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Abstract 

 

ABSTRACT 
 

Of 25000 genes encoded from genome, more than 90% are subject to alternative 

splicing or other post-transcriptional modifications. All these events produce a high 

number of different proteins that form the basis for the high variety of cells. The RNA-

binding proteins (RBPs) play crucial roles in this variability by regulating many steps of 

biological processes regarding RNA metabolism. The heterogeneous nuclear 

ribonucleoproteins (hnRNPs) belong to big family of RBPs involved in many aspects of 

RNA metabolism including RNA stability, intracellular transport and translation. More 

recently, RALY, a RNA-binding protein associated with the lethal yellow mutation in 

mouse, has been identified as new member of the hnRNP family even if, its biological 

function remains still elusive.  

My PhD project aimed to characterize human RALY and to assess its function in 

mammalian cells. Initially I identified the expression pattern of this protein into the cell 

and I characterized the functional nuclear localization sequence that localizes RALY 

protein into the nuclear compartment. In order to better understand the role of RALY in 

the cells, I identified the proteins component of RALY-containing complexes using a 

new assay named iBioPQ (in vivo-Biotinylation-Pulldown-Quant assay). I also 

performed polyribosome profiling assay to check the presence of RALY in translating 

mRNAs. Moreover, a microarray assay was performed in order to identify potential 

mRNAs whose metabolism appears dependent on RALY expression. Taken together, 

the results that I obtained suggest that RALY is involved in mRNA metabolism. 

Unfortunately more studies remain to do before shedding some light on the biological 

role of RALY in mammals 

 



 

 

.



Introduction 

 
1 

 

1 - INTRODUCTION 

According to the central dogma of molecular biology, a particular segment of DNA, 

called gene, is transcribed into RNA (precisely messenger-RNA) and then it is 

converted, through a process called translation, into a protein. In this scheme, the 

mRNA had been viewed as a passive component which carries the protein blueprint 

from the nuclear DNA to the cells’ "machines" which drive protein synthesis. However, 

this is a very simply way to see gene expression, because gene expression is a very 

complex and highly regulated process, especially relating to mRNA. Differential gene 

expression is crucial for growth, differentiation, development and cell survival in various 

situations, including environmental stress. It is very important, therefore, that all these 

processes are tightly controlled, not only in order to minimize cell energy, but also to 

reduce errors that might affect survival of the cell or even of the entire organism. For 

these reasons several interconnected 

steps have been evolved to control gene 

expression. 

 In the last few years, we have seen 

the birth of new hypotheses regarding the 

control of gene expression; these 

hypotheses are focused on the role that 

RNA metabolism plays in creating protein 

variability. In fact, processes such as 

splicing, mRNA silencing, transport and 

localization of certain transcripts to sub 

cellular compartments, and processes to 

control RNA "quality” are all critical to ensure survival, development and maturation of 

a cell. If only one of these processes is altered, the physiology of the entire cell can be 

impaired. The results of post-translational control studies of gene expression have led 

to a new fascinating theory: the “RNA-operon”, namely the coordination of trans-acting 

factors, which regulate the translation of multiple mRNAs in different pathways, 

allowing cells to respond rapidly to environmental cues (Keene and Lager 2005; Keene 

2007). The fundamental components of the "operon" are the ribonucleoparticles 

(RNPs), complexes compose of multiple factors, such as RNA-binding proteins (RBPs), 

mRNAs,  non-coding RNAs and other molecules including, for example, motor proteins 

(Keene 2007). The great heterogeneity of these particles, which may be composed by 

different proteins and mi/siRNAs, plus the presence of mRNA encoded for the same 

Figure 1 Interconnected steps of post-
transcriptional regulation and its potential 
coordination (Keene 2007) 
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protein in different RNPs localized in 

different cellular regions, have drastic 

effects on the regulation and translation of 

mRNAs, causing a very dynamic 

synthesis of proteins. This high variability 

in gene expression is the principal 

responsible for the rapidly cellular 

response to external and internal stimuli 

(Abdelmohsen, Pullmann et al. 2007; 

Keene 2007). Although the RNPs are 

composed by several proteins and 

molecules, the RNA-binding proteins have the most important role in the variability of 

gene expression: they are responsible to the maturation of pre-mRNA, they can bind 

different kinds of RNAs, including rRNAs, miRNAs and lncRNAs; moreover, the 

capacity of this proteins to mutually interact or with other proteins as the motor proteins 

permit the formation, the control and the mobility of the RNPs.  

1.1 THE RNA-BINDING PROTEINS 

Due to the plethora of biological processes regulated by the  RNA-binding proteins, 

these proteins must be able to recognize different RNA's structures, for example short 

sequences, secondary structures, RNA duplexes and many other structures (Sibley, 

Attig et al. 2012). This ability is given by specific structured domains known as RNA-

binding domains (RBDs). More than ten different RBDs have been identified so far. 

Table 1 shows only a selected list of the most common RBDs. Each single domain 

recognizes a specific sequence or a defined structure of RNA. However, to guarantee 

the specific binding with their cargo mRNAs, several proteins contain two or more 

RBDs connected by a linker, also known as auxiliary domain, a  short sequence  that  

in most cases does not play a direct role in RNA binding (Lunde, Moore et al. 2007; 

Shazman and Mandel-Gutfreund 2008).  

The auxiliar domains can be sequences located in other protein regions, in many 

case distant from the RBDs, and they have the capacity to promote RNA-binding 

activity or they can be used in protein-protein interaction. For example in the 

serine/arginine-rich (SR) splicing factor family (SRSF), the  serine/arginine (SR) 

domain, which characterize this family, does not have any role in the recognition of 

RNA, but rather facilitates the recruitment of other spliceosomal components to pre-

spliced RNA (Schaal and Maniatis 1999). 

Figure 2 Formation and dynamics of 
ribonucleoprotein (RNP) complexes (Keene 2007) 
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 RBPs must be controlled at transcriptional level, in order to guarantee an accurate 

control of gene expression. This idea sounds like the Latin quote:”Quis custodiet ipsos 

custodes?”1

Mittal, Roy et al. 2009

 but, understanding the mechanisms regulating the expression of the RBPs 

as well as when and how these proteins are translated, is essential to figure out how 

these proteins control the RNA metabolism. In an article published in 2007, Janga and 

colleagues studied of mRNA stability, abundance and turn-over in the RNA-binding 

proteins of Sacchoromyces cerevisiae discovering that RBPs are indeed the most 

abundant proteins in the cell ( ). This abundance comes by a 

faster transcription and translation compared to other proteins non-RBPs. Moreover, 

the RBPs undergo a significant stabilization when compared to the half-life of other 

proteins. In contrast, the half-life of the corresponding mRNA is very short and the high 

level of transcripts is guaranteed from high transcription of the RBPs genes. This 

means that RBPs  are not only the most common proteins into the cells, but also the 

                                                 
1 Who guards the guards? 

Table 1 List of the most common RNA binding domains.  dsRBD, double-stranded RNA-

binding domain; KH, K-homology; OB-like, oligonucleotide/oligosaccharide binding-like; PDB ID, 

Protein Data Bank identification; RRM, RNA-recognition motif; siRNA, small interfering RNA; ssRNA, 

single-stranded RNA; ZnF, zinc finger (Lunde, Moore et al. 2007) 
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proteins with the high level of controls that occur at post-translational level: the guards 

control the guards (Mittal, Roy et al. 2009).  

Although the post-translational control of RBPs is very important to maintain the 

cellular homeostasis, it cannot guarantee the functionality of proteins. The complexity 

of the interaction between RNAs and RBPs, the high number of RNAs which could be 

recognized by single RBPs, combined with the mutual interaction of these proteins in 

order to ensure the correct formation of specific RNPs, suggest the presence of an 

additional level of control besides the gene expression control. To guarantee these 

strict monitoring, the RNA-binding proteins could be controlled through post-

translational modifications (PTMs) such as phosphorylation, methylation and 

SUMOylation. Many are the examples of the fine adjustment made through PTMs in 

several aspects of post-translational control. For example, cells can use SUMOylation 

of the heterogeneous nuclear ribonucleoprotein C and M (hnRNP C and M) to control 

the nucleo-cytoplasmic transport of mRNA (Vassileva and Matunis 2004). These 

results suggest that any change in RPBs availability may affect a vast number of 

transcripts with a consequently change in cellular physiology (Mittal, Roy et al. 2009). 

Last but not least, due to their central role in gene expression, many genetic 

mutations affecting the RBPs can dramatically impair the organism survival. Many 

diseases have been recently correlated with mutations in RBPs. Some of these are 

summarize in Table 2 (Keene 2007).  

Table 2 Disease implications of RNA-binding proteins (Keene 2007) 
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1.2 THE hnRNP SUPER FAMILY 

The complexity of the processes mediated by the RBPs, together with their 

structural complexity and regulation, prompted researchers to divide the RBPs in big 

families according to the structure and function of the RBDs (Chen and Varani 2005). 

One of the first families characterized has been the heterogeneous nuclear 

ribonucleoprotein (hnRNP). The name identifies those proteins that bind 

heterogeneous nuclear RNAs (hnRNAs), the historical name given to the transcripts 

produced by RNA polymerase II (Dreyfuss, Matunis et al. 1993). 

 The first studies aiming to isolate the hnRNPs were performed at biochemical level 

using sucrose density gradient (Krecic and Swanson 1999). Although this approach 

has been successfully used for other porpuses, it failed to isolate the hnRNP 

complexes. Only in 1984 Choi and Dreyfuss were able to isolate the first hnRNP C 

containing complex from Hela cell's 

nuclei through an immunoprecipitation 

assay (Figure 3). Proteins with a 

molecular weight ranging from 34 kDa 

to 43 kDa were isolated, and then 

identified as the hnRNP A1 and A2, B1 

and B2 and hnRNP C1 and C2. In 

addition, the researchers isolated 

proteins ranging from 45 kDa to very 

high molecular mass, and these 

proteins were  called hnRNP D-U 

(Choi and Dreyfuss 1984). From that 

moment other hnRNPs have been 

identified, such as the hnRNP-like 

RNA-binding factors which include 

CELF proteins, Fox, Nova and TDP-

43. (Hallegger, Llorian et al. 2010; 

Busch and Hertel 2012) 

1.2.1 Properties of hnRNPs 

The hnRNPs might exert different roles in the cell. They are involved principally in 

pre-mRNA splicing, mRNA transport, RNA editing and packaging, polyadenylation, 

silencing, shuttling and telomere biogenesis. Moreover, some hnRNPs like hnRNP C, 

hnRNP E/K, hnRNP U and AUF1 can bind DNA and are involved in DNA interactions 

and functions, including chromatin remodeling and packaging, DNA damage repair, 

Figure 3 Protein composition of hnRNP complexes 
immunopurified with a monoclonal antibody, 4F4, to the C 
proteins. The hnRNP complexes were immunopurified 
from the nucleoplasm of [35S]methionine-labeled HeLa 
cells. The proteins were separated by non-equilibrium pH 
gradient gel electrophoresis (NEPHGE )in the first 
dimension and by SDS-PAGE in the second dimension, 
and visualized by fluorography (Dreyfuss, Matunis et al. 
1993) 
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transcription and other functions. A short list of hnRNP and they functions is reported in 

Table 3 (Han, Tang et al. 2010; Pont, Sadri et al. 2012).  

The main feature of the hnRNPs, that permits them to exert a high number of 

functions, is the presence of one or more RNA-binding domains. The most common 

domain present within this family is the RNA recognition motif (RRM). The RRM 

consists of 80-90 amino acids which form four-strands antiparallel β-sheets with two 

additional α-helices arranged in the order β1α1β2β3α2β4; these secondary 

structures form a barrel-like topology structure (Handa, Nureki et al. 1999; Antson 

2000). Contacts between RRM domain and RNA are established by the consensus 

sequence, called RNP-1 and RNP-2, located in the β3 and β1 strands; each RNP 

consists in 4 aromatics amino acids, which associate with 2 bases of RNA allowing the 

Table 3 Short list of hnRNP and their functions when interact with DNA, RNA or other proteins. For 
clarity, functions have been categorized based on the predominant nature of the hnRNP interaction, but it 
should be noted that these categories are not mutually exclusive (Han, Tang et al. 2010) 
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interaction between RNA and β-sheet surface (Birney, Kumar et al. 1993). Thus, the 

RRM can bind single-stranded nucleic acids with variable length, including ssDNA, in a 

non-sequence specific manner, with the consequence that several hnRNPs are 

associated with DNA metabolism (Birney, Kumar et al. 1993; Dreyfuss, Matunis et al. 

1993; Maris, Dominguez et al. 2005; Han, Tang et al. 2010).  

The RRM motif is not the only domain present in the hnRNPs responsible for their 

interaction with nucleic acids, for example hnRNP E/K bind RNA via hnRNP KH (K 

homology) domain. The KH domain forms a β1α1α2β2β'α' structure that binds RNA or 

ssDNA between the β-sheet and the α−helices (Musco, Stier et al. 1996). Many others 

are the proteins which present a non classical RMM, for example, the proteins hnRNP 

F and H do not have the normal RRM, but they are composed of a qRRMs domain 

(quasi-RRMs), containing an extra β3’ loop (Dominguez, Fisette et al. 2010). The 

protein hnRNP I (also known as PTB) contains 4 non-canonical RRMs because these 

domains include unusual amino acids; in particular, in the RNPs of these RRM are 

absent the aromatic residues used by other RMM domains for non-specific contact with 

the RNA. Moreover the conserved glycine, present in the RNP-1 of classic RRMs, is 

substituted by amino acids with larger side chains in all RMM domains of PTB (Conte, 

Grune et al. 2000). Furthermore, hnRNP U binds RNA via a domain containing a 

glycine-rich region (Kiledjian and Dreyfuss 1992; Dreyfuss, Matunis et al. 1993; Han, 

Tang et al. 2010). 

Figure 4 Structural representation arrangement of the RNA strand on the β-sheet of hnRNPA1–
RRM (A). In (B) schematic representation of hnRNPA1 RRM 2 with the conserved RNP 1 and RNP 2 
aromatic residue positions numbered according to each RNP sequence numbering. The conserved 
aromatic residues are highlighted by green circles (Maris, Dominguez et al. 2005) 
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In addition to RRM, the hnRNPs have other auxiliary domains. One of the most 

common is the so called RGG box (arginine/glycine/glycine box), a sequence formed 

by several repeats of three amino acids. This domain is often involved in protein-

protein interactions and might interact with RNA in a sequence-independent manner 

(Godin and Varani 2007). Differently from other RNA-binding domains and from other 

domains involved in protein-protein interaction, the connection between RGG boxes 

and other structures, formed by amino acids or nucleic acids, can be modulated by 

arginine methyl transferase enzymes (PRMTs), which can methylate the arginine 

guaridinum group (Dreyfuss, Matunis et al. 1993; Godin and Varani 2007; Han, Tang et 

al. 2010). 

Others auxiliary domains are present in hnRNPs, and for many of these domains 

their function remains elusive. For example, a glycine-rich domain, which differs from 

the canonicals RGG boxes, is present in hnRNP A1 proteins at their C-terminal region. 

This "pseudo-RGG" domain seems to mediate dimerization of hnRNP A1-A1. The 

hnRNP C contains a domain rich in acidic amino acids and a putative nucleotide 

triphosphates (NTP)-binding site whose function is not know yet (Dreyfuss, Matunis et 

al. 1993). In addition to these domains, a large number of hnRNPs bear one or more 

nuclear localization signals (NLS) as well as nuclear export signals (NES). Both 

domains allow the shuttling from nucleus to cytoplasm that is typical of many hnRNPs 

(Dingwall, Robbins et al. 1988; la Cour, Kiemer et al. 2004).   

Figure 5 Schematic representation of RNA-binding domain in hnRNP structures. ‘A’ represents the 
hnRNP A proteins (A0, A1, A2/B1 and A3) that are structurally similar. Gly-Rich=RGG. (Han, Tang et al. 2010) 
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1.3 RALY: A NEW MEMBER OF hnRNPs 

RALY, the RNA-binding protein Associated with Lethal Yellow mutation, also known 

as HNRPCL2 and P542, is considered a member of the hnRNP family because it 

shows a high similarity in amino acids sequence with hnRNP C. Moreover, RALY is 

very similar to other two hnRNPs: hnRNP CL1 and RALYL (RALY-Like) (Jiang, Guo et 

al. 1998; Busch and Hertel 2012). RALY is a protein of 306 amino acids (37 kDa) that 

is ubiquitously expressed. Two spliced isoforms of RALY (originally called RALY and 

P542) which differ for 16 amino acids immediately downstream the RBD, can be 

expressed in a tissue specific manner (Khrebtukova, Kuklin et al. 1999). 

RALY is characterized by the presence of one RRM, very similar to hnRNP C RRM 

domain, at the N-terminal region, and one non-canonical RGG at the C-terminal. 

Several studies identified this particular RGG box as an auto antigenic epitope cross-

reacting with the Epstein-Barr nuclear antigen 1 (EBNA1), a viral protein associated 

with Epstein-Barr virus (Vaughan, Valbracht et al. 1995); interesting, only the short 

isoform (P542) seems to have a role in this auto antigen response, but at the moment 

the real role of this particular domain remains elusive (Khrebtukova, Kuklin et al. 1999).  
 
In mouse, the RALY gene is localized near the agouti gene. The agouti gene (A) 

encodes for Agouti Signalling Peptide (APS), an endogenous antagonist of melatonin-1 

receptor (MC1R). It is responsible for the coat in several animals. This gene is affected 

by several genetic mutations, including a deletion in the 5’ region of agouti gene (Ay). 

The presence in homozygote of the a allele is responsible for the the dark black/brown 

pigment production, while the genotype a/Ay is responsible for yellow/red pigment in 

several animals such as cat, horse, sheep and mouse; the presence in homozygosis of 

mutant agouti Ay/Ay is responsible for the ‘Yellow Lethal Mutation’ pathology in mouse 

and Japanese quail: embryos with the double mutant alleles cannot finish the animal's 

development (Nadeau, Minvielle et al. 2008; Dreger, Parker et al. 2013). 

The Lethal yellow mutation is a deletion of 170 kb in mouse and 90 kb in quail 

localized upstream the agouti allele. The deletion encompasses the coding region of 

RALY and of EIF2B (eukaryotic initiation factor 2B), with the consequence that agouti's 

gene passes under control of Raly promoter's. The transcript derived from this mutation 

presents the 5’-UTR of Raly, the second, third and fourth exon of ASIP; this new 

protein is expressed ubiquitously, whereas RALY is no longer present in these animals 

(Nadeau, Minvielle et al. 2008). In 1993, Woychik and colleagues hypothesized the 

importance of RALY in the Lethal Yellow phenotype. Since the RBD of RALY shares 

77% sequence identity with the RBD present in hnRNP C RBD, the researcher 

suggested that RALY, as hnRNP C, could bind and process specific mRNAs that are 
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important for the development of pre-implantation embryo. The authors concluded that 

in embryos with Ay allele in homozygosis these processes could not be performed 

causing the death of the embryo (Michaud, Bultman et al. 1993). In 2008, Mundy and 

colleagues proposed a different theory: they observed that in quail and mouse the 

deletion upstream agouti gene involves three genes, not only Raly and agouti, but also 

EIF2B, a gene that encodes for the subunit 2β of the eukaryotic translation initiation 

factor 2. Since this protein plays an important role in protein synthesis, they concluded 

that the lethality of the homozygous yellow condition might depend on the loss of 

function of this gene rather of RALY (Nadeau, Minvielle et al. 2008). Apart from these 

genetic studies concerning RALY, not much is known regarding the role that this RBP 

has within the cell.  

 

In a recent article, RALY has been identified as a component of the spliceosome 

complex suggesting its possible involvement in RNA splicing (Jurica, Licklider et al. 

2002). The data were confirmed in a second, independent article, reporting all proteins 

involved in Exon Junction Complex (EJC) (Singh, Kucukural et al. 2012). Both studies 

are very interesting, even if still preliminary and lacking any mechanistic analysis. 

Besides, no functional analysis proving any possible role of RALY in mRNA splicing 

has been shown.  

In another article Lebel and colleagues demonstrate that RALY is up-regulated in 

adenocarcinoma cell lines (Tsofack, Garand et al. 2011). In human colon 

adenocarcinoma cell lines RALY, together with NONO/p54nrb, have been identified 

such as interactors of YB-1, a RNA-binding protein that is involved in splicing, 

transcription and translational regulation of specific mRNAs (Chen, Gherzi et al. 2000; 

Raffetseder, Frye et al. 2003). NONO is a DNA- and RNA-binding protein involved in 

several nuclear processes, including pre-mRNA splicing and double-strand break 

repair (Sewer, Nguyen et al. 2002; Bladen, Udayakumar et al. 2005). Indeed, YB-1 

mediates pre-mRNA alternative splicing regulation, regulates the transcription of 

numerous genes and, like NONO, can play a role in the repairing nicks or breaks into 

double-stranded DNA (Raffetseder, Frye et al. 2003; Gaudreault, Guay et al. 2004). 

Moreover, YB-1 over-expression in different tumors has been related with the acquired 

resistance to specific tumor drugs (Ohga, Uchiumi et al. 1998; Schittek, Psenner et al. 

2007). These considerations were supported by the observations that cells with both 

RALY and NONO up-regulated became more resistant to the effects of the drug 

oxaliplatin. In contrast, the depletion of RALY expression by RNAi sensitized colorectal 

cancer cell lines treated with the oxaliplatin without affecting the cell growth rate 

(Tsofack, Garand et al. 2011). The same results were obtained after down-regulation of 
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NONO and YB-1, demonstrating that the three proteins are functionally correlated. 

Interestingly, RALY transcript is over expressed in different cancer tissues and, this 

over-expression is associated with poor survival in ovarian, lung, bladder, brain and 

breast cancers as well as in multiple myelomas and melanomas (Tsofack, Garand et 

al. 2011). These data indicate a potential role of RALY in tumorigenesis that still 

requires further investigations and mechanistic analysis, but can be used as a starting 

point for our characterization. 

 

RALY and other RNA-binding proteins, including members of the hnRNPs such as 

hnRNP H/F have been recently found also in the immunoprecipitate of RBFOX1/2. 

RBFOX1/2 is a RNA-binding protein that regulates alternative splicing events by 

binding to 5'-UGCAUGU-3' elements (Ponthier, Schluepen et al. 2006). This protein 

regulates alternative splicing of tissue-specific exons and of differentially spliced exons 

during erythropoiesis (Norris, Fan et al. 2002). Nevertheless, in contrast to hnRNP H 

that modulates the splicing activity of RBFOX1/2, RALY has no effects in this process 

because its misregulation does not impair alternative splicing of RBFOX1/2 mRNA 

targets (Sun, Zhang et al. 2012) 

In conclusion, although there is evidence that RALY might play multiple roles in 

RNA metabolism, it’s remained poorly characterized in mammals and also its potential 

interactors remain still elusive. 
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2 - TOPIC OF MY PHD PROJECT  

In an article under revision, Kiebler and colleagues characterized the interactome of 

2 proteins involved in mRNA localization and translational control in neurons: Staufen2 

(Stau2) and Barentsz (Btz or CASC3) (Härtel et al., under revision). Both proteins are 

molecular components of neuronal RNPs and are associated with mRNAs during 

transport into dendrites (Macchi, Kroening et al. 2003; Goetze, Tuebing et al. 2006). 

Interestingly, only one third of proteins interacting with STAU2 and CASC3 are 

common and this observation shows how heterogeneous and dynamics are the RNPs 

granules. In the above work, the researchers identified also RALY as a new interactor 

of Btz. Barentsz is a protein involved also in splicing and mRNA quality control: it is a 

core component of the exon junction complex (EJC), and remains bound to spliced 

mRNAs throughout all stages of mRNA metabolism thereby influencing downstream 

processes of gene expression. CASC3 is also a component of nonsense-mediated 

mRNA decay (NMD), plays a role in the stress granules formation and it is a 

component of the dendritic ribonucleoprotein particles in neurons (Macchi, Kroening et 

al. 2003; Palacios, Gatfield et al. 2004; Baguet, Degot et al. 2007; Chang, Imam et al. 

2007). The interaction of RALY with components of transport RNPs, combined with 

little knowledge regarding RALY, led me to investigate the role of this protein within the 

cell and its possible implication in regulating the RNA metabolism. 
 
I started with the characterization of the sub-cellular localization and expression 

patterns in different cell lines.  Much of my work has been the characterization of the 

entire RALY interactome and the identification of new protein interactors (Paper 1, 

Appendix 7.1). At the same time, I continued RALY characterization, focusing my 

attention in the interaction between RALY and RNA. Using polyribosome profiling, I 

observed interactions between RALY and ribosomes. Interestingly, I found RALY 

enriched in those fractions containing polyribosomes and translating mRNAs. 
 
Using a microarray analysis, I also investigated whether the loss of RALY by RNAi 

could affect the levels of specific mRNAs. These new results, in combination with the 

results on RALY’s interactome, have allowed me to better understand the biological 

role of RALY. Last but not least, based on my microarray and proteomic data, I am 

currently studying the role of RALY in other cellular processes, such as the DNA 

damage repair and the cell proliferation.  
 
Taken together, during my PhD I obtained interesting result regarding RALY and its 

role not only in post-transcriptional regulation, but also in DNA damage repair. 
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3 - RESULTS 

3.1 PUBLICATION 1:  

Proteome-Wide Characterization of the RNA-Binding Protein RALY-
Interactome Using the in Vivo-Biotinylation-Pulldown-Quant (iBioPQ) Approach. 
(Tenzer, Moro et al. 2013) 

All the results obtained whit the iBioPQ analysis are reported in the article entitled 

“Proteome-wide characterization of the RNA-binding protein RALY-interactome using 

the iBioPQ (in vivo-Biotinylation-Pulldown-Quant) approach” (Tenzer, Moro et al. 2013), 

where I share the first authorship with Dr. Stefan Tenzer (University of Mainz). We 

established a new approach using recombinant protein fused with the biotin acceptor 

peptide (BAP). This assay allowed me to obtain important results because I obtained 

and validate the RALY interactome. Using the list of interacting proteins derived from 

the mass spectrometry assay, I analyzed the gene ontology of these proteins and I 

obtained several attractive results that allowed me to speculate on the pathway where 

RALY is involved. Moreover, I could confirm the interaction between RALY and RNA, 

and the contribution of RNA in mediating some of the observed interactions.  

I identified 143 proteins that interact with RALY, the majority of these involved in 

RNA metabolism, including splicing process. At the same time I treated the cell extract 

with RNase and then I performed the pull-down assay. Surprisingly, only for 18 proteins 

the interaction with RALY decreased in the absence of RNA. In contrast, the 

interactions between RALY and other 80 proteins, including several ribosomal proteins 

and proteins binding DNA, increased after RNase treatment. This is just a glimpse of 

the results that I obtained using this technique. All details (results and the discussion) 

can be found in the Publication 1 in Appendix 7.1.  

My contribution in this paper consist in the creation of fusion protein RALY-BAP as 

well as the set up of the in vivo Biotinylation assay.  All purification steps, including 

cloning and expression were done by myself.  Moreover, I performed all experiments to 

validate the results obtained by the mass spectrometry. I performed all Western blots 

(Fig.5) as well as the immunofluorescence analysis (Fig.6). I did the treatments with 

RNase and DNase (Fig.6). I analyzed the list of RALY's interactors using the 

bioinformatics software DAVID (Fig.4) and then I started to clusterize the proteins in a 

network (Fig.3 A).  
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3.2 ADDITIONAL RESULTS 

3.2.1 RALY localization 

I started the characterization of 

RALY by assessing its intracellular 

localization in a more details. First, I 

determined the specificity of a 

commercially available antibody, in 

recognizing endogenous RALY. For this 

purpose I used the competition assay 

and the results are shown in Figure 6. 

In this experiment the antibody anti-

RALY (Bethyl) was incubated in a 

solution containing the purified fusion protein GST-RALY (details are reported in 

Appendix 7.4). After 2 hours of incubation of the antibody with GST-RALY, the 

supernatant was used to decorate the Western blot. Figure 6 shows the detection of 

RALY using antibody not treated (control) compared to the detection performed using 

the solution after incubation with RALY-GST (competition). This result confirms the 

specificity of the antibody that I used during all my experiments. 

 

I then performed an immunostaining analysis on HeLa cells. As expected, I 

observed a prominent nuclear accumulation of RALY in all cell types excluding the 

Figure 6: Competition assay. Panel A shows the 
western blot with commercial antibody anti-RALY in 
Ovcar3 and HeLa cell lines. Panel B shows the results 
of competition assay. It is possible to appreciate how in 
the blot detected with solution after competition no 
bands are present, while in the control the antibody 
recognized endogenous RALY and the fusion-protein 
GST-RALY. 

Figure 7: RALY localization. Panel A shows the nuclear localization of RALY in HeLa, Ovcar3, 
Hek293T and OliNeu cell lines. In the magnification is possible to appreciate the RALY’s localization in the 
cytoplasm (white arrows indicate big RNPs). In panel B is observable the exclusion of RALY from the 
nucleoli, while in panel C is reported the pattern of 3 fusion proteins: RALY-HA, RALY-GFP and RFP-
RALY. In all the conditions RALY has a nuclear localization. 
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nucleoli, as established after the co-staining with the nucleolar marker fibrillarin (Figure 

7 B). Interestingly, several discrete particles, typical staining for RNPs, were also 

detected in the cytoplasm (Magnification in Figure 7 A). An identical nuclear and 

cytoplasmic localization was observed in the other cell types that I tested, including 

293T cell lines, OVCAR3 and polarized cells such as oligodendrocytes, demonstrating 

that the pattern observed was not cell-specific (Figure 7 A). Especially in OliNeu cells, 

which are cells derived from the oligodendrocyte precursors, with morphology similar to 

normal oligodendrocyte (Jung, Kramer et al. 1995), the cytoplasmatic localization of 

RALY is more evident. RALY, as other RBP, localized in the conjunction between 

branches, but is detectable in little spots at the branching points of the processes of the 

cells (Figure 7 A). Furthermore, a similar localization pattern was observed in cells 

expressing RALY tagged with different marker, such as EGFP, RFP, HA (Figure 7 C) 

and others tag including BAP (Figure 1 in Publication 1).  

To explain the nuclear localization of RALY, I performed a bioinformatics analysis in 

order to identify the specific domains responsible for the protein’s pattern (Figure 21 in 

Discussion). As reported in the introduction, RALY possesses a RRM domain very 

similar to hnRNP C (77% of similarity) at the N-terminal, while in the C-terminal region 

is present a RGG box more different from the RGG boxes of other hnRNPs. In 

particular the RGG of RALY does not show arginine in the sequence, but it is 

composed by a stretch of 27 glycine interspersed from 4 serines and 1 alanine; the lack 

of arginine in the sequence suggests that this domain is not useful for the RNA binding. 

Moreover, the analysis reveals the presence of three putative Nuclear Localization 

Signals (NLSs) in the regions encompassing the amino acids 145-150, 153-159 and 

219-225, while Nuclear Export Signal (NES) were not predicted. After having identified 

these domains, I characterized the putative NLSs using several mutants of RALY 

tagged with GFP.  

 

The Figure 8 panel A shows the steps that allowed me to characterize the essential 

amino acids for the nuclear localization of RALY. I started observing the localization of 

the N-terminal region (containing the RRM domain), the C-terminal region (containing 

the predicted NLS), and the RALY-∆G (the protein without the RGG box). As expected, 

only the N-terminal region also localized in the cytoplasm, while the other two deletions 

showed normal localization. These results demonstrate that the RRM is not responsible 

for the nuclear localization, and that the NLSs are located in the C-terminal region. 

Thus, I deleted the amino acids between the residue 145-159 (the first two putative 

NLSs) and the amino acids 219-225 (the third NLS). Moreover, the amino acids proline, 

lysine and arginine (the principal responsible for the nuclear localization), were 
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changed into a neutral amino acid alanine. Figure 8 panel B shows the resulting 

localization of RALY mutants. I indicated with the name “Mut1” the protein in which the 

amino acids proline and arginine within the first putative NLS (PVKPRV) were both 

mutated into alanine; in Mut2 two arginine amino acids within the second putative NLS 

(PLVRRVK) were both mutated into alanine; finally in Mut3 two lysine amino acids in 

the third NLS (PDGKKKG) have been changed into alanine. The data show that only 

the sequence between the aa 145 and aa150 (indicated as first NLS) are essential for 

nuclear import. This mutant shows a clear cytoplasmatic staining. Nuclear staining is 

still visible due to the passive diffusion of the protein into the nuclear compartment. 

Taken together, 3 potential NLSs were predicted by bioinformatics analysis. However, 

only one seems to be necessary and sufficient to import RALY into the nucleus. This 

Figure 8: NLS characterization. Panel A reports the logical steps for the characterization of 
predicted NLSs. The point mutations ware performed as followed: first NLS (Mut1) = PVKRPRV  
PVKRAAR; second NLS (Mut2) = PLVRRVK  PLVAAVK; third NLS (Mut3) = PDGKKKG   
PDGAAKG. Panel B reports the photos, obtained at the confocal microscopy, for the RALY's mutants; 
the white arrows show the cytoplasmic accumulation of RALY with the first NLS mutated. 
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discovery opens an interesting question: could mutations in this sequence modify the 

behavior of the proteins to external and internal stimuli? 

To answer to this question I observed the behavior of mutant RALY under oxidative 

stress induced by treatment with 0,5 mM Na-Arsenite. The cells reply to the oxidative 

stress accumulating few mRNAs in peculiar RNPs called stress granules (SGs). The 

SGs are composed by several RNA-binding proteins like Barentz and Pumilio 2 

(Kedersha, Stoecklin et al. 2005; Vessey, Vaccani et al. 2006), but there is no evidence 

regarding the presence of RALY in these RNPs. Unexpectedly, the result reveals an 

accumulation of this mutant into stress granules, while the wild type protein does not 

show a similar accumulation under the same conditions (Figure 9). This result confirms 

the importance of the NLS for the nuclear localization of RALY, and at the same time 

the essentiality of this localization for the correct functioning of the protein. 

Based on Kiebler’s lab observation, I tested a possible involvement of RALY first in 

NMD and then in mRNA splicing. To investigate whether RALY is involved in NMD, I 

established a scientific collaboration with Dr. Niels Gehring at University of Cologne 

(Germany). Using an in vitro assay called tethered assay, we determined whether 

RALY could affect NMD. In this experiment, RALY and CASC3, known member of the 

NMD machinery, were tetherd to a reporter RNA that undergoes NMD due to the 

presence of a premature stop codon (Coller and Wickens 2002): when the complex is 

made, if the NMD is impaired, the reporter would not be degraded. As shown in Figure 

10, the fusion protein RALY-tethered did not have any effect in the NMD. Although 

RALY interacts with CASC3, which is involved in NMD, my data suggest that RALY is 

not required for this process. I tried also to understand the possible role of RALY in the 

Figure 9: oxidative stress. It is showed the behaviour of RALY wild 
type and RALY with the first NLS mutated (RALY Mut1), either with GFP-
tag, in normal conditions and after Arsenite treatment. In red is detected 
the protein CASC3 like marker of stress granules. 
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splicing using the pE1A minigene assay 

(Ricciardi, Kilstrup-Nielsen et al. 2009). My results 

did not show changes in splicing after miss 

expression of RALY.  

 

 

 

 

 

 

 

 

3.2.2 Polyribosome profiling 

As shown in Figure 7 A I observed RALY granules in the cytoplasm. To understand 

the role of RALY in this behavior, I performed polyribosome profiles, on a sucrose 

gradient (Provenzani, Fronza et al. 2006). As shown in Figure 11, RALY is present in 

the low density fractions, indicated from the 4, 5 and 6, which represent the fractions 

co-sedimented with the subunits 40S, 60S and 80S of the ribosomes. Moreover, RALY 

was detected in fractions at higher molecular weight, from 9 to 11, fractions that are 

enriched in polyribosomes. Figure 11 shows how the pattern of RALY in the profiling is 

very similar to the pattern of ribosome proteins (e.g. RPL26), and it is different from the 

pattern exhibits by others RBPs, as Casc3, PABP and hnRNP A1. The first two 

proteins (Casc3 and PABP) are involved in several RNA processes, such as splicing, 

NMD and transport; besides, the polyribosome profiling for both the proteins show their 

presence in all the fractions from the 3, where the mRNA is in the cytoplasm but not 

associated with the polysomes, until the 13, the last fraction where the polysomes are 

still detected. In contrast, the protein hnRNP A1 is detected only in those fractions 

where mRNAs are not associated with ribosomes. 

To assess the nature of RALY-ribosomes interaction, I repeated the gradient in the 

presence of puromycin, RNase and ETDA. The first two substances have effect 

prevalently in the polysome's formation. The puromycin decreases the capacity of the 

cell to assemble the polysomes; in the profile it is possible to observe an increase of 

fractions containing the 80S subunits, while the peaks with polysomes with high weight 

Figure 10: Tethered assay. In the picture is 
reported the effect of tethered-RALY. It is possible to 
appreciate that the reporter's band is present after 
incubation with tethered-RALY, while it is disappeared 
after incubation with tethered-CASC3, used as control 
for the NMD process. 
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Figure 11: The polyribosomes profiles. The first graph shows the merge of the profiles in normal 
condition and after treatment. In red is represented the profile of untreated cells, while in green, blue and 
magenta the profile of cells treated with RNase, EDTA and puromycin respectively. Under the graph is 
showed the single polysome profiles and the western blot performed for every single fraction where 
RPL26, PABP, RALY, Barentz and hnRNP A1 are detected. 

disappear. RNase treatment has a similar effect causing an increase of the 80S as well 

as the disappearance of the polysomes. In contrast, EDTA, a chelating of bivalent ions, 

affects the ribosome's assembling by destabilizing and breaking the 80S subunits. 

Taken together, these results seem to confirm that RALY is strictly associated with 

ribosomes and translating mRNAs in an RNA-dependent manner. Is then RALY 

involved in ribosomal assembly and/or in rRNA metabolism? 
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To investigate the potential role of RALY in ribosome assembly, I performed new 

polyribosomal profile in RALY down-regulated cells (Figure 12). As is possible to 

observe from the very preliminary results, the absence of RALY protein has not 

particular effects on polysomal profile, while it seems to produce an effect in the low 

fraction, with an increasing in absorbance not only in the fractions 40S and 60S, but 

also in the fraction where the RNA not associated with ribosomes is localized. In any 

case, these are only preliminary results that do not allow any speculations on the role 

of RALY in post-translational regulation. 

Figure 12: Polysome after RALY silencing. In the figure is showed the polyribosome profile for 
untreated cells (scramble, black curve), and for cells where RALY was silencing (red curve). The last graph 
shows the merge between the two profiles. 
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3.2.3 The microarray analysis 

I performed microarray analysis to see 

total gene expression after silencing of 

RALY. At the beginning, I used the 

pSUPERIOR plasmids expressing short 

hairpin RNA (shRNA) to down-regulate 

RALY (Vessey, Vaccani et al. 2006). 

Unfortunately, I expressed three different 

plasmids but none of them yielded to a 

significant down-regulation of RALY. I then 

decided to use a commercial kit of siRNA distributed by Dharmacon, composed by a 

pool of four siRNAs specific for the mRNA of interest.  This approach gave me good 

results, given that the silencing of RALY was approximately 100% (Figure 13). 3 days 

after transfection of siRNA, total RNA was purchased from HeLa, converted in cDNA 

and then in cRNA for the microarray assay. Probes were then ibridized on a chip 

purchase by Agilent of Whole Human Genome Microarray 44K (Agilent) specific for 

mature mRNA that provides a comprehensive coverage of genes and transcripts with 

the most up-to-date content (http://www.genomics.agilent.com/).  

The results obtained from microarray analysis were processed with the appropriate 

programs Feature Extraction (Agilent) and Genespring (Agilent), to derive the 

information regarding gene fold-change. The results are shown in Appendix 7.3 

containing the list of genes that 

increase or decrease their 

expression after silencing of 

RALY. From the entire list of 

more than 19000 probes, I 

focused my interest on about 

1200 probes with a Fold-

Change (FC) higher than 1.5; 

out of these 1226 probes with a 

significant FC after silencing, 

709 are up-regulated, while 517 

probes, including RALY, are 

down-regulated. 

Figure 13 RALY silencing. The picture 
shows the RALY protein detection in untreated 
cells, cells transfected with siRNA for RALY 
(RALY silencing) and transfected with siRNA for 
no-target genes (sramble). The up band is the 
housekeeping gene Actin. 

Figure 14: Validation of microarray results. The green 
bars identify the fold change of the up regulated genes from 
RALY silencing, while the red bars show the trend of down 
regulated genes after silencing of RALY. In order to expand the 
scale between 0 and 1 and could appreciate the FC, the Y axis 
has been splitted in two. 
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Before proceeding with further analysis, the microarray results were validated using 

real-time PRC: 6 genes, which showed the higher FC of the list (3 up and 3 down-

regulated), were randomly chosen and amplified. The results are reported in Figure 15 

and show how the three up-regulates genes (PTPRO, SCEL and PLSCR4, 

represented by the green bars) have a Fold Change higher than 1.5 also in the real-

time assay, while the down-regulate genes (PRPRR, RRAD and HSBP3 indicate with 

the red bars) are under the threshold of 1 FC.  

Once confirmed the reliability of microarray assay, the list of genes with a significant 

fold-change were analyzed with the bioinformatics program DAVID (Huang da, 

Sherman et al. 2009) in order to obtain a clusterization of the identified genes based on 

the biological processes in which the genes are involved (Figure 14). The analysis 

revealed that the absence of RALY could affect genes involved in nucleosome 

assembly, aggregation, arrangement and bonding of the basic structure of eukaryotic 

chromatin composed by histones and DNA. I observed that these genes are implicated 

in processes such as chromatin assembly, exactly how reported from the analysis of 

the total genes; instead, the genes down expressed are involved not only in processes 

of phosphorylation/ dephosphorylation but also in processes that decrease the 

frequency, rate or extent of gene expression. The chromatin package and the 

F.C. 

Figure 15: Microarray analysis. The first graph shows the percentage of genes up and down 
regulated after RALY silencing in HeLa cells. Below the two tables show the first 10 terms of 
GeneOntology (Biological process) where the genes are involved (in the green table reported the 
results for up regulated genes, in red the results for down regulated genes) 
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activation of specific kinases can be associated with a blocking of the cell cycle. Future 

investigations are needed to understand whether RALY is directly or indirectly 

associated with the cell cycle, though this hypothesis seems reasonable because 

RALY overexpression and high cell proliferation of several tumors has been recently 

reported (Tsofack, Garand et al. 2011). 

3.2.4 DNA damage and repair 

From the studies of interactome and microarray analysis it emerged that RALY is 

Figure 16: Laser irradiation.  In the pictures is shown the pattern of RALY-GFP after 5, 10, 
15 and 30 min from the laser irradiation. In red is detected the H2AX protein, which uses as 
report to identified the DNA double strand breaks sites 
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associated not only with proteins and mRNAs involved in RNA metabolism, but also 

with proteins involved in DNA metabolism. The interaction between RNPs and DNA is 

not new, and several articles reported that RNA binding proteins are involved in DNA 

damage repair as well as in chromatin's assembly (Adamson, Smogorzewska et al. 

2012; Boucas, Riabinska et al. 2012; Polo, Blackford et al. 2012). The idea that RALY 

might be involved in DNA damage repair is confirmed by preliminary studies performed 

by Dr. Ferrari at the University of Zurich with whom I established a scientific 

collaboration. RALY-GFP was transfected in HeLa cells and after 24 hrs DNA damage 

was induced using laser irradiation laser. The laser irradiation causes DNA double-

strand breaks (DBS). The localization of RALY-GFP was then analyzed at different 

time-points by fluorescence microscopy, as shown in Figure 16, and at very short time, 

less than 10 minutes after treatment, RALY localizes exactly to the break points, and 

disappearing after 30 minutes. After these preliminary results, experiments are in 

progress to confirm the involvement of RALY in the DNA damage repair.  

I induced the DSB using Doxorubicin (Doxo), a drug that acts by inhibiting 

topoisomerase II (TopoII) causing DNA double-strand breaks (Pang, Qiao et al. 2013). 

The DNA double-strand breaks induce several changes in the expression and 

localization of few protein, for example the histone H2AX is phosphorylate and the 

protein is recruited in the DBS sites (Rogakou, Pilch et al. 1998). At the same time the 

DNA damage triggers the gene expression of proteins, including the well-know p53 and 

p21, both implicated in the genotoxic stress response. In order to investigate the 

behavior of RALY in this process in more details I observed changes of protein 

Figure 17: Genotoxic stress. The left picture shows the change in protein concentration of RALY 
against the concentration of p53 (positive control of genotoxic stress), hnRNP H (RALY's interactor 
involved in DNA damage response (Decorsiere, Cayrel et al. 2011)), Actin and Actinin at 0, 2 , 4, 8 and 12 
hours after treatment with doxorubicin. The right picture shows the behaviour of the same protein in the 
same condition after proteosome inhibition through MG132. 
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concentration in MCF7 cells via Western blot assay and the pattern of RALY after DNA 

damage via confocal microscopy. I performed all these experiments on MCF7 cells 

because p53 is active in these cells, while the protein is not active in HeLa cells. I 

began the analyses by assessing the kinetics of RALY’s expression at different time 

points (Figure 17). Cells were treated with Doxo for 1, 2, 4, 8, 12 hours and then 

lysated. Western blots were subsequently performed.  While the concentration of p53 

increases after 1 hour, the levels of RALY expression decreased after 4 hours and it 

disappeared almost completely after 8 hours. This behavior is common for other 

proteins involved in the DNA damage repairs such as EXO1. In human, EXO1 is 

expressed in two isoforms (hEXO1a and hEXO1b), both with a 5'->3' double-stranded 

DNA exonuclease activity. The isoform b is involved also in DNA mismatch repair 

(MMR) and it is rapidly degraded after single strand DNA damage induced by 

hydroxyurea (Schmutte, Sadoff et al. 2001; El-Shemerly, Janscak et al. 2005). To 

determine if RALY underwent degradation via proteaosome (ubiquitation dependent), 

the treatment with doxorubicin was conducted either in the presence or in the absence 

of the proteasome inhibitor MG132 (Figure 17). The presence of MG132 protected 

RALY from the degradation with a consequently accumulation of the protein. The 

observed down-regulation of the RALY protein is not correlated with a degradation of 

its corresponding mRNA. In fact using the real-time PCR I demonstrated that the levels 

of RALY mRNA in MCF7 cells did not change after 1, 2, 4, 6, 8 hours of doxorubicin 

treatment. In contrast p21, whose expression is stimulated by genotoxic stress (Ciribilli, 

Andreotti et al. 2010), increased its level of mRNA after treatment.  

The data regarding the degradation of RALY, following genotoxic stress, obtained 

at biochemical levels were confirmed by confocal microscopy, and the results are 

reported in Figure 19. In this 

experiment I looked the 

pattern of RALY, p53 and 

γH2AX, after 4 and 16 hours 

of incubation with 

Doxorubicin. I used the 

pattern of the histone γH2AX 

to observe the localization of 

DNA damage, this protein is 

involved in DNA damage 

repair (DDR) and it 

accumulates in DNA 

damage sites. Moreover, I 

Figure 18: mRNA stability after genotoxic stress. The graph 
shows the trend of RALY's mRNA against the mRNA of the control 
protein p21. 
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observed the pattern after 16 hours of treatment because at this time there was the 

maximum expression of p53. The immunofluorescence assays were performed using 

only two antibodies together. By comparing the localization of RALY with p53 at T0 and 

T16 (Figure 19 C), it is possible to observe how the pattern of two proteins are 

opposite. As written before, the cells at T0 (not treated) have a nuclear presence of 

RALY, while p53 is almost completely absent in all the cells, except for sporadic spots 

within the cytoplasm. After 16 hours of treatment the situation was totally changed: p53 

was very abundant and present only in the nucleus, whereas RALY was almost 

disappeared. In both cases the presence of γH2AX was not detectable. After 4 hours, 

instead, the γH2AX was well visible and the patterns of the two proteins were not the 

same in all the cells. At that time was possible to appreciate how the cells where 

protein γH2AX was more present, namely the cells under active DDR processes, 

presented also RALY in the nucleus, even if it was always less detectable. At the same 

time the expression of p53 is detectable in all the cells (Figure 19). These pictures 

seem to confirm the change in RALY expression during the DDR processes, but it is 

still not possible to understand whether this behavior is due to a direct involvement of 

the protein in the DDR, or is a cellular response to the DNA damage.  

Merge 
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Figure 19: RALY and p53 patterns after genotoxic stress. Panel A shows the behavior of RALY 
(green) and H2AX (red) after 0, 4, 16 hours treatment with doxorubicin (blue). Same treatment is reported 
in panels B and C. Panel B show the trend of p53 (green) and H2AX (red), while panel C the trend of p53 
(green) and RALY (red). 

Merge 

Merge 
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In any case, all the data, especially the results obtained from western blot, suggest that 

RALY undergoes post-translational modification. For this reason I started to investigate 

the possible PTMs affecting RALY via 2D SDS-PAGE; currently I have only preliminary 

results regarding the phosphorylation (Figure 20), further experiments are in progress.  

 

Figure 20: 2D electrophoresis. The first picture shows the pattern of RALY 
under normal condition. It is possible to appreciate a series of spots that disappear 
after treatment with CIAP (Phosphatase, Alkaline from calf intestine) and BIAP 
(Phosphatase, Alkaline from bovine intestinal mucosa). 
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4 - DISCUSSION 

RALY is an RNA-binding protein whose biological function in the mammalian cells 

was not evaluated yet. In humans, both RALY mRNA and protein are detected in 

several tissues (Khrebtukova, Kuklin et al. 1999), including the nervous system, kidney, 

liver, skeletal muscle, lung and pancreas (Macchi et al., unpublished). Interestingly, 

RALY mRNA is up-regulated in many tumor tissues (Yang, Ren et al. 2005; Tsofack, 

Garand et al. 2011), but the functional implications on cancer pathogenesis are 

currently unknown. Only few interaction partners of RALY protein have been described 

as components of RNA metabolism. RALY has been isolated from purified splicesome 

complex and from the EJC (Jurica, Licklider et al. 2002; Singh, Kucukural et al. 2012). 

However, a detailed picture of RALY interactome is still missing. 

Figure 21 RALY's alignment. Sequence alignment of human RALY against chimpanzees, dog, 
mouse, zebrafish and Xenopus. In yellow is highlighted the RRM, in gray the splicing region, in green the 
NLS, and in blue the RGG box. 
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My studies concerning RALY started with a series of bioinformatics analysis, aiming 

at identifying peculiar domains. The human RNA-binding protein RALY shares 87% 

identity with the mouse homologue and it has 43% of amino acid identity with hnRNP 

C. This homology is higher within the N-terminal regions, which contain a predicted 

RNA-recognition motif (RRM). Low similarity has been found in the C-terminal region of 

RALY, where a sequence motif rich in glycine (GRR) is present. Even if its function is 

still unclear, it could be implicated in the protein-protein interaction, or the RGG domain 

could mediate the intracellular trafficking such as in hnRNP A2 and hnRNP H/F (Sun, 

Tang et al. 2003; Van Dusen, Yee et al. 2010). Actually, the RGG seems to be present 

only in primates. Comparison with mice's RGG shows that the two domains are very 

different: in mouse, the long stretch of glycine is interspersed by valine, serine and 

asparagines. In zebrafish and Xenopus RALY, the GRR domain is not present (Figure 

21). Besides the RMM and RGG domains, three potential nuclear localization signals 

(NLS) were predicted by computer analysis.  These RALY NLSs are conserved in 

many species, from human to zebrafish.  Since no experiments regarding RALY 

localization had been performed, so far my first goal was to demonstrate the presence 

and activity of these predicted NLS in vivo. As reported in RESULTS 3.2.1 RALY 

localization (pg.16), RALY localizes in the nucleus and it is excluded from the nucleoli, 

but it can be detected in little spots within the cytoplasm. No NES have been identified: 

RALY distribution does not change after treatment with Leptomycin B (LMB), a 

compound that competes with the export factor CRM1 (Nishi, Yoshida et al. 1994).  

A second unexpected result has been the localization of the RALY deprived of NLS. 

As expected, in normal condition this mutant is more present in the cytoplasm; 

moreover it can be detected in stress granules after oxidative stress, while RALY wild 

type could not localize in these particulars particles. An abnormal protein accumulation 

in SGs is a typical pattern of neurons affected by Amyotrophic lateral sclerosis (ALS); 

in this case the principals responsible for the disease are the proteins TDP-43 and 

FUS. Both are RNA binding proteins that present two RRM domains and one RGG 

sequence, moreover, studies demonstrated that mutations in these proteins may cause 

abnormal aggregation of the same proteins in SGs (Li, King et al. 2013). A mutation in 

RALY protein with a consequently cytoplasmatic accumulation has not been identified 

and for this there are not diseases associate with RALY mutation yet. 

 

The major achievement of my research has been the identification of RALY 

interactome. Using gene ontology bioinformatics tools it is possible to cluster a record 

of genes/proteins and predict the biological processes (BP) in which they are involved. 

In my project I used several time this approach to obtain more useful information from 
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the interactome's results originating from the co-immunoprecipitation, as well as to 

identify possible pathways which are modified from the RALY absence, using the data 

derived from the microarray analysis.  

Before doing that, it is necessary to have a “list” of genes/proteins, for example a 

record of possible interactors. In order to obtain this “list” of RALY’s interactors, my first 

approach was to perform a canonical experiment of immunoprecipitation (IP): using a 

specific antibody anti-RALY I planned to isolate my protein from a cells lysate and to 

identify the proteins which co-immunoprecipitated with RALY. Unfortunately, this 

approach did not give reproducible results, the material obtained after coIP was 

variable and the background noise was very high. To overcome these drawbacks, I 

decided to use a fusion protein to increase the efficiency of immunoprecipitation. 

However, the most common tagged I tested (e.g. HA, FLAG, myc) did not 

immunoprecipitate tagged-RALY in an efficient way. I decided to setup the 

immunoprecipitation using a BAP-tagged RALY that can be biotinylated in vivo. In-vivo 

Biotinylation followed by a pulldown assay was previously used to isolate mRNAs 

associated with the RNA-binding protein PABP (Penalva and Keene 2004). A similar 

approach has been recently applied to elucidate the FoxP3’s interactome, leading to 

the identification of 361 FoxP3 interacting proteins, underlining its potential to identify 

protein interaction partners (Rudra, deRoos et al. 2012). However, this technique has 

not been integrated into a label-free quantitative proteomics workflow until now. The 

integration between in-vivo Biotinylation and label-free quantitative proteomics 

workflow increases the amount of purified protein and, at the same time, it decreases 

the number of unspecific interactors identified via mass spectrometry ( all the details of 

this technique are reported in Appendix 7.1 (Tenzer, Moro et al. 2013). In this way I 

obtained a list of specific interactors of RALY that allowed me to start a deeper 

bioinformatics analysis.  

 

In spite of the good results that I obtained with coIP and mass spectrometry 

analysis, I would like to spend a few words concerning the limitation of my analysis.  

The knowledge of the protein's interactome is essential for its characterization: the 

identification of possible protein complexes where the protein is involved could help to 

understand the role of the protein into the cells; nevertheless, this information might 

bring to inconclusive results. All current techniques of PPI (protein-protein interaction) 

show several advantages and disadvantages: for this reason, before to choosing one 

or another technique it is better to analyze pros and contras. The coIP of an 

endogenous protein is a very effective technique to isolate a protein in its native state 

and at its native concentration; moreover, the protein's transfection allows to mutate 
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specific sites in order to understand the role of these sites in the protein's interactions.  

At the same time the coIP shows several disadvantages, especially concerning the 

biological role; indeed, the mixing of compartments during cell's lyses and the protein 

purification brings an interaction between proteins which might not be specific. In 

addition, the interaction between the protein of interest and other proteins could be very 

transient, and during the coIP process is possible that weak interactions are lost. Last 

but not least, coIP does not indicate whether interaction between two proteins is direct 

or mediated by other proteins or substances as RNA (Orchard, Salwinski et al. 2007). 

To obtain this information is necessary to integrate the coIP analysis with other 

methods such as X-ray crystallography; unfortunately, also the X-ray crystallography 

technique shows several limitations: the first is that to perform a good experiment of X-

ray is necessary a large amounts of purified proteins for the analysis; furthermore, this 

technique is very expensive and very low-throughput. For these reasons a wonderful 

resource for the PPI analysis is represented by interaction databases. These 

databases collect data and annotation from more researchers and articles with the aim 

at combining data derived from multiple techniques in order to obtain the most realistic 

representation of protein-protein interaction. 

In my work I use the IntAct database and the free software Cytoscape in order to try 

to produce useful information from the long list of RALY's interactors obtained from the 

mass spectrometry analysis. In the 1929 the writer Frigyes Karinthy proposed the 

theory of the “Six degrees of separation”: everything and everyone is six or fewer steps 

away from any other person in the world. A similar idea is the basis of my speculation: 

the 80% of proteins into the cells are connected, directly or indirectly. For this reason is 

plausible to think that all the proteins that I found from mass spectrometry are 

connected to each other in a direct way, or through other cellular components such as 

RNA, but not via interaction mediated by proteins which are not in the coIP list. To 

investigate this hypothesis, my approach has been to create a big network starting from 

data of published PPI, where my source nodes were established RALY's interactors; 

from this very big and complicate network, I isolated the proteins found in the mass 

spectrometry list and I examined if all these proteins were connected (Figure 22). 

Unexpected, only 68 out of 143 proteins (the 47,5 %) are associated each others, and 

the majority of these proteins are components of mRNA metabolism, especially RNA 

splicing; these data confirm the analysis of GeneOntology presented in the article. 
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 Relatively to the remaining proteins (the 52,5% of the total), although many of 

these are involved in RNA metabolism, in the interactome of these proteins there are 

not proteins identified through my coIP experiment. Many are the possible 

interpretations for this unforeseen result: the first possibility is that the complete 

interactome of these proteins is also unknown, and for this reason the program does 

not find interaction between these proteins and other interactors of RALY; the second 

chance is the indirect interaction: in this case the interaction between RALY and the 

protein is mediated by RNA, DNA or other substances. Since the majority of these 

proteins are involved in the RNA metabolism (according to the GeneOntology analysis) 

almost all these proteins would be expected to disappear after RNase treatment. On 

the contrary, the interaction between RALY and the proteins increase after that 

treatment. The last hypothesis for this result is that RALY interacts with the mRNA of 

these proteins but not with the proteins themselves, and the interaction resulting from 

mass spectrometry is probably due to the interaction between RALY and mRNA during 

all the translational processes. If this hypothesis was correct, the interaction between 

Figure 22: RALY's network. The figure show the protein-protein interactions known for the RALY's 
interactors derived from mass spectrometry. The not connecting proteins are interactors of RALY which 
are not associated with other interactors. The nodes represent the proteins and are colored are reported 
in the article (Tenzer, Moro et al. 2013), while the size depend from the max score in according with the 
results reported in the same publication 



Discussion  

 
36 

 

the two proteins would be not properly mediated by RNA, but rather through the 

ribosome. This fascinating hypothesis could find a first confirmation in the high number 

of ribosomal's proteins associated with RALY; nevertheless, to have more evidence, it 

will be necessary to investigate which RNAs are bound by RALY, together with the 

interaction between RALY and the complete ribosome. 

4.1 RNA INTERACTION 

With the idea to investigate the interaction between RALY and the ribosome, in 

order to understand the role of the RALY into the cell, my interest has shifted to identify 

the interaction between RALY and RNA. I decided to follow three different ways of 

investigation to observe RALY's localization in the polyribosome profiling assay; to 

identify the RNAs bound to RALY using the RNAseq analysis; finally, to observe 

changes in gene expression of the cells after RALY silencing. The first and third 

approach gave me positive results but, unfortunately, the RNAseq analysis is still in 

progress due to technical problems, similar to the problems encountered during the co-

immunoprecipitation assay. 

Although the results arising from RNAseq analysis could better elucidate my 

previous hypothesis, the results from the polyribosome profiling have interesting 

perspectives. As shown in RESULTS 3.2.2 Polyribosome profiling, the localization of 

RALY is not the typical pattern shown by other RBPs; indeed, it seems more similar to 

the pattern shown by the ribosomal proteins. In particular RALY does not locate in the 

fraction lacking ribosomal subunits, like the fraction three, where PABP and hnRNP A1 

are detectable. This result could be another brick in the wall of the previous hypothesis: 

RALY is not present in the "ribosome free" fraction, this could indicate a direct 

association between RALY and the ribosome. The consequence of the association 

between RALY and some proteins depends on the transcription of these proteins in the 

ribosome. This theory is also far from being clarified, but some small steps in this 

direction have been done, and I can conclude that probably the interaction between 

RALY and some of its interactors is a “false positive”, or better is an interaction “under 

construction”, namely an association between RALY and a protein through the mRNA 

and the ribosome. 

Regarding the results derived from the microarray assay, I cannot comment further, 

because the analysis is also ongoing, and what I showed is only the preliminary result; 

even if RALY silencing seems to push the cells towards a block of proliferation, with a 

chromatin assembly, before understanding if RALY plays a role in cell proliferation. It is 

necessary to make several further experiments; at the moment I can conclude only 
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observing that the loss of RALY protein induces an increase, in terms of gene 

expression, of proteins involved in DNA metabolism.   

All the results obtained using microarray and mass spectrometry, besides to 

confirming the implication of RALY in the regulation of gene expression, have shown 

the possible role of this protein also in DNA metabolism. For this reason I checked the 

possible implications of RALY in DNA damage repair. As described above, the 

preliminary results obtained after the treatment with doxorubicin, a drug which 

produces double strand breaks of DNA, seem to be promising. Nevertheless, these 

results do not elucidate if RALY is directly involved in the DDR or else it has only a 

“support” role in this processes. In addition could be interesting to observe the post-

translational modification of RALY in this situation; indeed, some other RBPs can be 

recruited in the DNA damage repair process through phosphorylation via ATM/Chk2 

pathway (Boucas, Riabinska et al. 2012). Moreover, the understanding of PTMs 

affecting RALY can elucidate how this protein could take part in different processes 

which involve different substrates such as RNA and DNA, and this is a matter of my 

current investigation. 
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5 - OUTLOOK 

In this project, I characterized the RNA-binding protein RALY. The existence of 

RALY is known from many years, the first study concerning the gene encoding this 

protein dates back to 1995, but no research regarding the biological role of RALY 

within cells has been done so far. Although many questions still remain regarding the 

biological role(s) of RALY, my results have opened several lines of investigation. 

During my PhD, I elucidated several aspects of RALY protein, from the intracellular 

pattern to the interactome, and my results gave weight to the speculation that the 

interaction between RALY and its interactors could be mediated by other proteins or 

complexes. In this sense the identification of ribosomal complex components in the 

RALY interactome, together with the association between RALY and the ribosomal 

subunits, could support the speculation. Taken together, these results permit the 

hypothesis of a possible active role of RALY in the translation of mRNA encoding for a 

protein involved in a pathway not correlate with RNA metabolism. This idea could 

elucidate because RALY interacts with protein involved in processes like DNA 

metabolism. However, this is just an interesting hypothesis and requires many 

additional studies for it to be confirmed. For this reason I started to investigate which 

RNAs are bound by RALY, and awaiting for data coming from RNA-seq analysis, the 

microarray assay gave me preliminary hints regarding which genes are up and down-

regulated by RALY.  

The absence of RALY seems to stimulate the packing of chromatin through histone 

activation, while there is down-regulation of proteins involved in the processes of 

dephosphorylation, such as several member of the PTPR family (the entire list of genes 

is reported in Appendix 7.3). There is likely to be a direct correlation between these 

processes and a block cell proliferation, and RALY could be an important player in 

these processes. This second observation could explain the high concentration of 

RALY in cancer cell lines, and the lethal response that the deletion of RALY gene has 

in mice and quails. Moreover, RALY silencing, as result of DNA damage, could be 

associated with the block of cell proliferation more than DNA damage repair. 

Unfortunately, there is no evidence supporting this hypothesis, but currently my 

experiments are moving towards this direction. In order to confirm the role of RALY in 

cell proliferation I have started to observe how the RALY silencing could modified the 

cellular behavior using microarray and FACS assay.  

For this second hypothesis the identification of the post-translational modifications 

(PTMs) affecting this protein would also be a useful, and in RALY I observed the 
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presence of 6 phosphorylation sites. The identification and characterization of PTMs 

are important in the characterization of proteins: indeed, several proteins change their 

behavior depending on their post-translational modification. Over the past few years 

many studies have shown how PTMs influence protein-protein interaction and 

consequently complex assemblies such as stress granules. For example, the 

phosphorylation of eIF2α following heat shock or oxidative stress induces the eIF2α 

protein to accumulate in SGs (Kedersha, Chen et al. 2002; Xie and Denman 2011). 

There are many other examples of the effects of PTMs on protein function: in my case, 

the identification of post-translational modifications may be useful for confirming the 

role of RALY in cell proliferation, as these modifications may explain how external 

signals can activate or deactivate RALY within the cell.  

It will be interesting to investigate the role of RALY in post mitotic cells such as 

neuronal cells. These cells represent a good model for studies concerning RBPs for 

two principal reasons: first, they are polarized cell, with clear defined subcellular 

compartments (e.g. dendrites, cell body, axons) with the capability to quickly respond 

to external stimuli; second, the response does not necessary involve the whole cell, but 

can be localized to specific compartments (e.g. synapses). The RBPs are necessary 

for several aspects of the neuronal activity, (Kiebler and Bassell 2006; Vessey, 

Schoderboeck et al. 2010), including the myelin formation in oligodendrocytes, another 

example of highly polarized cell type (White, Gonsior et al. 2012). Moreover, as 

mentioned in the Introduction, the local translation of mRNA independently regulates 

the expression of specific genes in different region and allowing for a fast synthesis of 

new proteins, (Dahm, Kiebler et al. 2007). Last, but not least, mutations in neuronal 

RBPs is responsible for several neurological diseases, such as Amyotrophic lateral 

sclerosis (ALS), or the dystrophia myotonica (Ramaswami, Taylor et al. 2013). 

Although RALY has been originally identified as an interactor of Barentsz, its 

function in the neurons is still completely unknown. In my studies I have identified many 

interactors of RALY which play important role in neurons, among these, eIF4A3 (Giorgi, 

Yeo et al. 2007), TUBB5 (Breuss, Heng et al. 2012), and hnRNP A2/B1 (Liang, Shi et 

al. 2011). Also FMR1, FXR1 and FXR2 have been identified in RALY-containing 

complex: these three proteins are paralogs and are involved in Fragile X mental 

retardation syndrome, the most common form of hereditary mental retardation (Zhang, 

O'Connor et al. 1995). Again, no studies have been performed to elucidate the 

biological significance of RALY interaction with proteins involved in Fragile X disease.  

Taken together, future experiments will be mandatory to analyze RALY in the 

nervous system. 
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All my preliminary results reveal that further investigation is needed; moreover, 

many other questions have been raised that need answering. I started to address these 

questions, but at the moment I can conclude that characterization of RALY is only the 

first step necessary in identifying its role within cells. Unfortunately, I did not have the 

time to investigate all these questions, and in this thesis I focused particularly on 

protein localization, proteomic analysis and gene ontology, which gave the most 

significant results that I have obtained during this period. Besides I attempted to explain 

my hypothesis regarding the role of RALY, in order to demonstrate that the study of 

RBPs are essential for understanding the complexity of cell life.  
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During my PhD project has been the characterization of a new RNA binding protein, 

called RALY, in mammalian cells. During this project, I focused my investigation on the 

identification of protein interactors of RALY. I used a technique called iBioPQ (in vivo-

Biotinylation-Pulldown-Quant) in collaboration with Dr. Stefan Tenzer. We identified 

more than 140 new interactors and our data have been shown in an article published 

on Journal of Proteome Research, where I am the shared first author. 
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ABSTRACT: RALY is a member of the heterogeneous nuclear
ribonucleoproteins, a family of RNA-binding proteins generally
involved in many processes of mRNA metabolism. No
quantitative proteomic analysis of RALY-containing ribonucleo-
particles (RNPs) has been performed so far, and the biological
role of RALY remains elusive. Here, we present a workflow for
the characterization of RALY’s interaction partners, termed
iBioPQ, that involves in vivo biotinylation of biotin acceptor
peptide (BAP)-fused protein in the presence of the prokaryotic
biotin holoenzyme synthetase of BirA so that it can be purified
using streptavidin-coated magnetic beads, circumventing the
need for specific antibodies and providing efficient pulldowns.
Protein eluates were subjected to tryptic digestion and identified
using data-independent acquisition on an ion-mobility enabled high-resolution nanoUPLC-QTOF system. Using label-free
quantification, we identified 143 proteins displaying at least 2-fold difference in pulldown compared to controls. Gene Ontology
overrepresentation analysis revealed an enrichment of proteins involved in mRNA metabolism and translational control. Among
the most abundant interacting proteins, we confirmed RNA-dependent interactions of RALY with MATR3, PABP1 and
ELAVL1. Comparative analysis of pulldowns after RNase treatment revealed a protein−protein interaction of RALY with
eIF4AIII, FMRP, and hnRNP-C. Our data show that RALY-containing RNPs are much more heterogeneous than previously
hypothesized.

KEYWORDS: proteomics, biotinylation, protein−protein interactions RALY, heterogeneous nuclear ribonucleoproteins,
RNA-binding proteins

■ INTRODUCTION

The heterogeneous nuclear ribonucleoproteins (hnRNPs) is a
family consisting of more than 20 RNA-binding proteins, which
exert several roles in the RNA metabolism, such as splicing,
mRNA stability and nuclear export in many different cell
types.1−5 Some hnRNPs are also known to recruit regulatory
proteins associated with molecular pathways related to DNA
metabolism and DNA damage repair.6 Although the hnRNPs
are the most abundant nuclear proteins, some of them shuttle
between the nucleus and the cytoplasm where they can remain
associated to the cognate mRNA during its transport,
subcellular localization and subsequent translation.7−11 Gen-
erally, hnRNPs are characterized by the presence of one or two

RNA-binding motifs (RRMs), whose consensus sequence can
vary among the members of the family.3,12

RALY, also known as hnRNP C-related protein, is a member
of the hnRNP family that was initially identified as an
autoantigen cross-reacting with the Epstein−Barr nuclear
antigen 1 (EBNA1), a viral protein associated with Epstein−
Barr virus.13 Subsequent studies associated a genomic deletion
of Raly with the lethal yellow mutation, being the Raly gene
locus near to the locus Ay in this mouse.14,15 In human colon
adenocarcinoma cell line, RALY together with NONO/
p54nrb16 have been identified as interactors of YB-1, an
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RNA-binding protein that is involved in splicing, transcription
and translational regulation of specific mRNAs.17 Importantly,
YB-1 overexpression in different tumors has been related with
the secondary acquired resistance to specific drugs.18,19

Interestingly, RALY transcript is overexpressed in different
cancer tissues, and this correlates with a poor outcome of the
disease.17 Depletion of RALY expression by RNAi sensitizes
colorectal cancer cell lines treated with the platinum analogue
oxaliplatin without affecting the cell growth rate,17 indicating a
potential role of RALY in tumorigenesis that still requires
further investigations and mechanistic analysis. RALY was
previously identified in spliceosomal complexes, suggesting its
possible involvement in RNA splicing.20 RALY and other RNA-
binding proteins, including members of the hnRNPs such as
hnRNPH/F, were also found in the immunoprecipitates for
RBFOX1/2.21 RBFOX1/2 are members of a protein family that
regulates alternative splicing in a tissue-specific manner.22,23

Nevertheless, in contrast to hnRNPH that modulates the
splicing activity of RBFOX1/2, RALY has no effects in this
process and its misregulation does not impair alternative
splicing of RBFOX1/2 mRNA targets.21 Although there is
evidence that RALY might have multiple roles in RNA
metabolism, RALY remains poorly characterized in mammals
and the list of its potential protein interactors is still elusive.
Because of the difficulty to obtain efficient immunoprecipitating
antibodies, the molecular composition of RALY-containing
ribonucleoprotein (RNP) complexes is still unknown.
In recent years, mass spectrometric analysis has become the

method of choice for the identification of protein interaction
partners from affinity purified material.24 Latest developments
in mass spectrometry instrumentation facilitate the identifica-
tion of higher numbers of proteins from limited amounts of
sample.25 However, while this enables the identification of not
only core interacting proteins but also weaker interaction
partners, increasing numbers of contaminating or nonspecifi-
cally binding proteins are being identified. This sometimes
obscures the interpretation of identified potential interactors
and their biological functions.26 To reduce the problem of
unspecific binding, highly specific affinity purification methods,
including tandem affinity purification, have been developed (for
excellent reviews, see refs 27 and 28) to isolate target proteins
and their associated binding partners. In the past years, several
methods have been described for linking quantitative affinity
purification methods to mass spectrometric identification (q-
AP-MS) based on SILAC26 or label-free approaches,29 enabling
not only the identification, but also the relative quantification of
proteins in pulldowns and controls, to identify unspecifically
binding proteins. In vivo biotinylation-based pulldown has been
initially developed to identify site-specific protein modifica-
tions30 and the single-step purification of transcription
factors.31 Furthermore, the same approach has been recently
applied to elucidate the FoxP3 interactome, identifying 361
FoxP3 interacting proteins,32 underlining its potential to
identify protein interaction partners. However, this technique
has not yet been integrated into a label-free quantitative
proteomics workflow.
In this study, we applied the iBioPQ approach to identify

RALY-associated proteins to learn about the molecular
mechanisms underlying the cellular function of RALY. By
combining efficient streptavidin-based pulldown of in vivo
biotinylated RALY with subsequent ion-mobility enhanced,
data-independent-acquisition-based label-free quantitative pro-
teomic analysis of pulldowns, we identified 143 protein

components of RALY protein complexes that were either
exclusively detected in pulldowns or >2-fold enriched
compared to controls. Among these, MATR3, PABP1 and
ELAVL1, proteins involved in mRNA metabolism and
translational control, were among the most abundant
interacting proteins. Moreover, we found that eIF4AIII,
FMRP, and hnRNP-C associate with RALY via protein−
protein interactions. Our data show that RALY-containing
RNPs are much more heterogeneous than previously thought
and that RALY might have pleiotropic effects on RNA
metabolism and translation.

■ MATERIALS AND METHODS

Cell Cultures and Expression Constructs

293T and HeLa cells were grown in DMEM supplemented
with 10% FCS, at 37 °C and 5% CO2 atmosphere. Cell lines
were transfected using the TransIT transfection reagent (Mirus,
Bio LLC) according to the manufacturer’s protocol. RT-PCR
was performed on total RNA isolated from cells using the
TRIzol reagent (Invitrogen). Human RALY cDNA was
amplified with the Phusion High-Fidelity DNA polymerase
(New England BioLabs) and then cloned in the pEGFP-N1
vector (Clontech). BAP-tagged Raly was created using two
complementary primers: 5′-ccgggtggcctgaacgacatcttcgaggct-
cagaaaatcgaatggcacgaataa and 5′-ggccttattcgtgccattcgattttctgag-
cctcgaagatgtcgttcaggccaccc. The underlined sequence encodes
the BAP peptide (GLNDIFEAQKIEWHE).30 The primers
were annealed and cloned in frame to RALY cDNA in the
pEGFP-N1 vector lacking the EGFP-coding sequence. The
construct to express RALY lacking the glycine-rich region
(RALY-ΔGRR) was created using the site-directed mutagenesis
kit (Finnzymes, Thermo Scientific) according to the
manufacturer’s protocol with the following primers: 5′-
gagaacacaacttctgaggcaggc and 5′-ctgctccaagcggctcagcagggc.
Pulldown Assay

The purification of RALY-BAP was performed using
streptavidin-conjugated beads (Invitrogen). Briefly, 293T cells
grown on 10 cm Petri dishes were transfected with RALY-BAP
and Bir(A) constructs. After 30 h the cells were lysed with
NEHN lysis buffer [20 mM HEPES pH 7.5, 300 mM NaCl,
0.5% NP-40, 20% glycerol, 1 mM EDTA, phosphatase and
protease inhibitors (Roche)] and incubated for 30 min in ice.
40 μL of beads were then added to 1 mg of protein extract and
incubated overnight at 4 °C under rotation. The beads were
washed five times with NEHN buffer and incubated for 20 min
at room temperature in 40 μL of elution buffer [7 M urea, 2 M
thiourea, 2% CHAPS, 20 mM Tris-HCl pH 8]. For RNase
treatment, cell extracts were treated either with RNase A (100
μg/mL) for 15 min or with DNase (10 U) for 30 min at 37 °C,
before the incubation with beads. For Western blot analysis, 10
μL of purified samples were separated by 12% SDS-PAGE and
blotted onto nitrocellulose (Schleicher & Schuell) as previously
described.33 The following primary antibodies were used: rabbit
polyclonal anti-PABPC, rabbit polyclonal anti-FMRP, rabbit
polyclonal anti-eIF4AIII and mouse monoclonal anti-ELAVL1
(all provided by Abcam); rabbit polyclonal anti-hnRNP-C
(Millipore); rabbit polyclonal anti-Matrin3 and rabbit poly-
clonal anti-PRP19 (GeneTex); anti-YB1 (Santa Cruz); mouse
monoclonal anti-Mago and mouse monoclonal anti-Histone
H1FX (Abnova); rabbit polyclonal anti-RL7a and rabbit
polyclonal antibeta Tubulin (Cell Signaling); rabbit polyclonal
anti-APP (Sigma). The following secondary antibodies were
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used: horse radish peroxidise (HRP)-conjugated goat anti-
mouse and antirabbit antibodies (1:5.000, Santa Cruz
Biotechnology). To identify biotinylated RALY-BAP, the
membrane was decorated with the rabbit polyclonal anti-
RALY antibody (1:5.000; Bethyl). The membrane was then
stripped and incubated for 45 min with an HRP-conjugated
antistreptavidin (1:10.000; Pierce). All Western blots were
analyzed with the ChemiDoc XRS+ System (Bio-Rad).

Immunocytochemistry and Fluorescence Microscopy

Cells grown on coverslips were washed in prewarmed 1xPBS
and then fixed in 4% PFA for 15 min at room temperature.
Immunocytochemistry was carried out as previously de-
scribed33 using the primary antibodies listed above. To detect
RALY-biotinylated, cells were incubated with Alexa-488 labeled
avidin (Invitrogen) for 1 h. Alexa 594- and Alexa 488-coupled
goat antimouse and antirabbit IgG antibodies (Molecular
Probes) were used as secondary antibodies. Microscopy
analysis was performed using the Zeiss Observer Z.1 micro-
scope implemented with the Zeiss ApoTome device. Pictures
were acquired using AxioVision imaging software package
(Zeiss) and assembled with Adobe Photoshop CS3. Images
were not modified other than adjustments of levels, brightness
and magnification.

Protein Digestion

Two biological replicates of pulldown and control samples were
prepared and processed for LC−MS analysis in parallel. All
samples were then analyzed in triplicate by nanoUPLC.
Proteins were digested using a modified FASP method.34

Briefly, eluted protein was loaded on the filter, and detergents
were removed by washing three times with buffer containing 8
M urea. The proteins were then reduced using DTT and
alkylated using iodoacetamide. The excess reagent was
quenched by addition of DTT and washed through the filters.
Buffer was exchanged by washing with 50 mM NH4HCO3 and
proteins digested overnight by trypsin (Trypsin Gold,
Promega) in with an enzyme to protein ratio of 1:50. After
overnight digestion, peptides were recovered by centrifugation
and two additional washes using 50 mM NH4HCO3.
Flowthroughs were combined, lyophilized and redissolved in
20 μL 0.1% formic acid by sonication. The resulting tryptic
digest solutions were diluted with aqueous 0.1% v/v formic acid
to a concentration of 200 ng/μL and spiked with 25 fmol/μL of
enolase 1 (Saccharomyces cerevisiae) tryptic digest standard
(Waters Corporation).

UPLC−MS Configuration

Nanoscale LC separation of tryptic peptides was performed
with a nanoAcquity system (Waters Corporation) equipped
with a BEH C18 1.7 μm, 75 μm × 150 mm analytical reversed-
phase column (Waters Corporation) in direct injection mode
as described before.35 0.2 μL of sample (40 ng of total protein)
was injected per technical replicate. Mobile phase A was water
containing 0.1% v/v formic acid, while mobile phase B was
ACN containing 0.1% v/v formic acid. Peptides were separated
with a gradient of 3−40% mobile phase B over 120 min at a
flow rate of 300 nL/minute, followed by a 10-min column rinse
with 90% of mobile phase B. The columns were re-equilibrated
at initial conditions for 15 min. The analytical column
temperature was maintained at 55 °C. The lock mass
compound, [Glu1]-Fibrinopeptide B (100 fmol/μL), was
delivered by the auxiliary pump of the LC system at 300 nL/

minute to the reference sprayer of the NanoLockSpray source
of the mass spectrometer.
Mass spectrometric analysis of tryptic peptides was

performed using a Synapt G2-S mass spectrometer (Waters
Corporation, Manchester, U.K.). For all measurements, the
mass spectrometer was operated in v-mode with a typical
resolution of at least 25 000 fwhm (full width half-maximum).
All analyses were performed in positive mode ESI. The time-of-
flight analyzer of the mass spectrometer was externally
calibrated with a NaI mixture from m/z 50 to 1990. The data
were postacquisition lock mass corrected using the doubly
charged monoisotopic ion of [Glu1]-Fibrinopeptide B. The
reference sprayer was sampled with a frequency of 30 s.
Accurate mass LC−MS data were collected in data-
independent modes of analysis36,37 in combination with online
ion mobility separations.38 For ion mobility separation, a wave
height of 40 V was applied. Traveling wave velocity was ramped
from 800 to 500 m/s over the full IMS cycle. The spectral
acquisition time in each mode was 0.7 s with a 0.05-s interscan
delay. In low energy MS mode, data were collected at constant
collision energy of 4 eV. In elevated energy MS mode, the
collision energy was ramped from 25 to 55 eV during each 0.7-s
integration. One cycle of low and elevated energy data was
acquired every 1.5 s. The radio frequency (RF) amplitude
applied to the quadrupole mass analyzer was adjusted such that
ions from m/z 350 to 2000 were efficiently transmitted,
ensuring that any ions observed in the LC−MS data less than
m/z 350 were known to arise from dissociations in the collision
cell. All samples were analyzed in triplicate.

Data Processing and Protein Identification

Continuum LC−MS data were processed and searched using
ProteinLynx GlobalSERVER version 2.5.2 (Waters Corpora-
tion). The resulting peptide and protein identifications were
evaluated by the software using statistical models as
described.36 Protein identifications were assigned by searching
the human taxon of the UniProtKB/SwissProt database
(release 2012_01) supplemented with known possible
contaminants and standard proteins (porcine trypsin, yeast
enolase, BirA, streptavidin) using the precursor and fragmenta-
tion data afforded by the LC−MS acquisition method as
reported.36 The search parameter values for each precursor and
associated fragment ions were automatically set by the software
using the measured mass error obtained from processing the
raw continuum data. Peptide identifications were restricted to
tryptic peptides with no more than one missed cleavage.
Carbamidomethyl cysteine was set as fixed modification, and
oxidized methionine, protein N-acetylation, and deamidation of
asparagine and glutamine were searched as variable modifica-
tions. Database search was performed allowing a maximal mass
deviation of 3 ppm for precursor ions and 10 ppm for fragment
ions. For a valid protein identification, the following criteria had
to be met: at least 2 peptides were detected with together at
least 7 fragments. All reported peptide identifications provided
by the IDENTITYE-algorithm are correct with >95%
probability as described.36 The initial false positive rate for
protein identification was set to 3% on the basis of a search of a
5× randomized database, which was generated automatically
using PLGS2.5.2 by randomizing the sequence of each entry.
By using replication rate of identification as a filter, the false
positive rate is further reduced to <0.1%. Additional data
processing including retention time alignment, normalization,
isoform/homology and replicate filtering, as well as final TOP3-
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based label-free quantification39,40 was performed using the
ISOQuant software pipeline as described previously.35

Bioinformatics and Statistical Analysis

Hierarchal clustering analysis was performed on the basis of
absolute label-free protein quantification results provided by
ISOQuant using dedicated R scripts in R2.14.0 execution
environment.35 Additional data processing was performed using
DAVID (http: david.abcc.ncifcrf.gov).41,42 Subcellular local-
izations of RALY interacting proteins were predicted using
WoLF-PSORT, TargetP and SubLoc Servers. Transmembrane
helices were predicted using Phobius, TMHMM, TMPred and
Scampi.38,43,44 For experiments stating p-values, a paired
Student’s t test was performed as described,35 assuming
significance at p < 0.05.

■ RESULTS
Our goal was to isolate RALY-containing RNPs from cellular
extracts to decipher their molecular composition. The human
RNA-binding protein RALY sequence contains a predicted
RNA-recognition motif (RRM) at the N-terminal region

(Figure 1A and Figure S1A, Supporting Information). A
sequence motif rich in glycine (GRR), whose function is still
unclear, is present at the C-terminal region.45 Moreover, two
potential nuclear localization signals (NLS) were predicted by
computer analysis, but their activity still remains uninvestigated
in vivo. To gain information about the role of RALY in
mammals, we determined its distribution within the cell by
immunostaining. RALY showed a prominent nuclear accumu-
lation, but it was excluded from the nucleoli as shown after the
costaining with the nucleolar marker fibrillarin (Figure 1B).
Similar localization pattern was observed in HeLa cells
expressing RALY tagged with EGFP (data not shown). In
addition, several discrete particles, typical staining for
ribonucleoparticle (RNP) complexes, were also detected in
the cytoplasm at the cell periphery (Figure 1C). An identical
nuclear and cytoplasmic localization was observed in other cell
types, including 293T cell lines, OVCAR3 and polarized cells
such as oligodendrocytes (data not shown), demonstrating that
the pattern observed was not cell-specific. To biotinylate RALY
in vivo, 15 amino acids of the biotin acceptor peptide (BirA)

Figure 1. (A) Domain structure of human RALY (accession UniProt: Q9UKM9). Predicted domains are indicated by different colors. The RNA-
recognition domain (RRM, amino acids 20−89) and a glycine rich region (GRR, amino acids 227−251) are present at the N- and C-terminal region,
respectively. Moreover, two putative NLS (in red, amino acids 145−158 and 218−224, respectively) are predicted. The 15-amino acids sequence of
the biotin acceptor peptide (BirA) added to the C-terminal region of RALY is indicated. See also Figure S1A (Supporting Information) for the
detailed sequence. (B) Intracellular localization of RALY protein in 293T cells. Dual visualization of endogenous RALY (green) and the nucleolar
marker fibrillarin (red). RALY localizes in the nuclei but not in the nucleoli. The nuclei are stained with DAPI. Scale bar = 5 μm. (C) RALY is
detected in the cytoplasm. 293T cells were fixed and stained with a polyclonal antibody anti-RALY. Discrete RALY particles, indicated by
arrowheads, are distributed throughout the cytoplasm and at the periphery of the cell. Inset: enlarged view of the area indicated by the asterisk. (D)
In vivo biotinylation of RALY. Lysates of transfected 293T cells were prepared as described in Materials and Methods, and the Western blot was
decorated with an anti-RALY antibody together with an antistreptavidin antibody that recognizes the biotinylated form of RALY. Biotinylation leads
to the shift of RALY-BAP that migrates at a higher molecular weight. In contrast, only the endogenous RALY at 37 kDa is detected in 293T cells
transfected with only RALY-BAP or BirA alone, indicating that endogenous biotinylation does not occur in the absence of BirA and RALY-BAP
coexpression. Biotinylation of RALY can be detected by a HRP-conjugated antistreptavidin. (E) Intracellular localization of biotinylated RALY.
Biotinylated RALY shows a remarkably similar localization with endogenous RALY in the nucleus of 293T cells. 293T cells coexpressing RALY-BAP
and BirA were fixed and stained with alexa-488 conjugated antistreptavidin (AV-488). Construct expressing the red fluorescence protein (RFP) was
used as marker for cotransfection. Biotinylated RALY protein mainly accumulates within the nucleus as the endogenous demonstrating that
biotinylation does not change RALY subcellular localization. In contrast, no signal of AV-488 is detected in cells expressing only RALY-BAP or BirA.
UT, untransfected cells. Scale bar = 10 μm.
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were added to the C-terminal region of RALY full length
(Figure 1A). The resulting construct was then coexpressed in
293T cells together with BirA, a bacterial protein−biotin
ligase.46 We then proceeded to determine whether RALY was
efficiently biotinylated in vivo. As expected, the antibody
detected in untransfected cells a band at 37 kDa corresponding
to the endogenously expressed RALY protein (Figure 1D, UT).
Another band, shifted at the higher molecular weight,
corresponding to biotinylated RALY (RALY-BAP), was
detected by Western blot when cells expressed RALY-BAP
together with BirA (Figure 1D). In contrast, no shifted band
was observed when only RALY-BAP or BirA were expressed
(Figure 1D). The localization of the endogenous RALY protein
was also compared with the exogenously expressed BAP-tagged
RALY. 293T cells coexpressing RALY-BAP together with the
red fluorescent protein (RFP) were stained with the alexa 488-
conjugated antistreptavidin antibody (AV-488) (Figure 1E). In
untreated cells, a diffuse signal of AV-488 was observed (Figure
1E, UT). In contrast, a significant nuclear staining was detected
only in those cells expressing RALY-BAP in the presence of
BirA (Figure 1E, second row). As expected no nuclear staining
was observed in cells expressing each single plasmid (Figure 1E,
third and fourth row). All patterns analyzed were remarkably
similar, indicating that the biotinylated protein behaves like the
endogenous counterpart. Taken together, these data excluded
the possibility that the position of the added tag influenced the
intracellular localization of the resulting recombinant protein.
Having characterized the localization pattern of the

endogenous as well as of the recombinant BAP-tagged RALY,
we determined the protein composition of RALY-containing
RNP complexes. The schematic outline of the purification
procedure used in this study is shown in Figure S1B
(Supporting Information). Cell extracts were prepared from
293T cells expressing RALY-BAP together with BirA. 293T
cells expressing either RALY-BAP alone or BirA alone served as
negative controls. The efficiency of biotinylation was verified by
binding tagged RALY in crude cell extracts to streptavidin-
coupled paramagnetic Dynabeads. Western blot analysis of the
material eluted from the beads showed that tagged RALY
protein was enriched in the pulldown (Figure 2A). In contrast,
no RALY was detected in the pulldown in the absence of BirA
(Figure 2A). The purified extracts were separated using SDS-
PAGE and stained (Figure 2B). Silver staining of the gel loaded
with purified RALY-BAP showed several bands that were not
present in control cell lysates. To distinguish between RNA-
dependent or -independent interactions, the cell lysate was
incubated with RNase in order to disassemble RNP-
complexes,47 prior to incubation with streptavidin-beads. We
observed an enrichment of specific bands after treatment with
RNase compared to control treated lysate (Figure 2B). Taken
together, these data show that RALY can be efficiently
biotinylated and purified as RNP-complexes from cell extracts.
After the isolation of the pull-down samples treated either

with or without RNase and control pulldowns from singly
(either RALY-BAP, or BirA) transfected cells, eluted proteins
were digested with trypsin. Tryptic peptides were separated by
nanoUPLC directly coupled to a Synapt G2-S mass
spectrometer operated in ion-mobility-enhanced data-inde-
pendent acquisition mode. Overall, we were able to identify
and quantify >220 proteins at <1% FDR (Table S1, Supporting
Information). Table 1 shows the list of the 143 proteins that we
found to be specifically associated with RALY (see also Figure
3A); of these, 113 were detectable only in pulldowns from

double-transfected cells, and another 30 proteins were found to
be at least 2-fold more abundant compared to controls. The
high proportion of proteins detected only in the pulldown
samples confirmed the high specificity of the iBioPQ approach.
Additionally, using TOP3-based absolute quantification, we
determined the molar ratios of highest abundant interactors
(Figure 3C). The most abundant interactors were HNRH1,
MATR3 and HNRPF, which were present at approximately
equimolar amounts.
Among identified putative RALY-interacting proteins, we

confirmed the presence of NONO that has been recently
identified as an interactor of YB1-containing complex together
with RALY.17 In addition, some members of the hnRNP family
such as hnRNP C1/2, hnRNP F, hnRNP K, hnRNP L, hnRNP
M and hnRNP U were also identified. The biological roles of
these molecules, which exert a plethora of roles in RNA
metabolism, have been covered by several excellent re-

Figure 2. (A) Purification of RALY-tagged protein monitored by
Western blot. 293T cells coexpressing RALY-BAP and BirA were
washed and treated as described in Materials and Methods. As shown
in the upper panel, RALY can be efficiently purified and enriched in
the eluate. The Western blot was incubated with the HRP-conjugated
antistreptavidin antibody. The lower panel shows that no purified
RALY-BAP is detected in the flow through in the absence of BirA
expression. Since no biotinylation of recombinant RALY occurs in the
absence of BirA, the Western blot was decorated with the anti-RALY
antibody. (B) Preparative purification of RALY from 293 T cell extract.
The silver-stained 12% SDS-PAGE shows that the protein eluates from
293T cells expressing either RALY-BAP together with BirA, RALY-
BAP or BirA. Cell lysate was prepared as described in Materials and
Methods and incubated with (+) or without (−) RNase before the
purification with streptavidin-coated beads (see also Figure S1B,
Supporting Information). Input represents 10% of the loaded whole
cells extract used for the pulldown experiments.
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Table 1. Identification of RALY Binding Proteins Identified by iBioPQa

UniProt

accession ID gene name description max score
reported
peptides

RNase
treatment

P62258 1433E YWHAE 14-3-3 protein epsilon 2128.87 5
Q9UKV3 ACINU ACIN1 Apoptotic chromatin condensation inducer in the nucleus 1653.10 11 ++
P63261 ACTG ACTG1 Actin cytoplasmic 2 29066.54 13
P05141 ADT2 SLC25A5 ADP ATP translocase 2 2064.63 4
P25705 ATPA ATP5A1 ATP synthase subunit alpha mitochondrial 1197.64 5
Q9NYF8 BCLF1 BCLAF1 Bcl 2 associated transcription factor 1 507.21 3
Q07021 C1QBP C1QBP Complement component 1 Q subcomponent binding protein

mitochondrial
8074.07 5 ++

P10809 CH60 HSPD1 60 kDa heat shock protein mitochondrial 1350.57 5
Q9Y224 CN166 C14orf166 UPF0568 protein C14orf166 3827.05 4 ++
Q92499 DDX1 DDX1 ATP dependent RNA helicase DDX1 5459.53 15 ++
Q92841 DDX17 DDX17 Probable ATP dependent RNA helicase DDX17 5711.10 12
O00571 DDX3X DDX3X ATP dependent RNA helicase DDX3X 4329.04 13 ++
P17844 DDX5 DDX5 Probable ATP dependent RNA helicase DDX5 6412.09 12 ++
Q9BQ39 DDX50 DDX50 ATP dependent RNA helicase DDX50 679.87 5
Q7L2E3 DHX30 DHX30 Putative ATP dependent RNA helicase DHX30 5046.24 23 ++
Q08211 DHX9 DHX9 ATP dependent RNA helicase A 8697.80 30 ++
O60832 DKC1 DKC1 H ACA ribonucleoprotein complex subunit 4 2895.81 6 ++
P49411 EFTU TUFM Elongation factor Tu mitochondrial 2949.42 5 ++
Q15717 ELAV1 ELAVL1 ELAV like protein 1 785.05 3 −−
P84090 ERH ERH Enhancer of rudimentary homologue 14686.37 3
Q06787 FMR1 FMR1 Fragile X mental retardation protein 1 4229.49 7 ++
P35637 FUS FUS RNA binding protein FUS 4455.03 3 ++
P51114 FXR1 FXR1 Fragile X mental retardation syndrome related protein 1 2484.20 7 ++
P51116 FXR2 FXR2 Fragile X mental retardation syndrome related protein 2 6090.89 12 ++
P38646 GRP75 HSPA9 Stress 70 protein mitochondrial 3703.39 10
Q9BQ67 GRWD1 GRWD1 Glutamate rich WD repeat containing protein 1 915.48 2 ++
Q92522 H1X H1FX Histone H1x 10130.50 3 ++
O60812 HNRCL HNRNPCL1 Heterogeneous nuclear ribonucleoprotein C like 1 21886.77 12 ++
P31943 HNRH1 HNRNPH1 Heterogeneous nuclear ribonucleoprotein H 17205.07 12
P55795 HNRH2 HNRNPH2 Heterogeneous nuclear ribonucleoprotein H2 6796.38 7
Q1KMD3 HNRL2 HNRNPUL2 Heterogeneous nuclear ribonucleoprotein U like protein 2 267.02 2
P07910 HNRPC HNRNPC Heterogeneous nuclear ribonucleoproteins C1 C2 35024.63 21
Q14103 HNRPD HNRNPD Heterogeneous nuclear ribonucleoprotein D0 1608.73 3
P52597 HNRPF HNRNPF Heterogeneous nuclear ribonucleoprotein F 10977.72 6
P61978 HNRPK HNRNPK Heterogeneous nuclear ribonucleoprotein K 5036.54 8
P52272 HNRPM HNRNPM Heterogeneous nuclear ribonucleoprotein M 13139.34 28
O43390 HNRPR HNRNPR Heterogeneous nuclear ribonucleoprotein R 1554.47 4 −−
Q00839 HNRPU HNRNPU Heterogeneous nuclear ribonucleoprotein U 2608.45 9 −−
P08107 HSP71 HSPA1A Heat shock 70 kDa protein 1A 1B 9345.12 16
P11142 HSP7C HSPA8 Heat shock cognate 71 kDa protein 8124.75 14
Q9NZI8 IF2B1 IGF2BP1 Insulin like growth factor 2 mRNA binding protein 1 1481.40 4 −−
P38919 IF4A3 EIF4A3 Eukaryotic initiation factor 4A III 5958.01 9
Q12905 ILF2 ILF2 Interleukin enhancer binding factor 2 1891.69 6
Q12906 ILF3 ILF3 Interleukin enhancer binding factor 3 984.24 10
P43243 MATR3 MATR3 Matrin 3 4921.41 11 −−
Q9HCC0 MCCB MCCC2 Methylcrotonoyl CoA carboxylase beta chain mitochondrial 29783.84 20 −−
P61326 MGN MAGOH Protein mago nashi homologue 4326.43 2
P07197 NFM NEFM Neurofilament medium polypeptide 1185.35 4 −−
P55769 NH2L1 NHP2L1 NHP2 like protein 1 4685.52 2 ++
Q9NX24 NHP2 NHP2 H ACA ribonucleoprotein complex subunit 2 9793.06 3 ++
Q15233 NONO NONO Non-POU domain containing octamer binding protein 1258.06 3
P55209 NP1L1 NAP1L1 Nucleosome assembly protein 1 like 1 2623.78 2 ++
P06748 NPM NPM1 Nucleophosmin 21390.75 9 ++
P11940 PABP1 PABPC1 Polyadenylate binding protein 1 3219.85 9 −−
Q13310 PABP4 PABPC4 Polyadenylate binding protein 4 2380.50 7 −−
P05166 PCCB PCCB Propionyl CoA carboxylase beta chain mitochondrial 20069.40 19 −−
Q96HS1 PGAM5 PGAM5 Serine threonine protein phosphatase PGAM5 mitochondrial 1921.23 4
Q9UMS4 PRP19 PRPF19 Pre mRNA processing factor 19 1847.87 6
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Table 1. continued

UniProt

accession ID gene name description max score
reported
peptides

RNase
treatment

Q32P51 RA1L2 HNRNPA1L2 Heterogeneous nuclear ribonucleoprotein A1 like 2 1509.86 2 ++
Q9UKM9 RALY RALY RNA binding protein Raly 11463.77 14
Q96PK6 RBM14 RBM14 RNA binding protein 14 604.41 3
Q14498 RBM39 RBM39 RNA binding protein 39 1360.36 2
Q9Y5S9 RBM8A RBM8A RNA binding protein 8A 6745.83 2
Q14257 RCN2 RCN2 Reticulocalbin 2 8969.04 7 ++
P27635 RL10 RPL10 60S ribosomal protein L10 3048.30 4 ++
P62913 RL11 RPL11 60S ribosomal protein L11 21121.41 5 ++
P30050 RL12 RPL12 60S ribosomal protein L12 22004.44 5 ++
P40429 RL13A RPL13A 60S ribosomal protein L13a 11425.01 5 ++
P50914 RL14 RPL14 60S ribosomal protein L14 14799.98 3 ++
P61313 RL15 RPL15 60S ribosomal protein L15 8458.17 4 ++
P18621 RL17 RPL17 60S ribosomal protein L17 15467.44 5 ++
Q07020 RL18 RPL18 60S ribosomal protein L18 20979.24 5 ++
Q02543 RL18A RPL18A 60S ribosomal protein L18a 5997.83 2 ++
P84098 RL19 RPL19 60S ribosomal protein L19 17165.41 3 ++
O76021 RL1D1 RSL1D1 Ribosomal L1 domain containing protein 1 2315.82 7 ++
P35268 RL22 RPL22 60S ribosomal protein L22 10237.77 2 ++
P62829 RL23 RPL23 60S ribosomal protein L23 20098.35 6 ++
P62750 RL23A RPL23A 60S ribosomal protein L23a 12431.37 5 ++
P83731 RL24 RPL24 60S ribosomal protein L24 9559.97 4 ++
P61353 RL27 RPL27 60S ribosomal protein L27 9041.97 4 ++
P46776 RL27A RPL27A 60S ribosomal protein L27a 13679.50 4 ++
P46779 RL28 RPL28 60S ribosomal protein L28 10318.82 5 ++
P47914 RL29 RPL29 60S ribosomal protein L29 10583.58 2 ++
P39023 RL3 RPL3 60S ribosomal protein L3 4713.76 9 ++
P62888 RL30 RPL30 60S ribosomal protein L30 30626.38 6 ++
P62899 RL31 RPL31 60S ribosomal protein L31 17685.82 4 ++
P62910 RL32 RPL32 60S ribosomal protein L32 22785.35 5 ++
P49207 RL34 RPL34 60S ribosomal protein L34 11664.61 4 ++
P42766 RL35 RPL35 60S ribosomal protein L35 5370.88 2 ++
Q9Y3U8 RL36 RPL36 60S ribosomal protein L36 15226.67 3 ++
P83881 RL36A RPL36A 60S ribosomal protein L36a 5518.44 2 ++
P46777 RL5 RPL5 60S ribosomal protein L5 16832.74 12 ++
Q02878 RL6 RPL6 60S ribosomal protein L6 13973.62 10 ++
P18124 RL7 RPL7 60S ribosomal protein L7 13322.13 9 ++
P62424 RL7A RPL7A 60S ribosomal protein L7a 17385.37 9 ++
P62917 RL8 RPL8 60S ribosomal protein L8 9561.39 5 ++
P05388 RLA0 RPLP0 60S acidic ribosomal protein P0 47057.78 12 ++
P05386 RLA1 RPLP1 60S acidic ribosomal protein P1 71871.37 2 ++
Q96E39 RMXL1 RBMXL1 RNA binding motif protein X linked like 1 3873.01 2
P22626 ROA2 HNRNPA2B1 Heterogeneous nuclear ribonucleoproteins A2 B1 916.63 3
P51991 ROA3 HNRNPA3 Heterogeneous nuclear ribonucleoprotein A3 1465.80 4
P62280 RS11 RPS11 40S ribosomal protein S11 4369.03 4 ++
P62277 RS13 RPS13 40S ribosomal protein S13 10457.01 3 ++
P62249 RS16 RPS16 40S ribosomal protein S16 4115.29 2 ++
P62269 RS18 RPS18 40S ribosomal protein S18 11165.43 5 ++
P39019 RS19 RPS19 40S ribosomal protein S19 17796.30 6 ++
P15880 RS2 RPS2 40S ribosomal protein S2 6647.55 5 ++
P62266 RS23 RPS23 40S ribosomal protein S23 7508.04 3 ++
P62847 RS24 RPS24 40S ribosomal protein S24 23479.49 2 ++
P62851 RS25 RPS25 40S ribosomal protein S25 7363.56 3 ++
P62854 RS26 RPS26 40S ribosomal protein S26 20581.14 3 ++
P23396 RS3 RPS3 40S ribosomal protein S3 6653.01 7 ++
P61247 RS3A RPS3A 40S ribosomal protein S3a 20345.70 13 ++
P62753 RS6 RPS6 40S ribosomal protein S6 13377.20 5 ++
P46781 RS9 RPS9 40S ribosomal protein S9 7676.78 6
P08865 RSSA RPSA 40S ribosomal protein SA 2139.39 2 ++
P82650 RT22 MRPS22 28S ribosomal protein S22 mitochondrial 7739.10 8 ++
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views.3,48−50 Moreover, several ribosomal proteins were also
enriched in RALY-purified protein complex (Figure 3A). To
gain insight into the various functions of the identified proteins,
we performed gene ontology (GO) term analysis using
DAVID. Statistically significant over represented ontologies of
RALY-interacting proteins were grouped into 26 categories,
mostly involved in RNA metabolism, including mRNA, rRNA
and ncRNA processing, RNA stability, transport and transla-
tional control (Figure 4). Some categories comprised factors
involved in ribosomal assembly, rRNA stability and posttran-
scriptional regulation. We then analyzed any changes in the
molecular composition of RALY-containing complex upon
treatment with RNase. Altogether, we observed significantly
increased association of 80 proteins with RALY after RNase
treatment (Table 1, Figure 3C). Among these proteins, we
found factors involved in noncoding RNA (ncRNA) and rRNA
processes, ribosome biogenesis, translation and translation
elongation (Table 1 and Figure 4, green bars). In contrast, only
13 proteins mainly involved in RNA stability and splicing were
decreased after the same treatment, suggesting that RALY
might act as a bridge to link other protein complexes bound to
the same mRNA. (Table 1 and Figure 4, red bars). Finally, 50
proteins remained unchanged (i.e., observed change was less
than 2-fold), suggesting that their interactions with RALY were
not affected by the presence (or absence) of intact RNA (Table
1 and Figure 4, yellow bars).
Next, we confirmed specific interaction of selected identified

candidate proteins with RALY by Western blot analysis:

Matrin3 (MAT3),51 PABP1, eIF4AIII,52−54 the human
homologue of Drosophila mago nashi protein (Magoh),55 the
Y-box binding protein 1 (YB-1),56 PRP19,57,58 ELAVL1,59,60

the ribosomal protein L7a, the histone H1 and the fragile X
mental retardation protein (FMRP).61−63 Western blot analysis
confirmed the interactions of RALY with PABP, ELAVL1 and
MAT3. As predicted, the interactions were mediated by an
intact RNA (Figure 5A). Low but detectable amounts of
Magoh protein and PRP19 were also detected in RALY
pulldown, and their associations remained unchanged after
treatment with RNase. In contrast, the disassembly of the RNPs
complexes by RNase increases the association of RALY with
FMRP, eIF4AIII and hnRNP C, respectively (Figure 5A). To
our surprise, we did not observe any pulldown of YB-1 with
RALY as recently described by another group.17 Moreover,
neither histone H1 nor RL7a were detected in RALY pulldown.
To demonstrate the specificity of the observed interactions, two
proteins not identified by mass spectrometry, namely the
amyloid beta precursor protein (APP) and beta tubulin, were
used as negative controls. In this case, no copurification of beta
tubulin and APP proteins with RALY were observed (Figure
5B). Some proteins associated with RALY identified by iBioPQ,
for example, the histone H1, hnRNP C and PRP19, are known
to interact either directly or indirectly also with the DNA. To
determine whether DNA could mediate the interactions of
RALY with these molecules, cell lysates were treated with
DNaseI before purification (Figure 5C). As Figure 5C shows,

Table 1. continued

UniProt

accession ID gene name description max score
reported
peptides

RNase
treatment

Q92552 RT27 MRPS27 28S ribosomal protein S27 mitochondrial 7870.53 8 ++
Q9Y3I0 RTCB C22orf28 tRNA splicing ligase RtcB homologue 4433.22 9 ++
O00422 SAP18 SAP18 Histone deacetylase complex subunit SAP18 4780.17 2 ++
Q12874 SF3A3 SF3A3 Splicing factor 3A subunit 3 517.52 2 −−
Q13435 SF3B2 SF3B2 Splicing factor 3B subunit 2 634.29 3
Q15393 SF3B3 SF3B3 Splicing factor 3B subunit 3 1355.61 8 −−
P23246 SFPQ SFPQ Splicing factor proline and glutamine rich 1780.61 4 ++
Q9UQ35 SRRM2 SRRM2 Serine arginine repetitive matrix protein 2 342.98 8
O75494 SRS10 SRSF10 Serine arginine rich splicing factor 10 4308.84 3
Q07955 SRSF1 SRSF1 Serine arginine rich splicing factor 1 6424.17 5
Q01130 SRSF2 SRSF2 Serine arginine rich splicing factor 2 1564.12 3
P84103 SRSF3 SRSF3 Serine arginine rich splicing factor 3 21695.02 5
Q13247 SRSF6 SRSF6 Serine arginine rich splicing factor 6 2556.39 4
Q16629 SRSF7 SRSF7 Serine arginine rich splicing factor 7 19836.63 6
Q13242 SRSF9 SRSF9 Serine arginine rich splicing factor 9 2428.25 3
Q04837 SSBP SSBP1 Single stranded DNA binding protein mitochondrial 21125.56 5
P68363 TBA1B TUBA1B Tubulin alpha 1B chain 8048.62 7 ++
P07437 TBB5 TUBB Tubulin beta chain 5734.63 8 ++
Q9Y2W1 TR150 THRAP3 Thyroid hormone receptor associated protein 3 985.35 6
Q13595 TRA2A TRA2A Transformer 2 protein homologue alpha 1780.67 4
P62995 TRA2B TRA2B Transformer 2 protein homologue beta 12611.33 6 ++
P26368 U2AF2 U2AF2 Splicing factor U2AF 65 kDa subunit 3166.23 6 ++
Q15029 U5S1 EFTUD2 116 kDa U5 small nuclear ribonucleoprotein component 554.99 7
P08670 VIME VIM Vimentin 27065.79 30
P67809 YBOX1 YBX1 Nuclease sensitive element binding protein 1 3634.61 2 −−
Q5BKZ1 ZN326 ZNF326 DBIRD complex subunit ZNF326 1592.55 3

aProteins listed were either detected specifically in pulldowns from doubly transfected cells or showed at least 2.8-fold enrichment compared to
controls. The effect of RNAse treatment on the relative amount of each protein is indicated; (++)/(−−) indicates >2-fold effects. The Max Score
refers to the maximum identification score provided by PLGS (ProteinLynx Global Server) across all technical and biological replicates for the
respective protein.
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the treatment did not affect their association with RALY,
demonstrating that the interaction does not require DNA.
Having verified the interaction of RALY with selected

partners identified by mass spectrometry, we determined

whether our findings were consistent with their subcellular
localization in 293T cells. We have established that RALY is
mainly nuclear with a discrete cytoplasmic distribution. As
expected, RALY showed an almost identical distribution pattern

Figure 3. (A) Schematic network of RALY-interacting proteins identified by iBioPQ using Cytoscape program. Proteins that decrease or increase in
RALY pull-down after RNase treatment are indicated in red and green colors, respectively. Black lines represent the interactions between RALY and
its associated partners. RALY was linked with only a few proteins belonging to the major group of interactors. Proteins that remain unchanged after
RNase treatment are depicted in yellow. The relationships among the different proteins were determined by using the String program (http://string-
db.org/) with high confidence (score 0.7). (B) Relative molar amounts (normalized to RALY) of highest abundance interacting proteins as
quantified using the TOP3 approach. (C) Quantitative analysis of the effects of RNase treatment on interacting proteins. The logarithmic change in
relative amounts induced by RNase treatment was plotted vs the relative molar amount of the respective protein.
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with hnRNP-C and ELAVL1 in the nuclear compartment
(Figure 6A). The elongation initiation factor eIF4AIII is part of
the exon-junction-complex (EJC),64 but also component of the
nonsense-mediated mRNA decay (NMD) machinery, was also
identified in RALY pulldown upon treatment with RNase. As
previously described, eIF4AIII was detected in the nucleoplasm
and in the nuclear speckles, subnuclear domains containing pre-
mRNA processing factors and noncoding RNAs that are
involved in multiple steps of gene expression, including
transcription, pre-mRNA processing and mRNA trans-
port.53,65,66 Although RALY is not particularly enriched in the
nuclear speckles, a colocalization with eIF4AIII was observed in
the nucleoplasm (Figure 6A). PRP19 belongs to a complex that
has a well-established and conserved function in mRNA
splicing.67 As for eIF4AIII, PRP19 localized to nucleoplasm
and to dot-like structures that resemble nuclear speckles. RALY
colocalization within the cell nucleus is similarly observed,
although its signal is more diffuse throughout the nucleoplasm
(Figure 6A). We also observed colocalization of RALY with
MATR3. MATR3 was found both in the cytoplasm and in the
nucleus as part of the nuclear matrix, excluding the nucleoli
(Figure 6A). PABP showed a predominant cytoplasmic
localization, and the immunostaining analysis did not reveal a
significant colocalization with RALY in the nuclear compart-
ment. However, subset of PABP particles showed colocalization
with RALY in the cytoplasm at higher exposure (Figure 6B).
Since PABP resides in the nuclear compartment, we cannot
exclude that RALY might transiently interact with PABP also in
this compartment. Taken together, these results show that
RALY is in the same complex with the above-mentioned
proteins, in vitro as well as in vivo.

In contrast to RALY, most hnRNPs contain repeats of Arg-
Gly-Gly tripeptides domain and/or additional glycine-rich or
proline-rich domains that seem to promote protein−protein
interactions.3,68 We asked whether the peculiar glycine-rich
domain (GRR) that RALY harbors at the C-terminal region
was required for the interactions with the newly identified
interactors (Figures S1A and S2B, Supporting Information).
Thus, we performed pull down using extracts from cells that
expressed RALY-BAP lacking the GRR (RALY-ΔGRR). We
first determined the subcellular localization of RALY-ΔGRR by
tagging the deleted protein with EGFP. The deleted form was
not degraded when exogenously expressed by the cells. As for
the full length, RALY lacking the glycine rich region localized in
the nucleus but not in the nucleoli (Figure 6C). Moreover,
RALY-ΔGRR still retained its RNA-binding activity (data not
shown). These results demonstrate that the GRR domain is not
necessary to target RALY to the nuclear compartment. To
determine whether the GRR domain could modulate protein−
protein interactions, 293T cells were transfected with the
plasmid expressing BAP-tagged RALY-ΔGRR with or without
BirA. Cell lysates were then treated with RNase or untreated,
and the purified extracts were analyzed by Western blot (Figure
6D). The majority of the RNA-mediated interactions were
unaffected by the absence of the GRR domain. Proteins such as
PABP as well as MATR3 were copurified, and their interactions
with RALY were still sensitive to RNase treatment,
demonstrating that the lack of the GRR domain did not affect
both RNA-dependent and independent interaction of RALY
with newly identified interactors (Figure 6D, + RNase). We
then tested for the presence of ELAVL1. Interestingly, ELAVL1
was not copurified with RALY-ΔGRR, suggesting that the GRR

Figure 4. Functional annotation of RALY-associated proteins identified using analysis of GO term enrichment of the “biological process” category by
DAVID. GO terms ranked according to the number of counts are plotted. All associations are significant (p < 0.01 after Bonferroni correction). Each
bar represents the number of RALY’s interactors involved in 26 different biological processes. The amount of proteins that decrease, increase, or
remain unchanged (i.e., display less than 2-fold change) in RALY pull-down after RNase treatment is depicted as in Figure 3A.
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domain is required for the interaction with ELAVL1 even in the
presence of RNA (Figure 6D).

■ DISCUSSION
The current work describes the identification of novel protein
interactors of the RNA-binding protein RALY by an in vivo-
biotinylation pulldown-quantitative approach. The RNA-bind-
ing protein RALY, previously known as hnRNP C like-protein,
contains a RNA-recognition motif similar to hnRNP C and two
predicted NLS (Figure S2A, Supporting Information). Human
RALY shares 87% identity with the mouse homologue, and the
major differences are located within the C-terminal region
(Figure S2A, Supporting Information). Moreover, RALY shares
43% amino acid identity with hnRNP C, and in contrast to
hnRNP C and to other hnRNPs, RALY contains a peculiar

domain composed by a long stretch of glycine repeats (GRR)
(Figure S2B, Supporting Information). The functional role of
the GRR domain is unclear. Shorter glycine-rich repeats present
in hnRNP A2 and hnRNP H/F seem to mediate their general
intracellular trafficking.69,70 When expressed in mammalian cell
lines, however, the intracellular localization of GFP-tagged
RALY-ΔGRR was unchanged, and the protein still accumulated
within the nucleus but not in the nucleoli. Although the
subcellular localization as well as the RNA-binding activity of
RALY was not altered by the absence of the GRR domain, the
dynamics might be impaired. Could the GRR domain mediate
protein−protein interactions? Pulldowns performed using
RALY-ΔGRR assessed that the glycine-rich repeats is not
required for the protein−protein interactions of RALY with
some of the newly identified interactors (Figure 6D). However,
the RNA-dependent interaction of ELAVL1 with RALY-ΔGRR
was abolished, suggesting that the GRR domain might promote
the recruitment of ELAVL1 and RALY to the RNA.
RALY has been found in complexes with molecules involved

in RNA metabolism, but its biological role in the mammalian
cells has not been thoroughly evaluated. In human, both RALY
mRNA and protein are detected in several tissues,71 including
the nervous system, kidney, liver, skeletal muscle, lung and
pancreas. Interestingly, RALY mRNA is upregulated in many
tumor tissues, even if associated functional implications are
currently unknown.17,72 Although the modulation of RALY
expression has been observed in different tumors, the role of
RALY in tumorigenesis is a matter of ongoing investigation.
While few interaction partners of RALY have been already
described, a complete picture of the RALY interactome is
lacking as no quantitative proteomic analysis of RALY RNP-
complexes have been published so far. We isolated RALY
complexes from cell cultures in order to identify possible
molecular pathways in which RALY could be involved and gain
information regarding its functions. Unfortunately, any attempt
to immunoprecipitate RALY using various antibodies was
unsuccessful or not efficient (data not shown). One explanation
might rely on the observation that RALY, as many other RNA-
binding proteins, is a constituent of large RNP-complexes,
making it poorly accessible to the antibodies thereby hampering
their immunoprecipitation under native conditions. To over-
come this limitation, we expressed BAP-tagged RALY to purify
RALY-containing complexes. Cotransfection with BirA leads to
in vivo biotinylation of RALY, facilitating highly specific
interaction of the in vivo biotinylated RALY with streptavi-
din-coated beads. A similar approach has been previously used
to isolate mRNAs associated with the RNA-binding protein
PABP.73 Using cells transfected with untagged proteins and
cells without BirA ligase, negative controls are readily available,
rendering our method inexpensive, sensitive, and reliable. The
strong interaction between biotin and streptavidin as well as the
specificity of Bir(A) enzyme have several benefits: it increases
the amount of purified protein, and in the same time, it
decreases the number of unspecific interactors. Moreover, this
approach minimizes the dissociation of weak interactions and
thus maximizes the sensitivity of the approach and the yield of
transient molecular interactors. These aspects are essential to
reduce unspecifically bound proteins that would be falsely
classified as potentially interacting proteins during subsequent
mass spectrometric analysis. However, a major problem of mass
spectrometric identification of potential interaction partners,
even when using a high affinity pulldown and sensitive
instrumentation, remains to distinguish interactors from

Figure 5. Pulldown of selected proteins with RALY. (A) Human 293T
cells were transfected with plasmids expressing RALY-BAP and BirA.
The purified eluates were analyzed by immunoblotting with the
indicated antibodies. First lane: loaded whole cell extract (Input).
Second lane represents the pulldown performed in the absence of
RNase (-RNase). The third lane shows the pulldown performed in the
presence of ribonucleases A (+RNase). Treatment with RNase
enhanced the association of proteins such as eIF4AIIII, Magoh,
hnRNP-CFMRP with RALY suggesting for protein−protein-based
interactions. Interestingly, RALY can interact with itself in the absence
of RNA. In contrast, RNA is required for the interaction of RALY with
PABP, ELAVL1 and MAT3. No interaction is observed with RL7a and
YB-1. (B) Western blot showing a control pulldown. Pull down of
RALY does not involve either tubulin or APP. (C) Cell lysate was
treated with DNase before purification, and the precipitated complexes
were blotted with the indicate antibodies. In contrast to RNA, DNA
does not mediate the interaction of RALY with the indicated proteins.
APP was used as a negative control.
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proteins that bind unspecifically to the pulldown material. In
the iBioPQ approach, parallel processing of pulldown and
controls and subsequent label-free quantification by LC−MSE

allows to pinpoint potential interactors on the basis of their
relative protein abundance ratio between pulldown and control
samples, therefore increasing the specificity of interaction
partner identification.
For mass spectrometric identification of interacting proteins,

we applied an ion-mobility enhanced data-independent
acquisition approach,36−38 which was previously used to
quantify the composition of the myelin proteome.44 In contrast
to data-dependent acquisition (DDA), data-independent
acquisition provides high technical reproducibility due to
avoiding the stochastic nature of the peptide selection process.
For example, in one previous study applying DDA, only 35−
60% overlap of identified peptides was observed between
technical replicates.74 In contrast, we observed >90% overlap
between both technical and biological replicates on protein
level (see Figure S3, Supporting Information), thereby
underlining the reproducibility of our approach. Additionally,
no proteins were uniquely detected in control samples, which
confirms the low unspecific background of our approach.
Requiring candidates to be identified in both analyzed
biological replicates provided additional stringency of the
workflow.

Taken together, the iBioPQ approach allowed us to identify
and quantify 143 novel molecular interactors of RALY. Among
these, the protein NONO has been recently identified as an
interactor of YB-1 containing complex together with RALY.17

Several hnRNPs were copurified with RALY, and among these
were the hnRNP A1, C1/C2 and K. Although these factors play
different roles in the metabolism, they can also interact with
proteins involved in DNA damage response pathways.75,76 It
will be interesting to determine whether RALY might change its
intracellular localization upon DNA damage, supporting the
emerging concept that RNA-binding proteins can be recruited
to DNA damage sites and repair process with mechanisms that
are still poorly investigated. Treatments with RNase allowed us
to categorize RALY interactors into RNA-mediated interaction
partners and direct (protein−protein) interactions. Interest-
ingly, 80 identified interactors became enriched in RALY-
containing complexes after RNase treatment. These results
allow us to speculate cellular RNA to be a strong competitor for
RALY, probably because of the high affinity of RALY for RNA.
Thus, the interaction of RALY with additional proteins can be
enhanced and/or stabilized upon depletion of RNA. Another
hypothesis is that the lack of associated RNA changes the
folding structure of RALY. These conformational changes
might expose hidden domains of RALY allowing for additional
interactions with other proteins. Many of the identified proteins
are RNA-binding proteins (RBPs) known to be involved in

Figure 6. (A) Immunofluorescence microscopy of 293T cells showing colocalization of RALY (green) with the indicated proteins (in red). Scale bar
= 5 μm. (B) High magnification image showing colocalization of RALY (green) and PABP (red) in the cytoplasm. Cells were fixed and stained as
described in Materials and Methods. Particles colocalizing are indicated by yellow arrowheads. (C) Subcellular localization of deleted RALY in HeLa
cells. EGFP-tagged RALY lacking the GRR domain still localizes in the nucleus except nucleoli. Scale bar = 5 μm. (D) GRR domain is not required
for protein−protein interactions. Human 293T cells were transfected with plasmids expressing BAP-tagged RALY-ΔGRR with BirA. Control
purification of 293T cells expressing BAP-tagged RALY-ΔGRR without BirA was done in parallel as a negative control. The purified eluates were
separated on a 12% SDS-PAGE gel and analyzed by immunoblotting with the indicated antibodies.
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several processes of the RNA metabolism including rRNA and
ncRNA metabolism, and RNP biogenesis. Most rewardingly,
however, is the fact that a significant portion of the identified
interactors is implicated in mRNA translational control. Our
data suggest that RALY might have different functions in
mRNA metabolism that need further investigations. Among the
proteins identified in this study, eIF4AIII and FMRP showed a
direct protein−protein interaction with RALY. The translation
initiation factor eIF4AIII, Mago and Y14 are core components
of the exon-junction-complex, a dynamic multiprotein complex
that plays an essential role in nonsense mediated decay
(NMD). The role of FMRP has been thoroughly investigated,
especially in the nervous system. The loss of FMRP causes the
Fragile X syndrome, the most common form of inherited
intellectual disability.77 In neurons, FMRP is a negative
regulator of target mRNA translation important for neuronal
development and synaptic function.78−80 FMRP is mainly
found in the cytoplasm, but it shuttles into the nucleus where it
binds to its cargo mRNAs.81 In neurons, both eIF4AIII and
FMRP localize to dendrites in RNP complexes containing the
double stranded RNA-binding protein Staufen and localized
transcripts.82 Interestingly, eIF4AIII interacts with another
member of the NMD machinery, MLN51/Barentsz (Btz), that
is also a component of the dendritic mRNP.83 For this reason,
it would be interesting to determine whether RALY is also a
component of the molecular machinery involved in mRNA
subcellular localization in polarized cells such as neurons.
Preliminary results confirm that RALY is present both in the
cytoplasm and in distal processes of the oligodendroglial
progenitor cell line Oli-neu84,85 (data not shown). It is
tempting to speculate that RALY might remain associated
with mRNAs during their transport and subsequent local-
ization. It will be interesting to determine whether RALY can
exert any role in local translational and/or RNA stability. Our
data provide evidence that RALY interacts with proteins that
exert pleiotropic roles in mRNA metabolism.
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Figure S1. (A) ClustalW alignment of human RALY
(Q9UKM9.1), P. troglodytes (XP_514591.2), M. musculus
(Q64012.3), R. norvegicus (NP_001011958.1) and D. rerio
(AAQ97838.1). Identical residues and conservative amino acid
changes are marked by asterisks and dots, respectively. The
domains schematically represented in Figure 1A are indicated
by lines below the sequences: RNA-binding domain (yellow),
NLS (red), and GRR (green). (B) Schematic representation of
the procedure used to purify and characterize RALY interactors.
Cells were transfected with two constructs expressing RALY
tagged with the biotin acceptor peptide (BAP) and BirA,
respectively. Additional cells were transfected with either
RALY-BAP (Ctrl 1) or BirA (Ctrl 2) alone as controls. After
36 h, cells were washed and processed as described in Materials
and Methods. Part of the lysate was directly incubated with
streptavidin-coated magnetic beads, and the purified proteins
were identified by mass spectrometry analysis. To identify
proteins interacting with RALY in a RNA-independent way, the
remaining of the lysate was treated with either RNase (or
DNase in some cases) before purification. Figure S2. (A)
Western blot showing the specificity of the purification. 293T
cells were transfected with the construct expressing RALY-BAP.
The cell lysates were then incubated with streptavidin-coated

magnetic beads. After several washing steps, the eluates were
run on SDS-PAGE. Western blots were decorated with specific
antibodies as indicated. No unspecific bond of the identified
proteins is observed. The same results were obtained when
293T cells expressed only BirA in the absence of RALY-BAP.
(B) ClustalW alignment of human RALY and human hnRNP C
(NP_112604.2). Compared to RALY, hnRNP C protein does
not contain the glycine rich region. Figure S3. Venn diagrams
depicting (A) overlap between technical replicates, (B) overlap
between biological replicates, and (C) overlap between
pulldown and control samples. Venn Diagrams were con-
structed using the VENNY web application. (http://bioinfogp.
cnb.csic.es/tools/venny/index.html). Table S1. Complete
listing of proteins identified in pulldowns and control samples.
This material is available free of charge via the Internet at
http://pubs.acs.org.
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7.4 MATERIALS AND METHODS 

 

Constructs 

The sequences of the primers used in this study are listed in the Supplementary 

Table 1. RT-PCR was performed on total RNA isolated from HeLa cells using the 

TRIzol reagent (Invitrogen). Raly cDNA was amplified with the Phusion High-Fidelity 

DNA polymerase (New England BioLabs) and then cloned in frame with either EGFP 

(pEGFP-N1, Clontech), dsRED (pDsRED, Clontech) or in the same vector in frame 

with HA lacking EGFP. Point mutations were created using the QuickChange site-

directed mutagenesis kit (Stratagene) according to the manufacturer's protocol. 

BAP-tagged RALY was created using two complementary primers, which were 

annealed and cloned in frame to RALY cDNA in the pEGFP-N1 vector lacking the 

EGFP-coding sequence. BAP-tagged RALY was created as previously described 

(Petris, Vecchi et al. 2011). The construct to express RALY lacking the glycine-rich 

region (RALY-∆GRR) was created using the site-directed mutagenesis kit (Finnzymes, 

Thermo Scientific) according to the manufacturer's protocol with the following primers: 

5′- gagaacacaacttctgaggcaggc and 5′-ctgctccaagcggctcagcagggc. 

The list of all the primers is reported in supplementary in Appendix 7.5. 

Competition assay  

For the antibody competition assay, the RALY full-length cDNA was cloned into 

pGEX-T (Amersham Biosciences, Buckinghamshire, UK), for expression as a GST 

fusion protein in the E. coli strain Rosetta (Novagen, Madison, WI, USA) and purified 

with MagneGSTProtein Purification System (Promega). 5 μg of anti-RALY antibody 

(Bethyl) were incubated with 30 μg of purified GST-RALY full length fusion protein for 

2h at 4°C in Detector Block (KPL, Gaithersburg, MA, USA). As a positive control, 5 μg 

of anti-RALY antibody were incubated for 2h at 4°C in Detector Block. The two 

solutions were tested on western blots using HeLa cells lysate. 

Cell cultures, transient transfections, silencing 

Hek293T, HeLa and MCF7 cells grown in DMEM supplemented with 10% FCS. 

Ovcar 3 cells were grown in DMEM/DMEM F-12 (50/50) supplemented with 10% FCS 

as previously described (Vidalino, Monti et al. 2012). OliNeu cells were grown in SATO 

medium (ref Trotter) added 2% FCS. All the cell lines were transfected using the 

TransIT transfection reagent (Mirus, Bio LLC) according to the manufacturer’s protocol.  
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For the silencing, the cells were transfected with the specific pool of siRNA for 

RALY: ON-target plus SMART pool (Thermo Scientific Dharmacon) using INTERFERin 

transfection reagent (Polyplus Transfection). Then the cells were incubated for 72 

hours. Metabolic stress was induced using 0.5 mM Na-arsenite (Sigma) for 1 hour 

(Kedersha, Chen et al. 2002; Vessey, Vaccani et al. 2006). 

Immunocytochemistry and fluorescence microscopy  

Cells grown on cover slips were washed in pre-warmed PBS and then fixed in 4% 

PFA for 15 min at room temperature. Immunocytochemistry was carried out as 

previously described (Goetze, Tuebing et al. 2006). The following primary antibodies 

were used: rabbit polyclonal anti-RALY (dilution 1:500; Bethyl Laboratories); mouse 

polyclonal anti-RALY (dilution 1:100, Abcam). For the other antibody see 

supplementary in Appendix 7.5. Alexa 594- Alexa 688- and Alexa 488-coupled goat 

anti-mouse and anti-rabbit IgG were used as secondary antibodies (dilution 1:500, Life 

Technology). Microscopy analysis was performed using the Zeiss Observer Z.1 

Microscope implemented with the Zeiss ApoTome device and the pictures were 

acquired using AxioVision imaging software package (Zeiss). Confocal images were 

acquired using the Leica confocal microscope.  Images were not modified other than 

adjustments of levels, brightness and magnification. 

Preparation of cell extracts and Western blot  

Cells were washed with pre-warmed PBS, lysed in lysis RIPA buffer plus proteinase 

inhibitor and phosphatase inhibitor mixture (Roche), or lysed with NEHN lysis buffer [20 

mM HEPES pH 7.5, 300 mM NaCl, 0.5 % NP-40, 20% glycerol, 1 mM EDTA, 

phosphatase and protease inhibitors (Roche)] and incubated for 30 minutes in ice. 

Then the lysate were centrifugated at 10000 g for 5 min a 4°C. Then the surnatant 

were stocked at -80°C. 

Equal amounts of proteins were separated by 10 or 12% SDS-PAGE and blotted 

onto nitrocellulose (GE Healthcare). Western blots were probed with anti-mouse- and 

anti-rabbit-HRP secondary antibodies, scanned and analyzed with the Image Lab 

software (BioRad). The list of antibodies used is in supplementary in Appendix 7.5.  

iBioPQ 

All the Material and Method for the technique are reported in article "Proteome-

Wide Characterization of the RNA-Binding Protein RALY-Interactome Using the in 

Vivo-Biotinylation-Pulldown-Quant (iBioPQ) Approach." (Tenzer, Moro et al. 2013) 

Polyribosome analysis and pharmacological treatments  
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Polyribosome analysis was performed as described in (Provenzani, Fronza et al. 

2006). Briefly, HeLa cells grown on 10 cm Petri’s dishes were incubated with DMEM 

supplemented with cycloheximide (0.01 mg/ml) for 3 minutes then washed 3 times with 

cold PBS. Cells were then lysed with the lysis buffer [10 mM NaCl, 10 mM MgCl2, 10 

mM Tris-HCl ph 7.5, 0.1% Triton X-100, 1U of RNase Lock (Fermentas), 1 mM DTT, 

0.01 mg/ml cycloheximide, 0.1% NaDeoxycholate]. The cell extracts were loaded onto 

5-20% w/w density gradient of sucrose and centrifuged at 40.000xg for 160 min at 4°C. 

For RNase treatment, the extracts were incubated with 100 ug/ml RNase A for 15 

minutes, and then loaded to the sucrose gradient. EDTA was added to the cell lysate at 

the final concentration of 100 mM. The treatment with puromycin (100 µg/ml) was 

performed for 3 hours. One ml of each fractions was collected, proteins precipitated 

with TCA and the pellets were resuspended in RIPA buffer (Thermo Scientific). For the 

starvation experiments, HeLa cells were incubated for 24 hours in DMEM without FCS. 

Microarray analysis 

HeLa cells were grown on 10 cm Petri dishes. Total RNA was extracted from 4 

biological replicates using the Agilent Total RNA Isolation Mini kit (Agilent 

Technologies, Milan, Italy) according to the manufacturer’s protocol. RNA was 

quantified using the NanoDrop spectrophotometer (NanoDrop Technologies, 

Wilmington, DE, USA) and its quality was assessed by the Agilent 2100 Bioanalyzer. 

Hybridization, blocking and washing were performed according to Agilent protocol 

“One-Color Microarray-Based Gene Expression Analysis (Quick Amp Labeling)”. 

Hybridized microarray slides were then scanned with an Agilent DNA Microarray 

Scanner (G2505C) at 5-micron resolution with the manufacturer’s software (Agilent 

ScanControl 8.1.3). The scanned TIFF images were analyzed numerically using 

Feature Extraction (Agilent) and Genespring (Agilent), to derive the information 

regarding gene fold-change.  

RealTime PCR  

The RNA was purified from cells grown in a 10 cm dish using the commercial kit 

RNeasy Mini Kit (Quiagen). Then the RNA was retrotranscripted in cDNA by RevertAid 

First Strand cDNA Sunthesis Kit (Thermo Scientific Fermentas). For the RealTime PCR 

was used the KAPA PROBE FAST qPCR Kit (KAPA Biosystems) and the specific 

primers and probe for RALY, Actin, GAPDH, PTPRR, PLSCR4, PTPRO, SCEL, 

HSPB3, RRAD sold by IDT (TEMA ricerca). The plate with all the samples was 

incubated in BioRad C1000 Thermo Cycler for 40 cycles of reaction. The result was 

analyzed with Bio-Rad CFX Manager version 2.1. 
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Cell cultures and pharmacological treatments 

MCF7 cells were grown in DMEM supplemented with 10% FCS. After 24 hours the 

medium was changed with DMEM whit 10% FCS supplemented with 1,5 ng/µl 

Doxorubicin. The cells were incubated for 2, 4, 8, 12 or 16 hours before lyses. For the 

treatment with MG132 after primary incubation the cell was treated with 1,5 ng/ µl Doxo 

and 10 ng/ µl MG132. 
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7.5 SUPPLEMENTARY 

7.5.1 List of primers 

Construct Sequencea 

RALY1-306 
5’- ctcagatctatgtccttgaagcttcaggca 

5’- tttaccggttgcaaggccccatcatccgc 

RALY1-142 
5’- ctcagatctatgtccttgaagcttcaggca 

5’- tttaccggtaccgccctgggcactggcac 

RALY132-306 
5’- ctcagatctatgcgtctgtcgcccgtgccagtg 

5’- tttaccggttgcaaggccccatcatccgc 

RALY∆GRR  
5’- ctcagatctatgtccttgaagcttcaggca 

5’- cggaccggtacctccatcacccttcttctt 

RALYHA 5’ - agaattcatgtacccatacgatgttccagattacgcttccttgaagcttcaggcaagcaatg 
5’ - ttgcggccgcttactgcaaggccccatcatccg 

RALYRFP 
5’- gggaattccttgaagcttcaggcaagcaat 

5’- aaaaggtaccttactgcaaggccccatcatccg 

RALYBAP 
5′- gagaacacaacttctgaggcaggc  

5′- ctgctccaagcggctcagcagggc 

Del-NLS1  
5’ - cgggtcaaaactaacgtacctgtc 

5’ - cgggaccgccctgggcactg 

Del-NLS2  
5’ - gggggtggcgccggcggcggc 

5’ - gggattggccttttgctccgcagc 

NLS-1PR/AA 5’ - agggcggtccctgtgaagcgaGCAGCGgtcacagtccctttggtccgg 
5’ - ccggaccaaagggactgtgaccgctgctcgcttcacagggaccgccct 

NLS-2 RR/AA 5’ - cgggtcacagtccctttggtcGCTGCAgtcaaaactaacgtacctgtc 
5’ - gacaggtacgttagttttgactgcagcgaccaaagggactgtgacccg 

NLS-3 KK/AA 5’ - aaggccaatccagatggcaagGCTGCAggtgatggaggtggcgccggc 
5’ - gccggcgccacctccatcacctgcagccttgccatctggattggcctt 

 

a The restriction enzyme sites are underlined; HA sequence is in bold. 
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7.5.2 List of antibodies 

Antibodies Company Dilution for  
SDS-PAGE Dilution for IF 

Rabbit anti-RALY Bethyl 1:5000 1:250 

Mouse anti-RALY Sigma  1:100 

Rabbit anti-Casc3 HomeMade 1:5000 1:250 

Mouse anti-hnRNP A1 Genetex 1:5000  

Mouse anti-p53 SantaCruz 1:5000 1:500 

Rabbit anti-γH2AX Cell Signaling 1:5000 1:250 

Mouse anti-RPL26 Cell Signaling 1:5000  

Rabbit anti-PABP AbCam 1:5000  

Rabbit anti-Actin SantaCruz 1:5000  

Rabbit anti-Actinin SantaCruz 1:10000  

 

The list of antibody used for the publications are not reported in this table. 
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