconstrained) local minima in B:

xk = argmin
x∈B

fk(x).

The sequence xk is contained in the compact ball B and from compactness, there exists a
converging sub-sequence xkj → x̄ ∈ B. The rest of the proof is to verify that x̄ = X(s) and it is a
minimum.

Step 1: h(x̄) = 0. Notice that the sequence xk satisfy fk(xk) ≤ f(x?), in fact

fk(xk) ≤ fk(x?) = f(x?) + k ‖h(x?)‖2 + α ‖x? − x?‖2 = f(x?).

and by definition (2.2) we have

kj
∥∥h(xkj )

∥∥2
+ α

∥∥xkj − x?∥∥2 ≤ f(x?)− f(xkj )

≤ f(x?)−min
x∈B

f(x) = C < +∞
(2.3)

so that

lim
j→∞

∥∥h(xkj )
∥∥ = 0 ⇒

∥∥∥∥h( lim
j→∞

xkj

)∥∥∥∥ = ‖h (x̄)‖ = 0 ⇒ h(x̄) = 0.
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Step 2: x̄ = x?. From (2.3)

α
∥∥xkj − x?∥∥2 ≤ f(x?)− f(xkj )− kj

∥∥h(xkj )
∥∥2 ≤ f(x?)− f(xkj )

and taking the limit

α

∥∥∥∥ lim
j→∞

xkj − x?
∥∥∥∥2

≤ α ‖x̄− x?‖2 ≤ f(x?)− lim
j→∞

f(xkj ) ≤ f(x?)− f(x̄)

From ‖h(x̄)‖ = 0 it follows that from (2.1) that f(x?) ≤ f(x̄) and

α ‖x̄− x?‖2 ≤ f(x?)− f(x̄) ≤ 0

and, thus x̄ = x?.

Step 3: Build multipliers. Because xkj are unconstrained local minima for fkj (x), it follows that

∇fkj (xkj ) = ∇f(xkj ) + kj∇
∥∥h(xkj )

∥∥2
+ α∇

∥∥xkj − x?∥∥2
= 0.

Recalling that

∇‖x‖2 = ∇(x · x) = 2xT ,

∇‖h(x)‖2 = ∇(h(x) · h(x)) = 2h(x)T∇h(x),

it follows (after transposition)

∇f(xkj )
T + 2kj∇h(xkj )

Th(xkj ) + 2α(xkj − x?) = 0. (2.4)

Left multiplying by ∇h(xkj )

∇h(xkj )
[
∇f(xkj )

T + 2α(xkj − x?)
]

+ 2kj∇h(xkj )∇h(xkj )
Th(xkj ) = 0.

Now ∇h(x?) ∈ Rm×n is full rank for j large by continuity, ∇h(xkj ) is full rank and thus the matrix
∇h(xkj )∇h(xkj )

T ∈ Rm×m is nonsingular, thus

2kjh(xkj ) = −
(
∇h(xkj )∇h(xkj )

T
)−1∇h(xkj )

[
∇f(xkj )

T + 2α(xkj − x?)
]

taking the limit for j →∞

lim
j→∞

2kjh(xkj ) = −
(
∇h(x?)∇h(x?)T

)−1∇h(x?)∇f(x?)T = −λ (2.5)

and taking the limit of (2.4) with (2.5) we have ∇f(x?)T −∇h(x?)Tλ = 0.

Step 4: Build a special sequence of zj . We need a sequence zj → z such that∇h(xkj )zj = 0

for all j. The sequence zj is built as the projection of z into the kernel of ∇h(xkj ), i.e.

zj = z −∇h(xkj )
T
[
∇h(xkj )∇h(xkj )

T
]−1∇h(xkj )z,

in facts

∇h(xkj )zj = ∇h(xkj )z −∇h(xkj )∇h(xkj )
T
[
∇h(xkj )∇h(xkj )

T
]−1∇h(xkj )z

= ∇h(xkj )z −∇h(xkj )z = 0
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consider now the limit

lim
j→∞

zj = z − lim
j→∞

∇h(xkj )
T
[
∇h(xkj )∇h(xkj )

T
]−1∇h(xkj )z

= z −∇h(x?)T
[
∇h(x?)∇h(x?)T

]−1∇h(x?)z

and thus, if z is in the kernel of ∇h(x?), i.e. ∇h(x?)z = 0 we have

∇h(xkj )zj = 0 with lim
j→∞

zj = z.

Step 5: Necessary conditions. Because xkj are unconstrained local minima for fkj (x), it
follows that matrices ∇2fkj (xkj ) are semi positive defined, i.e.

zT∇2fkj (xkj )z ≥ 0, ∀z ∈ Rn

moreover

∇2fkj (xkj ) = ∇2f(xkj ) + k∇2
∥∥h(xkj )

∥∥2
+ 2α∇(xkj − x?)

= ∇2f(xkj )
T + k∇2

m∑
i=1

hi(xkj )
2 + 2αI

(2.6)

using the identity

∇2h(x)2 = ∇(2h(x)∇h(x)T ) = 2∇h(x)T∇h(x) + 2h(x)∇2h(x)

in (2.6)

∇2fkj (xkj ) = ∇2f(xkj ) + 2kj

m∑
i=1

∇hi(xkj )T∇hi(xkj ) + 2kj

m∑
i=1

hi(xkj )∇2hi(xkj ) + 2αI.

Let z ∈ Rn, then 0 ≤ zT∇2fkj (xkj )z, that is

0 ≤ zT∇2f(xkj )z +

m∑
i=1

(2kjhi(xkj ))z
T∇2hi(xkj )z + 2kj

∥∥∇h(xkj )z
∥∥2

+ 2α ‖z‖2 .

The inequality is true for all z ∈ Rn and thus for any z in the kernel of ∇h(x?). Choosing z in the
kernel of ∇h(x?), from the previous step, the sequence zj satisfies

0 ≤ zTj ∇2f(xkj )zj +

m∑
i=1

(2kjhi(xkj ))z
T
j ∇2hi(xkj )zj + 2α ‖zj‖2

and taking the limit j →∞ with (2.5)

0 ≤ zT∇2f(x?)z +

m∑
i=1

λiz
T∇2hi(x

?)z + 2α ‖z‖2 .

The value of α > 0 can be chosen arbitrarily, therefore

0 ≤ zT∇2f(x?)z −
m∑
i=1

λi
[
zT∇2hi(x

?)z
]

which is the relation to be proved.
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It is possible to adapt theorem 2.11 for inequality constraints. Consider the NLP problem

minimize: f(x)

subject to: hi(x) = 0 i = 1, 2, . . . ,m

gi(x) ≥ 0 i = 1, 2, . . . , p

introducing the slack variables ei, i = 1, 2, . . . , p and yT = (xT , eT ) the new problem

minimize: f(y) = f(x)

subject to: hi(y) = hi(x) = 0 i = 1, 2, . . . ,m

hi+m(y) = gi(x)− e2
i = 0 i = 1, 2, . . . , p

with the Lagrangian function:

L(x, e,λ,µ) = f(x)−
m∑
k=1

λkhk(x)−
p∑
k=1

µk
(
gk(x)− e2

k

)
The first order condition becomes

∇xL(x?, e,λ,µ) = ∇f(x?)−
m∑
k=1

λk∇hk(x?)−
p∑
k=1

µk∇gk(x?) = 0T ,

∇eL(x?, e,λ,µ) = 2(µ1e1, . . . , µpep) = 0T ,

hk(x?) = 0,

gk(x?) = e2
k ≥ 0,

and the second order condition becomes zT∇2
(x,e)L(x?, e,λ,µ)z ≥ 0 for z in the kernel of the

matrix (∇xh(x?) 0

∇xg(x?) 2 diag(e1, . . . , ep)

)
(2.7)

where

∇2
(x,e)L(x?, e,λ,µ)z =

(∇2
xL(x?, e,λ,µ) 0

0 ∇2
eL(x?, e,λ,µ)

)
(2.8)

and ∇x∇TeL(x?, e,λ,µ) = 0, moreover

∇2
xL(x?, e,λ,µ) = ∇2f(x?)−

m∑
k=1

λk∇2hk(x?)−
p∑
k=1

µk∇2gk(x?),

∇2
eL(x?, e,λ,µ) = 2 diag(µ1, µ2, . . . , µp).

Notice that µkek = 0 is equivalent of µke2
k = 0 and thus µkgk(x?) = 0. So that when gk(x?) > 0

then µk = 0. Up to a reordering, we split g(x) =

(
g(1)(x)

g(2)(x)

)
where

gk(x?) = e2
k = 0, k = 1, 2, . . . , r

gk(x?) = e2
k > 0, k = r + 1, r + 2, . . . , p
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and thus (2.7) becomes ∇xh(x?) 0 0

∇xg(1)(x?) 0 0

∇xg(2)(x?) 0 E

 , 2 diag(ek+1, . . . , ep) = E. (2.9)

and

∇2
eL(x?, e,λ,µ) =

(
M 0

0 0

)
, M = 2 diag(µ1, µ2, . . . , µr) (2.10)

The group of constraints g(1)(x?) that are zeros are the active constraints. The kernel of (2.9) can
be written as

K =

 K 0

0 I

−E−1∇xg(2)(x?)K 0

 , (2.11)

where K is the kernel of the matrix ( ∇xh(x?)

∇xg(1)(x?)

)
thus z can be written as the scalar product Kd and thus the second order necessary condition
zT∇2

(x,e)L(x?, e,λ,µ)z ≥ 0 becomes

0 ≤ dT
[
KT∇2

(x,e)L(x?, e,λ,µ)K
]
d, d ∈ Rs

and using (2.11) with (2.8) and (2.10)

[
KT∇2

(x,e)L(x?, e,λ,µ)K
]

= KT

∇2
xL(x?, e,λ,µ) 0 0

0 M 0

0 0 0

K,

=

(
KT∇2

xL(x?, e,λ,µ)K 0

0 M

)
.

Using the solution algorithm of the equality constrained problem, we have

• Necessary condition: the matrices

KT∇2
xL(x?, e,λ,µ)K, and M

must be semi positive defined. This implies that µk ≥ 0 for k = 1, 2, . . . , p

• Sufficient condition: the matrices

KT∇2
xL(x?, e,λ,µ)K, and M

must be positive defined. This implies that µk > 0 for the active constraints.

Consider the constrained minimization problem NLP

minimize: f(x)

subject to: hi(x) = 0 i = 1, 2, . . . ,m

gi(x) ≥ 0 i = 1, 2, . . . , p

(2.12)

The solution algorithm requires the following steps
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• Compute the Lagrangian function:

L(x,λ,µ) = f(x)−
m∑
k=1

λkhk(x)−
p∑
k=1

µkgk(x)

• Solve the nonlinear system

∇xL(x,λ,µ) = 0T

hk(x) = 0 k = 1, 2, . . . ,m

µkgk(x) = 0 k = 1, 2, . . . , p

and keep only the solutions with µ?k ≥ 0 and gk(x?) ≥ 0.

• For each solution point (x?,λ?,µ?) compute ∇h(x?) with ∇gk(x?) where gk(x?) = 0 are the
active constraints with µk > 0 and check they are linearly independent.

• Compute matrix K the kernel of ∇h(x?) with ∇gk(x?) where gk(x?) = 0 are the active
constraints with µk > 0.

• Compute the reduced Hessian

H = KT∇2
xL(x?,λ?)K,

– Necessary condition: H is semi-positive definite.

– Sufficient condition: H is positive definite and µk > 0 for all the active constraints.

The following theorem (see [Joh48]) give the necessary conditions for constrained minima.
Notice that no condition on the constraints are necessary.

Theorem 2.12 (Fritz John). If the functions f(x), g1(x),. . . , gp(x), are differentiable, then a
necessary condition for x? to be a local minimum to problem:

minimize: f(x)

subject to: gi(x) ≥ 0 i = 1, 2, . . . , p

is that there exist scalars µ?0, µ?1, µ?p, (not all zero) such that the following inequalities and equalities
are satisfied:

∇xL(x?,µ∗) = 0T

µ?kgk(x?) = 0, k = 1, 2, . . . , p;

µ?k ≥ 0, k = 0, 1, 2, . . . , p;

where

L(x,µ) = f(x)−
p∑
k=1

µk gk(x)

In [KT51] Kuhn and Tucker showed that if a condition, called the first order constraint qualification,
holds at x?, λ? then λ0 can be taken equal to 1.
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Definition 2.13 (Constraints qualification LICQ). Let the unilateral and bilateral constraints be g(x)

and h(x), the point X(s) is admissible if

gk(x?) ≥ 0, hk(x?) = 0.

The constraints g(x) and h(x) are qualified at x? if the point x? is admissible and the vectors

{∇gk(x?) : k ∈ A(X(s))}
⋃
{∇h1(x?),∇h2(x?), . . . ,∇hm(x?)}

are linearly independent.

Definition 2.14 (Constraint qualification (Mangasarian-Fromovitz)). The constraints g(x) and h(x)

are qualified at x?, if the point x? is admissible and it does not exists a linear combination

m∑
k∈A(x?)

αk∇gk(x?) +

m∑
k=1

βk∇hk(x?) = 0

with αk ≥ 0 for k ∈ A(x?) and αk with βk not all 0. In other words, there is not a non trivial linear
combination of the null vector such that αk ≥ 0 for k ∈ A(x?).

The next theorems are taken from [NW06].

Theorem 2.15 (First order necessary conditions). Let f ∈ C1(Rn) and the constraints g ∈
C1(Rn,Rp) and h ∈ C1(Rn,Rm). Suppose that x? is a local minimum of (2.12) and that the
constraints qualification LICQ holds at x?. Then there are Lagrange multiplier vectors λ and µ
such that the following conditions are satisfied at (x?,λ,µ)

∇xL(x?,λ?,µ?) = 0T

hk(x?) = 0, k = 1, 2, . . . ,m;

µ?kgk(x?) = 0, k = 1, 2, . . . , p;

µ?k ≥ 0, k = 1, 2, . . . , p;

where

L(x,λ,µ) = f(x)−
m∑
k=1

λk hk(x)−
p∑
k=1

µk gk(x)

Theorem 2.16 (Second order necessary conditions). Let f ∈ C2(Rn) and the constraints g ∈
C2(Rn,Rp) and h ∈ C2(Rn,Rm). Let x? satisfying the First order necessary conditions, a neces-
sary condition for x? be a local minimum is that the m+ p scalars (Lagrange Multiplier) of the first
order necessary condition satisfy:

dT∇2
xL(X(s),λ∗,µ∗)d ≥ 0

for all d such that

∇hk(x?)d = 0, k = 1, 2, . . . ,m

∇gk(x?)d = 0, if k ∈ A(x?) and µk > 0

∇gk(x?)d ≥ 0, if k ∈ A(x?) and µk = 0
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Remark 2.17. The conditions

∇gk(x?)d = 0, if k ∈ A(x?) and µk > 0

∇gk(x?)d ≥ 0, if k ∈ A(x?) and µk = 0

restrict the space of direction to be considered. If changed with

∇gk(x?)d = 0, if k ∈ A(x?)

theorems 2.16 is still valid because the necessary condition is tested in a smaller set.

Theorem 2.18 (Second order sufficient conditions). Let f ∈ C2(Rn) and the constraints g ∈
C2(Rn,Rp) and h ∈ C2(Rn,Rm). Let x? satisfy the First order necessary conditions, a sufficient
condition for x? be a local minimum is that the m+ p scalars (Lagrange Multiplier) of the first order
necessary condition satisfy:

dT∇2
xL(x?,λ?,µ?)d > 0

for all d 6= 0 such that

∇hk(x?)d = 0, k = 1, 2, . . . ,m

∇gk(x?)d = 0, if k ∈ A(x?) and µk > 0

∇gk(x?)d ≥ 0, if k ∈ A(x?) and µk = 0

Remark 2.19. The condition

∇gk(x?)d ≥ 0, if k ∈ A(x?) and µk = 0

restrict the space of direction to be considered. If omitted, theorem 2.18 is still valid because the
sufficient condition is tested in a larger set.

2.2 F U N C T I O N A L S

The generalization of the concept of function, that is a special function in which the independent
variable is a function itself, is called a functional. The object of the calculus of the variations is to
find the functions that minimize a given functional. A classic example of a functional is the length of
a curve. If we consider a curve in the (x, y) ⊂ R2 plane, i.e. a function in the form y = y(x), the
total length of the curve in the interval [a, b] is the integral

J(y) =

∫ b

a

√
1 + y′(x)2 dx.

The general form of a functional in calculus of variations will depend not only on the value of the
function y(x) itself, but also on its derivative y′(x),

J(y) =

∫ b

a

f(x, y, y′) dx :=

∫ b

a

f [y] dx. (2.13)

An important point in seeking an extremum value of a functional, is to establish the class of
functions we are dealing with. Different classes of functions have fundamental implications, even in
the existence of the extremal values. It would be good to deal with smooth functions, or at least
with continuous first derivative, but often in technical applications we encounter just piecewise-
continuous functions. This becomes much more evident in the optimal control theory, when
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discontinuities produce bang-bang controls.
We consider the functional J defined on a subset D of a linear space Y . We have to put some care
in the choice of the subset D, because, for example D = {y ∈ C[a, b] | y(a) = 0, y(b) = 1} is not
a linear space, while the subsets of vector valued functions with components in C(R) are linear.
When in equation (2.13), f ∈ C([a, b]× R2), then J is defined on Y = C1[a, b], because for each
function y ∈ Y, f(x, y, y′) ∈ C[a, b]. But when f ∈ C([a, b]×D), where D ⊂ R2, then J is defined
only on a subset of D = {y ∈ C1[a, b] | (y, y′) ∈ D ∀ x ∈ [a, b]}. This shows that there are various
situations when we try to optimize a functional J over a subset D of Y. It is not strange that the
natural domain of J can be larger than D and can be Y itself.
If Y is the vector space Rn it is routine to associate each vector to a real number, given by a
norm. If Y = C[a, b] there are various choices for a norm, ||y||M = maxx∈[a,b] |y(x)| determines the
maximum norm (see Figure 2.3, ||y||1 =

∫ b
a
|y(x)|dx is also common, the Euclidean norm ||y||2

is difficult to employ because it is nontrivial to apply. Once we have chosen a norm, we define
continuity of a functional as follows.

f(x)

x

δ

δ

f − δ
f1

f

f2

f + δ

Figure 2.3: The graph of a family of functions fi ∈ Y = C[a, b] uniformly bounded within δ with respect to the

graph of f .

Definition 2.20 (continuity for functionals). In a normed linear space Y, if D ⊂ Y, a functional
J : D → R is continuous at y0 ∈ D if and only if for each ε > 0 exists a δ > 0 such that
|J(y)− J(y0)| < ε for all y ∈ D with ||y − y0|| < δ.

In sight of the equivalent version of the theorem of Weierstrass for functionals, the next lemma
yields a general result on continuity.

Lemma 2.21. If K is a compact set in a normed linear space Y, then a continuous functional
J : K → R is uniformly continuous on K, that is, for ε > 0 there exists δ > 0 such that y, y0 ∈ K
with ||y − y0|| < δ imply that |J(y)− J(y0)| < ε.

It is not a surprise that a continuous functional on a subset of a linear space need not to admit
neither a maximum nor a minimum value on this subset, unless compactness is present.

Theorem 2.22 (Weierstrass for functionals). Let J : K → R be a continuous functional on the
compact set K, then J assumes both maximum and minimum values at points in K, in particular
these values are finite.

However, often the domains where we have to establish the presence of an extremal value
are too large to be compact, hence other techniques are necessary: for example C[0, 1] with the
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maximum norm is not compact, e.g. J(y) = y(1) is unbounded. In facts the sequence given by
yn(x) = nx for x ∈ [0, 1], for which J(yn) = n→ +∞ diverges.
As with in the static optimization problems, we are interested in the extremal (minimum) values of a
functional J , they occur at y0 ∈ D when

J(y0) ≤ J(y) ∀y ∈ D.

As said before, maximum points of J can be obtained from −J(y0) ≤ −J(y), we can focus only on
minimum points.

Proposition 2.23. An element y0 ∈ D minimizes (globally) J on D if and only if

J(y0 + v)− J(y0) ≥ 0 ∀y0 + v ∈ D, (2.14)

the equality holds if and only if v = 0. Moreover if c0, c 6= 0 are constants, y0 minimizes also
c2J + c0.

Example 2.24. This proposition has interesting applications, consider the functional J(y) =∫ b
a
y′(x)2 dx on the set D = {y ∈ C1[a, b] | y(a) = 0, y(b) = 1}. It is clear that J ≥ 0 and that

J(y) = 0 for y′ = 0, but y = k with k constant is not an element of D, therefore we should use
equation (2.14):

J(y0 + v)− J(y0) =

∫ b

a

(y′0(x) + v′(x))2 − y′0(x)2 dx

=

∫ b

a

v′(x)2 dx+ 2

∫ b

a

y′0(x)v′(x) dx

≥ 2

∫ b

a

y′0(x)v′(x) dx.

Observing that 0 = y0(a) = (y0 + v)(a) = y0(a) + v(a) = 0, we have that v(a) = 0 and with the
same argument v(b) = 0. If we try y′0(x) = k for a constant k, the last integral becomes∫ b

a

y′0(x)v′(x) dx = k

∫ b

a

v′(x) dx = k(v(b)− v(a)) = 0 ∀v.

This shows that equation (2.14) is satisfied, and one can show that the minimizing function is
y0(x) = x−a

b−a . The equality is also satisfied because it is required that v′(x)2 = 0 =⇒ v(x) =

const = v(a) = 0, hence v = 0. The second part of the proposition shows that y0 minimizes
uniquely also

J̃(y) = 2

∫ b

a

y′(x)2 − ex dx = 2

∫ b

a

y′(x)2 dx+ 2

∫ b

a

ex dx = c2J(y) + c0.

The minimization of functional constrained to the level set of a vector valued function h = 0

reflects the technique of the Lagrange multiplier for static optimization. We transform the original
functional in an augmented one without constraints.

Proposition 2.25. If the functional J and the function h = (h1, . . . , hN )T are defined on D, and
for some constants λ1, . . . , λN the function y0 minimizes J1 = J + λ1h1 + . . .+ λNhN on D, then
y0 minimizes J restricted to the set Hy0 = {y ∈ D | hj(y) = hj(y0), j = 1, 2, . . . , N}.
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2.2.1 Gâteaux Variations

In order to further characterize the extremal values of a functional, we have to introduce the
analogue of the partial derivatives for real valued functions. In general we will not have partial
derivatives but only directional derivatives, which are called Gâteaux Variations.

Definition 2.26. The Gâteaux variation of J at y in the direction v for y, v ∈ Y is

δJ(y; v) := lim
ε→0

J(y + εv)− J(y)

ε
=

d

dε
J(y + εv)

∣∣∣∣
ε=0

,

assuming that the limit exists.

The existence of the limit relies on the definition of J(y) and J(y+ εv) for sufficently small ε, and
on the existence of the ordinary derivative in ε. The variation need not to exist in any direction or it
may exist only in some directions. It has the properties of linearity of the standard derivatives.
When J is a real function, y,v real vectors, then δJ(y;v) = ∇J(y) · v is just the directional
derivative of J when v is a unit vector.

Definition 2.27. In a normed linear space Y, the Gâteaux variations δJ(y; v) of a real valued
functional are said to be weakly continuous at y0 ∈ Y if for each v ∈ Y we have that δJ(y; v) →
δJ(y0, v) as y → y0.

Example 2.28. Consider Y = C[a, b] and the functional, J =
∫ b
a
y2(x) + ex dx which is defined for

all y ∈ Y. For fixed y, v ∈ Y and ε 6= 0 we have that also y + εv ∈ Y because it is a linear space,
hence

J(y + εv) =

∫ b

a

(y + εv)2(x) + ex dx

is well defined. After some manipulations we have

J(y + εv)− J(y)

ε
=

1

ε

∫ b

a

(y + εv)2(x)− y2(x) dx

=
1

ε

∫ b

a

y2(x) + 2εy(x)v(x) + ε2v2(x)− y2(x) dx

= 2

∫ b

a

y(x)v(x) dx+ ε

∫ b

a

v2(x) dx.

When ε→ 0, the variation becomes

δJ(y; v) = 2

∫ b

a

y(x)v(x) dx ∀y, v ∈ Y.

The other way to compute δJ(y; v) is to make use of the explicit formula given in the definition of

variation
d

dε
J(y + εv)

∣∣∣∣
ε=0

and compute

J(y + εv) =

∫ b

a

(y + εv)2(x) + ex dx

=

∫ b

a

y2(x) + ex dx+ 2ε

∫ b

a

y(x)v(x) + ε2

∫ b

a

v(x)2 dx.

For fixed y, v the derivative of the previous expression becomes

d

dε
J(y + εv) = 2

∫ b

a

y(x)v(x) dx+ 2ε

∫ b

a

v2(x) dx,
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thus the variation is

δJ(y; v) = 2

∫ b

a

y(x)v(x) dx.

Although the second method is technically easier, because of the familiarity with usual differenti-
ation methods, it requires that d/ dεJ exist for small ε 6= 0 and that it be continuous at ε = 0. The
first method requires only the existence of the derivative at ε = 0.
We collect in the next table some remarkable variations of functionals that are often encountered.
Suppose f or (x(t), y(t)) are continuous functions over the appropriate domain.

J(y) δJ(y; v)∫ b

a

f(x)
√

1 + y′(x)2 dx

∫ b

a

f(x)y′(x)v′(x)√
1 + y′(x)2

dx∫ b

a

f [y(x)] dx

∫ b

a

fy[y(x)]v(x) + fy′ [y(x)]v′(x) dx∫ b

a

sin y(x) dx+ y2(b)

∫ b

a

v(x) cos y(x) dx+ 2y(b)v(b)∫ 1

0

x(t)y(t) dt

∫ 1

0

x(t)v′(t) + y′(t)u(t) dt∫ b

a

f(x,y(x),y′(x)) dx

∫ b

a

fy[y(x)]v(x) + fy′ [y(x)]v′(x) dx∫
D

√
1 + u2

x + u2
y dA

∫
D

uxvx + uyvy√
1 + u2

x + u2
y

dA

∫ b

a

f(x, y, y′, y′′) dx

∫ b

a

fy[y]v(x) + fy′ [y]v′(x) + fy′′ [y]v′′(x) dx

We conclude this section with some properties of the Gâteaux variations.

Proposition 2.29. If δJ(y; v) and δJ1(y; v) both exist for y, v ∈ Y and supposing f ∈ C1(R), then

• δ(JJ1)(y; v) = δJ(y; v)J1(y; v) + J(y; v)δJ1(y; v),

• δ(J/J1)(y; v) =
δJ(y; v)J1(y; v)− J(y; v)δJ1(y; v)

J1(y; v)2
,

• δ(f(J))(y; v) = f ′(J(y))δJ(y; v).

• If J is a linear functional on Y, its variation is simply δJ(y; v) = J(v).

2.2.2 Convexity

More about the existence of a minimum point can be said when there is the condition of convexity.
We introduce the matter on sets and functions first, then we generalize it to functionals.

Definition 2.30 (Convex set). A set A is convex if the line segment between any two points in A
lies in A, that is, for any x1, x2 ∈ A and for any α ∈ [0, 1],

αx1 + (1− α)x2 ∈ A.

A point x of the form x = α1x1 + . . .+ αnxn where α1 + . . .+ αn = 1 with αi ≥ 0 and xi ∈ A is
called a convex combination of the points xi. A set is convex if and only if it contains every convex
combination of its points. The convex hull of a set A is the set of all convex combinations of points
in A, formally

convA := {α1x1 + . . .+ αnxn | xi ∈ A, αi ≥ 0, α1 + . . .+ αn = 1, i = 1, . . . , n}.
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By definition, the convex hull of a set is convex, see Figure 2.4. Some easy examples of convex

Figure 2.4: Left: the set A (non convex). Right: convex hull of A, convA (convex).

sets of Rn are the empty set, every singleton, the whole space, a line or line segment, a linear
subspace.
A hyperplane is a set of the form {x | vTx = b} for v ∈ Rn, v 6= 0 and b ∈ R, i.e. is the solution
of a linear equation among the components of x. It can be thought as the set of points that are
orthogonal to the vector v and b is the offset of the hyperplane from the origin. Finally, a hyperplane
divides the space in two halfspaces, see Figure 2.5. Intersection of convex sets is still convex, as a

y

x

v

b

vTx ≥ b

vTx ≤ b

v T
x
=
b

Figure 2.5: The hyperplane vTx = b cutting R2 in two halfspaces.

direct consequence, a polyhedron obtained as the intersection of halfspaces and hyperplanes is
convex. Convexity is also preserved by isometries, that is, scaling and translation. The projection
of a convex set onto some of its coordinates is convex.
A basic property that connects convex sets with hyperplanes is the theorem of Hahn-Banach, or
separating hyperplane theorem.

Theorem 2.31. If C and D are two convex sets that do not intersect, C ∩D = ∅, then there exists
v 6= 0 and b such that vTx ≤ b for all x ∈ C and vTx ≥ b for all x ∈ D. The hyperplane vTx = b is
called a separating hyperplane.

If the two convex sets are disjoint, there is an hyperplane orthogonal to the shortest segment
that connects two points of each set and bisecting it. In this case the inequality conditions are
strict and it is called strict separation. Notice that in general disjoint sets need not to be strictly
separable. An hyperplane that is tangent to a set C at one boundary point x0 ∈ ∂C is called a
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supporting hyperplane. If a set is closed with nonempty interior and has a supporting hyperplane
at every point in its boundary, then it is convex.
It is now natural to introduce convex functions: there are various definition that employ weaker or
stronger conditions on the function. We choose a definition that does not require differentiability
and is intuitive.

Definition 2.32 (convex function). A function f : Rn → R is convex if the domain of f is a convex
set and if for all x,y and for all 0 ≤ α ≤ 1 holds

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

which is called the Jensen inequality. A function f is said to be concave if −f is convex. If the
Jensen inequality is strict, then f is called strictly convex.

The inequality can be extended to any convex combination of points, if f is convex, for x1, . . . ,xn
in its domain, and for scalars α1, . . . , αn such that αi ≥ 0 and α1 + . . .+ αn = 1, then

f(α1x1 + . . .+ αnxn) ≤ α1f(x1) + . . .+ αnf(xn).

Remark 2.33. From this inequality, many inequalities can be derived, for example the simple
arithmetic-geometric mean, for a, b ≥ 0,

√
ab ≤ (a + b)/2; Hölder inequality, for x,y ∈ Rn and

p, q dual norms, ||x · y||1 ≤ ||x||p||y||q; the general arithmetic-geometric mean, for a, b ≥ 0 and
0 ≤ α ≤ 1, aαb1−α ≤ αa+ (1− α)b.

From a geometric point of view, a convex function has every chord from f(x) to f(y) above its
graph. A useful property of convex functions is that they remain convex when restricted to any line
intersecting their domains. Thus f is convex if and only if for all v the function g(t) = f(x+ tv) is
convex. This represents a practical test to check convexity, allowing to consider only the restriction
to a line of a certain function.
When f is defined on a convex set and is also differentiable, then the condition of convexity can be
stated with the inequality

f(y) ≥ f(x) +∇f(x)T (y − x).

The right hand side represents the Taylor expansion of first order, or, geometrically, the supporting
hyperplane at x. As before, if the inequality is strict, then we speak of strict convexity. For a
concave function, the previous inequality changes the sign.
If f is twice differentiable, defined on an open convex domain, convexity is assured if

∇2f(x) � 0.

The information given by the Hessian matrix is about the local curvature of f : positive eigenvalues
are equivalent to positive curvature, hence they imply the presence of a minimum point. Strict
convexity and concavity follow in the same way. We must point out that ∇2f � 0 implies convexity,
but the converse is not true, as the simple function f(x) = x4 shows: it is strictly convex but has
f ′′(0) = 0.

Remark 2.34. The hypothesis that the domain of f is convex is important for first and second
order conditions, for example f(x) = 1

x2 for x 6= 0 satisfies f ′′(x) > 0 but it is not convex.

Some examples of elementary convex functions are the exponential ex; the powers xp for positive
x and p ≥ 1 or p ≤ 0 (concave for 0 ≤ p ≤ 1); the logarithm is concave. Some important convex
functions are the norms of Rn; the maximum function of Rn max{x1, . . . , xn}; squared functions
over linear function as x2/y on domain of kind {(x, y) | y > 0}; the Log-Sum-Exp function
log(ex1 + . . .+ exn); the geometric mean (

∏n
i=1 xi)

1/n.
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From those simple functions we can build new convex functions via operations that preserve
convexity: non negative weighted sums, for non negative weights wi ≥ 0, f = w1f1 + . . .+ wnfn;
similarly, a non negative weighted sum of concave functions is concave; if f(x, y) is convex in x for
each y and w(y) ≥ 0, then g(x) =

∫
w(y)f(x, y)dy is convex; the image of a convex set under a

linear map is convex. The composition g(x) = f(Ax+ b) of a convex function f with an affine map
Ax+ b is also convex. The pointwise maximum or supremum of two convex functions is convex,
f(x) = max{f1(x), f2(x)}; this property can be generalized to the maximum or supremum of n
convex functions. An application of the last point is the distance to farthest point of a set (in any
norm).
An important application is devoted to least squares. Let x,v1, . . . ,vn, b1, . . . , bn ∈ Rm, minimize
the objective function

n∑
i=1

wi(v
T
i x− bi)2

where the wi are the weights that can be negative. Defining

g(w) = inf
x

n∑
i=1

wi(v
T
i x− bi)2,

g is the infimum of a family of linear functions of w and is a concave function of w (see [BV04]).
Another remarkable example is the norm of a matrix (convexity follows from the supremum of linear
functions).
We give now some general results of convexity when composing functions, we begin with the scalar
case. Let h, g : R→ R, for twice differentiable g and h. Define f(x) = (h ◦ g)(x) = h(g(x)). The f
is convex if and only if f ′′(x) ≥ 0 ∀ x. This can be expanded as

f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x).

It can be proved the next result, which it turns out to hold in the general case of g : Rn → R and
h : R→ R (with the note that h should be monotone and extended-valued to +∞ for points not in
its domain):

h g f

convex and nondecreasing convex =⇒ convex

convex and nonincreasing concave =⇒ convex

concave and nondecreasing concave =⇒ concave

concave and nonincreasing convex =⇒ concave

(2.15)

Example 2.35. As an example consider g : R → R, g(x) = x2 and h : [1, 2] → R, h(x) = 0. In
this case g is convex and h is convex nondecreasing. Define f = h ◦ g, which has the domain
[−
√

2,−1] ∪ [1,
√

2] and is f(x) = 0. Here f is not convex because the domain is not convex, the
problem here is that h is not nondecreasing outside its domain, that is, the extended valued h

should be nondecreasing, not just over its domain.

We turn now to the general vector composition, let h : Rk → R and gi : R→ R where

f(x) = h(g(x)) = h(g1(x), . . . , gk(x)).

The formal expression of the condition of convexity can be expressed as

f ′′(x) = g′(x)T∇2h(g(x))g′(x) +∇h(g(x))Tg′′(x) > 0.
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The conclusion of table (2.15) are still valid, but considering g convex/concave in each component.
We extend the concept of convex function to functionals: the directional derivatives are substituted
by the Gâteaux variations. In the case of f ∈ C1(R3), we have already seen that δf(y;v) =

∇f(y) · v, and convexity is provided by the condition

f(y + v)− f(y) ≥ ∇f(y) · v = δf(y;v).

Strict convexity is present if the previous relation in an equality if and only if v = 0.

Definition 2.36 (convexity for functionals). A real valued functional J defined on D in a linear
space Y is said to be convex on D provided that when y and y+ v ∈ D then δJ(y; v) is defined and

J(y + v)− J(v) ≥ δJ(y; v). (2.16)

Definition 2.37 (strict convexity for functionals). J is strictly convex if (2.16) is an equality if and
only if v = 0.

An useful property of convex functionals is that if J and J1 are convex and c ∈ R, c > 0, then
J + J1 and cJ are also convex.

Proposition 2.38. If J is convex on D, then each y ∈ D for which δJ(y; v) = 0 minimizes J on D.
Moreover, if J is strictly convex, then the minimizer is unique.

Example 2.39. Consider Y = C[a, b] and the functional, J =
∫ b
a
y2(x) + ex dx. J is strictly convex

because δJ(y; v) = 2
∫ b
a
y(x)v(x) dx and

J(y + εv)− J(y) = 2

∫ b

a

y(x)v(x) dx+

∫ b

a

v2(x) dx ≥ 2

∫ b

a

y(x)v(x) dx = δJ(y; v).

The equality holds if and only if
∫ b
a
v2(x) dx = 0, that is v = 0. Therefore, for the previous proposition

the function y such that δJ(y; v) = 0 minimizes uniquely the functional.

It is an application of the definition to obtain that a linear functional is convex but not strictly
convex.
The general case is a convex integral functional of the form

F (y) =

∫ b

a

f [y(x)] dx :=

∫ b

a

f(x, y(x), y′(x)) dx,

which has the variation

δF (y; v) =

∫ b

a

fy[y(x)]v(x) + fy′ [y(x)]v′(x) dx.

Convexity implies that J(y + v)− J(v) ≥ δJ(y; v), i.e.∫ b

a

f [y(x) + v(x)]− f [y(x)] dx ≥
∫ b

a

fy[y(x)]v(x) + fy′ [y(x)]v′(x) dx, (2.17)

this yields the pointwise relation

f [y(x) + v(x)]− f [y(x)] ≥ fy[y(x)]v(x) + fy′ [y(x)]v′(x).

This shows that f is convex when x is held fixed, a kind of partial convexity which is essential in
the development of the theory and leads to the definition of strong convexity.
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Definition 2.40 (convexity for integral functionals). Let x be fixed, f(x, y, y′) is said to be convex if
f and its partial derivatives fy and fy′ are defined and continuous and satisfy the inequality

f [y(x) + v(x)]− f [y(x)] ≥ fy[y(x)]v(x) + fy′ [y(x)]v′(x). (2.18)

If the equality holds if and only if v = 0 or v′(x) = 0, then we speak of strong convexity.

It is clear that if f is convex by itself, then also fixing x yields a convex function. For the same
reason, if f is strictly convex, then fixing x yields a strong convex function.

2.2.3 The Two Equation of Euler-Lagrange

Theorem 2.41. Let D be a subset of R2, let a1, b1 be such that

D = {y ∈ C1[a, b] | y(a) = a1, y(b) = b1, (y(x), y′(x)) ∈ D}.

If (fixing x) f is convex on [a, b]×D then

F (y) =

∫ b

a

f(x, y(x), y′(x)) dx

is convex on D. Moreover, strong convexity of f implies strict convexity of F . Each y ∈ D for which

d

dx
fy′ [y(x)] = fy[y(x)], (2.19)

on (a, b), minimizes F on D (uniquely if f is strongly convex). Equation (2.19) is called the first
Euler-Lagrange equation.

Proof. A sketch, see [Tro96]. Integrating inequality (2.18), gives (2.17) or F (y + v) − F (y) ≥
δF (y; v), that is, F is convex. Each function that satisfies (2.19) allows to write

δF (y; v) =

∫ b

a

d

dx
(fy′ [y(x)]v(x)) dx = fy′ [y(x)]v(x)

∣∣b
a

= 0,

and by Proposition 2.38, y minimizes F . We remark that neither of the convexity implications of
this theorem is reversible.

The next example shows that strong convexity is weaker than strict convexity.

Example 2.42. The functional f(y, y′) = y′(x)2 + 4y(x) is strongly convex even if it is not strictly
convex. First we check that F is not strictly convex, we have that

F (y + v)− F (y) =

∫ 1

0

2y′(x)v′(x) + v′(x)2 + 4v(x) dx

≥ δF (y; v) =

∫ 1

0

2y′(x)v′(x) + 4v(x) dx.

Strict convexity requires that the previous inequality becomes an equality if and only if v(x) = 0,
but

∫ 1

0
v′(x)2 dx = 0 for each constant v(x), so F is not strictly convex. Strong convexity implies

that the inequality between integrands becomes an equality, this time allowing directly v′(x) = 0

hence strong convexity is present.
Suppose now to minimize

F (y) =

∫ b

a

f(x, y(x), y′(x)) dx =

∫ 1

0

y′(x)2 + 4y(x) dx
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on the set D = {y ∈ C1[0, 1] | y(0) = 0, y(1) = 1, (y(x), y′(x)) ∈ R2}. The set D implies strict
convexity of f , because the only admissible variations v must satisfy v(0) = v(1) = 0, thus the only
constant function that makes the inequality an equality is v(x) = 0, so in this case f is also strictly
convex. The hypotheses of the previous theorem 2.41 are respected and F is minimized uniquely
by a solution of the equation (2.19) for 0 < x < 1. Such equation takes the form

d

dx
fy′ [y(x)] = fy[y(x)] =⇒ 2y′′(x) = 4,

and has the general solution y(x) = x2 + αx + β, for some constants α, β ∈ R. Solving the
associated boundary value problem, it is easy to find a = b = 0 and y(x) = x2.

Depending on the explicit dependence of f from y or y′, the Euler-Lagrange equation reduces to
some special cases. If f = f(x, y′), that is when fy = 0, then convexity is characterized by

f(x, y′(x) + v′(x))− f(x, y′(x)) ≥ fy′(x, y′(x))v′(x),

and the Euler-Lagrange equation becomes

fy′(x, y
′(x)) = const. (2.20)

If f = f(y′) only, the equation reduces to fy′(x) = const and the function y(x) = m(x− a) + a1, for
m = b1−a1

b−a , minimizes F (y) =
∫ b
a
f(y′(x)) dx.

If x is fixed and f = f(x, y) is convex on [a, b]×R, each y ∈ C[a, b] that satisfies fy(x, y(x)) = const

minimizes F (y) =
∫ b
a
f(x, y(x)) dx; if strong convexity is present, the minimizer is unique. If

f = f(y, y′) the equation of Euler-Lagrange reduces to f(y, y′)− y′(x)fy′(x) = const.
When f = f(x, y, y′) is C1[a, b] and y is solution of the first Euler-Lagrange equation (2.19), the
integration of the first equation yields

fy′(x) =

∫ x

a

fy(t) dt+ const.

When y is C2, with the usual abuse of notation, we have

d

dx
f(x, y, y′) = fx(x, y, y′) + fy(x)y′(x) + fy′y

′′(x) = fx(x) +
d

dx
(y′(x)fy′(x)),

in facts, by the chain rule, d
dx (y′(x)fy′(x)) = y′′fy′ + y′ d

dxfy′ , but by the Euler-Lagrange equation
(2.19), we can replace d

dxfy′ with fy, hence

d

dx
(f(x, y, y′)− y′(x)fy′(x)) = fx(x),

or, integrating the above expression,

f(x, y, y′)− y′(x)fy′(x) =

∫ x

a

fx(t) dt+ const.

These properties lead to the second equation of Euler-Lagrange as exposed in the next proposition.

Proposition 2.43. Let

J(y) =

∫ b

a

f(x, y(x), y′(x)) dx
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and D = {y ∈ C1[a, b] | y(a) = a1, y(b) = b1}. If f ∈ C1[a, b]× R2 and y ∈ D is a local extremal
function for J on D, then on [a, b], y satisfies the second Euler-Lagrange equation

f(x, y, y′)− y′(x)fy′(x) =

∫ x

a

fx(t) dt+ c, (2.21)

for some constant c.

When f = f(y, y′), a local extremal function must also satisfy the equation

d

dx
(f(x, y, y′)− y′(x)fy′(x)) = 0,

without additional smoothness assumptions.
In order to apply these results, we need tools to check if a function is convex or not. One criterion
resembles the condition for convexity of a function defined on R, f ′′ > 0. We begin with the case of
f = f(x, y′).

Proposition 2.44. Let f = f(x, y′) and fy′y′ be continuous on [a, b] × I, and for each x ∈ [a, b],
fy′y′(x, y

′) > 0 except possibly for a finite number of y′ values, then, fixing x, f(x, y′) is strongly
convex on [a, b] × I. If for some x ∈ [a, b], fy′y′(x, y′) = 0, then fy′ is increasing along y′ but not
strictly, so f(x, y′) is only convex.

Example 2.45. Let g(x) > 0 be a continuous function on [a, b], α 6= 0, then the functional
f(x, y′) = g(x)

√
α2 + y′(x)2 is strongly convex. The functional f(y′) = −

√
1− y′(x)2 is also

strongly convex on (−1, 1). Instead, f(x, y′) = exy′(x) is only convex and f(x, y′) = x2 − y′(x)2 is
never convex (but −f is strongly convex).

There is not such an easy criterion for functionals that depend explicitly on y. Often we can
combine some elementary facts to obtain convexity of elaborated functionals: the sum of convex
functionals is again convex; suppose to fix x, then for each g(x) > 0 the product g(x)f(x, y, y′)
(for a convex f(x, y, y′)) is convex (strong convexity is preserved); g1(x) + g2(x)y(x) + g3(x)y′(x)

is only convex for continuous functions g1, g2, g3; each convex function f(x, y) or f(x, y′) is also
convex when considered as f(x, y, y′) on an appropriate set.

Example 2.46. The functional f(x, y, y′) = −2 sin(x)y(x) + y′(x)2 is strongly convex on R × R2,
in fact it can be seen as the sum of the strongly convex function y′(x)2 with the convex function
−2 sin(x)y(x) (recall that x is fixed). With the same argument, f(x, y, y′) = −2 sin(x)y(x) +

y′(x)2 + x2
√

1 + y(x)2 is also strongly convex. A more involved strongly convex functional on R2 is
f(x, y′) =

√
1 + y(x)2 + y′(x)2 (it is even strictly convex). With this result, g(x)

√
1 + y2(x) + y′(x)2

is strongly convex too (for g(x) > 0).

If f(x, y, y′) and fyy, fy′y′ , fyy′ are continuous on [a, b]× R2, then f is convex if and only if the
Hessian of f [y(x)] is positive semidefinite. We can use these results on convexity to characterize
the famous Lagrange Multiplier Theorem with convex constraints.

Theorem 2.47. If D is a domain in R2, such that for some constants λj , for j = 1, . . . , N and fixed
x, f(x, y, y′) and λjgj(x, y, y′) are convex on [a, b]×D, let

f̄ = f +

N∑
j=1

λjgj(x).

Then each solution y of the differential equation of Euler-Lagrange

d

dx
f̄y′ [y(x)] = f̄y[y(x)]
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minimizes F (y) =
∫ b
a
f [y(x)] dx on (a, b) under the constraining relations

Gj(y) =

∫ b

a

gj [y(x)] dx.

If at least one of the λjgj is strongly convex, then the minimizer is unique.

The definitions and theorems so far exposed are useful to analyse the functionals of the calculus
of variations and then of optimal control problems. The basic results are the Euler-Lagrange
equation and the lemmas of Lagrange and du Bois-Reymond. They are important to determine
necessary conditions for a minimizing function when convexity is not present. This section explores
rigorously the properties, already encountered, that when a function h is constant, the integral∫ b
a
h(x)v′(x) dx = 0 for v(a) = v(b) = 0. We present herein the theorems that describe those

integrals with the associated necessary conditions.

Lemma 2.48 (du Bois-Reymond). If h ∈ C[a, b] and
∫ b
a
h(x)v′(x) dx = 0, for all v ∈ D0 = {v ∈

C1[a, b] | v(a) = v(b) = 0}, then h is constant on [a, b].

Proposition 2.49. If g, h ∈ C[a, b] and
∫ b
a
g(x)v(x) + h(x)v′(x) dx = 0, for all v ∈ D0 = {v ∈

C1[a, b] | v(a) = v(b) = 0}, then h ∈ C1[A, b] and h′ = g. As a corollary, setting h = 0 yields
g = 0.

The generalization of this result is known as the Lemma of Lagrange.

Lemma 2.50 (Lagrange). If g ∈ C[a, b] and for some m = 0, 1, 2, . . .
∫ b
a
g(x)v(x) dx = 0, for all

v ∈ D0 = {v ∈ Cm[a, b] | v(k)(a) = v(k)(b) = 0, k = 1, . . .m}, then g = 0 on [a, b].

The generalization of the Lemma of du Bois-Reymond is given next.

Proposition 2.51. If h ∈ C[a, b] and for some m = 0, 1, 2, . . .
∫ b
a
h(x)v(m)(x) dx = 0, for all

v ∈ D0 = {v ∈ Cm[a, b] | v(k)(a) = v(k)(b) = 0, k = 1, . . .m− 1}, then h is a polynomial of degree
deg h < m on [a, b].

There are also the vector analogues of the previous theorems, and it is enough to consider the
scalar version for each component.

Example 2.52. Consider the characterization of the minimum values of the functional J(y) =∫ b
a
f(x)

√
1 + y′(x)2 for a continuous function f , on the domain D = {y ∈ C1[a, b] | y(a) =

a1, y(b) = b1} for given a1, b1 ∈ R. We have already seen that an admissible variation is v ∈ D0 =

{v ∈ C1[a, b] | v(a) = v(b) = 0}. The necessary condition that y ∈ D is a local extremum is that
δJ(y; v) = 0 or,

δJ(y; v) =

∫ b

a

f(x)y′(x)v′(x)√
1 + y′(x)2

dx = 0 ∀ v ∈ D0.

From Lemma (2.48) of du Bois-Reymond, the necessary condition is satisfied by a function y for
which

f(x)y′(x)√
1 + y′(x)2

= k, k ∈ R, (2.22)

that is, after some manipulations,

y′(x)2 =
k2

f(x)2 − k2
.

Now we can observe that if f vanishes at a single point, then from (2.22) k = 0 and this implies
y = const which requires that y(a) = a1 = y(b) = b1, thus if a1 6= b1 the problem has no solution.
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Therefore if a1 6= b1, it is required that f(x)2 > k2 > 0, e.g. f(x) > |k| > 0 or f(x) < −|k| < 0.
Considering the first case only (the second follows putting −J instead of J), when f(x) > 0 the
integrand is a strongly convex function, as we have already seen. Hence, from the special case of
the Euler-Lagrange equation (2.20), the function y that solves (2.22) gives the only minimum value
for J , provided that such y exists.

2.2.4 Fréchet Derivatives

The Gâteaux variation in a normed linear space is the analogous of the directional derivative in
Rn, and like the directional derivatives, it can not provide a good local approximation of a function,
except in each separate direction. As with usual functions, we require a stronger differentiability
which is independent of the direction.

Definition 2.53 (Fréchet derivative). In a normed linear space Y , a real valued functional J is said
to be differentiable in the sense of Fréchet at y0 ∈ Y provided that J is defined in a sphere S(y0)

and there exists a continuous linear function L : Y → R for which

J(y) = J(y0) + L(y − y0) + ||y − y0||o(||y − y0||).

If J is Fréchet differentiable at y0 then J has the Gâteaux variations δJ(y0; v) = L(v) in each
direction v ∈ Y. The linear function L is uniquely determined and is denoted as J ′(y0). The
differentiability at y0 implies the continuity of the functional at that point. As in Rn, the converse is
not true. To obtain a kind of viceversa, we need the additional hypothesis of uniformity.

Theorem 2.54. In a normed linear space Y, if a real valued functional J has at each y ∈ S(y0)

the Gâteaux variations δJ(y; v) for all v ∈ Y and δJ(y; v) is linear in v; if for y → y0 the difference
|δJ(y;u)− δJ(y0; v)| → 0 uniformly for u ∈ {u ∈ Y, ||u|| = 1}, then J is differentiable at y0.

Proposition 2.55. When f = f(x, y(x), y′(x)) and fy, fy′ ∈ C([a, b]× R2) then

F (y) =

∫ b

a

f(x, y(x), y′(x)) dx

is differentiable and has weakly continuous variations at each y0 ∈ Y = C1[a, b] with respect to the
maximum norm ||y||M .

With the knowledge of the Fréchet derivative, we can extend the concept of separating hyperplane
to functionals. The Fréchet derivative J ′ offers a good approximation of the functional J by the
function,

T (y) = J(y0) + J ′(y0)(y − y0).

Roughly speaking, the graph of T is tangent to the graph of J at the point (y0, J(y0). We can
consider the level set of T at y0 as Ty0 = {y ∈ Y | T (y) = T (y0)} = {y ∈ Y | J ′(y0)(y − y0) = 0}.
The last equality follows from the fact that T (y0) = J(y0). If we set Y = R3 with the Euclidean
norm, then all the apparatus reduces to δJ(y0;v) = ∇J(y0) · v and the linear function becomes
T (v) = J ′(y0) · v = ∇J(y0) · v. The tangent directions v are those which are orthogonal to the
gradient ∇J(y0). If ∇J(y0) 6= 0 then it is perpendicular to the plane T (y0) through y0 determined
by the tangent vectors, and therefore ∇J(y0) is normal to the level surface Jy0 through this point.
The concept of level set permits to generalize the theorem of Lagrangian Multipliers. For example
the constraint {y ∈ C[a, b] | y(a) = a1, y(b) = b1} can be expressed as the intersection of the two
level sets G1(y) = y(a) and G2(y) = y(b) respectively to level a1 and b1. The theorem is similar to
Theorem 2.47.
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Theorem 2.56 (Lagrange). In a normed linear space Y let real valued functionals J,G1, . . . , Gn
be defined in a neighborhood of y0, a local extremal point for J constrained to the level sets
Gy0 = {y ∈ Y | Gi(y) = Gi(y0), i = 1, . . . , n}, and have there weakly continuous Gâteaux
variations. Then either:

det


δG1(y0; v1) δG1(y0; v2) . . . δG1(y0; vn)

δG2(y0; v1) δG2(y0; v2) . . . δG2(y0; vn)
...

. . .
...

δGn(y0; v1) δGn(y0; v2) . . . δGn(y0; vn)

 = 0,

for all vj ∈ Y and j = 1, . . . , n; or there exist constants λi ∈ R for i = 1, . . . , n such that

δJ(y0; v) =

n∑
i=1

λiδGi(y0; v) ∀ v ∈ Y.

The first condition implies that the constraints are locally linearly dependent, i.e. there exist
constants µj such that

∑
µjGj(y) = 0. Because the Gâteaux variations are linear, the previous

relation yields
∑
µjδGj(y; v) = 0 for each direction v and thus the determinant is zero. The

second condition yields a linear dependence of δJ, δG1, . . . , δGn, that is, all the functionals are
differentiable in a direction simultaneously tangent to each level set Gj,y0 . In particular it must be
tangential to the unconstrained Jy0 . The constraints on J that determine admissible directions v
which are a linear subspace, can be considered for restricting the possible directions when applying
the Lagrangian Multiplier theorem for the other constraints. This is shown in the next example.

Example 2.57. Find the local extremals for the functional

J(y) =

∫ 0

−1

y′(x)3 dx

on the set D = {y ∈ Y = C1[−1, 0] | y(−1) = 0, y(0) = 2
3}, under the constraining relation

G(y) =

∫ 0

−1

xy′(x) dx = − 4

15
.

Instead of invoking the theorem with three constraints (n = 3), we observe that the fixed extrema
imply that the directions form a linear subspace of Y: in fact the admissible directions satisfy
{v ∈ C1[−1, 0] | v(−1) = v(0) = 0}. Hence we use the theorem in a restricted form, considering
only

δJ(y; v) =

∫ 0

−1

3y′(x)v′(x) dx and δG(y; v) =

∫ 0

−1

xv′(x) dx.

These variations are weakly continuous because of proposition 2.55, in facts the partial derivatives
with respect to y′ are continuous. The theorem of Lagrange 2.56 gives us two possibilities:
either δG(y; v) =

∫ 0

−1
xv′(x) dx = 0 for all admissible directions or there exists λ such that δ(J +

λG)(y; v) =
∫ 0

−1
(3y′(x)2 + λx)v′(x) dx = 0. Now, the first case yields that x should be a constant

function over [−1, 0] (lemma of du Bois-Reymond 2.48), and this is impossible. The second case
implies that 3y′(x)2 + λx = c with c ∈ R constant. For the sake of simplicity replace λ with −3λ so
that y′(x)2 = c+ λx ≥ 0, which gives two possibilities for y′, y′(x) = ±

√
c+ λx. The negative root

does not satisfy the constraint G(y) = −4/15; it remains the positive root. First we notice that λ 6= 0

because λ = 0 implies y′(x) =
√
c, then G(y) = −4/15 =⇒ √

c = 8/15, but then y(x) = 8/15x+ k
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for a constant k ∈ R is no more in D, because this straight line does not match the boundary
constraints, therefore λ 6= 0. Integrating y′(x) =

√
c+ λx yields (for an integrating constant k),

y(x) =
2

3λ
(c+ λx)3/2 + k.

We can now impose the boundary conditions and find k = −2/(3λ)(c− λ)3/2 and λ = c3/2 − (c−
λ)3/2. Next we have to match the requirement G(y) = −4/15 which gives λ2 = −5λ

2 (c − λ)3/2 +

c5/2− (c−λ)5/2. We obtained a nonlinear system of three equations in the unknown c, k, λ. Its only
feasible solution is k = 0, λ = 1, c = 1. Thus we have proved that y(x) = 2

3 (x+ 1)3/2 is the only
possible extremal function. We can now employ convexity to show that it is not a local maximum
with respect to the maximum norm || · ||M . In facts the functional f(x, y′) = y′(x)3 + λxy′(x) is
strongly convex on [−1, 0]× [0,∞).

2.2.5 Transversal Conditions

In general, at the boundary we can have different conditions, that are called transversal conditions.
An useful technique for handling such kind of constraints is to apply the Lagrange multipliers.
It is common that the upper extremum of the integral functional is free, this happens in minimum
time problems. In this case the functional is of the form

J(y, t) =

∫ t

a

f(x, y(x), y′(x)) dx =

∫ t

a

f [y(x)] dx

and is to be minimized on a set like (see Figure 2.6)

Dτ = {y ∈ C1[a, t] | y(a) = a1, τ(t, y(t)) = 0},

where τ(t, y(t)) is some kind of expression. We assume here that ∇τ 6= 0, but this condition
is mild, because in most cases τ is a linear function. We need to perform the variation on the

y(x)

x

(a, a1)

τ(x, y(x)) τ(t, y(t))

t t+ εw

Figure 2.6: The transversal condition τ(x, y(x)) = 0 for a free endpoint.

extended space Y = C1[a, b]× R with the associated norm ||(y, t)|| = ||y||M + |t|. The variation of
the functional J(y, t) in the direction (v, w) becomes then

δJ(y, t; v, w) = f(t)w +

∫ t

a

fy(x)v(x) + fy′(x)v′(x) dx

= f(t)w + fy′(x)v(x)

∣∣∣∣t
a

.
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The endpoint constraint can be expressed as the zero level set of a function G(y, t) = τ(t, y(t)) =

τ [y(t)], so that its variation is

δG(y, t; v, w) = lim
ε→0

d

dε
τ(t+ εw, (y + εv)(t+ εw))

= lim
ε→0

∂τ

∂x
[y(t+ εw)]w +

∂τ

∂y
[y(t+ εw)]

d

dε
(y(t+ εw) + εv(t+ εw))

= τx[y(t)]w + τy[y(t)] lim
ε→0

(y′(t+ εw)w + v(t+ εw) + εv′(t+ εw)w)

= τx[y(t)]w + τy[y(t)](y′(t)w + v(t)).

Both δJ(y, t; v, w) and δG(y, t; v, w) are weakly continuous, and we can apply the theorem of
Lagrange multipliers to seek λ such that δ(J +λG)(y, t; v, w) = 0. Now the set of possible direction
is D0 = {v ∈ C1[a, t] | v(a) = v(t) = 0}. Explicitly, the previous requirement for v(a) = v(t) = 0

and w small is

(f(t) + λ(τx[y(t)] + τy[y(t)](y′(t)))w = 0.

In the same fashion, for w = v(a) = 0 and v small is

(fy′(t) + λτy[y(t)]) v = 0.

Combining and solving this two relations for λ (multiply the first equation by τy and isolate λτy in
the second), a local extremum y of J on Dτ stationary on (a, t) satisfies the transversal condition

f(t)τy[y(t)] = fy′(t)(τx[y(t)] + τy[y(t)](y′(t)). (2.23)

If the endpoint condition is fixed, i.e. τ(x, y) = b − x, the previous equations reduce (because
τy = 0) to the condition fy′(b) = 0; if τ(x, y) = y − b1 for an assigned b1, the terminal value t of x is
free and at (t, b1) an extremal solution needs to meet f(t)− y′(t)fy′(t) = 0. This situation is called
free-horizon. If the value b1 is also free at (t, b1), the (free) end point condition is fy′(t) = 0.

2.2.6 Integral Constraints

Other kinds of constraints that involve the whole integrating interval [a, b] are the integral constraint.
They appear very frequently in applications because they can be interpreted as equations of
mechanics or physics. They are in general expressed by

G(y) =

∫ b

a

g(x, y(x), y′(x)) dx =

∫ b

a

g[y(x)] dx.

There is a version of the theorem of Lagrange multipliers also for this case, and it is very similar to
theorem 2.56.

Theorem 2.58 (Lagrange). In a normed linear space Y let real valued functionals J, g1, . . . , gN be
continuous with their y and y′ partial derivatives. Let y be a local extremal function for

J(y) =

∫ b

a

f(x, y(x), y′(x)) dx

on the set

D = {y ∈ C1[a, b] | y(a) = a1, y(b) = b1},
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with constraints

Gy = {y ∈ C1[a, b] | Gj(y) =

∫ b

a

g(x, y(x), y′(x)) dx, j = 1, 2, . . . , N}.

Then either:

det


δG1(y0; v1) δG1(y0; v2) . . . δG1(y0; vN )

δG2(y0; v1) δG2(y0; v2) . . . δG2(y0; vN )
...

. . .
...

δGN (y0; v1) δGN (y0; v2) . . . δGN (y0; vN )

 = 0,

for all vj ∈ D0 = {v ∈ C1[a, b] | v(a) = v(b) = 0, j = 1, . . . , N}; or there exist constants λi ∈ R for
i = 1, . . . , N that make y stationary for the augmented functional f̂ = f +

∑N
i=1 λigi, that is, y is a

solution on (a, b) of the equation

d

dx
f̄y′(x) = f̄y(x).

Clearly, if we replace D with Db = {y ∈ C1[a, b] | y(a) = a1}, then D0 becomes Db0 = {v ∈
C1[a, b] | v(a) = 0} with the additional requirement that f̂y′(b) = 0; if D = {y ∈ C1[a, b]} then we
must have f̂y′(a) = f̂y′(b) = 0. For a more general transversal condition such as y(a) = a1 and
τ(t, y(t)) = 0 (with the standard assumptions on τ as in the section of transversal conditions), the
general requirement is

f̄(t)τy[y(t)] = f̄y′(t)(τx[y(t)] + τy[y(t)]y′(t)

as in equation (2.23).

2.2.7 Equality Constraints

The method of Lagrangian multipliers can also be adapted to the case of equality constraints of the
form

g[y(x)] = g(x, y(x), y′(x)) = 0 ∀x ∈ [a, b],

where g ∈ C1(D) for a domain D ⊂ R2d+1. It is enough to consider one constraint, the others can
be added in the same fashion.

Theorem 2.59 (Lagrange). For f = f(x, y(x), y′(x)) and fxj ∈ C1([a, b]×R2d), j = 1, 2, . . . , d if y0

is C2 and it minimizes F (y) =
∫ b
a
f [y(x)] dx on D = {y ∈ Y = (C1[a, b])d | y(a) = y0(a), y(b) =

y0(b)} when it is subject to g[y(x)] = 0, where g is C2 such that ∇g[y0(x)] 6= 0, then there exists
λ ∈ C[a, b] such that y0 is stationary for the augmented function f + λg.

The extension to N constraints is straightforward by adding those constraint in the augmented
functional with the appropriate multiplier, provided that the N ×N Jacobian of the constraints is
non vanishing along the trajectory.

2.2.8 Extension to C1 Piecewise Functions

It is clear from the configuration of many classical examples, e.g. the minimal surfaces of revolution,
that often we need optimal functions that exhibit corners. Those curves are called piecewise
differentiable functions or C1 piecewise functions. In the next we include this class of functions
in the theory of calculus of variations and provide general necessary and sufficient properties of
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minimal extremals. This situation occurs very frequently in applications and will be treated more
extensively in the chapter of optimal control. In this section we introduce the basic theory of the
conditions of Weierstrass-Erdmann and the condition of Legendre. In case of (strong) convexity,
we give conditions to guarantee the minimality of the solution.

Definition 2.60 (C1 piecewise functions). A function y ∈ Ĉ1[a, b] is piecewise differentiable if there
is a finite irreducible partition a = c0 < c1 < . . . < cN+1 = b such that y may be regarded as
a function in C1[ck, ck+1] for each k = 1, . . . , N . When present, the interior points ck are called
corner points of y.

It is clear that such y ∈ Ĉ1[a, b] is defined and continuously differentiable on [a, b] except at
corner points, where it has distinct limiting values. Let c be a corner point, then we denote with
y′(c) both values when the distinction is not important, otherwise, a good notation can be y′(c−)

and y′(c+). We collect some facts on Ĉ1[a, b] functions.

Proposition 2.61. Le y ∈ Ĉ1[a, b], then:

• y(x) = y(a) +
∫ x
a
y′(t) dt, a form of the fundamental theorem of calculus.

• If
∫ b
a
y′(x)2 dx = 0 then y′ = 0 on [a, b].

• If y′ = 0 where defined, then y = const on [a, b].

A useful norm for the space Ĉ1[a, b] can be ||y||∞ = max{|y(x)| | x ∈ [a, b]} because Ĉ1[a, b] ⊂
C[a, b], that is, even if there is no control over the differentiability, it gives some information when
the piecewise y is smoothed another function. It is called strong norm. Another choice for a norm
is ||y|| := max{|y(x)|+ |y′(x)| | x ∈ [a, b]}, which takes into account the differentiability of y and
is called weak norm; or ||y||1 :=

∫ b
a
|y(x)| + |y′(x)|dx. The last choice permits to compare two

functions which agree except in small neighbourhoods of their corner points to be close. These
norms are not independent, and can be related by the next inequality:

A||y||∞ ≤ ||y||1 ≤ (b− a)||y||, A =
b− a

1 + b− a. (2.24)

When a function f(x, y, y′) depends on y ∈ Ĉ1[a, b] with simple discontinuities at corner points,
then

F (y) =

∫ b

a

f(x, y, y′) dx =

∫ b

a

f [y(x)] dx

is definite and finite, since the partition given by the corner points reduces the integral to a finite
sum of integrals with all the good properties. But, in general, F is not continuous with respect to
the norms ||F ||max or ||F ||1, F is continuous only with respect to the weak norm ||F || defined before.

Remark 2.62. Notice that if f ∈ C([a, b] × R2d), f(x, y, y′) and y0 is an extremal point for F on
D = {y ∈ Y | y(a) = A, y(b) = B}, then y0 is also an extremal point for F on D̂ = {ŷ ∈ Ŷ | ŷ(a) =

A, ŷ(b) = B} with respect to the same norm. The characterization of local C1 extremals given
in the previous sections were with respect to an unspecified norm, but, as observed, weak local
extremals need not be strong local extremals. However, in case they are global extremals, then
the choice of the norm is indifferent, that is: if y is a global minimizer for F on D, then it will be a
global minimizer also for F on D̂. Moreover, the minima of convex functions minimize also over the
corresponding class of piecewise C1 functions.
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2.2.8.1 The Weierstrass-Erdmann Conditions

The previous remark 2.62 does not preclude a function from being extremized by a function which
is only piecewise differentiable. A classical counterexample to this is given by the functional

F (y) =

∫ 1

−1

y2(x)(1− y′(x))2 dx

defined on the set D = {y ∈ Ĉ1[−1, 1] | y(−1) = 0, y(1) = 1}. The minimum is reached uniquely
by the solution

y(x) =

{
0 −1 ≤ x ≤ 0,

x 0 ≤ x ≤ 1.

There is clearly a corner point in x = 0. On the other hand such function y(x) does not belong to
the set of continuously differentiable functions.
When searching for necessary conditions that make y ∈ Ĉ1 a local extremal, we have to assume
first that y is a weak local extremal, in fact each local extremal with respect to the ||y||max norm
or the ||y||1 norm is automatically a weak local extremal (because of (2.24)). The definition of the
variation of the functional

F (y) =

∫ b

a

y2f(x, y(x), y′(x)) dx

has the same derivation but we have to take into account the corner points of both y and v, they
must be split in a finite sum of integrals with continuous integrands and differentiate each under
the integral sign. Then, after reassembly, we get again

∂

∂ε
F (y + εv) =

∫ b

a

fy[(y + εv)(x)]v(x) + fy′ [(y + εv)(x)]v′(x) dx,

and performing the limit for ε→ 0 we obtain the usual

δF (y; v) =

∫ b

a

fy(x)v(x) + fy′(x)v′(x) dx

where the partial derivatives fy and fy′ are piecewise continuous on [a, b]. If y is a local extremal
function, δF (y; v) = 0 must hold, and integrating by parts we have

δF (y; v) =

∫ b

a

(
fy′ −

∫ x

a

fy(t) dt

)
v′(x) dx = 0

and by the du Bois-Reymond lemma, the factor that multiplies v′(x) should be zero, hence

fy′(x) =

∫ x

a

fy(t) dt+ k =⇒ d

dx
fy′(x) = fy(x)

except at each corner point c of y where the continuity of fy′(x) =
∫ x
a
fy(t) dt+ k implies the first

Weierstrass-Erdmann condition,

fy′(c
−) = fy′(c

+). (2.25)

On each interval that excludes corner points, the local extremal function y must be C1 and stationary.
Moreover, at each corner c, the second derivative fy′y′(c, y(c), y′(c)), if defined, must vanish for
some values of y′. The other condition is derived starting from the second Euler-Lagrange equation,

f(x)− y′(x)fy′(x) =

∫ x

a

fx(t) dt+ k,
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in facts we have that

d

dx
(f − y′fy′)(x) = fx(x) ∀x ∈ (a, b)− {ci}.

At those corner points. holds the second Weierstrass-Erdmann condition,

(f − y′fy′)(c−) = (f − y′fy′)(c+). (2.26)

We can rewrite the second condition (2.26) using the first condition (2.25) as follows:

f(c, y(c), y′(c−))− f(c, y(c), y′(c+))−
(
y′(c−)− y′(c+)

)
fy′(c, y(c), y′(c+)) = 0.

Now, because on corner points y′(c−) 6= y′(c+), we have that f(c, y(c), .) can not be strictly
convex and this information can be useful to locate or preclude the presence of corner points. We
summarize these results in the next theorem.

Theorem 2.63 (Weierstrass-Erdmann conditions). If a function f(x, y, y′) ∈ C1([a, b] × R2) and
y ∈ Y = Ĉ1[a, b] provide a weak local extremal for

F (y) =

∫ b

a

f [y(x)] dx

on

D = {y ∈ Y | y(a) = a1, y(b) = b1},

then, except at its corner points, y is C1 and satisfies the first and second Euler-Lagrange conditions
(2.19) and (2.21). At each corner point c hold the two Weierstrass-Erdmann necessary conditions
(2.25) and (2.25):

1. fy′(c−) = fy′(c
+),

2. (f − y′fy′)(c−) = (f − y′fy′)(c+),

3. ±f(c, y(c), y′(.)) can not be strictly convex in y′.

Example 2.64. Fix x and y(x), then f(x, y(x), y′(x)) = (x2 + y2)
√

1 + y′2 is strictly convex except
when x2 + y2 = 0, hence the associated local extremal y can have a corner point only for values of
c such that c = y(c) = 0.
Similarly, f = (1 + y2)y′4 is strictly convex in y′ and therefore can not have extremals with corner
points.

The theorem shows that the discontinuities of y′ are permitted at corner points of a local extremal,
but are limited to those which preserve the continuity of both fy′ and f − y′fy′ , hence when fx ≡ 0

the latter term is constant.

Example 2.65. Consider the function f(x, y, y′) = y2(1 − y′)2, for which fy′ = 2y2(y′ − 1). An
extremal function y must be stationary on interval excluding corner points, at which both fy′ =

−2y2(1 − y′) and f − y′fy′ = y2(1 − y′2) are continuous (the latter is constant because fx ≡ 0).
From the continuity of y, it follows that the first condition implies that y′ is continuous except at
corner points c such that y(c) = 0. Corner points can be only of this form in this example. Therefore,
unless y vanishes at some point in [a, b] it is not a local extremal. If it vanishes a single point c, then
from the second condition, y2(1− y′2) ≡ 0 so that for all x ∈ [a, b] either y(x) = 0 or y′(x) = 1 or
y′(x) = −1.
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We can also extend to piecewise C1 functions the theorem 2.41 of uniqueness when f is convex,
where any local extremum is the local minimum. The extremal y must be stationary on intervals
excluding corner points, at which it must satisfy theorem 2.63.

Example 2.66. Find the local extremal functions for

F (y) =

∫ 2

0

y′(x)2 dx on D = {y ∈ Ĉ1[0, 2] | y(0) = y(2) = 1, y(1) = 0}.

First we notice that f = y′2 is strictly convex, and D0 = {v ∈ Ĉ1[0, 2] | v(0) = v(1) = v(2) = 0}.
Therefore, as usual, by convexity,

F (y + v)− F (y) ≥ δF (y; v) =

∫ 2

0

2y′(x)v′(x) dx.

The inequality is an equality when v = 0. A possible solution can be (see 2.24), y′ constant, that is

y(x)

x

(0, 1) (2, 1)

(1, 0)

Figure 2.7: The plot of y(x).

y′(x) =

{
c1 x ∈ [0, 1)

c2 x ∈ (1, 2].

Thus, integrating the previous equation with the boundary condition given, yields (see Figure 2.7)

y(x) =

{
1− x x ∈ [0, 1)

x− 1 x ∈ (1, 2].

That y is the only local extremal function for F that minimizes F uniquely.
Observe that y is clearly Ĉ1 but it does not satisfy the Weierstrass-Erdmann conditions, because
the corner point in x = 1 is forced by the problem and is not natural.

Example 2.67. Minimize the (strictly convex) distance function

F (y) =

∫ b

a

√
1 + y′(x)2 dx such that y(x) ≤ x2.

The domain is the set D = {y ∈ Ĉ1[a, b] | y(a) = a1, y(b) = b1}. This time we have a constraint
function g(x, y(x)) = y(x)− x2 = 0, g is convex, so we consider the augmented problem

F̃ (y) =

∫ b

a

f [y(x)] + λ(x)g[y(x)] dx λ(x) ≥ 0.
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y(x)

x

x2

Figure 2.8: The plot of y(x).

From the strong convexity of f̃(x, y, y′) = f(x, y, y′)+λ(x)g(x, y) that y minimizes F uniquely under
the inequality constraint. We search for intervals excluding corner points such that y is stationary
for f̃ , that is

d

dx
fy′ [y(x)]− fy[y(x)] = λ(x)gy[y(x)]. (2.27)

This time, however, we admit intervals with g ≡ 0 and λ 6= 0 for a y not stationary for f . Moreover,
since f̃y′ = fy′ , y has only the corner points permitted by f . It is clear from Figure 2.8 that for some
configurations a portion of the minimizing curve lie on the parabola defined by g. We have that

f(x, y, y′) =
√

1 + y′(x)2 =⇒ f̃(x, y, y′) =
√

1 + y′(x)2 + λ(x)(y(x)− x2).

For the part along the parabola, y(x) = x2 and because of gy = 1 and fy = 0, from equation (2.27)
we can find λ(x):

λ(x) =
d

dx

y′(x)√
1 + y′(x)2

=
d

dx

(
2x√

1 + 4x2

)
=

2

(1 + 4x2)3/2
≥ 0.

For the portions not on the parabola, λ = 0 hence y will be segment of the line tangential to the
parabola at the point of contact. This analysis shows that this is the unique minimizer and that it
has not corner points. This last fact can be seen also by noticing that f̃y′y′ = fy′y′ > 0 so y can not
have corner points.

A useful generalization of these results is done substituting the scalar problem with vector valued
extremals. The derivation is the same, we give only the comprehensive theorem.

Theorem 2.68 (Weierstrass-Erdmann for vector valued functions). For a domain D ⊂ R2n, let
f = f(x, Y, Y ′) ∈ C1([a, b]×D) and suppose that Y is a local extremal for

F (Y ) =

∫ b

a

f [Y (x)] dx

on D = {Y ∈ (Ĉ1[a, b])n | Y (a) = A, Y (b) = B}. Then except at its corner points, Y is C1 and
satisfies the first and second Euler-Lagrange equations

d

dx
fY ′(x) = fY (x)

d

dx
(f − Y ′ · fY ′)(x) = fx(x).



42 S TAT I C A N D DY N A M I C O P T I M I Z AT I O N

At each corner point c Y meets the Weierstrass-Erdmann conditions

1. fY ′(c−) = fY ′(c
+),

2. (f − Y ′ · fY ′)(c−) = (f − Y ′ · fY ′)(c+),

3. ±f(c, Y (c), Y ′(.)) can not be strictly convex in Y ′.

The last point of the Weierstrass-Erdmann conditions show that when present, second derivatives
of f may give useful information about the location of corner points. In the next theorem of
Hilbert, we show that at non corner points, a condition on the matrix fY ′Y ′ can guarantee higher
differentiability of the extremal function.

Theorem 2.69 (Hilbert Differentiability Criterion). If fY ′ is C1 and Y ∈ (C1[a, b])n is a solution of
the integral equation

fY ′(x, Y (x), Y ′(x)) =

∫ x

a

fY (t) dt+K,

then Y is C2 in a neighbourhood of each non corner point x0 at which the matrix fY ′Y ′ is invertible.

When n = 1, the invertibility of matrix fY ′Y ′ reduces to the nonvanishing of the term fy′y′ [y(x0)].

Example 2.70. For example the function f(x, y, y′) = ey(x)
√

1 + y′(x)2 has extremals which are
necessarily C2. In facts, there are not corner points because fy′y′ = ey(x)/(1 + y′(x)2)3/2 > 0

never vanishes. Hence the Hilbert criterion is satisfied at all points.

2.2.9 Necessary Conditions for Minima

Characteristic of the Euler-Lagrange equations, is that they do not distinguish between maximal,
minimal or saddle point behaviour neither globally nor locally. Therefore there are deep studies
conducted by Legendre, Weierstrass and Jacobi starting from the first and the second derivatives
of f .
To fix the ideas, we consider a functional to be minimized of kind

F (Y ) =

∫ b

a

f [Y (x)] dx =

∫ b

a

f(x, Y (x), Y ′(x)) dx

locally on the set

D = {Y ∈ Y = (Ĉ1[a, b])n | Y (a) = A, Y (b) = B}.

2.2.9.1 The Weierstrass Condition

Definition 2.71 (Weierstrass excess function). For a given function f(x, y(x), y′(x)), the Weier-
strass excess function is defined as

E(x, y, y′;w) = f(x, y, w)− f(x, y, y′)− (w − y′)fy′(x, y, y′). (2.28)

We can notice that f(x, y, y′)+(w−y′)fy′(x, y, y′) corresponds to the first order Taylor expansion
of f(x, y, w) interpreted as a function of w, around the point w = y′. This means that the
Weierstrass excess function E(x, y, y′;w) measures the distance between the funtion f and its
linear approximation around the point w = y′.

Theorem 2.72 (Weierstrass necessary condition). If y(x) is a strong minimum, then

E(x, y, y′;w) ≥ 0

for all non corner points and all w ∈ R.
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The geometric interpretation of this condition is that for each x, the graph of f (seen only as a
function of y′) lies above its tangent line at y′(x), that is the function is locally convex.
It is interesting and more useful to reformulate this necessary conditions in terms of the Hamiltonian
function, a theme that will be discussed in detail in the next chapter. This property of the Hamiltonian
will lead to the Maximum (Minimum) Principle of Pontryagin. Supposing the variation problem is
subject to a differential constraint of kind y′(x) = g(x), introducing the associated multiplier λ(x),
the Hamiltonian becomes

H(x, y, y′, λ) = y′(x)λ(x)− f(x, y, y′).

We can manipulate the Weierstrass excess function (2.28) in such a way to make the Hamiltonian
appear:

E(x, y, y′;w) ≡ f(x, y, w)− f(x, y, y′)− (w − y′)fy′(x, y, y′)

= [y′fy′(x, y, y
′)− f(x, y, y′)]− [wfy′(x, y, y

′)− f(x, y, w)]

= H(x, y, y′, λ)−H(x, y, w, λ) ≥ 0.

2.2.9.2 The Legendre Condition

Now suppose to fix the (vectorial) variables x, Y (x) and Y ′(x) and consider the excess function
(2.28) only as a function depending on w ∈ Rn,

e(w) = f(x, Y,w)− f(x, Y, Y ′)− fY ′(x, Y, Y ′)(w − Y ′).

Both e(w) and its gradient ew(w) = fY ′(x, Y,w)− fY ′(x, Y, Y ′) vanish when w = Y ′. The second
partial derivatives of e(w) are given (when defined) by,

ewiwj (Y
′) = fY ′i Y ′j (x, Y, Y ′) i, j = 1, 2, . . . , n,

at the stationary point w = Y ′ of the excess e where e(Y ′) = 0.

Theorem 2.73 (Legendre necessary condition). If f, fY , fY ′ are continuous on [a, b] × R2n and
Y minimizes the functional F locally with respect to the strong norm ||.||max, then Y satisfies the
Legendre condition

Q(x,v) =

n∑
i,j=1

fY ′i Y ′j [Y (x)]vivj ≥ 0 ∀v ∈ Rn,

at each x at which the coefficient functions fY ′i Y ′j are defined and continuous in the variable Y ′.
The condition is called strong Legendre condition if the inequality is strict.

Definition 2.74. The function f is called regular if Q(x,v) > 0 for all x ∈ [a, b] and for all y and y′.

The Weierstrass and the Legendre conditions are not equivalent, but if at some x ∈ [a, b] the
strict Legendre condition holds (Q(x,v) > 0 for v 6= 0), then for small w we have E > 0. Moreover,
the matrix fY ′Y ′ [Y (x)] is invertible and hence Y is C2 in a neighbourhood of each non corner point.

Example 2.75 (Bolza’s Problem). Consider f(x, y, y′) = f(y′) = y′2(y′ + 1)2. Clearly fy′ =

4y′3 + 6y′2 + 2y′ and fy′y′ = 2(6y′2 + 6y′ + 1). The linear function y(x) = mx+ q is stationary for f
over D since y′(x) = m is constant and

D = {y ∈ C1[a, b] | y(a) = a1, y(b) = b1}.

In particular it is a computation to verify that m = b1−a1
b−a and q = a1 −ma = b1 −mb.

We have that fy′y′ = 0 when m± = − 1
2 ±

√
3

6 ≈ −0.21,−0.78. Therefore, for m ≤ m− or m ≥ m+
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the extremal y satisfies the Legendre condition fy′y′ ≥ 0, and by strict convexity (e.g. Proposition
2.44) y provides the unique minimum for F .
If −1 < m < 0, then t can not give a strong local minimum for F over the piecewise differentiable
functions, because F (y) =

∫ b
a
m2(m + 1)2 dx > 0, while each strong norm neighbourhood of y

contains a y for which y′ = 0 or y′ = −1 so that F (y) = 0. In this range, the Weierstrass condition
is violated, indeed we have:

E(x, y, y′;w) = f(w)− f(y′)− fy′(w − y′)

= f(w)− f(m)− fy′(m)(w −m)

= w2(w + 1)2 −m2(m+ 1)2 − 2m(2m2 + 3m+ 1)(w −m)

= (w −m)2[(w +m+ 1)2 + 2m(m+ 1)].

This expression is negative for −1 < m < 0 when w = −(m+1) and in particular for −1 < m < m−
or m+ < m < 0 provides a weak local minimum which is not a strong local minimum. With the
same argument, −1 < m < 0 can not provide a strong local maximum.

2.2.10 Sufficient Conditions for Minima

We look now for sufficient conditions that characterize a minimum point when convexity is not
present. In facts, convexity is a strong hypothesis that excludes many cases. An important feature,
not exploited until now, is that, although arbitrary, the variations v and v′ are not independent, but
are connected by the relation v′ = dv

dt . We turn back to the Legendre condition of the previous
section.

Proposition 2.76. Let f be C2 and y extremal, if the strong Legendre condition holds, then y is
C2.

Hence, when a problem is regular, any minimizing function is necessarily at least C2. In general,
it can be shown that if f is Ck with k ≥ 2, then if the strong Legendre condition holds, an extremal
function y is also Ck. We point out now that the Legendre condition (even the strong one) is only
necessary but not sufficient to ensure the presence of a minimum. It can be derived starting from
the second variation of the functional. Consider the usual functional

J(y) =

∫ b

a

f [y(x)] dx =

∫ b

a

f(x, y(x), y′(x)) dx,

the second variations is

d2J

dε2

∣∣∣∣
ε=0

=

∫ b

a

fyy(x, y, y′)v2 + 2fyy′(x, y, y
′)vv′ + fy′y′v

′2 dx. (2.29)

By integration by parts and because v(a) = v(b) = 0, we have∫ b

a

2fyy′vv
′ dx = v2fyy′

∣∣∣∣b
a

−
∫ b

a

v2 d

dx
fyy′ dx = −

∫ b

a

v2 d

dx
fyy′ dx,

and thus the second variation simplifies to

d2J

dε2

∣∣∣∣
ε=0

=

∫ b

a

(
fyy(x, y, y′)− d

dx
fyy′

)
v2 + fy′y′v

′2 dx.

Because y is minimizing, the second variations has to be positive, and being v arbitrary, we must
have

fyy(x, y, y′)− d

dx
fyy′ ≥ 0, fy′y′ ≥ 0.
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This is not a sufficient condition as we show in the next counterexample. Suppose the strong
Legendre condition holds, and define

p(x) = fy′y′ , q(x) = fyy(x, y, y′)− d

dx
fyy′ .

Consider any function g(x) in C1[a, b]. From v(a) = v(b) = 0 we have

0 = g(x)v(x)2

∣∣∣∣b
a

=

∫ b

a

d

dx
g(x)v(x)2 dx =

∫ b

a

(g′v2 + 2gvv′)(x) dx.

Substituting the last line in the second variation yields indeed,

d2J

dε2

∣∣∣∣
ε=0

=

∫ b

a

(p(x)v′(x)2 + q(x)v(x)2 dx

=

∫ b

a

p(x)v′(x)2 + 2gv(x)v′(x) + (q(x) + g′(x))v(x)2 dx

The last quantity is a perfect square if and only if g(x)2 = p(x)(q(x) + g′(x)). But in general this
condition will not hold, therefore the quadratic form above can be not positive defined, thus y is not
minimizing. What we need, is the so called Jacobi condition. Consider the integrand of equation
(2.29),

ϕ(x, v, v′) = fyyv
2 + 2fyy′vv

′ + fy′y′v
′2 =⇒ d2J

dε2

∣∣∣∣
ε=0

=

∫ b

a

ϕ(x, v, v′) dx,

we set the so called accessory minimum problem:

min
v∈Ĉ1[a,b]

Φ(v) =

∫ b

a

ϕ(x, v, v′) dx s.t. v(a) = v(b) = 0.

We study the accessory minimum problem to derive the Jacobi condition, that together with the
strong Legendre condition is sufficient to characterize the presence of a minimum for the original
problem. Suppose v is extremal for the accessory minimum problem, then the second variation of
Φ must vanish. To see this, rewrite ϕ in the following way:

2ϕ(x, v, v′) = ϕv(x, v, v
′)v + ϕv′(x, v, v

′)v′.

Being v extremal for Φ, it must satisfy the Euler-Lagrange equation,

d

dx
ϕv′ = ϕv, (2.30)

hence the second variation of Φ becomes

2
d2Φ

dε2

∣∣∣∣
ε=0

= 2

∫ b

a

ϕ(x, v, v′) dx

=

∫ b

a

[ϕv(x, v, v
′)v(x) + ϕv′(x, v, v

′)v′(x)] dx

=

∫ b

a

[
v(x)

d

dx
ϕv′(x, v, v

′) + v′(x)ϕv′(x, v, v
′)

]
dx

=

∫ b

a

d

dx
(ϕv′(x, v, v

′)v(x)) dx

= ϕv′(x, v, v
′)v(x)

∣∣∣∣b
a

= 0.
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Notice that if f is C4 and the strong Legendre condition holds for y, then ϕ is regular. The necessary
condition (2.30) can be rewritten as

d

dx
ϕv′ = ϕv =⇒ d

dx
(fyyv + fy′y′v

′) = fyy′v
′ + fyyv. (2.31)

Equation (2.31) is called the Jacobi equation.

Definition 2.77 (Conjugated point). A point ξ ∈ (a, b] is conjugated to a if there exists a non null
function vξ : [a, ξ]→ R such that vξ ∈ Ĉ1, vξ(a) = vξ(ξ) = 0 and vξ satisfies the Jacobi equation
(2.31).

Definition 2.78 (Jacobi condition). The Jacobi condition holds if there are not conjugated points
to a in (a, b). The strong Jacobi condition holds if there are not conjugated points to a in (a, b].

Theorem 2.79 (Jacobi necessary condition). Let y be C3 and minimizing, f be C4 and suppose
that the strong Legendre condition holds. Then the Jacobi condition is satisfied.

If we add the strong conditions, the previous theorem gives sufficient conditions for minima.

Theorem 2.80 (Jacobi sufficient condition). Let y be C3 extremal, f be C4 and suppose that the
strong Legendre condition and the strong Jacobi condition hold. Then y gives a local minimum.

Example 2.81. Consider the problem

min

∫ 3π/2

0

y′(x)2 − y(x)2 − 2y(x) dx s.t. y(0) = y

(
3π

2

)
= 0.

The Euler-Lagrange equation for this problem is y′′ + y = −1, so the general integral is y(x) =

α sinx + β cosx − 1. The boundary conditions give α = 1, β = −1. Thus a candidate to be an
extremal is y(x) = sinx − cosx − 1. The Hessian of f = y′2 − y2 − 2y with respect to y and y′

is (−2 0; 0 2) and is therefore not definite. The Legendre condition is clearly satisfied, because
fy′y′ = 2 > 0 (hence also Q(x, v) > 0) for all x ∈ [0, 3π/2]. Function y is a minimizing candidate.
We have to look at the Jacobi sufficient condition. We need to check if there is a conjugated point
ξ ∈ (0, 3π/2] to x = 0. The Jacobi equation for the accessory minimum, being fyy = −2, fyy′ = 0,
fy′y′ = 2, is:

d

dx
2v′(x) = −2v(x) =⇒ v(x) = A sinx+B cosx.

The boundary conditions v(0) = v(ξ) = 0 give v(x) = 0 for ξ ∈ (0, π)∪ (π, 3π/2), but v(x) = B cosx

for all B ∈ R, for ξ = π. Thus there is at least one non null solution to the accessory minimum
problem that matches Jacobi equation, i.e. ξ = π is a conjugated point to 0 and y can not be
minimum.
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It turns out that scientists had been studying optimal control problems for quite a few years before
they realized that it is part of the calculus of variations. The main issue was that they had to laid
down assumptions of smoothness. In fact, OCPs are more general than the problems described so
far. The Maximum (Minimum) Principle of Pontryagin applies to all problems that arise in calculus of
variations, and gives equivalent results to those expected by the classical approach so far exposed.
However, the two approaches differ and optimal control gives insights into problems that are less
readily apparent in the calculus of variations. It also works for some classes of problems for which
the calculus of variations is not useful, such as thse involving constraints on the derivatives of the
unknown optimal function. This kind of constraints is very convenient for example when we have

47
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to characterize increments that can not be negative. Let us see the connection that makes each
problem of calculus of variation an optimal control problem, this will also show the generality of the
formulation of an OCP. Consider a problem of kind

min
y∈C1(a,b)

∫ b

a

f(x, y(x), y′(x)) dx, (3.1)

with y(a) = y0. If we fix y(x), we can introduce a new variable z(x) such that

z′(x) = f(x, y(x), y′(x)), z(a) = 0.

In this way, we have

z(b) = z(b)− z(a) =

∫ b

a

z′(x) dx =

∫ b

a

f(x, y(x), y′(x)) dx,

and calling u(x) = y′(x) the previous problems can be restated as a terminal control problem:

min z(b) s.t. y′(x) = u(x), z′(x) = f(x, y(x), u(x)), (3.2)

with initial conditions y(a) = y0 and z(a) = 0. We have to find the control u(x) at which z(b)

attains its minimal value. This formulation does not involve the operation of integration, and it is
well known that the solution of a Cauchy problem for a system of ordinary differential equations
(ODE) is less computationally expensive than the solution of the corresponding integral equations
formulation. Although problem (3.2) is equivalent to problem (3.1), it has extended the class of
problems that we can treat, since it is not a problem of calculus of variations. If we consider (3.2)
from a vectorial point of view, we can assume x ∈ Rn, f(x, y, y′) : R× Rn × Rn → R and the ODE
from R2n+1 to Rm. The problem is nondegenerate if m < n, otherwise the minimization is done
over a discrete or an empty set of trajectories. For nondegenerate problems, the condition m < n

in the n-dimensional space of variables y′, defines an (n −m)-dimensional manifold M , and in
a neighbourhood of a point in M we can introduce coordinates U ∈ Rn−m and parametrize the
manifold. In these coordinates, the system of ODE depending on (x, y, y′) is equivalent to the
system of coordinates (x, y, u). Therefore, classical variational problems can be seen as optimal
control problems. A typical example is given by the brachistochrone, we will go through it later in
detail.

3.1 T H E P RO B L E M S O F M AY E R , L AG R A N G E A N D B O L Z A

There are three types of optimal control problems, they differ apparently in the formulation of the
functional to be optimized, but we will show that they are equivalent and that it is possible to convert
each problem in the other two forms.

3.1.1 The Problem of Mayer

In the problem of Mayer, the functional is not an integral but a function M that depends in general
from the dependent variable x and the final point of the x-domain. Often this is useful to be intended
as a problem of optimizing the final time, such as in the time-optimal OCPs. The objective function
is called pay off function and is constrained by a set of differential equations, in general ODE, but
often we encounter also differential algebraic equations (DAE). The standard formulation is

min
u∈U

J(u) = M(b,y(b))

y′(x) = g(x,y(x),u(x)) x ∈ (a, b)

y(a) = y0.

(3.3)
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The set U represents a general class of function available for the control, for example the control
can be C1 or Ĉ1, other possibilities are the piecewise constant functions. U can also contain
limitations for the control, a classical case is |u| ≤ 1. There are also more general formulations
for the OCP, adding inequality state constraints or jump conditions. We will define more general
problems in the next chapters. In some applications it is convenient to consider an unbounded
domain for x, for example x ∈ [a,∞), or the final point b can be an unknown. We will analyse also
these eventualities later.

3.1.2 The Problem of Lagrange

In the problem of Lagrange, we have the objective functional in (pure) integral form. The previous
considerations for the Mayer problem still hold. The standard formulation is

min
u∈U

J(u) =

∫ b

a

f(x,y,u) dx

y′(x) = g(x,y(x),u(x)) x ∈ (a, b)

y(a) = y0.

(3.4)

3.1.3 The Problem of Bolza

The third standard form for an OCP is given by the formulation of Bolza, which consider a linear
combination of the problems of Mayer and Lagrange.

min
u∈U

J(u) = M(b,y(b)) +

∫ b

a

f(x,y,u) dx

y′(x) = g(x,y(x),u(x)) x ∈ (a, b)

y(a) = y0.

(3.5)

As before, the considerations done for the Mayer problem hold.

3.1.4 Equivalence of the Three Problems

Even if the Bolza problem looks more general than the other two, we show next that the three
formulations are equivalent. It is clear that problems (3.3) and (3.4) are particular cases of (3.5),
hence we have to show how (3.5) becomes (3.4) and how (3.4) becomes (3.3).

3.1.4.1 From Bolza to Lagrange

To do this conversion, add a new component to the vector y ∈ Rn, so that yn+1(x) = M(x,y(x)).
According to this notation, the problem of Bolza becomes

min
u∈U

J̃(u) =

∫ b

a

f(x,y,u) + y′n+1(x) dx x ∈ [a, b](
y′

y′n+1

)
=

(
g(x,y,u)

d
dxM(x,y(x)

)
(

y(a)

yn+1(a))

)
=

(
y0

M(a,y0)

)
,

which is a problem of Lagrange.
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3.1.4.2 From Lagrange to Mayer

To transform (3.4) into a Mayer (3.3), consider a new variable yn+1 defined as y′n+1(x) = f(x,y,u),
with the initial condition yn+1(a) = 0. Hence the problem of Lagrange becomes

min
u∈U

J̃(u) = yn+1(b) x ∈ [a, b]

(y′, y′n+1) = (g(x,y,u), f(x,y,u))

(y(a), yn+1(a)) = (y0, 0),

which is a problem of Mayer.
Finally we show how to pass from a Mayer to a Lagrange.

3.1.4.3 From Mayer to Lagrange

Consider a new variable yn+1 defined as y′n+1(x) = 0 with the condition that yn+1 = M(x,y(b))
b−a . The

Mayer problem becomes then

min
u∈U

J̃(u) =

∫ b

a

yn+1(x) dx x ∈ [a, b]

(y′, y′n+1) = (g(x,y,u), 0)

(y(a), yn+1(a)) =

(
y0,

M(x,y(b))

b− a

)
,

which is a problem of Lagrange.

3.2 H A M I LTO N I A N F O R M A L I S M

A fundamental tool in the solution of variational problems was suggested by Hamilton, it is the
Legendre transform of a function f as a function of y′ for fixed values of x and y is denoted by
H(x, y, y′), i.e. the Hamiltonian1:

λ(x) = fy′(x, y(x), y′(x)), H(x, y, v, λ) = 〈λ, v〉 − f(x, y, v). (3.6)

Taking the total derivative w.r.t. x of the Hamiltonian (3.6) with v = y′, we have

d

dx
H(x, y, y′) = 〈λ′, y′〉+

〈
λ,

d

dx
y′
〉
− fx −

〈
fy,

d

dx
y
〉
−
〈
fy′ ,

d

dx
y′
〉
.

Notice that by the first of (3.6) and by the Euler-Lagrange equation, we can simplify

d

dx
H(x, y, y′, λ) = 〈λ′, y′〉+

〈
fy′ ,

d

dx
y′
〉
− fx −

〈
fy,

d

dx
y
〉
−
〈
fy′ ,

d

dx
y′
〉

=
〈 d

dx
fy′i , y

′
〉
− fx − 〈fy, y′〉

=
〈 d

dx
fy′i − fy, y

′
〉
− fx

= −fx.

1〈., .〉 is the standard scalar product.
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This shows that the total derivative of the Hamiltonian is equal to the partial derivative of the
Hamiltonian w.r.t. x, e.g.

− d

dx
H(x, y, y′, λ) =

∂

∂x
H(x, y, y′, λ)

y′(x) =
∂

∂λ
H(x, y, y′, λ)

−λ′(x) =
∂

∂y
H(x, y, y′, λ)

0 =
∂

∂y′
H(x, y, y′, λ)

(3.7)

These equations are called the canonical system. In particular, the first equation shows that for
autonomous problems (i.e. when H does not depend explicitly on x) the Hamiltonian is constant
along an optimal trajectory, because fx = 0, moreover, if the final point x = b is free, the Hamiltonian
is zero.
The geometric meaning of the transform can be expressed as follows. We consider the function
y = h(x) and its graph (x, y = h(x)). From the first relation of (3.6) we have that the tangent to
the function at a point x0 has slope λ, from the second equation of (3.6) we have that h?(λ) is the
value by which the line y = λx should be lowered to become the tangent to the graph of function
h(x). Thus the function h?(λ) defines a set of tangents of the function y = h(x). In the vectorial
case, h? represents the value by which the plane y = 〈λ,x〉 should be lowered to become the
tangent plane of y = h(x).

Example 3.1. Consider the function y = h(x) = (x− 1)2 + 1, the tangent at point x = 3 is given
by the first order Taylor polynomial

T1(x) = h(x0) + h′(x0)(x− x0) = 5 + 4(x− 3) = 4x− 7.

Let us see it with the Legendre transform. We have λ = h′(x) = 2x− 2 and evaluated at x0 gives
λ = 4. The transform gives h?(λ) = λx− (x− 1)2− 1. At the required point its value is 7, so the line
y = λx = 4x should be lowered by 7 to be the tangent of h at x0. This gives exactly the expected
solution.

3.3 T H E FI R S T VA R I AT I O N

Here it is convenient to change our notation and follow the literature: in variational problems, it is
commonly used the variable x for the independent variable and y(x) for the state variables, the
variations are expressed as v. In optimal control theory, very often the dependent variable is the
time and the state is x(t), the variations involve many functions, so they are expressed with a δ
followed by the corresponding variable, e.g. the variation of λ(t) becomes δλ. Most authors follow
this convention, so we restart stating a basic optimal control problem and deriving the “classic
” canonical system again. We present a general problem of Bolza and we will investigate more
involved problems, like Hestenes’s problem later. We consider a time interval [t0, T ] with a Mayer
term M and a Lagrange term L, the functional to be minimized is

J(u) = M(t0,x(t0), T,x(T )) +

∫ T

t0

L(t,x(t),u(t)) dt s.t.

x′(t) = f(t,x,u)

B(t0,x(t0), T,x(T )) = 0.

(3.8)

The state vector x ∈ Rn, u ∈ Rm denotes the control vector, M is the scalar Mayer term, L is the
scalar Lagrange term, f is an ODE with values in Rn, B ∈ Rp+1 is the vector of the boundary
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conditions with p ≤ n. To derive the canonical system consider the Lagrangian L of the problem,
which is known also with the name of augmented functional

L(t,x,u,λ,ν) = M + νTB +

∫ T

t0

L+ λT (f − x′) dt.

The (first) variation of the Lagrangian gives the first order necessary conditions of optimality:

δL(t,x,u,λ,ν) = δM + δνTB + νT δB + δ

∫ T

t0

L+ λT (f − x′) dt.

The resulting expressions for each variation depend on the characteristics of the problem, in
particular on the presence of free or fixed boundary conditions, on the presence of constraints on
the control u. They become easily long, therefore we analyse them separately. For the Mayer term
we have

δM =

[
∂M

∂x(t0)
x′(t0) +

∂M

∂t0

]
δt0 +

∂M

∂x(t0)
δx0 +[

∂M

∂x(T )
x′(T ) +

∂M

∂T

]
δT +

∂M

∂x(T )
δxT .

With analogous computation we derive the variation of the boundary condition δB,

δB =

[
∂B

∂x(t0)
x′(t0) +

∂B

∂t0

]
δt0 +

∂B

∂x(t0)
δx0 +[

∂B

∂x(T )
x′(T ) +

∂B

∂T

]
δT +

∂B

∂x(T )
δxT .

The term δνTB can not be further simplified, so we consider now the variation of integral,

δ

∫ T

t0

H− λ · x′ dt =

=

∫ T

t0

δH− δλTx′ − λT δx′ dt+
[
H− λTx′

] ∣∣∣
T
δT −

[
H− λTx′

] ∣∣∣
t0
δt0.

Again, we simplify the single variations. For the Hamiltonian we have

δH =
∂H
∂x

δx+
∂H
∂λ

δλ+
∂H
∂u

δu.

The term −λT δx′ can be reduced to first order terms by integration by parts,∫ T

t0

−λT δx′ dt = −
[
λT δx

]T
t0

+

∫ T

t0

λ′T δx dt

= λT (t0)δx0 − λT (T )δxT +

∫ T

t0

λ′T δx dt.

(3.9)
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The term δλTx′ can be rewritten as x′T δλ, therefore, putting all the expansions together, the
variation of the integral is

δ

∫ T

t0

H− λTx′ dt = λT (t0)δx0 − λT (T )δxT +

[
H(T )− λT (T )x′(T )

]
δT −

[
H(t0)− λT (t0)x′(t0)

]
δt0 +∫ T

t0

[
∂H
∂x

+ λ′T
]
δx+

[
∂H
∂λ
− x′T

]
δλ+

∂H
∂u

δu dt

Because the first variation should be zero to satisfy the first order necessary conditions and
because the variations are independent, we can collect them to obtain the general form for first
order conditions.

δλ : x′ =
∂H
∂λ

= f

δx : λ′ = −∂H
∂x

δu : 0 =
∂H
∂u

δx0 : λ(t0) = − ∂M

∂x(t0)

T

− ∂B

∂x(t0)

T

ν

δt0 : H(t0) =
∂M

∂t0
+ νT

∂B

∂t0

δxT : λ(T ) =
∂M

∂x(T )

T

+
∂B

∂x(T )

T

ν

δT : H(T ) = −∂M
∂T
− νT ∂B

∂T

(3.10)

Notice that the variations dx0 and dt0 (and similarly dxT and dT ) are not independent, so they
have to vanish together in the case of free boundary conditions.

3.4 T H E S E C O N D VA R I AT I O N

In order to compute the second variation for problem (3.8), it is convenient to restate it in a more
compact way.

J(u) = M(t0,x(t0), T,x(T )) +

∫ T

t0

H− λ · x′ dt s.t.

x′(t) = f(t,x,u)

B(t0,x(t0), T,x(T )) = 0

We compute again the first variation to perform another one and obtain the required second
variation. This time we do not collect the independent variation δx0 and dt0 in dx0 and similarly
for the final point, and we work directly with δx0 and dt0. The first variation of the Lagrangian gives
the first order necessary conditions of optimality:

δL(t,x,u,λ,ν) = δN + δ

∫ T

t0

H− λ · x′ dt.
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where
N(t0,x(t0), T,x(T ),ν) = M(t0,x(t0), T,x(T )) + νTB(t0,x(t0), T,x(T )).

Adopting the more compact notation for the derivatives, we have:

δL = Nt0δt0 +Nx0 · δx0 +NT δT +NxT · δxT +Nν · δν

+[H(T )− λ(T ) · x′(T )]δT − [H(t0)− λ(t0) · x′(t0)]δt0

+

∫ T

t0

Hx · δx+Hu · δu+Hλ · δλ− δλ · x′ − λ · δx′ dt.
(3.11)

We can integrate by parts the term λ · δx′ inside the integral, as was done in (3.9), obtaining

δL = Nt0δt0 +Nx0
· (δx0 + x′(t0)δt0) +NT δT +NxT · (δxT + x′(T )δT ) +Nν · δν

+[H(T )− λ(T ) · x′(T )]δT − [H(t0)− λ(t0) · x′(t0)]δt0

+λT (t0) · δx0 − λT (T ) · δxT

+

∫ T

t0

(Hx + λ′) · δx+Hu · δu+ (Hλ − x′) · δλ dt

= δt0 (Nt0 + x′(t0) ·Nx0
−H(t0) + λ(t0) · x′(t0)) + δx0 · (Nx0

+ λ(t0))

+δT (NT + x′T ·NxT +H(T )− λ(T ) · x′(T )) + δxT · (NxT − λ(T ))

+

∫ T

t0

(Hx + λ′) · δx+Hu · δu+ (f − x′) · δλdt.

The variation relative to ν can be set to zero because Nν = B = 0. The next step is to denote (as
in Hull [Hul03]) by Γ and Ω the coefficients of δt0 and δT respectively, that is

Γ = Nt0 + x′(t0) ·Nx0
− L(t0), Ω = NT + x′(T ) ·NxT + L(T ).

Now we take advantage of this compact machinery to compute the second variation. With the
above convention on the notation we write

δ2L = δt0 [Γt0δt0 + Γx0
· δx0 + ΓT δT + ΓxT · δxT + Γν · δν]

+δx0 · [Nx0t0δt0 +Nx0x0δx0 +Nx0T δT +Nx0xT δxT +Nx0νδν + δλ(t0)]

+δT [Ωt0δt0 + Ωx0
· δx0 + ΩT δT + ΩxT · δxT + Ων · δν]

+δxT · [NxT t0δt0 +NxTx0
δx0 +NxTT δT +NxTxT δxT +NxT νδν − δλ(T )]

+

∫ T

t0

δx · [Hxxδx+Hxuδu+ fxδλ+ δλ′]

+ δu · [Hxuδx+Huuδu+ fuδλ] + δλ · [fxδx+ fuδu− δx′] dt

Here we made broad use of the first order necessary conditions, for example the variation of the
extremals of the integral vanish. Here we integrate by parts the quantity δx · δλ′, i.e. δx · δλ′ =

(δx · δλ)′ − δx′ · δλ; the variation of x′ in the integral follows from the first order conditions,
δx′ = fxδx+ fuδu. Further simplifications can be done with the help of the following lemma.

Lemma 3.2. There are the following simplifications in the coefficients of δ2L:

• Nx0t0 +Nx0x0
x′(t0) + λ′(t0) = Γx0

.

• NxT +NxTxTx
′(T )− λ′(T ) = ΩxT .
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Proof. It is enough to collect the related terms making use of the first variation and the continuity
of the solution.

By rearranging and collecting terms, the second variation results in:

δ2L = δt20[Γt0 + x′(t0) · Γx0
] + 2δt0δx0 · Γx0

+δT 2[ΩT + x′(T ) · ΩxT ] + 2δTδxT · ΩxT
+δx0 ·Nx0x0

δx0 + δxT ·NxTxT δxT
+δt0δT [ΓT + x′(T ) · ΓxT + Ωt0 + x′(t0) · Ωx0

]

+δt0δxT [ΓxT +NxT t0 +NxTx0x
′(t0)] + 2δx0 ·Nx0xT δxT

+δTδx0 · [Nx0T +Nx0xTx
′(T ) + Ωx0

]

+δν · [Γν +Nνx0
δx0 + Ων +NνxT δxT ]

+δλ(T ) · δxT − δλ(t0) · δx0 + δλ(t0) · δx0 − δλ(T ) · δxT

+

∫ T

t0

δx · Hxxδx+ 2δx · Hxuδu+ δu · Huuδudt

The previous result can be summarized in matrix form as

δ2L =


δx0

δt0
δxT
δT


T(
α βT

β γ

)
δx0

δt0
δxT
δT

+

∫ T

t0

(
δx

δu

)T(Hxx Hxu
Hxu Huu

)(
δx

δu

)
dt (3.12)

A general assumption can be made to reduce the number of elements and improve the elegance
of the notation: we suppose that the cross derivatives of the initial and final point are zero so that
the matrix β = 0, and α and γ take the form (by using the previous lemma),

α =

(
Nx0x0 ΓTx0

Γx0
Γt0 + x′(t0)Γx0

)
, γ =

(
NxTxT ΩTxt

Ωxt ΩT + x′(T )ΩxT

)
.

3.5 S U FFI C I E N T C O N D I T I O N S

The relations seen in (3.10) are only necessary conditions that an extremal function has to meet
in order to be optimal. Since the first differential is zero, the total change of the functional is
proportional to the second differential and must be nonnegative for all admissible controls u to be a
minimum, that is δ2L ≥ 0. As one can expect, the condition δ2L ≥ 0 is only necessary. Depending
on the problem, it is sometimes easy to directly check if δ2L > 0, this is a sufficient condition. A
sufficient, but not necessary condition for a minimum, is that all the quadratic forms that appear
in δ2L be positive defined. To see that they are not necessary, consider the case of a time fixed
optimal control problem, so that the part outside the integral in (3.12) reduces to NxTxT . It is
possible that the quadratic form in the integral be positive defined and hence positive, NxTxT be
negative and a minimum still exist. Verifying those properties is not always possible or feasible,
therefore we introduce some general sufficient conditions that are not problem dependant.
To characterize the presence of a minimizing function, some sufficient conditions have to hold.
The first important case is in presence of convexity, it is the generalization of theorem 2.47 and is
due to Mangasarian. After the convex case, we will consider the more general environment of the
conjugated points theory of Jacobi.
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3.5.1 The Convex Case

Theorem 3.3 (Mangasarian sufficient conditions). Consider the minimization problem (3.8) for
a vectorial control u ∈ C[t0, T ]nu with fixed endpoints, with L and f with continuous first partial
derivatives with respect to x and u, with L and f convex in x and u, for all (t,x,u) ∈ [t0, T ]×Rnx×
Rnu . Suppose that the extremal function given by u?, x?, λ? satisfies the Pontryagin Maximum
(Minimum) Principle and λ ≥ 0, for all t ∈ [t0, T ], then u? is a global minimizer for the problem.
Moreover if L and f are strictly convex, then u? is a strict global minimizer.

When f is linear in x and u, the theorem holds without the sign restriction for the multiplier λ.

Remark 3.4. The hypotheses required by this theorem are of rather limited application, because
in most problems the terminal cost or the integral cost or the differential equation are not convex. A
weaker hypothesis, known as the Arrow condition, requires that the minimized Hamiltonian with
respect to u be a convex function in x.

Another problem of this theorem is that the control is assumed to be continuous, but most of the
optimal controls are only piecewise continuous, and in some cases, just integrable. Discontinuities
in the control give rise to corner points in the state variable, we encountered them in the classic
problems of calculus of variations. If u ∈ Ĉ[t0, T ]nu then at a corner point tk ∈ (t0, T ) we have

x(t−k ) = x(t+k ) λ(t−k ) = λ(t+k ) H(t−k ) = H(t+k ).

It can be shown that these conditions are equivalent to the Weierstrass-Erdmann corner conditions
of theorem 2.63.

3.5.2 The General Case

We introduced the concept of accessory minimum problem in the chapter devoted to calculus of
variations. Herein we extend it to the more complex case of an optimal control problem, where
the variations of several variables are involved. The tractation becomes quickly very involved
because of the introduction of many new variables, therefore we prefer to consider only the case of
a problem with fixed initial conditions and fixed final time, but with free endpoint, that is B(xT ) = 0.
This is not a limitation because any other kind of problem can be converted to a fixed time. We
begin from the first order differential necessary conditions furnished by the Pontryagin Maximum
(Minimum) Principle (3.10). The variation of those conditions with control obtained via Hu = 0,
leads to

δx′ = fxδx+ fTu δu

δλ′ = −Hxxδx−Hxuδu− fTx δλ

0 = Hxuδx+Huuδu+ fTu δλ.

(3.13)

With the assumption that the problem is not singular, that is Huu > 0 (the strengthened Legendre-
Clebsch condition holds), the variation of the candidate optimal control can be solved from the third
equation above, yielding

δu = −H−1
uu

(
Hxuδx+ fTu δλ

)
.

The substitution of this value in the first two equation of (3.13) gives

δx′ =
(
fx − fuH−1

uuHxu
)
δx−

(
fuH−1

uuf
T
u

)
δλ

= Aδx−Dδλ

δλ′ = −
(
Hxx −HxuH−1

uuHxu
)
δx−

(
fx − fuH−1

uuHxu
)T
δλ

= −Cδx−AT δλ.

(3.14)
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The boundary conditions are taken from the differential of the initial and final conditions of (3.11).
We keep the more compact notation of the section of the second variation. A procedure to solve
this boundary value problem is the sweep method, in which the solution is assumed to have the
form of the final conditions, that is

δλ = S(t)δx+R(t)δν

δB = P (t)δx+Q(t)δν.
(3.15)

S(T ) = NxTxT , R(T ) = BT
xT , P (T ) = BxT , Q(T ) = 0. (3.16)

To obtain differential equations for S,R, P,Q, so that the system (3.14) is satisfied, we perform
differentiation of (3.15), that leads to

δλ′ = S′δx+ Sδx′ +R′δν

0 = P ′δx+ P ′δx′ +Q′δν.

Substitution of (3.14) gives[
S′ − SDS + SA+ATS + vC

]
δx+

[
R′ + (AT − SD)R

]
δν = 0[

P ′ + P (vA− vDST )
]
δx+ [Q′ − PDR] δν = 0.

The resulting system of ODE is

S′ = −C −ATS − SA+ SDS

R′ = (SD −AT )R

P ′ = (SD −AT )P

Q′ = RTDR.

(3.17)

with boundary conditions given by (3.16). Hence, assuming it is possible to compute S,R, P,Q,
we can restate equations (3.15). If also Q(t0)−1 exists, from the second equation of (3.15) it is
possible to obtain δν,

δν = −Q(t0)−1R(t0)T δx0,

so that the other equation yields

δλ(t0) = S̄(t0)δx0, S̄ = S −RQ−1RT .

There are now three cases to be considered.

1. S̄ is finite over [t0, T ), thus a given value of δx0 induces a finite value for δλ(t0). Therefore
we can integrate the differential equations (3.14) for the neighbouring optimal paths δx, δλ
and synthesizing the control δu. Taking the initial state perturbation δx0 to zero, leads to
δλ(t0) = 0 and δx = δλ = δu = 0, that is there are not admissible neighbouring optimal
trajectories different from the optimal candidate, which is then a minimizing control.

2. S̄ is infinite at t0, that is, a finite value of δx0 induces an infinite value for δλ(t0), this implies
that there is no neighbouring optimal path. However, it is possible to choose δx0 such that it
induces a finite δλ(t0), moreover the resulting δx, δλ, δu are different from zero. This path is
an admissible comparison trajectory and the time instant where S̄ becomes infinite is called
a conjugate point. In this situation the second variation vanishes and hence there is not a
sufficient condition for the candidate path to be a minimum.
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3. S̄ is infinite at t? > t0, i.e. the conjugate point is inside the interval (t0, T ) and an optimal
comparison path can be established combining δu = 0 for t ∈ [t0, t

?] and then selecting the
candidate optimal control. It can be shown that the associated second variation is negative
and this proofs that the candidate solution is not a minimum.

In conclusion, for a candidate optimal solution to be a minimum, it is sufficient that there are not
conjugate points in [t0, T ).

Example 3.5. Consider the optimal control problem of minimizing the functional

min

∫ 1

0

(u− x)2 dt, x′ = u,

with x(0) = 1.
In this example N = 0 and the Hamiltonian isH = (u−x)2 +λu. Performing the first variation of the
augmented functional leads to the first order necessary conditions of the theorem of Pontryagin,

λ′ = 2(u− x)

x′ = u

0 = 2(u− x) + λ

λ(1) = 0.

It is a trite computation to solve for the control u(t) = et and the optimal state x(t) = et with costate
λ(t) = 0. To check if this solution is a minimum we first notice that the problem is non singular, in
facts Huu = 2 > 0, then we set the accessory minimum problem (3.14):

f = u, fx = 0, fu = 1, Huu = 2, Hxu = −2, Hxx = 2.

With these information we have

A = fx − fuH−1
uuHxu = 1

D = fuH−1
uufu =

1

2

C = Hxx −HxuH−1
uuHxu = 0.

Because NxT xT = 0 and there are not final conditions, the functions R = P and Q do not exist,
thus the only differential equation to solve is the one for S, which is (from (3.17)),

S′ = −C −AS − SA+ SDS = −0− 1 · S − S · 1 + S · 1

2
· S =

S2

2
− 2S.

The boundary conditions are given by (3.16) and reduce in this case to S(T = 1) = 0. The solution
of the differential equation is easily seen to be S(t) = 0 for t ∈ [0, 1]. This shows that S̄ = S is finite
everywhere and with the condition Huu > 0 is sufficient to ensure the presence of a minimum.
In this case it was not possible to simply directly compute the second variation: without loss of
generality we could consider the expression for δ2L given in (3.12), where δt0 = δx0 = δT = 0.
There is only δxT , moreover, Γ = −L(0) = −(u(0)−x(0))2 = 0 and Ω = L(T ) = (u(T )−x(T ))2 = 0

so that the matrices α = β = γ = 0. It remains only the integral part, but it is quick to check that
the matrix in the integral is only semi positive defined:

δ2L =

∫ T

t0

(δx δu)

(Hxx Hxu
Hxu Huu

)(
δx

δu

)
dt =

∫ T

t0

(δx δu)

(
2 −2

−2 2

)(
δx

δu

)
dt ≥ 0,

in facts its eigenvalues are 0 and 4. Again we see that the Legendre-Clebsch condition Huu > 0 is
only a necessary condition, but is not enough to ensure the presence of a minimum.
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3.6 I N T E R P R E TAT I O N O F T H E M U LT I P L I E R

We give now an interpretation of the geometrical meaning of the Lagrangian multiplier λ associated
to a certain equation as the sensitivity of the objective function to a change in that constraint. This
subject is connected with the necessary condition derived from the PMP of Pontryagin (3.10). We
rewrite the general Optimal Control Problem (3.8) in the formulation of a Lagrange problem. As
shown before, this can be always done without loss of generality. For simplicity we restate it with a
simple initial condition

J(u) =

∫ T

t0

L(t,x(t),u(t)) dt s.t.

x′(t) = f(t,x,u)

x(t0) = x0.

(3.18)

We also assume that t0 and T are fixed extrema and L, f are continuous with continuous first
partial derivatives with respect to x and u. We suppose also that the optimal control u is unique
with the adjoint variable λ. Next we consider a perturbation by ξ of the initial value x0, that is the
new initial state is x0 + ξ. If the optimal control v(t, ξ) exists for the perturbed problem, we denote
by y(t, ξ) the optimal trajectory. This means that

y(t, ξ)′ = f(t,y(t, ξ),v(t, ξ))

with y(t0, ξ) = x0 + ξ. It follows that v(t,0) = u(t) and y(t,0) = x(t). With this notation, consider
the objective function for the perturbed problem, we have

J(v, ξ) =

∫ T

t0

L(t,y(t),v(t, ξ)) dt

=

∫ T

t0

L(t,y(t),v(t, ξ)) + λT f(t,y(t, ξ),v(t, ξ)) dt

Taking the partial derivative of the previous expression with respect to ξ yields (omitting the obvious
dependencies)

∂

∂ξ
J(v, ξ) =

∫ T

t0

(
Lu(y,v) + λT fu(y,v)

)T
vξ(t, ξ) dt

+

∫ T

t0

(
Lx(y,v) + λT fx(y,v) + λ′

)T
yξ(t, ξ) dt

−λ(T )Tyξ(T, ξ) + λ(t0)Tyξ(t0, ξ).

The limit for ξ → 0 gives

lim
ξ→0

∂

∂ξ
J(v, ξ) =

∫ T

t0

(
Lu(x,u) + λT fu(x,u)

)T
vξ(t,0) dt

+

∫ T

t0

(
Lx(x,u) + λT fx(x,u) + λ′

)T
yξ(t,0) dt

−λ(T )Tyξ(T,0) + λ(t0)Tyξ(t0,0)

= λ(t0).

In other words, the costate variable λ at the initial point can be interpreted as the sensitivity of the
cost functional to a change in the initial condition x0. To understand the adjoint variables at a time
instant inside the interval [t0, T ], we need the principle of optimality.
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Theorem 3.6 (Principle of Optimality). Let u ∈ Ĉ[t0, T ]nu be an optimal control for problem (3.18),
and let x be the associated optimal trajectory. Then for any t1 ∈ [t0, T ], the restriction of u to the
interval t1 ≤ t ≤ T is an optimal control for the same problem restricted to that time interval.

The theorem shows how a sub arc of an optimal control restricted to a particular interval, is itself
optimal for the restricted problem. We use this theorem to apply the argument used to interpret
the multiplier at the initial time λ(vx0), to the problem restricted to t1 ≤ t ≤ T . If we consider the
perturbed problem as above, we obtain that

λ(t1) = lim
ξ→0

∂

∂ξ
J(v, ξ),

and because this relation is valid for any t1 ∈ [t0, T ], we can write

λ(t) = lim
ξ→0

∂

∂ξ
J(v, ξ).

In other words, if the problem is perturbed by a small quantity ξ at time t, and the corresponding
optimal control is synthesized, the optimal cost J changes at the rate of λ(t). It is said that λ(t) is
the marginal valuation in the OCP of the state variable at time t. We can further observe that the
optimal cost remains the original if the perturbation happens at the terminal time T .

3.7 D I FF E R E N T I N I T I A L /FI N A L C O N D I T I O N S

Historically and in literature, optimal control problems were not always of the form proposed in (3.8),
the classic problem that arises from calculus of variations, the brachistochrone, does not have fixed
time extremals, but is instead a minimum time problem, that is, the final time T is to be minimized.
Similarly there are problems with free initial point, or with infinite time horizon. We show in this
section how to deal with such problems, and how any OCP can be restated as an autonomous
fixed “time” problem. The independent variable t (the time) will no longer have physical meaning,
and we point out that it is better to define the independent variable in a conveniently scaled way. For
example, in XOptima, the OCPs are scaled and parametrized with independent variable ζ ∈ [0, 1].

3.7.1 Free Initial Point

The case of free initial conditions does not appear very often in non academic examples. In this
situation we have to consider the two equations with respect to the variations of the initial point
which are given by the Pontryagin first order necessary conditions of (3.10).

δxt0 : λ(t0) = − ∂M

∂x(t0)

T

− ∂B

∂x(t0)

T

ν

δt0 : H(t0) =
∂M

∂t0
+ νT

∂B

∂t0
.

3.7.2 Free Final Point

The case of free final point occurs often in practical problems, we have to consider then the
variations for δT and δxT from (3.10).

δxT : λ(T ) =
∂M

∂x(T )

T

+
∂B

∂x(T )

T

ν

δT : H(T ) = −∂M
∂T
− νT ∂B

∂T
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This way to proceed requires the derivation of new second order conditions to ensure the presence
of a minimum, therefore it is convenient to reparametrize the problem to fixed time.

3.7.3 Infinite Horizon

This situation can be intended as an optimal control problem with fixed final time, and instead
of writing x(∞) we have to consider the limit limT→∞ x(T ). In general there should be enough
conditions on the Lagrange term inside the integral, on the control and on the trajectory, in order to
ensure the existence of the improper integral∫ ∞

t0

L(t,x,u) dt.

The criticity is usually overcome by multiplying the integrand by the factor e−αt for α > 0.

3.7.4 Autonomous Problems

When the functions and the functionals involved in the optimal control problem do not depend
explicitly on the time, or more correctly, when the independent variable does not occur explicitly in
the problem, we speak of autonomous problems. An important property of the Hamiltonian in this
case is that is constant along an optimal trajectory. This follows from the first equation of (3.7) and
from the related considerations. Moreover, if the final point is free, then the Hamiltonian is equal
to zero. Most of the literature considers only autonomous problems, this is because every non
autonomous problem can be transformed in an autonomous by a change of variable. This can be
done easily by enlarging the original problem by setting the independent variable, e.g. t, equal to a
new state equation. This gives xn+1(t) = t, and the new differential equation contains x′n+1 = 1

with initial value xn+1(t0) = t0.

3.7.5 Minimum Time

The problems in which the target to be minimized is the final time, are called time optimal problems.
The functional to be minimized reduces (if t0 = 0) to

minT = min

∫ T

t0

1 dt.

It it therefore transformed in a problem with free endpoint. Another way to treat this kind of problems
is to reformulate them as a fixed time problem adding one more state variable, namely the final
time T . To do that we have to change the independent variable t with a new monotone variable,
which is called sometimes dimensionless time or pseudotime, by posing ζ = t/T , in this way
the differential becomes T (ζ) dζ = dt and an eventual differential equation x′(t) = f(x, u, t) is
rewritten as x′(ζ) = T (ζ)f(x, u, ζ). The differential equation associated to the new state T (ζ) is
clearly T ′(ζ) = 0, because the final time is constant.

We conclude this section with an example that shows the application of these facts.

Example 3.7. This example is from [Hul03], it is rather artificial but easy enough not to be
excessively long in the tractation. It is a problem with free initial and final time, with a constraint on
the states. In Hull [Hul03] it is solved applying specialized first order necessary conditions for a
free initial time problem, then ad hoc second order conditions are also derived. We prefer instead
to solve it after a conversion to a fixed time problem, in order to use the necessary and sufficient
conditions for a minimum explained so far. The original problem statement requires to minimize the
distance between a parabola and a line as in Figure 3.1. The problem is to find the control u(t)
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x(t)

t

x
T +

T −
1
=
0

x2
0 + t0 = 0

Figure 3.1: Graphical representation of the position of the parabola and the straight line.

that minimizes the target

min J =

∫ T

t0

√
1 + u2 dt, x′ = u,

with prescribed initial condition x2
0 + t0 = 0 and final condition xT + T − 1 = 0.

First we do the change of variable that allows to pass from a functional with variable endpoints to a
problem with fixed independent variable ζ ∈ [0, 1]. This is done by letting ζ = t−t0

T−t0 , which implies
(T − t0) dζ = dt and the two new differential states t0(ζ), T (ζ). The corresponding differential
equations are trivial, t′0 = T ′ = 0. The Hamiltonian for this problem is hence

H = (T − t0)
√

1 + u2 + λ1(T − t0)u+ λ2 · 0 + λ3 · 0 = (T − t0)[
√

1 + u2 + λ1u].

We observe that the problem is autonomous so that H = const. From the first order necessary
conditions we obtain the differential problem

0 =
∂H
du

= (T − t0)

(
u√

1 + u2
+ λ1

)
λ′1 = 0

λ′2 =
√

1 + u2 + λ1u = c1

λ′3 = −λ′2.
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From these equations we notice that λ1 is constant, so that also the optimal control u is constant.
Moreover, we have that λ2(ζ) = c1ζ + c2 and λ3(ζ) = −c1ζ + c3. Posing N = ν1(x2

0 + t0) + ν2(xT +

T − 1), the natural boundary conditions for the differential equations are

ν1 = −λ2(0) = −c2
0 = −λ3(0) = −c3
0 = λ1(1) = c1 + c2

ν2 = λ3(1) = −c1 + c3

0 = ν1 +

∫ 1

0

Ht0 dζ = ν1 −
∫ 1

0

[
√

1 + u2 + λ1u] dζ

0 = ν2 +

∫ 1

0

HT dζ = ν2 +

∫ 1

0

[
√

1 + u2 + λ1u] dζ.

We can add also the equation for the state x, that is x(ζ) = (T − t0)uζ + x0, which yields one more
equation for the nonlinear system that we have to solve to obtain the constants for the BVP: for
ζ = 1 the final condition is (T − t0)u+x0 = xT . We have thus 10 equations (6 boundary conditions,
the initial and final conditions, the constraint of the final state, the equation for the control and
the expression for c1) but 11 unknowns, namely t0, T , u, x0, xT , λ1, c1, c2, c3, ν1, ν2. Thus the
solution is dependent from an unknown. Solving the NLP gives two solutions, one is not feasible,
the second is

u = 1, c1 = ν1 = −ν2 = −c2 = −λ1 =

√
2

2
, c3 = 0,

t0 = −x2
0, T =

1

2
(−x2

0 − x0 + 1), xT =
1

2
(x2

0 + x0 + 1).

To find the value of x0 we can not use the constant value of the Hamiltonian, because it is linearly
dependent with the equations of the NLP. We minimize instead the value of the functional that can
now be written in terms of x0 only. This yields

min J =

∫ 1

0

1

2
(−x2

0 − x0 + 1)− (−x2
0) dζ,

and the result of this minimization is clearly x0 = 1
2 , therefore the missing constant are t0 = − 1

4 ,
T = 1

8 and xT = 7
8 . We check the sufficient conditions. The vectors A and vC are zero

because u√
1+u2

+ λ1 = 0 for the optimal u and λ1. The vector D = (T − t0)u2
√

1 + u2 = 3
√

2
8 ,

fx =
√

1 + u2(0,−1, 1)T =
√

2(0,−1, 1)T , Hxu = 0. The final conditions for S, R, T , Q are
respectively 0, 1, 1 and 0, hence the differential system (3.17) reduces to

S′ = SDS, R′ = SDR, Q′ = RDR, S(1) = 0, R(1) = 1, Q(1) = 0.

In particular, the first equation has the only solution S = 0, which is finite for all ζ ∈ [0, 1] and there
are not conjugate points, thus the candidate optimal control is minimizing.

3.8 C O N S T R A I N E D P RO B L E M S

In this section we describe a number of constraint that appear in the formulation of optimal control
problems. We present first the simplest cases and show how to reduce more complex constraints
to a combination of simpler one. The necessary conditions rely on the first variation, in some cases
we also give sufficient conditions of optimality based on the second variation.
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3.8.1 Initial or Final State Constraints

For the first kind of simple constraints we consider those that restrict the initial or the final state to
belong to a certain geometric variety V , that we assume regular enough and defined by

V = {x ∈ Rn | αi(x) = 0, i = 1, . . . , q ≤ n},

for functions αi continuously differentiable with their gradient of full rank q for all x ∈ V . We start by
considering two regular varieties for the initial and the final state, that is

(t0,x(t0)) ∈ V0 = {x ∈ Rn | α0i(x) = 0, i = 1, . . . , q0 ≤ n},

(T,x(T )) ∈ VT = {x ∈ Rn | αTi(x) = 0, i = 1, . . . , qT ≤ n}.

A simple condition can be derived in the case of the problem of Lagrange (no Mayer term), that is
the Hamiltonian at the initial and at the final point should be zero, there are also conditions on the
multipliers. In particular if the time instants t0 and T are free, the following conditions hold:

H(t0,x(t0),u(t0),λ(t0)) = 0,

H(T,x(T ),u(T ),λ(T )) = 0,

λ(t0) =

q0∑
i=1

ϑ0i
d

dx
α0i(x)

∣∣∣∣
x=x(t0)

,

λ(T ) =

qT∑
i=1

ϑTi
d

dx
αTi(x)

∣∣∣∣
x=x(T )

.

(3.19)

The numbers ϑ represent the real constant multipliers for the equations that define the varieties V0

and VT . The first two equations of (3.19) are called transversality conditions are valid only if the
time is free, the last two equations of (3.19) are called orthogonality conditions because, from a
geometric point of view, they can be interpreted as orthogonal vectors: the multiplier λ at the initial
or final time is orthogonal to the hyperplane which is tangent to V0 or VT . When the initial or final
time are specified, these conditions are trivially satisfied.
This type of constraint has been included in the standard tractation as the more general function
B(t0,x0, T,xT ) = 0 with associated multiplier ν. Another method for the treatment of these
inequalities is in the next section.

3.8.2 Integral Constraints

One historically important constraint in the calculus of variations is the integral constraint. It arises
in the isoperimetric problems. There can be two kinds of integral constraints, expressed as an
equality or as an inequality. In the first case we have to handle an expression like∫ T

t0

w(t, x(t), u(t)) dt = We,

where the function w (can be a vector) is continuous with its first derivative with respect to x and
t, while We is a given constant (or a constant vector). It is possible to include this constraint as a
standard ODE of a state extended problem by posing

z′(t) = w(t, x(t), u(t))

z(t0) = 0,
(3.20)
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then we have to add the final condition z(T ) = We. This can be done in the previous section.
To deal with an integral inequality, of kind∫ T

t0

w(t, x(t), u(t)) dt ≤Wd,

where Wd is a known constant, the first step is to convert it to an equality and apply the previous
procedure as in equation (3.20); the second step is to add the final condition z(T ) ≤ Wd. The
inequality for the initial/final states can be treated as an inequality in a static NLP problem: written
in canonical form as ≤, it is multiplied by a multiplier that should be a posteriori non negative. From
a computational point of view it is useful to introduce an ulterior differential state k and set the
following conditions. Replace the inequality zT ≤ Wd with the equality zT − k = 0 and add the
condition k′(t) = 0 with constraint k(t) ≤Wd. In this way the variable is forced to be constant and
less than Wd. Next we see how to take into account equalities or inequalities constraints over the
time interval [t0, T ].

3.8.3 Equality Constraints

The class of equality constraint can be divided in three categories, the constraint acts only on the
control, only on the state, or on both control and state.

3.8.3.1 Control Equality Constraints

Consider the optimal control problem subject to the global equality constraint which is a vector of r
components having the form

C(t,u) = 0.

We assume that the control has m variables, therefore only m− r are independent, assuming that
the control is continuous. Each constraint is multiplied by a Lagrange multiplier µ, integrated over
the time interval [t0, T ] and added to the target functional. The new objective function becomes
then

J =

∫ T

t0

L+ µTC dt.

Taking the differential of J yields

δJ =

∫ T

t0

(
∂L

∂u
+ µT

∂C

∂u

)
δu+ δµTC dt. (3.21)

It can be readily noted that the term δµ must vanish because its coefficient is C(t,u) which is zero
by hypothesis. Since the components of the variation of the control are now not all independent, it is
not possible to just set the coefficient of δu equal to zero, r of the coefficients of µ are chosen such
that the r dependent coefficients of δu vanish, then, the remaining components can be considered
independent and so their coefficient can be set equal to zero.
The second differential is obtained from equation (3.21) and is

δ2J =

∫ T

t0

δuT
(
∂2L

∂u2
+ µi

∂2Ci
∂u2

)
δu+ 2δµT

∂C

∂u
δudt.

The components of δu must satisfy C(t,u) = 0 and imply the first order condition
∂C

∂u
δu = 0:

this fact causes the vanishing of the second term in the previous integral. Once the dependent
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variations are obtained in terms of the independent and are simplified, a lower order quadratic form
results, it must be non negative in order to obtain a minimizing control. A sufficient condition for a
minimum is that the reduced quadratic is positive defined.

3.8.3.2 State Equality Constraints

Consider the optimal control problem subject to the global equality constraint which is a vector of s
components having the form

S(t,x) = 0.

We point out that this time the constraint does not depend on the control variable u. This constraint
reduces the number of independent control and affects the boundary conditions as well. Suppose
the dynamical system is x′ = f , taking the derivative of S yields

S′ = St + Sxx
′ = St + Sxf = 0.

Now it is possible that one among ST , Sx and f contains the control, but this is not mandatory.
Hence we must assume that the control does not appear in S′, thus the differentiation process is
repeated with the substitution x′ = f until the qth derivative introduces the control variable. In that
case we speak of qth order equality constraint, that can be stated as

S(t,x) = 0, S′(t,x) = 0, . . . , S(q)(t,x,u) = 0.

It is important to underline, that it is not enough to satisfy only the last equation, S(q)(t,x,u) = 0,
but it is necessary that the whole chain of q+1 equalities is satisfied at every point where additional
constraints are present. If the interval of application of S(t,x) = 0 is a subinterval [a, b] ⊂ [t0, T ],
three cases must be taken into account:

• a = t0 and b < T . Then the initial conditions must satisfy all the chain of equalities:

S(t0,x) = 0, S′(t0,x) = 0, . . . , S(q)(t0,x,u) = 0.

• a > t0 and b = T . Then the final conditions must satisfy

S(T,x) = 0, S′(T,x) = 0, . . . , S(q)(T,x,u) = 0.

• a > t0 and b < T . Then the point constraint need only to be satisfied at t = a.

3.8.3.3 State and control equality constraints

Consider the optimal control problem subject to the global equality constraint which is a vector of r
components having the form

C(t,x,u) = 0.

Imposing such kind of constraint reduces the number of the independent controls from m to m− r.
If all the constraint component depend on u, then C can be added with a Lagrange multiplier to
the Hamiltonian. If some of the components of C do not depend on u then they are state equality
constraints, and can be handled as showed in the previous section by augmenting the Hamiltonian.
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3.8.4 Inequality Constraints

3.8.4.1 Control Inequality Constraints

Consider the fixed time optimal control problem subject to the scalar inequality constraint of the
form

C(t, u) ≤ 0.

One way to handle this constraint is to transform the inequality in an equality by means of a slack
variable α(t) that is defined by

C̄(t, u) = −α(t)2, C = C̄ + α(t)2 = 0.

Assuming the OCP is of Lagrange, the first order necessary conditions become

Lu + µC̄u = 0, 2µα = 0.

The second equation allows the possibility of mixed arcs, that is arcs where µ = 0 and the bound
is not active (C̄ < 0) and parts where α = 0 that are on the boundary C̄ = 0. In the first case the
necessary conditions return the usual ones and the control is determined by Lu = 0, then from
the equation C̄ = −α2 it is possible to recover α. In the second case, when α = 0, the control is
obtained by solving (the now equality) C̄ = 0, µ is obtained from Lu + µC̄u = 0.
To check if the control is a minimum, we look at the second differential of the functional, which is

δ2J =

∫ T

t0

(
Luu + µC̄uu

)
δu2 + 2µδα2 dt.

The two variations are not independent but are connected by the first order condition

C̄uδu+ 2αδα = 0,

thus if C̄u 6= 0, the dependent variation δu can be eliminated from the second differential by posing

δu = −2αδα

C̄u
.

Such substitution in the second differential leads to the necessary condition for a minimum,(
2α

C̄u

)2 (
Luu + µC̄uu

)
+ 2µ ≥ 0.

Where the bound is inactive (µ = 0), the requirement that the second differential be nonnegative
reduces to Luu ≥ 0; where the bound is active α = 0 so that the second differential requires µ ≥ 0,
which is a classical condition. Sufficient conditions are obtained by requiring the strict inequality of
the previous relations.
A practical strategy is to first ignore the bound C and compute the control from Lu = 0, if this
control satisfies C̄ ≤ 0 we are done, otherwise the optimal control is the one that makes C̄ = 0.
Next, if where the bound is active µ > 0 and where it is inactive Luu > 0, the control is a minimum.

3.8.4.2 State Inequality Constraints

A classic bound is the path constraint, which is an inequality that does not depend explicitly on the
control input u but relies on the time (independent variable) and on the state x. It is expressed as

S(t,x) ≤ 0.
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To simplify the discussion we assume again that the case of one scalar control u and only one
inequality, and we consider the case of the active bound, that is when S(t, x) = 0. In this situation
we resume the same strategy used in the case of state equalities and perform the process of
differentiation as many times as the control appears in the equation, that is, after q differentiations
we end up with

S(q)(t, x, u) = 0

and with a set of point conditions as in the previous section.
Suppose we have the active constraint on a subinterval [a, b] ⊂ [t0, T ], then we already seen that
the point conditions must hold for the entry point t = a. Thus we have

θ1 = S(q−1)(a, x(a)) = 0,

θ2 = S(q−2)(a, x(a)) = 0,

. . .

θq = S(0)(a, x(a)) = 0.

The augmented performance index becomes

J = N(t0, x0, T, xT ,ν, a, x(a), ξ) +

∫ a

t0

H(t, x, u, λ)− λx′ dt

+

∫ b

a

H(t, x, u, λ, µ)− λx′ dt+

∫ T

b

H(t, x, u, λ)− λx′ dt,

where

N = νTB(t0, x0, T, xT ) + ξTθ,

H =


L+ λf t0 ≤ t ≤ a

L+ λf + µS(q) a ≤ t ≤ b
L+ λf b ≤ t ≤ T

Performing the first variation the following conditions must hold:

x′ = f, λ′ = −HTx , HTu = 0,

H(a+) = H(a−) +N(a), λ(a+) = λ(a−)−NT (a),

H(b+) = H(b−), λ(b+) = λ(b−),

together with the standard boundary conditions at the extremals t = t0 and t = T . It is important to
notice that a jump in the Hamiltonian and in the multiplier can occur only when the bound becomes
active, but they are continuous when the bound becomes inactive. On the bound, the Hamiltonian
must be a minimum with respect to the control obtained by S(q) = 0; off the bound, the Hamiltonian
is minimized by the control that satisfies the Pontryagin Maximum Principle.

3.8.4.3 State and Control Inequality Constraints

The general form for a state and control inequality constraint is denoted by

C(t,x,u) ≤ 0,

where C has r components, while the control has m > r. Again we consider only one inequality
and one control, for multiple control and constraints the solution is similar but the procedure
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becomes more involved and combinatoric. There are simple forms of C where a bounded control
can be made unbounded by enlarging the control space with a slack variable. A typical example
is the bound u ≥ k (for a constant k), that can be replaced by u = k + α2, similarly, the case of
k1 ≤ u ≤ k2 can be simplified in

u = k1 + (k2 − k1) sin2 α.

There are many trick like this or like the penalty functions to obtain an unbounded control. The
general approach of using the slack variables is similar to the one described in the previous
sections, and requires to introduce

C̄(t, x, u, α) = C(t, x, u) + α2

The Hamiltonian is augmented with µ(C̄ + α2), and since this problem involves now only equalities,
the conditions derived in the previous section are applicable:

Hα = 0 =⇒ 2µα = 0.

Hence, either µ = 0 for an off-boundary arc, or α = 0 when the bound is active. In the first case
the control is obtained by Hu = 0, α(t) is solved from α2 = −C. In the second case the control is
obtained from C = 0 and µ from Hu = 0. The point where two subarcs join is called a corner point,
since there are no conditions imposed on the location t = c of the corner point, the conditions are
just

H(c+) = H(c−), λ(c+) = λ(c−).

The second order conditions are given by

Huuδu2 + 2µδα2 ≥ 0, Cuδu+ 2αδα = 0.

Off the boundary (i.e. µ = 0) we require that Huu ≥ 0. On the boundary α = 0 implies δu = 0

which requires Cu 6= 0 so that µ ≥ 0.
The Legendre-Clebsch condition has the standard form Huu ≥ 0 off the boundary, it requires that
the Lagrange multiplier associated with the equality constraint be nonnegative on the boundary.
This is often useful in determining the the subarcs contained in the minimal sequence.
For problems that are affine in the control where Hu 6= 0 and the control is bounded as k1 ≤
u ≤ k2, the optimal control is bang-bang or singular. Since Huu = 0, the Weierstrass condition
H(t, x, u, λ)−H(t, x, u?, λ) > 0, must be used to determine the control sequence.

3.8.5 Jump Conditions

An optimal control problem can often require different phases and the connection between each
couple of arcs can be imposed by forcing the passage of trajectory for some “checkpoints”. They
are formulated as isolated equality constraints of the form

wi(ti, x(ti)) = 0, t0 < t1 < . . . < ti < . . . < tk < T,

for k time instants. The functions wi are supposed continuous with their first derivative. The
Hamiltonian and the multipliers λ may be discontinuous at the times ti and if x, u, λ are optimal for
the first order necessary conditions, then at each time instant ti,

λ(t−i ) = λ(t+i ) +
∂wi(ti, x)

∂x
µi, i = 1, . . . , k.
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Finally, because the time instants ti themselves can be unknown, there is the additional relation

H(t−i ) = H(t+i )− ∂wi(ti, x)

∂t
µi, i = 1, . . . , k.

It is noticed that this way to handle the jump conditions is equivalent to the solution of a sequence
of optimal control subproblems joined together by the isolated equality constraints, thus we can
treat also isolated inequalities with the same technique of the previous section on the initial/final
state constraints.

We end the chapter with an interesting example that shows typical behaviours of controls and
constraints.

Example 3.8. The performance index to be minimized is

J =

∫ T

0

1

2
u2 dt, x′ = u, x(0) = 0,

with the final state and time that belong to the manifold

VT = {(x, t) ∈ R2 | (x− 2)2 + (t− 2)2 − 1 = 0}.

First we check that the final manifold is regular, we need to ensure that the gradient of α(t, x) =

(x− 2)2 + (t− 2)2 − 1 has full rank. We have that

∇α(t, x) = (2t− 4, 2x− 4) 6= 0 ⇐⇒ (t, x)T 6= (2, 2)T

and it is easy to check that the vector (2, 2)T does not belong to the manifold, hence VT is regular.
The Hamiltonian is H = 1

2u
2 + λu. The first order necessary conditions give λ(t) = λ(0) constant,

u(t) = −λ(t) = −λ(0) and x(t) = −λ(0)t+x0. The initial conditions yields directly x0 = 0. Next we
need the second and the fourth of conditions (3.19), together with the equation of the final manifold
α(t, x) = 0,

0 = −1

2
λ(0)2 + 2ϑ(T − 2)

0 = λ(0)− 2ϑ(x(T )− 2)

1 = (x(T )− 2)2 + (T − 2)2.

These are three equations in four unknowns: we can add the equation of the state x to obtain the
fourth relation necessary to solve the nonlinear system, x(T ) = −λ(0)T . The system simplifies in

0 = 3λ(0)4 + 8λ(0)3 + 16λ(0)2 + 32λ(0) + 12

T =
4− 2λ(0)

λ(0)2 + 2

ϑ = − λ(0)

2(λ(0)T + 2)
,

where the two real roots of the polynomial in λ(0) are approximated and lead to the following
solutions:

λ(0) ≈ −2.11, T ≈ 1.27, x(T ) ≈ 2.69, J ≈ 2.83

λ(0) ≈ −0.46, T ≈ 2.23, x(T ) ≈ 1.03, J ≈ 0.24.

Looking at Figure 3.2, we see that there is a third solution, marked as P3, which has the
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Figure 3.2: On the left the trajectories reaching the final manifold VT , on the right the plot of the values of

the final state x(T ), the final time T and the value of the performance index J as functions of the

angle ϕ.

corresponding objective function J3 ≈ 2.25. We can notice that J1 > J3, but this fact is only a
geometric question: Figure 3.2, on the right, shows that the two computed solutions (P1 and P2)
are respectively the maximum and the minimum of the functional, while P3 is not even a stationary
point.
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4.1 T H E H A M I LTO N I A N A FFI N E I N T H E C O N T RO L

In this section we consider problems for which the Hamiltonian is an affine function of the control u.
Despite the fact that, in general, dealing with linear problems should be an easier task, this is not
the case. The complication arises from the fact that the necessary condition that the Hamiltonian
is minimized with respect to the control along an optimal trajectory does not provide a well defined
expression for the synthesis of the optimal control. Another difficulty connected with this family of
problems is the presence of discontinuities in the control, which are difficult to locate, moreover
the switching points can be infinite and can accumulate at a time instant. Because general results
and theorems regarding existence and uniqueness are rather limited in this situation, additional
relationships have to be introduced manipulating the other necessary conditions. We can say that
problems with the Hamiltonian linear with respect to the control u constitute an almost independent
research area in optimal control. Most of the theoretical results are obtained with a geometric
approach and involve fiber bundles and symmetry groups instead of variational techniques. To
keep notation as simple as possible, we consider here problems with a single control variable and
fixed end point. The formulation of these problems is the following.

Definition 4.1. Minimize the cost functional J subject to the dynamic x′ with the control u con-
strained in |u| ≤ 1 and the initial state x(0) = x0, where

J(u) =

∫ T

0

f0(x(t)) + b0(x(t))u(t) dt

x′(t) = f(x(t)) + b(x(t))u(t) i.e.

x′i(t) = fi(x(t)) + bi(x(t))u(t), i = 1, 2, . . . , n.

(4.1)

f0(x(t)) and b0(x(t)) are scalar functions of the state x(t), u(t) is the scalar control.

73
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To further simplify the computations, we consider the scalar equation of the functional as an
extra state variable posing

x′0(t) = f0(x(t)) + b0(x(t))u(t), x0(0) = 0,

(we have already seen that this is not a loss of generality), but the key point here is that the control
appears only linearly in both dynamics and cost functional. We can write the Hamiltonian for this
system, namely

H =

n∑
i=0

fi(x(t))λi(t) + u(t)

n∑
i=0

bi(x(t))λi(t).

It is convenient to rename the two addends as

H0(x,λ, t) =

n∑
i=0

fi(x(t))λi(t),

H1(x,λ, t) =
n∑
i=0

bi(x(t))λi(t),

so that the Hamiltonian becomes

H = H0(x, λ, t) + u(t)H1(x, λ, t). (4.2)

The adjoint variables of the costate are given by the usual relation

λ′i(t) = − ∂H
∂xi(t)

= −
n∑
j=0

λj(t)
∂fj(x(t))

∂xi(t)
− u(t)

n∑
j=0

λj(t)
∂bj(x(t))

∂xi(t)
.

We state now the necessary conditions for problem (4.1).

Theorem 4.2. If u?(t) is an optimal control and if x?(t) is the corresponding optimal trajectory,
then there are a costate λ?i (t) such that

• for i = 1, . . . , n

x′?i (t) = fi(x
?(t)) + bi(x

?(t))u?(t),

λ′?i (t) = −
n∑
j=0

λ?j (t)
∂fj(x

?(t))

∂x?i (t)
− u?(t)

n∑
j=0

λ?j (t)
∂bj(x

?(t))

∂x?i (t)
;

• for all t ∈ [0, T ] and all u(t) s.t. |u(t)| ≤ 1, holds

H0(x?,λ?, t) + u?(t)H1(x?, λ?, t) ≤ H0(x?,λ?, t) + u(t)H1(x?, λ?, t);

• If T is free, then for all t ∈ [0, T ]

H? := H0(x?,λ?, t) + u?(t)H1(x?,λ?, t) = 0, (4.3)

while, if T is fixed, then

H? := H0(x?,λ?, t) + u?(t)H1(x?,λ?, t) = c,

for a real constant c.
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It follows easily from equation (4.2) with the PMP, that the optimal control is given by

u?(t) = −sign{H1(x?, λ?, t)} = −sign

{
n∑
i=0

bi(x
?(t))λ?i (t)

}
, (4.4)

as long as the function switching H1(x?, λ?, t) is not zero. If H1 becomes zero, then the sign
function is not defined. If H1 is zero only in a point we speak of bang-bang controls, if H1 is
identically zero for an entire interval t ∈ (t1, t2], the controls are called singular. In this case, the
associated trajectory x(t) is called a singular arc.

4.2 BA N G -BA N G C O N T RO L S

From equation (4.4), it is clear the if the control is unbounded, the optimal control would be u = ±∞,
hence it is more interesting to consider the case of a constrained control in a compact (convex) set.
For a scalar control it is common in literature to consider the control u ∈ [−1, 1]. It is easy to adapt
a different interval [a, b] to fit into [−1, 1] by a linear homotopy, if x ∈ [a, b] and u ∈ [−1, 1] then

u =
2x

b− a −
a+ b

b− a, x =
b− a

2
u+

a+ b

2
.

Again from equation (4.4) it is clear that the optimal control will varies on the boundary of the
possible feasible control domain, the jumps from a border to the other are governed by the
switching function H1(x?, λ?, t). This behaviour reflects the linearity of the problem in the control
and resembles what happens in a problem of linear programming, where the optimal point is on
the border of the simplex. The name given to these kind of controls is bang-bang, because there
are not transitions.

Example 4.3. A classic example of bang-bang controls is given by the double integrator plant,
where

minT =

∫ T

0

1 dt, x′ = y, y′ = u, |u| ≤ 1, x(T ) = y(T ) = 0,

for fixed initial states x0 and y0. The Hamiltonian for this system is given by

H = 1 + λ1y + λ2u,

which gives the costate equations

λ′1 = 0, λ′2 = −λ1 =⇒ λ1(t) = const, λ2(t) = λ1(T − t) + c.

The transversality conditions for the problem (recalling that λ2(T ) = c) and the equation for the
control (4.4), give

λ2(T )u(T ) = −1, u(t) = −signλ2(t).

This implies that either c = 1, u(T ) = −1 or c = −1, u(T ) = 1. Moreover, the linearity of the
switching function λ2(t) ensures the there can be at most one jump. Going back from the final
instant making use of the boundary conditions x(T ) = y(T ) = 0 yields two possible trajectories:

u = −1, x = − (T − t)2

2
, y = T − t, x(y) = −y

2

2

u = +1, x = +
(t− T )2

2
, y = t− T, x(y) = +

y2

2
.
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The switching curve (in the state space) is made up of two pieces of parabola given by x(y) =

−sign(y)y
2

2 . Above the curve the control takes the value u = −1, below the curve it takes the value
u = +1. The situation is focused better in Figure 4.1. If the initial state is located on the switching

−6

−4

−2

0

2

4

6

y

−10 −5 0 5 10
x

u = −1

u = +1

Figure 4.1: State space (x, y) for the double integrator plant, the thick curve is the switching function.

curve, then no jumps in the control are necessary to reach the target state in the origin. One
switch is needed if the initial state is somewhere else in the plane. From an initial state, the optimal
trajectory is a parabola of the form x = ±y22 + c towards the curve x(y) = −sign(y)y

2

2 , when this
manifold is hit, the optimal trajectory follows the switching curve until the final state. The contour of
constant final time T are given, above and below the switching curve, respectively by

(y + T )2 = 4

(
−x+

T 2

2

)
, (y − T )2 = 4

(
x+

T 2

2

)
. (4.5)

It is noticed that this contour has slope discontinuity when hitting the switching curve, and the
vector of the multipliers

λ = (λ1, λ2)T =

(
∂T

∂x
,
∂T

∂y

)
is orthogonal to the contours of constant T , but the normal is not defined on the switching curve.
To fix the ideas look at Figure 4.2, suppose x(0) = 2 and y(0) = 1: the initial point is above
the switching surface, hence the optimal trajectory must follow a parabola with control u = −1

of kind x(y) = −y22 + k towards the switching curve (x(y) = y2

2 ). Imposing the initial condition
in the previous equation, we get k = 5

2 and the intersection with the switching curve occurs at
time t? =

√
5/2 + 1 at coordinates x = 5

4 and y =
√

5/2. Then, on the switching curve, it takes
T − t? =

√
5/2 to reach the origin, hence the total time required is T = 2

√
5/2 + 1 ≈ 4.16.

We take another point on the contour of equal final time (4.5), for T = 2
√

5/2 + 1; a possible choice
is x(0) = 3

4 −
√

10
2 and y(0) = 2. Making use of the relations:

k =
1

2
y(0)2 + x(0), t? =

√
k + y(0),

x(t?) = −1

2
t?2 + y(0)t? + x(0), y(t?) = −t? + y0,
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Figure 4.2: State space (x, y) for the double integrator plant, the thick dashed curve is the switching function,

the initial point is (2, 1) and in magenta the level set of isochrony.

the corresponding optimal trajectory has u = −1 and x(y) = −y22 + k until the switching curve,
and it is satisfied by k = 11

4 −
√

10
2 ≈ 1.16. The intersection of the parabola with the switching

curve occurs at t̂? =
√
k + y(0) =

√
11
4 −

√
10
2 + 2 ≈ 3.08, x(t̂?) = 11

8 −
√

10
4 ≈ 0.58 and y(t̂?) =

1
2 −

√
10
2 ≈ −1.08. The second part of the trajectory lies on the switching curve, where T − t̂? =

√
k

thus T = t̂? +
√
k = 2

√
k + y(0) =

√
10 + 1.

Finally, solving the multipliers, we have that with the last initial conditions,

λ1 = − 1

t̂?
= − 2

3 +
√

10
≈ −0.32, λ2(t) = λ1t− 1.

Therefore the vector of the multipliers at time t = 0 is given by λ = (− 2
3+
√

10
,−1)T while solving

the implicit function of the contour (equation (4.5)), (y + T )2 = 4
(
−x+ T 2

2

)
, gives locally y(x) =

−T +
√

2T 2 − 4x and has the derivative equal to −2√
2T 2−4x

. Thus the tangent vector to the contour

at the initial point is (1,−2/(3 +
√

10))T and it is easy to see that it is orthogonal to λ (Figure 4.3.

4.3 S I N G U L A R C O N T RO L S

If problem (4.1) results singular, controls, costate and trajectory have the following property: there
is at least one half-open interval (t1, t2] ⊂ [0, T ] such that

H1 =

n∑
i=0

λ?i (t)bi(x
?(t)) = 0, t ∈ (t1, t2]. (4.6)

As before, the existence of an extremal singular control, does not imply that the optimal control is
singular: we need additional information as uniqueness to conclude its optimality. The function
(4.6) is often called switching function.
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Figure 4.3: State space (x, y) for the double integrator plant, the thick dashed curve is the switching function,

the arrows represent the tangent at the levelset of the isochrone manifold and the vector of the

multipliers.

4.3.1 Necessary Condition for Singular Controls

Suppose we are in the free terminal time case, so that (4.3) holds, we test if it is possible to have
a singular control as follows. First we need to assume that the switching function is zero in an
unknown interval (t1, t2], then, because of the free end time hypothesis, for t ∈ (t1, t2],

H =

n∑
i=0

fi(x(t))λi(t) + u(t)

n∑
i=0

bi(x(t))λi(t) = 0 =⇒
n∑
i=0

fi(x(t))λi(t) = 0.

Moreover, for each k ∈ N, we have that

dk

dtk

n∑
i=0

λi(t)bi(x(t)) = 0, k = 1, 2, 3, . . . , t ∈ (t1, t2], (4.7)

and similarly,

dk

dtk

n∑
i=0

λi(t)fi(x(t)) = 0, k = 1, 2, 3, . . . , t ∈ (t1, t2], (4.8)

However, the canonical equations (we omit explicit time dependence) are

x′i = fi + ubi

λ′i = −
n∑
j=0

λj(t)
∂fj
∂xi
− u

n∑
j=0

λj
∂bj
∂xi

, i, j = 1, . . . , n; k ∈ N.

Let k = 1 in (4.7), then by the chain rule we have

d

dt

n∑
i=0

λibi =

n∑
i=0

λ′ibi + λi

n∑
j=0

∂bj
∂xi

x′j

 = 0.
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Substituting the canonical equations in the previous one, yields

n∑
i=0

n∑
j=0

(
fjλi

∂bi
∂xj
− biλj

∂fj
∂xi

)
+ u

n∑
i=0

n∑
j=0

(
λibj

∂bi
∂xj
− λjbi

∂bj
∂xi

)
= 0.

We notice that the coefficient of u is zero, and we conclude that

n∑
i=0

n∑
j=0

λi

(
bj
∂fi
∂xj
− fj

∂bi
∂xj

)
= 0. (4.9)

Applying the same argument to equation (4.8), gives

0 =
d

dt

n∑
i=0

λifi(x) =

n∑
i=0

λ′ifi + λi

n∑
j=0

∂fi
∂xj

x′j


=

n∑
i=0

n∑
j=0

(
λifi

∂fi
∂xj
− λjfi

∂fj
∂xi

)
+ u

n∑
i=0

n∑
j=0

(
λibj

∂fi
∂xj
− λjfi

∂bj
∂xi

)

= u

n∑
i=0

n∑
j=0

λi

(
bj
∂fi
∂xj
− fj

∂bi
∂xj

)
= 0.

This last line implies that either u = 0 or

n∑
i=0

n∑
j=0

λi

(
bj
∂fi
∂xj
− fj

∂bi
∂xj

)
= 0.

Noticing that the previous line is equal to equation (4.9), we can not conclude that u = 0, and this
is true for all k ∈ N.
In conclusion, a necessary but not sufficient test for an extremal singular control is that in the
interval (t1, t2] the following relations are satisfied:

n∑
i=0

biλi = 0,

n∑
i=0

fiλi = 0,

n∑
i=0

n∑
j=0

λi

(
bj
∂fi
∂xj
− fj

∂bi
∂xj

)
= 0.

We show now how to compute the explicit expression for the singular control, we return back to
the equation of the switching function (4.7) and let k = 2, 3, . . .. It is shown in [AF66][pag.487] that
those derivatives for k = 2, 3, . . . require extensive manipulations but have all the following same
structure:

n∑
i=0

λiψki(x) + u

n∑
i=0

λiφki(x) = 0.

If
∑
λiφki(x) = 0 we can perform successive derivatives of (4.7), in general there will be a finite

value of k = m for which
∑
λiφmi(x) 6= 0 and then the singular control u can be solved:

u = −

n∑
i=0

λiψmi(x)

n∑
i=0

λiφmi(x)

. (4.10)
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Up to now we have dealt with free final time, if the final time is fixed the we have to take in account
the presence of the constant c in the Hamiltonian, but equations (4.7) and (4.8) still hold and hence
also the conclusions.
In practical problems, we must check if

∑
λiφki(x) = 0 for all k = 1, . . . ,m−1 and

∑
λiφmi(x) 6= 0.

If any of the relations are violated then this represent a violation of the necessary conditions and
so singular controls can not occur, if these conditions are all met, then there may be a singular
extremal control. The minimum value of differentiations needed for which we can express explicitly
the control as in equation (4.10) for problems of kind (4.1) is always an even natural number.
Therefore, let this number be k = 2q, then q is called the order of the singular arc. In applications
coming from mechanical systems with linear controls, appear only singular controls of order 1 or 2.
Particular cases lead to order 3, but there are also examples of higher order. A complete description
of the cases q = 1, 2 is available in the works of [ZB94], there is not a complete knowledge of the
third order arcs, but many facts are understood. Very little is known for higher orders, this is due to
the complex geometrical construction behind their study. Here we will focus only on order 1 and 2,
and we develop in the next section ad hoc theory.

4.3.1.1 The Poisson Bracket

We notice that the above notation for determining the order of singular arcs is somehow cumber-
some. There is a geometric tool that can help in those computations, it is the Poisson bracket.

Definition 4.4 (Poisson bracket). The Poisson bracket of two functions A(x,λ) and B(x,λ),
defined on the extended space of state and multipliers (for x,λ ∈ Rn), is

{B,A} :=

n∑
i=1

(
∂B

∂λi

∂A

∂xi
− ∂B

∂xi

∂A

∂λi

)
.

The motivation comes from the following observation, if A(x,λ) is an arbitrary differentiable
function, along the optimal trajectory we have

d

dt
A(x,λ) =

n∑
i=1

(
∂A

∂λi

dλi
dt

+
∂A

∂xi

dxi
dt

)
=

n∑
i=1

(
− ∂A
∂λi

∂H
∂xi

+
∂A

∂xi

∂H
∂λi

)
= {H, A} .

There are two useful properties of the Poisson bracket, it is anticommutative and satisfies the
Jacobi identity, that is, respectively:

{B,A} = −{A,B} , {A, {B,C}}+ {B, {C,A}}+ {C, {A,B}} = 0.

Thus turning back to the derivative of the switching function H1 on a singular arc, we have

d

dt
H1 = {H0 + uH1, H1} = {H0, H1}+ u {H1, H1} = {H0, H1} = 0.

Since the function d
dtH1 does not depend on u, it gives no information on the optimal control.

Differentiating it once more we have

d2

dt2
H1 =

d

dt
{H0, H1} = {H0, {H0, H1}}+ u {H1, {H0, H1}} = 0.

Now, if {H1, {H0, H1}} 6= 0 we are in the case of singular controls of order 1 and thus

u = −{H0, {H0, H1}}
{H1, {H0, H1}}

,
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whereas if

{H1, {H0, H1}} = 0, (4.11)

we need to continue the differentiation process:

d3

dt3
H1 = {H0, {H0, {H0, H1}}}+ u {H1, {H0, {H0, H1}}} = 0.

The last term can be simplified making use of the Jacobi identity,

{H1, {H0, {H0, H1}}} = −{H0, {{H0, H1} , H1}} − {{H0, H1} , {H1, H0}}

= −{H0, {{H0, H1} , H1}}

= {H0, {H1, {H0, H1}}} .

Because equation (4.11) holds,

{H0, {H1, {H0, H1}}} = {H0, 0} = 0,

thus the third derivative does not contain the variable u and the process of differentiation continues
as above. In case of order 2 we end with

d4

dt4
H1 = {H0, {H0, {{H0, H1} , H1}}}+ u {H1, {H0, {{H0, H1} , H1}}} = 0

but in case of order 2, the coefficient of u is different from zero and the singular control is given by

u = −{H0, {H0, {{H0, H1} , H1}}}
{H1, {H0, {{H0, H1} , H1}}}

.

The necessary conditions for an optimal control, is the extended Legendre-Clebsch condition, also
known as the Kelley-Contensou condition,

(−1)q
∂

∂u

d2q

dt2q
H1(x,λ) ≤ 0.

When q = 2 this can be rewritten as

{H1, {H0, {H0, {H0, H1}}}} ≤ 0.

The constraint on the control, |u| ≤ 1 implies the inequality

|{H0, {H0, {{H0, H1} , H1}}}| ≤ −{H1, {H0, {{H0, H1} , H1}}} .

The conclusion of these equations is that if the singular arc is of order 2 (equation (4.11) must
hold), it must lie in the manifold V defined in the extended space (λ,x) by the equations

H1 = 0, {H0, H1} = 0, {H0, {H0, H1}} = 0, {H0, {H0, {H0, H1}}} = 0.

This fact is fundamental in the analysis of the optimal trajectory in the proximity of V because
it offers a diffeomorphism that allows a change of coordinates in canonical form. The first four
coordinates become

z1 = H1, z2 = {H0, H1} , z3 = {H0, {H0, H1}} , z4 = {H0, {H0, {H0, H1}}}
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and remembering the relation d
dtA(x,λ) = {H, A} together with (4.11) and the Kelley condition,

z′1 = z2, z′2 = z3, z′3 = z4, z′4 =
d4

dt4
H1 = a(λ,x) + ub(λ,x),

where, clearly,

a(λ,x) = {H0, {H0, {{H0, H1} , H1}}} , b(λ,x) = {H1, {H0, {{H0, H1} , H1}}} .

The other coordinates are w1, . . . , w2n−4 and are chosen in a way that all the coordinates (λ,x)

can be expressed in terms of the (z,w) and the determinant of the Jacobian of the change of
coordinates is non zero. The transformed Hamiltonian system in the new coordinates (z,w) is
called semicanonical system and is studied to prove the optimality of singular arcs, but this topic
is out of the scope. It is called semicanonical and not just canonical, because the choice for the
variables w is not unique.

4.4 C H AT T E R I N G

It is very difficult to give general theorems for global properties of an arbitrary optimal control
problem, because there are many different situations that occur. For example, the uniqueness
of the solution requires Lipschitz continuity, but we can find trivial functions that are not Lipschitz.
Another problem is that practical problems involve often the initial but also the final point, but most
of the theorems on differential equations deal with the initial value problem (also known as the
Cauchy problem) instead of the Boundary Value Problem (BVP). The motivation is that for the
problem of Cauchy there are results of existence and uniqueness, while it is difficult to guarantee
even the existence for a BVP: it is easy to find examples with infinite, only one or no solutions. A
famous counterexample for the uniqueness of the solution is given by the scalar problem x′ =

√
x

with initial condition x(0) = 0: the functions x(t) = 0 and x(t) = t2

4 both satisfy the ODE. The
motivation is that f =

√
x is not Lipschitz at zero, where the Lipschitz constant grows to infinity.

We have also to lose the concept of continuity of f because in many applications, the right hand
side is discontinuous because, e.g. due to bang-bang controls. The concept of switching is very
important and we dedicate a chapter on the case of OCP that are affine in the control. An important
example is the chattering phenomenon, in literature is also known as Zeno behaviour. The concept
is introduced considering a ball bouncing on the floor. If h is the heigh with respect to the floor and
v is its velocity, assuming for simplicity unitary gravitational constant, the differential system that
describes the motion of the ball is given by

h′ = v, v′ = −1.

But when the ball hits the floor, there is an instantaneous change in the velocity, v(t) = −kv(t−),
with the coefficient k that models the elasticity of the impact and is therefore a number k ∈ (0, 1).
The switching function for the jumps in the differential equation are given by the time instants where
the ball has h = 0. Because the dynamic of the system is not different in the two configurations, we
can integrate the differential equation and obtain

v(t) = −(t− t0) + v(t0),

h(t) = − (t− t0)2

2
+ v(t0)(t− t0) + h(t0),

where the initial conditions were t0 = 0, h(0) = 0 and v(0) = 1. Before the first switch we have

v(t) = −t+ 1,

h(t) = − t
2

2
+ t,
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and the switch instant is t = 2 because it gives h(2) = 0 with v(2−) = −1 and v(2) = k. For t > 2

we have

v(t) = −t+ 2 + k,

h(t) = − (t− 2)2

2
+ k(t− 2).

We can then compute the next switch for t = 2 + 2k with velocity v(2 + 2k) = k2, and by applying
the same argument, the switching times for the progression 2, 2 + 2k, 2 + 2k + 2k2, . . . while
the corresponding velocities form the sequence k2, k3, k4, . . .. The switching times constitute a
geometric progression with a finite limit, an accumulation point, given by

∞∑
i=0

2ki =
2

1− k .

This means that the ball does infinitely many bounces before this time, and this fact is called Zeno
Behaviour. In reality this fact does not happens because of other physical constraints, and the ball
will stop at rest after only a finite number of bounces. In optimal control problems this phenomenon
has different names according to different authors. Nowadays all seem to agree with the term
chattering, but some texts refers to the chatter when dealing to the sliding mode [Mar75]. Russian
literature distinguishes between chattering and sliding mode, and refers to the first with Fuller
phenomenon [Bor00].

4.4.1 Sliding Mode

The chattering related to sliding mode, means the relaxation of the control or the convexization of
the maneuverability domain. A typical example is the situation when it is theoretically necessary to
alternate at an infinite rate between two values of the control as in the astrodynamic problem of
the Lawden’s spiral. These solutions are characterized by an indetermination of the PMP and the
control can not be determined directly. Consider the system

min y(3), x′ = u, y′ = x2, x(0) = 1, x(3) = 1, y(0) = 0, (4.12)

u = ±1, where the independent variable is the time t ∈ [0, 3] and we want to minimize the final
state y(3). If the control were free to move in u ∈ [−1, 1] we could have had the sequence of
control −1, 0, 1 as showed in Figure 4.4. The optimal value of the target is y(3) = 2

3 . The solution
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Figure 4.4: States and multiplier for the OCP (4.12) with control u ∈ [0, 1].

for t ∈ [1, 2] is singular, in fact the multiplier (see Figure 4.4) is vanishing on the interval [1, 2]. This
solution is no more valid if the control is constrained to be u = ±1, as in the original problem,
however, the value of y(3) can be approximated as close as desired by solution similar to that of
Figure 4.5. In proximity of the singular arc the control chatters between ±1 and theoretically it
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Figure 4.5: Suboptimal example states for the OCP (4.12) with control u = ±1.

must chatter infinite times. This fact is called sliding mode. It is understood that the difference
of the two problems is only academic but in some problems, like the Marec Spiral [Mar73], it is
physically impossible to relax the control and convexify the set ±1 to [−1, 1]. So the question if it is
always possible to relax the control set is not obvious as it could appear. For example, the OCP
x′ = u, y′ = x2 + 2

√
|y| with the control u = ±1 can not be relaxed. Marchal gives three sufficient

conditions for the feasibility of the relaxation. Briefly, they are

1. In any bounded subset of the state space (t,x), the derivative of the state is bounded.

2. The control is a measurable function in a “good” domain (the description of the domain have
a weak topology that the domains of interest in general posses).

3. The differential system is canonical in the sense of Pontryagin.

The problem with the above stated OCP is that it does not satisfy the third request, because of the
presence of the term

√
|y|.

We explain now the motivation for the name “sliding”, consider a system of two differential equations
x′ = f where

x′ =

{
f1(x) if g(x) > 0

f2(x) if g(x) < 0

for fi and g sufficiently differentiable. The switching manifold is assumed to be defined by S =

{x | g(x) = 0} and f1, f2 are one on each side of S; g is called the switching function. Supposing
that there are no state jumps in the trajectory, when x reaches S, it crosses over to the other side.
This is possible when both vectors f1 and f2 have the same direction with respect to S, and a
solution is naturally obtained. A different situation is when f1 and f2 point both toward S, because
in this case a solution can not be obtained. Let the point x0 be on the manifold (i.e. g(x0) = 0),
then consider the two scalar products

v1 = 〈∇g(x0), f1(x0)〉

v2 = −〈∇g(x0), f2(x0)〉.

The vector ∇g(x0) points toward the domain of f1, then v1 < 0 implies that the vector field for f1

pushes against S; if v1 > 0 the flow is pulling. The same argument holds for v2 and hence the four
cases:

• v1 > 0 and v2 < 0: the trajectory crosses S from g < 0 to g > 0.

• v1 < 0 and v2 > 0: the trajectory crosses S from g > 0 to g < 0.

• v1 > 0 and v2 > 0: the trajectory pulls on S from both sides and the solution is not unique,
but this case in general does not occur.
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• v1 < 0 and v2 < 0: the trajectory pushes on S from both sides and the solution is constrained
on S as for example in Figure 4.5.

While the first two cases cause no difficulties and the third does not occur, the fourth is problematic
and was studied for several years. Once on the manifold, the trajectory can not continue neither
following x′ = f1 nor x′ = f2, however, we have seen that suboptimal solution of this kind exist
(Figure 4.5). It became clear that the optimal solution was on the manifold itself, hence arises the
necessity of solving a differential algebraic problem because of the presence of the term g(x) = 0.
The correct way of proceed is the one proposed by Filippov [HNW93], he suggested to search the
vector field in S in the convex hull of f1 and f2, which is given by

f(x, λ) = (1− λ)f1(x) + λf2(x). (4.13)

The value of λ must be chosen such that the trajectory remains on S. This implies that we need to
solve

x′ = f(x, λ)

0 = g(x),

which is a Differential Algebraic Equation (DAE) of index 2 [HNW96]. This can be done with DAE
techniques by differentiating the constraint

0 = ∇g(x)x′ = ∇g(x)f(x, λ), (4.14)

and if it is possible to solve for λ in a form like λ = G(x), then we have transformed the DAE in an
ODE, namely

x′ = f(x, G(x)).

The above equation can now be solved with standard ODE techniques. From the equation (4.13),
the relation (4.14) can be written as

(1− λ)v1(x)− λv2(x) = 0 =⇒ λ =
v1(x)

v1(x) + v2(x)
.

With this solution, the only possible trajectory is constrained to slide along the manifold S. In the
case of problem (4.12), the manifold g is given by λ1 = 0 and the two fi both point towards S.
Therefore in the first region λ1 > 0 and we follow the solution until it hits the manifold λ1 = 0, here
we have v1 < 0 and v2 < 0 so the solution remains inside the manifold until one of the two values
of v1, v2 changes sign, this happens for t = 2 and after that point the solution follows the rule for
λ1 < 0. In applications the sliding mode is approximated by the hysteresis switching which is
showed in Figure 4.5 and gives suboptimal solutions [Lib03].

4.4.2 Fuller Phenomenon

The proper description of the term chattering refers to the arcs that appear before and after singular
arcs, as soon as the generalized Legendre-Clebsch condition (called also Kelly-Contensou test
for singular extremals) requires four or more derivatives with respect to the independent variable.
The optimal control has a countable infinite number of switching with an accumulation point at
the beginning or at the end of a singular arc. This phenomenon was discovered in an innocent
looking example prosed in the Sixties by Fuller, and called Fuller phenomenon after his name. It
is not just an academic fact, because it appears in many optimal control problems that posses a
linear control. In practical implementations it is not possible to realize those infinite sequence of
switching and it is interesting to observe the difference between a suboptimal piecewise continuous
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control in comparison with the chattering arc. The results are surprising and non intuitively, the
common experience in optimization is found to be misleading. It is the hidden symmetry of Fuller’s
phenomenon that allows to obtain the optimal control synthesis, and this leads quickly away from
calculus of variations directly to questions of higher geometry and group theory. The goal of this
section is to make aware and recognise the presence of this phenomenon.
We consider herein the classic Fuller problem, and we present a closely related example, the
Fuller-Marchal Problem, in the chapter of benchmarks. Consider a particle subjected to a force
u(t) and moving from an initial condition (x(0) = x0, x

′(0) = x′0) on a straight line without friction.
The target functional is the minimization of the deviation of the particle from the origin x = 0, hence
we can formulate the Fuller problem as

min J =

∫ T

0

x2(t) dt, x′ = y, y′ = u, |u| ≤ 1, (4.15)

with initial conditions fixed to x(0) = x0 = 2, y(0) = y0 = −2. It is clear that the particle must
reach the origin x = y = 0 to minimize the functional, and this position is a singular manifold V .
Experience would suggest to reach V as soon as possible, but it turns out that this is not true in
the presence of a singular arc. We compare the Fuller problem with the following time optimal OCP,
and show that they are not equivalent:

minT, x′ = y, y′ = u, |u| ≤ 1,

x(0) = x0, y(0) = y0, x(T ) = y(T ) = 0.

Without loss of generality, we can assume x0 > 0 and y0 = 0, then the time optimal problem has
only one switch on [0, T ], in facts the force u = −1 pushes the particle toward the origin on the
first time interval [0, t?] and then switches to u = 1 to arrest the particle at the origin. This is the
classical bang-bang solution.
The situation is completely different in the case of Fuller problem: the optimal strategy has infinitely
many switches and consists of an infinite number of cycles (in the state space (x, y)) around the
origin. The initial arc begins with u = −1 followed by a switch to u = 1 and so on. The instant t1 of
the first switch, causes the particle to reach a point x(t1) = −qx0 with 0 < q < 1. This is repeated
at successively points q2x0, −q3x0, q4x0 and so on. These points form an alternating convergent
geometric sequence, the duration of these cycles forms a geometric sequence too, thus the entire
process takes finite time to reach the origin, but not in the shortest time.
Chattering is closely related to the existence of singular extremals and to their order, it was proved
by Robbins, Kelley, Kopp and Moyer that the order of the singular arc that permits to solve the
control is even. They also proved that the concatenation of a piecewise smooth nonsingular arc
with a singular arc of even order is non optimal. Usually, the singular manifold V is the most
profitable point (or in general subset) of the state space and if singular solutions have second or
higher order, chattering is necessary to enter V (and to escape from V ). Consider the possibility of
escaping from the manifold V , the optimal exit strategy is again chattering with the switches that
accelerate to infinity in the reverse time. A graphical representation of this behaviour is shown in
Figure 4.6. This escape can be imagined as a series of very fast pushes and pulls like vibrations
which gives extremely small alternating deviations from V at the very beginning.
We turn back to Fuller problem (4.15) and show the symmetry properties of the homogeneity group
that allows to find the optimal solution. The Hamiltonian for this problem is

H = x2 + λ1y + λ2u,

and the corresponding adjoint system is given by

λ′1 = −2x, λ′2 = −λ1, u = −sign(λ2).
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manifold.

To establish the singular control and find its order, it necessary to differentiate the switching function
H1 = λ2. We do not need to apply the change of variable described in the previous section of the
Poisson bracket, because the system is already semicanonical. In facts, we have

H ′1 = λ′2 = −λ1, H ′′1 = −λ′1 = 2x,

H ′′′1 = 2x′ = 2y, H ′′′′1 = 2y′ = 2u = 0,
(4.16)

hence the singular control is u = 0 and the order of the arc is 2 and we expect the chattering
phenomenon. To show this, suppose that it is possible to reach the singular arc with a finite
combination of bang-bang controls. Integrating the BVP (4.16) over the last bang-bang arc, that is
between the time instants [tn−1, tn], we have (∆ = tn − tn−1):

y = u∆ + a2 = 0, x =
u

2
∆2 + a2∆ + a1 = 0,

λ1 = −u
3

∆3 − a2∆2 − 2a1∆ + q1 = 0, λ2 =
u

12
∆4 +

a2

3
∆3 + a1∆2 − q1∆ + q2 = 0

for suitable real constants a1, a2, q1, q2 and control u = ±1. As a first observation, we notice that
q2 = 0 because by hypothesis tn−1 is a switching instant and λ2(tn−1) = 0, then we can solve the
resulting algebraic system and discover that the only solution is zero. We must then conclude that
the number of bang-bang arcs to reach the singular manifold {x = y = λ1 = λ2 = 0} is infinite.
The next step is to prove that the total time required to reach the singular arc is finite, thus the
switching times must accumulate. This is done in two parts, first we show that the Fuller problem
possesses a symmetry group of dilatations, then we prove that the duration of the bang-bang arcs
forms a converging geometrical progression.
Let (λ2(t), λ1(t), x(t), y(t)) be an admissible solution of the problem with control u(t) and target J ,
we can see that for any k > 0 the tuple

(λ2,k(t), λ1,k(t), xk(t), yk(t)) =
(
k4λ2(kt), k3λ1(kt), k2x (kt) , ky (kt)

)
is also an admissible solution of the system with control uk(t) = u(kt) and target k5J . Formally,
this is a group of transformations (dilatations) gk : R4 → R4, gk(λ2, λ1, x, y) = (k4λ2, k

3λ1, k
2x, ky)

for any (λ2, λ1, x, y) ∈ R4 for any k > 0. We can consider the parametric curve k → (xik
2, kyi) and

conclude that the switching instants (xi, yi) lie on the branches of the parabolas

x = −Csign(y)y2, C =
xi
y2
i

, i = 1, 2, 3, . . . . (4.17)
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Another group that is acting on this problem is the group of the reflections, in facts if the tuple
(λ2(t), λ1(t), x(t), y(t)) is a solution of the problem, then the tuple (−λ2(t),−λ1(t),−x(t),−y(t)) is
also a solution of the problem. Those trajectories can be obtained from the previous by reflection
with respect to the plane y = 0, λ1 = 0.
With these properties we can impose the following system of equation in the interval between two
successive switches tn−1 and tn:

y(tn) = −ky(ktn−1)

x(tn) = −k2x(ktn−1)

λ1(tn) = −k3λ1(ktn−1)

λ2(tn) = −k4λ2(ktn−1) = 0,

the explicit system is

u∆ + a2 = −ka2

u

2
∆2 + a2∆ + a1 = −k2a1

−u
6

∆3 − a2∆2 − 2a1∆ + q1 = −k3q1

u

24
∆4 +

a2

3
∆3 + a1∆2 − q1∆ = 0.

The solution and substitution of the first three equation yields respectively

∆ = −a2(k + 1)

u
, a1 = − a

2
2(k2 − 1)

2u(k2 + 1)
, q1 = −a

3
2(k3 − 2k2 − 2k + 1)(k + 1)

3u2(k2 + 1)(k2 − k + 1)
,

finally, the last equation is

a4
2(k + 1)2(k2 − 1)(k4 − 3k3 − 4k2 − 3k + 1)

24u3(k2 + 1)(k2 − k + 1)
= 0,

where after the simplification of the trivial factors k = ±1 and factoring out a2 6= 0, reduces to

k4 − 3k3 − 4k2 − 3k + 1 = 0.

If z is a root of this equation, then also 1/z is a root; moreover the equation evaluated in 0 and 1
gives respectively 1 and -8, therefore there is a root 0 < z < 1. There are now several ways to
continue, a standard algebraic substitution from Galois theory is σ = k + 1

k , another possibility that

has deeper connections with the problem is k =
√

1−2C
1+2C . The first case brings to

σ2 − 3σ − 6 = 0 =⇒ σ =
3±
√

33

2
≈ 4.37, −1.37

but the negative root is irrelevant, because it give rise to complex solutions for k, the positive root
gives

k1 =
3 +
√

33−
√

26 + 6
√

33

4
≈ 0.242121374

k2 =
3 +
√

33 +
√

26 + 6
√

33

4
≈ 4.130159950.
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The second method yields the biquadratic equation

C4 +
C2

12
− 1

18
= 0, (4.18)

which has two complex roots, and

C1 =

√
6
√

33− 6

12
≈ 0.4446235601

C2 = −
√

6
√

33− 6

12
≈ −0.4446235601.

We look for the location of the first switch (x1, y1, t1) on the parabola x = Cy2 with C the root of
equation (4.18). Consider the initial point of the trajectory (x0, y0) = (2,−2), it follows that the initial
control is u = −1 until the switching curve is reached. The corresponding trajectory is given by

x(y) =
1

2u
y2 +

(
x0 −

y2
0

2u

)
, t =

y − y0

u

and the intersection with the parabola x = Cy2 gives

y1 = −
√

(1 + 2C)(y2
0 + 2x0)

1 + 2C
≈ −2.057787900

x1 = Cy2
1 ≈ 1.882754481

t1 = y0 − y1 ≈ 0.057787900.

(4.19)

With the same argument but with u = 1 we can integrate the differential system with initial point
(x1, y1, t1) to find the second switch. The result is

y2 = −
√

(1 + 2C)(y2
1 − 2x1)

1 + 2C
≈ 0.4982344331

x2 = −Cy2
2 ≈ −0.1103722634

t2 = y2 − y1 + y0 − y1 ≈ 2.613810233.

(4.20)

With the above expression we can prove that the switching points are in geometrical progression of
ratio k = k1 and the duration of the arcs is also a geometrical progression. Consider the expression
for y2, a simple computation shows that

|y2| =
√

(1 + 2C)(1− 2C)y2
1

1 + 2C
= |y1|

√
1− 2C

1 + 2C
= k|y1| =⇒ |y2|

|y1|
= k.

For the x variable we have

|x2| = Cy2
2 = Ck2y2

1 = k2|x1|

To check that the duration of the arcs is also in geometric progression we need to compare two
entire durations, thus we need to compute also the instant t3 = −y3 +2y2−2y1 +y0 ≈ 3.232677872,
then the ratio of two successive time intervals is

t3 − t2
t2 − t1

=
−y3 + y2

y2 − y1
= k.
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It is now possible to compute the total time T to reach the origin, set ∆ = t2 − t1, then

T = t1 +

∞∑
i=1

(ti+1 − ti) = t1 + ∆ + k∆ + k2∆ + . . . = t1 +
∆

1− k ≈ 3.430389060.

Moreover, the nth switch is located (if we start with the first control u = −1, otherwise the signs
reverse) at

tn = t1 + ∆
kn−1 − 1

k − 1

xn = (−1)n−1k2n−2x1

yn = (−1)n−1kn−1y1.

We conclude the exposition with the analysis of the target. As before, we study the integral for the
initial partial arc for t ∈ [0, t1] and then we consider two entire arcs among the switching points t1,
t2. In the first interval we have

I0 =

∫ t1

0

x(t)2 dt =

∫ t1

0

(−t
2

+ y0t+ x0

)2

dt =
(t1(2y0 − 1) + 2x0)3

24y0 − 12
− 2x3

0

6y0 − 3
,

in particular I0 ≈ 0.2148564335. The integral over the interval [t1, t2] has a simple but long analytic
expression that here is omitted, it can be approximated to I1 ≈ 1.29622064, therefore the target
can be evaluated with the relation

J = I0 +
I1

1− k5
≈ 1.515228194.

As an appendix of this problem, we report a brief table (4.21) of the first six switching points.

ti xi yi
0.057787900 1.8827544810 −2.057787900

2.613810233 −0.1103722637 0.498234433

3.232677872 0.0064703266 −0.120633205

3.382518955 −0.0003793084 0.029207877

3.418798684 0.0000222361 −0.007071851

3.427582782 −0.0000013035 0.001712246

(4.21)
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5.1 C L A S S I C P RO B L E M S

5.1.1 The Brachistochrone

One of the first and most famous problems in the calculus of variations is the problem of the
brachistochrone, proposed originally by Bernoulli in 1696. There are various ways to consider this
problem, the most important deal with calculus of variations and optimal control theory, involving
ordinary or differential algebraic equations (ODE and DAE), the law of conservation of energy.
The statement asks to find the path of minimum time that joins two points, when only the gravity
force is active. Supposing motion in two dimensions, from a starting point A to a fixed end point B:
the question is to find the shape of the rigid path on which a particle subject only to gravity force
travels from A to B in minimum time.
A good coordinate system has the origin in the starting point A and the vertical axis y directed
upward, i.e. with the opposite direction of the gravity force, the horizontal axis x orthogonal to y

91
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such that the x coordinate of B is positive. Because the optimal path γ must be a continuous curve
and can not have loops, it can be assumed without loss of generality that γ can be represented as
a function y(x). In order to simplify signs, a classical assumption is to consider y > 0 so that the
minus of the orientation of g and the minus of the negative height of yB vanishes. Applying the
conservation of energy, it is clear that if m is the mass of the particle, g the acceleration of gravity,
v the velocity of the particle,

mgy =
1

2
mv2 =⇒ v(y(x)) =

√
2gy(x).

In particular, this shows that the solution is independent of the mass m. The distance L travelled
by the particle when it approaches the end point B is given by the line integral

L(y, x) =

∮
γ

ds =

∫ xB

0

√
1 + y′(x)2 dx.

The time used to travel the path is given by

T (y, x) =

∫ xB

0

√
1 + y′(x)2√

2gy(x)
dx. (5.1)

Therefore the solution of the problem consists in minimizing the functional (5.1) subject to the
following constraints,

y(0) = 0, y(xB) = −yB . (5.2)

5.1.1.1 Solution with Calculus of Variations

The approach of the calculus of variations to solve the brachistochrone problem is making use of
the Euler–Lagrange equation, and because the functional T (y, x) =

∫
F (y, x) dx has in facts no

explicit dependence on x, the Euler–Lagrange equation reduces to Beltrami’s identity [Por07]

∂F

∂y
− d

dx

∂F

∂y′
= 0 =⇒ F − y′ ∂F

∂y′
= c, (5.3)

where c is a real constant that can be determined using the information of the constraint (5.2). In
the case of the brachistochrone F can be simplified in

√
2gT =

∫ xB

0

√
1 + y′(x)2

y(x)
dx =⇒ F (y, x) =

√
1 + y′(x)2

y(x)
,

therefore the Euler–Lagrange equation (5.3) becomes, skipping the dependence on x,√
1 + y′2

y
− y′2√

y(1 + y′2)
= c =⇒ y(1 + y′2) =

1

c2
= C > 0.

The latter is an autonomous nonlinear differential equation solvable with the separated form
technique, that is ∫ yB

yA

√
y

C − y dy =

∫ xB

xA

1 dx.
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A primitive of this integral can be computed via the substitution y = C sin2 φ
2 with differential

dy = sin φ
2 cos φ2 dφ, thus

∫ √
y

C − y dy = C

∫ √√√√ sin2 φ
2

1− sin2 φ
2

sin
φ

2
cos

φ

2
dφ

= C

∫
sin2 φ

2
dφ

=
C

2
(φ− sinφ) + k

where k is the integrating constant.
Evaluating the integral in the extrema given by the constraints condition (5.2), permits to determine
the two constants C and k. The fact that the starting point A coincides with the origin implies that
k = 0, the constant C depends on the coordinates of B = (xB , yB). In particular

xB =
C

2
(φB − sinφB), yB = −C

2
(1− cosφB). (5.4)

In conclusion the brachistochrone has parametric equation

x(φ) =
C

2
(φ− sinφ), y(φ) = −C

2
(1− cosφ) (5.5)

which is the equation of a cycloid curve.
The geometric proof given by Bernoulli suffers of spurious solutions [SW01], with the variational
form it is difficult to prove the existence of the brachistochrone. Applying optimal control theory, the
existence follows directly from the theorem of Ascoli–Arzelá.

5.1.1.2 The Brachistochrone as an Optimal Control Problem

This example can be treated as an optimal control problem, the control is the angle ϑ of descent of
the particle. Splitting the velocity v in its two components along the xy axes, the problem can be
states as

dx

dt
= v sinϑ,

dy

dt
= −v cosϑ,

dv

dt
= g cosϑ (5.6)

with border conditions, if T is the time used to travel from A to B,

x(0) = 0, y(0) = 0, v(0) = 0,

x(T ) = xB , y(T ) = yB , v(T ) = vT ,
(5.7)

for a free final velocity vT . The functional to be minimized is T .

5.1.1.3 A Numerical Example

Consider the brachistochrone problem of a particle that is left free in the origin, and travels to
B = (10,−3). In the variational formulation constant C must be retrieved. This is done using
equation (5.4). Solving the nonlinear system for C and φB yields to

φB ≈ 4.17, C ≈ 3.97.

The solution is plotted in figure 5.1. The same result, treated as an optimal control problem as
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Figure 5.1: Variational solution to the brachistochrone problem: the cycloid. On the left the trajectory of the

particle from the origin to B, on the right the two components of the solution, x in red and y in

green.

stated in (5.6) with boundary conditions (5.7), is difficult to solve analitically, in facts, for example,
the Hamiltonian function is

H = 1 + λv sinϑ− µv cosϑ+ ξg cosϑ.

From the Maximum Principle of Pontryagin (PMP), the associated boundary value problem is

λ′ = −∂H
∂x

= 0, µ′ = −∂H
∂y

= 0, ξ′ = −∂H
∂v

= λ sinϑ− µ cosϑ

for the multipliers, and

0 =
∂H
∂ϑ

= λv cosϑ+ µv sinϑ− ξg sinϑ.

To bypass the analytical solution, a way is to use the answer given by the variational formulation to
deduce the solution of the OCP. This passage can not be done directly because equations (5.5)
are function of the space angle φ and not of time t. To find a relation between them one can use
the time funtional

T (x, y) =

∫ φB

0

√
x′(φ)2 + y′(φ)2√

2gy(φ)
dφ.

A short computation shows that

T (x, y) =

∫ φB

0

√
C

2g
dφ = φB

√
C

2g
= φBk ≈ 1.87,

this yields to the property of tautochrone (isochrone) curve of the cycloid. Now the parametrization
of time is simply t = φk, for t ∈ [0, φbk]

From this point of view, the control ϑ(t) should satisfy

ϑ(t) = arctan

(
y′(t)
x′(t)

)
+
π

2
= arctan

(
− sin t/k

1− cos t/k

)
+
π

2
,
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Figure 5.2: On the left the plot of the velocity v(t), on the right the control variable ϑ(t)

so that

sinϑ =
1− cos t/k√

2
√

1− cos t/k
, cosϑ =

sin t/k√
2
√

1− cos t/k
.

thus the velocity becomes

v(t) =

√
2C

2k

√
1− cos t/k.

The plot of the velocity v(t) and the control ϑ(t) is shown in figure 5.2. The differential equations
for the space components become

x′(t) = v(t) sinϑ =
C

2
(1− cos t/k), y′(t) = −v(t) cosϑ = −C

2
(sin t/k).

To compute the multipliers λ, µ and ξ it is enough to use the Hamiltonian function: substituting the
expression for xi it remains a single function in one unknown λ, which gives λ = −k/C, therefore
at the end the three multipliers are,

λ = − k
C
≈ −0.11

µ = − λ sinT/k

1− cosT/k
≈ −0.06

ξ(t) =

√
2C

2gk

λ sin t/k + µ(1− cos t/k)√
1− cos t/k

.

The plot of the costate (multipliers) is shown in figure 5.3 Using the ACADO toolkit to solve the
same problem yields to the following solution.The plots of this functions are showed in figure 5.4.
We report in table 5.1 the results we collected and computed.

5.1.2 Single Integrator Plant

The single integrator plant problem, is a classic one and was proposed originally by Goh and
Teo in [GT88], but also by Luus [Luu91]. Several results and comparison we collected here were
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Figure 5.3: The three multipliers, λ in red, µ in blue and ξ in black.

Figure 5.4: Solution given by ACADO with a coarse mesh.

discussed in the paper by Dadebo and McAuley in [DM95a].
The problem can be described by the following differential equations:

minx2(T ), x′1(t) = u(t), x′2(t) = x1(t)2 + u(t)2,
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Table 5.1: Summary of the results for the Brachistochrone, in the first column the name of the algorithm, in

the second column the value of the target, in the third column the ratio with the exact value.

Method/Author Reported value Error

Exact value 1.8789403296413785 0

XOptima 1.8789410460182487 3.8 E-07

ICLOCS 1.8789488420535776 4.5 E-07

Gpops 1.8789403296291913 -6.4 E-12

ACADO 1.8789488680010755 4.5 E-06

PROPT 1.8789403291138431 -2.8 E-10

with the final time set to T = 1 and the initial conditions x1(0) = 1 and x2(0) = 0. The problem is
further subject to the terminal constraint x(1) = 1. We report in table 5.2 the results we collected
and computed. The optimal target is x2(T ) = x2(1) = 2(e−1)

e+1 ≈ 0.92.

Table 5.2: Summary of the results for the single integrator plant, in the first column the name of the algorithm,

in the second column the value of the target, in the third column the ratio with the exact value.

Method/Author Reported value Error

Exact value 0.9242343145200195 0

Present method 0.9242875107734982 5.7 E-05

XOptima 0.9242343800573381 7.1 E-08

ICLOCS 0.9242346022361485 3.1 E-07

Gpops 0.9242343145186011 -1.5 E-12

ACADO 0.9242360964829455 1.9 E-06

Goh and Teo [GT88] 0.92518 1.0 E-03

Luus [Luu91] 0.92441 1.9 E-04

Dadebo and McAuley [DM95a] 0.92428 4.9 E-05
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5.2 S I N G U L A R P RO B L E M S

5.2.1 Dubins Car

The simple car model has three degrees of freedom, the car can be imagined as a rigid body that
moves in a plane. The back wheels can only slide and that is why parallel parking is challenging. If
all wheels could be rotated together, parking would be a trivial task. The position of a car can be
identified with the triple (x, y, θ) ∈ R2 × S, where x and y are the principal directions and θ is the
angle of the car with the x axis. From the geometry of the model (simplifying some constant to
unity), the following system of differential equations can be retrieved:

x′ = cos(θ),

y′ = sin(θ),

θ′ = u.

The problem is to drive in minimum time the car from an assigned position to the origin, The control
u is designed to be in the interval [−2, 2]. Hence the optimal control problem is stated as:

minT = min

∫ T

0

1 dt s.t. |u| ≤ 2 with

x′ = cos(θ), x(0) = 4, x(T ) = 0,

y′ = sin(θ), y(0) = 0, y(T ) = 0,

θ′ = u, θ(0) =
π

2
.

The control u appears linearly, so we expect a singular arc. The Hamiltonian for this problem is

H = 1 + λ1 cos(θ) + λ2 sin(θ) + λ3u.

From the PMP, u = arg minH, therefore we can write

u =


2 if λ3 < 0,

? if λ3 = 0,

−2 if λ3 > 0.

The equation of the costate are derived from the Hamiltonian,

−λ′1 =
∂H
∂x

= 0,

−λ′2 =
∂H
∂y

= 0,

−λ′3 =
∂H
∂θ

= −λ1 sin θ + λ2 cos θ.

From the previous equations, the multipliers λ1 and λ2 are real constants. Performing further
differentiation on λ′3, we have that in the singular arc λ′′3 = 0, thus,

λ′′3 = λ1θ
′ cos θ + λ2θ

′ sin θ = λ1u cos θ + λ2u sin θ = 0,

that is, in the singular arc, u(λ1 cos θ + λ2 sin θ) = 0 =⇒ u = 0, i.e. the control is zero. With this
information on u we reconstruct the singular arc, because from θ′ = u = 0 =⇒ θ(t) = K constant.
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This forces x′ = cosK and y′ = sinK, which integrated give the singular arc x(t) = t cosK +K1

and y(t) = t sinK +K2 for two real constants K2, K3.
We analyse now the non singular arc, there θ(t) = −2tsign(λ3) + k3. Using the initial condition
θ(0) = π

2 we solve k3 = π
2 . Calling m = −2sign(λ3), the associated arc becomes:

x′(t) = cos(mt+ k3) =⇒ x(t) =
1

m
sin(mt+ π/2) + k1,

y′(t) = sin(mt+ k3) =⇒ y(t) = − 1

m
cos(mt+ π/2) + k2.

Now we assume that there is only a singular arc, in the interval (tA, T ], where tA is the unknown
switching instant. This assumption is suggested by the fact that the final condition of θ is free,
so the associated multiplier λ3 is zero for t = T . Therefore the arc is non singular in the interval
[0, tA], studying the initial conditions we can guess λ3 < 0 in that interval. This implies that
k1 = 4− 1/2 = 7/2 and k2 = − cos(π/2) = 0, and the associated trajectory is

x(t) =
1

2
cos(2t) +

7

2
, y(t) =

1

2
sin(2t), θ(t) = 2t+

π

2
.

It is now possible to join the first arc with the second one, because the trajectory is a continuous
function, for t = tA,

x(tA) = tA cosK +K1 =
1

2
cos(2tA) +

7

2
,

y(tA) = tA sinK +K2 =
1

2
sin(2tA),

θ(tA) = K = 2tA +
π

2
.

We can also impose the final conditions

x(T ) = T cosK +K1 = 0,

y(T ) = T sinK +K2 = 0.

This is a non linear system of five equations in the five unknowns K,K1,K2, tA, T , we solve it
next. It is a quick manipulation to simplify the dependence of K,K1,K2 and we end up with two
equations in two unknowns, T and tA:

−T sin(2tA) + tA sin(2tA) +
1

2
cos(2tA) +

7

2
= 0,

T cos(2tA)− tA cos(2tA) +
1

2
sin(2tA) = 0.

Multiplying the first equation by cos(2tA) and adding the second multiplied by sin(2tA), then
multiplying the first equation by sin(2tA) and adding the second multiplied by cos(2tA) yields

1

2
+

7

2
cos(2tA) = 0,

−T + tA +
7

2
sin(2tA) = 0.
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From this couple of expressions it is easy to solve the switching the instant tA and the final
(minimum) time T , and, consequently,the three constants K,K1,K2 :

tA =
π

2
− 1

2
arccos

1

7
≈ 0.857071948,

T =
π

2
− 1

2
arccos

1

7
+ 2
√

3 ≈ 4.321173564,

K =
3π

2
− arccos

1

7
≈ 3.284940223,

K1 =
2
√

3

7

(
π − arccos

1

7
+ 4
√

3

)
≈ 4.276852666,

K2 =
π

14
− 1

14
arccos

1

7
+

2
√

3

7
≈ 0.6173105091.

These constants permit to completely solve the state of the system at any time t ∈ [0, T ]. It remains
to specify the costate. We already saw that λ1 and λ2 are constant, for λ3 we have the differential
equation given by −∂H/∂θ = 0 for the singular arc, therefore we need other two equations in order
to set up a non linear system in the three unknowns λ1, λ2, λ3. One equation can be the Hamiltonian
itself, which is autonomous and hence equal to zero. The third equation can be the expression
of the multiplier in the interval [0, tA], λ3(t) = −λ1/2 cos(2t + k3)− λ2/2 sin(2t + k3) + λ3(0). We
introduce here a fourth unknown, λ3(0), but we do not need another equation. The non linear
system, for t = tA, is:

H = 1 + λ1 cos(θ) + λ2 sin(θ) + λ3u = 0,

λ′3(tA) = −∂H
∂θ

= λ1 sin θ − λ2 cos θ = 0,

λ3(tA) = −λ1/2 cos(2tA + k3)− λ2/2 sin(2tA + k3) + λ3(0).

The solution of the system gives the following expressions,

λ1 =
cos(k3)

sin(2tA) cos k3 − sinK cos(2tA)
=

4

7

√
3 ≈ 0.9897433188,

λ2 =
sin(k3)

sin(2tA) cos k3 − sinK cos(2tA)
=

1

7
≈ 0.1428571429,

λ3(0) = −1

2
.

In Figure 5.5 the plots for state, costate, control and trajectory. The numerical results 5.3 are
quite surprising: we were able to make Gpops, Iclocs and Acado converge only with great effort
imposing some extra bound on the states, while XOptima gives readily a good solution with a
poor guess. The control solved by Iclocs has a very oscillating damped singular arc. In particular
the path constraint for the angle had to be relaxed to the range [−10, 10]. On the contrary, Acado
converged only with a very strict bound on the final time, e.g. T ∈ [3.1, 4.8], while in Iclocs/Gpops
was enough [0.1, 100] and in XOptima only setting a penalty for the time to be positive.
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Figure 5.5: Variational solution to the Dubins car problem. On the top left the states , on the right the costates,

below the control and the trajectory.

Table 5.3: Summary of the results for problem of the Dubins car, in the first column the the name of the

algorithm, in the second column the value of the target, in the third column the ratio with the exact

value.

Method/Author Reported value Error

Exact value 4.32117356298788557 0

XOptima 4.32117216744031918 -3.2 E-07

ICLOCS 4.3212508202939119 1.7 E-05

Gpops 4.3211747200514896 2.6 E-07

ACADO 4.1817537736144796 -3.2 E-02
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5.2.2 An OCP with Singular Controls

When the Hamiltonian H is linear in the control u, the solution involves discontinuities in the optimal
control. If the switching function associated to the control is not sustained over an interval of time,
that is, the coefficient of u inH is equal to zero only for isolated instants, the control is bang-bang. A
bang-bang control assumes always the extreme values of the control set. If, instead, the coefficient
of u in H is equal to zero over an interval of time, the control is singular. The choice of u must
be obtained from other information than the Pontryagin maximum principle. The times when the
optimal control switches from a state to another or to singular controls, are called switch times and
are sometimes difficult to find.
The next example shows a singular control. The problem asks to minimize the functional

min

∫ 1

−1

(x− 1 + t2)2 dt, subject to the dynamic:

x′ = u, with control bounded by:

|u| ≤ 1.

The Hamiltonian of the problem is

H = (x− 1 + t2)2 + λu+ pε(u),

where pε(u) is a penalty function introduced to handle the constrained controls in the interval
[−1, 1]. An example of such a function is pε(u) = −ε ln(cos π2u). When ε→ 0 the function is close
to zero in [−1, 1] and grows to infinity outside that interval. It is clear that the Pontryagin maximum
principle is of no use in this case. The stationarity condition for the optimal control problem,

∂H
∂u

= λ+
∂pε(u)

∂u
= 0

implies that

λ(t) = −επ
2

tan
π

2
u(t) =⇒ u(t) = lim

ε→0
− 2

π
arctan

(
2πλ(t)

ε

)
= −sign(λ(t)).

Hence, when λ 6= 0 the control is u = ±1, when λ = 0 the control is singular.
The state is not specified at the boundary, so there are the transversality conditions λ(−1) =

λ(1) = 0. Differentiating the Hamiltonian with respect to x yields the information on the multiplier λ:

λ′ = −∂H
∂x

= −2(x− 1 + t2),

therefore, by integration, the expression of λ(t) is

λ(t) = −2

∫ t

−1

(x(s)− 1 + s2) ds+ k (5.8)

for a constant k ∈ R that can be determined by the initial value λ(−1) = 0, i.e.,

0 = λ(−1) = −2

∫ −1

−1

(x(s)− 1 + s2) ds+ k =⇒ k = 0.

Using k = 0 in equation (5.8) allows to write

0 = λ(1) = −2

∫ −1

−1

(x(s)− 1 + s2) ds =⇒
∫ −1

−1

(x(s)− 1 + s2) ds = 0.
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For t in the time interval [tA, tB ] ⊂ [−1, 1] in which λ(t) = 0,

0 = λ(t) = −2

(∫ tA

−1

(x(s)− 1 + s2) ds+

∫ t

tA

(x(s)− 1 + s2) ds

)

= λ(tA)− 2

∫ t

tA

(x(s)− 1 + s2) ds,

(5.9)

hence, differentiating the right hand side of the last line,

0 =
d

dt

(
−2

∫ t

tA

(x(s)− 1 + s2) ds

)
=⇒ x(t)− 1 + t2 = 0, t ∈ [tA, tB ].

The state x when the control is singular is thus x(t) = 1− t2 and from the dynamic of the problem,
u(t) = −2t for t ∈ [tA, tB ]. It is important to point out that for |t| > 1/2 the control u(t) = −2t does
not satisfy the bounds of the hypothesis, the problem is thus to find the two switching times tA
and tB such that x′ = u and |u| ≤ 1. For t ∈ [−1, tA) the control is u(t) = 1 and for t ∈ (tB , 1] the
control is u(t) = −1, the corresponding state is then respectively x(t) = t+ a and x(t) = −t+ b.
From equation (5.9) and the fact that for t ∈ [tA, tB ], x(t) = 1− t2, it follows that λ(tA) = 0, i.e,

0 = λ(tA) = −2

∫ tA

−1

(x(s)− 1 + s2) ds

= −2

∫ tA

−1

(s+ a− 1 + s2) ds

= −2

[
1

3
(tA + 1)

(
t2A +

1

2
tA −

7

2
+ 3a

)]
.

This expression is equal to zero for

a = −1

3
t2A −

1

6
tA +

7

6
=⇒ x(t) = t− 1

3
t2A −

1

6
tA +

7

6
. (5.10)

Now, because x is continuous, in the switching point must hold tA + a = 1− t2A. From that equation
it is possible to solve tA = − 1

4 and a = 19
16 .

With similar consideration it is possible to solve b and tB : in fact,

0 = λ(1) = λ(tB)− 2

∫ 1

tB

x(s)− 1 + s2 ds =⇒
∫ 1

tB

x(s)− 1 + s2 ds = 0.

Using the expression x(t) = −t+ b for t ∈ (tB , 1], the previous integral yields

0 =

∫ 1

tB

−s+ b− 1 + s2 ds = −1

3
(tB − 1)

(
t2B −

1

2
tB −

7

2
+ 3b

)
,

which gives the same result of equation (5.10),

b = −1

3
t2B −

1

6
tB +

7

6
=⇒ x(t) = −t− 1

3
t2B −

1

6
tB +

7

6
.

Again, for the continuity of x, −tB + b = 1− t2B , implies that tB = 1
4 and b = 19

16 . This also shows the
symmetry of the solution. With this optimal control u and state x the minimum of the functional is∫ 1

−1

(x− 1 + t2)2 dt =

∫ −1/4

−1

(
t+

9

16
− 1 + t2

)2

dt+

∫ 1

1/4

(
−t+

9

16
− 1 + t2

)2

dt

=
9

1280
= 0.00703125.
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Figure 5.6: Variational solution to the singular arc problem. On the left the trajectory of the state x(t), in the

middle the control u(t) and on the right the costate λ(t).

Figure 5.7: Numerical solution given by ACADO.

Collecting the three phases the analytical solution of the optimal control problem is,

x(t) =


t+ a for t ∈ [−1, tA) = [−1,− 1

4 )

1− t2 for t ∈ [tA, tB ] = [− 1
4 ,

1
4 ],

−t+ b for t ∈ (tB , 1] = ( 1
4 , 1]

a = b =
19

16
,

u(t) =


1 for t ∈ [−1, tA) = [−1,− 1

4 )

−2t for t ∈ [tA, tB ] = [− 1
4 ,

1
4 ]

−1 for t ∈ (tB , 1] = ( 1
4 , 1]

λ(t) =


− 2

3 t
3 − t2 − 3

8 t− 1
24 for t ∈ [−1, tA) = [−1,− 1

4 )

0 for t ∈ [tA, tB ] = [− 1
4 ,

1
4 ],

− 2
3 t

3 + t2 − 3
8 t+ 1

24 for t ∈ (tB , 1] = ( 1
4 , 1].

A graphical representation of the state x, the control u and the costate λ is shown in Figure 5.6.
In Figure 5.7 the numerical solution obtained with ACADO.

5.2.3 Luus n.1

This is the first of four unconstrained singular optimal control problems proposed and analysed by
Luus in [Luu00], the results are compared by him to the results obtained by other researchers in
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Table 5.4: Summary of the results for problem of the Singular control problem, in the first column the the name

of the algorithm, in the second column the value of the target, in the third column the ratio with the

exact value.

Method/Author Reported value Error

Exact value 0.0070312500000000000 0

XOptima 0.0070312525135557231 3.5 E-07

ICLOCS 0.0070317890699292378 7.6 E-05

Gpops 0.0070292409711438441 -2.8 E-04

ACADO 0.0070371147114343157 8.3 E-04

their published papers.
Luus introduces the problem as simple-looking, pointing out that its triviality is only apparent from
a numerical perspective [CH93]. As a matter of fact, the problem can be easily solved by hand
analytically, because it is defined by two equations and the functional:

minx2(T ), subject to the dynamic:

x1(t)′ = u(t),

x2(t)′ =
1

2
x1(t)2, with control bounded by:

|u| ≤ 1.

(5.11)

The given boundary conditions are x1(0) = 1 and x2(0) = 0, so that λ1(T ) = 0 and λ2(T ) = 1,
where T is the final time set to T = 2. The Hamiltonian for this problem is

H = λ1u+
1

2
λ2x

2
1.

The equation of the costate are derived from the Hamiltonian,

−λ′1 =
∂H
∂x1

= −λ2x1,

−λ′2 =
∂H
∂x2

= 0,

Therefore we have λ2(t) = 1 constant. Supposing there is only one switching point, we can guess
that the singular arc is the second, hence deriving the multiplier λ1 in the singular part we obtain
the singular control. From λ′1 = −x1 we get λ′′1 = −x′1 = −u = 0, thus in the singular arc the
control is zero. Now we can integrate the dynamical system to find the state and the costate. The
result is

x1(t) = K,

x2(t) =
1

2
K2t+K2,

λ1(t) = −Kt+ 2K,

λ2(t) = 1,

for some constants K,K2 to be determined, and for t ∈ [tA, T ], where tA is the unknown switching
time.
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Figure 5.8: Variational solution to problem (5.11). On the left the states, on the right the costates and the

control.

In the first arc the control is derived by Pontryagin maximum principle, and is constant u(t) = −1

for t ∈ [0, tA). Then using the initial conditions the state is solvable, and it results:

x1(t) = −t+ 1,

x2(t) =
1

6
t3 − 1

2
t2 +

1

2
t,

λ1(t) =
1

2
t2 − t+ λ0,

λ2(t) = 1,

for t ∈ [0, tA). Using the continuity of the states at the switching point one can set a non linear
system in the unknowns K,K2, λ0, tA. That system has two solutions, one which doe not have
physical meaning, the other gives tA = 1,K = 0,K2 = 1/6 and λ0 = 1/2. The corresponding
x2(T ) = 1/6. The plots of the system is shown in Figure 5.8. We report in table 5.5 the results we
collected from several authors and summarized by Luus.

5.2.4 Luus n.2

The second test case proposed by Luus in [Luu00] is taken from [JGL70] and studied also by
[FO77] and [DM95b]. It is formulated as

minx3(T ), subject to the dynamic:

x1(t)′ = x2(t)

x2(t)′ = u(t)

x3(t)′ = x1(t)2, with control bounded by:

|u| ≤ 1.

The given boundary conditions are x1(0) = 0, x2(0) = 1 and x3(0) = 0, T is the final time set to
T = 5. It is easy to check that the system admits a singular control u = 0 of order two, and a
reformulation of the problem makes it equivalent to a slightly modified Fuller problem. We do this
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Table 5.5: Summary of the results for problem (5.11), in the first column the article with the first author or the

name of the algorithm, in the second column the value of the target, in the third column the ratio

with the exact value.

Method/Author Reported value Error

Exact value 0.166666666666666667 0

XOptima 0.166666241760617506 -2.5 E-06

ICLOCS 0.16650010203149829 -9.9 E-04

Gpops 0.16668416351901405 1.0 E-04

ACADO 0.16666666672273089 3.3 E-10

PROPT 0.166665695130345510 5.8 E-06

Luus [Luu00] 0.1666667 2.0 E-07

Jacobson [JGL70] 0.1717 3.0 E-02

Chen [CH93] 0.1683 9.7 E-03

transformation to make use of the theory developed in the chapter on singular controls, thus we
restate the problem as

min

∫ 5

0

x2 dt, subject to the dynamic:

x(t)′ = y(t)

y(t)′ = u(t), with control bounded by:

|u| ≤ 1.

This is a variant of the Fuller problem (4.15), and because the final conditions are free, we have
only a chattering trajectory that only enters the singular manifold, and stays there until the final
time. The question is if there is enough time to reach the origin, and to ensure that we need to
compute the accumulation point (known as Fuller Point). The starting point (x(0), y(0)) = (0, 1) is
above the switching curve (4.17), i.e. x = Cy2, thus the initial control is u = −1. The constant C
and k derived for the Fuller problem remain the same, because they are independent of the initial
point. We use formulas (4.19) and (4.20) for computing the first two switching points. The results
are

x1 =
C

1 + 2C
≈ 0.235344310 x2 =

C(2C − 1)

(1 + 2C)2
≈ −0.013796532

y1 = − 1√
1 + 2C

≈ −0.727537889 y2 =
k√

1 + 2C
≈ 0.1761524730

t1 = 1 +
1√

1 + 2C
≈ 1.727537889 t2 = 1 +

k + 2√
1 + 2C

≈ 2.631228251

Setting ∆ = t2 − t1 we obtain

∆ =
k + 1√
1 + 2C

≈ 0.9036903627,
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therefore, from the formula for the total time to reach the origin, we have

T = t1 +
∆

1− k = 1− 2

(k − 1)
√

1 + 2C
≈ 2.919932465 < 5.

The value of T < 5 shows that the chattering arcs accumulate before the final time t = 5, hence
the optimal trajectory stays singular at the origin for t ≥ T .
We conclude the analysis computing the optimal target value. The integral over the first time
interval, e.g. from zero until the first switch is, for α = 1 + (1 + 2C)−1/2,

I0 =

∫ t1

0

x(t)2 dt =

∫ t1

0

(−t
2

+ y0t+ x0

)2

dt =
α5

20
− α4

4
+
α3

3
≈ 0.2612271922.

The integral over the interval [t1, t2] has a simple but long analytic expression that here is omitted,
it can be approximated to I1 ≈ 0.007160675, therefore the target can be evaluated with the relation

J = I0 +
I1

1− k5
≈ 0.2683938305689113.

We computed also some suboptimal trajectories, we report here the values obtained with three

Figure 5.9: Suboptimal non chattering controls with 3 and 4 switches for the problem Luus n.2

and four switches (see Figure 5.9). To solve these problems, we made use of some techniques of
computational algebra like the Gröbner Bases, because the resulting NLP polynomial system was
composed by more than 30 equations. Denoting with J3 and J4 the respective target values, we
found

J3 ≈ 0.2683941501, J4 ≈ 0.2683938764.

It is clear that those suboptimal solutions are very close to the real optimal value J in fact the error
is respectively less than 10−5 and 10−6.
We collected here all the numerical values found in literature for this problem, we extended them
with the values computed with ACADO, Gpops, ICLOCS, Xoptima and the method proposed in this
thesis. The comparison is done with respect to the exact value obtained from the semi-analytical
solution. They are summarized in Table 5.6.
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Table 5.6: Summary of the results for problem Luus n.2, in the first column the article with the first author or

the name of the algorithm, in the second column the value of the target x3(T ), in the third column

the ratio with the exact value.

Method/Author Reported value Error

Exact value 0.2683938305689113 0

XOptima 0.268391015569164393 -1.0 E-05

ICLOCS 0.26727731172422453 -4.1E-03

Gpops 0.26840134117823489 2.7 E-05

ACADO 0.26839863859636331 1.7 E-05

PROPT 0.2683360594785408 -2.1 E-04

Luus [Luu00] 0.2683938 -1.13 E-07

Jacobson [JGL70] 0.2771 3.2 E-02

Flaherty [FO77] 0.269 2.2 E-03

Dadebo [DM95b] 0.269 2.2 E-03
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5.2.5 Luus n.3

This example is taken from the handbook of PROPT, a commercial software for solving OCPs.
It is an example discussed by Luus and other author in several papers, but the exact solution is
not given. We give here the semi-analytical solution to it, so we can do a precise comparison
among the numerical solutions given by the software proposed for the benchmark. We follow the
nomenclature adopted in the handbook of PROPT, where the problem is referred as Singular n3,
although it is referred also as double integrator plant and harmonic oscillator.
We have chosen this example because it is studied and considered by many authors, indeed
we have found numerical results in bibliography for some software, and although it possesses
a semi-analytical solution, it is not trivial. The solution does not appear in papers, so we have
derived it in the thesis: it admits an explicit closed form as a combination of cubic polynomials
and simple exponential functions. Unfortunately, the coefficients of the equations depend on a
linear combination of the only admissible root of a nonlinear function, which can not be solved by
radicals or elementary functions. Hence the global solution is analytic except for one constant, the
switching time of the control, that has to be computed numerically at arbitrary precision. Because in
literature only single precision values are reported, and the software give double precision values,
we computed the exact solution to 20 digits.
We compare the results obtained with the principal open source optimal control softwares, we
choose one for each family of methods: ACADO is a software based on the multiple shooting
algorithm, Gpops and ICLOCS employ the pseudospectral techniques of direct methods, Xoptima
uses indirect variational methods, and the method presented in this PhD thesis. Moreover we show
the results obtained by Luus with the Iterative Dynamic Programming (IDP), the results available on
the handbook of PROPT, the results given by the authors that have been published on papers. We
found the contribution of Jacobson, Gershwin, Stanley, Lele [JGL70], Flaherty, O’Malley [FO77],
Dadebo, Mcauley [DM95b], Luus [Luu00].

5.2.5.1 Problem Statement and Solution

The optimal control problem Singular n3 has the following formulation.

minx3(T ), subject to the dynamic:

x1(t)′ = x2(t)

x2(t)′ = u(t)

x3(t)′ = x1(t)2 + x2(t)2, with control bounded by:

|u| ≤ 1.

(5.12)

The given boundary conditions are x1(0) = 0, x2(0) = 1 and x3(0) = 0, T is the final time set to
T = 5.

5.2.5.2 Preliminary Considerations

Before to attack the problem from an analytical point of view, it is convenient to check if it admits
a solution, and if that solution is unique and a minimum. At a first glance, problem (5.12) looks
nonlinear, because of the nonlinear differential equation for x3. However, it is possible to rewrite the
formulation in order to avoid the nonlinearity. This is done easily by converting the Mayer problem
into a Lagrange problem, in fact we can exploit the fact that x3(0) = 0, therefore the target can be
written

x3(T ) = x3(T )− x3(0) =

∫ T

0

x′3(t) dt =

∫ T

0

x1(t)2 + x2(t)2 dt.
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With this formulation, we can apply standard theorems of existence of the optimal control.
Moreover, from the convexity of the problem, the solution is also unique and is a minimum. To
see this, suppose that x = (x1, x2, x3)T is an optimal solution of the original problem and y 6= x

is another solution such that y3 ≥ x3, let us see that in facts y3 > x3. We can build a family z of
intermediate solutions by posing, for 0 < λ < 1, z(t) = λx(t) + (1− λ)y(t),

z1(t) = λx1(t) + (1− λ)y1(t)

z2(t) = λx2(t) + (1− λ)y2(t)

z3(t) = λx3(t) + (1− λ)y3(t).

It is possible to rewrite z′3(t) as

z′3 = z2
1 + z2

2

= λx′3 + (1− λ)y′3

= [λx1 + (1− λ)y1]2 + [λx2 + (1− λ)y2]2

= λx′3 + (1− λ)y′3 − λ(1− λ)[(x1 − y1)2 + (x2 − y2)2],

then, integrating both hand sides yields,

z3(T ) = λx3(T ) + (1− λ)y3(T )− λ(1− λ)

∫ T

0

[(x1 − y1)2 + (x2 − y2)2] dt

and, since by hypothesis, x is the optimal result, z3(T ) ≥ x3(T ), we have that

y3(T ) ≥ x3(T ) + λ

∫ T

0

[(x1 − y1)2 + (x2 − y2)2] dt > x3(T ).

Thus the problem has one and only one optimal solution, which is the only one given by the
generalization of the PMP.

5.2.5.3 Semi-analytical Solution

We have seen in the previous section that the problem admits unique solution, so we compute
it using standard variational techniques. It have been shown in several papers, that the optimal
control consists in a bang-bang arc followed by a (non trivial) singular arc, in particular there is not
the chattering phenomenon because the order of the singular arc is 1. The optimal control starts at
−1 until a switching time tA, then it becomes singular and can not be synthesized with the theorem
of Pontryagin.
The Hamiltonian for this problem is

H = λ1x2 + λ2u+ λ3(x2
1 + x2

2). (5.13)

The equation of the costate are derived from the Hamiltonian, so that λ1(T ) = λ2(T ) = 0 and
λ3(T ) = 1,

λ′1 = − ∂H
∂x1

= −2λ3x1,

λ′2 = − ∂H
∂x2

= −λ1 − 2λ3x2,

λ′3 = − ∂H
∂x3

= 0.
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Therefore we have λ3(t) = 1 constant. Since there is only one switching point, and because the
singular arc is the second, we derive the multipliers and the control in the two configurations.
In the first segment the control is bang-bang and u = −1, therefore x′2(t) = −1 and x2(t) =

−t + α2. The constant α2 is obtained from x2(0) = 1, that is α2 = 1. From the other differential
equation, x1(t) = − 1

2 t
2 + α2t + α1 = − 1

2 t
2 + t. Similarly, we can conclude that α3 = 0 and

x′3(t) = x1(t)2 + x2(t)2 = t2 − 2t+ 1 + 1
4 t

4 + t2 − t3, hence before the first switching tA:

x1(t) = −1

2
t2 + t

x2(t) = −t+ 1

x3(t) =
1

20
t5 − 1

4
t4 +

2

3
t3 − t2 + t 0 ≤ t ≤ tA.

The corresponding multipliers are, for some constants `1, `2,

λ1(t) =
1

3
t3 − t2 + `1

λ2(t) = − 1

12
t4 +

1

3
t3 − t2 − (2 + `1)t+ `2

λ3(t) = 1 0 ≤ t ≤ tA.

Now we have to write the singular part of the optimal control, first we consider the Hamiltonian
(5.13) in canonical formH = h0(t)+h1(t)u(t), where the switching function is h1(t) = λ2(t). During
the singular tract, h1(t) = 0, so taking its derivatives we obtain:

λ2(t) = 0

λ2(t)′ = −λ1(t)− 2x2(t)

λ2(t)′′ = −λ1(t)′ − 2x2(t)′ = 2x1(t)− 2u(t).

From the last equation we can solve the singular control, which for tA ≤ t ≤ 5 is equal to
u(t) = x1(t). It is now possible to solve the differential system and obtain explicit expression for the
states and the control, as well as the multipliers. We have,

x1(t) = −1

4
(t2A − 2)et−tA − 1

4
(t2A − 4tA + 2)e−t+tA

x2(t) = −1

4
(t2A − 2)et−tA +

1

4
(t2A − 4tA + 2)e−t+tA

x3(t) =
1

16
(t2A − 2)2e2(t−tA) +

1

16
(t2A − 4tA + 2)2e2(−t+tA) +

+
1

20
t5A −

1

4
t4A +

1

6
t3A +

1

2
t2A tA ≤ t ≤ 5.

The multipliers are

λ1(t) =
1

6
(3t2A − 6)et−tA +

1

6
(−3t2A + 12tA − 6)e−t+tA +

+
1

3
t3A − t2A − 2tA + 2 + `1

λ2(t) = −
(

1

3
t3A − t2A − 2tA + 2 + `1

)
t+

1

4
t4A −

2

3
t3A − t2A + `2 = 0

λ3(t) = 1 tA ≤ t ≤ 5.
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To determine the three constants tA, `1, `2 we have to impose a nonlinear problem by imposing the
end conditions λ1(T ) = 0, λ2(T ) = 0, λ2(tA) = 0. This system is linear in `1, `2, but nonlinear in tA,
namely we have

`1 = −1

3
t3A + t2A + 2tA − 2 ≈ 1.8843466929567696441

`2 = −1

4
t4A +

2

3
t3A + t2A + 2tA ≈ 2.8838203516249728328

tA =⇒ 1

2
(t2A − 2)e−tA+5 − 1

2
(t2A − 4tA + 2)etA−5 = 0

tA ≈ 1.4137640876300641592.

As showed in figure 5.10, the last nonlinear equation has only one real root in the interval [0, 5],
hence there is no ambiguity in selecting the correct root.

Figure 5.10: The nonlinear function for tA possesses only one real root in the interval [0, 5]

5.2.5.4 Numerical Results and Comparison

We collected here all the numerical values found in literature for this problem, we extended them
with the values computed with ACADO, Gpops, ICLOCS, Xoptima and the method proposed in this
thesis. The comparison is done with respect to the exact value obtained from the semi-analytical
solution. They are summarized in Table 5.7.

In Figure 5.12 there is the plot of the error in logarithmic scale.
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Figure 5.11: Variational solution to Singular Problem n3. From the top: states, costates and control.
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Table 5.7: Summary of the results for problem Singular n3, in the first column the article with the first author or

the name of the algorithm, in the second column the value of the target x3(T ), in the third column

the ratio with the exact value.

Method/Author Reported value Error

Exact value 0.75398386057588920820 0

Present method 0.753990154 8.35E-6

XOptima 0.75398389193771053751 4.16E-8

ICLOCS 0.75158391763498122 3.18E-4

Gpops 0.75398439909761550 7.14E-7

ACADO 0.75398395894495096 1.30E-7

PROPT 0.75399456159009870 1.41E-5

Luus [Luu00] 0.7539839 5.22E-8

Jacobson [JGL70] 0.828514 9.88E-2

Flaherty [FO77] 0.758 5.32E-3

Dadebo [DM95b] 0.754016 4.26E-5

Method
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Figure 5.12: The bar plot for the errors reported in table 5.7. In blue the methods presented in present thesis,

in yellow the values presented in the cited papers, in red the values computed by us.
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5.2.6 Fuller-Marchal

This problem is a variant of the Fuller problem we discussed in the chapter of OCP linear in the
control. It was proposed and analysed in Marchal [Mar73], and shows the case of chattering
entrance and escape of the control from a singular arc. The original version has the following
statement,

min J =

∫ 8

0

x(t)2 dt, x′ = y, y′ = u, |u| ≤ 1,

with boundary conditions given by x(0) = x(8) = 2 and y(0) = −2, y(8) = 2. It can be understood
as two Fuller problems (see Figure 5.13), with the second in the reversed time. Because of this
symmetry we can use all the computations done for the Fuller problem with some care: the singular
arc u = 0 begins for t = T1 ≈ 3.43 and the control stays singular until t = T2 ≈ 8 − T1. As a
consequence of this symmetry the target value is doubled and the optimal target is J ≈ 3.030456.
These values are in accord with the paper of Marchal and the results our section on chattering
control. The corresponding optimal trajectories can be obtained by mirroring along the axis t = 4

the trajectories of the Fuller problem (with u = 0 after the point of accumulation of the switching
points).

5.2.6.1 Numerical Results and Comparison

We compare the results given by XOptima, Gpops, Iclocs and Acado .
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Figure 5.13: The plots of the results obtained with Acado, from the top: the control, the trajectory in the state

space, the states x(t) and y(t).
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Figure 5.14: The plots of the control u and the velocity y obtained with Xoptima.

Table 5.8: Summary of the results for problem Fuller-Marchal, in the first column the article with the first author

or the name of the algorithm, in the second column the value of the target x3(T ), in the third column

the ratio with the exact value.

Method/Author Reported value Error

Exact value 3.0304563877738555 0

XOptima 3.0305812059484234 4.1E-5

ICLOCS 3.0304696190904252 4.3E-6

Gpops 3.0304906866820898 1.1E-5

ACADO 3.0305914050027605 4.4E-5

Marchal [Mar73] 3.03046 1.1E-6
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5.2.7 Economic Growth

We consider here the resource allocation problem proposed in [ZB94, Bor00] reduced to the
formalization

minT s.t. x′1 = u1x1x2, x′2 = u2x1x2

with boundary conditions

x1(0) = x10 = 1, x2(0) = x20 = 2, (x(T ),y(T )) ∈M,

where M is a prescribed smooth manifold:

M := {(x1, x2) ∈ R2 | x1x2 = c = 10}

The problem is further constrained with

u1 ≥ 0, u2 ≥ 0, u1 + u2 = 1, x1 ≥ 0, x2 ≥ 0.

First we notice that the control u = (u1, u2) can be reduced to a scalar variable posing u2 = 1− u1,
hence the u1 := u ∈ [0, 1]. We can the form the Hamiltonian of the problem,

H = 1 + λ1ux1x2 + λ2(1− u)x1x2

= 1 + λ2x1x2 + ux1x2(λ1 − λ2)

= H0 + uH1 = 0,

the adjoint equations become

λ′1 = −x2(u(λ1 − λ2) + λ2)

λ′2 = −x1(u(λ1 − λ2) + λ2)

u = −sign(H1), H1 6= 0.

If the switching function H1 vanishes, the singular control must be determined taking the poisson
bracket of H1. We have that the singular control has essential order 1, in facts, after simplifying
from H1 the term x1x2 6= 0,

H1 = λ1 − λ2

H ′1 = λ2(x1 − x2)

H ′′1 = −λ2x
2
1 + x1x2(λ1 + λ2)u.

Thus the singular control is given by

u =
λ2x1

x2(λ1 + λ2)
=
−λ2(x1 − x2) + λ2x2

x2(λ1 + λ2)
=

λ2

λ1 + λ2
,

whereas the last equality can be written also as u = 1− λ1

λ1+λ2
, therefore adding the two quantities

yields

2u = 1− λ1 − λ2

λ1 + λ2
= 1 =⇒ u =

1

2
.
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In the case of a singular arc the differential system (with u = 1
2 ) takes the form of

x′1 =
1

2
x1x2 x′2 =

1

2
x1x2

λ′1 = −λ2x2 λ′2 = −λ2x1.

(5.14)

The optimal synthesis has the control u = 1 for t ∈ [0, t0] and u = 1
2 for t ∈ [t0, T ], so on the first

arc the integration of the system gives

x1(t) = x10e
x20t x10 = x1(0) = 1

x2(t) = x20 x20 = x2(0) = 2

λ1(t) = λ10e
−x20t λ10 = λ1(0)

λ2(t) = −x10λ10t+ λ20 λ20 = λ2(0).

(5.15)

On the singular arc, the integration of the differential system (5.14) is a little more tricky, first we
notice that x′1 = x′2, thus we can argue that x2(t) = x1(t) + ∆ for a constant ∆ and t ∈ [t0, T ]. We
obtain ∆ imposing continuity of the states x1, x2 at the junction point t0, therefore

∆ = x2(t−0 )− x1(t−0 ) = x20 − x10e
x20t0 = 2− e2t0 .

We solve the differential equation of x1, which is x′1 = 1
2x1(x1 + ∆), with the method of separation

of variables, and obtain

x1(t) =
∆(x20 −∆)e−

1
2 ∆t0

x20e−
1
2 ∆t − (x20 −∆)e−

1
2 ∆t0

x2(t) = x1(t) + ∆.

Remark 5.1. We notice that this solution requires ∆ 6= 0. The case with ∆ = 0 is simpler and
yields

x1(t) = x2(t) =
2x20

2 + x20t0 − x20t
.

We continue assuming ∆ 6= 0, evaluating the Hamiltonian in t = t−0 we can determine λ10,

H(t−0 ) = 1 + λ1(t−0 )x1(t−0 )x2(t−0 ) = 1 + λ10e
−x20t0x10e

x20t0x20 = 0,

thus λ10 = − 1
x10x20

= − 1
2 .

At t = t−0 , the first condition of singularity must hold, i.e. H1 = x1x2(λ1 − λ2) = 0, substituting the
known values we get a relation for λ20:

x1(t−0 )x2(t−0 )(λ1(t−0 )− λ2(t−0 )) = x10x20e
x20t0(λ10e

−x20t0 + λ10x10t0 − λ20) = 0,

that is, λ20 = λ10(e−x20t0 + x10t0) = − 1
2 (e−2t0 + t0).

We need now to introduce the singular part of the problem, it is possbile to solve the differential
equation for λ2 and then impose the second singularity condition H ′1 = 0, the result of the
computation requires the previous assumption of ∆ = 0, and is

H ′1 = λ2(x1 − x2) = ∆(λ10x10t0 − λ20) = 0 =⇒ λ10x10t0 − λ20 = 0. (5.16)

We make use of the previously retrieved information for λ10, λ20 to simplify the above expression,
but we arrive to an absurd:

λ10x10t0 − λ20 =
e−x20t0

x10x20
6= 0,
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and it is not possible to find a real t0 that satisfies that equation, hence the assumption ∆ 6= 0

is wrong and we must restart from Remark 5.1 with ∆ = 0. The above relations for λ10, λ20 are
not affected by this change, only the differential equation for λ2 must be recomputed with the new
expression for x1, x2 given in the Remark. We have that for t ∈ [t0, T ]

λ2(t) =
1

4
λ2(t−0 )[x20t− t0x20 − 2]2, λ2(t−0 ) = −x10λ10t0 + λ20,

but equation (5.16) is trivially satisfied, so we use the value of the Hamiltonian in t = t+0

H(t+0 ) = λ2(t+0 )x1(t+0 )x2(t+0 ) =

(
t0
x20
− x10t0 + e−x20t0

x10x20

)
x2

20 + 1 = 0,

which gives t0 = − ln(x10/x20)
x20

= − ln 1/2
2 .

Finally, when we touch the manifold M we must impose x1(T )x2(T ) = c = 10, that is

4x2
20

2− (T − t0)x20
= c =⇒ T =

cx20t0 + 2c± 2x20
√
c

cx20
,

The two values of T are both positive and equal T = 1 + ln 2
2 ±

√
10
5 , we take the smallest root

T ≈ 0.7141180583.
In conclusion, the optimal trajectory for this economic growth model is made up of two arcs, the first
characterized by u = 1 for t ∈ [0, t0] and described by equations (5.15), the second is a singular
arc with u = 1

2 and for t ∈ [t0, T ],

x1(t) = x2(t) =
2x20

2 + x20t0 − x20t

λ1(t) = λ2(t) = −1

4
(λ20 − x10λ10t0)[x20t− t0x20 − 2]2.

The various constants are

λ10 = − 1

x10x20
= −1

2

λ20 = λ10(e−x20t0 + x10t0) = −1

4
(1 + ln 2) ≈ −0.4232867952

t0 = − ln(x10/x20)

x20
=

ln 2

2
≈ 0.3465735903

T =
cx20t0 + 2c− 2x20

√
c

cx20
= 1 +

ln 2

2
−
√

10

5
≈ 0.7141180583

The graph of the trajectory is showed in Figure 5.15.
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Figure 5.15: Results for the Resource Allocation problem. From the top: the control u and the switching

function λ1 − λ2; the positions x1 and x2; the multipliers λ1 and λ2.

Table 5.9: Summary of the results for problem Economic growth, in the first column the name of the algorithm,

in the second column the value of the target T , in the third column the ratio with the exact value.

Method/Author Reported value Error

Exact value 0.71411805824629678 0

XOptima 0.71411800841994765 -6.9E-8

ICLOCS 0.71405437822992757 8.9E-5

Gpops NC

ACADO 0.71411806970055869 -1.6E-8
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5.3 C O N S T R A I N E D P RO B L E M S

5.3.1 Constrained Car

In this section we analyse the model of a one dimensional vehicle as described in [BBDL+14]. The
problem describes the longitudinal dynamic of the car that has a limited amount of braking force
and acceleration. The control variable is the jerk and we will try two kinds of control, a linear one
on the jerk, a quadratic on the jerk. The first give rise to singular and bang-bang arcs, the second
one has a smooth control. The optimal control problem can be stated as

min

∫ T

0

1 + wJ2 dt

where w is set to zero in the first case, and w = 0.1 in the second case, subject to the following
dynamic and path constraints:

s′ = v

v′ = a(p)

p′ = J

with boundary conditions:

s(0) = 0, s(T ) = 200

v(0) = 10, v(T ) = 10

p(0) = 0, p(T ) = free.

The path constraint is

amin − a(p) ≤ 0, a(p) =

{
a1p p ≥ 0,

a2p p < 0.

where the constants are amin = −5, a1 = 3 and a2 = 10. The state p is constrained in [−1, 1] and
the control J ∈ [−1, 1].

5.3.1.1 Jerk as linear control

When setting w = 0 the problem becomes linear in the control and we expect a bang bang solution.
The analytical solution requires to solve a square non linear system in 29 equations. We have 5
arcs with 4 switches, at instants:

tA = 1.0000000000000000000 tB = 5.8209379730184301176

tC = 6.8209379730184301176 tD = 7.3209379730184301176.

The final time is T = 10.563500756829488188.

5.3.1.2 Jerk as quadratic control

When we set w 6= 0, the control has a (small) quadratic component that alter the bang bang
nature of the problem, this results in a smoother control. In practise, the solution of this problem
is close to the previous solution with rounded corners at the switching times. However, the new
problem has a higher number of arcs, so the size of the resulting NLP increases. In facts we end
up with a nonlinear system of 39 equations, after simplifying the trivial substitutions and the easiest
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Figure 5.16: The numerical result for the case with w = 0 obtained with XOptima, from the left, the state v,

the control J and the acceleration a(p(t)). The minimum time obtained is 10.56491.
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Figure 5.17: The numerical result for the case with w = 0.1 obtained with XOptima, from the left, the state v,

the control J and the acceleration a(p(t)). The minimum time obtained is 10.59642.

equations, we could reduce the NLP to a polynomial system of 8 equations in 8 unknowns. This
NLP consisted in polynomials over Q of degree 2,3,4,5 and could be solved numerically with high
difficulty, because there were dozens of spurious solutions that did not satisfy the constraints of the
original OCP. The time instants where the different arcs join are given by

tA = 0.83562085921040736732395 tB = 1.16754114382857409594695

tC = 5.03270079920302976591860 tD = 6.84697148865936836721862

tE = 7.78184612489142465651121 T = 10.59102376306397182309365.

After the solution of the NLP, the analytic integration of the target and the evaluation at t = T gave
the exact value of the objective function, namely 10.78370428467098987654696.
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5.3.2 A Singular Constrained Problem

The following problem involves a linear control which is bounded, and a constraint on both state
and control. The formulation ([Calb, Cala]) is

min

∫ 3

0

(t− 4)udt, subject to the dynamic:

x′ = u, x(0) = 0, x(3) = 3 constrained by:

0 ≤ u ≤ 2,

g(t, x, u) = x− t− u+ 1 ≤ 0.

The Hamiltonian of the problem is

H = (t− 4)u+ λu+ µ(x− t− u+ 1) = (t− 4 + λ− µ)u+ µ(x− t+ 1).

For t = 0 we see that the constraint g is satisfied only if g(0) = 1 − u(0) ≤ 0, that is, the initial
control must be u(0) ≥ 1. From the Hamiltonian, we derive the equations needed to form the
boundary value problem:

∂H
∂u

= t− 4 + λ− µ = 0, λ′ = −∂H
∂x

= −µ, µ ≥ 0.

The multiplier of the constraint µ should be non negative when the bound is active (because then
g = 0), and µ = 0 when the bound is not sharp. Suppose that the constraint is inactive, thus µ = 0,
the boundary value problem gives λ = c for a constant c from the equation ∂H

∂x , but gives λ = 4− t
from the equation ∂H

∂u . Therefore there can not be an arc where the constraint is inactive, hence
on [0, 3] the constraint is sharp. Combining the two equations λ′ = −µ and t− 4 + λ− µ = 0 we
obtain the differential equation t− 4 + λ+ λ′ = 0. Its solution is λ(t) = αe−t − t+ 5 for an unknown
constant α. From the multiplier we can get µ = −λ′ = αe−t + 1 which is non negative on [0, 3] for
α ≥ e3 ≈ 20.08553692. The control is given differentiating g = 0 with the combination of x′ = u ,
that is x′ − 1 − u′ = u − u′ − 1 = 0. The initial value of the control u(0) = 1 allows to solve the
differential equation yielding u(t) = 1. Now from g = 0 we obtain x(t) = t. The presence of a
minimum is given by the application of the Weierstrass condition H(u)−H(u?) > 0, where u? is
the optimal control and u > 1 is another admissible control. Observing that µg = 0 the Weierstrass
condition must be checked only for (t− 4 + λ)(u− u?) > 0. Notice that (t− 4 + λ) is strictly positive
for α ≥ e3 and u > u? = 1, see Figure 5.18. The value of the target is − 15

2 . Various things happens
with this example: Gpops, although converges to the correct solution u = 1, x = t, but gives a
completely wrong target (exactly zero); Iclocs and XOptima are influenced by the contribution of
the bound; Acado converges to machine precision without iterations. The numerical results are in
table 5.10.
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Figure 5.18: The plot of t− 4 + λ.

Table 5.10: Summary of the results for Singular constrained problem, in the first column the name of the

algorithm, in the second column the value of the target T , in the third column the ratio with the

exact value.

Method/Author Reported value Error

Exact value -7.5000000000000000 0

XOptima -7.49992004398472911 1.0E-05

ICLOCS -7.5013166543897905 -1.7E-04

Gpops NC

ACADO -7.5000000000000666 -8.8E-15
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5.4 H A R D P RO B L E M S

5.4.1 Hang Glider

This problem was posed by Bulirsch et al [BNPS91] but we consider here the slightly modified
version proposed by J.T.Betts in [Bet01]. It requires to maximize the maximum distance that a
hang glider can travel in presence of a thermal updraft. The difficulty in solving this problem is the
sensitivity to the accuracy of the mesh. Both references exploit a combination of direct and indirect
methods with some ad hoc tricks in order to obtain convergence of the solver and the solution.
The formulation and the constants defined in [Bet01] for the hang glider problem are the following.
The dynamical system is

d

dt
x(t) = vx(t)

d

dt
y(t) = vy(t)

d

dt
vx(t) =

1

m
(−L sin η −D cos η)

d

dt
vy(t) =

1

m
(L cos η −D sin η −W ).

The polar drag is CD(CL) = C0 + kC2
L, and the expressions are defined as

D =
1

2
CDρSv

2
r , L =

1

2
CLρSv

2
r ,

X =
( x
R
− 2.5

)2

, ua(x) = uM (1−X)e−X ,

Vy = vy − ua(x), vr =
√
v2
x + V 2

y ,

sin η =
Vy
vr
, cos η =

vx
vr
.

The constants are

uM = 2.5, m = 100 [kg],

R = 100, S = 14 [m2],

C0 = 0.034, ρ = 1.13 [kg/m3],

k = 0.069662, g = 9.80665 [m/s2],

finally W = mg and the control is the lift coefficient CL which is bounded in 0 ≤ CL ≤ 1.4. The
boundary conditions for the problem are

x(0) = 0, x(T ) : free,

y(0) = 1000, y(T ) = 900,

vx(0) = 13.2275675, vx(T ) = 13.2275675,

vy(0) = −1.28750052, vy(T ) = −1.28750052.

Notice that also the final time T is free.

We first tried (with XOptima) the pure formulation of Betts without introducing tricks, but we could
not achieve (good) convergence to a valid solution. Instead of performing simplifications of the
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model, we found out that a new parametrization of the problem in the spatial coordinate, permitted
to quickly solve the problem in few iterations and little time also on a coarse mesh. Next we give
the result of the transform of the problem from the time dependence to the spatial variable. The first
step is to change from t to x the independent variable, this is done via the condition x(t(x)) = x so
that we can obtain t′(x) from the equation vx(t(x))t′(x) = 1, whereas for a function f(t) we have

df

dx
(t(x)) = f ′(t(x))t′(x) =

f ′(t(x))

vx(x)
.

The second step is the change of variable x = ζ`(ζ) for the new independent variable ζ ∈ [0, 1]

and the maximum range `(ζ) which is constant. Hence, with this choice `′(ζ) = 0 and

df

dζ
(x(ζ)) = f ′(x(ζ)x′(ζ) = f ′(x(ζ))`(ζ).

The optimal control problem takes the new form of

d

dζ
t(ζ) =

`(ζ)

vx(ζ)

d

dζ
y(ζ) =

`(ζ)vy(ζ)

vx(ζ)

d

dζ
vx(ζ) =

`(ζ)ρS

2vx(ζ)m
vr(ζ) (−CDvx(ζ)− CLVy(ζ))

d

dζ
vy(ζ) =

`(ζ)ρS

2vx(ζ)m
vr(ζ) (−CDVy(ζ) + CLvx(ζ))− `(ζ)g

vx(ζ)

d

dζ
`(ζ) = 0,

where

vr(ζ) =
√
vx(ζ)2 + Vy(ζ)2, Vy(ζ) = (vy(ζ)− ua(ζ`(ζ)).

We started XOptima with a smooth penalty function on the control, that we made sharper at
each iteration of the algorithm with a homotopy argument. We obtained a maximum value for
` = x(T ) = 1248.02 and a final time T = 98.43, while in [Bet01] is reported a value of 1248.031026.
The plots for the control and the states are reported in Figure 5.19.
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Figure 5.19: Results for the Hang Glider problem. From the top: the control CL and the thermal drift ua; the

positions x and y; the velocities vx and vy.
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5.4.2 Luus 4

This last example concludes the overview of the family of singular chattering controls proposed
by Luus, the optimal control problem is a modification of the Fuller problem of order 3. A third
order problem is hard because its geometric structure is very involved. The statement of the Fuller
problem is the following.

min J =

∫ T

0

x(t)2 dt, x′ = y, y′ = z, z′ = u |u| ≤ 1,

the final time T is free (with terminal condition the origin) or infinity. The initial point is set to
(x0, y0, z0) = (1, 0, 0). The problem proposed by Luus sets the final time T = 5 and no terminal
conditions. By some authors ([FO77]) it is claimed that the problem with T = 5 has an infinite
number of switching times, but the situation is actually not so clear. While it is true that the Fuller
problem of order 3 possesses a constant ratio solution, it possesses also other non chattering
solutions. This variety makes it so difficult to give a precise answer. It is proved in [ZB94] that the
Fuller problem admits trajectories that reach the origin without switches if the starting point is on
the curve

ρ(t) =
[u

6
t3,

u

2
t2, ut

]
, u = ±1.

For points not on that curve, there is an optimal chattering control that switches on a switching
surface contained in R3, but its equation is not given. Therefore, it is not clear if the optimal control
for the problem of Luus 4 is chattering: the question is what is the final time to reach the origin for
the Fuller problem? If it is smaller than 5, then the problem of Luus is chattering, if the final time is
greater than 5, then the optimal control is just bang-bang.
We give here some partial results on the Fuller problem. Using the technique introduced for the
Fuller problem of order 2, we can integrate the differential system exploiting its symmetry properties.
The result of the integration for a constant control u is

z = ∆u+ a3

y =
1

2
∆2u+ a3∆ + a2

x =
1

6
∆3u+

1

2
a3∆2 + a2∆ + a1

λ1 = − 1

12
∆4u− 1

2
a3∆3 − a2∆2 − 2a1∆ + q1

λ2 =
1

60
∆5u+

1

12
a3∆4 +

1

3
a2∆3 + a1∆2 − q1∆ + q2

λ3 = − 1

360
∆6u− 1

60
a3∆5 − 1

12
a2∆4 − 1

3
a1∆3 +

1

2
q1∆2 − q2∆

Now we impose the symmetry relation

z = −ka3, y = −k2a2, x = −k3a1, λ1 = −k4q1, λ2 = −k5q2, λ3 = 0,

and the solution of the resulting nonlinear system gives the following equation in k,

k8 − 7k7 − 2k6 + 8k5 + 17k4 + 8k3 − 2k2 − 7k + 1 = 0. (5.17)

Although it is a degree 8 polynomial, it is a reciprocal polynomial and it can be shown applying Galois
Theory that its symmetry group is not the whole permutation group S8, but the subgroup generated
by (1, 4, 2, 3)(5, 7, 6, 8), (1, 3, )(6, 8), (3, 6). Moreover, if si are the 4 roots of x4−7x3−6x2 +29x+23
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the roots of polynomial (5.17) are obtained from the roots of x2 − six+ 1. This shows that (5.17) is
solvable by radicals, in practise the resulting expression is very complicated, so here we just give
the numerical approximation of the 4 real roots, they are

ki : 0.1414077939, 0.5757361184, 1.736906836, 7.071745993, i = 1 . . . 4.

It can be shown as in [Mar73], that the only admissible value is that of k2 = 0.5757 . . . = 1/1.7369 . . .:
the first value corresponds to a geometric progression toward the origin, the second value is the
geometric progression that escapes from the origin. The uniqueness of the family of constant ratio
solutions is in accord with the theorems and conjectures of [ZB94].
We try now to explicitly obtain the switching surface of these constant ratio solutions. Consider the
Hamiltonian of the system,

H = x2 + λ1y + λ2z + λ3u = 0,

where H = 0 because we are considering the free time case of the problem. We introduce the
Bellman function V (x, y, z) that associates to the initial point (x, y, z) the minimum of the functional
to be minimized. The Bellman function for this problem has the property that

V (k3x, k2y, kz) = k7V (x, y, z).

Performing the partial derivative of this equation with respect to k we have

∂V

∂k
= 3k2Vx + 2kyVy + kVz = 7k6V,

Vx = λ1, Vy = λ2, Vz = λ3.

Now we set the trivial value of k = 1 and end up with

3xVx + 2yVy + Vz − 7V = 0 =⇒ Vz = 7V − 3xVx − 2yVy.

With a change of variable coming from the symmetry properties, we can simplify V setting φ = x
z3 ,

ψ = y
z2 and V = z7F (φ, ψ). The derivatives of V are therefore

Vx = z4Fφ = λ1, Vy = z5Fψ = λ2

Hence we rewrite the Hamiltonian with respect to the new variables,

0 = H(φ, ψ) = φ2z6 + Vxψz
2 + Vyz + |Vz|

= z6
(
φ2 + ψFφ + Fψ + |Vz|

)
= φ2 + ψFφ + Fψ + |Vz|

= φ2 + ψFφ + Fψ + |7F − 3φFφ − 2ψFψ|

In order to solve this PDE, it is convenient to split the absolute value in two cases, F− where
Vz = λ3 > 0, u = −1 and F+ where Vz = λ3 < 0, u = +1:

F− : φ2 + ψFφ + Fψ + 7F − 3φFφ − 2ψFψ = 0,

F+ : φ2 + ψFφ + Fψ − 7F + 3φFφ + 2ψFψ = 0.
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The two branches of the PDE are respectively

F− = −φ2 − 1

3
ψ2 +

(
ψ − 1

4

)
φ+

11

60
ψ − 11

420
+ (2ψ − 1)(7/2)G−

(
α−
)

F+ = φ2 +
1

3
ψ2 +

(
ψ +

1

4

)
φ+

11

60
ψ +

11

420
+ (2ψ + 1)(7/2)G+

(
α+
)

with α− =
3φ− 3ψ + 1

3(2ψ − 1)(3/2)
, α+ =

3φ+ 3ψ + 1

3(2ψ + 1)(3/2)

where G− and G+ are arbitrary functions coming from the resolution of the PDE. There is a relation
between G− and G+ that can be found using the symmetry of the problem: since V (x, y, z) =

V (−x,−y,−z), we have that F−(φ, ψ) = −F+(φ,−ψ) and G−(α−) = −G+(α−), G−(α+) =

−G+(α+), thus G− = −G+ = G. If we return to the variables (x, y, z), we have

F− = −x2z + xyz − 1

3
y2z3 − 1

4
xz4 +

11

60
yz5 − 11

420
z7 + (2y − z2)7/2G(α)

F+ = x2z + xyz +
1

3
y2z3 +

1

4
xz4 +

11

60
yz5 +

11

420
z7 − (2y + z2)7/2G(α)

with α =
z3 − 3yz + 3x

3(2y − z2)3/2
.

To determine the switching manifold, we have to impose the continuity conditions

V − = V +, V −x = V +
x , V −y = V +

y .

The condition V −z = V +
z is not necessary because it is redundant and already contained in the

previous relations. Performing the differentiations we have:

V −x = z4F−φ , F−φ = −2φ+ ψ − 1

4
+ (2ψ − 1)2G′(α)

V +
x = z4F+

φ , F+
φ = 2φ+ ψ +

1

4
− (2ψ + 1)2G′(α)

V −y = z5F−ψ , F−ψ = φ− 2

3
ψ +

11

60
+ 7(2ψ − 1)5/2G(α)− (2ψ − 1)(3φ− ψ)G′(α)

V +
y = z5F+

ψ , F+
ψ = φ+

2

3
ψ +

11

60
− 7(2ψ + 1)5/2G(α) + (2ψ + 1)(3φ+ ψ)G′(α)

Setting for simplicity G(α) = A and G′(α) = a. The relation V − = V + is equivalent to F−(φ, ψ) =

F+(φ, ψ), that is

2φ2 +
2

3
ψ2 +

1

2
φ+

11

210
−A

(
(2ψ − 1)7/2 + (2ψ + 1)7/2

)
= 0.

The relation V −x = V +
x becomes

4φ+
1

2
− 2a(4ψ2 + 1) = 0.

The relation V −y = V +
y becomes

4

3
ψ − 7A

(
(2ψ + 1)5/2 + (2ψ − 1)5/2

)
+ 2aψ(6φ+ 1) = 0.
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A numerical simulation was still hard to obtain, but shows that the final time to reach the origin is
around T = 5.63 > 5 so we are expecting that the problem of Flaherty [FO77] and [Luu00] does not
have the chattering phenomenon. This is in agree with the numerical test performed with different
OCP softwares, none of them exhibit chattering. We summarize in 5.11 the numerical results
for the case of fixed final time to T = 5 as formulated in [FO77]. The plots of the corresponding
controls are collected in Figure 5.20. The exact control has 5 switching points, trying to impose a

Table 5.11: Summary of the results for problem Singular n4, in the first column the article with the first author

or the name of the algorithm, in the second column the value of the target, in the third column the

ratio with the exact value, in the fourth the number of switches detected.

Method/Author Reported value Error n. of switches

Exact value 1.2521117475984577 0 5

XOptima 1.2521117901796599 3.3E-8 5

ICLOCS NC 1.0E+7

Gpops 1.2521531043753287 3.3E-5 4

ACADO 1.2521241356056492 9.8E-6 4

PROPT 1.2523896453830434 2.2E-4 4

Luus [Luu00] 1.2521128 8.4E-7 5

Flaherty [FO77] 1.2521 9.3E-6
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Figure 5.20: The plots of the results obtained with Acado, Gpops and XOptima.

big nonlinear system forcing 6 switches did not produce any solution. As pointed out in [FO77], the
contribution of the last interval is negligible, we computed the exact value of the functional of the
suboptimal solution with 4 switches and it is 1.2521120520842668, the difference with the value
with 5 switches is around 10−7.
We wanted to check the Fuller phenomenon, so we let the terminal time free. The solvers converged
with great difficulty and the results were very different. We expect the value of the target to be
lower than the target obtained in the fixed time problem, the problem is that even suboptimal
solutions are very close to that value, as the case with 4 switches shows. Thus, in the free time
case, Gpops converged to a suboptimum with higher value but with a sharper and more defined
control, Acado converged far from the expected terminal time, Xoptima was almost close to the
expected estimated terminal time (Table 5.12) . The resulting controls are in Figure 5.21. The
estimated terminal time is the accumulation point (Fuller point) of the switching times, and can be
obtained as a geometric progression. From the theory exposed so far, we know that the ratio of
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Table 5.12: Summary of the results for problem Singular n4 in the free time case, in the first column the article

with the first author or the name of the algorithm, in the second column the value of the target, in

the third column the difference of the fixed time target and the free time target, in the fourth the

terminal time T , in the fifth the number of switches detected.

Method/Author Reported value J5 − JT T n. of switches

XOptima 1.2521123265506712 5.7E-7 5.653 11

Gpops 1.2521258305303968 1.4E-5 4.794 5

ACADO 1.2521247813454326 1.3E-5 6.532 12
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Figure 5.21: The plots of the results obtained with Acado, Gpops and XOptima.

successive time intervals is k2 = 0.5757 . . ., so we can estimate T from the first switches. Once
the trajectory is stabilized on the switching curve we take ∆ = tj − tj−1 and then T = tj−1 + ∆

1−k2 .
From the numerical result of XOptima we have the switching times and relative ratios reported in
Table 5.13. The best deviation from k2 is less than 0.01 corresponding to t10, hence we have

T ≈ t9 +
∆

1− k2
= t9 +

t10 − t9
1− k2

= 5.634601330.
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Table 5.13: The switching times obtained with XOptima for the problem Luus 4 with free terminal time.

i ti (ti+1 − ti)/(ti − ti−1)

1 0.82427999792319

2 2.56466959566023 0.7902

3 3.93992720492731 0.5357

4 4.67675043914512 0.5845

5 5.10747500039411 0.5685

6 5.35235393876917 0.5803

7 5.49447117979041 0.5846

8 5.57755510531052 0.5526

9 5.62346990625584 0.5714

10 5.64970693536746 0.0833

11 5.65189335446009
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5.4.3 Underwater Vehicle

The problem of the underwater vehicle is of minimum time and consists in driving the submarine
from an initial configuration to a final configuration at rest. It is formulated in [CSMV04, Chy03]
and has the peculiarity of having three controls that admit singular arcs and chattering arcs. The
vehicle moves in the x, z plane and is actuated by thrusters while submerged. The equation of
motion are

x′ = v1 cos θ + v3 sin θ

z′ = v3 cos θ − v1 sin θ

θ′ = Ω

v′1 = −v3Ω
m3

m1
+
u1

m1

v′3 = v1Ω
m1

m3
+
u2

m3

Ω′ = v1v3
m3 −m1

I
+
u3

I
,

where the masses m1 = 13.2 and m3 = 25.6, the inertia I = 0.12 and the motors are limited to
|ui| ≤ 1, i = 1, 2, 3. The boundary conditions used by the authors in their paper are (0, 1, 0, 0, 0, 0)

corresponding to t = 0 and (2, 1, 0, 0, 0, 0) for t = T . A reasonable guess for the final minimum time
is T ≈ 10. The authors of [CSMV04] describe the intuitive bang-bang solution that involves the
linear motion of the vehicle using only one thruster, then they give another “surprising” ([Chy03])
solution which is around 10% better. The optimal solution is a non intuitive sequence of chattering
and singular arcs, so the problem can not be directly solved but some parameters need to be
relaxed with a homotopy argument. Moreover the fineness of the grid is important to obtain a good
convergence. In [CSMV04] the problem is solved via homotopy on I starting from a value of I = 2

to the desired value I = 0.12 with a grid of 1000 up to 10000 nodes. The software used was AMPL
together with LOQO.
We were not able to solve the problem with Acado, Gpops and Iclocs, because they do not
feature continuation/homotopy. We were successful with XOptima performing the continuation
method on the inertia and on the relaxation parameter of the penalties on the three controls. We
used a mesh of 10000 nodes but found no significant improvement with respect to the mesh
with 2000 nodes. We obtained five different solutions that we show in the next figures. The
first is the “intuitive” bang bang solution with only one active thruster that gives a final time of
T = 10.2761863103346265, with switching time at half the period. We found then two other solution
with time T = 9.30138845993620045 , they are symmetric with respect to the controls u2 and u3,
and this is not a surprise from the symmetry of the optimal manoeuver, Figure 5.22. Then there
are other two (symmetric) solutions, that yields a slightly better time of T = 9.17050944725101225,
Figure 5.23. In [CSMV04] it is reported the value of T = 9.254699 which corresponds to an
intermediate solution between the four that we propose. This can be explained from the nature of
the problem: the presence of the Fuller phenomenon causes the presence of many suboptimal
solutions, as we have seen in the problems proposed in the previous section. Unfortunately, in
[CSMV04] it is not reported the value of the first pure bang bang solution, so a comparison is
not possible. We can only analyse the quality of the oscillations by having a look of the pictures
presented in [CSMV04] with respect to Figures 5.22 and 5.23. We see that the oscillations are
more defined towards ±1 than the oscillations of the authors, and maybe this explains also better
our lower value of the final time.
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Figure 5.22: The plots of the results for T = 9.30138845993620045 with XOptima. The two solutions are

symmetric with respect to u2 and u3. The authors of [CSMV04] converged to a solution of the

first kind. We plot the pseudotime t/T so that it is normalized in [0, 1].
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5.4.4 Minimum Lap Time

In [BBDL05] it is described the OCP of a realistic model of a competition motorcycle that have
to perform the minimum lap time on a circuit track. One major problem is to simulate the driving
skills of the pilot, that are different from the mathematical ideal model. This behaviour is evident if
we take into account the ellipse of adherence of the vehicle: a professional driver does not use
the whole ellipse, he stays away from the area of minimal longitudinal and lateral forces. This
fact is modelled cutting away that area from the ellipse as is it shown below. A description of the
model can be found in [TCS14] where there are also dynamic considerations and comments, the
equations can be found in [BBDL03]. The road description is based on the article [BL13].
The problem of finding the minimum lap time of racing vehicle can be nicely formulated as an
optimal control problem with cyclic condition at the boundaries. Cyclic conditions mean same initial
and final states (but not fixed): their actual value would be calculated as part of the solution of the
optimal control. The problem is challenging for many reasons:
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Figure 5.25: Usage of the ellipse of adherence for the front (in red) and the rear wheel (in black). On the right,

optimal velocity on the circuit of Adria.

• The vehicle dynamics is quite complex and under some operative conditions is unstable.

• It is necessary to impose many path inequality constraints such as road borders, engine
maps, etc.

• The resulting BVP problem is quite large and can reach up to 1 million equations for complex
dynamic models and long circuits.

• It may happen that the vertical forces reach the zero value which means that the wheel
detaches from the ground: therefore the nature of the dynamic system of equations changes
and this must be either avoided or carefully handled.

• Ill conditioning due to some states variables having very large values of order of 104 and
other (such as slip angles) of order 10−3.

• The driver has more than one input to control the longitudinal dynamics, in particular the
motorcyclist, which has to two independent controls to maximize the braking manoeuvre
performance. This may lead to locally singular problems or singular Jacobians, due to the
fact that a slight change in the control has the same little effect on some states yielding
a flat descent direction. As an example during hard braking manoeuvres, the rider could
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both decelerate with front and rear brakes with a slight traction force in order to increase the
deceleration and additionally decelerate by fast steering the front tyre in order to exploit the
barking component of the front tyre lateral force.

• Similarly, as for longitudinal dynamics, the lateral dynamics, i.e. finding the optimal trajectory,
may pose some difficulties in the convergence.

All the points discussed above come into play in the example we propose in this section. We
formulated a minimum lap time of a sport motorcycle on a real racing track (Adria, in Italy, and
Spa-Francorchamps, in Belgium) that includes a first order approximation of the suspension effect,
the engine map, non linear tyres with first order dynamics and constraints on pattern of longitudinal
and lateral accelerations.
The approach adopted is the one discussed in [TCS14] using the software XOptima. The numerical
problem dimensions and convergence performance are reported in the following table:

N. equations = 91416

Iterations = 253/300

Function Evaluations = 1054

Jacobian Factorizations = 253

Jacobian Inversions = 1306

Tolerance = 1.0 E-09

Last Residual = 3.1 E-10

Elapsed Time = 1 : 38 min

Processor = Intel Core i7 2.66GHz

To find the solution we did not used any special guess: a steady state longitudinal motion was used
to initialize the states of the motorcycle model placed in the center line. All other variables (such
as Lagrange multipliers) are set to zero. We used continuation to push the inequality constraints
parameter to the limit.
Figure 5.29 shows the optimal trajectory that uses all the available road up to the limit allowed
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Figure 5.26: Optimal steering angle (top) and steering torque (bottom) on the circuit of Adria.

by the road constraint tolerance. Figure 5.25 shows the longitudinal velocity where one may
appreciate that the initial and final velocity are the same due to the cyclic conditions. This is also
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true for the lateral displacement for trajectory in Figure 5.25. The velocity highlights the hard
braking manoeuvres and accelerations. Figure 5.26 shows the lateral dynamic control (i.e the
steering torque) which is between the limit of a human rider and generates the steering angle. In
Figure 5.27 the roll angle reaches the 60 degrees which is manifest of a manoeuvre pushed to
the limit. One may also note that the maximum angle is kept for a larger period for corners on the
right (positive roll angles) since the race track is run clockwise and most corners are on this side.
Figure 5.28 is interesting since its shows the longitudinal and vertical forces. The vertical forces
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Figure 5.27: Optimal roll angle (top) and yaw rate (bottom) on the circuit of Adria.

are affected by a large load transfer due to longitudinal forces that almost generate the wheel
detach from ground (zero vertical forces): for example, for traction phase at points A1, . . . , A4, the
front wheel reaches the minimum which is imposed by an inequality constraints (about 100N ). For
braking phase is the rear wheel that is almost detached from ground at points B1, . . . , B4, see
Figure 5.28 and 5.29. The reader may also note that at 1800m there is a quick change of direction
and the roll angle passes from −60 to +60 degrees. This generates a large centrifugal force in
the vertical direction which tends to lift the motorcycle from ground (consistent reduction of both
vertical forces). This is a peculiarity of motorcycles, due to the large roll angle they can reach a
fast change of direction. At the same point, in the chart of the steering torque, one may see that a
peak torque is reached, which means high level of rider effort. Another interesting comments is
the use of both traction force and braking force (combined use of longitudinal controls) in order to
maximize the deceleration. This means that the rider is always braking and pushing the vehicle
when riding at the limits and that steady state conditions are never reached along the whole track.
Finally, Figure 5.25 shows the ellipse of adherence which is the engagement of rear and front tyre,
that is, the ratio between lateral and longitudinal force with respect to vertical forces. The rear and
front tyre engagement stays inside the ellipse of the maximum tyre adherence and has a particular
slightly triangular pattern for the braking phase. This is due to the inequality constraints that is
imposed to limit the combination of longitudinal and lateral acceleration during braking to mimic
the experimental data. This is called willingness envelope and represents the set of accelerations
that the rider is able (and wants) to generate in order to feel safe during the manoeuvre (i.e. not to
fall down). The dashed line represents the limit imposed by the constraints. This is not the best
optimal braking manoeuvre that really uses at best the rear tyre, however, it is the most realistic
one. Additionally, the missing points at the bottom and top of the chart are due to the incoming
wheel lift during respectively braking and traction.
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A new algorithm for the solution to the problem of Hermite G1 interpolation with a clothoid curve
is herein proposed, that is a clothoid that interpolates two given points in a plane with assigned unit
tangent vectors. The interpolation problem is formulated as a system of three nonlinear equations
with multiple solutions which is difficult to solve even numerically. In this work the solution of
this system is reduced to the computation of the zeros of only one single nonlinear function in
one variable. The location of the relevant zero is tackled analytically: it is provided the interval
containing the zero where the solution is proved to exist and to be unique. A simple guess function
allows to find that zero with very few iterations in all of the possible instances.

Computing clothoid curves calls for evaluating Fresnel related integrals, asymptotic expansions
near critical values are herein conceived to avoid loss of precision. This is particularly important
when the solution of the interpolation problem is close to a straight line or an arc of circle. The
present algorithm is shown to be simple and compact.

143
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The comparison with literature algorithms proves that the present algorithm converges more
quickly and accuracy is conserved in all of the possible instances while other algorithms have a
loss of accuracy near the transition zones.

6.1 M OT I VAT I O N

The fitting that allows a curve to interpolate two given points in a plane with assigned tangent
directions is called G1 Hermite interpolation (see Figure 6.1). If the curvatures are also given at
the two points, then this is called G2 Hermite interpolation [MS09]. The G2 interpolation provides
a smoother curve with good properties, at the price of more constraints to be satisfied and this
implies heavier computational costs. In several applications (especially in those in real time),
the G1 Hermite interpolation is cost-effective in particular when the discontinuity of the curvature
is acceptable. Clothoid curves are used in a variety of applications like the trajectory planning
of robots or autonomous vehicles [BBDL06, DC09, DCBM+07, LNRL08, MVHW10, Wil09] or in
computer aided design [BLP10, BD12, WMN+01] or in other fields [ALHB08, Dai12]. It is well
known that clothoids are extremely useful and this is why they are being studied despite their
transcendental form [KDK95, Sto82].
The purpose of this chapter is to describe a new method for the numerical computation of G1

Hermite interpolation with a single clothoid segment. Nowadays, the best algorithms for solving
the G1 interpolation problem have been proposed by [KFP03] and [WM08, WM09]. An iterative
method was proposed by [KFP03]; however, [WM09] remarked that no existence and uniqueness
theorem was provided, also because the convergence rate was linear instead of quadratic as in
[WM09]. The algorithm proposed by [WM09] performs generally better than [KFP03] in terms of
accuracy and number of iterations. It requires to split the procedure in three mutually exclusive
cases: straight lines, circles and clothoids, a geometrical fact that helps to understand the problem.
For each of the mutually exclusive cases the problem is reduced to find the root of a single nonlinear
equation solved using damped Newton–Raphson algorithm. However, the root of the nonlinear
equations are ill-conditioned near the transition region, e.g. when the clothoid stretches to a straight
line or a circle, as shown in the section of numerical tests.

The present algorithm does not need to separate straight lines, circles, clothoids. The G1 Hermite
interpolation is recast in term of computing a well conditioned zero of a unique nonlinear equation
which is proven to exist and to be unique in a prescribed domain. The Newton–Raphson algorithm
without damping is herein used to solve the nonlinear equation and the additional help of a good
initial guess implies that few iterations (less than four) suffice.

The chapter is structured as follows: there are four logical parts, the first is analytic, constructive
and leads to the solution of the problem, the second is strictly numeric and implements the algorithm
described in the first part, the third discusses a good guess function in order to achieve a reduced
number of iteration in all possible cases, the last is a theoretical proof that covers existence and
uniqueness of the solution under reasonable hypotheses.
Section 6.2 introduces the mathematical background and the notation used, there is a brief
presentation of three possible definitions of the Fresnel integral functions and their momenta
with some properties needed later. Section 6.3 defines the interpolation problem from the new
analytical point of view. Section 6.4 describes the mathematical passages to reformulate it such
that from three equations in three unknowns it reduces to one nonlinear equation in one unknown.
A summary of the algorithm and its issues are pointed out, such issues are solved in the following
sections. It is given also a pseudo-code of the method. Section 6.5 considers an appropriate
guess function to help the Newton–Raphson method to converge in few iterations, allowing the
algorithm to be highly performant. Section 6.6 is devoted to answer to the numerical questions
that arise when treating the Fresnel integral momenta such as stability and convergence. Ad
hoc expressions for critical cases are discussed and provided. Section 6.7 covers the theoretical
need of a proof of existence and uniqueness of the solution of the nonlinear equation used to
solve the interpolation problem. It is explained how to select a valid solution among the infinite
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Figure 6.1: Left: G1 Hermite interpolation schema and notation. Right: some possible solutions.

possibilities and a bounded range where this solution exists and is unique is exhibited. Although
this proof is long, technical and not useful from an algorithmic point of view, the authors feel that it
is necessary to complete the analysis of the algorithm. Section 6.8 is devoted to numerical tests
and comparisons with other methods present in literature. Section 6.9 shows the application of
the present algorithm in producing an interpolating clothoid spline that minimizes the jumps of the
curvature at the joining points. In the Appendix a pseudo-code completes the presented algorithm
for the accurate computation of the Fresnel related integrals.

6.2 S O M E P RO P E RT I E S O F F R E S N E L I N T E G R A L S

The fitting problem clearly involves the computation of Fresnel integrals. There are various
possible definitions for Fresnel sine S(t) and cosine C(t) functions. Here the choice is to follow
reference [AS64].

Definition 6.1 (Fresnel integral functions).

C(t) :=

∫ t

0

cos
(π

2
τ2
)

dτ, S(t) :=

∫ t

0

sin
(π

2
τ2
)

dτ. (6.1)

The literature reports different definitions of Fresnel integrals, such as:

C̃(t) :=

∫ t

0

cos(τ2) dτ, S̃(t) :=

∫ t

0

sin(τ2) dτ,

Ĉ(θ) :=
1√
2π

∫ θ

0

cosu√
u

du, Ŝ(θ) :=
1√
2π

∫ θ

0

sinu√
u

du.

(6.2)

The following identities allow to switch among these definitions:

C(t) =

∫ √
2√
π
t

0

cos
(
τ2
)

dτ =
sign(t)√

2π

∫ π
2 t

2

0

cosu√
u

du,

S(t) =

∫ √
2√
π
t

0

sin
(
τ2
)

dτ =
sign(t)√

2π

∫ π
2 t

2

0

sinu√
u

du.

(6.3)

Also momenta of Fresnel integrals are used forward:

Ck(t) :=

∫ t

0

τk cos
(π

2
τ2
)

dτ, Sk(t) :=

∫ t

0

τk sin
(π

2
τ2
)

dτ. (6.4)
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Notice that C(t) := C0(t) and S(t) := S0(t) and that the first momenta are easily obtained:

C1(t) =
1

π
sin
(π

2
t2
)
, S1(t) =

1

π

(
1− cos

(π
2
t2
))

. (6.5)

It is possible to reduce the integrals (6.4) to a linear combination of standard Fresnel integrals
(6.1) with some trigonometric functions. Closed forms via the exponential integral or the Gamma
function are also possible, however it is easy to express them as a recurrence. Integrating by parts,
the following recurrence is obtained:

Ck+1(t) =
1

π

(
tk sin

(π
2
t2
)
− k Sk−1(t)

)
,

Sk+1(t) =
1

π

(
k Ck−1(t)− tk cos

(π
2
t2
))

.

(6.6)

Recurrence is started by computing standard Fresnel integrals (6.1) and first momenta (6.5). Notice
that from recurrence (6.6) it follows that Ck(t) and Sk(t) with k odd do not contain Fresnel integrals
(6.1) and are combination of elementary functions. It is convenient to introduce now the following
functions whose properties are studied in Section 6.6:

Xk(a, b, c) :=

∫ 1

0

τk cos
(a

2
τ2 + bτ + c

)
dτ,

Yk(a, b, c) :=

∫ 1

0

τk sin
(a

2
τ2 + bτ + c

)
dτ.

(6.7)

Notice that, with a simple change of variable, one has the identities∫ s

0

τk cos
(a

2
τ2 + bτ + c

)
dτ = s1+kXk(as2, bs, c),∫ s

0

τk sin
(a

2
τ2 + bτ + c

)
dτ = s1+kYk(as2, bs, c).

which are used in the definition of the fitting problem.

6.3 T H E FI T T I N G P RO B L E M

Consider the curve which satisfies the following system of ordinary differential equations (ODEs):

x′(s) = cosϑ(s), x(0) = x0,

y′(s) = sinϑ(s), y(0) = y0,

ϑ′(s) = K(s), ϑ(0) = ϑ0,

(6.8)

where s is the arc parameter of the curve, ϑ(s) is the direction of the tangent (x′(s), y′(s)) and K(s)

is the curvature at the point (x(s), y(s)). When K(s) := κ′s+ κ, i.e. when the curvature changes
linearly, the curve is called Clothoid. As a special case, when κ′ = 0 the curve has constant
curvature, i.e. is a circle and when both κ = κ′ = 0 the curve is a straight line. The solution of
ODEs (6.8) is given by:

x(s) = x0 +

∫ s

0

cos
(1

2
κ′τ2 + κτ + ϑ0

)
dτ = x0 + sX0(κ′s2, κs, ϑ0),

y(s) = y0 +

∫ s

0

sin
(1

2
κ′τ2 + κτ + ϑ0

)
dτ = y0 + sY0(κ′s2, κ′s, ϑ0).

(6.9)
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Notice that 1
2κ
′s2 +κs+ϑ0 and κ′s+κ are, respectively, the angle and the curvature at the abscissa

s. Thus, the problem considered in this chapter is stated next.

Problem 6.2 (G1 Hermite interpolation). Given two points (x0, y0) and (x1, y1) and two angles ϑ0

and ϑ1, find a curve segment of the form (6.9) which satisfies:

x(0) = x0, y(0) = y0, (x′(0) , y′(0)) = (cosϑ0, sinϑ0),

x(L) = x1, y(L) = y1, (x′(L), y′(L)) = (cosϑ1, sinϑ1),

where L > 0 is the length of the curve segment.

The general scheme is shown in Figure 6.1 - left. Notice that Problem 6.2 admits an infinite
number of solutions. In fact, the angle ϑ(s) of a clothoid which solves Problem 6.2 satisfies
ϑ(0) = ϑ0 + 2kπ and ϑ(L) = ϑ1 + 2`π with k, ` ∈ Z: different values of k correspond to different
interpolant curves that loop around the initial and the final point. Figure 6.1 - right shows possible
solutions derived from the same Hermite data.

6.4 R E C A S T I N G T H E I N T E R P O L AT I O N P RO B L E M

The solution of Problem 6.2 by (6.9) is a zero of the following nonlinear system involving the
unknowns L, κ, κ′: 

x1 − x0 − LX0(κ′L2, κL, ϑ0) = 0

y1 − y0 − LY0(κ′L2, κL, ϑ0) = 0

ϑ1 −
(

1
2κ
′L2 + κL+ ϑ0

)
= 0.

(6.10)

The third equation in (6.10) is linear so that solving it with respect to κ reduces the nonlinear
system to {

x1 − x0 − LX0(κ′L2, ϑ1 − ϑ0 − 1
2κ
′L2, ϑ0) = 0,

y1 − y0 − LY0(κ′L2, ϑ1 − ϑ0 − 1
2κ
′L2, ϑ0) = 0.

An approach based on the solution of a similar nonlinear system is proposed in reference [KFP03],
while references [WM08, WM09] point out the criticity of this method by numerical examples.
Introducing

A =
1

2
κ′L2, ∆x = x1 − x0, ∆y = y1 − y0, δ = ϑ1 − ϑ0, (6.11)

the nonlinear system is reduced to the solution of the nonlinear system of two equations in two
unknowns, namely L and A:{

(∗) := ∆x− LX0(2A, δ −A, ϑ0) = 0,

(∗∗) := ∆y − LY0(2A, δ −A, ϑ0) = 0.
(6.12)

Further simplification can be done using polar coordinates for (∆x,∆y), namely

∆x = r cosϕ, ∆y = r sinϕ. (6.13)

and the well known trigonometric identities

sin(α− β) = sinα cosβ − cosα sinβ,

cos(α− β) = cosα cosβ + sinα sinβ.
(6.14)
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Table 6.1: The fitting algorithm

Function buildClothoid(x0, y0, ϑ0, x1, y1, ϑ1, ε)

1 ∆x← x1 − x0; ∆y ← y1 − y0; compute r, ϕ from r cosϕ = ∆x, r sinϕ = ∆y;

2 φ0 ← normalizeAngle(ϑ0 − ϕ); φ1 ← normalizeAngle(ϑ1 − ϕ);

3 Set g as g(A) = Y0(2A, (φ1 − φ0)−A, φ0);

4 Set A← 3(φ1 + φ0); // In alternative use (6.17a) or (6.17b)

5 while |g(A)| > ε do A← A− g(A)/g′(A) L ← r/X0(2A, δ −A, φ0); κ ← (δ −A)/L;

κ′ ← (2A)/L2;

6 return κ, κ′, L

Function normalizeAngle(φ)

1 while φ > +π do
2 φ← φ− 2π

3 end while
4 while φ < −π do
5 φ← φ+ 2π

6 end while
7 return φ;

From (6.13) and L > 0 define two nonlinear functions f(L,A) and g(A), where g(A) does not
depend on L, as follows:

f(L,A) := (∗) · cosϕ+ (∗∗) · sinϕ =
√

∆x2 + ∆y2 − Lh(A),

g(A) :=
(
(∗) · sinϕ− (∗∗) · cosϕ

)
/L = Y0(2A, δ −A, φ0).

(6.15)

where h(A) := X0(2A, δ −A, φ0), φ0 = ϑ0 − ϕ and φ1, used later, is defined as φ1 = ϑ1 − ϕ.
Supposing to find A such that g(A) = 0, then from f(L,A) = 0 one computes L, κ and κ′ using
equations (6.15) and (6.11), respectively. Thus, the solutions of the nonlinear system (6.12) are
known if the solutions of the single nonlinear function g(A) of equation (6.15) are determined. The
solution of Problem 6.2 is recapitulated in the following steps:

1. Solve g(A) = 0;

2. Compute L =
√

∆x2 + ∆y2/h(A);

3. Compute κ = (δ −A)/L and κ′ = 2A/L2.

This algorithm needs to compute the correct root of g(A) which appropriately solves Problem 6.2
with the length L well defined and positive. These issues are discussed in section 6.7.

The complete algorithm for the clothoid computation is written in the function buildClothoid

of Table 6.1. This function solves equation (6.15) and builds the coefficients of the interpolating
clothoid.
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6.5 C O M P U T I N G T H E I N I T I A L G U E S S F O R I T E R AT I V E S O L U T I O N

The zeros of function g(A) are used to solve the interpolation problem and are approximated by
the Newton-Raphson scheme. This algorithm needs “a guess point” to converge to the appropriate
solution. Notice that there is an infinite number of solutions of Problem 6.2 and criteria for the
selection of a solution are needed. Uniqueness in appropriate range and existence of the root will
be discussed in details in section 6.7.

Denote with A(φ0, φ1) the selected zero of g(A) as a function of φ0 and φ1. Figure 6.2 shows
that A(φ0, φ1) is approximated by a plane. A simple approximation of A(φ0, φ1) is obtained by
sinx ≈ x in Y0(2A, δ −A, φ0) and thus,

g(A) = Y0(2A, δ −A, φ0) ≈
∫ 1

0

Aτ2 + (δ −A)τ + φ0 dτ =
φ0 + φ1

2
− A

6
,

and solving for A,

A(φ0, φ1) ≈ 3(φ0 + φ1). (6.16)

This approximation is a fine initial point for Newton-Raphson, however better approximation for
A(φ0, φ1) are obtained by least squares. Invoking reflection and mirroring properties discussed in
section 6.7.1 the functional form of the approximation is simplified and results in the two following
possible expressions for A(φ0, φ1):

A(φ0, φ1) ≈ (φ0 + φ1)
(
c1 + c2φ0φ1 + c3(φ

2

0 + φ
2

1)
)
, (6.17a)

A(φ0, φ1) ≈ (φ0 + φ1)
(
d1 + φ0φ1(d2 + d3φ0φ1) + (φ

2

0 + φ
2

1)(d4 + d5φ0φ1)

+d6(φ
4

0 + φ
4

1)
)
, (6.17b)

where φ0 = φ0/π, φ1 = φ1/π. The computed coefficients are reported in Table 6.2 on the left.
Using (6.16), (6.17a) or (6.17b) as the starting point for Newton-Raphson, the solution for

Problem 6.2 is found in very few iterations.
The three possible guess functions and their influence in the speed up process of the algorithm
were checked in a battery of tests: computing the solution with Newton-Raphson starting with
the proposed guesses in a 1024 × 1024 grid for φ0 and φ1 ranging in [−0.9999π, 0.9999π] with a
tolerance of 10−10, results in the distribution of iterations resumed in Table 6.2 on the right.

Remark 6.3. For the Newton–Raphson method the iteration is expressed as Ak+1 = Ak −
g(Ak)/g′(Ak), near the root A? there is the following well known estimate for the error ek = Ak−A?
when |ek| ≤ r:

|ek+1| ≤ C |ek|2 , C =
maxA∈R |g′′(A)|

2 minA∈[A?−r,A?+r] |g′(A)| .

The estimate for the second derivative of g(A) is trivial

|g′′(A)| =
∣∣∣∣−∫ 1

0

(τ2 − τ)2 sin(Aτ2 + (δ −A)τ + φ0) dτ

∣∣∣∣
≤
∫ 1

0

(τ2 − τ)2 dτ =
1

30
.

(6.18)
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Using Taylor expansion, yields the following estimate of minA∈[A?−r,A?+r] |g′(A)|:

g′(A) = g′(A?) + (A−A?)g′′(ζ),

|g′(A)| ≥ |g′(A?)| − |A−A
?|

30
, for |A−A?| ≤ r.

Newton–Raphson is guaranteed to converge when C |e0| < 1. This more restrictive condition,

C |e0| ≤
|e0|maxA∈R |g′′(A)|

2 minA∈[A?−r,A?+r] |g′(A)| ≤
|e0|

2 (30 |g′(A?)| − |e0|)
< 1,

ensures that Newton–Raphson is convergent when |e0| < 20 |g′(A?)|. Let gmin be the minimum
value of the first derivative of |g′(A?)| at the root for the angles φ0, φ1, then the computation on the
previous 1024× 1024 mesh yields

gmin ≈ 0.0505 (6.19)

so that the estimate of the convergence radius becomes r = 20gmin ≈ 1.01. On the same mesh, the
maximum distance from the computed root with the guess (6.17b) results in a maximum distance
of about 0.037, well below the estimated radius.

6.6 AC C U R AT E C O M P U TAT I O N O F F R E S N E L M O M E N TA

The computation of g(A) defined in (6.15) ad g′(A), employed in the Newton iteration, relies on the
evaluation of integrals of kind (6.7), in fact, using integration by parts

g′(A) = X1(2A, δ −A, φ0)−X2(2A, δ −A, φ0). (6.20)

Table 6.2: On the left, guess functions interpolation coefficients for guesses (6.17a) and (6.17b). On the right,

iteration statistics for different guess functions.

c d

1 3.070645 2.989696

2 0.947923 0.716220

3 −0.673029 −0.458969

4 −0.502821

5 0.261060

6 −0.045854

Iter. Guess (6.16) Guess (6.17a) Guess (6.17b)

1 1025 0.1% 1025 0.1% 1025 0.1%

2 6882 0.7% 10710 1.0% 34124 3.2%

3 238424 22.7% 702534 66.9% 1015074 96.6%

4 662268 63.0% 336356 32.0% 402 0.1%

5 142026 13.5%
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From the trigonometric identities (6.14), integrals (6.7) are rewritten as

Xk(a, b, c) = Xk(a, b, 0) cos c− Yk(a, b, 0) sin c,

Yk(a, b, c) = Xk(a, b, 0) sin c+ Yk(a, b, 0) cos c.

Defining Xk(a, b) := Xk(a, b, 0) and Yk(a, b) := Yk(a, b, 0) the computation of (6.7) is reduced to the
computation of Xk(a, b) and Yk(a, b). From now on, it is assumed that the standard Fresnel integrals
C0 and S0 can be computed with high accuracy. For this task one can use algorithms described
in reference [Bul67, Tho97] or simply use the available software [PVTF02]. It is convenient to
introduce the following quantities

σ := sign(a), z := σ

√
|a|√
π
, ω+ :=

b+ |a|√
π |a|

,

ω− :=
b√
π |a|

, η := − b
2

2a
,

(6.21)

so that it is possible to rewrite the argument of the trigonometric functions in Xk(a, b) and Yk(a, b)

as

a

2
τ2 + bτ =

π

2
σ

(
τ
σ
√
|a|√
π

+
b√
π |a|

)2

− b2

2a
=
π

2
σ
(
τz + ω−

)2
+ η.

By using the change of variable ξ = τ z + ω− with inverse τ = z−1(ξ − ω−) for Xk(a, b) and the
identity (6.14) one has:

Xk(a, b) = z−1

∫ ω+

ω−

z−k(ξ − ω−)k cos
(
σ
π

2
ξ2 + η

)
dξ

= z−k−1

∫ ω+

ω−

k∑
j=0

(
k

j

)
ξj(−ω−)k−j cos

(π
2
ξ2 + ση

)
dξ,

= z−k−1
k∑
j=0

(
k

j

)
(−ω−)k−j [cos η∆Cj − σ sin η∆Sj ] ,

=
cos η

zk+1

[ k∑
j=0

(
k

j

)
(−ω−)k−j∆Cj

]
− σ sin η

zk+1

[ k∑
j=0

(
k

j

)
(−ω−)k−j∆Sj

]
,

(6.22)

where ∆Cj = Cj(ω+)− Cj(ω−) and ∆Sj = Sj(ω+)− Sj(ω−) are the evaluation of the momenta of
the Fresnel integrals as defined in (6.4). Analogously for Yk(a, b) one has:

Yk(a, b) =
sin η

zk+1

[ k∑
j=0

(
k

j

)
(−ω−)k−j∆Cj

]
+ σ

cos η

zk+1

[ k∑
j=0

(
k

j

)
(−ω−)k−j∆Sj

]
. (6.23)

This computation is inaccurate when |a| is small: in fact z appears in the denominator of several
fractions. For this reason, for small values of |a|, it is better to substitute (6.22) and (6.23) with
asymptotic expansions. Notice that the recurrence (6.6) is unstable so that it produces inaccurate
results for large k, but only the first two terms are needed, so this is not a problem for the
computation of g(A) and g′(A).
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Figure 6.2: Left: the function A(φ0, φ1). Notice that A(φ0, φ1) is approximately a plane. Right: values of the

length L of the computed clothoid as a function of φ0 and φ1. Notice that when angles satisfy

φ0 = π, φ1 = −π or φ0 = −π, φ1 = π the length goes to infinity. The angles range in [−π, π].

6.6.1 Accurate Computation with Small Parameters

When the parameter |a| is small, identity (6.14) yields the series expansion:

Xk(a, b) =

∫ 1

0

τk cos
(a

2
τ2 + bτ

)
dτ

=

∫ 1

0

τk
[
cos
(a

2
τ2
)

cos(bτ)− sin
(a

2
τ2
)

sin(bτ)
]

dτ,

=

∞∑
n=0

(−1)n

(2n)!

(a
2

)2n

X4n+k(0, b)−
∞∑
n=0

(−1)n

(2n+ 1)!

(a
2

)2n+1

Y4n+2+k(0, b),

=

∞∑
n=0

(−1)n

(2n)!

(a
2

)2n
[
X4n+k(0, b)− a Y4n+2+k(0, b)

2(2n+ 1)

]
,

(6.24)

and, analogously, using again identity (6.14):

Yk(a, b) =

∞∑
n=0

(−1)n

(2n)!

(a
2

)2n
[
Y4n+k(0, b) +

aX4n+2+k(0, b)

2(2n+ 1)

]
. (6.25)

From the inequalities:

|Xk| ≤
∫ 1

0

|τk|dτ =
1

k + 1
, |Yk| ≤

∫ 1

0

|τk|dτ =
1

k + 1
,
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the remainder for the series of Xk becomes:

Rp,k =

∣∣∣∣∣
∞∑
n=p

(−1)n

(2n)!

(a
2

)2n
[
X4n+k(0, b)− a Y4n+2+k(0, b)

2(2n+ 1)

]∣∣∣∣∣
≤
∞∑
n=p

1

(2n)!

(a
2

)2n
[

1

4n+ 1
+

|a|
2(2n+ 1)(4n+ 3)

]

≤
(a

2

)2p ∞∑
n=p

(a/2)2(n−p)

(2(n− p))!

≤
(a

2

)2p ∞∑
n=0

1

(2n)!

(a
2

)2n

=
(a

2

)2p

cosh(a).

The same estimate is obtained for the series of Yk. Both series (6.24) and (6.25) converge fast.
For example, if |a| < 10−4 and p = 2, the error is less than 6.26 · 10−18 while if p = 3 the error is
less than 1.6 · 10−26.

Using a simple recurrence it is possible to compute Xk(0, b) and Yk(0, b) but it turns out to be
unstable. A stable computation is obtained by using an explicit formula based on the Lommel
function sµ,ν(z) (see reference [SC03]). The explicit formula is:

Xk(0, b) =
k sk+ 1

2 ,
3
2
(b) sin b+ f(b)sk+ 3

2 ,
1
2
(b)

(1 + k)bk+ 1
2

+
cos b

1 + k
,

Yk(0, b) =
k sk+ 3

2 ,
3
2
(b) sin b+ f(b)(2 + k)sk+ 1

2 ,
1
2
(b)

(2 + k)bk+ 1
2

+
sin b

2 + k
,

(6.26)

where k = 1, 2, 3, . . . and f(b) := b−1 sin b− cos b. The Lommel function has the following expansion
(see [OLBC10] or reference [Wat44])

sµ,ν(z) := zµ+1
∞∑
n=0

(−z2)n

αn+1(µ, ν)
, αn(µ, ν) :=

n∏
m=1

((µ+ 2m− 1)2 − ν2), (6.27)

and using this expansion in (6.26) results in the next explicit formula for k = 1, 2, 3, . . .:

Xk(0, b) = A(b)wk+ 1
2 ,

3
2
(b) +B(b)wk+ 3

2 ,
1
2
(b) +

cos b

1 + k
,

Yk(0, b) = C(b)wk+ 3
2 ,

3
2
(b) +D(b)wk+ 1

2 ,
1
2
(b) +

sin b

2 + k
,

(6.28)

where

wµ,ν(b) :=

∞∑
n=0

(−b2)n

αn+1(µ, ν)
, A(b) :=

kb sin b

1 + k
,

B(b) :=
(sin b− b cos b)b

1 + k
, C(b) := −b

2 sin b

2 + k
,

D(b) := sin b− b cos b.

Notice that expression (6.28) is continuous in b at b = 0.
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6.7 T H E O R E T I C A L D E V E L O P M E N T

In this section existence and selection of the appropriate solution are discussed in detail. The
computation of L requires only to verify that for A? such that g(A?) = 0 then h(A?) = X0(2A?, δ −
A?, φ0) 6= 0. This does not ensure that the computed L is positive; but positivity is obtained by an
appropriate choice of A?.

6.7.1 Symmetries of the Roots of g(A)

The general analysis of the zeros of g(A) requires the angles φ0 and φ1 to be in the range (−π, π).
It is possible to restrict the domain of search stating the following auxiliary problems:

The reversed problem The clothoid joining (x1, y1) to (x0, y0) with angles ϑR0 = −ϑ1 and ϑR1 =

−ϑ0 is a curve with support a clothoid that solves Problem 6.2 but running in the opposite
direction (with the same length L). Let δR = ϑR1 − ϑR0 = −ϑ0 + ϑ1 = δ, it follows that gR(A) :=

Y0(2A, δ − A,−φ1) is the function whose zeros give the solution of the reversed interpolation
problem.

The mirrored problem The curve obtained connecting (x0, y0) to (x1, y1) with angle ϑM0 = ϕ−φ0

and ϑM1 = ϕ − φ1 is a curve with support a curve solving the same problem but mirrored along
the line connecting the points (x0, y0) and (x1, y1) (with the same length L). Let δM = ϑM1 − ϑM0 =

−φ1 + φ0 = −δ, it follows that gM (A) := Y0(2A,−δ −A,−φ0) is the function whose zeros are the
solution of the mirrored interpolation problem.

Lemma (6.4) shows that it is possible to reduce the search of the roots in the domain |φ0| < φ1 ≤ π.
The special cases φ0 ± φ1 = 0 are considered separately.

Lemma 6.4. Let g(A) and h(A) defined in (6.15) with

gR(A) := Y0(2A, δ −A,−φ1), gM (A) := Y0(2A,−δ −A,−φ0),

hR(A) := X0(2A, δ −A,−φ1), hM (A) := X0(2A,−δ −A,−φ0),

then g(A) = −gR(−A), g(A) = −gM (−A), h(A) = hR(−A) = hM (−A). Thus, g(A) has the same
roots of gR(A), gM (A) with opposite sign.

Proof. (omitted)

Figure 6.3 shows the domain |φ0| < φ1 ≤ π with the mirrored and reversed problem. Re-
flecting and mirroring allows to assume the constraints for the angles described in the following
Assumption 6.5.

Assumption 6.5 (Angle domain). The angles φ0 and φ1 satisfy the restriction: |φ0| ≤ φ1 ≤ π with
ambiguous cases |φ0| = φ1 = π excluded (see Figure 6.3).

This ordering ensures that when |φ0| < φ1 the curvature of the fitting curve is increasing, i.e.
κ′ > 0. Notice that if A is the solution of nonlinear system (6.15) then κ′ = 2A/L2, i.e. the sign
of A is the sign of κ′ and thus A must be positive. Finally, δ = φ1 − φ0 ≥ 0 with strict inequality
when |φ0| < φ1. This assumption is not a limitation because any interpolation problem can be
reformulated as a problem satisfying Assumption 6.5. The proof of existence and uniqueness of
the fitting problem splits the angle domain in various subregions, while the special case φ0 +φ1 = 0

is performed apart.
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Figure 6.3: Left: the domain φ1 > |φ0| with the special cases φ1 = φ0 and φ1 + φ0 = 0. Right: the domain

mirrored and reversed.

6.7.2 Localization of the Roots of g(A)

The problem g(A) = 0 has in general infinite solutions. The next Theorems show the existence of
a unique solution in a prescribed range, they are in part new and in part taken from [WM09], here
reported without proofs and notation slightly changed to better match our notation. By appropriate
transformations these Theorems permit to select the suitable solution and find the interval where
the solution is unique. The transformation is contained in the following Lemma:

Lemma 6.6. The (continuous) functions g(A) and h(A) defined in (6.15) for A > 0, when φ0 and
φ1 satisfy assumption 6.5, can be written as

g(A) =

√
2π√
A

p
(

(δ−A)2

4A

)
0 < A ≤ δ,

q
(

(δ−A)2

4A

)
A ≥ δ;

h(A) =

√
2π√
A

p
(

(δ−A)2

4A

)
0 < A ≤ δ,

q
(

(δ−A)2

4A

)
A ≥ δ,

where

p(θ) =

∫ θ+δ

θ

sin(u+ φ0 − θ)√
u

du, q(θ) = p(θ) + 2

∫ θ

0

sin(u+ φ0 − θ)√
u

du,

p(θ) =

∫ θ+δ

θ

cos(u+ φ0 − θ)√
u

du, q(θ) = p(θ) + 2

∫ θ

0

cos(u+ φ0 − θ)√
u

du.

(6.29)

Proof. Standard trigonometric passages and assumption A > 0 yield the following expression for
g(A) and h(A):

√
Ag(A) =

√
2π
[

(C(ω+)− C(ω−)) sin η + (S(ω+)− S(ω−)) cos η
]
,

√
Ah(A) =

√
2π
[

(C(ω+)− C(ω−)) cos η − (S(ω+)− S(ω−)) sin η
]
,

where ω± and η were previously defined in (6.21) and here take the form

ω− =
δ −A√

2πA
, ω+ =

δ +A√
2πA

, η = φ0 − θ, θ =
(δ −A)2

4A
.
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Combining equivalence (6.3) and the parity properties of sinx and cosx, g(A) and h(A) take the
form:

√
Ag(A) = ∆Ĉ sin (φ0 − θ) + ∆Ŝ cos (φ0 − θ) ,
√
Ah(A) = ∆Ĉ cos (φ0 − θ)−∆Ŝ sin (φ0 − θ) ,

(6.30)

where ∆Ĉ := Ĉ (θ + δ)− σ−Ĉ (θ), ∆Ŝ := Ŝ (θ + δ)− σ−Ŝ (θ), σ− := sign(δ −A) and Ĉ(θ) and Ŝ(θ)

are defined in (6.2). By using identities (6.14) equation (6.30) becomes:

ĝ(θ) =

√
A√
2π
g(A) =

∫ θ+δ

0

sin(u+ φ0 − θ)√
u

du− σ−
∫ θ

0

sin(u+ φ0 − θ)√
u

du,

ĥ(θ) =

√
A√
2π
h(A) =

∫ θ+δ

0

cos(u+ φ0 − θ)√
u

du− σ−
∫ θ

0

cos(u+ φ0 − θ)√
u

du.

It is recalled that A must be positive, so that when A ranges into 0 < A < δ then σ− = 1, otherwise,
when A > δ then σ− = −1. In case A = δ then θ = 0 and the second integral is 0 and thus
g(δ) = p(0) = q(0) and h(δ) = p(0) = q(0).

The next Theorems characterize the zeros of the functions (6.29) finding intervals where the
solution exists and is unique.

Theorem 6.7 (see [WM09] th.2). Let 0 < −φ0 < φ1 < π. If p(0) > 0 then p(θ) = 0 has no root for
θ ≥ 0. If p(0) ≤ 0 then p(θ) = 0 has exactly one root for θ ≥ 0. Moreover, the root occurs in the
interval [0, θmax] where

θmax =
λ2

1− λ2
(φ1 − φ0) > 0, 0 < λ =

1− cosφ0

1− cosφ1
< 1. (6.31)

Theorem 6.8 (see [WM09] th.3). Let −π < −φ1 < φ0 < 0 and q(0) > 0 then q(θ) = 0 has
exactly one root in the interval [0, π/2 + φ0]. If q(0) < 0 then q(θ) = 0 has no roots in the interval
[0, π/2 + φ0].

Theorem 6.9 (see [WM09] th.4). Let φ0 ∈ [0, π) and φ1 ∈ (0, π], then q(θ) = 0 has exactly one root
in [0, π/2 + φ0], moreover, the root occurs in [φ0, π/2 + φ0].

The following additional Lemmata are necessary to complete the list of properties of p(θ) and
q(θ):

Lemma 6.10. Let p(θ) and q(θ) as defined in equation (6.29), then

(a) if 0 ≤ φ0 ≤ φ1 ≤ π then

◦ if φ1 > φ0 then p(θ) > 0 for all θ ≥ 0 otherwise p(θ) = 0 for all θ ≥ 0;

◦ q(θ) = 0 for θ ∈ [φ0, π/2 + φ0] and the root is unique in [0, π/2 + φ0];

(b) if −π ≤ −φ1 < φ0 < 0

◦ if p(0) = q(0) ≤ 0 then

• p(θ) = 0 has a unique root θ in [0, θ0] with θ0 defined in (6.31).

• q(θ) = 0 has no roots in the interval [0, π/2 + φ0];

◦ if p(0) = q(0) > 0 then

• p(θ) > 0 for all θ ≥ 0;

• q(θ) = 0 has a unique root in the interval [0, π/2 + φ0]

(c) if φ0 ≤ −π/2 then p(0) = q(0) < 0.
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Proof. A direct application of Theorems 6.7, 6.8 and 6.9. For point (c), from (6.30) p(0) = q(0) =√
δ g(δ) = ∆Ĉ sinφ0 + ∆Ŝ cosφ0, in addiction, since −π ≤ φ0 ≤ −π/2, both sinφ0 ≤ 0 and

cosφ0 ≤ 0 resulting in p(0) = q(0) < 0.

The combination of Lemma 6.4 together with reversed and mirrored problems, proves that any
interpolation problem can be reduced to one which satisfies Assumption 6.5. Assumption 6.5 with
Lemma 6.6 prove existence and uniqueness of g(A) = 0 in a specified range when φ0 + φ1 6= 0.
The case of φ0 − φ1 = 0 follows from the application of Theorem 6.9 for positive angles, because
Assumption 6.5 forces φ1 ≥ 0 and excludes the case of equal negative angles. The case φ0+φ1 = 0

is considered in the following Lemma.

Lemma 6.11. Let φ0 + φ1 = 0 and φ0 ∈ (−π, π), then g(A) = 0 has the unique solution A = 0 in
the interval (−2π, 2π).

Proof. For φ0 + φ1 = 0 one has δ = −2φ0 and

g(A) = Y0(2A,−2φ0 −A, φ0)

=

∫ 1

0

sin(Aτ(τ − 1) + φ0(1− 2τ)) dτ

=

∫ 1

−1

sin(A(z2 − 1)/4− zφ0)
dz

2
, [τ = (z + 1)/2]

=

∫ 1

−1

sin(A(z2 − 1)/4) cos(zφ0)
dz

2
−
∫ 1

−1

cos(A(z2 − 1)/4) sin(zφ0)
dz

2
.

Using properties of odd and even functions the rightmost integral of the previous line vanishes
yielding

g(A) =

∫ 1

0

sin(A(z2 − 1)/4) cos(zφ0) dz.

From this last equality, if A = 0 then g(A) = 0. If 0 < |A| < 4π, the sign of the quantity
sin(A(z2 − 1)/4) is constant; if |φ0| < π/2, then cos(zφ0) > 0 and thus g(A) has no roots. For the
remaining values of φ0, i.e. π/2 ≤ |φ0| < π:∫ π/(2|φ0|)

0

cos(zφ0) dz =
1

|φ0|
,

∫ 1

π/(2|φ0|)
|cos(zφ0)| dz =

1− sin |φ0|
|φ0|

<
1

|φ0|
.

If in addition, 0 < |A| < 2π then
∣∣sin(A(z2 − 1)/4)

∣∣ is positive and monotone decreasing so that:∣∣∣∣ ∫ π/(2|φ0|)

0

sin
(A

4
(z2 − 1)

)
cos(zφ0) dz

∣∣∣∣ ≥ C

|φ0|
,∣∣∣∣ ∫ 1

π/(2|φ0|)
sin
(A

4
(z2 − 1)

)
cos(zφ0) dz

∣∣∣∣ < C

|φ0|
,

where

C =
∣∣∣ sin( A

16 |φ0|2
(
π2 − 4 |φ0|2

)) ∣∣∣ > 0,

and thus g(A) 6= 0 for 0 < |A| < 2π and |φ0| < π.

It remains to proof that h(A) > 0 at the selected root of g(A) = 0. This is contained in the main
Theorem of this study.
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p(
θ)
,p
(θ
)

θ

θmax = 14.75θ = 7.00

p(θ) > 0

p(θ) = 0

z

φ1 = π

φ0 = −3π
4

φ0 + π

φ0 + 2π

Figure 6.4: Left: functions p(θ) and p(θ), when p vanishes, p is strictly positive. Right: the plot of cos z−w sin z.

In both figures φ0 = −(3/4)π and φ1 = π.

Theorem 6.12 (Existence and uniqueness of solution for system (6.15)). The function g(A) defined
in (6.15) when angles φ0 and φ1 satisfy assumption 6.5, admits a unique solution for A ∈ (0, Amax],
where

Amax = δ + 2θmax

(
1 +

√
1 + δ/θmax

)
, θmax = max

{
0, π/2 + φ0

}
.

Moreover, h(A) > 0 where g(A) = 0.

Proof. The special cases φ0 +φ1 = 0 and φ0 = φ1 were previously considered and in Lemma 6.11.
From Lemma 6.10 it follows that the two equations

p(θ) = 0, for θ ≥ 0, q(θ) = 0, for θ ∈ [0, θmax],

cannot be satisfied by the same θ in the specified range, so that they are mutually exclusive
although one of the two is satisfied. Thus g(A) = 0 has a unique solution. To find the equivalent
range of A, select the correct solution of (δ −A)2 = 4Aθmax. The two roots are:

A1 = 2θmax + δ − 2
√
θ2

max + θmaxδ =
δ2

2θmax + δ + 2
√
θ2

max + θmaxδ
≤ δ

A2 = 2θmax + δ + 2
√
θ2

max + θmaxδ ≥ δ,

and thus A2 is used to compute Amax.
To check if h(A) > 0 when g(A) = 0, it suffices to consider the sign of p(θ) and q(θ). Suppose

that p(θ) = 0 there is to show that p(θ) > 0. For |φ0| < φ1 ≤ π
2 the cosine in the numerator of p(θ)

is always positive, and so is the square root at the denominator, thus the integral p(θ) is strictly
positive. Now consider when −π < φ0 < −π2 . Using the change of variable z + θ − φ0 in (6.29) for
all w ∈ R,

p(θ) = p(θ) + wp(θ) =

∫ φ1

φ0

cos z√
z + θ − φ0

dz =

∫ φ1

φ0

cos z − w sin z√
z + θ − φ0

dz. (6.32)

In particular, it is true for w = cosφ0

sinφ0
> 0 positive (which, incidentally is always positive because

−π < φ0 < −π2 ), so that the integrand function vanishes for the three values z = φ0, φ0 +π, φ0 +2π.
Moreover, cos z−w sin z is strictly positive for z ∈ (φ0, φ0 +π) and negative for z ∈ (φ0 +π, φ0 +2π),
see Figure 6.4. Thus integral (6.32) can be bound as

p(θ) >

∫ φ0+2π

φ0

cos z − w sin z√
z + θ − φ0

dz ≥
∫ φ0+2π

φ0
cos z − w sin z dz√

(φ0 + π) + θ − φ0

= 0.
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If q(θ) = 0 there is to show that q(θ) > 0. In this case A ≥ δ and from (6.30) h(A)/
√
A =

∆Ĉ cos (φ0 − θ)−∆Ŝ sin (φ0 − θ), with ∆Ĉ,∆Ŝ > 0. If θ ∈ [0, π2 + φ0] then −π2 ≤ φ0 − θ ≤ 0, thus
the cosine is positive and the sine is negative, hence the whole quantity is strictly positive.

Corollary 6.13. All the solutions of the nonlinear system (6.10) are given by

L =

√
∆x2 + ∆y2

X0(2A, δ −A, φ0)
, κ =

δ −A
L

, κ′ =
2A

L2
,

where A is any root of g(A) = Y0(2A, δ−A, φ0) provided that the corresponding h(A) = X0(2A, δ−
A, φ0) > 0.

Corollary 6.14. If the angles φ0 and φ1 are in the range [−π, π], with the exclusion of the points
φ0 = −φ1 = ±π, the solution exists and is unique for −Amax ≤ A ≤ Amax where

Amax = |φ1 − φ0|+ 2θmax

(
1 +

√
1 + |φ1 − φ0| /θmax

)
,

θmax = max
{

0, π/2 + sign(φ1)φ0

}
.

6.8 N U M E R I C A L T E S T S

The algorithm was implemented and tested in MATLAB and is available at Matlab Central [BF13].
For the Fresnel integrals computation one can use the script of [Tel05]. The first six tests are taken
from reference [WM08], where the algorithm is presented; the algorithm is analysed in reference
[WM09], moreover, a MATLAB implementation of the algorithm described in [WM08] is used for
comparison.

Test 1 p0 = (5, 4), p1 = (5, 6), ϑ0 = π/3, ϑ1 = 7π/6;

Test 2 p0 = (3, 5), p1 = (6, 5), ϑ0 = 2.14676, ϑ1 = 2.86234;

Test 3 p0 = (3, 6), p1 = (6, 6), ϑ0 = 3.05433, ϑ1 = 3.14159;

Test 4 p0 = (3, 6), p1 = (6, 6), ϑ0 = 0.08727, ϑ1 = 3.05433;

Test 5 p0 = (5, 4), p1 = (4, 5), ϑ0 = 0.34907, ϑ1 = 4.48550;

Test 6 p0 = (4, 4), p1 = (5, 5), ϑ0 = 0.52360, ϑ1 = 4.66003.

The accuracy of fit (as in reference [WM08]) is determined by comparing the ending point as
computed by both methods, with the given ending points. A tolerance of 10−7 and 10−14 is used in
the stopping criterium for Newton iterations. For all the tests and for both methods, the position
error of the solution does not exceed 10−14. Also iterations are comparable, with a small advantage
for the present method, and are reported in the Table of Figure 6.5 which also shows the computed
curves.

The difference of the present method compared with the algorithm of reference [WM08] are in
the transition zone (see e.g. test N.5) where the solution is close to be a circle arc or a segment. In
fact, in this situation, the present method performs better without loosing accuracy or increasing
in iterations. The following tests, which represent perturbed lines and circular arcs, highlight the
differences:

Test 7 p0 = (0, 0), p1 = (100, 0), ϑ0 = 0.01 · 2−k, ϑ1 = −0.02 · 2−k;

Test 8 p0 = (0,−100), p1 = (−100, 0), ϑ0 = 0.00011 · 2−k, ϑ1 = 3
2π − 0.0001 · 2−k.
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5.5 Test N.5
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Tolerance 10−7 Tolerance 10−14

#test 1 2 3 4 5 6 1 2 3 4 5 6

#iter. present method 3 3 2 2 2 3 4 4 3 3 3 4

#iter. method of ref. [WM08] 4 4 4 3 5 4 5 4 5 4 24 4

Figure 6.5: Results of test N.1 up to test N.6. The thick line is the result given by the present method, the

thin line is the result obtained by ref. [WM08]. The two results are indistinguishable, so the thin

trajectory was prolonged beyond the endpoints to emphasise the overlapping.

Table 6.3 collects the results for k = 1, 2, . . . , 10. The error is computed as the maximum of the
norm of the differences at the ending point as computed by the algorithm with the given ending
point. The tolerance used for the Newton iterative solver for both the algorithms is 10−12. Notice
that the proposed algorithm computes the solution with constant accuracy and few iterations while
algorithm in [WM08] loses precision and uses more iterations. The ∞ symbol for iterations in
Table 6.3 means that Newton method does not reach the required accuracy and the solution is
obtained using the last computed values. The maximum number of allowed iterations was 1000.
In Table 6.3, the algorithm of reference [WM08] has a large number of iteration respect to the
proposed method. To understand this behaviour, notice that if f(θ) = 0 is the equation to be solved
used in reference [WM09] for computing the clothoid curve and g(A) = 0 is the equation to be
solved in the present method, then the two function f and g with the respective roots θ? and A?

are connected by the following relations:

f(θ(A))

√
2π√
A

= g(A), θ(A) =
(δ −A)2

4A
, θ? = θ(A?), f(θ?) = g(A?) = 0.

Both algorithms uses Newton-Raphson method to approximate the roots:

θk+1 = θk −
f(θk)

f ′(θk)
, Ak+1 = Ak −

g(Ak)

g′(Ak)

Denoting by εk = θk − θ? and ek = Ak − A? the error near the roots θ? and A?, at each iteration
yields:

εk+1 ≈ Cf ε2k, ek+1 ≈ Cge2
k, Cf = − f

′′(θ?)
2f ′(θ?)

, Cg = − g
′′(A?)

2g′(A?)
.
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Table 6.3: Test N.7 and N.8 results

Test N.7 Test N.8

Present method Meek & Walton Present method Meek & Walton

k iter Error iter Error iter Error iter Error

1 2 2,6 · 10−16 30 1,83 · 10−6 3 3,18 · 10−14 ∞ 3,76 · 10−9

2 2 1,42 · 10−14 29 1,85 · 10−6 3 2,01 · 10−14 ∞ 1,45 · 10−8

3 3 0 28 1,38 · 10−6 2 2,01 · 10−14 ∞ 7,47 · 10−8

4 2 4,33 · 10−17 27 9,83 · 10−7 2 2,84 · 10−14 ∞ 3,47 · 10−8

5 2 5,42 · 10−18 26 6,96 · 10−7 2 0 ∞ 1,07 · 10−9

6 2 0 25 4,92 · 10−7 2 1,42 · 10−14 ∞ 5,53 · 10−9

7 2 1,35 · 10−18 24 3,48 · 10−7 2 5,12 · 10−14 ∞ 2,43 · 10−7

8 2 0 23 2,46 · 10−7 2 0 ∞ 3,09 · 10−6

9 2 0 22 1,74 · 10−7 2 0 ∞ 3,25 · 10−6

10 2 0 21 1,23 · 10−7 2 5,12 · 10−14 ∞ 4,84 · 10−7

Thus, the speed of convergence of the two methods is related to the constants Cf and Cg,
respectively. Large values of the constants reflect a slow convergence. Using estimates (6.19) and
(6.18) of remark 6.3 the bound |Cg| . 0.66 is obtained. Joining this with the estimate (6.19) for
the minimum of |g′(A?)|, it follows that the root is always well conditioned and the Newton method
converges quickly for the proposed algorithm. Thus the proposed algorithm does not suffer of slow
convergence as verified experimentally. To compare the constants Cf and Cg notice that

g′′(A?)
g′(A?)

=
((A?)2 − δ2)

(2A?)2

f ′′(θ?)
f ′(θ?)

− (A?)2 − 3δ2

A?((A?)2 − δ2)

(2A?)2Cg = ((A?)2 − δ2)Cf + 4A?
(A?)2 − 3δ2

(A?)2 − δ2

(6.33)

moreover,

• For A? � δ equation (6.33) is approximated with (2A?)2Cg ≈ −δ2Cf − 12A? and Cf ≈
−4A?(CgA

? + 3)/δ2. In this case Cf is very low and the algorithm of reference [WM08]
converges faster than the proposed one.

• For A? � δ equation (6.33) is approximated with (2A?)2Cg ≈ (A?)2Cf + 4A? and Cf ≈
4(Cg − 1/A?). Thus, Cf is moderately low and the algorithm of reference [WM08] converges
more and less as the proposed one.

• For A? = δ + ε with ε ≈ 0 equation (6.33) is approximated with 4δ2Cg ≈ 2δεCf − 4δ2/ε

and Cf ≈ 2δ/ε2. Thus, Cf may be huge for small ε and the algorithm of reference [WM08]
converges slowly or stagnates.

This behaviour is verified in Table 6.3. Notice that when A? � δ is true that the algorithm of
reference [WM08] is faster but is also true that no more than 4 iterations are necessary for the
present algorithm.

6.9 A N A P P L I C AT I O N

The availability of a fast and reliable routine to compute Hermite G1 interpolation as a black box,
opens the possibility of setting up more structured applications. When computing an interpolating
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Figure 6.6: Results of the spline test N.9 up to test N.12. Left: interpolating spline. Right: arclength vs

curvature. In blue the curvature of the spline obtained with present method, in red the curvature

given by algorithm [WM08]. Computed curvatures between the two methods for tests N.9 and N.10

are graphically indistinguishable. In the figure of the curvature of Test N.11, the plot represents

the difference from 1 of the curvature, so that eventual jumps are magnified: the red line shows

that [WM08] treats those clothoids as circles yielding a piecewise constant curvature. In test N.12,

in red the degenerate solution given by algorithm [WM08].

spline, it is possible to take advantage of the linear varying curvature that clothoid curves offer with
respect to other splines. In order to achieve the best results in terms of continuity of the curvature,
a nonlinear least square problem is set up.

Problem 6.15 (quasi G2 fitting). Let pj = (xj , yj) for j = 1, . . . , N be assigned points and the free
parameters θj be the angles associated to point pj . For each couple of the free parameters θj and
θj+1 the G1 Hermite interpolation problem is solved yielding the interpolating clothoid:

κj = κj(θj , θj+1), κ′j = κ′j(θj , θj+1), Lj = Lj(θj , θj+1),

thus, the jump of curvature at point pj for j = 2, 3, . . . , N − 1 is ∆κj = (κj−1 +Lj−1κ
′
j−1)−κj . The

objective function to be minimized is the sum of the squares of the jumps of the curvature at the
extrema of each clothoid segments. The curvature at the first and the last point should minimize
the the squares of the jump with κbg and κend,

F (θ1, θ2, . . . , θN ) =

1√
N

(
(κ1 − κbg)

2 + (κN−1 + LN−1κ
′
N−1 − κend)2 +

N−1∑
j=2

(
(κj−1 + Lj−1κ

′
j−1)− κj

)2
)1/2
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Table 6.4: Results of the interpolating clothoid splines. it. is the number of iterations used by the MATLAB

Levenberg–Marquardt algorithm, F ev. is the number of evaluations of the objective function, G1ev.

is the number of evaluations of the routine that gives the G1 interpolation, F (θ) is the value of the

objective at the last computed point, deg. is the number of times data was considered degenerate.

The tolerance for lsqnonlin was 10−10.

Test Present method Meek & Walton

it. F ev. G1 ev. F (θ) it. F ev. G1 ev. F (θ) deg.

9 4 70 840 2,8 · 10−15 29 441 5292 1,3 · 10−04 290

10 4 113 2938 1,0 · 10−12 8 257 6682 7,6 · 10−13 1195

11 4 50 400 1,6 · 10−15 19 214 1712 4,5 · 10−09 1497

12 2 381 47625 6,2 · 10−20 27 3581 447625 7,2 · 10−07 447506

The quasiG2 fitting problem requires to find the angles θ1, θ2, . . . , θN that minimize F (θ1, θ2, . . . , θN ).

Problem 6.15 involves several times the computation of buildClothoid. The nonlinear solver
adopted in the numerical experiments was Levenberg-Marquardt implemented in lsqnonlin of the
Optimization Toolbox of MATLAB, no information on the Jacobian was given, hence derivatives were
approximated by finite difference. This implies a heavier rely on the evaluation of the objective
function itself. Four examples are herein proposed to compare the present algorithm with the
algorithm of [WM08].
The tests have the following definition with MATLAB-like syntax, moreover, in all the test κbegin =

κend = 0 was chosen.

Test 9 x = [−10,−7,−4,−3,−2,−1, 0, 1, 2, 3, 4, 7, 10] and
y = [0, 0, 0, 0, 0, 0, 0.5, 1, 1, 1, 1, 1, 1];

Test 10 x = [cos(t), 0.1 : 0.1 : 0.9, 1− sin(t)], y = [sin(t),−ones(1, 9), cos(t)], where t = [π : π/16 :

(3/2)π];

Test 11 x = cos([0 : π/4 : 2π]) + 10−7 cos([0 : π/8 : π]) and y = sin([0 : π/4 : 2π]);

Test 12 x = [0 : 0.05 : 2π] and y = 10−5 sin([0 : 0.05 : 2π]).

Graphically, they represent two line segments, two arcs of circle joined by a segment, a perturbed
circle, a perturbed line (see Figure 6.6). The results are listed in Table 6.4, the residuals are very
low for the present method, and the interpolating spline although computed as G1 gives in practice
a G2 clothoid spline. The performance of the present algorithm yields a residual which is several
order lower than the residual of the algorithm present in literature. In computation of tests N.9
up to N.12 the G1 fitting using algorithm of [WM08] is close to the transition zone where data
are considered degenerate and therefore approximated respectively by a circle or a straight line.
This results in a low precision fitting which slows down the convergence of Levenberg-Marquardt
algorithm. The last column of Table 6.4 counts the number of times the G1 fitting are considered
degenerate. Although there is no direct correlation between the number of iterations and the
number of degenerate cases, it is evident that degenerate cases corrupt both the accuracy of
the final solution and the convergence speed. These test cases show that the present algorithm
performs well also when used as an algorithmic kernel that is repeated several times.
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6.10 C O N C L U S I O N S

An effective solution to the problem of Hermite G1 interpolation with a clothoid curve is herein
described with a full theoretical analysis. The present algorithm does not need the decomposition
in mutually exclusive states as in previous geometric works. This introduces numerical instabilities
and inaccuracies as it is shown in test N.7 and N.8 of Section 6.6 or test N.11 and N.12 of Section
6.9.

The interpolation problem was reduced to one single function in one variable, making the present
algorithm compact, fast and robust. A guess function which allows to find that zero with very few
iterations in all possible configurations was provided. Existence and uniqueness of the solution
was discussed and proved in Section 6.7. Asymptotic expansions near critical values for Fresnel
related integrals are derived to keep the accuracy uniform. Implementation details of the present
algorithm are given in appendix using pseudocode and can be easily translated in any programming
language.

The algorithm was successfully tested in any possible situation. The accurate computation
of the clothoid needs an equally accurate computation of g(A) and g′(A) and thus the accurate
computation of Fresnel related functions X0(a, b, c) and Y0(a, b, c) with associated derivatives.
These functions are a combination of Fresnel and Fresnel momenta integrals which are precise for
large |a| and small momenta. For the computation, only the knowledge of the first two momenta
are necessary so that the inaccuracy for higher momenta does not pose any problem. A different
problem is the computation of these integrals for small values of |a|. In this case, demanding
(but stable) expansion are used to compute the Fresnel momenta with high accuracy. Finally,
a theoretical proof completes the exposition and guarantees the existence of the solution in all
possible cases.

The solution of the interpolation problem is uniformly accurate even when close to a straight
line or an arc of circle and this was not the case of algorithms found in literature. In fact, even in
domains where other algorithms solve the problem, the present method performs better in terms of
accuracy and number of iterations. For example, in tests (1-6) proposed by [WM08], the present
method requires 3 iterations against 4-5; in critical tests (7-8) the present algorithm converges
in all cases in 2-3 iterations (against 20-30 with loss of precision, or no convergence at all after
1000 iterations). It is to point out that critical situations like those, occur in practise every time the
Hermite data is acquired with (even a low) corrupting noise and no longer represents straight lines
or circles, as was described in the applications of Section 6.9.

6.11 A L G O R I T H M S F O R T H E C O M P U TAT I O N O F F R E S N E L M O M E N TA

In Table 6.11.1 the algorithmic version of the analytical expression derived in the chapter is
herein presented. These algorithms are necessary for the computation of the main function
buildClothoid which takes the input data (x0, y0, ϑ0, x1, y1, ϑ1) and returns the parameters (κ, κ′,
L) that solve the problem as expressed in equation (6.9). Function GeneralizedFresnelCS com-
putes the generalized Fresnel integrals (6.7). It distinguishes the cases of a larger or smaller than a
threshold ε. The role and the value of ε are discussed in Section 6.6. Formulas (6.22)-(6.23), used
to compute Xk(a, b) and Yk(a, b) at arbitrary precision when |a| ≥ ε, are implemented in function
evalXYaLarge. Formulas (6.24)-(6.25), used to compute Xk(a, b) and Yk(a, b) at arbitrary precision
when |a| < ε, are implemented in function evalXYaSmall. This function requires computation
of (6.26) implemented in function evalXYaZero which needs (reduced) Lommel function (6.27)
implemented in function rLommel.

6.11.1 Pseudocode for the computation of generalized Fresnel integrals

Pseudocode for the computation of generalized Fresnel integrals (6.7) used for the computation
of (6.15) and (6.20).
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Function GeneralizedFresnelCS(a, b, c, k)

1 ε← 0.01;
2 if |a| < ε then X̂, Ŷ ← evalXYaSmall(a,b,k,5) else
X̂, Ŷ ← evalXYaLarge(a,b,k) for j = 0, 1, . . . , k − 1 do

3 Xj← X̂j cos c− Ŷj sin c; Yj ← X̂j sin c+ Ŷj cos c

4 end for
5 return X, Y

Function evalFresnelMomenta(t, k)

1 C0 ← C(t); S0 ← S(t);
2 z ← πt2/2; c← cos z; s← sin z;
3 if k > 1 then C1 ← s/π; S1 ← (1− c)/π if k > 2 then
C2 ← (t s− S0)/π; S2 ← (C0 − t c)/π return C, S

Function rLommel(µ, ν, b)

1 t ← (µ+ ν + 1)−1(µ− ν + 1)−1;
2 r ← t; n← 1; ε← 10−50;
3 while |t| > ε |r| do

4 t← t
(−b)

2n+ µ− ν + 1

b

2n+ µ+ ν + 1
;

5 r ← r + t; n← n+ 1

6 end while
7 return r

Function evalXYaLarge(a, b, k)

1 s← a/ |a|; z ←
√
|a| /π; `← sb/(z π);

2 γ ← −sb2/(2 |a|); sγ ← sin γ; cγ ← cos γ;
3 C+, S+ ←evalFresnelMomenta(`+ z, k);
4 C−, S− ←evalFresnelMomenta(z, k);
5 ∆C ← C+ − C−; ∆S ← S+ − S−;
6 X0 ← z−1 (cγ ∆C0 − s sγ ∆S0);
7 Y0 ← z−1 (sγ ∆C0 + s cγ ∆S0);
8 if k > 1 then
9 dc ← ∆C1 − `∆C0;

10 ds ← ∆S1 − `∆S0;
11 X1 ← (cγ dc − s sγ ds) /z2;
12 Y1 ← (sγ dc + s cγ ds) /z

2;
13 end if
14 if k > 1 then
15 dc ← ∆C2 + `(`∆C0 − 2∆C1);
16 ds ← ∆S2 + `(`∆S0 − 2∆S1);
17 X2 ← (cγ dc − s sγ ds) /z3;
18 Y2 ← (sγ dc + s cγ ds) /z

3;
19 end if
20 return X, Y
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Function evalXYaZero(b, k)

1 if |b| < ε then

2 X0 ← 1− b2

6

(
1− b2

20

)
;

3 Y0 ←
b2

2

(
1− b2

6

(
1− b2

30

))
;

4 else

5 X0←
sin b

b
;

6 Y0←
1− cos b

b
;

7 end if
8 A ← b sin b;
9 D ← sin b− b cos b;

10 B ← bD;
11 C ← −b2 sin b;
12 for k = 0, 1, . . . , k − 1 do
13 t1 ← rLommel

(
k + 1

2 ,
3
2 , b
)

;

14 t2 ← rLommel
(
k + 3

2 ,
1
2 , b
)

;

15 t3 ← rLommel
(
k + 3

2 ,
3
2 , b
)

;

16 t4 ← rLommel
(
k + 1

2 ,
1
2 , b
)

;

17 Xk+1←
1

1 + k
(kA t1 +B t2 + cos b);

18 Yk+1←
1

2 + k
(C t3 + sin b) +D t4;

19 end for
20 return X, Y

Function evalXYaSmall(a, b, k, p)

1 X̂, Ŷ ← evalXYaZero(b, k + 4p+ 2);
2 t← 1;
3 for j = 0, 1, . . . , k − 1 do
4 Xj← X0

j −
a

2
Y 0
j+2;

5 Yj ← Y 0
j +

a

2
X0
j+2;

6 end for
7 for n = 1, 2, . . . , p do
8 t← (−t a2)/(16n(2n− 1));
9 s← a/(4n+ 2);

10 for j = 0, 1, . . . , k − 1 do
11 Xj← Xj + t(X̂4n+j − s Ŷ4n+j+2);
12 Yj ← Yj + t(Ŷ4n+j + s X̂4n+j+2);
13 end for
14 end for
15 return X, Y
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6.12 A P P E N D I X : T H E FI T T I N G W I T H B E Z I E R C U B I C S

6.12.1 Introduction to the problem

In this appendix we approximate a given set of points with a class of G1 curves. The set of points
will not be completely random because of the next fact.

Remark 6.16. The given set P = {p0, . . . ,pm} of points to be fitted, comes from the sampling of an
unknown curve γ̄ : [a, b]→ X with values in X = R2 or R3, γ̄ can be a closed curve (γ̄(a) = γ̄(b)).

Since the sampled points are not exactly on the unknown curve, we can not only interpolate
them with splines, instead we have to construct a piecewise defined curve that fits them using
least squares. Another request we want to satisfy is the continuity of the curve and of its derivative.
We have to check this piecewise, with particular attention to the knots that connect every pair of
curves.

Among the various families of well known splines, we choose cubic Bezier curves. It is convenient
to define a partition P in {Pk} such that ∪Nk=1Pk = P and Pi ∩ Pj = ∅ if i 6= j. We call nk = |Pk|
the cardinality of each set of the partition. Every Pk induces a vector of knots (e.g. time intervals)
Tk = (t1,k, . . . , tnk,k). Tk can be obtained in various ways, the easiest and straight forward is linear
interpolation of the points of Pk. In general we have t1,k = 0 and tnk,k = 1.

6.12.2 Minimizing single Bezier curves

Definition 6.17 (Bezier Curve). A Bezier curve of degree n in parametric form is defined, starting
from n+ 1 points P0, . . . ,Pn in RM , as

B : [0, 1]→ RM B(t) =

n∑
i=0

Pi

(
n

i

)
(1− t)n−iti

where (1− t)n−iti is the i−th Bernstein’s polynomial of degree n. The points Pi are the vertices of
the Bernstein’s polygon and are called control points.

Remark 6.18. In our problem we will use cubic Bezier curve (n = 3), thus splines of the kind

B(t) = (1− t)3P0 + 3t(1− t)2P1 + 3t2(1− t)P2 + t3P3 (6.34)

The cubic in (6.34) passes through the points P0 and P3 but not through P1 and P2, the latter
determining the tangents. Defining `T0 = P1 − P0 and `T1 = P3 − P2 where ` is the length of the
Bezier curve and redenoting with P1 the point P3, Bezier curve becomes:

B(t) = b0(t)P0 + b1(t)P1 + `
(
c0(t)T0 + c1(t)T1

)
,

b0(t) = (1− t)3, b1(t) = t2(3− 2t),

c0(t) = 3t(1− t)2, c1(t) = 3t2(t− 1),

where P0 and P1 are fixed points. We search for the tangents T0 and T1 that minimize the error
|B(ti) − pi| for all pi ∈ P. We measure the error with the sum of the square of the difference
between the approximating spline and the points pi ∈ P, i.e. the square of the standard deviation:

S(T0,T1) =
1

m+ 1

m∑
i=0

‖B(ti)− pi‖2 . (6.35)

Lemma 6.19. The tangents T0 and T1 that minimize (6.35) are functions of pi,k ∈ P.
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Proof. Differentiating S(T0,T1) with respect to the two variables T0 and T1, we obtain a linear
system, that can even be solved explicitly. Formally we have

∂S

∂T0
=

2

m+ 1

m∑
i=0

`c0(ti)(B(ti)− pi)

∂S

∂T1
=

2

m+ 1

m∑
i=0

`c1(ti)(B(ti)− pi)

6.12.3 Minimizing piecewise Bezier curve

Definition 6.20. A curve γ(t) is geometrically continuous (Gn) in a point t ∈ [t0, t1) if exists a
parametrization such that the resulting curve is Cn.

Lemma 6.21 (Continuity in the joints). The necessary condition for continuity in the joint point of
two splines segments Bk−1(t) and Bk(t) is

P0,k = P3,k−1 (6.36)

to have also a continuous derivative must hold

P1,k = 2P3,k−1 − P2,k−1 (6.37)

For our scope is enough geometric continuity G1, thus we will require

P3,k−1 = αP1,k + (1− α)P2,k−1 (6.38)

with α ∈ (0, 1) this means that in the point of connection of two splines the tangents be parallel
(proportional) but not necessarily the same.

Proof. It is easy to prove the continuity ofBk−1 andBk(t), in facts it should holdBk−1(1) = Bk(0),
and this is achieved when P3,k−1 = P0,k, which is exactly (6.36). To check the continuity of the
derivative, we must see if (1− α)B′k−1(1) = αB′k(0). The derivative of Bk(t) is

B′k(t) = −3(1− t)2P0,k + (9t2 − 12t+ 3)P1,k

+(6t− 9t2)P2,k + 3t2P3,k,

B′k(0) = 3(P1,k − P0,k),

B′k−1(1) = 3(P3,k−1 − P2,k−1)

now imposing αB′k−1(1) = (1− α)B′k(0) and substituting (6.36) yields

(1− α)(P3,k−1 − P2,k−1) = α(P1,k − P0,k)

and simplifying terms

P3,k−1 = αP1,k + (1− α)P2,k−1.

Equation (6.38) implies the existence of Tk such that P1,k = Pk + αTk.
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Therefore we can rewrite (6.34) putting the constraints to be G1 as in (6.36) and (6.37), hence
the new Bezier curve becomes

Bk(t) = c0(t)Pk + `kd0(t)Tk + c1(t)Pk+1 + `kd1(t)Tk+1

where
c0(t) = b0(t) + b1(t)

d0(t) = b1(t)

c1(t) = b2(t) + b3(t)

d1(t) = −b2(t)

P0,k = Pk
P1,k = Pk + `kTk
P2,k = Pk+1 − `kTk+1

P3,k = Pk+1

Theorem 6.22. The control points for a piecewise weighted Bezier curve with G1 continuity
conditions can be calculated by minimizing

S =

N∑
k=1

wkSk =

N∑
k=1

wk

(
1

2

nk∑
i=1

‖Bk(ti,k)− pi,k‖2
)
.

where wk > 0, usually wk = 1/nk.

6.12.4 Proof of the theorem

We start by proving the cyclic case, i.e. when the initial point is equal to the final point (e.g. γ̄ is a
closed curve). The cases with fixed or free extrema are very similar and differs only in the definition
of the initial and final spline.

S =

N∑
k=1

wkSk =
1

2

N∑
k=1

wk

nk∑
i=1

‖Bk(ti,k)− pi,k‖2

Consider only Sk

Sk =
1

2

nk∑
i=1

‖Bk(ti,k)− pi,k‖2 ,

=
1

2

nk∑
i=1

(
Bk(ti,k)TBk(ti,k) + pTi,kpi,k − 2pTi,kBk(ti,k)

)
we see that

Bk(ti,k) = Pk−1c0(ti,k) + `kTk−1d0(ti,k) + Pkc1(ti,k) + `kTkd1(ti,k),

=
[ (
c0(ti,k) `kd0(ti,k) c1(ti,k) `kd1(ti,k)

)
⊗ I

]
Pk−1

Tk−1

Pk
Tk


therefore

Sk =
1

2


Pk−1

Tk−1

Pk
Tk


T (
Ak ⊗ I

)
Pk−1

Tk−1

Pk
Tk

− bTk

Pk−1

Tk−1

Pk
Tk

− c
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where

Ak =


∑
c0c0 `k

∑
c0d0

`k
∑
d0c0 `2k

∑
d0d0

∑
c0c1 `k

∑
c0d1

`k
∑
d0c1 `2k

∑
d0d1∑

c1c0 `k
∑
c1d0

`k
∑
d1c0 `2k

∑
d1d0

∑
c1c1 `k

∑
c1d1

`k
∑
d1c1 `2k

∑
d1d1



bk =


∑
c0(ti,k)pi,k

`k
∑
d0(ti,k)pi,k∑
c1(ti,k)pi,k

`k
∑
d1(ti,k)pi,k


T

, c =
∑

pTi,kpi,k

the points candidate to be minima are those that ∇S = 0. Because of

(
∇k−1Sk ∇kSTk

)T
=
(
Ak ⊗ I

)
Pk−1

Tk−1

Pk
Tk

− bk
where

∇k = (∂TPk ∂
T
Tk

), ∇ = (∇0 ∇1 · · · ∇N ),

hence

∇S =

N∑
k=1

wk∇Sk =



w1∇0S1

w1∇1S1 + w2∇1S2

w2∇2S2 + w3∇2S3

...
wN−1∇N−1SN−1 + wN∇N−1SN

wN∇NSN


we can write ∇S = Mx − Q where M is the matrix of the coefficients, x is the vector of the
unknowns, Q is the vector of constants, they will be described better later. Let us expand some
terms of the sum over k in order to see what happens at the initial and final points.

S =
w1

2

n1∑
i=1

‖P0c0 + `1T0d0 + P1c1 + `1T1d1 − pi,1‖2

+ · · ·+

+
wk
2

nk∑
i=1

‖Pk−1c0 + `kTk−1d0 + Pkc1 + `kTkd1 − pi,k−1‖2

+
wk+1

2

nk+1∑
i=1

‖Pkc0 + `k+1Tkd0 + Pk+1c1 + `k+1Tk+1d1 − pi,k‖2

+ · · ·+

+
wN
2

nN∑
i=1

‖PN−1c0 + `NTN−1d0 + PNc1 + `NTNd1 − pi,N‖2
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in the cyclic case PN = P0, TN = T0. The partial derivatives for variables Pj ,Tj are:

∂S

∂P0
= w1

n1∑
i=1

(P0c0 + `1T0d0 + P1b1 + `1T2d1 − pi,1)c0

+ wN

nN∑
i=1

(PN−1c0 + `NTN−1d0 + P0c1 + `1T0d1 − pi,N )c1

∂S

∂T0
= `1w1

n1∑
i=1

(P0c0 + `1T0d0 + P1c1 + `1T1d1 − pi,1)d0

+ `NwN

nN∑
i=1

(PN−1c0 + `NTN−1d0 + P0c1 + `1T0d1 − pi,N )d1

In general we have

∂S

∂Pk
= wk−1

nk−1∑
i=1

c1(ti,k−1)Bk−1(ti,k−1)

+wk

nk∑
i=1

c0(ti,k)Bk(ti,k)

∂S

∂Tk
= wk−1`k−1

nk−1∑
i=1

d1(ti,k−1)Bk−1(ti,k−1)

+wk`k

nk∑
i=1

d0(ti,k)Bk(ti,k)

The result is a tridiagonal block system 2 × 2 with corners, we denote it with Mx = Q. The
vector of the unknowns is x = (P0,T0,P2,T2, . . . ,PN−1,TN−1)T , matrix M and vector Q are the
following.

M =



D1 LT1 0 . . . . . . . . . LN
L1 D2 LT2 0 . . . . . . 0

0 L2 D3 LT3 0 . . . 0
...

0 LN−2 DN−1 LTN−1

LTN 0 LN−1 DN



Q =


Q1

Q2

...
QN−1

QN
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The single blocks are respectively (omitting the dependance on the knots ti,k)

D1 = w1

n1∑
i=1

(
c0c0 `1c0d0

`1c0d0 `21d0d0

)
+ wN

nN∑
i=1

(
c1c1 `Nc1d1

`Nc1d1 `2Nd1d1

)

Dk = wk−1

nk−1∑
i=1

(
c1c1 `k−1c1d1

`k−1c1d1 `2k−1d1d1

)
+ wk

nk∑
i=1

(
c0c0 `kc0d0

`kc0d0 `2kd0d0

)

LN = wN

nN∑
i=1

(
c0c1 `Nc1d0

`Nc0d1 `2Nd0d1

)

Lk = wk

nk∑
i=1

(
c0c1 `kc1d0

`kc0d1 `2kd0d1

)

Finally the vector of the constants Q is

Q1 = w1

n1∑
i=1

(
c0pi,1
`1d0pi,1

)
+ wN

nN∑
i=1

(
c1pi,N
`Nd1pi,N

)

Qk = wk−1

nk−1∑
i=1

(
cc1pi,k−1

`k−1d1pi,k−1

)
+ wk

nN∑
i=1

(
c0pi,k
`kd0pi,k

)

We can notice that M is a symmetric matrix because the blocks Dk are symmetric.

We treat now the non-cyclic case, first with free extrema. This time the matrix M will be
2N + 2 × 2N + 2 because we do not connect the first and last point anymore. The central
blocks of M are the same. We have only to redefine the first and last row, and the corresponding
entries in Q.

D1 = w1

n1∑
i=1

(
c0c0 `1c0d0

`1c0d0 `21d0d0

)
LN =

(
0 0

0 0

)

LT1 = w1

n1∑
i=1

(
`1c0d1 c0c1
`1c1d0 `21d0d1

)

Q1 = w1

n1∑
i=1

(
c0pi,1
`1d0pi,1

)
QN+1 = wN

nN∑
i=1

(
c1pi,N
`Nd1pi,N

)

It remains the case with fixed extrema.

D1 =

1 0

0 w1`
2
1

n1∑
i=1

d0d0

 DN+1 =

1 0

0 wN `
2
N

nN∑
i=1

d1d1


LN+1 =

(
0 0

0 0

)
LT1 = w1

n1∑
i=1

(
0 0

`1c1d0 `21d0d1

)

Q1 =

 p0

w1`1

n1∑
i=1

d0pi,1

 QN+1 =

 pm

wN `N

nN∑
i=1

d1pi,N


We are interested in a result of existence and unicity of the solution. We can notice that M is

symmetric and positive definite. There is to prove that M is strictly positive definite: S is the sum
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of the square of the error in each segment, thus S = 0 if and only if all Sk = 0. We have to find
when Sk is not zero, and this is clearly true when nk ≥ 4.

2Sk =

nk∑
i=1

‖Bk(ti,k)− pi,k‖2 ,

=

nk∑
i=1

‖c0(ti,k)Pk + d0(ti,k)`kTk + c1(ti,k)Pk+1 + d1(ti,k)`kTk+1 − pi,k‖2 .

The k−th term is ∥∥∥∥∥∥∥∥((c0, d0, c1, d1)⊗ I)


Pk
`kTk
Pk+1

`kTk+1

− pTi,k
∥∥∥∥∥∥∥∥

2

.

We put pi = 0 and check when the product vanishes. Writing the previous relations in matrix form
yields 


c0(t1,k) d0(t1,k) c1(t1,k) d1(t1,k)

c0(t2,k) d0(t2,k) c1(t2,k) d1(t2,k)

. . . . . . . . . . . .

c0(tnk,k) d0(tnk,k) c1(tnk,k) d1(tnk,k)

⊗ I



Pk
`kTk
Pk+1

`kTk+1

 = 0

We want that the unique solution of this linear system be the trivial one. The product is non-zero if
the left matrix is full rank, i.e. there exist at least 4 linearly independent rows. This is true if there
are at least four distinct knots where we evaluate polynomials cj , dj . This completes the proof.

6.12.5 An Example: reconstruction of the track of Spa-Francorchamps

We give a final example of the road reconstruction with G1 Bezier curves, with G1 clothoids, and
with quasi G2 clothoids. The first picture of Figure 6.7 is the cloud of points obtained by the GPS,
the middle picture represents the reconstruction with Bezier curves with cyclic boundary conditions,
the right picture with non cyclic conditions.
Figure 6.8 shows the comparison of the reconstruction with non cyclic Bezier curves and with G1

Figure 6.7: From the left: GPS points, fitting with G1 with cyclic conditions, fitting without cyclic conditions.

clothoids.
Figure 6.9 shows the superposition of the original GPS data with the fitting with clothoids.
Figure 6.10 shows the interpolation of the original points with a quasi G2 clothoid, the picture

below shows the curvature of the fitting. We notice the peaks of the curvature in correspondence
of the U curve after Les Combes and the famous La Source curve just before the Eau Rouge
Raidillon. The last Figure 6.11 shows the trajectory projected back on the surface of the Earth.
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Figure 6.8: Left: G1 Bezier, right: G1 clothoids.

Figure 6.9: The dots are the original GPS data fitted with the clothoids.
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Figure 6.10: QuasiG2 interpolation and the relative curvature. Units are meters and for the curvature 1/meters.

Figure 6.11: Projection of the fitting on the surface.
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We have presented a benchmark suite of optimal control problems to validate the solver XOptima
proposed by our research group. The suite is supplied with the analytic solution in order to
permit a reliable comparison between the numerical and the exact solution. The comparison is
enlarged to other three open source software for OCP, Acado, Gpops and Iclocs. Acado uses the
multiple shooting algorithm with an SQP, while Gpops uses the pseudo spectral method and Iclocs
uses direct collocation. Moreover we collected the numerical results from published articles and
books. In particular we choose different approaches to check the difference of the results, thus
we have results for each of the direct and indirect methods and for the DPP. We do not compare
the performance of the solvers in terms of speed, because it does not make sense to compare
different implementations: Acado and XOptima are written in C++ and hence are in general much
faster than the Matlab interface for the NLP solver Ipopt used by Gpops and Iclocs. As an en
passant comment, we just say that the execution time varies from below the second up to few
seconds for XOptima, a bunch of seconds up to a minute for Acado, half a minute up to one or two
minutes for Gpops and Iclocs. We still remark that those times are not representative because
of the different implementations, they are given to just give an idea. We do not compare either
the number of iterations employed to converge to the solution, because the various methods are
structurally different, e.g. Gpops and Iclocs use subiterations and refinements of the mesh while
Acado and XOptima do not have subiterations. Therefore, the only performance criterion used was
the precision of the solution in terms of the ratio (N −E)/E where N is the numerical value of the
target functional to be minimized and E is the exact value of the target coming from the analytic
solution. Here another comment is mandatory: the methods tested have different characteristics,
so it is not completely representative to look only at the target value. In facts, for example, Acado
uses piecewise constant controls, that are well suited for bang bang problems, but give some
inaccuracies when the control is for example a line or a parabola. This is clear looking at Figure 5.4:
it is clear that Acado converged (good) to the correct solution, but it can not give a precise solution
because of the shape of the control, even using a fine mesh. The opposite occurs for Gpops, that
fits the control very precisely and thus gives a very good result (Table 5.1). So it is not enough
to consider only the results quantitatively, but we have to check also the quality of the solution in
terms of oscillations of the numerical values, e.g. Figure 5.21 shows the ringing of Gpops. The
method employed by XOptima makes broad use of penalty functions, yielding a continuous smooth
control even in the case of bang bang solutions, to obtain a sharp plot in the points of discontinuity,
it is necessary to put severe penalization on the weight of the regularized functions. The best way
to obtain a sharp control in those cases and a very quick convergence, is to use homotopy (or
continuation). This tool turns out to be fundamental, because it allows to start the numeric solution
with very mild penalization of the control obtaining a quick convergence. This first approximate
solution is then used as a guess for the states and the control for a new instance of the solver with
a more strict requirement on the control or on other states or variables. Practise shows that even if
we could solve the problem without applying continuation, the convergence time is dramatically
higher than with the homotopy activated. But apart from the speed up of the process, continuation
turned out to be the key feature to obtain convergence of XOptima on the hard problems, while the
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other solvers were not successful. A limit encountered in the numerical solution of the underwater
vehicle, was that Acado, Gpops and Iclocs did not converge, but were also unable to practically
handle the required (see [CSMV04]) mesh of 10000 points. With XOptima we could solve the
problem up to 20000 points (in a reasonable time of around two minutes), but there was not a
significant improvements of the solution, and we decided to report the value of the coarsest mesh
yielding a valid solution, that is 2000 points.
We were successful in solving with XOptima the problems it was born for, that is the optimization of
the minimum lap time of a high performance vehicle on a race circuit track. The problem is very
challenging because of many types of constraints and results in almost 100000 equations on a
mesh of 2800 nodes. In this problem it was employed the description of the road obtained with the
algorithm presented in chapter 6 and published in [BF13, BF14]. The novelty of the formulation
proposed is the proof of existence and uniqueness of the solution, the bound of the number of
iterations of the algorithm to produce a satisfactory solution and the analysis of the motivation of
the failures of the other state of art algorithms. An important application of the algorithm is the
generation of quasi G2 trajectories, were the jumps of the curvature are in practice negligible from
an applicative point of view.
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