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Tutta la materia di cui siamo fatti noi l’hanno costruita le stelle,
tutti gli elementi dall’idrogeno all’uranio sono stati fatti nelle reazioni
nucleari che avvengono nelle supernove, cioè queste stelle molto più
grosse del Sole che alla fine della loro vita esplodono e sparpagliano
nello spazio il risultato di tutte le reazioni nucleari avvenute al loro
interno. Per cui noi siamo veramente figli delle stelle.
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Il computer non è una macchina intelligente che aiuta le persone
stupide, anzi, è una macchina stupida che funziona solo nelle mani
delle persone intelligenti.
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Introduction

Neutron stars (NS) are among the densest objects in the Universe, with central
densities several times larger than the nuclear saturation density ρ0 = 0.16 fm−3.
As soon as the density significantly exceeds this value, the structure and composi-
tion of the NS core become uncertain. Moving from the surface towards the interior
of the star, the stellar matter undergoes a number of transitions, Fig. i.1. From
electrons and neutron rich ions in the outer envelopes, the composition is supposed
to change to the npeµ matter in the outer core, a degenerate gas of neutrons, pro-
tons, electrons and muons. At densities larger than ∼ 2ρ0 the npeµ assumption
can be invalid due to the appearance of new hadronic degrees of freedom or exotic
phases.

12 NEUTRON STARS

Figure 1.2. Schematic structure of a neutron star. Stellar parameters strongly depend on the
EOS in a neutron star core.

Some attempts to extract this information from observations are described in
Chapter 9. The atmosphere thickness varies from some ten centimeters in a
hot neutron star (with the effective surface temperature Ts ∼ 3 × 106 K) to a
few millimeters in a cold one (Ts ∼ 3 × 105 K). Very cold or ultramagnetized
neutron stars may have a solid or liquid surface. Neutron star atmospheres have
been studied theoretically by many authors (see, e.g., Zavlin & Pavlov 2002 and
references therein). Current atmosphere models, especially for neutron stars
with surface temperatures Ts ! 106 K and strong magnetic fields B " 1011 G,
are far from being complete. The most serious problems consist in calculating
the EOS, ionization equilibrium, and spectral opacity of the atmospheric plasma
(Chapters 2 and 4).

If the radiation flux is too strong, the radiative force exceeds the gravitational
one and makes the atmosphere unstable with respect to a plasma outflow. In
a hot nonmagnetized atmosphere, where the radiative force is produced by
Thomson scattering, this happens whenever the stellar luminosity L exceeds
the Eddington limit

LEdd = 4πcGMmp/σT ≈ 1.3 × 1038 (M/M!) erg s−1, (1.3)

where σT is the Thomson scattering cross section and mp the proton mass.
The outer crust (the outer envelope) extends from the atmosphere bottom

to the layer of the density ρ = ρND ≈ 4 × 1011 g cm−3. Its thickness is
some hundred meters (Chapter 6). Its matter consists of ions Z and electrons
e (Chapters 2 and 3). A very thin surface layer (up to few meters in a hot star)
contains a non-degenerate electron gas. In deeper layers the electrons constitute

Figure i.1: Schematic structure of a neutron star. Stellar parameters strongly
depend on the equation of state of the core. Figure taken from Ref. [1]

xi



xii Introduction

In the pioneering work of 1960 [2], Ambartsumyan and Saakyan reported the
first theoretical evidence of hyperons in the core of a NS. Contrary to terrestrial
conditions, where hyperons are unstable and decay into nucleons through the weak
interaction, the equilibrium conditions in a NS can make the inverse process hap-
pen. At densities of the order 2 ÷ 3ρ0, the nucleon chemical potential is large
enough to make the conversion of nucleons into hyperons energetically favorable.
This conversion reduces the Fermi pressure exerted by the baryons, and makes the
equation of state (EoS) softer. As a consequence, the maximum mass of the star
is typically reduced.

Nowadays many different approaches of hyperonic matter are available, but
there is no general agreement among the predicted results for the EoS and the
maximum mass of a NS including hyperons. Some classes of methods extended to
the hyperonic sector predict that the appearance of hyperons at around 2 ÷ 3ρ0

leads to a strong softening of EoS and consequently to a large reduction of the
maximum mass. Other approaches, instead, indicate much weaker effects as a
consequence of the presence of strange baryons in the core of the star.

The situation has recently become even more controversial as a result of the
latest astrophysical observations. Until 2010, the value of 1.4÷1.5M� for the max-
imum mass of a NS, inferred from precise neutron star mass determinations [4],
was considered the canonical limit. First neutron star matter calculations with
the inclusion of hyperons seemed to better agree with this value compared to the
case of pure nucleonic EoS, that predicts relatively large maximum masses (1.8÷
2.4M�) [5]. The recent measurements of unusually high masses of the millisecond
pulsars PSR J1614-2230 (1.97(4)M�) [6] and PSR J1903+0327 (2.01(4)M�) [7],
rule out almost all these results, making uncertain the appearance of strange
baryons in high-density matter. However, in the last three years new models com-
patible with the recent observations have been proposed, but many inconsistency
still remain. The solution of this problem, known as hyperon puzzle, is far to be
understood.

The difficulty of correctly describe the effect of strange baryons in the nuclear
medium, is that one needs a precise solution of a many-body problem for a very
dense system with strong and complicated interactions which are often poorly
known.

The determination of a realistic interaction among hyperons and nucleons ca-
pable to reconcile the terrestrial measurements on hypernuclei and the NS observa-
tions is still an unsolved question. The amount of data available for nucleon-nucleon
scattering and binding energies is enough to build satisfactory models of nuclear
forces, either purely phenomenological or built on the basis of an effective field the-
ory. Same approaches have been used to derive potentials for the hyperon-nucleon
and hyperon-hyperon interaction, but the accuracy of these models is far from that
of the non strange counterparts. The main reason of this is the lack of experimental
information due the impossibility to collect hyperon-neutron and hyperon-hyperon
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scattering data. This implies that interaction models must be fitted mostly on
binding energies (and possibly excitations) of hypernuclei. In the last years several
measurements of the energy of hypernuclei became available. These can be used to
validate or to constrain the hyperon-nucleon interactions within the framework of
many-body systems. The ultimate goal is then to constrain these forces by repro-
ducing at best the experimental energies of hypernuclei from light systems made
of few particles up to heavier systems.

The method used to accurately solve the many-body Schrödinger equation rep-
resents the second part of the problem. Accurate calculations are indeed limited
to very few nucleons. The exact Faddeev-Yakubovsky equation approach has been
applied up to four particle systems [8]. Few nucleon systems can be accurately
described by means of techniques based on shell models calculations like the No-
Core Shell Model [9], on the Hyperspherical Harmonics approach [10–14] or on
QuantumMonte Carlo methods, like the Variational Monte Carlo [15, 16] or Green
Function Monte Carlo [17–20]. These methods have been proven to solve the
nuclear Schrödinger equation in good agreement with the Faddeev-Yakubovsky
method [21]. For heavier nuclei, Correlated Basis Function theory [22], Cluster
Variational Monte Carlo [23, 24] and Coupled Cluster Expansion [25, 26] are typ-
ically adopted. In addition, the class of method which includes the Brueckner-
Goldstone [27] and the Hartree-Fock [28] algorithms is widely used, also for nu-
clear matter calculations. The drawback of these many-body methods is that they
modify the original Hamiltonian to a more manageable form, often introducing
uncontrolled approximations in the algorithm. In absence of an exact method
for solving the many-body Schrödinger equation for a large number of nucleons,
the derivation of model interactions and their applicability in different regimes is
subject to an unpleasant degree of arbitrariness.

In this work we address the problem of the hyperon-nucleon interaction from a
Quantum Monte Carlo point of view. We discuss the application of the Auxiliary
Field Diffusion Monte Carlo (AFDMC) algorithm to study a non relativistic Hamil-
tonian based on a phenomenological hyperon-nucleon interaction with explicit two-
and three-body components. The method was originally developed for nuclear sys-
tems [29] and it has been successfully applied to the study of nuclei [30–32], neutron
drops [20, 33, 34], nuclear matter [35, 36] and neutron matter [37–40]. We have
extended this ab-initio algorithm in order to include the lightest of the strange
baryons, the Λ particle. By studying the ground state properties of single and dou-
ble Λ hypernuclei, information about the employed microscopic hyperon-nucleon
interaction are deduced.

The main outcome of the study on finite strange systems is that only the inclu-
sion of explicit ΛNN terms provides the necessary repulsion to realistically describe
the separation energy of a Λ hyperon in hypernuclei of intermediate masses [41–43].
The analysis of single particle densities confirms the importance of the inclusion
of the ΛNN contribution. On the ground of this observation, the three-body
hyperon-nucleon interaction has been studied in detail. By refitting the coeffi-
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cients in the potential, it has been possible to reproduce at the same time the
available experimental data accessible with AFDMC calculations in a medium-
heavy mass range [43]. Other details of the hypernuclear force, like the charge
symmetry breaking contribution and the effect of a ΛΛ interaction, have been suc-
cessfully analyzed. The AFDMC study of Λ hypernuclei results thus in a realistic
phenomenological hyperon-nucleon interaction accurate in describing the ground
state physics of medium-heavy mass hypernuclei.

The large repulsive contribution induced by the three-body ΛNN term, makes
very clear the fact that the lack of an accurate Hamiltonian might be responsible for
the unrealistic predictions of the EoS, that would tend to rule out the appearance
of strange baryons in high-density matter. We speculate that the application of the
developed hyperon-nucleon interaction to the study of the homogeneous medium
would lead to a stiffer EoS for the Λ neutron matter. This fact might eventually
reconcile the physically expected onset of hyperons in the inner core of a NS with
the observed masses of order 2M�.

First steps in this direction have been taken. The study of Λ neutron matter at
fixed Λ fraction shows that the repulsive nature of the three-body hyperon-nucleon
interaction is still active and relevant at densities larger than the saturation density.
The density threshold for the appearance of Λ hyperons has then been derived and
the EoS has been computed. Very preliminary results suggest a rather stiff EoS even
in the presence of hyperons, implying a maximum mass above the observational
limit. The study of hypermatter is still work in progress.

The present work is organized as follows:

Chapter 1: a general overview about strangeness in nuclear systems, from hyper-
nuclei to neutron stars, is reported with reference to the terrestrial experi-
ments and astronomical observations.

Chapter 2: a description of nuclear and hypernuclear non-relativistic Hamiltoni-
ans is presented, with particular attention to the hyperon-nucleon sector in
the two- and three-body channels.

Chapter 3: the Auxiliary Field Diffusion Monte Carlo method is discussed in its
original form for nuclear systems and in the newly developed version with the
inclusion of strange degrees of freedom, both for finite and infinite systems.

Chapter 4: the analysis and set up of a realistic hyperon-nucleon interaction are
reported in connection with the AFDMC results for the hyperon separation
energy. Qualitative information are also deduced from single particle densities
and root mean square radii for single and double Λ hypernuclei.
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Chapter 5: using the interaction developed for finite strange systems, first Quan-
tum Monte Carlo calculations on Λ neutron matter are presented and the
implications of the obtained results for the properties of neutron stars are
explored.

Chapter 6: the achievements of this work are finally summarized and future per-
spective are discussed.
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Chapter 1

Strangeness in nuclear systems

Hyperons are baryons containing one or more strange quarks. They have masses
larger than nucleons and lifetimes characteristic of the weak decay. The Λ and
Ω hyperons belong to an isospin singlet, the Σs to an isospin triplet and the Ξ
particles to an isospin doublet. In Tab. 1.1 we report the list of hyperons (excluding
resonances and unnatural parity states [44]), with their main properties. The
isospin doublet of nucleons is also shown for comparison.

Baryon qqq S I m [MeV] τ [10−10 s] Decay mode

p uud
0

1

2

938.272 05(2) ∼ 1032 y many

n udd 939.565 38(2) 808(1) s p e ν̄e

Λ uds −1 0 1115.683(6) 2.63(2) p π−, n π0

Σ+ uus

−1 1

1189.37(7) 0.802(3) p π0, n π+

Σ0 uds 1192.64(2) 7.4(7)×10−10 Λ γ

Σ− dds 1197.45(3) 1.48(1) nπ−

Ξ0 uss −2
1

2

1314.9(2) 2.90(9) Λπ0

Ξ− dss 1321.71(7) 1.64(2) Λπ−

Ω− sss −3 0 1672.5(3) 0.82(1) ΛK−,Ξ0 π−,Ξ− π0

Table 1.1: Nucleon and hyperon properties: quark components, strangeness,
isospin, mass, mean life and principal decay modes [44].
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2 Chapter 1. Strangeness in nuclear systems

In the non strange nuclear sector many information are available for nucleon-
nucleon scattering. The NijmegenNN scattering database [45, 46] includes 1787 pp
and 2514 np data in the range 0÷ 350 MeV. Due to the instability of hyperons in
the vacuum and the impossibility to collect hyperon-neutron and hyperon-hyperon
scattering data, the available information in the strange nuclear sector are instead
very limited. Although many events have been reported both in the low and high
energy regimes [47], the standard set employed in the modern hyperon-nucleon in-
teractions (see for example Ref. [48]) comprises 35 selected Λp low energy scattering
data [49] and some ΛN and ΣN data at higher energies [50]. In addition there are
the recently measured Σ+p cross sections of the KEK-PS E289 experiment [51], for
a total of 52 Y N scattering data.

The very limited experimental possibilities of exploring hyperon-nucleon and
hyperon-hyperon interactions in elementary scattering experiments, makes the de-
tailed study of hypernuclei essential to understand the physics in the strange sector.
In the next, we will present a summary of the available hypernuclei experimental
data. These information are the key ingredient to develop realistic hyperon-nucleon
and hyperon-hyperon interactions, as described in the next chapters. The theoret-
ical evidence of the appearance of hyperons in the core of a NS and the problem
of the hyperon puzzle will then be discussed, following the results of many-body
calculations for the available models of hypermatter.

1.1 Hyperons in finite nuclei

In high-energy nuclear reactions strange hadrons are produced abundantly, and
they are strongly involved in the reaction process. When hyperons are captured
by nuclei, hypernuclei are formed, which can live long enough in comparison with
nuclear reaction times. Extensive efforts have been devoted to the study of hy-
pernuclei. Among many strange nuclear systems, the single Λ hypernucleus is the
most investigated one [52].

The history of hypernuclear experimental research (see Refs. [52–54] for a com-
plete review) celebrates this year the sixtieth anniversary, since the publication of
the discovery of hypernuclei by Danysz and Pniewski in 1953 [55]. Their first event
was an example of 3

ΛH decaying via

3
ΛH −→ 3He + π− , (1.1)

confirming that the bound particle was a Λ hyperon. The event was observed in an
emulsion stack as a consequence of nuclear multifragmentation induced by cosmic
rays. This first evidence opened the study of light Λ hypernuclei (A < 16) by emul-
sion experiments, by means of cosmic ray observations at the beginning and then
through proton and pion beams, although the production rates were low and there
was much background. In the early 70’s, the advent of kaon beam at CERN and
later at Brookhaven National Laboratory (BNL), opened the possibility of spectro-
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scopic studies of hypernuclei, including excited states, by means of the (K−, π−)
reaction (see Fig. 1.1). A third stage, which featured the use of the (π+,K+) re-
action, began in the mid 1980’s at the Alternating Gradient Synchrotron (AGS) of
BNL first, and then at the proton synchrotron (PS) of the High Energy Accelera-
tor Organization (KEK) in Japan. Here, the superconducting kaon spectrometer
(SKS) played a key role in exploring Λ hypernuclear spectroscopy by the (π+,K+)
reaction. γ-ray spectroscopy developed reaching unprecedented resolution through
the use of a germanium detector array, the Hyperball, and the high quality and
high intensity electron beams available at the Thomas Jefferson National Accel-
erator Facility (JLab). This permitted the first successful (e, e′K+) hypernuclear
spectroscopy measurement (an historical review of hypernuclear spectroscopy with
electron beams can be found in Ref. [56]. The detailed analysis of Λ hypernuclei
spectroscopy is reported in Ref. [52]).

Strangeness exchange reaction

Associated production reaction

(⇡+, K+)
reaction

K+⇡+

⇤

u u

uu
d
d

d

d̄
s

s̄

n

⇢⇢

n n

⇢⇢

n n

(K�, ⇡�)
reaction

K� ⇡�

⇤
u u

ū ū

d
d d

ds

s
n

⇢
n8

><
>:

(e, e0K+)
reaction

K+

⇤

e e0

p

u

u

u

u
d d

s
s̄�⇤

Figure 1.1: Schematic presentation of three strangeness producing reactions used
in the study of Λ hypernuclei.

With the development of new facilities, like the japanese J-PARC (Proton Ac-
celerator Research Complex), other reaction channels for the production of neutron
rich Λ hypernuclei became available. The candidates are the single charge exchange
(SCX) reactions (K−, π0) and (π−,K0), and double charge exchange (DCX) re-
actions (π−,K+) and (K−, π+). Fig. 1.2 nicely illustrates the complementarity of
the various production mechanisms and thus the need to study hypernuclei with
different reactions. Moreover, during the last 20 years of research, great progress
has been made in the investigation of multifragmentation reactions associated with
heavy ion collisions (see for instance [57] and reference therein). This gives the op-
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portunity to apply the same reactions for the production of hypernuclei too [58, 59].
On the other hand, it was noticed that the absorption of hyperons in spectator
regions of peripheral relativistic ion collisions is a promising way to produce hy-
pernuclei [60, 61]. Also, central collisions of relativistic heavy ions can lead to
the production of light hypernuclei [62]. Recent experiments have confirmed ob-
servations of hypernuclei in such reactions, in both peripheral [63, 64] and central
collisions [65].
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Figure 1.2: Λ hypernuclei accessible by experiments for different production chan-
nels. The boundaries at the neutron and proton rich side mark the predicted drip
lines by a nuclear mass formula extended to strange nuclei. Figure taken from
Ref. [66].

At the time of writing, many laboratories are making extensive efforts in the
study of Λ hypernuclei. The status of the art together with future prospects can
be found in Refs. [67–69] for the J-PARC facility and in Ref. [70] for the ALICE (A
Large Ion Collider Experiment) experiment at the LHC. Ref. [71] reports the status
of the JLab’s Hall A program. In Ref. [72] future prospects for the the PANDA
(antiProton ANihilation at DArmstadt) project at FAIR (Facility for Antiproton
ad Ion Research) and the hypernuclear experiments using the KAOS spectrometer
at MAMI (Mainz Microtron) can be found. Last results from the FINUDA (FIsica
NUcleare a DAΦNE) collaboration at DAΦNE, Italy, are reported in Ref. [73].
Recent interest has been also focused on the S = −2 sector with the study of double
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Λ hypernuclei [74] and the S = −3 sector with the search for Ω hypernuclei [75].
So far, there is no evidence for Λp and 3

ΛHe bound states. Only very recently the
possible evidence of the three-body system Λnn has been reported [76]. The first
well established weakly bound systems is 3

ΛH, with hyperon separation energy BΛ

(the energy difference between the A− 1 nucleus and the A hypernucleus, being A
the total number of baryons) of 0.13(5) MeV [77]. Besides the very old experimental
results [77–79], several measurements of single Λ hypernuclei became available in
the last years trough the many techniques described above [73, 80–86]. The update
determination of the lifetime of 3

ΛH and 4
ΛH has been recently reported [87] and

new proposals for the search of exotic Λ hypernuclei are constantly discussed (see
for example the search for 9

ΛHe [88]). One of the results of this investigation is
the compilation of the Λ hypernuclear chart reported in Fig. 1.3. Although the
extensive experimental studies in the S = −1 strangeness sector, the availability
of information for hypernuclei is still far from the abundance of data for the non
strange sector.

It is interesting to observe that with the increase of A, there is an orderly
increase of BΛ with the number of particles, of the order of 1 MeV/nucleon (see
Tab. 4.3 or the mentioned experimental references). Many stable hypernuclei with
unstable cores appears, as for example 6

ΛHe,
8
ΛHe,

7
ΛBe and 9

ΛBe. These evidences
testify that the presence of a Λ particle inside a nucleus has a glue like effect,
increasing the binding energy and stability of the system. This should be reflectedPresent Status of 

/ Hypernuclear Spectroscopy

Updated from: O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57 (2006) 564.

(2006)

Updated from: O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57 (2006) 564.

(2012)

Updated from: O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57 (2006) 564.

Figure 1.3: Λ hypernuclear chart presented at the XI International Conference on
Hypernuclear and Strange Particle Physics (HYP2012), October 2012, Spain. The
figure has been updated from Ref. [52].

http://icc.ub.edu/congress/HYP2012/
http://icc.ub.edu/congress/HYP2012/
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by the attractive behavior of the Λ-nucleon interaction, at least in the low density
regime of hypernuclei.

For Σ hypernuclei, the situation is quite different. Up to now, only one bound
Σ hypernucleus, 4

ΣHe, was detected [89], despite extensive searches. The analysis
of experimental data suggests a dominant Σ-nucleus repulsion inside the nuclear
surface and a weak attraction outside the nucleus. In the case of Ξ hypernuclei,
although there is no definitive data for any Ξ hypernucleus at present, several
experimental results suggest that Ξ-nucleus interactions are weakly attractive [90].
No experimental indication exists for Ω hypernuclei. It is a challenge to naturally
explain the net attraction in Λ- and Ξ-nucleus potentials and at the same time the
dominant repulsion in Σ-nucleus potentials.

In addition to single hyperon nuclei, the binding energies of few double Λ hyper-
nuclei ( 6

ΛΛHe [91–93],
10

ΛΛBe,
12

ΛΛBe and
12

ΛΛBe [92, 94],
13

ΛΛB [92]) have been measured.
The indication is that of a weakly attractive ΛΛ interaction, which reinforces the
glue like role of Λ hyperons inside nuclei.

From the presented picture it is clear that experimental hypernuclear physics
has become a very active field of research. However there is still lack of informa-
tion, even in the most investigated sector of Λ hypernuclei. Due to the technical
difficulties in performing scattering experiments involving hyperons and nucleons,
the present main goal is the extension of the Λ hypernuclear chart to the proton
and neutron drip lines and for heavier systems. Parallel studies on Σ, Ξ and dou-
ble Λ hypernuclei have been and will we be funded in order to try to complete the
scheme. This will hopefully provide the necessary information for the development
of realistic hyperon-nucleon and hyperon-hyperon interactions.

1.2 Hyperons in neutron stars

The matter in the outer core of a NS is supposed to be composed by a de-
generate gas of neutrons, protons, electrons and muons, the npeµ matter, under
β equilibrium. Given the energy density

E(ρn, ρp, ρe, ρµ) = EN (ρn, ρp) + Ee(ρe) + Eµ(ρµ) , (1.2)

where EN is the nucleon contribution, the equilibrium condition at a given baryon
density ρb corresponds to the minimum of E under the constraints

fixed baryon density: ρn + ρp − ρb = 0 , (1.3a)

electrical neutrality: ρe + ρµ − ρp = 0 . (1.3b)

The result is the set of conditions

µn = µp + µe , (1.4a)

µµ = µe , (1.4b)
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where µj = ∂E/∂ρj with j = n, p, e, µ are the chemical potentials. These relations
express the equilibrium with respect to the weak interaction processes

n −→ p+ e+ ν̄e , p+ e −→ n+ νe ,

n −→ p+ µ+ ν̄µ , p+ µ −→ n+ νµ .
(1.5)

(Neutrino do not affect the matter thermodynamics so their chemical potential
is set to zero). Eqs. (1.4) supplemented by the constraints (1.3) form a closed
system which determines the equilibrium composition of the npeµ matter. Once
the equilibrium is set, the energy and pressure as a function of the baryon density
can be derived and thus the EoS is obtained.

Given the EoS, the structure of a non rotating NS can be fully determined by
solving the Tolman-Oppenheimer-Volkoff (TOV) equations [95, 96]

dP (r)

dr
= −G

[
E(r) + P (r)

][
m(r) + 4πr3P (r)

]

r2
[
1− 2Gm(r)

r

] , (1.6a)

dm(r)

dr
= 4πr2E(r) , (1.6b)

which describe the hydrostatic equilibrium of a static spherically symmetric star.
E(r) and P (r) are the energy density and the pressure of the matter, m(r) is the
gravitational mass enclosed within a radius r, and G is the Gravitational constant.
In the stellar interior P > 0 and dP/dr < 0. The condition P (R) = 0 fixes the
stellar radius R. Outside the star for r > R, we have P = 0 and E = 0. Eq. (1.6b)
gives thusm(r > R) = M = const, which is total gravitational mass. Starting with
a central energy density Ec = E(r = 0) and using the above conditions, the TOV
equations can be numerically solved and the mass-radius relation M = M(R) is
obtained. It can be shown [1], that the relativistic corrections to the Newtonian law
dP (r)/dr = −GmE(r)/r2 included in Eq. (1.6a) give an upperbound to the M(R)
relation, i.e. there exists a maximum mass for a NS in hydrostatic equilibrium.
It is important to note that, given the EoS, the mass-radius relation is univocally
determined. Any modification made on the EoS will lead to a change in the M(R)
curve and thus in the allowed maximum mass.

For ρb & 2ρ0, the inner core is thought to have the same npeµ composition of
the outer core. However, since at high densities the nucleon gas will be highly de-
generate, hyperons with energies lower than a threshold value will become stable,
because the nucleon arising from their decay cannot find a place in phase space in
accordance to the Pauli principle [2]. Thus, beyond a density threshold we have
to take into account the contribution of hyperons to the β equilibrium. Eq. (1.2)
becomes a function of ρb (baryons: nucleons and hyperons) and ρl (leptons: elec-
trons and muons). Given the baryon density and imposing electrical neutrality
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conditions, the equilibrium equations now read:

Qb = −1 : µb− = µn + µe ⇒ µΩ−= µΞ− = µΣ− = µn + µe , (1.7a)

Qb = 0 : µb0 = µn ⇒ µΞ0 = µΣ0 = µΛ = µn , (1.7b)

Qb = +1 : µb+ = µn − µe ⇒ µΣ+ = µp = µn − µe , (1.7c)

where Qb is the electric charge of a baryon. As soon as the neutron chemical poten-
tial becomes sufficiently large, energetic neutrons can decay via weak strangeness
nonconserving reactions into Λ hyperons, leading to a Λ Fermi sea.

We can derive the hyperons threshold densities ρY by calculating the minimum
increase of the energy of the matter produced by adding a single strange particle
at a fixed pressure. This can be done by considering the energy of the matter with
an admixture of given hyperons and by calculating numerically the limit of the
derivative

lim
ρY→0

∂E
∂ρY

∣∣∣∣
eq

= µ0
Y . (1.8)

Consider for example the lightest Λ hyperon. As long as µ0
Λ > µn, the strange

baryon cannot survive because the system will lower its energy via an exothermic
reaction Λ+N −→ n+N . However, µn increases with growing ρb and the functions
µ0

Λ(ρb) and µ0
n(ρb) intersect at some ρb = ρthΛ (the left panel in Fig. 1.4). For

ρb > ρthΛ the Λ hyperons become stable in dense matter because their decay is
blocked by the Pauli principle.

Although the Λ particle is the lightest among hyperons, one expects the Σ− to
appear via

n+ e− −→ Σ− + νe (1.9)

at densities lower than the Λ threshold, even thought the Σ− is more massive. This
is because the negatively charged hyperons appear in the ground state of matter
when their masses equal µn+µe, while the neutral hyperon Λ appears when its mass
equals µn. Since the electron chemical potential in matter is typically larger (ul-
trarelativistic degenerate electrons µe ∼ EFe ∼ ~c(3π2ρe)

1/3 > 120 MeV for ρe ∼
5%ρ0) than the mass difference mΣ− −mΛ = 81.76 MeV, the Σ− will appear at
lower densities. However, in typical neutron matter calculations with the inclusion
of strange degrees of freedom, only Λ, Σ0 and Ξ0 hyperons are taken into account
due to charge conservation.

The formation of hyperons softens the EoS because high energy neutrons are
replaced by more massive low energy hyperons which can be accommodated in lower
momentum states. There is thus a decrease in the kinetic energy that produces
lower pressure. The softening of the EoS of the inner core of a NS induced by the
presence of hyperons is generic effect. However, its magnitude is strongly model
dependent.
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Figure 5.10. Threshold chemical potentials of neutral hyperons and neutron (left) and of nega-
tively charged hyperons and the sum µe+µn (right) versus baryon number density for model C of
Glendenning (1985). Vertical dotted lines mark the thresholds for the creation of new hyperons;
dashed lines show minimum enthalpies µ0

H of unstable hyperons before the thresholds.

5.14.1 Hyperonic composition
Let us consider an electrically neutral matter composed of baryons B (nucle-

ons and hyperons) and leptons ! (electron and muons) at a given baryon number
density nb. The baryon density is

∑

B

nB = nb , (5.111)

while the electric charge neutrality implies
∑

B

nBQB −
∑

!=e,µ

n! = 0 , (5.112)

where QB is the electric charge of a baryon B in units of e. The energy density
depends on the number densities of baryons {nB} and leptons (ne, nµ), E =
E({nB}, ne, nµ). The equilibrium state has to be determined by minimizing E
under the constraints given by Eqs. (5.111) and (5.112). To this aim, we will
use the method of Lagrange multipliers described in §5.11.1. In analogy with
Eq. (5.91) we define the auxiliary energy density Ẽ

Ẽ = E + λb

(∑

B

nB − nb

)
+ λq


∑

B

QBnB −
∑

!=e,µ

n!


 . (5.113)

Figure 1.4: Threshold chemical potentials of neutral hyperons and neutron (left
panel), and of negatively charged hyperons and the sum µn + µe (right panel)
versus baryon density. Vertical dotted lines mark the thresholds for the creation of
new hyperons. Dashed lines show the minimum chemical potential µ0

Y of unstable
hyperons before the thresholds. Figure taken from Ref. [1].

Calculations based on the extension to the hyperonic sector of the Hartree-Fock
(HF) [97, 98] and Brueckner-Hartree-Fock (BHF) [99, 100] methods, do all agree
that the appearance of hyperons around 2÷ 3ρ0 leads to a strong softening of the
EoS. Consequently, the expected maximum mass is largely reduced, as shown for
instance in Fig. 1.5 and Fig. 1.6. The addition of the hyperon-nucleon force to the
pure nucleonic Hamiltonian, lowers the maximum mass of a value between 0.4M�
and more than 1M�. From the pure nucleonic case of Mmax > 1.8M�, the limit
for hypernuclear matter is thus reduced to the range 1.4M� < Mmax < 1.6M�.
These results, although compatible with the canonical limit of 1.4÷1.5M�, cannot
be consistent with the recent observations of 2M� millisecond pulsars [6, 7].

It is interesting to note that the hyperonic Mmax weakly depends on the de-
tails of the employed nucleon-nucleon interaction and even less on the hypernu-
clear forces. In Ref. [97] the interaction used for the nuclear sector is an analytic
parametrization fitted to energy of symmetric matter obtained from variational cal-
culations with the Argonne V18 nucleon-nucleon interaction (see § 2.1) including
three-body forces and relativistic boost corrections. Refs. [99] and [100] adopted
the bare NN Argonne V18 supplemented with explicit three-nucleon forces or phe-
nomenological density-dependent contact terms that account for the effect of nucle-
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FIG. 3. (Color online) Mass—radius and mass—central density
relations for different equations of state. Details are given in the text.

This is in fact confirmed by the composition of NS matter
shown in the upper panels of Fig. 2, where the results obtained
with the two models V18 + TBF + ESC08 and V18 + UIX′+
NSC89 are compared with those of purely nuclear matter,
V18 + TBF and V18 + UIX′, disregarding the appearance
of hyperons. It is striking to see how the roles of the ! and
"− hyperons are reversed with the two YN potentials: With
the NSC89 the "− appears first at about twice normal nuclear
matter density and the ! at about 0.6 fm−3, whereas with
the ESC08 the hyperon onset densities are nearly the same,
but ! and "− are swapped. Furthermore, with the ESC08
the ! concentration reaches much larger values than with the
NSC89, while the "− remains more suppressed, due to its
strong repulsion in neutron-rich matter; see Fig. 1.

Pressure and energy density of hyperonic NS matter, shown
in the lower panels of Fig. 2, are quite similar for both models.
This is in contrast to the purely nucleonic calculations, where
one observes a much stiffer nuclear EOS with the microscopic
TBF than with the UIX′, see also Refs. [6,9]. The proton
fraction is larger with the microscopic TBF, which would
favor also a larger "− concentration. Evidently this effect
is completely overcome by the strong "− repulsion with the
ESC08 potential.

These results allow to interpret easily the final resulting
mass—radius and mass—central density relations for the
different EOS that are shown in Fig. 3: Regarding the purely
nucleonic cases (thin curves), in accordance with the EOS

shown in Fig. 2 one obtains a much larger maximum mass
with the microscopic TBF than with the UIX′ (2.27 M# vs
1.82 M#) [6], while remarkably the introduction of hyperons
yields nearly the same maximum mass in both models
(1.37 M# vs 1.32 M#; thick solid and dashed curves). These
values are also very close to the result 1.34 M# that was
obtained in an approximate way in Ref. [6] by combining
the microscopic TBF with the NSC89 potential, i.e., V18 +
TBF + NSC89, and that we repeat here for completeness,
together with the result for V18 + UIX′+ ESC08 (1.36 M#),
obtained in the same way.

While the maximum masses of hyperon stars are thus
nearly identical, there are significant differences for the
corresponding radii that are linked to the maximum central
baryon density that is reached in the different models. In
any case, however, most current observed NS masses [26]
are superior to these theoretical values of hyperon stars.

IV. CONCLUSIONS

In this article the finding of very low maximum masses of
hyperon stars within the BHF approach is reconfirmed, using
very recent realistic nucleon-nucleon and hyperon-nucleon
interactions.

Compared to previous results based on the V18 + UIX′

NN force and the NSC89/97 YN models, both changes are in
principle able to stiffen the EOS and increase the maximum
mass (as clearly shown for purely nucleonic stars), but it is
amazing to see how well the self-regulating compensation
softening mechanism for the hypernuclear EOS works, finally
yielding nearly the same maximum mass of about 1.35 M# as
before.

This result reinforces once more the important conclusion
that in our approach massive neutron stars have to be hybrid
stars containing a core of nonbaryonic (“quark”) matter [27],
since the possibility of them being nucleonic stars is ruled out
by the early appearance of hyperons.

It seems difficult to avoid this conclusion, even in view
of the current uncertainties regarding hyperon-hyperon and
hyperonic three-body interactions. Only simultaneous strong
repulsion in all relevant channels could significantly raise the
maximum mass (see, however, Ref. [28]). Obviously it will
be an important task for the future to verify this by following
future experimental and theoretical developments in this field.
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Figure 1.5: Mass-radius and mass-central density relations for different NS EoS ob-
tained in Brueckner-Hartree-Fock calculations of hypernuclear matter. V18+TBF
and V18+UIX’ refer to purely nuclear matter EoS built starting from two- and
three-body nucleon-nucleon potentials (see § 2.1). The other curves are obtained
adding two different hyperon-nucleon forces among the Nijmegen models to the
previous nucleonic EoS. For more details see the original paper [99].

onic and hyperonic three-body interactions. The hypernuclear forces employed in
these work belong to the class of Nijmegen potentials (see § 2). Finally, in Ref. [98]
chiral Lagrangian and quark-meson coupling models of hyperon matter have been
employed. Despite the differences in the potentials used in the strange and non
strange sectors, the outcomes of these works give the same qualitative and almost
quantitative picture about the reduction of Mmax due to the inclusions of strange
baryons. Therefore, the (B)HF results seem to be rather robust and thus, many
doubts arise about the real appearance of hyperons in the inner core of NSs.

Other approaches, such as relativistic Hartree-Fock [101–103], standard, density-
dependent and nonlinear Relativistic Mean Field models [104–108] and Relativistic
Density Functional Theory with density-dependent couplings [109], indicate much
weaker effects as a consequence of the presence of strange baryons in the core of
NSs, as shown for example in Fig. 1.7 and Fig. 1.8. In all these works, it was
possible to find a description of hypernuclear matter, within the models analyzed,
that produces stiff EoS, supporting a 2M� neutron star. Same conclusion has been
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Fig. 1: Mass of neutron stars versus the radius for selected
EoS.

As expected the EoS with hyperons reach lower maxi-
mum masses than the models without hyperons, except
the model QMC700 due to its large and unrealistic incom-
pressibility. The maximum mass obtained with hypernu-
clear EoS does not change much for different models. This
is due to a self-regulating compensation effect between the
softening of the EoS and the onset of the hyperonic degree
of freedom [7,8]. The maximum mass of about 1.6 M! pre-
dicted by the relativistic approach is slightly larger than
that of 1.4 M! found in Ref. [8]. The difference of 0.2 M!
is mainly related to the larger incompressibility of the rel-
ativistic models. It is also observed that the radii for the
Hartree models are smaller than that of the Hartree-Fock
ones, and that the predicted radii of the relativistic models
and that of Ref. [8] are comparable.

The abundances for nucleons and hyperons are shown
for various EoS in figure 2: with free hyperons (MC1-
H/NYFG) and with interacting hyperons (MC1-H/NY
and MC1-HF/NY). The order of appearance of hyperons
is different for these models and depends strongly on the
corresponding interactions. In the model MC1-H/NYF

with free hyperons, the Σ− is non interacting and appears
first. On the other hand, in the models MC1-H/NY and
MC1-HF/NY, the Σ− interaction is repulsive while the Ξ−

interaction is attractive, therefore the latter tends to pre-
vent the Σ− from appearing. In the model MC1-H/NY,
the Λ appears first followed closely in density by the Ξ−,
then at a larger density by the Ξ0, while for the model
MC1-HF/NY the Ξ− and Ξ0 appear first and push the
other hyperons to larger densities.

We have presented in this Letter different EoS for hy-
peron matter derived from both chiral and QMC models.
These models are thermodynamically consistent and treat
the Hartree and Fock terms on equal footing. We have
found that the different chiral parameterizations give a
maximum neutron star mass that does not exceed 1.6 M!
for HF models with K0 ≈ 270 MeV. Correcting the
QMC700 model [10] by including the complete relativistic
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Fig. 2: Particules abundances for the various models of table 3:
MC1-H/NYF G (top), MC1-H/NY (middle) and MC1-HF/NY
(bottom).

contribution to the Fock term, a correct incompressibility
and the experimental constraints for the hyperon mean-
fields, we found a decrease of the predicted maximum mass
from 2.00 down to 1.66 M!. We additionally checked that
the effect of rotation with the period of 3.15 ms (as for PSR
J1614-2230) does not increase the maximum mass by more
than 0.02 M!. We therefore conclude that it is difficult
to reconcile any of the model presented in this work with
the observed mass of PSR J1614-2230 and the empirical
knowledge of saturation properties of nuclear matter. Un-
less an unexpected property of the hyperon interaction is
missing in the present model, as well as in the BHF models
of Refs. [6–8,20], our results tends to exclude hypernuclear
matter to be present in the core of massive neutron stars.
It reinforces alternative models such as for instance the
model of deconfined quark matter, for which experimen-
tal constraints are almost inexistent. We can therefore
conclude that the equation of state of dense matter in the
core of neutron star is still not even qualitatively under-
stood.

p-4

Figure 1.6: Neutron star mass as a function of the circumferential radius. QMC700
and MCi-H(F)/N refer to EoS based on quark-meson coupling model and chiral
model in the Hartee(Fock) approximation without hyperons. In the MCi-H(F)/NY
models also hyperons are taken into account. The canonical maximum mass limit
of ∼ 1.45M� and the mass of the two heavy millisecond pulsars PSR J1903+0327
(1.67(2)M�) and PSR J1614-2230 (1.97(4)M�) are shown. Details on the poten-
tials and method adopted can be found in Ref. [98].

reported in Ref. [110] where the EoS of matter including hyperons and deconfined
quark matter has been constructed on the basis of relativistic mean-field nuclear
functional at low densities and effective Nambu-Jona-Lasinio model of quark mat-
ter. The results of this class of calculations seem to reconcile the onset of hyperons
in the inner core of a NS with the observed masses of order 2M�.

This inconsistency among different calculations and between the theoretical re-
sults and the observational constraints, at present is still an open question. For
example, given the theoretical evidence about the appearance of hyperons in the
inner core of a NS, the results of all available (B)HF calculations seem to be in
contradiction with the picture drawn by the relativistic mean field models. On one
hand there should be uncontrolled approximations on the method used to solve the
many-body Hamiltonian. On the other hand the employed hypernuclear interac-
tions might not be accurate enough in describing the physics of the infinite nuclear
medium with strange degrees of freedom. For instance, as reported in Refs. [106,
111], one of the possible solutions to improve the hyperon-nucleon interactions
might be the inclusion of explicit three-body forces in the models. These should
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Fig. 1. Nucleon self-energies, Σ s,0,v
N , in symmetric nuclear matter.

Fig. 2. Particle fractions in neutron matter.

Table 5
Neutron-star radius, Rmax (in km), the central density, nc (in fm−3), and the ratio
of the maximum neutron-star mass to the solar mass, Mmax/M" . The Hartree and
the Hartree–Fock calculation with (without) hyperons are denoted by npY (np).

np npY

Rmax nc Mmax/M" Rmax nc Mmax/M"

QHD + NL(H) 11.3 1.04 2.00 12.5 0.86 1.56
QMC(H) 11.5 1.01 2.05 12.5 0.86 1.60
CQMC(H) 11.8 0.92 2.20 12.5 0.88 1.66

QHD + NL(HF) 11.7 0.95 2.15 11.9 0.95 1.92
QMC(HF) 11.5 0.97 2.11 12.0 0.92 1.95
CQMC(HF) 11.9 0.90 2.23 12.3 0.87 2.02

In a neutron star, the charge neutrality and the β equilib-
rium under weak processes are realized. Under these conditions,
we calculate the EOS for neutron matter and solve the Tolman–
Oppenheimer–Volkoff (TOV) equation. In Fig. 2, we show the QMC
result of particle fractions in relativistic Hartree–Fock approxi-
mation. With respect to hyperons, only the Ξ− appears around
0.49 fm−3 and the other hyperons are not produced at densities
below 1.2 fm−3. In the case of QHD + NL, the Ξ− first appears
around 0.43 fm−3, and the Λ and Ξ0 are produced at densities
beyond 0.69 fm−3. In the present calculation, the time component
of the vector self-energy for hyperon is especially enhanced by the
Fock contribution. It makes the chemical potential high, and hence
hinders the appearance of hyperons at middle and high densities.
In Ref. [9], we can also see the suppression of hyperons at high
density. In contrast, as in Ref. [19], all hyperons are populated in
the present Hartree calculation.

We summarize the properties of neutron star in Table 5, and
show the mass as a function of the neutron-star radius in Fig. 3. As
known well, the inclusion of hyperons generally reduces the mass
of a neutron star. However, because the Fock contribution makes
the EOS hard, the maximum mass in the present calculation can
reach the recently observed value, 1.97 ± 0.04M" . If we ignore the
tensor coupling in the Fock term, the difference between the max-
imum masses in the Hartree and the Hartree–Fock calculations is
not large. Therefore, the tensor coupling (especially, in the high
density region) is very vital to obtain the large neutron-star mass.

Fig. 3. Neutron-star mass as a function of the radius. The left (right) panel is for the Hartree (Hartree–Fock) calculation. In solving the TOV equation, we use the EOS of
BBP [20] and BPS [21] at very low densities.Figure 1.7: Neutron star mass-radius relations in Hartree (left panel) and Hartree-

Fock (right panel) calculations. CQMC, QMC and QHD+NL denote the chiral
quark-meson coupling, quark-meson coupling and non linear quantum hadrody-
namics employed potentials, with (npY) and without hyperons (np). For details
see Ref. [101].

involve one or more hyperons (i.e., hyperon-nucleon-nucleon, hyperon-hyperon-
nucleon or hyperon-hyperon-hyperon interactions) and they could eventually pro-
vide the additional repulsion needed to make the EoS stiffer and, therefore the
maximum mass compatible with the current observational limits. On the grounds
of this observation, we decided to revisit the problem focusing on a systematic
construction of a realistic, though phenomenological hyperon-nucleon interaction
with explicit two- and three-body components (§ 2) by means of Quantum Monte
Carlo calculations (§ 3).
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Figure 1.8: Stellar mass versus circumferential radius in non linear relativistic mean
field model. The purely nucleon case is denoted with N, the nucleon+hyperon case
with NH. In the inset, the effect of rotation at f = 317 Hz on the mass-radius
relation near Mmax. The dashed region refers to the mass of the pulsar PSR
J1614-2230. All the details are reported in Ref. [104].
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Chapter 2

Hamiltonians

The properties of nuclear systems arise from the interactions between the indi-
vidual constituents. In order to understand these properties, the starting point is
the determination of the Hamiltonian to be used in the description of such systems.
In principle the nuclear Hamiltonian should be directly derived from Quantum
Chromodynamics (QCD). Many efforts have been done in the last years [112–114],
but this goal is still far to be achieved.

The problem with such derivation is that QCD is non perturbative in the low-
temperature regime characteristic of nuclear physics, which makes direct solutions
very difficult. Moving from the real theory to effective models, the structure of
a nuclear Hamiltonian can be determined phenomenologically and then fitted to
exactly reproduce the properties of few-nucleon systems. In this picture, the de-
grees of freedom are the baryons, which are considered as non relativistic point-like
particles interacting by means of phenomenological potentials. These potentials
describe both short and the long range interactions, typically via one-boson and
two-meson exchanges, and they have been fitted to exactly reproduce the properties
of few-nucleon systems [115]. In more details, different two-body phenomenological
forms have been proposed and fitted on the nucleon-nucleon (NN) scattering data
of the Nijmegen database [45, 46] with a χ2/Ndata ' 1. The more diffuse are the
Nijmegen models [116], the Argonne models [117, 118] and the CD-Bonn [119].
Although reproducing the NN scattering data, all these two-nucleon interactions
underestimate the triton binding energy, suggesting that the contribution of a
three-nucleon (NNN) interaction (TNI) is essential to reproduce the physics of
nuclei. The TNI is mainly attributed to the possibility of nucleon excitation in a
∆ resonance and it can be written as different effective three-nucleon interactions
which have been fitted on light nuclei [120, 121] and on saturation properties of
nuclear matter [122]. The TNIs typically depend on the choice of the two-body
NN potential [123], but the final result with the total Hamiltonian should be
independent of the choice.

A different approach to the problem is the realization that low-energy QCD

15
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is equivalent to an Effective Field Theory (EFT) which allows for a perturbative
expansion that is known as chiral perturbation theory. In the last years modern
nucleon-nucleon interaction directly derived from Chiral Effective Field Theory
(χ-EFT) have been proposed, at next-to-next-to-next-to-leading order (N3LO) in
the chiral expansion [124, 125] and recently at optimized next-to-next-to-leading
order (N2LO) [126] (see Ref. [127] for a complete review). All these potentials
are able to reproduce the Nijmegen phase shifts with χ/N2

data ' 1. TNIs enter
naturally at N2LO in this scheme, and they play again a pivotal role in nuclear
structure calculations [128]. The contributions of TNIs at N3LO have also been
worked out [129–131]. The χ-EFT interactions are typically developed in mo-
mentum space, preventing their straightforward application within the Quantum
Monte Carlo (QMC) framework. However, a local version of the χ-EFT potentials
in coordinate space up to N2LO has been very recently proposed and employed in
QMC calculations [132].

Nuclear phenomenological Hamiltonians have been widely used to study fi-
nite and infinite nuclear systems within different approaches. From now on, we
will focus on the Argonne NN potentials and the corresponding TNIs, the Ur-
bana IX (UIX) [122] and the modern Illinois (ILx) [121] forms. These potentials
have been used to study nuclei, neutron drops, neutron and nuclear matter in Quan-
tum Monte Carlo (QMC) calculations, such as Variational Monte Carlo (VMC) [15,
16, 24], Green Function Monte Carlo (GFMC) [17, 19, 20, 118, 133–136] and Aux-
iliary Field Diffusion Monte Carlo (AFDMC) [20, 30, 31, 33, 35, 37, 38]. Same bare
interactions have been also employed in the Fermi Hyper-Netted Chain (FHNC)
approach [22, 137], both for nuclei and nuclear matter. With a projection of the in-
teraction onto the model space, these Hamiltonians are used in Effective Interaction
Hyperspherical Harmonics (EIHH) [10, 13] and Non-Symmetrized Hyperspherical
Harmonics (NSHH) [14] calculations. Finally, same potentials can be also used in
Brueckner Hartree Fock (BHF) [138], Shell-Model (SM) [139], No-Core-Shell-Model
(NCSM) [9] and Coupled Cluster (CC) [26] calculations by means of appropriate
techniques to handle the short-range repulsion of the nucleon-nucleon force, such
as Brueckner G-matrix approach [140, 141], Vlow−k reduction [142–144], Unitary
Correlation Operator Method (UCOM) [145] or Similarity Renormalization Group
(SRG) evolution [146, 147]. The list of methods that can handle in a successful
way the Argonne+TNIs potentials demonstrates the versatility and reliability of
this class of phenomenological nuclear Hamiltonians.

Moving from the non-strange nuclear sector, where nucleons are the only bary-
onic degrees of freedom, to the strange nuclear sector, where also hyperons enter the
game, the picture becomes much less clear. There exists only a very limited amount
of scattering data from which one could construct high-quality hyperon-nucleon
(Y N) potentials. Data on hypernuclei binding energies and hyperon separation
energies are rather scarce and can only partially complete the scheme.

After the pioneering work reported in Ref. [148], several models have been pro-
posed to describe the Y N interaction. The more diffuse are the Nijmegen soft-core
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models (like NSC89 and NSC97x) [149–155] and the Jülic potential (J04) [156–
158]. A recent review of these interactions, together with Hartree-Fock (HF)
calculations have been published by Ðapo et al. in Ref. [159]. In the same
framework, extended soft-core Nijmegen potentials for strangeness S = −2 have
been also developed [160, 161]. Very recently, the extended soft-core 08 (ESC08)
model has been completed, which represents the first unified theoretical frame-
work involving hyperon-nucleon, hyperon-hyperon (Y Y ) and also nucleon-nucleon
sectors [48]. This class of interaction has been used in different calculations for
hypernuclei [48, 159, 162–166] and hypermatter [97, 99, 100, 159] within different
methods, but the existing data do not constrain the potentials sufficiently. For
example, six different parameterizations of the Nijmegen Y N potentials fit equally
well the scattering data but produce very different scattering lengths, as reported
for instance in Ref. [152]. In addition, these potentials are not found to yield the
correct spectrum of hypernuclear binding energies. For example, the study [166]
of 4

ΛH and 4
ΛHe that uses Nijmegen models, does not predict all experimental sepa-

ration energies. Similar conclusions for single- and double-Λ hypernuclei have also
been drawn in a study employing a different many-body technique [165]. Even the
most recent ESC08 model produces some overbinding of single-Λ hypernuclei and
a weakly repulsive incremental ΛΛ energy [48], not consistent with the observed
weak ΛΛ attraction in 6

ΛΛHe.
In analogy with the nucleon-nucleon sector, a χ-EFT approach for the hyperon-

nucleon interaction has been also developed. The first attempt was proposed by
Polinder and collaborators in 2006 [167], resulting in a leading order (LO) ex-
pansion. Only recently the picture has been improved going to next-to-leading
order (NLO) [168–170]. The Y N χ-EFT model is still far away from the theoreti-
cal accuracy obtained in the non-strange sector, but it is any case good enough to
describe the limited available Y N scattering data.

As an alternative, a cluster model with phenomenological interactions has been
proposed by Hiyama and collaborators to study light hypernuclei [171–176]. Inter-
esting results on Λ hypernuclei have also been obtained within a Λ-nucleus potential
model, in which the need of a functional with a more than linear density depen-
dence was shown, suggesting the importance of a many-body interaction [177].
While studying s-shell hypernuclei, the ΛN → ΣN coupling as a three-body ΛNN
force has been investigated by many authors [166, 178–180]. Having strong tensor
dependence it is found to play an important role, comparable to the TNI effect in
non-strange nuclei.

Finally, starting in the 1980s, a class of Argonne-like interactions has been de-
veloped by Bodmer, Usmani and Carlson on the grounds of quantum Monte Carlo
calculations to describe the Λ-nucleon force. These phenomenological interactions
are written in coordinates space and they include two- and three-body hyperon-
nucleon components, mainly coming from two-pion exchange processes and shorter
range effects. They have been used in different forms mostly in variational Monte
Carlo calculations for single Λ hypernuclei (3ΛH [181, 182], 4

ΛH and 4
ΛHe [181–184],
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5
ΛHe [181, 182, 184–189], 9

ΛBe [190, 191], 13
ΛC [190], 17

ΛO [185, 192]), double Λ hy-
pernuclei ( 4

ΛΛH,
5

ΛΛH,
5

ΛΛHe [193] and 6
ΛΛHe [193–195]) and in the framework of

correlated basis function theory for Λ hypernuclei [196], typically in connection
with the Argonne NN potential.

Within the phenomenological interaction scheme, a generic nuclear system in-
cluding nucleons and hyperons, can be described by the non relativistic phenomeno-
logical Hamiltonian

H = HN +HY +HY N , (2.1)

where HN and HY are the pure nucleonic and hyperonic Hamiltonians and HY N

represents the interaction Hamiltonian connecting the two distinguishable types of
baryon:

HN =
~2

2mN

∑

i

∇2
i +

∑

i<j

vij +
∑

i<j<k

vijk + . . . , (2.2)

HY =
~2

2mΛ

∑

λ

∇2
λ +

∑

λ<µ

vλµ +
∑

λ<µ<ν

vλµν + . . . , (2.3)

HY N =
∑

λi

vλi +
∑

λ,i<j

vλij +
∑

λ<µ,i

vλµi + . . . . (2.4)

In this context, A is the total number of baryons, A = NN + NY . Latin indices
i, j, k = 1, . . . ,NN label nucleons and Greek symbols λ, µ, ν = 1, . . . ,NY are used
for the hyperons. The Hamiltonians (2.2) and (2.3) contain the kinetic energy op-
erator and two- and three-body interactions for nucleons and hyperons separately.
In principles they could include higher order many-body forces that however are
expected to be less important. The Hamiltonian (2.4) describes the interaction
between nucleons and hyperons, and it involves two-body (Y N) and three-body
(Y NN and Y Y N) forces. At present there is no evidence for higher order terms
in the hyperon-nucleon sector.

As reported in the previous chapter, experimental data are mainly available for
Λp scattering and Λ hypernuclei and present experimental efforts are still mostly
concentrated in the study of the S = −1 hypernuclear sector. Information on
heavier hyperon-nucleon scattering and on Σ or more exotic hypernuclei are very
limited. For these reasons, from now on we will focus on the phenomenological
interactions involving just the Λ hyperon. We adopt the class of Argonne-like Λ-
nucleon interaction for the strange sector and the nucleon-nucleon Argonne force
with the corresponding TNIs (UIX and ILx) for the non-strange sector. An effective
ΛΛ interaction has been also employed.
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2.1 Interactions: nucleons

We report the details of the NN Argonne potential [117, 118] and the cor-
responding TNIs, the Urbana IX (UIX) [122] and the Illinois (ILx) [121]. These
interactions are written in coordinate space and they include different range com-
ponents coming from meson (mostly pion) exchange and phenomenological higher
order contributions.

2.1.1 Two-body NN potential

The nucleon-nucleon potential Argonne V18 (AV18) [117] contains a complete
electromagnetic (EM) interaction and a strong interaction part which is written
as a sum of a long-range component vπij due to one-pion exchange (OPE) and a
phenomenological intermediate- and short-range part vRij :

vij = vπij + vRij . (2.5)

Ignoring isospin breaking terms, the long-range OPE is given by

vπij =
f2
πNN

4π

mπ

3
Xij τi · τj , (2.6)

where f2
πNN
4π = 0.075 is the pion-nucleon coupling constant [197] and

Xij = Yπ(rij)σi · σj + Tπ(rij)Sij . (2.7)

σi and τi are Pauli matrices acting on the spin or isospin of nucleons and Sij is
the tensor operator

Sij = 3 (σi · r̂ij) (σj · r̂ij)− σi · σj . (2.8)

The pion radial functions associated with the spin-spin (Yukawa potential) and
tensor (OPE tensor potential) parts are

Yπ(r) =
e−µπr

µπr
ξY (r) , (2.9)

Tπ(r) =

[
1 +

3

µπr
+

3

(µπr)2

]
e−µπr

µπr
ξT (r) , (2.10)

where µπ is the pion reduced mass

µπ =
mπ

~
=

1

~
mπ0 + 2mπ±

3

1

µπ
' 1.4 fm , (2.11)

and ξY (r) and ξT (r) are the short-range cutoff functions defined by

ξY (r) = ξ
1/2
T (r) = 1− e−cr

2
c = 2.1 fm−2 . (2.12)
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It is important to note that since Tπ(r) � Yπ(r) in the important region where
r . 2 fm, the OPE is dominated by the tensor part.

The remaining intermediate- and short-range part of the potential is expressed
as a sum of central, L2, tensor, spin-orbit and quadratic spin-orbit terms (respec-
tively labelled as c, l2, t, ls, ls2) in different S, T and Tz states:

vRNN = vcNN (r) + vl2NN (r)L2 + vtNN (r)S12 + vlsNN (r)L·S + vls2NN (r)(L·S)2 , (2.13)

with the radial functions vkNN (r) written in the general form

vkNN (r) = IkNN T
2
π (r) +

[
P kNN + (µπr)Q

k
NN + (µπr)

2RkNN

]
W (r) , (2.14)

where the T 2
π (r) has the range of a two-pion exchange (TPE) force and W (r) is a

Wood-Saxon function which provides the short-range core:

W (r) =
(

1 + e
r−r̄
a

)−1
r̄ = 0.5 fm, a = 0.2 fm . (2.15)

By imposing a regularization condition at the origin, it is possible to reduce the
number of free parameters by one for each vkNN (r). All the parameters in the ξ(r)
short-range cutoff functions as well as the other phenomenological constants are
fitted on the NN Nijmegen scattering data [45, 46].

The two-body nucleon potential described above can be projected from S, T ,
Tz states into an operator format with 18 terms

vij =
∑

p=1,18

vp(rij)O p
ij . (2.16)

The first 14 operators are charge independent and they are the ones included
in the Argonne V14 potential (AV14):

O p=1,8
ij =

{
1,σi · σj , Sij ,Lij · Sij

}
⊗
{

1, τi · τj
}
, (2.17)

O p=9,14
ij =

{
L2
ij ,L

2
ij σi · σj , (Lij · Sij)2

}
⊗
{

1, τi · τj
}
. (2.18)

The first eight terms give the higher contribution to the NN interaction and they
are the standard ones required to fit S and P wave data in both triplet and singlet
isospin states. The first six of them come from the long-range part of OPE and the
last two depend on the velocity of nucleons and give the spin-orbit contribution.
In the above expressions, Lij is the relative angular momentum of a couple ij

Lij =
1

2i
(ri − rj)× (∇i −∇j) , (2.19)

and Sij the total spin of the pair

Sij =
1

2
(σi + σj) . (2.20)
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Operators from 9 to 14 are included to better describe the Nijmegen higher partial
waves phase shifts and the splitting of state with different J values. However, the
contribution of these operators is small compared to the total potential energy.

The four last additional operators of the AV18 potential account for the charge
symmetry breaking effect, mainly due to the different masses of charged and neutral
pions, and they are given by

O p=15,18
ij =

{
Tij , (σi · σj)Tij , Sij Tij , τ zi + τ zj

}
, (2.21)

where Tij is the isotensor operator defined in analogy with Sij as

Tij = 3 τ zi τ
z
j − τi · τj . (2.22)

The contribution to the total energy given by these four operators is however rather
small.

In QMC calculations reduced versions of the original AV18 potential are often
employed. The most used one is the Argonne V8’ (AV8’) [118] that contains only
the first eight operators and it is not a simple truncation of AV18 but also a
reprojection, which preserves the isoscalar part in all S and P partial waves as
well as in the 3D1 wave and its coupling to 3S1. AV8’ is about 0.2 ÷ 0.3 MeV
per nucleon more attractive than Argonne V18 in light nuclei [118, 121, 198], but
its contribution is very similar to AV18 in neutron drops, where the difference
is about 0.06 MeV per neutron [121]. Other common solutions are the Argonne
V6’ (AV6’) and V4’ (AV4’) potentials [118]. AV6’ is obtained by deleting the
spin-orbit terms from AV8’ and adjusting the potential to preserve the deuteron
binding. The spin-orbit terms do not contribute to S-wave and 1P1 channel of the
NN scattering and are the smallest contributors to the energy of 4He [21], but they
are important in differentiating between the 3P0,1,2 channels. The AV4’ potential
eliminates the tensor terms. As a result, the 1S0 and 1P1 potentials are unaffected,
but the coupling between 3S1 and 3D1 channels is gone and the 3P0,1,2 channels
deteriorate further. The Fortran code for the AV18 and AVn’ potentials is available
at the webpage [199].

2.1.2 Three-body NNN potential

The Urbana IX three-body force was originally proposed in combination with
the Argonne AV18 and AV8’ [122]. Although it slightly underbinds the energy of
light nuclei, it has been extensively used to study the equation of state of nuclear
and neutron matter [5, 37–40, 200]. The Illinois forces [121], the most recent of
which is the Illinois-7 (IL7) [201], have been introduced to improve the description
of both ground- and excited-states of light nuclei, showing an excellent accuracy [17,
121], but they produce an unphysical overbinding in pure neutron systems [34].

The three-body Illinois potential consists of two- and three-pion exchange and
a phenomenological short-range component (the UIX force does not include the
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three-pion rings):

Vijk = V 2π
ijk + V 3π

ijk + V R
ijk . (2.23)

The two-pion term, as shown in Fig. 2.1, contains P - and S-wave πN scattering
terms (respectively in Fig. 2.1(a) and Fig. 2.1(b)):

V 2π
ijk = V 2π,P

ijk + V 2π,S
ijk . (2.24)

N

NN

N

N

N

�
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⇡
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Figure 2.1: Two-pion exchange processes in the NNN force. 2.1(a) is the Fujita-
Miyazawa P -wave term and 2.1(b) the Tucson-Melbourne S-wave term.

The P -wave component, originally introduced by Fujita-Miyazawa [202], de-
scribes an intermediate excited ∆ resonance produced by the exchange of two
pions between nucleons i-j and j-k, as shown in Fig. 2.1(a), and it can be written
as

V 2π,P
ijk = AP2πO2π,P

ijk , (2.25)

where

AP2π = − 2

81

f2
πNN

4π

f2
π∆N

4π

m2
π

m∆ −mN
, (2.26a)

O2π,P
ijk =

∑

cyclic

({
Xij , Xjk

}{
τi · τj , τj · τk

}
+

1

4

[
Xij , Xjk

][
τi · τj , τj · τk

])
,

(2.26b)

and the Xij operator is the same of Eq. (2.7). The constant AP2π is fitted to
reproduce the ground state of light nuclei and properties of nuclear matter. The P -
wave TPE term is the longest-ranged nuclearNNN contribution and it is attractive
in all nuclei and nuclear matter. However it is very small or even slightly repulsive
in pure neutron systems.
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The S-wave component of TPE three-nucleon force is a simplified form of the
original Tucson-Melbourne model [203], and it involves the πN scattering in the
S-wave as shown in Fig. 2.1(b). It has the following form:

V 2π,S
ijk = AS2πO2π,S

ijk , (2.27)

where

AS2π =

(
fπNN

4π

)2

a′m2
π , (2.28a)

O2π,S
ijk =

∑

cyclic

Zπ(rij)Zπ(rjk)σi · r̂ij σk · r̂kj τi · τk , (2.28b)

and the Zπ(r) function is defined as

Zπ(r) =
µπr

3

[
Yπ(r)− Tπ(r)

]
. (2.29)

The S-wave TPE term is required by chiral perturbation theory but in practice its
contribution is only 3%–4% of V 2π,P

ijk in light nuclei.
The three-pion term (Fig. 2.2) was introduced in the Illinois potentials. It

consists of the subset of three-pion rings that contain only one ∆ mass in the
energy denominators. As discussed in Ref. [121], these diagrams result in a large
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Figure 2.2: Three-pion exchange processes in the NNN force.

number of terms, the most important of which are the ones independent of cyclic
permutations of ijk:

V 3π
ijk = A3πO3π

ijk , (2.30)

where

A3π =

(
f2
πNN

4π

mπ

3

)3
f2
πN∆

f2
πNN

1

(m∆ −mN )2
, (2.31a)

O3π
ijk '

50

3
Sτijk S

σ
ijk +

26

3
Aτijk A

σ
ijk . (2.31b)
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The letters S and A denote operators that are symmetric and antisymmetric under
the exchange of j with k. Superscripts τ and σ label operators containing isospin
and spin-space parts, respectively. The isospin operators are

Sτijk = 2 +
2

3
(τi · τj + τj · τk + τk · τi) = 4PT=3/2 , (2.32a)

Aτijk =
1

3
i τi · τj × τk = −1

6

[
τi · τj , τj · τk

]
, (2.32b)

where Sτijk is a projector onto isospin 3/2 triples and Aτijk has the same isospin
structure as the commutator part of V 2π,P

ijk . The spin-space operators have many
terms and they are listed in the Appendix of Ref. [121]. An important aspect
of this structure is that there is a significant attractive term which acts only in
T = 3/2 triples, so the net effect of V 3π

ijk is slight repulsion in S-shell nuclei and
larger attraction in P -shell nuclei. However, in most light nuclei the contribution
of this term is rather small, 〈V 3π

ijk〉 . 0.1〈V 2π
ijk〉.

The last term of Eq. (2.23) was introduced to compensate the overbinding in
nuclei and the large equilibrium density of nuclear matter given by the previous
operators. It is strictly phenomenological and purely central and repulsive, and it
describes the modification of the contribution of the TPE ∆-box diagrams to vij
due to the presence of the third nucleon k (Fig. 2.3). It takes the form:

V R
ijk = ARORijk = AR

∑

cyclic

T 2
π (rij)T

2
π (rjk) , (2.33)

where Tπ(r) is the OPE tensor potential defined in Eq. (2.10).

N

N

⇡

⇡
N

N

N

�

Figure 2.3: Repulsive short-range contribution included in the NNN force.

Finally, the Illinois (Urbana IX) TNI can be written as a sum of four different
terms:

Vijk = AP2πO2π,P
ijk +AS2πO2π,S

ijk +A3πO3π
ijk +ARORijk . (2.34)
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2.2 Interactions: hyperons and nucleons

We present a detailed description of the ΛN and ΛNN interaction as devel-
oped by Bodmer, Usmani and Carlson following the scheme of the Argonne poten-
tials [181, 183–192]. The interaction is written in coordinates space and it includes
two- and three-body hyperon nucleon components with an explicit hard-core re-
pulsion between baryons and a charge symmetry breaking term. We introduce
also an effective ΛΛ interaction mainly used in variational [194, 195] and cluster
model [171, 173] calculations for double Λ hypernuclei.

2.2.1 Two-body ΛN potential

ΛN charge symmetric potential

The Λ particle has isospin I = 0, so there is no OPE term, being the strong ΛΛπ
vertex forbidden due to isospin conservation. The Λ hyperon can thus exchange a
pion only with a ΛπΣ vertex. The lowest order ΛN coupling must therefore involve
the exchange of two pions, with the formation of a virtual Σ hyperon, as illustrated
in Figs. 2.4(a) and 2.4(b). The TPE interaction is intermediate range with respect
to the long range part of NN force. One meson exchange processes can only occur
through the exchange of a K,K∗ kaon pair, that contributes in exchanging the
strangeness between the two baryons, as shown in Fig. 2.4(c). The K,K∗ potential
is short-range and contributes to the space-exchange and ΛN tensor potential. The
latter is expected to be quite weak because the K and K∗ tensor contributions have
opposite sign [204].
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Figure 2.4: Meson exchange processes in the ΛN force. 2.4(a) and 2.4(b) are the
TPE diagrams. 2.4(c) represents the kaon exchange channel.

The ΛN interaction has been modeled with an Urbana-type potential [205] with
spin-spin and space-exchange components and a TPE tail which is consistent with
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the available Λp scattering data below the Σ threshold:

vλi = v0(rλi)(1− ε+ εPx) +
1

4
vσT

2
π (rλi)σλ · σi , (2.35)

where

v0(rλi) = vc(rλi)− v̄ T 2
π (rλi) . (2.36)

Here,

vc(r) = Wc

(
1 + e

r−r̄
a

)−1
(2.37)

is a Wood-Saxon repulsive potential introduced, similarly to the Argonne NN in-
teraction, in order to include all the short-range contributions and Tπ(r) is the
regularized OPE tensor operator defined in Eq. (2.10). The term v̄ T 2

π (rλi) corre-
sponds to a TPE mechanism due to OPE transition potentials (ΛN ↔ ΣN,Σ∆)
dominated by their tensor components. The Λp scattering at low energies is well
fitted with v̄ = 6.15(5) MeV. The terms v̄ = (vs + 3vt)/4 and vσ = vs − vt are the
spin-average and spin-dependent strengths, where vs and vt denote singlet- and
triplet-state strengths, respectively. Px is the ΛN space-exchange operator and ε
the corresponding exchange parameter, which is quite poorly determined from the
Λp forward-backward asymmetry to be ε ' 0.1÷ 0.38. All the parameters defining
the ΛN potential can be found in Tab. 2.1.

ΛN charge symmetry breaking potential

The Λ-nucleon interaction should distinguish between the nucleon isospin chan-
nels Λp and Λn. The mirror pair of hypernuclei 4

ΛH and 4
ΛHe is the main source

of information about the charge symmetry breaking (CSB) ΛN interaction. The
experimental data for A = 4 Λ hypernuclei [77], show indeed a clear difference in
the Λ separation energies for the (0+) ground state

BΛ

(
4
ΛH
)

= 2.04(4) MeV , (2.38a)

BΛ

(
4
ΛHe

)
= 2.39(3) MeV , (2.38b)

and for the (1+) excited state

B∗Λ
(

4
ΛH
)

= 1.00(6) MeV , (2.39a)

B∗Λ
(

4
ΛHe

)
= 1.24(6) MeV . (2.39b)

The differences in the hyperon separation energies are:

∆BΛ = 0.35(6) MeV , (2.40a)

∆B∗Λ = 0.24(6) MeV . (2.40b)
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However, the experimental values ∆BΛ must be corrected to include the difference
∆Bc due to the Coulomb interaction in order to obtain the values to be attributed
to CSB effects. By means of a variational calculation, Bodmer and Usmani [183]
estimated the Coulomb contribution to be rather small

|∆Bc| = 0.05(2) MeV , (2.41a)

|∆B∗c | = 0.025(15) MeV , (2.41b)

and they were able to reproduce the differences in the Λ separation energies by
means of a phenomenological spin dependent CSB potential. It was found that the
CSB interaction is effectively spin independent and can be simply expressed (as
subsequently reported in Ref. [186]) by

vCSBλi = Cτ T
2
π (rλi) τ

z
i Cτ = −0.050(5) MeV . (2.42)

Being Cτ negative, the Λp channel becomes attractive while the Λn channel is
repulsive, consistently with the experimental results for 4

ΛH and 4
ΛHe. The contri-

bution of CSB is expected to be very small in symmetric hypernuclei (if Coulomb
is neglected) but could have a significant effect in hypernuclei with an neutron (or
proton) excess.

2.2.2 Three-body ΛNN potential

The ΛN force as obtained by fitting the Λp scattering does not provide a good
account of the experimental binding energies, as in the case of nuclei with the bare
NN interaction. A three-body ΛNN force is required in this scheme to solve the
overbinding. The ΛNN potential is at the same TPE order of the ΛN force and it
includes diagrams involving two nucleons and one hyperon, as reported in Fig. 2.5.
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Figure 2.5: Two-pion exchange processes in three-body ΛNN force. 2.5(a) and
2.5(b) are, respectively, the P - and S-wave TPE contributions. 2.5(c) is the phe-
nomenological dispersive term.

The diagrams in Fig. 2.5(a) and Fig. 2.5(b) correspond respectively to the P -
wave and S-wave TPE

v2π
λij = v2π,P

λij + v2π,S
λij , (2.43)
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that can be written in the following form:

v2π,P
λij = C̃P O2π,P

λij = −CP
6

{
Xiλ , Xλj

}
τi · τj , (2.44)

v2π,S
λij = CS O

2π,S
λij = CS Z (rλi)Z (rλj) σi · r̂iλ σj · r̂jλ τi · τj . (2.45)

The structure of V 2π
λij is very close to the Fujita-Miyazawa P -wave term and the

Tucson-Melbourne S-wave term of the nuclear V 2π
ijk (see Eqs. (2.26) and (2.28)).

In the hypernuclear sector, however, there are simplifications because only two
nucleons at a time enter the picture, so there are no cyclic summations, and the
Λ particle has isospin zero, thus there is no τλ operator involved. As reported in
Ref. [121], the strength of V 2π,S

ijk is
∣∣AS2π

∣∣ ' 0.8 MeV. However, in other references
it is assumed to have a value of 1.0 MeV. Comparing the Tucson-Melbourne NNN
model with Eq. (2.45) for the ΛNN potential, one may write an identical structure
for both S-wave ΛNN and NNN potentials as follows:

CS O2π,S
λij = A2π

S O2π,S
ijk . (2.46)

This directly relates CS in the strange sector to AS2π in the non-strange sector. Since
the Σ-Λ mass difference is small compared to the ∆-N mass difference, the 2π ΛNN
potential of S = −1 sector is stronger than the non-strange NNN potential of S =
0 sector. This provides stronger strengths in the case of ΛNN potential compared
to the NNN potential. It is therefore expected that the value of CS would be more
than 1.0 MeV, and is taken to be 1.5 MeV [189]. However, the S-wave component
is expected to be quite weak, at least in spin-zero core hypernuclei, and indeed it
has been neglected in variational calculations for 17

ΛO and 5
ΛHe [187, 192, 194].

The last diagram (Fig. 2.5(c)) represents the dispersive contribution associated
with the medium modifications of the intermediate state potentials for the Σ, N , ∆
due to the presence of the second nucleon. This term describes all the short-range
contributions and it is expected to be repulsive due to the suppression mechanism
associated with the ΛN -ΣN coupling [206, 207]. The interaction of the intermedi-
ate states Σ, N , ∆ with a nucleon of the medium will be predominantly through a
TPE potential, proportional to T 2

π (r), with an explicit spin dependence (negligible
for spin-zero core hypernuclei):

vDλij = WDODλij = WD T
2
π (rλi)T

2
π (rλj)

[
1 +

1

6
σλ ·(σi + σj)

]
. (2.47)

The radial functions Tπ(r) and Zπ(r) are the same of the nuclear potential, see
Eq. (2.10) and Eq. (2.29). The operator Xλi is the same of Eq. (2.7), in which the
first nucleon is replaced by the Λ particle.

It is important to note that the three-body ΛNN interaction have been in-
vestigated in variational calculations for 5

ΛHe [185, 187, 189], 6
ΛΛHe [194, 195] and

17
ΛO [185, 192], resulting in a range of values for the CP and WD parameters (see
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Tab. 2.1) that gives good description of the properties of the studied hypernuclei.
A unique set of parameters that reproduces all the available experimental energies
for single (and double) Λ hypernuclei has not been set yet.

A second crucial observation is that, differently to the nucleon sector, both
two- and three-body lambda-nucleon interactions are at the same TPE order. In
addition, the mass difference between the Λ particle and its excitation Σ is much
smaller than the mass difference between the nucleon and the ∆ resonance. Thus,
the ΛNN interaction can not be neglected in this framework but it is a key ingredi-
ent in addition to the ΛN force for any consistent theoretical calculation involving
Λ hyperons.

Constant Value Unit

Wc 2137 MeV

r̄ 0.5 fm

a 0.2 fm

vs 6.33, 6.28 MeV

vt 6.09, 6.04 MeV

v̄ 6.15(5) MeV

vσ 0.24 MeV

c 2.0 fm−2

ε 0.1÷ 0.38 —

Cτ -0.050(5) MeV

CP 0.5÷ 2.5 MeV

CS ' 1.5 MeV

WD 0.002÷ 0.058 MeV

Table 2.1: Parameters of the ΛN and ΛNN interaction (see [189] and reference
therein). For CP and WD the variational allowed range is shown. The value of the
charge symmetry breaking parameter Cτ is from Ref. [186].

2.2.3 Two-body ΛΛ potential

Due to the impossibility to collect ΛΛ scattering data, experimental information
about the ΛΛ interaction can be obtained only from the ΛΛ separation energy of
the observed double Λ hypernuclei, 6

ΛΛHe [91–93],
13

ΛΛB [92] and the isotopes of 10
ΛΛBe
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(A = 10 ÷ 12) [92, 94]. Evidence for the production of 4
ΛΛH has been reported in

Ref. [208], but no information about the ΛΛ separation energy was found. On the
other hand, there is a theoretical indication for the one-boson exchange (OBE) part
of the ΛΛ interaction coming from the SU(3)-invariance of coupling constants, but
the ΛΛ force is still far to be settled.

In the next, we follow the guide line adopted in the three- and four-body clus-
ter models for double Λ hypernuclei [171, 173], which was also used in Faddeev-
Yakubovsky calculations for light double Λ hypernuclei [209] and in variational
calculations on 4

ΛΛH [193, 210], 5
ΛΛH and 5

ΛΛHe [193, 211] and
6

ΛΛHe [193–195, 211],
with different parametrizations. The employed OBE-simulating ΛΛ effective inter-
action is a low-energy phase equivalent Nijmegen interaction represented by a sum
of three Gaussians:

vλµ =
3∑

k=1

(
v

(k)
0 + v(k)

σ σλ · σµ
)

e−µ
(k)r2

λµ . (2.48)

The most recent parametrization of the potential (see Tab. 2.2), was fitted in
order to simulate the ΛΛ sector of the Nijmegen F (NF) interaction [150–152].
The NF is the simplest among the Nijmegen models with a scalar nonet, which
seems to be more appropriate than the versions including only a scalar singlet in
order to reproduce the weak binding energy indicated by the NAGARA event [91].
The components k = 1, 2 of the above Gaussian potential are determined so as to
simulate the ΛΛ sector of NF and the strength of the part for k = 3 is adjusted so as
to reproduce the 6

ΛΛHe NAGARA experimental double Λ separation energy of 7.25±
0.19+0.18

−0.11 MeV. In 2010, Nakazawa reported a new, more precise determination of
BΛΛ = 6.93 ± 0.16 MeV for 6

ΛΛHe [92], obtained via the Ξ− hyperon capture
at rest reaction in a hybrid emulsion. This value has been recently revised to
BΛΛ = 6.91± 0.16 MeV by the E373 (KEK-PS) Collaboration [93]. No references
were found about the refitting of the ΛΛ Gaussian potential on the more recent
experimental result, which is in any case compatible with the NAGARA event. We
therefore consider the original parametrization of Ref. [173].

µ(k) 0.555 1.656 8.163

v
(k)
0 −10.67 −93.51 4884

v
(k)
σ 0.0966 16.08 915.8

Table 2.2: Parameters of the the ΛΛ interaction. The size parameters µ(k) are in
fm−2 and the strengths v(k)

0 and v(k)
σ are in MeV [173].
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Method

In nuclear physics, many-body calculations are used to understand the nuclear
systems in the non-relativistic regime. When interested in low energy phenomena,
a nucleus (or an extensive nucleonic system) can be described as a collection of
particles interacting via a potential that depends on positions, momenta, spin and
isospin. The properties of the system can be determined by solving a many-body
Schrödinger equation. Such calculations can study, for example, binding energies,
excitation spectra, densities, reactions and many other aspects of nuclei. The
equation of state, masses, radii and other properties are obtained by describing
astrophysical objects as a nuclear infinite medium.

The two main problems related to microscopic few- and many-body calculations
in nuclear physics are the determination of the Hamiltonian and the method used
to accurately solve the Schrödinger equation. In the previous chapter, we have
already seen how to build a realistic nuclear Hamiltonian, including also strange
degrees of freedom. In the next we will focus on the methodological part presenting
a class of Quantum Monte Carlo algorithms, the Diffusion Monte Carlo (DMC)
and, more in detail, the Auxiliary Field Diffusion Monte Carlo (AFDMC). Such
methods are based on evolving a trial wave function in imaginary time to yield
the ground state of the system. The DMC method sums explicitly over spin and
isospin states and can use very sophisticated wave functions. However, it is limited
to small systems. In the AFDMC, in addition to the coordinates, also the spin and
isospin degrees of freedom are sampled. It can thus treat larger systems but there
are some limitations on the trial wave function and the nuclear potentials that can
be handled.

Strangeness can be included in AFDMC calculations by adding hyperons to the
standard nucleons. The interaction between hyperons and nucleons presented in the
previous chapter is written in a suitable form to be treated within this algorithm.
By extending the AFDMC nuclear wave function to the hyperonic sector, it is
possible to study both hypernuclei and hypermatter. A new QMC approach to
strange physics is thus now available.

31
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3.1 Diffusion Monte Carlo

The Diffusion Monte Carlo method [136, 212–214] projects the ground-state
out of a stationary trial wave function |ψT 〉 not orthogonal to the true ground
state. Consider the many-body time dependent Schrödinger equation with its
formal solution

i~
∂

∂t
|ψ(t)〉 = (H − ET )|ψ(t)〉 ⇒ |ψ(t+ dt)〉 = e−

i
~ (H−ET )dt |ψ(t)〉 , (3.1)

and let move to the imaginary time τ = it/~1:

− ∂

∂τ
|ψ(τ)〉 = (H − ET )|ψ(τ)〉 ⇒ |ψ(τ + dτ)〉 = e−(H−ET )dτ |ψ(τ)〉 . (3.2)

The stationary states |ψ(0)〉 = |ψT 〉 are the same for both normal and imaginary
time Schrödinger equations and we can expand them on a complete orthonormal
set of eigenvectors |ϕn〉 of the Hamiltonian H:

|ψT 〉 =

∞∑

n=0

cn|ϕn〉 . (3.3)

Supposing that the |ψT 〉 is not orthogonal to the true ground state, i.e. c0 6= 0,
and that at least the ground state is non degenerate, i.e. En ≥ En−1 > E0, where
En are the eigenvalues of H related to |ϕn〉, the imaginary time evolution of |ψT 〉
is given by

|ψ(τ)〉 =
∞∑

n=0

cn e−(En−ET )τ |ϕn〉 ,

= c0 e−(E0−ET )τ |ϕ0〉+
∞∑

n=1

cn e−(En−ET )τ |ϕn〉 . (3.4)

If the energy offset ET is the exact ground state energy E0, in the limit τ → ∞
the components of Eq. (3.4) for n > 0 vanish and we are left with

lim
τ→∞

|ψ(τ)〉 = c0|ϕ0〉 . (3.5)

Starting from a generic initial trial wave function |ψT 〉 not orthogonal to the ground
state, and adjusting the energy offset ET to be as close as possible to E0, in the
limit of infinite imaginary time, one can project out the exact ground state c0|ϕ0〉
giving access to the lowest energy properties of the system.

Consider the imaginary time propagation of Eq. (3.2) and insert a completeness
on the orthonormal basis |R′〉, where R represents a configuration {r1, . . . , rN } of

1with this definition τ has the dimensions of the inverse of an energy.
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the N particle system with all its degrees of freedom:

|ψ(τ + dτ)〉 = e−(H−ET )dτ |ψ(τ)〉 ,

=

∫
dR′ e−(H−ET )dτ |R′〉〈R′|ψ(τ)〉 . (3.6)

Projecting on the coordinates 〈R| leads to

〈R|ψ(τ + dτ)〉 =

∫
dR′ 〈R| e−(H−ET )dτ |R′〉〈R′|ψ(τ)〉 , (3.7)

where 〈R| e−(H−ET )dτ |R′〉 = G(R,R′, dτ) is the Green’s function of the operator
(H − ET ) + ∂

∂τ . Recalling that 〈R|ψ(τ)〉 = ψ(R, τ), we can write Eq. (3.2) as

− ∂

∂τ
ψ(R, τ) = (H − ET )ψ(R, τ) , (3.8)

ψ(R, τ + dτ) =

∫
dR′G(R,R′, dτ)ψ(R′, τ) . (3.9)

If we consider a non-interacting many-body system, i.e. the Hamiltonian is
given by the pure kinetic term

H0 = T = − ~2

2m

N∑

i=1

∇2
i , (3.10)

the Schrödinger equation (3.8) becomes a 3N -dimensional diffusion equation. By
writing the Green’s function of Eq. (3.9) in momentum space by means of the
Fourier transform, it is possible to show that G0 is a Gaussian with variance pro-
portional to τ

G0(R,R′, dτ) =

(
1

4πDdτ

) 3N
2

e−
(R−R′)2

4Ddτ , (3.11)

where D = ~2/2m is the diffusion constant of a set of particles in Brownian motion
with a dynamic governed by random collisions. This interpretation can be imple-
mented by representing the wave function ψ(R, τ) by a set of discrete sampling
points, called walkers

ψ(R, τ) =
∑

k

δ(R−Rk) , (3.12)

and evolving this discrete distribution for an imaginary time dτ by means of
Eq. (3.9):

ψ(R, τ + dτ) =
∑

k

G0(R,Rk, dτ) . (3.13)
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The result is a set of Gaussians that in the infinite imaginary time limit represents
a distribution of walkers according to the lowest state of the Hamiltonian, that can
be used to calculate the ground state properties of the system.

Let now consider the full Hamiltonian where the interaction is described by a
central potential in coordinate space:

H = T + V = − ~2

2m

N∑

i=1

∇2
i + V (R) . (3.14)

Because T and V in general do not commute, it is not possible to directly split the
propagator in a kinetic and a potential part

e−(H−ET )dτ 6= e−Tdτ e−(V−ET )dτ , (3.15)

and thus the analytic solution of the Green’s function 〈R| e−(T+V−ET )dτ |R′〉 is not
known in most of the cases. However, by means of the Trotter-Suzuki formula to
order dτ3

e−(A+B)dτ = e−A
dτ
2 e−Bdτ e−A

dτ
2 + o

(
dτ3
)
, (3.16)

which is an improvement of the standard

e−(A+B)dτ = e−Adτ e−Bdτ + o
(
dτ2
)
, (3.17)

in the limit of small imaginary time step dτ it is possible to write an approximate
solution for ψ(R, τ + dτ):

ψ(R, τ + dτ) '
∫
dR′〈R| e−V dτ

2 e−Tdτ e−V
dτ
2 eET dτ |R′〉ψ(R′, τ) ,

'
∫
dR′ 〈R| e−Tdτ |R′〉︸ ︷︷ ︸

G0(R,R′,dτ)

e
−
(
V (R)+V (R′)

2
−ET

)
dτ

︸ ︷︷ ︸
GV (R,R′,dτ)

ψ(R′, τ) ,

'
(

1

4πDdτ

) 3N
2
∫
dR′ e−

(R−R′)2
4Ddτ e

−
(
V (R)+V (R′)

2
−ET

)
dτ
ψ(R′, τ) ,

(3.18)

which is the same of Eq. (3.9) with the full Green’s function given by

G(R,R′, dτ) ' G0(R,R′, dτ)GV (R,R′, dτ) . (3.19)

According to the interacting Hamiltonian, the propagation of ψ(R, τ) for dτ → 0
is thus described by the integral (3.18) and the long imaginary time evolution
necessary to project out the ground state component of the wave function is realized
by iteration until convergence is reached.

The steps of this process, that constitute the Diffusion Monte Carlo algorithm,
can be summarized as follows:



3.1. Diffusion Monte Carlo 35

1. An initial distribution of walkers wi with i = 1, . . . ,Nw is sampled from
the trial wave function 〈R|ψT 〉 = ψT (R) and the starting trial energy ET is
chosen (for instance from a variational calculation or close to the expected
result).

2. The spacial degrees of freedom are propagated for small imaginary time step
dτ with probability density G0(R,R′, dτ), i.e. the coordinates of the walkers
are diffused by means of a Brownian motion

R = R′ + ξ , (3.20)

where ξ is a stochastic variable distributed according to a Gaussian proba-
bility density with σ2 = 2Ddτ and zero average.

3. For each walker, a weight

ωi = GV (R,R′, dτ) = e
−
(
V (R)+V (R′)

2
−ET

)
dτ
, (3.21)

is assigned. The estimator contributions (kinetic energy, potential energy,
root mean square radii, densities, . . . ) are evaluated on the imaginary time
propagated configurations, weighting the results according to ωi.

4. The branching process is applied to the propagated walkers. ωi represents the
probability of a configuration to multiply at the next step according to the
normalization. This process is realized by generating from each wi a number
of walker copies

ni = [ωi + ηi] , (3.22)

where ηi is a random number uniformly distributed in the interval [0, 1] and
[x] means integer part of x. In such a way, depending on the potential
V (R) and the trial energy ET , some configurations will disappear and some
other will replicate, resulting in the evolution of walker population which is
now made of Ñw =

∑Nw
i=1 ni walkers. A simple solution in order to control

the fluctuations of walker population is to multiply the weight ωi by a factor
Nw/Ñw, adjusting thus the branching process at each time step. This solution
is not efficient if the potential diverges. The corrections applied run-time
could generate a lot of copies from just few good parent walkers and the
population will be stabilized but not correctly represented. A better sampling
technique is described in § 3.1.1.

5. Iterate from 2 to 4 as long as necessary until convergence is reached, i.e.
for large enough τ to reach the infinite limit of Eq. (3.5). In this limit,
the configurations {R} are distributed according to the lowest energy state
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ψ0(R, τ). Therefore, we can compute the ground state expectation values of
observables that commute with the Hamiltonian

〈O〉 =
〈ψ0|O|ψ0〉
〈ψ0|ψ0〉

= lim
τ→∞

〈ψT |O|ψ(τ)〉
〈ψT |ψ(τ)〉 = lim

τ→∞

∫
dR
〈ψT |O|R〉ψ(R, τ)

ψT (R)ψ(R, τ)
, (3.23)

by means of

〈O〉 =

∑
{R}〈R|O|ψT 〉∑
{R}〈R|ψT 〉

=

∑
{R}OψT (R)
∑
{R} ψT (R)

. (3.24)

Statistical error bars on expectation values are then estimated by means of
block averages and the analysis of auto-correlations on data blocks. The
direct calculation of the expectation value (3.24) gives an exact result only
when O is the Hamiltonian H or commutes with H, otherwise only “mixed”
matrix elements 〈O〉m 6= 〈O〉 can be obtained. Among the different methods
to calculate expectation values for operators that do not commute withH, the
extrapolation method [136] is the most widely used. Following this method,
one has a better approximation to the “pure” (exact) value by means of a
linear extrapolation

〈O〉p ' 2
〈ψ0|O|ψT 〉
〈ψ0|ψT 〉

− 〈ψT |O|ψT 〉〈ψT |ψT 〉
= 2 〈O〉m − 〈O〉v , (3.25)

or, if the operator O is positive defined, by means of

〈O〉p '

(
〈ψ0|O|ψT 〉
〈ψ0|ψT 〉

)2

〈ψT |O|ψT 〉
〈ψT |ψT 〉

=
〈O〉2m
〈O〉v

, (3.26)

where 〈O〉v is the variational estimator. The accuracy of the extrapolation
method is closely related to the trial wave function used in the variational
calculation and on the accuracy of the DMC sampling technique.

For a many-body system, if no constraint is imposed, H has both symmetric and
antisymmetric eigenstates with respect to particle exchange. It can be proven [215]
that the lowest energy solution, and hence the state projected by imaginary time
propagation, is always symmetric. Moreover, in the DMC algorithm, the walkers
distribution is sampled through the wave function, that must be positive defined in
the whole configuration space for the probabilistic interpretation to be applicable.
The projection algorithm described above is thus referred to Boson systems only.
The extension for Fermion systems is reported in § 3.1.2.

3.1.1 Importance Sampling

As discussed in the previous section, the basic version of the DMC algorithm
is rather inefficient because the weight term of Eq. (3.21) could suffer of very large
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fluctuations. Indeed, because the Brownian diffusive process ignores the shape of
the potential, there is nothing that prevents two particles from moving very close
to each other, even in presence of an hard-core repulsive potential.

The importance function techniques [212–214] mitigates this problem by using
an appropriate importance function ψI(R) (which is often, but not necessarily, the
same ψT (R) used for the projection) to guide the diffusive process. The idea is to
multiply Eq. (3.9) by ψI(R)

ψI(R)ψ(R, τ + dτ) =

∫
dR′G(R,R′, dτ)

ψI(R)

ψI(R′)
ψI(R

′)ψ(R′, τ) , (3.27)

and define a new propagator

G̃(R,R′, dτ) = G(R,R′, dτ)
ψI(R)

ψI(R′)
, (3.28)

and a new function

f(R, τ) = ψI(R)ψ(R, τ) , (3.29)

such that

f(R, τ + dτ) =

∫
dR′ G̃(R,R′, dτ) f(R′, τ) . (3.30)

f(R, τ) represents the new probability density from which sample the walker dis-
tribution. If ψI(R) is suitably chosen, for example to be small in the region where
the potential presents the hard-core, then f(R, τ) contains more information than
the original ψ(R, τ), being correlated to the potential by construction, and thus
there is an improvement in the quality of the DMC sampling and a reduction of
the fluctuations of the weight (3.21).

By inserting the new propagator G̃(R,R′, dτ) in Eq. (3.18) and expanding near
R′, it is possible to show (see for instance Refs. [214]) that the integration gives an
additional drift term in G0(R,R′, dτ)

G0(R,R′, dτ)→ G̃0(R,R′, dτ) =

(
1

4πDdτ

) 3N
2

e−
(R−R′−vd(R′)Ddτ)2

4Ddτ , (3.31)

where

vd(R) = 2
∇ψI(R)

ψI(R)
, (3.32)

is a 3N dimensional drift velocity that drives the free diffusion. The branching
factor of Eq. (3.21) modifies in

ωi → ω̃i = e
−
(
EL(R)+EL(R′)

2
−ET

)
dτ
, (3.33)
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where the potential energy is replaced by the local energy

EL(R) =
HψI(R)

ψI(R)
. (3.34)

If the importance function is sufficiently accurate, the local energy remains close
to the ground-state energy throughout the imaginary time evolution and the pop-
ulation of walkers is not subject to large fluctuations.

Going back to the imaginary time dependent Schrödinger equation, it is possible
to show (details can be found in Refs. [214]) that by multiplying Eq. (3.8) by ψI(R)
we obtain a non homogenous Fokker-Plank equation for f(R, τ)

− ∂

∂τ
f(R, τ) =− ~2

2m
∇2f(R, τ) +

~2

2m
∇·
[
vd(R)f(R, τ)

]
+ EL(R)f(R, τ) , (3.35)

for which the corresponding Green’s function is given by the two terms of Eqs. (3.31)
and (3.33).

The DMC algorithm including the importance sampling procedure is still the
same described in § 3.1, where now the coordinates of the walkers are diffused by
the Brownian motion and guided by the drift velocity

R = R′ + ξ + vdDdτ , (3.36)

and the branching process is given by the local energy through the weight (3.33).
The expectation values are still calculated by means of Eq. (3.24) but now the
sampling function ψ(R, τ) is replaced by f(R, τ).

3.1.2 Sign Problem

As discussed in § 3.1.1, the standard DMC algorithm applies to positive defined
wave function and the result of the imaginary time projection is a nodeless function.
The ground state of a Fermionic system is instead described by an antisymmetric
wave function, to which a probability distribution interpretation cannot be given.
Moreover, the search for an antisymmetric ground state |ψA0 〉 corresponds to the
search for an excited state of the many-body Hamiltonian with eigenvalue

EA0 > ES0 , (3.37)

where ES0 and EA0 are the ground state energies for the Bosonic and the Fermionic
system.

If no constraint is imposed, the Hamiltonian has both eigenstates that are
symmetric and antisymmetric with respect to particle exchange. We can thus
rewrite Eq. (3.4) by separating Bosonic and Fermionic components:

|ψ(τ)〉 =

∞∑

n=0

cSn e−(ESn−ET )τ |ϕSn〉+

∞∑

n=0

cAn e−(EAn−ET )τ |ϕAn 〉 . (3.38)
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If we want to naively apply the standard DMC algorithm to project out the
Fermionic ground state, we need to propagate the trial wave function for long
imaginary time taking EA0 as energy reference. If the Fermionic ground state is not
degenerate, i.e. EAn ≥ EAn−1 > EA0 , in the limit τ →∞ we have

lim
τ→∞

|ψ(τ)〉 = lim
τ→∞

∑

n

cSn e−(ESn−EA0 )τ |ϕn〉+ cA0 |ϕA0 〉 , (3.39)

where at least for ES0 the Bosonic part diverges due to the condition (3.37). How-
ever, the exponentially growing component along the symmetric ground state does
not affect the expectation of the Hamiltonian. Indeed, during the evaluation of
the integral (3.23) on an antisymmetric trial wave function ψAT (R), the symmetric
components of ψ(R, τ) vanish by orthogonality and in the limit of infinite imagi-
nary time the energy converges to exact eigenvalue EA0 . However, the orthogonality
cancellation of the Bosonic terms does not apply to the calculation of the DMC
variance for the antisymmetric energy expectation value 〈EA0 〉

σ2
EA0

=
∣∣∣〈H〉2ψAT − 〈H

2〉ψAT
∣∣∣ , (3.40)

where the second term diverges. We are left thus with an exact eigenvalue affected
by an exponentially growing statistical error. The signal to noise ratio exponentially
decays. This is the well known sign problem and it represents the main limit to
the straightforward application of the DMC algorithm to Fermion systems.

In order to extend the DMC method to systems described by antisymmetric
wave functions, it is possible to artificially split the configuration space in regions
where the trial wave function does not change sign. The multi dimensional surface
where the trial wave function vanishes, denoted as nodal surface, can be used to
constrain the diffusion of the walkers: whenever a walker crosses the nodal surface
it is dropped from the calculation. In such a way only the configurations that
diffuse according to region of the wave function with definite sign are taken into
account. The problem reduces thus to a standard DMC in the subsets of the
configuration space delimited by the nodal surface. This approximate algorithm is
called fixed-node [212, 216, 217] and it can be proven that it always provides an
upper bound to the true Fermionic ground state.

The sign problem appears for both real and complex antisymmetric wave func-
tions. The latter is the case of nuclear Hamiltonians. As proposed by Zhang et
al. [218–220], the constrained path approximation can be used to deal with the sign
problem for complex wave functions. The general idea is to constraining the path
of walkers to regions where the real part of the overlap with the wave function is
positive. If we consider a complex importance function ψI(R), in order to keep
real the coordinates space of the system, the drift term in Eq. (3.31) must be real.
A suitable choice for the drift velocity is thus:

vd(R) = 2
∇Re [ψI(R)]

Re [ψI(R)]
. (3.41)
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Consistently, a way to eliminate the decay of the signal to noise ratio consists
in requiring that the real part of the overlap of each walker with the importance
function must keep the same sign

Re [ψI(R)]

Re [ψI(R′)]
> 0 , (3.42)

where R and R′ denote the coordinates of the system after and before the diffusion
of a time step. When this condition is violate, i.e. when the overlap between the
importance function and the walker after a diffusive step changes sign, the walker
is dropped. In these scheme, the ground state expectation value of an observable
O (Eq. (3.24)) is given by

〈O〉 =

∑
{R}ORe [ψT (R)]
∑
{R}Re [ψT (R)]

. (3.43)

Another approach to deal with the complex sign problem is the fixed phase
approximation, originally introduced for systems whose Hamiltonian contains a
magnetic field [221]. Let write a complex wave function as

ψ(R) = |ψ(R)| eiφ(R) , (3.44)

where φ(R) is the phase of ψ(R), and rewrite the drift velocity as

vd(R) = 2
∇ |ψI(R)|
|ψI(R)| = 2 Re

[
∇ψI(R)

ψI(R)

]
. (3.45)

With this choice, the weight for the branching process becomes

ω̃i = exp

{
−
[

1

2

(
− ~2

2m

∇2|ψI(R)|
|ψI(R)| +

V ψI(R)

ψI(R)

− ~2

2m

∇2|ψI(R′)|
|ψI(R′)|

+
V ψI(R

′)
ψI(R′)

)
− ET

]
dτ

}
× |ψI(R

′)|
|ψI(R)|

ψI(R)

ψI(R′)
, (3.46)

which is the usual importance sampling factor as in Eq. (3.33) multiplied by an ad-
ditional factor that corrects for the particular choice of the drift. Using Eq. (3.44),
the last term of the previous equation can be rewritten as

|ψI(R′)|
|ψI(R)|

ψI(R)

ψI(R′)
= ei[φI(R)−φI(R′)] . (3.47)

The so called “fixed phase” approximation is then realized by constraining the
walkers to have the same phase as the importance function ψI(R). It can be
applied by keeping the real part of the last expression. In order to preserve the
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normalization, one has to consider an additional term in the Green’s function due
to the phase, that must be added to the weight:

exp

[
− ~2

2m

(
∇φ(R)

)2
dτ

]
. (3.48)

This factor can be included directly in ω̃i considering the following relation:

Re

[∇2ψI(R)

ψI(R)

]
=
∇2 |ψI(R)|
|ψI(R)| −

(
∇φ(R)

)2
. (3.49)

Thus, by keeping the real part of the kinetic energy in Eq. (3.46), the additional
weight term given by the fixed phase approximation is automatically included. The
calculation of expectation values is given now by

〈O〉 =
∑

{R}
Re

[OψT (R)

ψT (R)

]
, (3.50)

i.e. by the evaluation of the real part of a local operator. This is of particular
interest for the technical implementation of the DMC algorithm. As we will see in
§ 3.2.4, when dealing with Fermions the wave function can be written as a Slater
determinant of single particle states. It can be shown (see Appendix A.2) that
the evaluation of local operators acting on Slater determinants can be efficiently
implemented by means of the inverse matrix of the determinant. The fixed phase
approximation allows thus to deal with the Fermion sign problem and also provides
a natural scheme to implement the DMC method. Moreover, the above derivation
can be extended to operators other than the kinetic energy. For example, when
dealing with nuclear Hamiltonians like (2.2), spin and isospin expectation values
can be evaluated by taking the real part of local spin and isospin operators cal-
culated on the Slater determinant. This is actually the standard way to treat the
spin-isospin dependent components of the nuclear Hamiltonian in the Auxiliary
Field Diffusion Monte Carlo (see § 3.2).

The constrained path and the fixed phase prescriptions are both approximations
introduced to deal with the sign problem for complex wave functions. In princi-
ple they should yield similar results if the importance function is close enough to
the real ground state of the system. Accurate ψI(R) are thus needed. An addi-
tional important observation is that the DMC algorithm with the constrained path
approximation does not necessarily provide an upper bound in the calculation of
energy [222, 223]. Moreover, it has not been proven that the fixed phase approxi-
mation gives an upper bound to the real energy. Thus, the extension of the DMC
algorithm to Fermion systems described by complex wave functions does not obey
to the Rayleigh-Ritz variational principle. Further details on the fixed node, con-
strained path and fixed phase approximations can be found in the original papers
and an exhaustive discussion is reported in the Ph.D. thesis of Armani [224].
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3.1.3 Spin-isospin degrees of freedom

If we want to study a nuclear many-body system described by the Hamilto-
nian (2.2), we need to include also the spin-isospin degrees of freedom in the picture.
In order to simplify the notation, in the next with A we will refer to the number
of nucleons. Starting from § 3.2.4 we will restore the convention A = NN + NΛ.
The typical trial many-body wave function used in DMC calculation for nuclear
systems takes the form [136, 223]

|ψT 〉 = S


∏

i<j

(
1 + Uij +

∑

k

Uijk

)
∏

i<j

fc(rij)|ΦA〉 , (3.51)

where fc(rij) is a central (mostly short ranged repulsion) correlation, Uij are non
commuting two-body correlations induced by vij (that typically takes the same
form of Eq. (2.16) for p = 2, . . . , 6) and Uijk is a simplified three-body correlation
from vijk. |ΦA〉 is the one-body part of the trial wave function that determines
the quantum numbers of the states and it is fully antisymmetric. The central
correlation is symmetric with respect to particle exchange and the symmetrization
operator S acts on the operatorial correlation part of |ψT 〉 in order to make the
complete trial wave function antisymmetric. The best trial wave function from
which (3.51) is derived, includes also spin-orbit and the full three-body correlations
and it is used in VMC calculations. See Refs. [223, 225].

Given A nucleons (Z protons, A − Z neutrons), the trial wave function is a
complex vector in spin-isospin space with dimension NS × NT , where NS is the
number of spin states and NT the number of isospin states:

NS = 2A NT =

(
A

Z

)
=

A!

Z!(A− Z)!
. (3.52)

For example, the wave function of an A = 3 system has 8 spin components and,
considering the physical systems for Z = 1

(
3H
)
or Z = 2

(
3He

)
, 3 isospin states,

thus a spin-isospin structure with 24 entries. Using the notation of Ref. [136], we
can write the spin part of an A = 3 wave function as a complex 8-vector (ignore
antisymmetrization)

|ΦA=3〉 =




a↑↑↑
a↑↑↓
a↑↓↑
a↑↓↓
a↓↑↑
a↓↑↓
a↓↓↑
a↓↓↓




with a↑↓↑ = 〈↑↓↑ |ΦA=3〉 . (3.53)
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The potentials (vij , vijk) and correlations (Uij , Uijk) involve repeated operations
on |ψT 〉 but the many-body spin-isospin space is closed under the action of the
operators contained in the Hamiltonian. As an example, consider the term σi ·σj :

σi · σj = 2
(
σ+
i σ
−
j + σ−i σ

+
j

)
+ σzi σ

z
j ,

= 2Pσij − 1 ,

=




1 0 0 0

0 −1 2 0

0 2 −1 0

0 0 0 1




acting on




↑↑
↑↓
↓↑
↓↓




. (3.54)

The Pσij exchanges the spin i and j, so the operator σi · σj does not mix differ-
ent isospin components and acts on different, non contiguous, 4-element blocks of
|ΦA=3〉. For i = 2 and j = 3 we have for example:

σ2 · σ3 |ΦA=3〉 =




a↑↑↑
2a↑↓↑ − a↑↑↓
2a↑↑↓ − a↑↓↑

a↑↓↓
a↓↑↑

2a↓↓↑ − a↓↑↓
2a↓↑↓ − a↓↓↑

a↓↓↓




. (3.55)

The action of pair operators on |ψT 〉, that are the most computationally expensive,
results thus in a sparse matrix of (non contiguous) 4 × 4 blocks in the A-body
problem.

In the Green Function Monte Carlo, which slightly differs from the DMC in the
way the propagator is treated, each of the 2A A!

Z!(A−Z)! spin-isospin configurations
undergoes to the imaginary time evolution of Eq. (3.9). The propagation is now
acting on the component aα, being α the spin-isospin index,

aα(R, τ + dτ) =
∑

β

∫
dR′Gαβ(R,R′, dτ) aβ(R′, τ) , (3.56)

where the Green’s function is a matrix function of R and R′ in spin-isospin space,
defined as

Gαβ(R,R′, dτ) = 〈R,α| e−(H−ET )dτ |R′, β〉 . (3.57)

Due to the the factorial growth in the number of components of the wave
function, GFMC cannot deal with systems having a large number of nucleons, like
medium-heavy nuclei or nuclear matter. Standard GFMC calculations are indeed
limited up to 12 nucleons [17–19] or 16 neutrons [20].
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3.2 Auxiliary Field Diffusion Monte Carlo

The AFDMC algorithm was originally introduced by Schmidt and Fantoni [29]
in order to deal in an efficient way with spin-dependent Hamiltonians. Many details
on the AFDMC method can be found in Refs. [30, 31, 33, 37, 38, 214, 224, 226, 227].
The main idea is to move from the many particle wave function of the DMC or
GFMC to a single particle wave function. In this representation, going back to the
example of the previous section, the spin part of an A = 3 wave function becomes
a tensor product of 3 single particle spin states (ignore antisymmetrization):

|ΦA=3〉 =

(
a1↑
a1↓

)

1

⊗
(
a2↑
a2↓

)

2

⊗
(
a3↑
a3↓

)

3

with ak↑ =
k
〈↑ |ΦA=3〉 . (3.58)

Taking also into account the isospin degrees of freedom, each single particle state
becomes a complex 4-vector and the total number of entries for |ΦA=3〉 is thus 12,
half of the number for the full DMC function of Eq. (3.53). In the general case,
the dimension of the multicomponent vector describing a system with A nucleons
scale as 4A. So, in this picture, the computational cost for the evaluation of the
wave function is drastically reduced compared to the DMC-GFMC method when
the number of particles becomes large.

The problem of the single particle representation is that it is not closed with
respect to the application of quadratic spin (isospin) operators. As done in the
previous section (Eq. (3.55)), consider the operator σ2 · σ3 = 2Pσ23 − 1 acting on
|ΦA=3〉:

σ2 · σ3 |ΦA=3〉 = 2

(
a1↑
a1↓

)

1

⊗
(
a3↑
a3↓

)

2

⊗
(
a2↑
a2↓

)

3

−
(
a1↑
a1↓

)

1

⊗
(
a2↑
a2↓

)

2

⊗
(
a3↑
a3↓

)

3

. (3.59)

There is no way to express the result as a single particle wave function of the
form (3.58). At each time step, the straightforward application of the DMC al-
gorithm generates a sum of single particle wave functions. The number of these
functions will grows very quickly during the imaginary time evolution, destroying
the gain in computational time obtained using a smaller multicomponent trial wave
function.

In order to keep the single particle wave function representation and overcome
this problem, the AFDMC makes use of the Hubbard-Stratonovich transformation

e−
1
2
λO2

=
1√
2π

∫
dx e−

x2

2
+
√
−λxO , (3.60)

to linearize the quadratic dependence on the spin-isospin operators by adding the
integration over a new variable x called auxiliary field. It is indeed possible to show
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that the single particle wave function is closed with respect to the application of a
propagator containing linear spin-isospin operators at most:

e−Ojdτ |ΦA〉 = e−Ojdτ
⊗

i

(
ai↑
ai↓

)

i

,

=

(
a1↑
a1↓

)

1

⊗ · · · ⊗ e−Ojdτ
(
aj↑
aj↓

)

j

⊗ · · · ⊗
(
aA↑
aA↓

)

A

,

=

(
a1↑
a1↓

)

1

⊗ · · · ⊗
(
ãj↑
ãj↓

)

j

⊗ · · · ⊗
(
aA↑
aA↓

)

A

, (3.61)

where, working on 2-component spinors, Oj can be a 2× 2 spin or isospin matrix.
If we are dealing with the full 4-component spinor, Oj can be an extended 4 × 4
spin, isospin or isospin⊗ spin matrix. To get this result we have used the fact
that the operator Oj is the representation in the A-body tensor product space of
a one-body operator:

Oj ≡ I1 ⊗ · · · ⊗ Oj ⊗ · · · ⊗ IA . (3.62)

Limiting the study to quadratic spin-isospin operators and making use of the
Hubbard-Stratonovich transformation, it is thus possible to keep the single particle
wave function representation over all the imaginary time evolution. This results in
a reduced computational time for the propagation of the wave function compared
to GFMC, that allows us to simulate larger systems, from medium-heavy nuclei
to the infinite matter. In the next we will see in detail how the AFDMC works
on the Argonne V6 like potentials (§ 3.2.1), and how it is possible to include also
spin-orbit (§ 3.2.2) and three-body (§ 3.2.3) terms for neutron systems. Finally the
extension of AFDMC for hypernuclear systems (§ 3.2.5) is presented.

3.2.1 Propagator for nucleons: σ, σ · τ and τ terms

Consider the first six components of the Argonne NN potential of Eq. (2.16).
They can be conveniently rewritten as a sum of a spin-isospin independent and a
spin-isospin dependent term

VNN =
∑

i<j

∑

p=1,6

vp(rij)O p
ij = V SI

NN + V SD
NN , (3.63)

where

V SI
NN =

∑

i<j

v1(rij) , (3.64)
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and

V SD
NN =

1

2

∑

i 6=j

∑

αβ

σiαA
[σ]
iα,jβ σjβ +

1

2

∑

i 6=j

∑

αβγ

τiγ σiαA
[στ ]
iα,jβ σjβ τjγ

+
1

2

∑

i 6=j

∑

γ

τiγ A
[τ ]
ij τjγ . (3.65)

The 3A×3A matrices A[σ], A[στ ] and the A×A matrix A[τ ] are real and symmetric
under Cartesian component interchange α↔ β, under particle exchange i↔ j and
fully symmetric with respect to the exchange iα↔ jβ. They have zero diagonal (no
self interaction) and contain proper combinations of the components of AV6 (Latin
indices are used for the nucleons, Greek ones refer to the Cartesian components of
the operators):

A
[τ ]
ij = v2 (rij) ,

A
[σ]
iα,jβ = v3 (rij) δαβ + v5 (rij)

(
3 r̂αij r̂

β
ij − δαβ

)
, (3.66)

A
[στ ]
iα,jβ = v4 (rij) δαβ + v6 (rij)

(
3 r̂αij r̂

β
ij − δαβ

)
,

that come from the decomposition of the operators in Cartesian coordinates:

σi · σj =
∑

αβ

σiα σjβ δαβ , (3.67)

Sij =
∑

αβ

(
3σiα r̂

α
ij σjβ r̂

β
ij − σiα σjβ δαβ

)
. (3.68)

Being real and symmetric, the A matrices have real eigenvalues and real orthogonal
eigenstates

∑

jβ

A
[σ]
iα,jβ ψ

[σ]
n,jβ = λ[σ]

n ψ
[σ]
n,iα ,

∑

jβ

A
[στ ]
iα,jβ ψ

[στ ]
n,jβ = λ[στ ]

n ψ
[στ ]
n,iα , (3.69)

∑

j

A
[τ ]
ij ψ

[τ ]
n,j = λ[τ ]

n ψ
[τ ]
n,i .

Let us expand σiα on the complete set of eigenvectors ψ[σ]
n,iα of the matrix A[σ]

iα,jβ :

σiα =
∑

n

c[σ]
n ψ

[σ]
n,iα =

∑

n


∑

jβ

ψ
[σ]
n,jβ σjβ


ψ

[σ]
n,iα , (3.70)
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where we have used the orthogonality condition
∑

iα

ψ
[O]
n,iα ψ

[O]
m,iα = δnm . (3.71)

Using Eq. (3.70) we can recast the first term of Eq. (3.65) in the following form:

1

2

∑

iα,jβ

σiαA
[σ]
iα,jβ σjβ =

=
1

2

∑

iα,jβ






∑

n


∑

kγ

σkγ ψ
[σ]
n,kγ


ψ

[σ]
n,iα


A[σ]

iα,jβ


∑

m


∑

kγ

σkγ ψ
[σ]
m,kγ


ψ

[σ]
m,jβ





 ,

=
1

2

∑

iα






∑

n


∑

kγ

σkγ ψ
[σ]
n,kγ


ψ

[σ]
n,iα




∑

m

λ[σ]
m


∑

kγ

σkγ ψ
[σ]
m,kγ


ψ

[σ]
m,iα





 ,

=
1

2

∑

n


∑

kγ

σkγ ψ
[σ]
n,kγ




2

λ[σ]
n . (3.72)

Similar derivation can be written for the terms τiγ σiα and τiγ and we can define a
new set of operators expressed in terms of the eigenvectors of the matrices A:

O[σ]
n =

∑

jβ

σjβ ψ
[σ]
n,jβ ,

O[στ ]
n,α =

∑

jβ

τjα σjβ ψ
[στ ]
n,jβ , (3.73)

O[τ ]
n,α =

∑

j

τjα ψ
[τ ]
n,j .

The spin dependent part of the NN interaction can be thus expressed as follows:

V SD
NN =

1

2

3A∑

n=1

λ[σ]
n

(
O[σ]
n

)2
+

1

2

3A∑

n=1

3∑

α=1

λ[στ ]
n

(
O[στ ]
nα

)2
+

1

2

A∑

n=1

3∑

α=1

λ[τ ]
n

(
O[τ ]
nα

)2
. (3.74)

V SD
NN is now written in a suitable form for the application of the Hubbard-

Stratonovich transformation of Eq. (3.60). The propagator e−V
SD
NN dτ can be finally

recast as:

e−
1
2

∑
n λn(On)2dτ =

∏

n

e−
1
2
λn(On)2dτ + o

(
dτ2
)
,

'
∏

n

1√
2π

∫
dxn e

−x2
n

2
+
√
−λndτ xnOn , (3.75)



48 Chapter 3. Method

where we have used the compact notation On to denote the 3A O[σ]
n , the 9A O

[στ ]
n,α

and the 3A O[τ ]
n,α operators including the summation over the coordinate index α

where needed. The first step of the above equation comes to the fact that in general
the operators On do not commute and so, due to Eq. (3.17), the equality is correct
only at order dτ2.

The standard DMC imaginary time propagation of Eq. (3.9) needs to be ex-
tended to the spin-isospin space, as done in the GFMC algorithm via the projection
of Eqs. (3.56) and (3.57). In the AFDMC method, spin-isospin coordinates {S}
are added to the spacial coordinates {R}, defining a set of walkers which represents
the single-particle wave function to be evolved in imaginary time:

ψ(R,S, τ + dτ) =

∫
dR′dS′G(R,S,R′, S′, dτ)ψ(R′, S′, τ) . (3.76)

Including the integration over the Hubbard-Stratonovich auxiliary fields, the Aux-
iliary Field DMC Green’s function reads (recall Eqs. (3.18) and (3.19)):

G(R,S,R′, S′, dτ) = 〈R,S| e−(T+V−ET )dτ |R′, S′〉 ,

'
(

1

4πDdτ

) 3N
2

e−
(R−R′)2

4Ddτ e
−
(
V SINN (R)+V SINN (R′)

2
−ET

)
dτ
×

× 〈S|
15A∏

n=1

1√
2π

∫
dxn e

−x2
n

2
+
√
−λndτ xnOn |S′〉 , (3.77)

Each operator On involves the sum over the particle index j, as shown in Eq. (3.73).
However, in the A-body tensor product space, each j sub-operator is a one-body
operator acting on a different single particle spin-isospin states, as in Eq. (3.62).
Therefore the j-dependent terms commute and we can represent the exponential
of the sum over j as a tensor product of exponentials. The result is that the prop-
agation of a spin-isospin state |S′〉 turns into a product of independent rotations,
one for each spin-isospin state. Considering just a spin wave function we have for
example:

e
√
−λndτ xnO[σ]

n |S′〉 =

= e
√
−λndτ xn

∑
β σ1β ψ

[σ]
n,1β

(
a1↑
a1↓

)

1

⊗ · · · ⊗ e
√
−λndτ xn

∑
β σAβ ψ

[σ]
n,Aβ

(
aA↑
aA↓

)

A

,

=

(
ã1↑
ã1↓

)

1

⊗ · · · ⊗
(
ãA↑
ãA↓

)

A

. (3.78)

We can thus propagate spin-isospin dependent wave functions remaining inside the
space of single particle states.

The new coefficients ãj↑ and ãj↓ are calculated at each time step for each On
operator. For neutron systems, i.e. for two-component spinors for which only the
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operator O[σ]
n is active, there exists an explicit expression for these coefficients.

Consider the Landau relations

ei
~b·~σ = cos(|~b|) + i sin(|~b|)

~b · ~σ
|~b|

, (3.79)

e
~b·~σ = cosh(|~b|) + sinh(|~b|)

~b · ~σ
|~b|

, (3.80)

and identify the ~b vector with
~b =

√
|λn|dτ xn ~ψ [σ]

n,j bβ =
√
|λn|dτ xnψ [σ]

n,jβ . (3.81)

The following expressions for the coefficients of the rotated spinors can be then writ-
ten, distinguishing the case λn < 0 (Eq. (3.82)) and the case λn > 0 (Eq. (3.83)):

ãj↑=

[
cosh(|~b|) + sinh(|~b|) sgn(xn)

ψ
[σ]
n,jz

|~ψ [σ]
n,j |

]
aj↑+ sinh(|~b|) sgn(xn)

[
ψ

[σ]
n,jx−i ψ

[σ]
n,jy

|~ψ [σ]
n,j |

]
aj↓ ,

ãj↓=

[
cosh(|~b|)− sinh(|~b|) sgn(xn)

ψ
[σ]
n,jz

|~ψ [σ]
n,j |

]
aj↓+ sinh(|~b|) sgn(xn)

[
ψ

[σ]
n,jx+i ψ

[σ]
n,jy

|~ψ [σ]
n,j |

]
aj↑ ,

(3.82)

ãj↑=

[
cos(|~b|) + i sin(|~b|) sgn(xn)

ψ
[σ]
n,jz

|~ψ [σ]
n,j |

]
aj↑+ sin(|~b|) sgn(xn)

[
i ψ

[σ]
n,jx+ψ

[σ]
n,jy

|~ψ [σ]
n,j |

]
aj↓ ,

ãj↓=

[
cos(|~b|) + i sin(|~b|) sgn(xn)

ψ
[σ]
n,jz

|~ψ [σ]
n,j |

]
aj↓+ sin(|~b|) sgn(xn)

[
i ψ

[σ]
n,jx−ψ

[σ]
n,jy

|~ψ [σ]
n,j |

]
aj↑ .

(3.83)

When we are dealing with the full 4-dimension single particle spinors, the four
coefficients ã do not have an explicit expression. The exponential of the On oper-
ators acting on the spinors is calculated via a diagonalization procedure. Consider
the general 4× 4 rotation matrix Bj and its eigenvectors Ψm,j 6= 0 and eigenvalues
µm,j :

Bj Ψm,j = µm,j Ψm,j ⇒ Ψ−1
m,j Bj Ψm,j = µm,j m = 1, . . . , 4 . (3.84)

Using the formal notation ~Ψj and ~µj to denote the 4 × 4 matrix of eigenvectors
and the 4-dimension vector of eigenvalues, it is possible to write the action of eBj

on a 4-dimensional single particle spinor |S′〉j as follows:
eBj |S′〉j = ~Ψj

~Ψ−1
j eBj ~Ψj

~Ψ−1
j |S′〉j ,

= ~Ψj e
~Ψ−1
j Bj ~Ψj ~Ψ−1

j |S′〉j ,

= ~Ψj ediag(~µj) ~Ψ−1
j |S′〉j ,

= ~Ψj diag
(

e~µj
)
~Ψ−1
j |S′〉j . (3.85)
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Each component of the rotated spinor |S̃′〉j is thus derived from the eigenvectors
and eigenvalues of the rotation matrix Bj , which is built starting from the On
operators. Moving from neutrons to nucleons, i.e. adding the isospin degrees of
freedom to the system, the computational time spent to rotate each single particle
spin-isospin state during the propagation is increased by the time for the diagonal-
ization of the 4 × 4 Hubbard-Stratonovich rotation matrices. However, the total
time for the propagation of the wave function as A becomes large, is dominated
by the diagonalization of the potential matrices. Since the cost of this operation
goes as the cube of the number of matrix rows (columns), the AFDMC computa-
tional time is proportional to A3, which is much slower than the scaling factor A!
of GFMC.

In addition to the diagonalization of the AV6 potential matrices and the spinor
rotation matrices, we have to deal with the evaluation of the integral over the
auxiliary fields xn. The easiest way, in the spirit of Monte Carlo, is to sample the
auxiliary fields from the Gaussian of Eq. (3.77), which is interpreted as a probability
distribution. The sampled values are then used to determine the action of the
operators on the spin-isospin part of the wave function as described above. The
integral over all the spin-isospin rotations induced by the auxiliary fields eventually
recovers the action of the quadratic spin-isospin operators on a trial wave function
containing all the possible good spin-isospin states, as the GFMC one.

In this scheme, the integration over the auxiliary fields is performed jointly
with the integration over the coordinates. This generally leads to a large variance.
The integral of Eq. (3.77) should be indeed evaluated for each sampled position
and not simply estimated “on the fly”. A more refined algorithm, in which for each
sampled configuration the integral over xn is calculated by sampling more than one
auxiliary variable, has been tested. The energy values at convergence are the same
for both approaches. However, in the latter case the variance is much reduced,
although the computational time for each move is increased due to the iteration
over the newly sampled auxiliary points.

As done in the DMC method, see § 3.1.1, we can introduce an importance func-
tion to guide the diffusion in the coordinate space also in the AFDMC algorithm.
The drift term (3.32) is added to the R − R′ Gaussian distribution of Eq. (3.77)
and the branching weight ω̃i is given by the local energy as in Eq. (3.33). The idea
of the importance sampling can be applied to guide the rotation of the spin-isospin
states in the Hubbard-Stratonovich transformation. This can be done by properly
shifting the Gaussian over the auxiliary fields of Eq. (3.77) by means of a drift
term x̄n:

e−
x2
n
2

+
√
−λndτ xnOn = e−

(xn−x̄n)2

2 e
√
−λndτ xnOn e−x̄n(xn− x̄n2 ) , (3.86)

where

x̄n = Re
[√
−λndτ〈On〉m

]
, (3.87)
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and 〈On〉m is the mixed expectation value of On (Eq. (3.24)) calculated on the old
spin-isospin configurations. The mixed estimator is introduced in order to guide
the rotations, by maximizing the overlap between the walker and the trial function,
which is not generally picked around xn = 0.

The last factor of Eq. (3.86) can be interpreted as an additional weight term
that has to be included in the total weight. By combining diffusion, rotation and
all the additional factors we can derive two different algorithms.

v1 In the first one, the ratio between the importance functions in the new and old
configurations (see Eq. (3.28)) is kept explicit. However the drifted Gaussian
G̃0(R,R′, dτ) of Eq. (3.31) is used for the diffusion in the coordinate space
and the drifted Gaussian of Eq. (3.86) for the sampling of auxiliary fields.
The weight for the branching process ωi defined in Eq. (3.21) takes then an
overall factor

〈ψI |RS〉
〈ψI |R′S′〉

e−
d(R′)[d(R′)+2(R−R′)]

4Ddτ

∏

n

e−x̄n(xn− x̄n2 ) , (3.88)

due to the counter terms coming from the coordinate drift d(R) = vd(R)Ddτ
added in the original G0(R,R′, dτ) and from the auxiliary field shift x̄n.

v2 The second algorithm corresponds the local energy scheme described in § 3.1.1.
Again the coordinates are diffused via the drifted Gaussian G̃0(R,R′, dτ) of
Eq. (3.31) and the auxiliary fields are sampled from the shifted Gaussian of
Eq. (3.86). The branching weight w̃i is instead given by the local energy as
in Eq. (3.33). The counter terms related to x̄n are automatically included in
the weight because the local energy EL(R,S) = HψI(R,S)

ψI(R,S) takes now contri-
butions from all the spin-isospin operators of the full potential VNN . Actu-
ally, the term e−x̄nxn vanishes during the auxiliary field integration because
xn can take positive and negative values. The term x̄2

n
2 is nothing but the

−1
2λn〈On〉2mdτ contribution already included in the weight via EL(R,S).

Given the same choice for the drift term, that depends, for example, on the con-
straint applied to deal with the sign problem, the two algorithms are equivalent
and should sample the same Green’s function.

In both versions, the steps that constitute the AFDMC algorithm are almost the
same of the DMC one, reported in § 3.1. The starting point is the initial distribution
of walkers, step 1. In step 2 the diffusion of the coordinates is performed including
the drift factor. Now also the spin-isospin degrees of freedom are propagated, by
means of the Hubbard-Stratonovich rotations and the integral over the auxiliary
fields. As in step 3, a weight is assigned to each walker, choosing one of the
two equivalent solutions proposed above (explicit ψI ratio or local energy). Both
propagation and weight depend on the prescription adopted in order to keep under
control the sign problem. Usually the fixed phase approximation (see § 3.1.2) is
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applied with the evaluation of local operators. The branching process follows then
the DMC version described in step 4 and the procedure is iterated in the same way
with the computation of expectation values at convergence.

3.2.2 Propagator for neutrons: spin-orbit terms

In the previous section we have seen how to deal in an efficient way with a
propagator containing the first six components of the Argonne two-body potential.
Next terms in Eq. (2.16) are the spin-orbit contributions for p = 7, 8. Although
an attempt to treat the spin-orbit terms for nucleon systems has been reported
by Armani in his Ph.D. thesis [224] (together with a possible L2

ij inclusion for
p = 9), at present the Lij · Sij operator is consistently employed in the AFDMC
algorithm only for neutron systems. No other terms of the NN interaction are
included in the full propagator, neither for nucleons nor for neutrons, although a
perturbative treatment of the remaining terms of AV18 is also possible [136]. The
full derivation of the neutron spin-orbit propagator is reported in Ref. [37]. Here
we want just to sketch the idea behind the treatment of this non local term for
which the corresponding Green’s function is not trivial to be derived.

Consider the spin-orbit potential for neutrons:

vLSij = vLS(rij)Lij · Sij = vLS(rij) (L · S)ij , (3.89)

where

vLS(rij) = v7(rij) + v8(rij) , (3.90)

and Lij and Sij are defined respectively by Eqs. (2.19) and (2.20). As reported in
Ref. [228], one way to evaluate the propagator for L ·S is to consider the expansion
at first order in dτ

e−vLS(rij)(L·S)ijdτ '
[
1− vLS(rij) (L · S)ij dτ

]
, (3.91)

acting on the free propagator G0(R,R′, dτ) of Eq. (3.11). The derivatives terms of
the above expression give

(∇i −∇j)G0(R,R′, dτ) = − 1

2Ddτ
(∆ri −∆rj)G0(R,R′, dτ) , (3.92)

where ∆ri = ri − r′i . We can then write:

(L · S)ij G0(R,R′, dτ) =

= − 1

4i

1

2Ddτ
(ri − rj)× (∆ri −∆rj) · (σi + σj)G0(R,R′, dτ) ,

= − 1

4i

1

2Ddτ
(Σij × rij) · (∆ri −∆rj)G0(R,R′, dτ) , (3.93)
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where Σij = σi + σj and rij = ri − rj , and the relation a · (b× c) = c · (a× b)
has been used.

By inserting the last expression in Eq. (3.91) and re-exponentiating, including
also the omitted sum over particle indices i and j, the following propagator is
obtained:

PLS ' e
∑
i 6=j

vLS(rij)

8iD
(Σij×rij)·(∆ri−∆rj) . (3.94)

The effect of PLS can be studied starting from the formal solution

ψ(R,S, τ + dτ)
LS'
∫
dR′dS′G0(R,R′, dτ)PLS ψ(R′, S′, τ) , (3.95)

and expanding the propagator to the second order and the wave function ψ(R′, S′, τ)
to the first order in R−R′. It is possible to show (see Ref. [37] for the details) that
the spin-orbit contribution of the propagator takes a simple form, but two- and
three-body extra corrections appear. However, in the case of neutrons these addi-
tional terms contain quadratic spin operators and so they can be handled by the
Hubbard-Stratonovich transformation and the rotations over new auxiliary fields.

3.2.3 Propagator for neutrons: three-body terms

As reported in § 2.1.2, the Illinois (Urbana IX) TNI can be written as a sum of
four different terms:

Vijk = AP2πO2π,P
ijk +AS2πO2π,S

ijk +A3πO3π
ijk +ARORijk . (3.96)

For neutron systems, being τi · τj = 1, the operator structure simplify in such
a way that Vijk can be recast as a sum of two-body terms only [33, 37]. We can
therefore handle also the TNI in the AFDMC propagator by means of the Hubbard-
Stratonovich transformation. Let analyze how each term of the above relation can
be conveniently rewritten for neutron systems.

• O2π,P
ijk term. The P -wave 2π exchange term (and also the 3π exchange one) of

Eq. (2.26) includes the OPE operator Xij , defined in Eq. (2.7). Xij involves
the σi ·σj and the Sij operators that can be decomposed via Eqs. (3.67) and
(3.68) in order to define a 3A× 3A matrix Xiα,jβ analogous to the A[σ]

iα,jβ of
Eq. (3.66), where v3(rij)→ Yπ(rij) and v5(rij)→ Tπ(rij). The OPE operator
can be thus expressed as

Xij = σiαXiα,jβ σjβ , (3.97)

where the matrix Xiα,jβ is real with zero diagonal and has the same sym-
metries of A[σ]

iα,jβ . The commutator over the τi operators vanishes, while the
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anticommutator gives simply a factor 2. Recalling that Xij = Xji we can
derive the following relation:

∑

i<j<k

O2π,P
ijk =

1

3!

∑

i 6=j 6=k

∑

cyclic

2
{
Xij , Xjk

}
,

= 2
∑

i 6=j 6=k
XikXkj ,

= 2
∑

i 6=j

∑

αβ

σiα

(∑

kγ

Xiα,kγ Xkγ,jβ

)
σjβ ,

= 2
∑

i 6=j

∑

αβ

σiαX
2
iα,jβ σjβ . (3.98)

• O2π,S
ijk term. In the S-wave TPE term the isospin operators do not contribute

and we are left with
∑

i<j<k

O2π,S
ijk =

1

3!

∑

i 6=j 6=k

∑

cyclic

Zπ(rij)Zπ(rjk)σi · r̂ij σk · r̂kj ,

=
1

2

∑

i 6=j

∑

αβ

σiα

[∑

k

Zπ(rik) r̂
α
ik Zπ(rjk) r̂

β
jk

]
σjβ ,

=
1

2

∑

i 6=j

∑

αβ

σiα Ziα,jβ σjβ . (3.99)

• O3π
ijk term. The 3π exchange term, even with the isospin reduction for neu-

trons, still keeps a very complicated operator structure. As reported in
Ref. [33], this factor can be conveniently written as a sum of a spin inde-
pendent and a spin dependent components

∑

i<j<k

O3π
ijk = V 3π

c + V 3π
σ , (3.100)

with

V 3π
c =

400

18

∑

i 6=j
X2
iα,jβ Xiα,jβ , (3.101)

V 3π
σ =

200

54

∑

i 6=j

∑

αβ

σiα

(∑

γδµν

X2
iγ,jµXiδ,jν εαγδ εβµν

)
σjβ ,

=
200

54

∑

i 6=j

∑

αβ

σiαWiα,jβ σjβ , (3.102)

where εαβγ is the full antisymmetric tensor.
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• ORijk term. The last spin independent term can be recast as a two body
operator as follows

∑

i<j<k

ORijk = GR0 +
1

2

∑

i

(
GRi
)2

, (3.103)

with

GR0 = −
∑

i<j

T 4
π (rij) , (3.104)

GRi =
∑

k 6=i
T 2
π (rik) . (3.105)

Finally, for neutron systems we can still write the spin dependent part of the
NN potential in the form of Eq. (3.65), with the inclusion of TNI contributions:

V SD
NN =

1

2

∑

i 6=j

∑

αβ

σiαA
[σ]
iα,jβ σjβ , (3.106)

where now

A
[σ]
iα,jβ −→ A

[σ]
iα,jβ + 2AP2πX

2
iα,jβ +

1

2
AS2π Ziα,jβ +

200

54
A3πWiα,jβ . (3.107)

The central term of the two-body potential of Eq. (3.64) keeps also contributions
from the TNI 3π exchange term and from the phenomenological term, and it reads
now:

V SI
NN −→ V SI

NN +A3πV
3π
c +AR

[
GR0 +

1

2

∑

i

(
GRi
)2
]
. (3.108)

3.2.4 Wave functions

In this section the trial wave functions used in AFDMC calculations for nu-
clear and hypernuclear systems will be presented, distinguishing between the case
of finite and infinite systems. Restoring the convention of Chapter 2, which is
commonly used in the literature for hypernuclear systems, A will refer to the total
number of baryons, NN nucleons plus NΛ lambda particles. Latin indices will be
used for the nucleons, Greek λ, µ and ν indices for the lambda particles. Finally,
the first letters of the Greek alphabet (α, β, γ, δ, . . .) used as indices will refer to
the Cartesian components of the operators.
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Non strange finite and infinite systems

As already sketched in § 3.2, the AFDMC wave function is written in the single
particle state representation. The trial wave function for nuclear systems, which
is used both as projection and importance function |ψI〉 ≡ |ψT 〉, is assumed of the
form [31, 38]

ψNT (RN , SN ) =
∏

i<j

fNNc (rij) ΦN (RN , SN ) , (3.109)

where RN = {r1, . . . , rNN } are the Cartesian coordinates and SN = {s1, . . . , sNN }
the spin-isospin coordinates, represented as complex 4- or 2-component vectors:

nucleons: si =




ai

bi

ci

di



i

= ai|p ↑〉i + bi|p ↓〉i + ci|n ↑〉i + di|n ↓〉i , (3.110)

neutrons: si =

(
ai

bi

)

i

= ai|n ↑〉i + bi|n ↓〉i , (3.111)

with {|p ↑〉, |p ↓〉, |n ↑〉, |n ↓〉} the proton-neutron-up-down basis.
The function fNNc (r) is a symmetric and spin independent Jastrow correlation

function, solution of the Schrödinger-like equation for fNNc (r < d)

− ~2

2µNN
∇2fNNc (r) + η vNNc (r)fNNc (r) = ξfNNc (r) , (3.112)

where vNNc (r) is the spin independent part of the two-bodyNN interaction, µNN =
mN/2 the reduced mass of the nucleon pair and η and the healing distance d are
variational parameters. For distances r ≥ d we impose fNNc (r) = 1. The role of
the Jastrow function is to include the short-range correlations in the trial wave
function. In the AFDMC algorithm the effect is simply a reduction of the overlap
between pairs of particles, with the reduction of the energy variance. Since there is
no change in the phase of the wave function, the fNNc function does not influence
the computed energy value in the long imaginary time projection.

The antisymmetric part ΦN (RN , SN ) of the trial wave function depends on
the system to be studied (finite or infinite). As already seen, it is generally built
starting from single particle states ϕNε (ri, si), where ε is the set of quantum num-
bers describing the state and ri, si the single particle nucleon coordinates. The
antisymmetry property is then realized by taking the Slater determinant of the ϕNε :

ΦN (RN , SN ) = A
[NN∏

i=1

ϕNε (ri, si)

]
= det

{
ϕNε (ri, si)

}
. (3.113)
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For nuclei and neutron drops [31] a good set of quantum number is given by
ε = {n, j,mj}. The single particle states are written as:

ϕNε (ri, si) = RNn,j(ri)
[
Y N
l,ml

(Ω)χNs,ms(si)
]
j,mj

, (3.114)

where RNn,j is a radial function, Y
N
l,ml

the spherical harmonics depending on the solid
angle Ω and χNs,ms the spinors in the proton-neutron-up-down basis. The angular
functions are coupled to the spinors using the Clebsh-Gordan coefficients to have
orbitals in the {n, j,mj} basis according to the usual shell model classification of
the nuclear single particle spectrum. For finite systems, in order to make the wave
function translationally invariant, the single particle orbitals have to be defined
with respect to the center of mass (CM) of the system. We have thus:

ϕNε (ri, si) −→ ϕNε (ri − rCM , si) with rCM =
1

NN

NN∑

i=1

ri . (3.115)

In order to deal with new shifted coordinates, we need to correct all the first and
second derivatives of trial wave function with respect to ri. The derivation of
such corrections is reported in Appendix A. The choice of the radial functions
RNn,j depends on the system studied and, typically, solutions of the self-consistent
Hartree-Fock problem with Skyrme interactions are adopted. For nuclei the Skyrme
effective interactions of Ref. [229] are commonly used. For neutron drops, the
Skyrme SKM force of Ref. [230] has been considered.

An additional aspect to take care when dealing with finite systems, is the
symmetry of the wave function. Because the AFDMC projects out the lowest
energy state not orthogonal to the starting trial wave function, it is possible to
study a state with given symmetry imposing to the trial wave function the total
angular momentum J experimentally observed. This can be achieved by taking a
sum over a different set of determinants

det
{
ϕNε (ri, si)

}
−→

[∑

κ

cκ detκ
{
ϕNεκ(ri, si)

}]

J,MJ

, (3.116)

where the cκ coefficients are determined in order to have the eigenstate of total
angular momentum J = j1 + . . .+ jNN .

For nuclear and neutron matter [38], the antisymmetric part of the wave func-
tion is given by the ground state of the Fermi gas, built from a set of plane waves.
The infinite uniform system at a given density is simulated with NN nucleons in a
cubic box of volume L3 replicated into the space by means of periodic boundary
conditions (PBC):

ϕNε (r1 + Lr̂, r2, . . . , si) = ϕNε (r1, r2, . . . , si) . (3.117)
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Working in a discrete space, the momentum vectors are quantized and can be
expressed as

kε =
2π

L
(nx, ny, nz)ε , (3.118)

where ε labels the quantum state and nx, ny and nz are integer numbers labelling
the momentum shell. The single particle states are then given by

ϕNε (ri, si) = e−ikε·ri χNs,ms(si) . (3.119)

In order to meet the requirement of homogeneity and isotropy, the shell struc-
ture of the system must be closed. The total number of Fermions in a particular
spin-isospin configuration that can be correctly simulated in a box corresponds to
the closure of one of the (nx, ny, nz)ε shells. The list of the first closure numbers is

Nc = 1, 7, 19, 27, 33, 57, 81, 93 . . . . (3.120)

Given a closure number NN
c , we can thus simulate an infinite system by means

of a periodic box with 2NN
c neutrons (up and down spin) or 4NN

c nucleons (up
and down spin and isospin). Although the use of PBC should reduce the finite-
size effects, in general there are still sizable errors in the kinetic energy arising
from shell effects in filling the plane wave orbitals, even at the closed shell filling
in momentum space. However, in the thermodynamical limit NN

c → ∞, exact
results should be obtained. For symmetric nuclear matter (SNM), 28, 76 and 108
nucleons have been used [35], resulting in comparable results for the energy per
particle at a given density. In the case of pure neutron matter (PNM), finite-size
effects are much more evident [38] and the thermodynamical limit is not reached
monotonically. Typically, PNM is simulated using 66 neutrons, which was found
to give the closest kinetic energy compared to the Fermi gas in the range of NN

c

corresponding to feasible computational times.
As reported in Ref. [231], twist-averaged boundary conditions (TABC) can be

imposed on the trial wave function to reduce the finite-size effects. One can allow
particles to pick up a phase θ when they wrap around the periodic boundaries:

ϕNε (r1 + Lr̂, r2, . . . , si) = eiθ ϕNε (r1, r2, . . . , si) . (3.121)

The boundary condition θ = 0 corresponds to the PBC, θ 6= 0 to the TABC. It
has been shown that if the twist phase is integrated over, the finite size effects are
substantially reduced. TABC has been used in PNM calculations [38], showing a
small discrepancy in the energy per particle for 38, 45, 66 and 80 neutrons at fixed
density. A remarkable result is that the PNM energy for 66 neutrons using PBC is
very close to the extrapolated result obtained employing the TABC, validating then
the standard AFDMC calculation for 66 particles. Compare to PBC, employing
the TABC results in a more computational time and they have not been used in
this work.
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Strange finite and infinite systems

The Λ hyperon, having isospin zero, does not participate to the isospin doublet
of nucleons. Referring to hypernuclear systems, we can therefore treat the addi-
tional strange baryons as distinguishable particles writing a trial wave function of
the form

ψT (R,S) =
∏

λi

fΛN
c (rλi)ψ

N
T (RN , SN )ψΛ

T (RΛ, SΛ) , (3.122)

where R = {r1, . . . , rNN , r1, . . . , rNΛ
} and S = {s1, . . . , sNN , s1, . . . , sNΛ

} refer to
the coordinates of all the baryons and ψNT (RN , SN ) is the nucleon single parti-
cle wave function of Eq. (3.109). ψΛ

T (RΛ, SΛ) is the lambda single particle wave
function that takes the same structure of the nucleon one:

ψΛ
T (RΛ, SΛ) =

∏

λ<µ

fΛΛ
c (rλµ) ΦΛ(RΛ, SΛ) , (3.123)

with

ΦΛ(RΛ, SΛ) = A
[ NΛ∏

λ=1

ϕΛ
ε (rλ, sλ)

]
= det

{
ϕΛ
ε (rλ, sλ)

}
. (3.124)

RΛ = {r1, . . . , rNΛ
} are the hyperon Cartesian coordinates and SΛ = {s1, . . . , sNΛ

}
the hyperon spin coordinates, represented by the 2-dimension spinor in the lambda-
up-down basis:

sλ =

(
uλ

vλ

)

λ

= uλ|Λ ↑〉λ + vλ|Λ ↓〉λ . (3.125)

The ΛΛ Jastrow correlation function fΛΛ
c (r) is calculated by means of Eq. (3.112)

for the hyperon-hyperon pair using the central channel of the ΛΛ potential of
Eq. (2.48). Eq. (3.112) is also used to calculate the hyperon-nucleon correlation
function fΛN

c (r) of the hypernuclear wave function (3.122) by considering the pure
central term of the ΛN potential of Eq. (2.35) and using the reduced mass

µΛN =
mΛmN

mΛ +mN
. (3.126)

For Λ hypernuclei (and Λ neutron drops) the hyperon single particle states take
the same structure as the nuclear case, and they read:

ϕΛ
ε (rλ, sλ) = RΛ

n,j(rλ)
[
Y Λ
l,ml

(Ω)χΛ
s,ms(sλ)

]
j,mj

. (3.127)

Although the AFDMC code for hypernuclei is set up for an arbitrary number of
hyperons, we focused on single and double Λ hypernuclei. Having just two hyperons
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to deal with, only one radial function RΛ
n,j is needed. Being the mass difference

between the neutron and the Λ particle small, we used the neutron 1s1/2 radial
function also for the hyperon.

Dealing with finite systems, the coordinates of all the baryons must be related
to the CM, that now is given by the coordinates of particles with different mass.
Nucleon and hyperon single particle orbitals are thus defined as:

ϕNε (ri, si) −→ ϕNε (ri − rCM , si)

ϕΛ
ε (rλ, sλ) −→ ϕΛ

ε (rλ − rCM , sλ)
(3.128)

where

rCM =
1

M

(
mN

NN∑

i=1

ri +mΛ

NΛ∑

λ=1

rλ

)
with M = NN mN +NΛmΛ . (3.129)

As in the nuclear case, the use of relative coordinates introduces corrections in
the calculation of the derivatives of the trial wave function. For hypernuclei such
corrections, and in general the evaluation of derivatives, are more complicated than
for nuclei. This is because we have to deal with two set of spacial coordinates (RN
and RΛ) and the Jastrow function fΛN

c depends on both. The derivatives of the
trial wave function including CM corrections are reported in Appendix A.

For Λ neutron (nuclear) matter the antisymmetric part of the hyperon wave
function is given by the ground state of the Fermi gas, as for nucleons. We are thus
dealing with two Slater determinants of plane waves with kε vectors quantized in
the same L3 box (see Eq. (3.118)). The dimension of the simulation box, and thus
the quantization of the kε vectors, is given by the total numeric baryon density

ρb =
Nb
L3

=
NN +NΛ

L3
= ρN + ρΛ , (3.130)

and the number of nucleons and lambda particles. The hyperon single particle
states correspond then to

ϕΛ
ε (rλ, sλ) = e−ikε·rλ χΛ

s,ms(sλ) , (3.131)

where the kε structure derived from ρb is used also for the the nuclear part. The
requirements of homogeneity and isotropy discussed in the previous section still
apply and so the lambda plane waves have to close their own momentum shell
structure. Given the list of closure numbers (3.120), we can add 2NΛ

c hyperons
(up and down spin) to the 2NN

c neutrons or 4NN
c nucleons in the periodic box.

The wave functions described so far are appropriate only if we consider nucleons
and hyperons as distinct particles. In this way, it is not possible to include the ΛN
exchange term of Eq. (2.35) directly in the propagator, because it mixes hyperon
and nucleon states. The complete treatment of this factor would require a dras-
tic change in the AFDMC code and/or a different kind of nuclear-hypernuclear
interactions, as briefly discussed in Appendix B. A perturbative analysis of the
v0(rλi) εPx term is however possible and it is reported in the next section.
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3.2.5 Propagator for hypernuclear systems

Consider a many-body system composed by nucleons and hyperons, interacting
via the full Hamiltonian (2.1) and described by the trial wave function (3.122).
Suppose to switch off all the spin-isospin interactions in all the channels and keep
only the central terms:

H = TN + TΛ + V c
NN + V c

ΛΛ + V c
ΛN , (3.132)

where also the central contributions from the three-body interactions are included.
Neglecting the spin-isospin structure of the trial wave function we can follow the
idea of the standard DMC described in § 3.1 and write the analog of Eq. (3.18):

ψ(RN , RΛ, τ + dτ) '
∫
dR′N dR

′
Λ〈RN , RΛ| e−(V cNN+V cΛΛ+V cΛN) dτ2 e−TNdτ e−TΛdτ ×

× e−(V cNN+V cΛΛ+V cΛN) dτ2 eET dτ |R′N , R′Λ〉ψ(R′N , R
′
Λ, τ) ,

'
∫
dR′N dR

′
Λ 〈RN | e−TNdτ |R′N 〉︸ ︷︷ ︸

GN0 (RN ,R
′
N ,dτ)

〈RΛ| e−TΛdτ |R′Λ〉︸ ︷︷ ︸
GΛ

0 (RΛ,R
′
Λ,dτ)

×

× e−(Ṽ cNN (RN ,R
′
N )+Ṽ cΛΛ(RΛ,R

′
Λ)+Ṽ cΛN (RN ,RΛ,R

′
N ,R

′
Λ)−ET )dτ

︸ ︷︷ ︸
GV (RN ,RΛ,R

′
N ,R

′
Λ,dτ)

ψ(R′N , R
′
Λ, τ) ,

'
(

1

4πDNdτ

) 3NN
2
(

1

4πDΛdτ

) 3NΛ
2
∫
dR′N dR

′
Λ e
− (RN−R

′
N )2

4DNdτ e
− (RΛ−R

′
Λ)2

4DΛdτ ×

× e−(Ṽ cNN (RN ,R
′
N )+Ṽ cΛΛ(RΛ,R

′
Λ)+Ṽ cΛN (RN ,RΛ,R

′
N ,R

′
Λ)−ET )dτ ψ(R′N , R

′
Λ, τ) , (3.133)

where

Ṽ c
NN (RN , R

′
N ) =

1

2

[
V c
NN (RN ) + V c

NN (R′N )
]
,

Ṽ c
ΛΛ(RΛ, R

′
Λ) =

1

2

[
V c

ΛΛ(RΛ) + V c
ΛΛ(R′Λ)

]
, (3.134)

Ṽ c
ΛN (RN , RΛ, R

′
N , R

′
Λ) =

1

2

[
V c

ΛN (RN , RΛ) + V c
ΛN (R′N , R

′
Λ)
]
,

and DN = ~2/2mN and DΛ = ~2/2mΛ are the diffusion constants of the Brownian
motion of nucleons and lambda particles.

The evolution in imaginary time is thus performed in the same way of the
standard DMC algorithm. A set of walkers, which now contains nucleon and hy-
peron coordinates, is diffused according to GN0 (RN , R

′
N , dτ) and GΛ

0 (RΛ, R
′
Λ, dτ).

A weight ωi = GV (RN , RΛ, R
′
N , R

′
Λ, dτ) is assigned to each waker and it is used
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for the estimator contributions and the branching process. We can also apply the
importance function technique, the result of which is the inclusion of a drift term in
the diffusion of each type of baryon and the use of the local energy for the branch-
ing weight. The drift velocities take the same form of Eq. (3.32), but now the
derivatives are calculated with respect to nucleon or hyperon coordinates, includ-
ing all the possible CM (for finite systems) and Jastrow corrections, as reported in
Appendix A.

Reintroduce now the spin-isospin structure in the wave function and consider
then the spin-isospin dependent interactions. For the nuclear part, we can still deal
with AV6 like potentials for nucleon systems by means of the Hubbard-Stratonovich
transformation, as discussed in § 3.2.1. In the case of pure neutron systems, we
can also include spin-orbit and three-body contributions as reported in § 3.2.2 and
§ 3.2.3. In the next we will discuss how to deal with the spin-isospin dependent
part of the hypernuclear potentials, in both two- and three-body channels.

Two-body terms

Consider the full two-body ΛN interaction described in the previous chapter:

VΛN =
∑

λi

(
vλi + vCSBλi

)
,

=
∑

λi

v0(rλi)(1− ε) +
∑

λi

v0(rλi) εPx +
∑

λi

1

4
vσT

2
π (rλi)σλ · σi

+
∑

λi

Cτ T
2
π (rλi) τ

z
i ,

=
∑

λi

v0(rλi)(1− ε) +
∑

λi

B
[Px]
λi Px +

∑

λi

∑

α

σλαB
[σ]
λi σiα +

∑

i

B
[τ ]
i τ zi ,

(3.135)

where

B
[Px]
λi = v0(rλi) ε B

[σ]
λi =

1

4
vσT

2
π (rλi) B

[τ ]
i =

∑

λ

Cτ T
2
π (rλi) . (3.136)

The first term of Eq. (3.135) is simply a spin independent factor and can be included
in the V c

ΛN contribution of Eq. (3.133). The remaining terms involve operators
acting on nucleons and hyperons and need to be discussed separately.

• σλ · σi term. The quadratic spin-spin term of the ΛN interaction is written
in same form of the nucleon-nucleon one of Eq. (3.65). However, in general
the matrix B

[σ]
λi is not a square matrix (dimB

[σ]
λi = NΛ × NN ) and so we

can not follow the derivation of § 3.2.1. Recalling that we are working with
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single particle wave functions and that each spin-isospin operator is the rep-
resentation in the A-body tensor product space of a one-body operator as in
Eq. (3.62), we can write

∑

α

σλα ⊗ σiα =
1

2

∑

α

[
(σλα ⊕ σiα)2 − (σλα ⊗ Iiα)2 − (Iλα ⊗ σiα)2

]
. (3.137)

The square of the Pauli matrices of the last two terms gives the identity with
respect to the single particle state λ or i, so that they can be simply written
as a spin independent contribution

∑

α

σλα ⊗ σiα = −3 +
1

2

∑

α

(
O[σΛN ]
λi,α

)2
, (3.138)

where we have defined a new spin-spin operator

O[σΛN ]
λi,α = σλα ⊕ σiα . (3.139)

We can now write the the σλ · σi term as follows

V σσ
ΛN =

∑

λi

∑

α

σλαB
[σ]
λi σiα ,

= −3
∑

λi

B
[σ]
λi +

1

2

∑

λi

∑

α

B
[σ]
λi

(
O[σΛN ]
λi,α

)2
(3.140)

The first term is a central factor that can be included in V c
ΛN . The second

term is written in the same way of the spin-isospin dependent part of the
nuclear interaction of Eq. (3.74). With a little abuse of notation n = {λ, i} =
1, . . . ,NN NΛ, the spin dependent part of the propagator for the σλ·σi takes a
suitable form for the application of the Hubbard-Stratonovich transformation:

e−
∑
λi

∑
α σλαB

[σ]
λi σiα dτ = e

−3
∑
nB

[σ]
n − 1

2

∑
nαB

[σ]
n

(
O[σΛN ]
n,α

)2
dτ
,

= e−V
c [σ]
ΛN

∏

nα

e
− 1

2
B

[σ]
n

(
O[σΛN ]
nα

)2
dτ

+ o
(
dτ2
)
,

' e−V
c [σ]
ΛN

∏

nα

1√
2π

∫
dxnα e

−x2
nα
2

+
√
−B[σ]

n dτ xnαO[σΛN ]
nα .

(3.141)

Recalling Eq. (3.77), we can write the hyperon spin dependent part of the
AFDMC propagator for hypernuclear systems as

〈SNSΛ|
3NNNΛ∏

nα=1

1√
2π

∫
dxnα e

−x2
nα
2

+
√
−B[σ]

n dτ xnαO[σΛN ]
nα |S′NS′Λ〉 . (3.142)
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By the definition of Eq. (3.139), it comes out that the action of the operator
O[σΛN ]
nα on the spinor |S′N , S′Λ〉 factorizes in a σiα rotation for the nucleon

spinor |SN 〉 and a σλα rotation for the Λ spinor |SΛ〉, coupled by the same

coefficient
√
−B[σ]

n dτ xnα.

• τ zi term. As already seen in § 3.2, the single particle wave function is closed
with respect to the application of a propagator containing linear spin-isospin
operators. The action of the CSB potential corresponds to the propagator

e−
∑
iB

[τ ]
i τzi dτ =

∏

i

e−B
[τ ]
i τzi dτ + o

(
dτ2
)
, (3.143)

that, acting on the trial wave function, simply produces a rotation of the nu-
cleon spinors, as in Eq. (3.78). Being the CSB term already linear in τ zi , there
is no need for Hubbard-Stratonovich transformation. The τ zi rotations can be
applied after the integration over auxiliary fields on the spinors modified by
the Hubbard-Stratonovich rotations. In the ψI ratio AFDMC algorithm (v1 )
there are no additional terms in the weight coming from the CSB rotations.
If we use the local energy version of the algorithm (v2 ), we need to subtract
the CSB contribution to EL(R) (Eq. (3.34)) because there are no counter
terms coming from the importance sampling on auxiliary fields. Note that in
neutron systems, τ zi gives simply a factor −1, so the CSB becomes a positive
central contribution (Cτ < 0) to be added in V c

ΛN .

• Px term. As discussed in § 3.2.4, the structure of our trial wave function
for hypernuclear systems prevents the straightforward inclusion of the ΛN
space exchange operator in the AFDMC propagator. We can try to treat
this contribution perturbatively: Px is not included in the propagator but its
effect is calculated as a standard estimator on the propagated wave function.
The action of Px is to exchange the position of one nucleon and one hyperon,
modifying thus the CM of the whole system due to the mass difference be-
tween the baryons. To compute this potential contribution we have thus to
sum over all the hyperon-nucleon pairs. For each exchanged pair, all the
positions are referred to the new CM and the wave function is evaluated and
accumulated. Then, particles are moved back to the original positions and a
new pair is processed. At the end of the sum the contribution

∑
λi Px ψ is

obtained. As reported in Refs. [188, 189, 191, 195], the ΛN space exchange
operator induces strong correlations and thus a perturbative approach might
not be appropriate. A possible non perturbative extension of the AFDMC
code for the space exchange operator is outlined in Appendix B.
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In the two body hypernuclear sector a ΛΛ interaction is also employed, as
reported in § 2.2.3. The potential described in Eq. (2.48) can be recast as

VΛΛ =
∑

λ<µ

3∑

k=1

(
v

(k)
0 + v(k)

σ σλ · σµ
)

e−µ
(k)r2

λµ ,

=
∑

λ<µ

3∑

k=1

v
(k)
0 e−µ

(k)r2
λµ +

1

2

∑

λ 6=µ

∑

α

σλαC
[σ]
λµ σµα , (3.144)

where

C
[σ]
λµ =

3∑

k=1

v(k)
σ e−µ

(k)r2
λµ . (3.145)

The first term of VΛΛ is a pure central factor to be included in V c
ΛΛ, while the

second part has exactly the same form of the isospin component of Eq. (3.65). We
can thus diagonalize the C matrix and define a new operator O[σΛ]

n,α starting from
the eigenvectors ψ[σΛ]

n,λ :

O[σΛ]
n,α =

∑

λ

σλα ψ
[σΛ]
n,λ . (3.146)

In this way, the spin dependent part of the hyperon-hyperon interaction becomes

V SD
ΛΛ =

1

2

NΛ∑

n=1

3∑

α=1

λ[σΛ]
n

(
O[σΛ]
nα

)2
, (3.147)

and we can apply the Hubbard-Stratonovich transformation to linearize the square
dependence of O[σΛ]

nα introducing the integration over 3NΛ new auxiliary fields and
the relative |S′Λ〉 rotations.

At the end, using the diagonalization of the potential matrices and the deriva-
tion reported in this section, the spin-isospin dependent part of the nuclear and
hypernuclear two-body potentials (but spin-orbit term for simplicity) reads:

V SD
NN + V SD

ΛN =
1

2

3NN∑

n=1

λ[σ]
n

(
O[σ]
n

)2
+

1

2

3NN∑

n=1

3∑

α=1

λ[στ ]
n

(
O[στ ]
nα

)2
+

1

2

NN∑

n=1

3∑

α=1

λ[τ ]
n

(
O[τ ]
nα

)2

+
1

2

NΛ∑

n=1

3∑

α=1

λ[σΛ]
n

(
O[σΛ]
nα

)2
+

1

2

NNNΛ∑

n=1

3∑

α=1

B[σ]
n

(
O[σΛN ]
nα

)2
+

NN∑

i=1

B
[τ ]
i τ zi .

(3.148)
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Using a compact notation, the AFDMC propagator for hypernuclear systems of
Eq. (3.133) with the inclusion of spin-isospin degrees of freedom becomes:

G(R,S,R′, S′, dτ) = 〈R,S| e−(TN+TΛ+VNN+VΛΛ+VΛN−ET )dτ |R′, S′〉 ,

'
(

1

4πDNdτ

) 3NN
2
(

1

4πDΛdτ

) 3NΛ
2

e
− (RN−R

′
N )2

4DNdτ e
− (RΛ−R

′
Λ)2

4DΛdτ ×

× e−(Ṽ cNN (RN ,R
′
N )+Ṽ cΛΛ(RΛ,R

′
Λ)+Ṽ cΛN (RN ,RΛ,R

′
N ,R

′
Λ)−ET )dτ

× 〈SN , SΛ|
NN∏

i=1

e−B
[τ ]
i τzi dτ

M∏

n=1

1√
2π

∫
dxn e

−x2
n

2
+
√
−λndτ xnOn |S′N , S′Λ〉 , (3.149)

where |R,S〉 ≡ |RN , RΛ, SN , SΛ〉 is the state containing all the coordinates of the
baryons and Ṽ c

NN , Ṽ
c

ΛΛ and Ṽ c
ΛN defined in Eqs. (3.134) contain all the possible

central factors. Formally,M = 15NN +3NΛ +3NNNΛ and On stays for the vari-
ous operators of Eq. (3.148), which have a different action on the spinors |S′N , S′Λ〉.
The O[σ]

n , O[στ ]
nα and O[τ ]

nα act on the nucleon spinor |S′N 〉. The O[σΛ]
nα rotates the

lambda spinor |S′Λ〉. O
[σΛN ]
nα acts on both baryon spinors with a separate rotation

for nucleons and hyperons coupled by the same coefficient (−B[σ]
n dτ)1/2 xn (recall

Eq. (3.139)). The algorithm follows then the nuclear version (§ 3.2.1) with the sam-
pling of the nucleon and hyperon coordinates and of the auxiliary fields, one for
each linearized operator. The application of the propagator of Eq. (3.149) has the
effect to rotate the spinors of the baryons. The weight for each walker is then cal-
culate starting from the central part of the interaction with possible counter terms
coming from the importance sampling on spacial coordinates and on auxiliary fields
(algorithm v1 ), or by means of the local energy (algorithm v2 ). Fixed phase ap-
proximation, branching process and expectation values are the same discussed in
§ 3.1.

Three-body terms

We have already shown in § 3.2.3 that for neutron systems the three-body
nucleon force can be recast as a sum of two-body terms only. In the case of the
three-body ΛNN interaction it is possible to verify that the same reduction applies
both for nucleon and neutron systems. Let consider the full potential of Eqs. (2.43)
and (2.47)

VΛNN =
∑

λ,i<j

(
v2π,P
λij + v2π,S

λij + vDλij

)
, (3.150)

and assume the notations:

Tλi = Tπ(rλi) Yλi = Yπ(rλi) Qλi = Yλi − Tλi . (3.151)
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By expanding the operators over the Cartesian components as done in Eqs. (3.67)
and (3.68), it is possible to derive the following relations:

V 2π,S
ΛNN =

1

2

∑

i 6=j

∑

αβγ

τiγ σiα

(
−CP

3

∑

λ

∑

δ

Θαδ
λi Θβδ

λj

)
σjβ τjγ , (3.152)

V 2π,P
ΛNN =

1

2

∑

i 6=j

∑

αβγ

τiγ σiα Ξiα,jβ σjβ τjγ , (3.153)

V D
ΛNN = WD

∑

λ,i<j

T 2
λi T

2
λj +

1

2

∑

λi

∑

α

σλαD
[σ]
λi σiα , (3.154)

where

Θαβ
λi = Qλi δ

αβ + 3Tλir̂
α
λi r̂

β
λi , (3.155)

Ξiα,jβ =
1

9
CS µ

2
π

∑

λ

QiλQλj |riλ||rjλ| r̂αiλ r̂βjλ , (3.156)

D
[σ]
λi =

1

3
WD

∑

j,j 6=i
T 2
λi T

2
λj . (3.157)

By combining then Eq. (3.155) and Eq. (3.156), the TPE term of the three-body
hyperon-nucleon interaction can be recast as:

V 2π
ΛNN =

1

2

∑

i 6=j

∑

αβγ

τiγ σiαD
[στ ]
iα,jβ σjβ τjγ , (3.158)

where

D
[στ ]
iα,jβ =

∑

λ

{
− 1

3
CPQλiQλjδαβ − CPQλiTλj r̂ αjλ r̂ βjλ − CPQλjTλi r̂ αiλ r̂
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−3CPTλiTλj
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)
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9
CSµ
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r̂ αiλ r̂

β
jλ

}
.

(3.159)

Finally, the ΛNN interaction takes the following form:

VΛNN = WD

∑

λ,i<j

T 2
λi T

2
λj +

1

2

∑

λi

∑

α

σλαD
[σ]
λi σiα

+
1

2

∑

i 6=j

∑

αβγ

τiγ σiαD
[στ ]
iα,jβ σjβ τjγ . (3.160)

The first term is a pure central factor that can be included in V c
ΛN . The second

factor is analogous to the σλ · σi term (3.135) of the two body hyperon-nucleon
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interaction. The last term acts only on the spin-isospin of the two nucleons i and
j and has the same structure of the nuclear σ · τ contribution described by the
matrix A

[στ ]
iα,jβ . The three-body hyperon-nucleon interaction is then written as a

sum of two-body operators only, of the same form of the ones already discussed for
the NN and ΛN potentials. We can therefore include also these contributions in
the AFDMC propagator of Eq. (3.149) by simply redefining the following matrices:

B
[σ]
λi −→ B

[σ]
λi +D

[σ]
λi , (3.161)

A
[στ ]
iα,jβ −→ A

[στ ]
iα,jβ +D

[στ ]
iα,jβ . (3.162)

The algorithm follows then the steps already discussed in the previous section.
Note that in the case of pure neutron systems, the last term of Eq. (3.160) simply
reduces to a σi · σj contribution that is included in the propagator by redefining
the nuclear matrix A[σ]

iα,jβ .
With the AFDMC method extended to the hypernuclear sector, we can study

finite and infinite lambda-nucleon and lambda-neutron systems. In the first case
we can treat Hamiltonians that include the full hyperon-nucleon, hyperon-nucleon-
nucleon and hyperon-hyperon interaction of Chapter 2, but we are limited to the
Argonne V6 like potentials for the nuclear sector. However it has been shown that
this approach gives good results for finite nuclei [31] and nuclear matter [35, 36]. In
the latter case, instead, we can also add the nucleon spin-orbit contribution, so AV8
like potentials, and the three-neutron force. The neutron version of the AFDMC
code has been extensively and successfully applied to study the energy differences
of oxygen [30] and calcium [32] isotopes, the properties of neutron drops [20, 33, 34]
and the properties of neutron matter in connection with astrophysical observ-
ables [37–40]. Very recently, the AFDMC algorithm has been also used to perform
calculations for neutron matter using chiral effective field theory interactions [132].



Chapter 4

Results: finite systems

This chapter reports on the analysis of finite systems, nuclei and hypernuclei.
For single Λ hypernuclei a direct comparison of energy calculations with experi-
mental results is given for the Λ separation energy, defined as:

BΛ

(
A
ΛZ
)

= E
(
A−1Z

)
− E

(
A
ΛZ
)
, (4.1)

where, using the notation of the previous chapters, AΛZ refers to the hypernucleus
and A−1Z to the corresponding nucleus. E is the binding energy of the system, i.e.
the expectation value of the Hamiltonian on the ground state wave function

E(κ) =
〈ψ0,κ|Hκ|ψ0,κ〉
〈ψ0,κ|ψ0,κ〉

, κ = nuc, hyp , (4.2)

that we can compute by means of the AFDMC method. In the case of double
Λ hypernuclei, the interesting experimental observables we can have access are the
double Λ separation energy

BΛΛ

(
A

ΛΛZ
)

= E
(
A−2Z

)
− E

(
A

ΛΛZ
)
, (4.3)

and the incremental ΛΛ energy

∆BΛΛ

(
A

ΛΛZ
)

= BΛΛ

(
A

ΛΛZ
)
− 2BΛ

(
A−1

ΛZ
)
. (4.4)

The calculation of these quantities proceeds thus with the computation of the bind-
ing energies for both strange and non strange systems. Moreover it is interesting to
compare other observables among the systems with strangeness 0, −1 and −2, such
as the single particle densities. By looking at the densities in the original nucleus
and in the one modified by the addition of the lambda particles, information about
the hyperon-nucleon interaction can be deduced.

As reported in Ref. [31], the ground state energies of 4He, 8He, 16O and 40Ca
have been computed using the AV6’ potential (§ 2.1.1). Due to the limitations in

69
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the potential used, the results cannot reproduce the experimental energies and all
the nuclei result less bound than expected. However, given the same simplified
interaction, the published AFDMC energies are close to the GFMC results, where
available. AFDMC has also been used to compute the energy differences between
oxygen [30] and calcium [32] isotopes, by studying the external neutrons with
respect to a nuclear core obtained from Hartree-Fock calculations using Skyrme
forces. In this case the results are close to the experimental ones.

The idea behind the AFDMC analysis of Λ hypernuclei follows in some sense the
one assumed in the study of oxygen and calcium isotopes by the analysis of energy
differences. The two-body nucleon interaction employed is limited to the first six
operators of AV18. However, if we use the same potential for the nucleus and the
core of the corresponding hypernucleus, and take the difference between the binding
energies of the two systems, the uncertainties in the NN interaction largely cancel
out. We shall see that this assumption, already used in other works [148, 181],
is indeed consistent with our results, thereby confirming that the specific choice
of the nucleon Hamiltonian does not significantly affect the results on BΛ. On
the grounds of this observation, we can focus on the interaction between hyperons
and nucleons, performing QMC simulations with microscopic interactions in a wide
mass range.

4.1 Nuclei

Let us start with the AFDMC study of finite nuclei. In the previous chapter,
we have seen that two versions of the AFDMC algorithm, that should give the
same results, are available (v1 and v2 ). Before including the strange degrees of
freedom, we decided to test the stability and accuracy of the two algorithms, within
the fixed phase approximation, by performing some test simulations on 4He. The
result of −27.13(10) MeV for the AV6’ potential reported in Ref. [31], was obtained
employing the algorithm v2 using single particle Skyrme orbitals and a particular
choice of the parameters for the solution of the Jastrow correlation equation (see
§ 3.2.4). In order to check the AFDMC projection process, we tried to modify the
starting trial wave function:

• we changed the healing distance d and the quencher parameter η for the
Jastrow function fNNc ;

• we used a different set of radial functions, labelled as HF-B1 [232], coming
from Hartree-Fock calculations for the effective interaction B1 of Ref. [233].
The B1 is a phenomenological two-body nucleon-nucleon potential fitted in
order to reproduce the binding energies and densities of various light nuclei
and of nuclear matter in the HF approximation.

Although a central correlation function should not affect the computed energy
value, in the version v2 of the algorithm an unpleasant dependence on fNNc was



4.1. Nuclei 71

found, and in particular as a function of the quencher parameter η. This depen-
dence is active for both the AV4’ and the AV6’ potentials, regardless of the choice
of the single particle orbitals. The time step extrapolation (dτ → 0) of the energy
does not solve the issue. Energy differences are still more than 1 MeV among dif-
ferent setups for the trial wave function. By varying the parameter η from zero (no
Jastrow at all) to one (full central channel of the NN potential used for the solution
of Eq. (3.112)), the energies increase almost linearly. For example, in the case of
AV4’ for the Skyrme orbital functions, the energy of 4He goes from −31.3(2) MeV
for η = 0, to −27.2(2) MeV for η = 1. Same effect is found for the HF-B1 orbitals
with energies going from −32.5(2) MeV to −28.4(2) MeV. The inclusion of the pure
central Jastrow introduces thus strong biases in the evaluation of the total energy.
Moreover, there is also a dependence on the choice of the single particle orbitals, as
shown from the results for AV4’. Same conclusions follow for the AV6’ potential.

On the grounds of these observations we moved from the AFDMC local energy
scheme to the importance function ratio scheme (version v1 ), with no importance
sampling on auxiliary fields. In this case the bias introduced by the Jastrow correla-
tion function is still present but reduced to 0.3÷0.4 MeV for AV4’ and 0.1÷0.2 MeV
for AV6’. In spite of the improvement with respect to the previous case, we decided
to remove this source of uncertainty from the trial wave function and proceed with
the test of the v1 algorithm with no Jastrow. It has to be mentioned that a new
sampling procedure, for both coordinates and auxiliary fields, capable to reduce
the dependence on central correlations is being studied.

As shown in Figs. 4.1 and 4.2, the v1 extrapolated energies obtained using
different single particle orbitals are consistent within the Monte Carlo statistical
errors, both for the AV4’ and the AV6’ potentials. ForNN = 4 we can compare the
AFDMC results with the GFMC ones. In our calculations the Coulomb interaction
is not included. A precise VMC estimate, that should be representative also for the
GFMC estimate, of the Coulomb expectation value for 4He is 0.785(2) MeV [234].
The AFDMC values of −32.67(8) MeV (Skyrme) and −32.7(1) MeV (HF-B1) for
4He with AV4’ are thus very close to the GFMC −32.11(2) MeV of Ref. [198] for
the same potential once the Coulomb contribution is subtracted. Our results are
still ∼ 0.1 ÷ 0.2 MeV above the GFMC one, most likely due to the removal of
the sign problem constraint applied at the end of the GFMC runs (release node
procedure [235]).

Although AFDMC and GFMC energies for 4He described by the AV4’ potential
are consistent, a clear problem appears using the AV6’ interaction (Fig. 4.2). With
the two sets of radial functions, the energies are −19.59(8) MeV (Skyrme) and
−19.53(13) MeV (HF-B1) and thus the AFDMC actually projects out the same
ground state. However, the GFMC estimate is −26.15(2) MeV minus the Coulomb
contribution. This large difference in the energies cannot be attributed to the
GFMC release node procedure. The difference in using AV4’ and AV6’ is the
inclusion of the tensor term Sij of Eq. (2.8). The Hamiltonian moves then from
real to complex and this might result in a phase problem during the imaginary time
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E 
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]

do [10-5  MeV-1]
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AFDMC: Skyrme 

AFDMC: HF-B1 
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Figure 4.1: Binding energy of 4He as a function of the Monte Carlo imaginary
time step. Results are obtained using the AV4’ NN potential. Red dots are the
AFDMC results for the Skyrme radial orbitals. Blue triangles the ones for the
HF-B1 orbitals. For comparison, the GFMC result of Ref. [198], corrected by the
Coulomb contribution (see text for details), is reported with the green band.

propagation. There might be some issues with the fixed phase approximation or
with the too poor trial wave function (or both), which does not include operatorial
correlations. This is still an unsolved question but many ideas are being tested.
According to the lack of control on the AFDMC simulations for the AV6’ potential,
from now on we will limit the study to AV4’. As we shall see, this choice does not
affect the result on energy differences as the hyperon separation energy, which is
the main observable of this study for finite systems.

In order to complete the check of the accuracy of the algorithm v1 for 4He,
we performed simulations using the Minnesota potential of Ref. [236]. This two-
nucleon interaction has the same operator structure of AV4’ but much softer cores.
Our AFDMC result for the energy is −30.69(7) MeV. It has to be compared with
the −29.937 MeV (−30.722 MeV with the Coulomb subtraction) obtained with the
Stochastic Variational Method (SVM) [237], that has been proven to give consistent
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]

do [10-5  MeV-1]

GFMC:
-26.93(3)
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Figure 4.2: Binding energy of 4He as a function of the Monte Carlo imaginary time
step. Results are obtained using the AV6’ NN potential. As in Fig. 4.1, red dots
refers to the AFDMC results for the Skyrme radial functions and blue triangles for
the HF-B1 orbitals. The green arrow points to the GFMC result.

results with the GFMC algorithm for 4He [21]. The agreement of the results is
remarkable.

Moreover, we tested the consistency of the v1 algorithm for the AV4’ potential
by studying the deuteron, tritium and oxygen nuclei.

• The AFDMC binding energy for 2H is −2.22(5) MeV, in agreement with the
experimental −2.225 MeV. The result is significant because, although the
Argonne V4’ was exactly fitted in order to reproduce the deuteron energy,
our starting trial wave function is just a Slater determinant of single particle
orbitals, with no correlations.

• The result for 3H is −8.74(4) MeV, close to the GFMC −8.99(1) MeV of
Ref. [198]. As for 4He, the small difference in the energies is probably due
to the release node procedure in GFMC. Without the Coulomb contribution,
we obtained the same energy −8.75(4) MeV also for 3He. In AV4’ there are
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no charge symmetry breaking terms. Therefore, this result can be seen as a
consistency test on the correct treatment of the spin-isospin operators acting
on the wave function during the Hubbard-Stratonovich rotations.

• For 16O we found the energy values of −176.8(5) MeV for the Skyrme orbitals
and −174.3(8) MeV for the HF-B1 radial functions. The energy difference is
of order 1% even for a medium mass nucleus. The projection mechanism is
working accurately regardless the starting trial function. GFMC results are
limited to 12 nucleons [17–19], so we cannot compare the two methods for
NN = 16. The binding energy cannot be compared with the experimental
data due to the poor employed Hamiltonian. However the AFDMC results
are consistent with the overbinding predicted by the available GFMC energies
for AV4’ [198] and the nucleus results stable under alpha particle break down,
as expected.

On the grounds of the results of these consistency checks, in the present work we
adopt the version v1 of the AFDMC algorithm employing the nuclear potential
AV4’ for both nuclei and hypernuclei.

As reported in Tab. 4.1, the resulting absolute binding energies using AV4’ are
not comparable with experimental ones, as expected, due to the lack of information
about the nucleon interaction in the Hamiltonian. With the increase of the number
of particles, the simulated nuclei become more an more bound until the limit case of
90Zr, for which the estimated binding energy is almost twice the experimental one.
Looking at the results for helium isotopes, we can see that for NN = 3 and 4 the
energies are compatible with GFMC calculations, once the Coulomb contribution is
removed. For 5He and 6He instead, we obtained discrepancies between the results
for the two methods. However this is an expected result. When moving to open
shell systems, as 5He and 6He with one or two neutrons out of the first s shell,
the structure of the wave function becomes more complicated and results are more
dependent on the employed ψT . For example, in the case of 6He, in order to have
total angular momentum zero, the two external neutrons can occupy the 1p3/2 or
the 1p1/2 orbitals of the nuclear shell model classification. By using just one of
the two p shells, one gets the unphysical result E(5He) < E(6He). The reported
binding energy has been instead obtained by considering the linear combination of
the Slater determinants giving J = 0

Φ(RN , SN ) = (1− c) det
{
ϕNε (ri, si)

}
1p3/2

+ c det
{
ϕNε (ri, si)

}
1p1/2

, (4.5)

and minimizing the energy with respect to the mixing parameter c, as shown in
Fig. 4.3. However the final result is still far from the GFMC data. This is a
clear indication that better wave functions are needed for open shell systems. A
confirmation of that is the non physical result obtained for the 12C nucleus (marked
in Tab. 4.1 with *), which is even less bound than expected, although the employed
AV4’ potential, resulting thus unstable under α break down. In the case ofNN = 12
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System EAFDMC EGFMC Eexp EAFDMC/NN Eexp/NN
2H -2.22(5) — -2.225 -1.11 -1.11
3H -8.74(4) -8.99(1) -8.482 -2.91 -2.83
3He -8.75(4) — -7.718 -2.92 -2.57
4He -32.67(8) -32.90(3) -28.296 -8.17 -7.07
5He -27.96(13) -31.26(4) -27.406 -5.59 -5.48
6He -29.87(14) -33.00(5) -29.271 -4.98 -4.88

12C -77.31(25)* — -92.162 -6.44 -7.68
15O -144.9(4) — -111.955 -9.66 -7.46
16O -176.8(5) — -127.619 -11.05 -7.98
17O -177.0(6) — -131.762 -10.41 -7.75
40Ca -597(3) — -342.052 -14.93 -8.55
48Ca -645(3) — -416.001 -13.44 -8.67
90Zr -1457(6) — -783.899 -16.19 -8.71

Table 4.1: Binding energies (in MeV) for different nuclei. AFDMC and GFMC
results are obtained using the the AV4’ NN potential. The GFMC data are from
Ref. [198] corrected by the Coulomb contribution (see text for details). In the
fourth column the experimental results are from Ref. [238]. Errors are less than
0.1 KeV. In the last two columns the calculated and experimental binding energies
per particle. For the note * on 12C see the text.

indeed, the 8 additional neutrons and protons to the alpha core have just been
placed in the 1p3/2 shell without any linear combination of the other possible
setups giving zero total angular momentum. This result will be useful in the
hyperon separation energy estimate anyway. In fact, we shall see in the next section
that regardless the total binding energies, by using the same nucleon potential to
describe nuclei and the core of hypernuclei, the obtained hyperon separation energy
is in any case realistic.

Last comment on a technical detail regarding the computation of AFDMC
observables. As shown in Fig. 4.1 and 4.2, the extrapolation of the energy values
in the limit dτ → 0 is linear. This is consistent with the application of the Trotter-
Suzuki formula of Eq. (3.17) in the Hubbard-Stratonovich transformation (3.75),
that is thus correct at order

√
dτ

2
. Focusing on the AV4’ case, for 4He the time

step extrapolation is almost flat. The differences between the final results and the
energies computed at large dτ are less than 0.5% and almost within the statistical



76 Chapter 4. Results: finite systems

errors of the Monte Carlo run. The situation dramatically changes with the increase
of the particle number. For NN = 16 this difference is around 2%. For 40 and
48 particles, large time step values and the extrapolated ones are, respectively,
6% and 8.5% different. Therefore, the binding energies must always be carefully
studied by varying the time step of the AFDMC run. The same behavior has
been found for observables other than the total energy (single particle densities
and radii). Each reported result in this chapter has been thus obtained by means
of a computationally expensive procedure of imaginary time extrapolation.
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Figure 4.3: 6He binding energy as a function of the mixing parameter c of Eq. (4.5).
The arrows point to the results for the pure 1p3/2 (−27.65(8) MeV) and 1p1/2

(−25.98(8) MeV) configurations used for the two external neutrons. The green
line is the GFMC result of Ref. [198] corrected by the VMC Coulomb expectation
contribution 0.776(2) MeV [234].



4.2. Single Λ hypernuclei 77

4.2 Single Λ hypernuclei

When a single Λ particle is added to a core nucleus, the wave function of
Eq. (3.122) is given by

ψT (R,S) =
∏

i

fΛN
c (rΛi)ψ

N
T (RN , SN )ϕΛ

ε (rΛ, sΛ) . (4.6)

The structure of the nucleon trial wave function is the same of Eq. (3.109), used
in the AFDMC calculations for nuclei. The hyperon Slater determinant is simply
replaced by the single particle state ϕΛ

ε of Eq. (3.127), assumed to be the neutron
1s1/2 radial function, as already described in the previous chapter. In order to be
consistent with the calculations for nuclei, we neglected the Jastrow ΛN correlation
function which was found to produce a similar but smaller bias on the total energy.
As radial functions we used the same Skyrme set employed in the calculations for
the nuclei of Tab. 4.1.

The Λ separation energies defined in Eq. (4.1), are calculated by taking the
difference between the nuclei binding energies presented in the previous section,
and the AFDMC energies for hypernuclei, given the same nucleon potential. By
looking at energy differences, we studied the contribution of the ΛN and ΛNN
terms defined in Chapter 2. By comparing AFDMC results with the expected
hyperon separation energies, information about the hyperon-nucleon interaction
are deduced. Some qualitative properties have been also obtained by studying the
nucleon and hyperon single particle densities and the root mean square radii.

4.2.1 Hyperon separation energies

We begin the study of Λ hypernuclei with the analysis of closed shell hyper-
nuclei, in particular 5

ΛHe and 17
ΛO. We have seen in the previous section that the

AFDMC algorithm is most accurate in describing closed shell nuclei. Results for
4He and 16O with the AV4’ potential are indeed consistent and under control. This
give us the possibility to realistically describe the hyperon separation energy for
such systems and deduce some general properties of the employed hyperon-nucleon
force.

The step zero of this study was the inclusion in the Hamiltonian of theNN AV4’
interaction and the two-body ΛN charge symmetric potential of Eq. (2.35). The
employed parameters v̄ and vσ are reported in Tab 2.1. The exchange parameter ε
has been initially set to zero due to the impossibility of including the space exchange
operator directly in the AFDMC propagator (see § 3.2.4). As reported in Tab. 4.2,
the AV4’ Λ separation energy for 5

ΛHe is more than twice the expected value. For the
heavier 17

ΛO the discrepancy is even larger. Actually, this is an expected result. As
firstly pointed out by Dalitz [148], ΛN potentials, parameterized to account for the
low-energy ΛN scattering data and the binding energy of the A = 3, 4 hypernuclei,
overbind 5

ΛHe by 2 ÷ 3 MeV. That is, the calculated A = 5 Λ separation energy
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NN potential
5
ΛHe

17
ΛO

VΛN VΛN+VΛNN VΛN VΛN+VΛNN

Argonne V4’ 7.1(1) 5.1(1) 43(1) 19(1)

Argonne V6’ 6.3(1) 5.2(1) 34(1) 21(1)

Minnesota 7.4(1) 5.2(1) 50(1) 17(2)

Expt. 3.12(2) 13.0(4)

Table 4.2: Λ separation energies (in MeV) for 5
ΛHe and

17
ΛO obtained using different

nucleon potentials (AV4’, AV6’, Minnesota) and different hyperon-nucleon interac-
tion (two-body alone and two-body plus three-body, set of parameters (I)) [41]. In
the last line the experimental BΛ for 5

ΛHe is from Ref. [77]. Since no experimen-
tal data for 17

ΛO exists, the reference separation energy is the semiempirical value
reported in Ref. [192].

is about a factor of 2 too large. This fact is usually reported as A = 5 anomaly.
With only a ΛN potential fitted to Λp scattering, the heavier hypernuclei result
then strongly overbound.

As suggested by the same Dalitz [148] and successively by Bodmer and Us-
mani [181], the inclusion of a Λ-nucleon-nucleon potential may solve the overbinding
problem. This is indeed the case, as reported for instance in Refs. [184, 189, 192].
Therefore, in our AFDMC calculations we included the three-body ΛNN interac-
tion developed by Bodmer, Usmani and Carlson and described in § 2.2.2. Among
the available parametrizations coming from different VMC studies of light hyper-
nuclei, the set of parameters for the ΛNN potential has been originally taken
from Ref. [185], being the choice that made the variational BΛ for 5

ΛHe and 17
ΛO

compatible with the expected results. It reads:

(I)





CP = 0.60 MeV
CS = 0.00 MeV
WD = 0.015 MeV

The inclusion of the ΛNN force reduces the overbinding and thus the hyperon
separation energies, as reported in Tab. 4.2. Although the results are still not
compatible with the experimental ones, the gain in energy due to the inclusion of
the three-body hypernuclear force is considerable.

It has to be pointed out that this result might in principle depend on the partic-
ular choice of the NN interaction used to describe both nucleus and hypernucleus.
One of the main mechanisms that might generate this dependence might be due to
the different environment experienced by the hyperon in the hypernucleus because
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of the different nucleon densities and correlations generated by each NN potential.
To discuss this possible dependence, we performed calculations with different NN
interactions having very different saturation properties. As it can be seen from
Tab. 4.2, for 5

ΛHe the extrapolated BΛ values with the two-body ΛN interaction
alone are about 10% off and well outside statistical errors. In contrast, the inclusion
of the three-body ΛNN force gives a similar Λ binding energy independently to the
choice of the NN force. On the grounds of this observation, we feel confident that
the use of AV4’, for which AFDMC calculations for nuclei are under control, will in
any case return realistic estimates of BΛ for larger masses when including the ΛNN
interaction. We checked this assumption performing simulations in 17

ΛO, where the
discrepancy between the Λ separation energy computed using the different NN
interactions and the full ΛN+ΛNN force is less than few per cent (last column
of Tab.4.2). The various NN forces considered here are quite different. The AV6’
includes a tensor force, while AV4’ and Minnesota have a simpler structure with a
similar operator structure but very different intermediate- and short-range corre-
lations. The fact that the inclusion of the ΛNN force does not depend too much
on the nuclear Hamiltonian is quite remarkable, because the different NN forces
produce a quite different saturation point for the nuclear matter EoS, suggesting
that our results are pretty robust.

For 5
ΛHe the hyperon separation energy with the inclusion of the ΛNN force

with the set of parameters (I) reduces of a factor ∼ 1.4. For 17
ΛO the variation

is around 40 ÷ 50%. In order to check the effect of the three-body force with in-
creasing the particle number, we performed simulations for the next heavier closed
or semi-closed shell Λ hypernuclei, 41

ΛCa and 91
ΛZr. The Λ separation energies for

all the studied closed shell hypernuclei are shown in Fig. 4.4. While the results
for lighter hypernuclei might be inconclusive in terms of the physical consistency
of the ΛNN contribution to the hyperon binding energy in AFDMC calculations,
the computations for 41

ΛCa and 91
ΛZr reveal a completely different picture. The

saturation binding energy provided by the ΛN force alone is completely unreal-
istic, while the inclusion of the ΛNN force gives results that are much closer to
the experimental behavior. Therefore, the Λ-nucleon-nucleon force gives a very im-
portant repulsive contribution towards a realistic description of the saturation of
medium-heavy hypernuclei [41]. However, with the given parametrization, only a
qualitative agreement wiht the expected separation energies is reproduced. A refit-
ting procedure for the three-body hyperon-nucleon interaction might thus improve
the quality of the results.

As already discussed in § 2.2.2, the CS parameter can be estimated by compar-
ing the S-wave term of the ΛNN force with the Tucson-Melbourne component of
the NNN interaction. We take the suggested CS = 1.50 MeV value [189], in order
to reduce the number of fitting parameters. This choice is justified because the
S-wave component of the three-body ΛNN interaction is sub-leading. We indeed
verified that a change in the CS value yields a variation of the total energy within
statistical error bars, and definitely much smaller than the variation in energy due
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Figure 4.4: Λ separation energy as a function of A for closed shell hypernuclei,
adapted from Ref. [41]. Solid green dots (dashed curve) are the available BΛ

experimental or semiempirical values. Empty red dots (upper banded curve) re-
fer to the AFDMC results for the two-body ΛN interaction alone. Empty blue
diamonds (middle banded curve) are the results with the inclusion also of the
three-body hyperon-nucleon force in the parametrization (I).

to a change of the WD parameter.
In Fig. 4.5 we report the systematic study of the Λ separation energy of 5

ΛHe
as a function of both WD and CP . Solid black dots are the AFDMC results.
The red grid represents the experimental BΛ = 3.12(2) MeV [77]. The dashed
yellow curve follows the set of parameters reproducing the expected Λ separation
energy. The same curve is also reported in Fig. 4.6 (red banded curve with black
empty dots and error bars), that is a projection of Fig. 4.5 on the WD −CP plane.
The dashed box represents the WD and CP domain of the previous picture. For
comparison, also the variational results of Ref. [189] are reported. Green curves are
the results for v̄ = 6.15 MeV and vσ = 0.24 MeV, blue ones for v̄ = 6.10 MeV and
vσ = 0.24 MeV. Dashed, long-dashed and dot-dashed lines correspond respectively
to ε = 0.1, 0.2 and 0.3. In our calculations we have not considered different
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Figure 4.5: Λ separation energy for 5
ΛHe as a function of strengths WD and CP of

the three-body ΛNN interaction [43]. The red grid represents the experimental
BΛ = 3.12(2) MeV [77]. The dashed yellow curve is the interception between the
expected result and the BΛ surface in the WD − CP parameter space. Statistical
error bars on AFDMC results (solid black dots) are of the order of 0.10÷0.15 MeV.

combinations for the parameters of the two-body ΛN interaction, focusing on the
three-body part. We have thus kept fixed v̄ and vσ to the same values of the green
curves of Fig. 4.6 which are the same reported in Tab. 2.1. Moreover, we have set
ε = 0 for all the hypernuclei studied due to the impossibility of exactly including
the Px exchange operator in the propagator. A perturbative analysis of the effect
of the v0(r)ε(Px− 1) term on the hyperon separation energy is reported in § 4.2.1.

As it can be seen from Fig. 4.5, BΛ significantly increases with the increase in
CP , while it decreases withWD. This result is consistent with the attractive nature
of V 2π,P

ΛNN and the repulsion effect induced by V D
ΛNN . It is also in agreement with all

the variational estimates on 5
ΛHe (see for instance Refs. [184, 189]). Starting from

the analysis of the results in theWD−CP space for 5
ΛHe, we performed simulations

for the next closed shell hypernucleus 17
ΛO. Using the parameters in the red band

of Fig. 4.6 we identified a parametrization able to reproduce the experimental BΛ
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Figure 4.6: Projection of Fig. 4.5 on the WD − CP plane [43]. Error bars come
from a realistic conservative estimate of the uncertainty in the determination of the
parameters due to the statistical errors of the Monte Carlo calculations. Blue and
green dashed, long-dashed and dot-dashed lines (lower curves) are the variational
results of Ref. [189] for different ε and v̄ (two-body ΛN potential). The dashed
box corresponds to the parameter domain of Fig. 4.5. Black empty dots and the
red band (upper curve) are the projected interception describing the possible set
of parameters reproducing the experimental BΛ.

for both 5
ΛHe and 17

ΛO at the same time within the AFDMC framework:

(II)





CP = 1.00 MeV
CS = 1.50 MeV
WD = 0.035 MeV

Given the set (II), the Λ separation energy of the closed shell hypernuclei re-
ported in Fig. 4.4 has been re-calculated. We have seen that BΛ is not sensitive
neither to the details of the NN interaction, nor to the total binding energies of
nuclei and hypernuclei, as verified by the good results in Tab. 4.2 even for the prob-
lematic case of AV6’ (see § 4.1). On the grounds of this observation, we tried to
simulate also open shell hypernuclei, using the ΛN , ΛNN set (I) and ΛNN set (II)
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potentials. The binding energies for these systems might not be accurate, as in the
case of the corresponding nuclei. The hyperon separation energy is expected to be
in any case realistic. All the results obtained so far in the mass range 3 ≤ A ≤ 91
are summarized in Fig. 4.7 and Fig. 4.8.
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Figure 4.7: Λ separation energy as a function of A. Solid green dots (dashed curve)
are the available BΛ experimental or semiempirical values. Empty red dots (upper
banded curve) refer to the AFDMC results for the two-body ΛN interaction alone.
Empty blue diamonds (middle banded curve) and empty black triangles (lower
banded curve) are the results with the inclusion also of the three-body hyperon-
nucleon force, respectively for the parametrizations (I) and (II).

We report BΛ as a function of A and A−2/3, which is an approximation of the
A dependence of the kinetic term of the Hamiltonian. Solid green dots are the
available experimental data, empty symbols the AFDMC results. The red curve is
obtained using only the two-body hyperon-nucleon interaction in addition to the
nuclear AV4’ potential. The blue curve refers to the results for the same systems
when also the three-body ΛNN interaction with the old set of parameters (I) is
included. The black lower curve shows the results obtained by including the three-
body hyperon-nucleon interaction described by the new parametrization (II). A
detailed comparison between numerical and experimental results for the hyperon-
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Figure 4.8: Λ separation energy as a function of A−2/3, adapted from Ref. [43].
The key is the same of Fig. 4.7.

separation energy is given in Tab. 4.3.
From Fig. 4.7 and Fig. 4.8 we can see that the new parametrization for the three-

body hyperon-nucleon interaction correctly reproduces the experimental saturation
property of the Λ separation energy. All the separation energies for A ≥ 5 are
compatible or very close to the expected results, where available, as reported in
Tab. 4.3. Since for 18

ΛO and 49
ΛCa no experimental data have been found, the

values of 12.7(9) MeV and 20(5) MeV are AFDMC predictions, that follows the
general trend of the experimental curve. Although for A ≥ 41 the Monte Carlo
statistical error bars become rather large, the extrapolation of the Λ binding energy
for A→∞ points to the correct region for the expected value DΛ ∼ 30 MeV of sΛ

states in nuclear matter.
We can find the same problems discussed in the case of nuclei (§ 4.1) in the

analysis of the total hypernuclear binding energies for A ≥ 5. For instance, the
binding energy of 13

ΛC is non physical, as for the energy of the core nucleus 12C.
However, the energy difference is consistent with the expected result. Moreover, for
the core wave function of 7

ΛHe we have used the same mixing parameter adopted
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System E BΛ Expt. BΛ

3
ΛH -1.00(14) -1.22(15) 0.13(5) [77]
4
ΛH -9.69(8) 0.95(9) 2.04(4) [77]
4
ΛHe -9.97(8) 1.22(9) 2.39(3) [77]
5
ΛHe -35.89(12) 3.22(14) 3.12(2) [77]
6
ΛHe -32.72(15) 4.76(20) 4.25(10) [77]
7
ΛHe -35.82(15) 5.95(25) 5.68(28) [86]

13
ΛC -88.5(26)* 11.2(4) 11.69(12) [78]

16
ΛO -157.5(6) 12.6(7) 12.50(35) [80]

17
ΛO -189.2(4) 12.4(6) 13.0(4) [192]

18
ΛO -189.7(6) 12.7(9) —

41
ΛCa -616(3) 19(4) 19.24(0) [181]

49
ΛCa -665(4) 20(5) —

91
ΛZr -1478(7) 21(9) 23.33(0) [181]

Table 4.3: Binding energies and Λ separation energies (in MeV) obtained using
the two-body plus three-body hyperon-nucleon interaction with the set of param-
eters (II) [43]. The results already include the CSB contribution. The effect is
evident only for light systems, as discussed in the next section. In the last column,
the expected BΛ values. Since no experimental data for A = 17, 41, 91 exists, the
reference separation energies are semiempirical values.

in the description of 6He (see Eq. (4.5) and Fig. 4.3), in order to have at least the
correct ordering in the hypernuclear energy spectrum. However, the same hyperon
separation energy can be found by just using the 1p3/2 shell for the outer neutrons
for both strange and non strange nucleus. Our working hypothesis regarding the
computation of the hyperon separation energy is thus correct, at least for medium-
heavy hypernuclei.

For A < 5 our results are more than 1 MeV off from experimental data. For
3
ΛH, the Λ separation energy is even negative, meaning that the hypernucleus is less
bound than the corresponding nucleus 2H. We can ascribe this discrepancy to the
lack of accuracy of our wave function for few-body systems. Since the Λ hyperon
does not suffer from Pauli blocking by the other nucleons, it can penetrate into the
nuclear interior and form deeply bound hypernuclear states. For heavy systems the
Λ particle can be seen as an impurity that does not drastically alter the nuclear
wave function. Therefore, the trial wave function of Eq. (4.6) with the single



86 Chapter 4. Results: finite systems

particle state ϕΛ
ε described by the 1s1/2 neutron orbital, is accurate enough as

starting point for the imaginary time propagation. For very light hypernuclei, for
which the first nucleonic s shell is not closed, this might not be the case. In order
to have a correct projection onto the ground state, the single particle orbitals of
both nucleons and lambda might need to be changed when the hyperon is added
to the nucleus. Moreover, in very light hypernuclei, the neglected nucleon-nucleon
and hyperon-nucleon correlations, might result in non negligible contributions to
the Λ binding energy. A study of these systems within a few-body method or a
different projection algorithm like the GFMC, might solve this issue.

Effect of the charge symmetry breaking term

The effect of the CSB potential has been studied for the A = 4 mirror hyper-
nuclei. As reported in Tab. 4.4, without the CSB term there is no difference in the
Λ binding energy of 4

ΛH and 4
ΛHe. When CSB is active, a splitting appears due

to the different behavior of the Λp and Λn channels. The strength of the differ-
ence ∆BCSB

Λ is independent on the parameters of the three-body ΛNN interaction
and it is compatible with the experimental result [77], although the Λ separation
energies are not accurate.

Parameters System Bsym
Λ BCSB

Λ ∆BCSB
Λ

Set (I)
4
ΛH 1.97(11) 1.89(9)

0.24(12)
4
ΛHe 2.02(10) 2.13(8)

Set (II)
4
ΛH 1.07(8) 0.95(9)

0.27(13)
4
ΛHe 1.07(9) 1.22(9)

Expt. [77]
4
ΛH — 2.04(4)

0.35(5)
4
ΛHe — 2.39(3)

Table 4.4: Λ separation energies (in MeV) for the A = 4 mirror Λ hypernuclei with
(fourth column) and without (third column) the inclusion of the charge symmetry
breaking term [43]. In the last column the difference in the separation energy
induced by the CSB interaction. First and second rows refer to different set of
parameters for the ΛNN interaction, while the last row is the experimental result.

The same CSB potential of Eq. (2.42) has been included in the study of hy-
pernuclei for A > 4. In Tab. 4.5 the difference in the hyperon separation energies
∆BΛ = BCSB

Λ − Bsym
Λ is reported for different hypernuclei up to A = 18. The

fourth column shows the difference between the number of neutrons and protons
∆np = Nn − Np. For the symmetric hypernuclei 5

ΛHe and 17
ΛO the CSB interac-
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System p n ∆np ∆BΛ

4
ΛH 1 2 +1 −0.12(8)

4
ΛHe 2 1 −1 +0.15(9)

5
ΛHe 2 2 0 +0.02(9)

6
ΛHe 2 3 +1 −0.06(8)

7
ΛHe 2 4 +2 −0.18(8)

16
ΛO 8 7 −1 +0.27(35)

17
ΛO 8 8 0 +0.15(35)

18
ΛO 8 9 +1 −0.74(49)

Table 4.5: Difference (in MeV) in the hyperon separation energies induced by the
CSB term (Eq. (2.42)) for different hypernuclei [43]. The fourth column reports
the difference between the number of neutrons and protons. Results are obtained
with the full two- plus three-body (set (II)) hyperon-nucleon interaction. In order
to reduce the errors, ∆BΛ has been calculated by taking the difference between
total hypernuclear binding energies, instead of the hyperon separation energies.

tion has no effect, being this difference zero. In the systems with neutron excess
(∆np > 0), the effect of the CSB consists in decreasing the hyperon separation
energy compared to the charge symmetric case. When ∆np becomes negative,
∆BΛ > 0 due to the attraction induced by the CSB potential in the Λp channel,
that produces more bound hypernuclei. Being ∆np small, these effects are in any
case rather small and they become almost negligible compared to the statistical
errors on BΛ when the number of baryons becomes large enough (A > 16). How-
ever, in the case of Λ neutron matter, the CSB term might have a relevant effect
for large enough Λ fraction.

Effect of the hyperon-nucleon space-exchange term

As already mentioned in the previous chapter, the inclusion of the ΛN space
exchange operator of Eq. (2.35) in the AFDMC propagator is not yet possible. In
§ 3.2.5 we presented a possible perturbative approach for the treatment of such
term. In Tab. 4.6 we report the results of this analysis.

All the results for 41
ΛCa are consistent within the statistical errors. On the

contrary, for lighter systems the Λ separation energy seems rather sensitive to the
value of the exchange parameter ε. Considering larger values for ε, BΛ generally
increases. This trend is opposite to what is found for instance in Ref. [188]. We



88 Chapter 4. Results: finite systems

recall that only the computation of the Hamiltonian expectation value by means
of Eq. (3.24) gives exact results. For other operators, like the space exchange Px,
the pure estimators have to be calculated with the extrapolation method via the
two relations (3.25) or (3.26). The variational estimate 〈Px〉v is thus needed. In
the mentioned reference, the importance of space exchange correlations for varia-
tional estimates is discussed. Being these correlations neglected in this work, our
perturbative treatment of the Px contribution might not be accurate. Moreover,
the evidence of the importance of space exchange correlations might invalid the
perturbative approach itself. An effective but more consistent treatment of this
term could consist in a slight change in the strength of the central ΛN potential.
However, due to the very limited information about the space exchange parameter
and its effect on single Λ hypernuclei heavier than 5

ΛHe, this approach has not been
considered in the present work. Recent calculations of many hadron systems within
an EFT treatment at NLO for the full SU(3) hadronic spectrum confirmed indeed
that exchange terms are sub-leading [170].

System ε = 0.0 ε = 0.1 ε = 0.3

5
ΛHe 3.22(14) 3.89(15) 4.67(25)

17
ΛO 12.4(6) 12.9(9) 14.0(9)

41
ΛCa 19(4) 21(5) 25(7)

Table 4.6: Variation of the Λ separation energy as a consequence of the exchange
potential v0(r)ε(Px − 1) in the ΛN interaction of Eq. (2.35). The contribution of
Px is treated perturbatively for different value of the parameter ε. The interaction
used is the full AV4’+ΛN+ΛNN set (II). Results are expressed in MeV.

4.2.2 Single particle densities and radii

Single particle densities can be easily computed in Monte Carlo calculations by
considering the expectation value of the density operator

ρ̂κ(r) =
∑

i

δ(r − ri) κ = N,Λ , (4.7)

where i is the single particle index running over nucleons for ρN = 〈ρ̂N 〉 or hyperons
for ρΛ = 〈ρ̂Λ〉. The normalization is given by

∫
dr4πr2ρκ(r) = 1 . (4.8)

Root mean square radii 〈r2
κ〉1/2 are simply calculated starting from the Cartesian

coordinates of nucleons and hyperons. A consistency check between AFDMC den-
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sities and radii is then taken by verifying the relation

〈r2
κ〉 =

∫
dr4πr4ρκ(r) . (4.9)

Before reporting the results we recall that also for densities and radii the
AFDMC calculation can only lead to mixed estimators. The pure estimators are
thus approximated by using Eq. (3.25) or Eq. (3.26). The two relations should
lead to consistent results. This is the case for the nucleon and hyperon radii. In
computing the densities instead, the low statistics for r → 0 generates differences
in the two approaches. For nucleons these discrepancies are almost within the sta-
tistical errors. For hyperons, the much reduced statistics (1 over A − 1 for single
Λ hypernuclei) and the fact that typically the Λ density is not peaked in r = 0,
create some uncertainties in the region for small r, in particular for the first esti-
mator. We therefore chose to adopt the pure estimator of Eq. (3.26) to have at
least a positive definite estimate. Finally, it has to be pointed out that the pure
extrapolated results are sensitive to the quality of the variational wave function and
the accuracy of the projection sampling technique. Although we successfully tested
the AFDMC propagation, we are limited in the choice of the VMC wave function.
In order to be consistent with the mixed estimators coming from AFDMC calcu-
lations, we considered the same trial wave functions also for the variational runs.
This might introduce some biases in the evaluation of pure estimators. There-
fore, the results presented in the following have to be considered as a qualitative
study on the general effect of the hypernuclear forces on the nucleon and hyperon
distributions.

In Fig. 4.9 we report the results for the single particle densities for 4He and 5
ΛHe.

The green curves are the densities of nucleons in the nucleus, while the red and blue
curves are, respectively, the density of nucleons and of the lambda particle in the
hypernucleus. In the left panel the results are obtained using AV4’ for the nuclear
part and the two-body ΛN interaction alone for the hypernuclear component. In
the right panel the densities are calculated with the full two- plus three-body (set
(II)) hyperon-nucleon interaction.

The addition of the Λ particle to the nuclear core of 4He has the effect to slightly
reduce the nucleon density in the center. The Λ particle tries to localize close to
r = 0, enlarging therefore the nucleon distribution. When the three-body ΛNN
interaction is turned on (right panel of Fig. 4.9), the repulsion moves the nucleons
to large distances but the main effect is that the hyperon is pushed away from
the center of the system. As can be seen from Fig. 4.10, this effect is much more
evident for large A. When the hypernucleus is described by the ΛN interaction
alone, the Λ particle is localized near the center, in the range r < 2 fm (left panel
of Fig. 4.10). The inclusion of the three-body ΛNN potential forces the hyperon
to move from the center, in a region that roughly correspond to the skin of nucle-
ons (see Tab. 4.7). Although these densities are strictly dependent to the nuclear
interaction, by using the AV6’ potential we found the same qualitative effects on
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Figure 4.9: Single particle densities for nucleons in 4He [green, upper banded curve]
and for nucleons [red, middle banded curve] and the lambda particle [blue, lower
banded curve] in 5

ΛHe [43]. In the left panel the results for the two-body ΛN
interaction alone. In the right panel the results with the inclusion also of the
three-body hyperon-nucleon force in the parametrization (II). The AV4’ potential
has been used for the nuclear core.

the Λ particle, confirming the importance of the three-body hyperon-nucleon inter-
action and its repulsive nature. Due to the limitations discussed above and the use
of too simplified interactions for the nucleon-nucleon force, the comparison with
the available VMC density profiles [187, 192] is difficult.

In Tab. 4.7 we report the nucleon and hyperon root mean square radii for nuclei
and hypernuclei. The experimental nuclear charge radii are reported as a reference.
AFDMC rN , that do not distinguish among protons and neutrons, are typically
smaller than the corresponding experimental results. This can be understood as a
consequence of the employed AV4’ NN interaction that overbinds nuclei. The main
qualitative information is that the hyperon radii are systematically larger than the
nucleon ones, as expected by looking at the single particle densities. Starting from
A = 5, the nucleon radii in the nucleus and the corresponding hypernucleus do not
change, although the differences in the nucleon densities for r → 0. This is due
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Figure 4.10: Single particle densities for the Λ particle in different hypernuclei [43].
Top panel reports the results for the two-body ΛN interaction alone. Bottom
panel shows the results when the three-body hyperon-nucleon interaction with the
set of parameters (II) is also included. The nuclear core is described by the AV4’
potential.
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System
nucleus hypernucleus

rexp
N rN rN rΛ

2H - 3
ΛH 2.142 1.48(8) 1.9(1) 2.00(16)

3H - 4
ΛH 1.759 1.5(1) 1.77(9) 2.12(15)

3He - 4
ΛHe 1.966 1.5(1) 1.77(9) 2.10(14)

4He - 5
ΛHe 1.676 1.57(9) 1.58(7) 2.2(2)

5He - 6
ΛHe — 2.02(16) 2.16(17) 2.43(17)

6He - 7
ΛHe 2.065 2.3(2) 2.4(2) 2.5(2)

15O - 16
ΛO — 2.20(12) 2.3(1) 3.2(3)

16O - 17
ΛO 2.699 2.16(12) 2.23(11) 3.3(3)

17O - 18
ΛO 2.693 2.26(13) 2.32(14) 3.3(3)

40Ca - 41
ΛCa 3.478 2.8(2) 2.8(2) 4.2(5)

48Ca - 49
ΛCa 3.477 3.1(2) 3.1(2) 4.3(5)

Table 4.7: Nucleon and hyperon root mean square radii (in fm) for nuclei and
corresponding Λ hypernuclei. The employed nucleon-nucleon potential is AV4’. For
the strange sector we used the full two- plus three-body hyperon-nucleon force in
the parametrization (II). The experimental nuclear charge radii are from Ref. [239].
Errors are on the fourth digit.

to the small contribution to the integral (4.9) given by the density for r close to
zero. For the hypernuclei with A < 5, AFDMC calculations predict larger rN when
the hyperon is added to the core nucleus. This is inconsistent with the results of
Ref. [184], where a shrinking of the core nuclei due to the presence of the Λ particle
in A ≤ 5 hypernuclei is found. We need to emphasize once more that the results
presented in this section are most likely strictly connected to the employed nucleon-
nucleon potential. For instance, the shrinkage of hypernuclei has been investigated
experimentally by γ-ray spectroscopy [52, 240]. In the experiment of Ref. [240],
by looking at the electric quadrupole transition probability from the excited 5/2+

state to the ground state in 7
ΛLi, a 19% shrinkage of the intercluster distance was

inferred, assuming the two-body cluster structure core+deuteron. Therefore, the
AFDMC study of densities and radii, differently from the analysis of Λ separation
energies, cannot lead to accurate results at this level. It has to be considered as a
first explorative attempt to get hypernuclear structure information from Diffusion
Monte Carlo simulations.
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4.3 Double Λ hypernuclei

In the single particle wave function representation, two Λ particles with antipar-
allel spin can be added to a core nucleus filling the first hyperon s shell, assumed
to be the neutron 1s1/2 Skyrme radial function as in the case of single Λ hypernu-
clei. The complete hypernuclear wave function is given by Eq. (3.122), where the
nucleon trial wave function is the same used in the AFDMC calculations for nuclei
and in this case also the hyperon Slater determinant is employed. Although the
effect on the total energy introduced by a ΛΛ correlation function is found to be
negligible, for consistency with the calculations for nuclei and single Λ hypernuclei
we neglected the central Jastrow correlations.

The double Λ separation energy and the incremental ΛΛ energy of Eqs. (4.3)
and (4.4) are calculated starting from the energy of the nucleus and the correspond-
ing single and double Λ hypernuclei described by the same NN AV4’ potential.
Due to the difficulties in treating open shell nuclei and the limited amount of data
about double Λ hypernuclei, we performed the AFDMC study for just the lightest
ΛΛ hypernucleus for which energy experimental information are available, 6

ΛΛHe.

4.3.1 Hyperon separation energies

In Tab. 4.8 we report the total binding energies for 4He, 5
ΛHe and 6

ΛΛHe in the
second column, the single or double hyperon separation energies in the third and
the incremental binding energy in the last column. The value of BΛΛ confirms the
weak attractive nature of the ΛΛ interaction [150–152, 173]. Starting from 4He
and adding two hyperons with BΛ = 3.22(14) MeV, the energy of 6

ΛΛHe would be
1.0÷ 1.5 MeV less than the actual AFDMC result. Therefore the ΛΛ potential of
Eq. (2.48) induces a net attraction between hyperons, at least at this density.

Our BΛΛ and ∆BΛΛ are very close to the expected results for which the
potential has originally been fitted within the cluster model. The latest data
BΛΛ = 6.91(0.16) MeV and ∆BΛΛ = 0.67(0.17) MeV of Ref. [93] suggest a weaker
attractive force between the two hyperons. A refit of the interaction of the form
proposed in Eq. (2.48) would be required. It would be interesting to study more
double Λ hypernuclei within the AFDMC framework with the ΛN , ΛNN and ΛΛ
interaction proposed. Some experimental data are available in the range A = 7÷13,
but there are uncertainties in the identification of the produced double Λ hyper-
nuclei, reflecting in inconsistencies about the sign of the ΛΛ interaction [241, 242].
An ab-initio analysis of these systems might put some constraints on the hyperon-
hyperon force, which at present is still poorly known, and give information on its
density dependence. Also the inclusion of the ΛΛN force would be important.
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System E BΛ(Λ) ∆BΛΛ

4He -32.67(8) — —
5
ΛHe -35.89(12) 3.22(14) —
6

ΛΛHe -40.6(3) 7.9(3) 1.5(4)

6
ΛΛHe Expt. [91] 7.25± 0.19+0.18

−0.11 1.01± 0.20+0.18
−0.11

Table 4.8: Comparison between 4He and the corresponding single and double Λ hy-
pernuclei [43]. In the second column the total binding energies are reported. The
third column shows the single or double Λ separation energies. In the last column
the incremental binding energy ∆BΛΛ is reported. All the results are obtained us-
ing the complete two- plus three-body (set (II)) hyperon-nucleon interaction with
the addition of the ΛΛ force of Eq. (2.48). The results are expressed in MeV.

4.3.2 Single particle densities and radii

For the sake of completeness, we also report the results for the single particle
densities (Fig. 4.11) and root mean square radii (Tab. 4.9) for the double Λ hy-
pernucleus 6

ΛΛHe. By looking at the densities profiles, when a second hyperon is
added to 5

ΛHe, the nucleon density at the center reduces further. The hyperon
density, instead, seems to move a bit toward r = 0 consistently with weak attrac-
tive behavior of the employed ΛΛ interaction. However, the nucleon and hyperon
radii are almost the same of 5

ΛHe. These conclusions are thus rather speculative,
particularly recalling the discussion on single particle densities of § 4.2.2.

System rN rΛ

4He 1.57(9) —
5
ΛHe 1.58(7) 2.2(2)
6

ΛΛHe 1.7(2) 2.3(2)

Table 4.9: Nucleon and hyperon root mean square radii (in fm) for 4He and the
corresponding single and double Λ hypernuclei. The employed interactions are the
NN AV4’ plus the full two- and three-body hyperon-nucleon force (set (II)).
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Figure 4.11: Single particle densities for nucleons in 4He [green banded curve], 5
ΛHe

[red banded curve] and 6
ΛΛHe [light blue banded curve], and for the Λ particle in

5
ΛHe [blue banded curve] and 6

ΛΛHe [brown banded curve]. The results are obtained
using the AV4’ potential for nucleons and the two- plus three-body hyperon-nucleon
force (II). In the case of 6

ΛΛHe, the ΛΛ interaction of Eq. (2.48) is also employed.
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Chapter 5

Results: infinite systems

Neutron matter has been deeply investigated in previous works using the Aux-
iliary Field DMC algorithm. The EoS at zero temperature has been derived in
both constrained path [37] and fixed phase [38] approximations. In the low density
regime, the 1S0 superfluid energy gap has also been studied [39]. In the high density
regime, the connections between three-body forces, nuclear symmetry energy and
the neutron star maximum mass are extensively discussed in Refs. [40, 243].

In this chapter we will review some details of the AFDMC simulations for
pure neutron matter (PNM). They will be useful to extend the calculations for
the inclusion of strange degrees of freedom. We will then focus on the hyperon
neutron matter (YNM), firstly with the test of the AFDMC algorithm extended to
the strange sector in connection with the developed hyperon-nucleon interactions.
Starting from the derivation of the threshold density for the appearance of Λ hy-
perons, a first attempt to construct a realistic EoS for YNM will be presented. The
corresponding limit for the maximum mass will be finally discussed.

5.1 Neutron matter

As already described in Chapter 3, due to the simplification in the potentials
for neutron only systems, PNM can investigated by means of AFDMC calculations
using the Argonne V8’ two-body potential and including three-body forces. The
contribution of terms in the Argonne potential beyond spin-orbit are usually very
small in nuclei and in low density nuclear and neutron matter. It may become sig-
nificative only for very large densities [38]. Predicted maximum masses of a NS for
the two Argonne potentials are very close and both below 1.8M�, as a consequence
of the softness of the corresponding EoS [5, 40]. Being the present observational
limit for Mmax around 2M� [6, 7], three-neutron forces must be repulsive at high
densities. As reported in Ref. [34], the Illinois 7 TNI is attractive and produces a
too soft EoS. The Urbana IX interaction instead provides a strong repulsive con-

97
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tribution to the total energy. The inclusion of the UIX force in addition to the
two-body AV8’ interaction in AFDMC calculations for PNM generates a rather
stiff EoS. The predicted maximum mass is around 2.4M� [40], in agreement with
the result coming from the AV18+UIX calculation of Akmal, Pandharipande and
Ravenhall [5]. It follows that the AFDMC method to solve the AV8’+UIX nuclear
Hamiltonian is a valuable tool for the investigation of neutron matter properties
and neutron stars observables. This is the starting point for the study of Λ neutron
matter.

All the AFDMC results for PNM have been obtained using the version v2 of
the algorithm. Simulations are typically performed at fixed imaginary time step
dτ = 2 · 10−5 MeV−1, that should be small enough to provide a good approxi-
mation of the extrapolated result [37]. The wave function of Eq. (3.109) includes
a Jastrow correlation function among neutrons and a Slater determinant of plane
waves coupled with two-component spinors. For infinite neutron systems, AFDMC
calculations do not depend on the Jastrow functions. Moreover by changing the
algorithm to version v1 , results are less than 1% different. This is because the
employed trial wave function is already a good approximation of the real ground
state wave function. Moreover the interaction is simplified with respect to the case
of finite nucleon systems due to absence of the τi · τj contributions.

In Chapter 3 we have seen that finite size effects appear because of the depen-
dence of the Fermi gas kinetic energy to the number of particles. The kinetic energy
oscillations of NF free Fermions imply that the energy of NF = 38 is lower than
either NF = 14 or NF = 66. This is reflected in the energy of PNM for different
number of neutrons with PBC conditions (Eq. (3.117)). At each density it follows
that E(38) < E(14) < E(66) [38]. However, as already discussed in § 3.2.4, the
results for 66 neutrons are remarkably close to the extrapolated TABC energy. 66
is thus the typical number of particle employed in AFDMC calculations for PNM.

Finite size effects could appear also from the potential, in particular at high
density, depending on the range of the interaction. Monte Carlo calculations are
generally performed in a finite periodic box with size L and all inter-particle dis-
tances are truncated within the sphere of radius L/2. Usually, tail corrections due
to this truncation are estimated with an integration of the two-body interaction
from L/2 up to infinity. However, this is possible only for spin independent terms.
As originally reported in Ref. [37], in order to correctly treat all the tail corrections
to the potential, it is possible to include the contributions given by neighboring
cells to the simulation box. Each two-body contribution to the potential is given by

vp(r) ≡ vp(|x, y, z|) −→
∑

ix,iy ,iz

vp

(∣∣(x+ ixL)x̂+ (y + iyL)ŷ + (z + izL)ẑ
∣∣
)
, (5.1)

where vp(r) are the potential functions of Eq. (2.16) and ix, iy, iz are 0,±1,±2, . . .
depending on the number of the boxes considered. The inclusion of the first 26
additional neighbor cells, that corresponds to ix, iy, iz taking the values −1, 0 and
1, is enough to extend the calculation for inter-particle distances larger than the
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range of the potential [37, 38]. Finite-size corrections due to three-body forces
can be included in the same way as for the nucleon-nucleon interaction, although
their contribution is very small compared to the potential energy. Their effect is
appreciable only for a small number of particles and at large density, i.e., if the size
of the simulation box is small. We will see that these corrections are actually non
negligible for the correct computation of energy differences in Λ neutron matter.
By looking at the results reported in the mentioned references, for PNM we can
estimate that the finite-size errors in AFDMC calculations, due to both kinetic
and potential energies, do not exceed 2% of the asymptotic value of the energy
calculated by using TABC.

It was found [38, 40] that the EoS of PNM can be accurately parametrized
using the following polytrope functional form:

E(ρn) = a

(
ρn
ρ0

)α
+ b

(
ρn
ρ0

)β
, (5.2)

where E(ρn) is the energy per neutron as a function of the neutron density ρn,
and the parameters a, α, b, and β are obtained by fitting the QMC results. ρ0 =
0.16 fm−3 is the nuclear saturation density. AFDMC energies per particle as a
function of the neutron density, together with the fitted parameters for both AV8’
and the full AV8’+UIX Hamiltonians, are reported in Tab. 5.1. The plots of the
EoS are shown in the next section, Fig. 5.1.

ρn AV8’ AV8’+UIX

0.08 9.47(1) 10.49(1)
0.16 14.47(2) 19.10(2)
0.24 19.98(3) 31.85(3)
0.32 26.45(3) 49.86(5)
0.40 34.06(5) 74.19(5)
0.48 42.99(8) 105.9(1)
0.56 — 145.3(1)
0.60 58.24(8) 168.1(2)
0.70 73.3(1) —

polytrope
parameters

a = 2.04(7)

α = 2.15(2)

b = 12.47(47)

β = 0.47(1)

a = 5.66(3)

α = 2.44(1)

b = 13.47(3)

β = 0.51(1)

Table 5.1: Energy per particle in neutron matter for selected densities [34, 243]. a,
α, b and β are the fitted polytrope coefficients of Eq. (5.2).
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5.2 Λ neutron matter

The study of Λ neutron matter follows straightforwardly from PNM calcula-
tions with the extension of the wave function (Eq. (3.122)) and the inclusion of
the strange part of the Hamiltonian (Eqs. (2.3) and (2.4)), in analogy with the
simulations for finite strange systems. In addition to the Slater determinant of
plane waves for neutrons, there is now the determinant for the Λ particles. Both
sets of plane waves have quantized kε vectors given by Eq. (3.118), and each type
of baryon fills its own momentum shell. As discussed in § 3.2.4, the requirement
of homogeneity and isotropy implies the closure of the momentum shell structure,
both for neutrons and hyperons. The consequence is that in AFDMC calculations
we are limited in the possible choices for the Λ fraction, defined as

xΛ =
ρΛ

ρb
=

NΛ

Nn +NΛ
, (5.3)

where ρΛ is the hyperon density and ρb the total baryon density of Eq. (3.130).
Employing the TABC (Eq. (3.121)) would allow to consider a number of particles
corresponding to open shells, providing more freedom in the choice of xΛ. However,
this approach has not been investigate in this work.

As soon as the hyperons appear in the bulk of neutrons, i.e. above a Λ thresh-
old density ρthΛ , the EoS becomes a function of both baryon density and Λ frac-
tion, which are connected by the equilibrium condition µΛ = µn (see § 1.2). The
Λ threshold density and the function xΛ(ρb) are key ingredients to understand the
high density properties of hypermatter and thus to predict the maximum mass.
We will start the discussion with the test analysis of Λ neutron matter at a fixed
Λ fraction. We will then move to the realistic case of variable xΛ.

5.2.1 Test: fixed Λ fraction

In order to test the feasibility of AFDMC calculations for hypermatter, we
considered the limiting case of small Λ fraction, in order to look at the hyperon as
a small perturbation in the neutron medium. We filled the simulation box with 66
neutrons and just one Λ particle, i.e. xΛ = 0.0149. Although the first momentum
shell for the strange baryons is not completely filled (for Nc = 1 the occupation
number is 2, spin up and spin down Λ particles), the requirement of homogeneity
and isotropy is still verified. The first kε vector, indeed, is 2π

L (0, 0, 0) and thus the
corresponding plane wave is just a constant, giving no contribution to the kinetic
energy. In order to keep the Λ fraction small we are allowed to use one or two
hyperons in the box (next close shell is for 14 particles) and, possibly, change the
number of neutrons, as we will see. Using just one lambda hyperon there is no need
to include the ΛΛ interaction. The closest hyperon will be in the next neighboring
cell at distances larger than the range of the hyperon-hyperon force, at least for
non extremely high densities. Therefore, we proceeded with the inclusion of the
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AV8’+UIX potentials for neutrons, adding the ΛN+ΛNN interactions in both
parametrizations (I) and (II).

In Tab. 5.2 we report the energy as a function of the baryon density for different
combinations of the employed potentials. The parameters of the polytrope function
of Eq. (5.2) that fits the AFDMC results are also shown. The plot of the fits, for
both PNM and YNM are reported in Fig. 5.1.

By looking at the dashed lines, corresponding to calculations without the neu-
tron TNI, it is evident the softness of the PNM EoS (green) discussed in the
previous section. The addition of the hyperon-nucleon two-body interaction (blue)
implies, as expected (see § 1.2), a further reduction of the energy per particle, even
for the small and constant Λ fraction. The inclusion of the three-body ΛNN in-
teraction (red), instead, makes the EoS stiffer at high density, even stiffer than the
PNM one for the set of parameters (II). This result is rather interesting because
it means that the hyperon-nucleon force used has a strong repulsive component
that is effective also at densities larger than nuclear saturation density, where the
interaction was originally fitted on medium-heavy hypernuclei.

When the Urbana IX TNI is employed (solid lines), the PNM EoS (green) be-
comes stiff. As in the previous case, the inclusion of the two-body ΛN interaction
softens the EoS (blue), although the effect is not dramatic for the small xΛ con-
sidered. The three-body hyperon-nucleon force gives a repulsive contribution to
the total energy (red). The effect is more evident for the parametrization (II), for
which the PNM and YNM EoS are almost on top of each other. The small con-
stant fraction of hyperons in the neutron medium induces very small modifications
in the energy per particle. This is due to the repulsive contribution of the ΛNN
interaction still active at high densities.

These results do not describe the realistic EoS for Λ neutron matter, because
they are computed at a fixed Λ fraction for each baryon density. However, the
high density part of the curves gives us some indication about the behavior of the
hyperon-nucleon interaction in the infinite medium. The fundamental observation
is that the ΛNN force is repulsive, confirming our expectations. By varying the
Λ fraction, for example considering two hyperons over 66 neutrons, the qualitative
picture drawn in Fig. 5.1 is the same, but a small reasonable increase in the soften-
ing of the EoS is found. This is consistent with the theoretical prediction related
to the appearance of strange baryons in NS matter and gives us the possibility
to quantitatively predict the entity of the softening in a Quantum Monte Carlo
framework.

Before moving to the derivation of the Λ threshold density and the hypermatter
EoS, let us analyze the pair correlation functions calculated for Λ neutron matter
at fixed Λ fraction xΛ = 0.0149. Figs. 5.2 and 5.3 report the neutron-neutron
and lambda-neutron pair correlation functions g(r) for different baryon density,
ρb = ρ0 and ρb = 0.40 fm−3. Dashed lines refer to gnn(r) in the central (black),
spin singlet (light blue) and spin triplet (brown) channels. Solid lines to gΛn(r) in
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ρb
AV8’ AV8’ AV8’
ΛN ΛN+ΛNN (I) ΛN+ΛNN (II)

0.08 8.71(1) 8.84(1) 8.92(1)
0.16 13.11(3) 13.44(2) 13.76(1)
0.24 17.96(2) 18.71(2) 19.31(3)
0.32 23.81(4) 25.02(4) 26.09(3)
0.40 30.72(4) 32.75(6) 34.20(6)
0.48 38.84(6) 42.03(6) 43.99(4)
0.56 48.37(7) 52.30(8) 55.18(8)
0.60 53.24(7) 57.9(1) 61.42(7)
0.70 67.1(1) 74.0(1) 78.7(1)
0.80 83.1(1) 91.7(1) 98.0(1)

polytrope
parameters

a = 2.54(13)

α = 2.00(3)

b = 10.52(15)

β = 0.38(2)

a = 2.80(13)

α = 2.02(3)

b = 10.60(16)

β = 0.38(2)

a = 2.75(9)

α = 2.07(2)

b = 10.98(11)

β = 0.41(2)

ρb
AV8’+UIX AV8’+UIX AV8’+UIX

ΛN ΛN+ΛNN (I) ΛN+ΛNN (II)

0.08 9.72(2) 9.77(1) 9.87(1)
0.16 17.53(2) 17.88(2) 18.16(1)
0.24 29.29(5) 29.93(2) 30.57(2)
0.32 46.17(7) 47.38(5) 48.55(4)
0.40 68.86(8) 71.08(7) 72.87(7)
0.48 98.71(8) 101.7(1) 104.68(9)
0.56 135.9(1) 140.19(9) 144.(1)
0.60 157.0(1) 162.3(1) 167.0(1)

polytrope
parameters

a = 5.48(12)

α = 2.42(1)

b = 12.06(14)

β = 0.47(1)

a = 5.55(5)

α = 2.44(1)

b = 12.32(6)

β = 0.49(1)

a = 5.76(7)

α = 2.43(1)

b = 12.39(8)

β = 0.49(1)

Table 5.2: Energy per particle in Λ neutron matter as a function of the baryon
density. The Λ fraction is fixed at xΛ = 0.0149. Different columns correspond to
different nucleon-nucleon and hyperon-nucleon potentials. a, α, b and β are the
fitted polytrope coefficients (Eq. (5.2)). The curves are reported in Fig. 5.1.
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Figure 5.1: Energy per particle as a function of the baryon density for Λ neutron
matter at fixed Λ fraction xΛ = 0.0149. Green curves refer to the PNM EoS,
blue and red to the YNM EoS with the inclusion of the two-body and two- plus
three-body hyperon nucleon force. In the upper panel the results are for the ΛNN
parametrization (I). In the lower panel the set (II) has been used. Dashed lines
are obtained using the AV8’ nucleon-nucleon potential. Solid lines represent the
results with the inclusion of the NNN Urbana IX potential.
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Figure 5.2: nn (dashed lines) and Λn (solid lines) pair correlation functions in
Λ neutron matter for ρb = 0.16 fm−3 and xΛ = 0.0149. The nucelon-nucleon
potential is AV8’+UIX. In the upper panel only the two-body hyperon-nucleon
potential has been used. In the lower panel also the three body ΛNN force in the
parametrization (II) has been considered. The subscript u (d) refers to the neutron
or lambda spin up (down).
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Figure 5.3: Same of Fig. 5.2 but for the baryon density ρb = 0.40 fm−3.
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the central (blue), Λ spin up - n spin down (red) and Λ spin up - n spin up (green)
channels respectively. In the upper panels results obtained using the two-body ΛN
interaction only are displayed. In the lower panels the three-body ΛNN force in
the parametrization (II) is also included.

The main information we can obtain from the plots is the non negligible effect on
inter-particle distances due to the inclusion of the three-body ΛNN force. Without
TNI among hyperons and neutrons, the central Λn correlation function presents a
maximum around 1.0 ÷ 1.2 fm, depending on the density. This is a consequence
of the attractive ΛN force that tends to create a shell of neutrons surrounding
the hyperon impurity. The effect is also visible at high density, although reduced.
When the ΛNN is considered, the shell effect disappears and the gΛn(r) resembles
the neutron-neutron one, particularly at high density. The inclusion of the repulsive
three-body force avoids the clustering of Λ particles in favor of a more homogenous
lambda-neutron medium. The use of a Λn central correlation, has the only effect
of reducing the value of gΛn(r) in the origin, moving the central functions close
to the PNM ones. For the small Λ fraction considered here, the neutron-neutron
correlation functions are not sensitive to the presence of the hyperon. Indeed,
similar results can be obtained for PNM.

It is interesting to observe the projection of the pair correlation functions in the
spin channels. For neutrons the Pauli principle tends to suppress the presence of
close pairs of particles with parallel spin. For the Λ-n pair, theoretically there is no
Pauli effect because the two particles belong to different isospin spaces. However,
the employed hyperon-nucleon interaction involves a σλ · σi contribution (recall
Eqs. (2.35) and (2.47)). This is almost negligible in the case of the ΛN potential
alone (upper panels of Figs. 5.2 and 5.3). It has instead a sizable effect in the
dominant three-body force, for which the channel Λ spin up - n spin down separates
from the Λ spin up - n spin up, revealing a (weak) net repulsion between parallel
configurations. Same effect can be found for Λ reversed spin.

5.2.2 Λ threshold density and the equation of state

In order to address the problem of Λ neutron matter, we make use of a for-
mal analogy with the study of two components Fermi gas used in the analysis of
asymmetric nuclear matter. When protons are added to the bulk of neutrons, the
energy per baryon can be expressed in terms of the isospin asymmetry

δI =
ρn − ρp
ρn + ρp

= 1− 2xp xp =
ρp
ρb

, (5.4)

as a sum of even powers of xp

Epn(ρb, xp) = Epn(ρb, 1/2) + S(2)
pn (ρb)(1− 2xp)

2 + S(4)
pn (ρb)(1− 2xp)

4 + . . . , (5.5)

where xp is the proton fraction and S
(2i)
pn (ρb) with i = 1, 2, . . . are the nuclear

symmetry energies. Typically, higher order corrections for i > 1 are ignored.
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The nuclear symmetry energy Spn(ρb) ≡ S
(2)
pn (ρb) is then defined as the difference

between the energy per baryon of PNM EPNM(ρb) = Epn(ρb, 0) and the energy per
baryon of symmetric nuclear matter (SNM) ESNM(ρb) = Epn(ρb, 1/2).

Epn(ρb, xp) can be rewritten in terms of the PNM energy:

Epn(ρb, xp) = ESNM(ρb) + Spn(ρb)
(

1− 2xp

)2
,

= ESNM(ρb) +
[
EPNM(ρb)− ESNM(ρb)

](
1− 2xp

)2
,

= EPNM(ρb) + Spn(ρb)
(
−4xp + 4x2

p

)
. (5.6)

In AFDMC calculations the Coulomb interaction is typically neglected. The dif-
ference between PNM and asymmetric nuclear matter is thus related to the isospin
dependent terms of the nucleon-nucleon interactions. The effect of these compo-
nents of the potential is parametrized by means of a function of the proton fraction
and a function of the baryon density.

We can try to make an analogy between asymmetric nuclear matter and hyper-
matter, by replacing the protons with the Λ particles. In this case the difference
with the PNM case is given by the “strangeness asymmetry”

δS =
ρn − ρΛ

ρn + ρΛ
= 1− 2xΛ , (5.7)

and the effect on the energy per particle is related to the hyperon-nucleon interac-
tions and the difference in mass between neutron and Λ. In the case of Λ neutron
matter, the analog of Eq. (5.5) should contain also odd powers of δS . These con-
tributions are negligible for asymmetric nuclear matter due to the smallness of the
charge symmetry breaking in NN interaction. Being the Λ particles distinguish-
able from neutrons, there are no theoretical arguments to neglect the linear term
in (1− 2xΛ). However, we can try to express the energy per particle of Λ neutron
matter as an expansion over the Λ fraction, by introducing an “hyperon symmetry
energy” SΛn(ρb) such that

EΛn(ρb, xΛ) = EPNM(ρb) + SΛn(ρb)
(
−xΛ + x2

Λ

)
. (5.8)

The expression for the energy difference directly follows from Eq. (5.8):

∆EΛn(ρb, xΛ) = EΛn(ρb, xΛ)− EPNM(ρb) = SΛn(ρb)
(
−xΛ + x2

Λ

)
. (5.9)

The idea is then to perform simulations for different Λ fraction in order to fit the
hyperon symmetry energy SΛn(ρb). The main problem in this procedure is the
limitation in the values of the hyperon fraction we can consider. In order to keep
xΛ small we can use up to 2 lambdas in the first momentum shell and try to vary
the number of neutrons from 66 to 14, as reported in Tab. 5.3. In fact, moving to
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the next Λ shell implies a total of 14 strange baryons and a number of neutrons that
is computationally demanding. Moreover, we cannot neglect the ΛΛ interaction for
14 hyperons in a box, even at low density. The inclusion of the hyperon-hyperon
force would lead to additional uncertainties in the calculation and it has not been
taken into account at this point.

Nn NΛ Nb xΛ xΛ %

66 0 66 0.0000 0.0%

66 1 67 0.0149 1.5%

54 1 55 0.0182 1.8%

38 1 39 0.0256 2.6%

66 2 68 0.0294 2.9%

54 2 56 0.0357 3.6%

38 2 40 0.0500 5.0%

14 1 15 0.0667 6.7%

Table 5.3: Neutron, lambda and total baryon number with the corresponding
Λ fraction for Λ matter calculations.

Because of finite size effects, we have to be careful in calculating the difference
∆EΛn. Being the Λ fraction small, we can suppose that these effects on the total
energy are mainly due to neutrons. By taking the difference between YNM and
PNM energies for the same number of neutrons, the finite size effects should cancel
out. We can see the problem from a different equivalent point of view. The starting
point is the energy of PNM obtained with 66 neutrons in the box. If we consider
the Λ matter described by 66n+1Λ or 66n+2Λ there are no problems in evaluating
∆EΛn. When moving to a different Λ fraction, the number of neutronsM in the
strange matter has to be changed. In order to take care of the modified neutron
shell, a reasonable approach is to correct the YNM energy by the contribution
given by the PNM “core” computed with 66 andM neutrons:

EcorrΛn (ρb, xΛ) = EMΛn(ρb, xΛ) +
[
E66

PNM(ρb)− EMPNM(ρb)
]

= E66
PNM(ρb) + SΛn(ρb)

(
−xΛ + x2

Λ

)
. (5.10)

In this way we obtain

∆EΛn(ρb, xΛ) = SΛn(ρb)
(
−xΛ + x2

Λ

)
= EMΛn(ρb, xΛ)− EMPNM(ρb) , (5.11)

that exactly corresponds to the result of Eq. (5.9).
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We verified that energy oscillations for different number of particles keep the
same ordering and relative magnitude around the value for 66 neutrons when the
density is changed. Actually this is true only when finite size effects due to the
truncation of the interaction are also considered. The effect of tail corrections due
to the potential is indeed severe, because it depends on both the number of particles
and the density, getting worst for few particles and at high densities. In order to
control these effects, we performed simulations for PNM and YNM with different
number of neutrons including tail corrections for the NN potential and also for
the NNN , ΛN and ΛNN forces which are all at the same TPE order and thus
have similar interaction range. The result is that, once all the finite size effects are
correctly taken into account, the ∆EΛn values for different densities and number
of particles, thus hyperon fraction, can actually be compared.

The result of this analysis is reported in Fig. 5.4. The values of the differ-
ence ∆EΛn are shown as a function of the Λ fraction for different baryon densi-
ties up to ρb = 0.40 fm−3. As expected, the energy difference is almost linear
in xΛ, at least for the range of Λ fraction that has been possible to investigate.
For xΛ = 0.0294, 0.0357, 0.05 two hyperons are involved in the calculation. For
these cases, we also tried to include the hyperon-hyperon interaction in addition
to the AV8’+UIX+ΛN+ΛNN potentials. The ΛΛ contribution is negligible up
to ρb ∼ 2.5ρ0, where some very small effects are found, although compatible with
the previous results within the statistical error bars. For densities higher than
ρb = 0.40 fm−3, finite size effects become harder to correct. Although the distri-
bution of energy values generally follows the trend of the lower density data, the
approximations used to compute ∆EΛn might not be accurate enough. A more
refined procedure to reduce the dependence on shell closure, for example involving
the twist-averaged boundary conditions, it is possibly needed.

We used the quadratic function ∆EΛn(xΛ) = SΛn(−xΛ + x2
Λ) to fit the ∆EΛn

values of Fig. 5.4. For each density the coefficient SΛn has been plotted as a
function of the baryon density, as shown in Fig. 5.5. In the case of asymmetric
nuclear matter, close to the saturation density the nuclear symmetry energy is
parametrized with a linear function of the density [40]. The data in Fig. 5.5 actually
manifest a linear behavior for ρb ∼ ρ0 but the trend deviates for large density. We
can try to fit the SΛn points including the second order term in the expansion over
ρb − ρ0:

SΛn(ρb) = S
(0)
Λn + S

(1)
Λn

(
ρb − ρ0

ρ0

)
+ S

(2)
Λn

(
ρb − ρ0

ρ0

)2

. (5.12)

The results are shown in Fig. 5.5 with the dashed line. The three parameters of
the SΛn(ρb) function are reported in Tab. 5.4.

After fitting the hyperon symmetry energy we have a complete parametrization
for the EoS of Λ neutron matter depending on both baryon density and Λ fraction
(Eq. (5.8)). For xΛ = 0 the relation reduces to the EoS of PNM parametrized by
the polytrope of Eq. (5.2) whose coefficients are reported in Tab. 5.1. For xΛ > 0
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Figure 5.4: YNM and PNM energy difference as a function of the Λ fraction for dif-
ferent baryon densities. The employed potential is the full AV8’+UIX+ΛN+ΛNN
parametrization (II). Dashed lines correspond to the quadratic fit ∆EΛn(xΛ) =
SΛn(−xΛ + x2

Λ). In the range of Λ fraction shown, ∆EΛn is essentially given by
the linear term in xΛ.

the presence of hyperons modifies the PNM EoS through the hyperon symmetry
energy and the quadratic term in xΛ. The derivation of SΛn has been performed
for small xΛ (∼ 10%), corresponding to a baryon density up to ∼ 3ρ0. However,
this should be enough to derive at least the Λ threshold density by imposing the

S
(0)
Λn S

(1)
Λn S

(2)
Λn

65.6(3) 46.4(1.6) -10.2(1.3)

Table 5.4: Coefficients (in MeV) of the hyperon symmetry energy function of
Eq. (5.12). The parameters are obtained from the quadratic fit on the ∆EΛn

results reported in Fig. 5.4.
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Figure 5.5: Hyperon symmetry energy as a function of the baryon density. Red
dots are the points obtained by the the quadratic fit ∆EΛn(xΛ) = SΛn(−xΛ + x2

Λ)
on the data of Fig. 5.4. The dashed line is the SΛn(ρb) fitted curve of Eq. (5.12).

chemical potentials equilibrium condition µΛ = µn.
Let us start defining the energy density E for the Λ neutron matter as

EΛn(ρb, xΛ) = ρbEΛn(ρb, xΛ) + ρnmn + ρΛmΛ ,

= ρb

[
EΛn(ρb, xΛ) +mn + xΛ∆m

]
, (5.13)

where

ρn = (1− xΛ)ρb ρΛ = xΛρb , (5.14)

and ∆m = mΛ −mn. For xΛ = 0 the relation corresponds to the PNM case. The
chemical potential is generally defined as the derivative of the energy density with
respect to the number density, evaluated at fixed volume:

µ =
∂E
∂ρ

∣∣∣∣∣
V

. (5.15)
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In AFDMC calculations, because of the requirement of the momentum shell closure,
the number of particles has to be fixed. The density is increased by changing the
volume, i.e. reducing the size of the simulation box. Therefore, Eq. (5.15) must
include a volume correction of the form

µ =
∂E
∂ρ

+ ρ
∂E

∂ρ
. (5.16)

Our chemical potentials are thus given by

µκ(ρb, xΛ) =
∂EΛn(ρb, xΛ)

∂ρκ
+ ρκ

∂EΛn(ρb, xΛ)

∂ρκ
, (5.17)

where κ = n,Λ and the derivatives of the energy per particle and energy density
must be calculated with respect to ρb and xΛ:

∂FΛn(ρb, xΛ)

∂ρκ
=
∂FΛn(ρb, xΛ)

∂ρb

∂ρb
∂ρκ

+
∂FΛn(ρb, xΛ)

∂xΛ

∂xΛ

∂ρκ
. (5.18)

Recalling Eq. (5.14) we have

∂ρb
∂ρn

= 1
∂ρb
∂ρΛ

= 1
∂xΛ

∂ρn
= −xΛ

ρb

∂xΛ

∂ρΛ
=

1− xΛ

ρb
, (5.19)

and thus the neutron and lambda chemical potentials take the form:

µn(ρb, xΛ) =
∂EΛn

∂ρb
− xΛ

ρb

∂EΛn

∂xΛ
+ (1− xΛ)ρb

∂EΛn

∂ρb
− xΛ(1− xΛ)

∂EΛn

∂xΛ
, (5.20)

µΛ(ρb, xΛ) =
∂EΛn

∂ρb
+

1− xΛ

ρb

∂EΛn

∂xΛ
+ xΛρb

∂EΛn

∂ρb
+ xΛ(1− xΛ)

∂EΛn

∂xΛ
. (5.21)

The two µn and µΛ surfaces in the ρb − xΛ space cross each other defining
the curve xΛ(ρb) reported in Fig. 5.6. This curve describes the equilibrium condi-
tion µΛ = µn. It thus defines the Λ threshold density xΛ(ρthΛ ) = 0 and provides
the equilibrium Λ fraction for each density. For the given parametrization of the
hyperon symmetry energy, the threshold density is placed around 1.9ρ0, which is
consistent with the theoretical indication about the onset of strange baryons in the
core of a NS. Once the Λ particles appear, the hyperon fraction rapidly increases
due to the decrease of the energy and pressure that favors the n → Λ transition
(see § 1.2). However, there is a saturation effect induced by the repulsive nature
of the hyperon-nucleon interaction that slows down the production of Λ particle at
higher density.

By using the Λ threshold density ρthΛ and the equilibrium Λ fraction values
xΛ(ρb) in Eq. (5.8), we can finally address the Λ neutron matter EoS. The result
is reported in Fig. 5.7. The green dashed line is the PNM EoS for AV8’, the green
solid line the one for AV8’+UIX. Red curve is instead the YNM EoS coming from
the AV8’+UIX+ΛN+ΛNN (II) potentials. At the threshold density there is a
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Figure 5.6: Λ fraction as a function of the baryon density. The curve describes the
equilibrium condition µΛ = µn. The red line is the result for the quadratic fit on
the ∆EΛn data of Fig. 5.4. The blue dotted vertical line indicates the Λ threshold
densities ρthΛ such that xΛ(ρthΛ ) = 0.

strong softening of the EoS induced by the rapid production of hyperons. However
the EoS becomes soon almost as stiff as the PNM EoS due to hyperon saturation
and the effect of the repulsion among hyperons and neutrons. In ρb = ρthΛ there
is a phase transition between PNM and YNM. For densities close to the threshold
density, the pressure becomes negative. This is a non physical finite size effect due
to the small number of particles considered in the simulations, not large enough
for the correct description of a phase transition. However, in the thermodynamical
limit the effect should disappear. We could mitigate this effect by using a Maxwell
construction between the PNM and the YNM EoS. The details of the density
dependence of the energy per baryon at the hyperon threshold are however not
relevant for the derivation of the maximum mass.

The derived model for the EoS of Λ neutron matter should be a good approx-
imation up to ρb ∼ 3ρ0. The behavior of the energy per baryon after this limit
depends on density and Λ fraction to which we do not have controlled access with
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the present AFDMC calculations. Moreover, starting from ρb > 0.6 fm−3, Σ0 hy-
perons could be formed, as shown in Fig. 1.4. The behavior of the energy curve
should thus be different. However, there are already strong indications for a weak
softening of the EoS induced by the presence of hyperons in the neutron bulk when
the hyperon-nucleon potentials employed for hypernuclei are used.
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Figure 5.7: Equation of state for Λ neutron matter. Green solid (dashed) curves
refer to the PNM EoS calculated with the AV8’+UIX (AV8’) potential. Red line
is the EoS for YNM corresponding to the quadratic fit on the ∆E data of Fig. 5.4.
The employed hyperon-nucleon potential is the full two- plus three-body in the
parametrization (II). The Λ threshold density is displayed with the blue dotted
vertical line.

5.2.3 Mass-radius relation and the maximum mass

In Chapter 1 we have seen that, given the EoS, the mass-radius relation and
the predicted maximum mass are univocally determined. The M(R) curves are
the solutions of the TOV equations (1.6), which involve the energy density E and
the pressure P . For YNM the energy density is given by Eq. (5.8) supplemented
by the hyperon threshold density and the xΛ(ρb) curve. For the pressure we can
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simply use the relation

PΛn(ρb, xΛ) = ρ2
b

∂EΛn(ρb, xΛ)

∂ρb
, (5.22)

where the additional term due to density dependence of the Λ fraction vanishes
once the equilibrium condition µΛ = µn is given.

Fig. 5.8 reports theM(R) curves solution of the TOV equations for the EoS re-
ported in Fig. 5.7. Green curves are the PNM relations for AV8’ (dashed) and
AV8’+UIX (solid). Red one is the result for the Λ neutron matter described
by the full nucleon-nucleon and hyperon-nucleon interaction in the parametriza-
tion (II). The shaded region corresponds to the excluded region by the causality
condition [244]

M . β
c2

G
R β =

1

2.94
, (5.23)

where G is the gravitational constant and c the speed of light. The curves with
the inclusion of the TNI partially enter the forbidden region. This is due to the
behavior of our EoS that evaluated for very high densities becomes superluminal.
A connection to the maximally stiff EoS given by the condition P < 1/3 E should
be needed. However, we can estimate the effect on the maximum mass to be rather
small, not changing the general picture.

The maximum mass for PNM obtained using the Argonne V8’ and Urbana IX
potentials is reduced from ∼ 2.45M� to ∼ 2.40M� by the inclusion of Λ hyperons.
This small reduction follows by the stiffness of the YNM EoS for densities larger
than ρb ∼ 3ρ0, up to which our model gives a good description of the strange
system. However, by limiting the construction of theM(R) relation in the range of
validity of the employed YNM model, the mass of the star is already at ∼ 1.81M�
around R = 12.5 km, and at ∼ 1.98M� if we extend the range up to ρb = 0.55 fm−3.
These values are larger than the predicted maximum mass for hypermatter in all
(B)HF calculations (see § 1.2).

Regardless of the details of the real behavior of the EoS for ρb > 3ρ0, we
can speculate that a maximum mass of 2M� can be supported by the Λ neutron
matter described by means of the realistic AV8’+UIX potentials plus the here
developed two- and three-body hyperon-nucleon interactions. The key ingredient
of the picture is the inclusion of the repulsive ΛNN force that has been proven
to give a fundamental contribution in the realistic description of Λ hypernuclei.
Although very preliminary, our first AFDMC calculations for hypermatter suggest
that a 2M� neutron star including hyperons can actually exist.

The solution of the TOV equations provides additional information on the cen-
tral density ρc of the star. The behavior of the star mass as a function of the
central density determines the stability condition of the NS trough the relation
dM(ρc)/dρc > 0. For non rotating neutron stars, configurations that violate this
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Figure 5.8: Mass-radius relation for Λ neutron matter. Green solid (dashed) curves
refer to the PNM calculation with the AV8’+UIX (AV8’) potential. Red line is the
result for the YNM corresponding to the quadratic fit on the ∆EΛn data of Fig. 5.4.
The light blue and brown bands correspond to the masses of the millisecond pulsars
PSR J1614-2230 (1.97(4)M�) [6] and PSR J1903+0327 (2.01(4)M�) [7]. The gray
shaded region is the excluded part of the plot according to causality.

condition are unstable and will collapse into black holes [1]. As can be seen from
Fig. 5.9 where the mass-central density relation is reported, the maximum mass
also determines the maximum central density for stable NSs. Within our model,
ρmax
c is around 5.7ρ0 for both PNM and YNM when the three-nucleon force is

considered in the calculation. Given the fact the inter-particle distance scale as
ρ
−1/3
c , we can estimate that for the given ρmax

c baryons are not extremely packed.
The baryon-baryon distances are of the order of few fermi, comparable to the range
of the hard core of the nucleon-nucleon and hyperon-nucleon interactions consid-
ered. Therefore, in this framework there is no evidence for the appearance of exotic
phases like quark matter. Our YNM EoS is stiff enough to realistically describe the
infinite medium supporting a 2M� NS without requiring other additional degrees
of freedom for the inner core.
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Figure 5.9: Stellar mass versus central density for Λ neutron matter. The key is
the same of Fig. 5.8. The vertical blue dotted line represents the maximum central
density for the stability of the star when TNI forces are considered.
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Chapter 6

Conclusions

In this work the recent developments in Quantum Monte Carlo calculations
for nuclear systems including strange degrees of freedom have been reported. The
Auxiliary Field Diffusion Monte Carlo algorithm has been extended to the strange
sector by the inclusion of the lightest among the hyperons, the Λ particle. This
gave us the chance to perform detailed calculations for Λ hypernuclei, providing a
microscopic framework for the study of the hyperon-nucleon interaction in connec-
tion with the available experimental information. The extension of the method for
strange neutron matter, put the basis for the first Diffusion Monte Carlo analysis of
the hypernuclear medium, with the derivation of neutron star observables of great
astrophysical interest.

The main outcome of the study of Λ hypernuclei, is that, within the employed
phenomenological model for hyperon-nucleon forces, the inclusion of a three-body
ΛNN interaction is fundamental to reproduce the ground state physics of medium-
heavy hypernuclei, in particular the observed saturation property of the hyperon
binding energy. By accurately refitting the three-body hyperon-nucleon interac-
tion, we obtain a substantial agreement with the experimental separation energies,
that are strongly overestimated by the use of a bare ΛN interaction. The result
is of particular interest because with the employed algorithm, heavy hypernuclei
up to 91 particles have been investigated within the same theoretical framework,
providing a realistic description able to reproduce the extrapolation of the hyperon
binding energy in the infinite medium. By employing an effective hyperon-hyperon
interaction, first steps in the study of S = −2 Λ hypernuclei have also been taken.
The interest in these systems is motivated by the controversial results coming from
both theoretical and experimental studies.

Preliminary AFDMC results on hypermatter indicate that the hyperon-nucleon
interaction fitted on finite strange nuclei leads to a stiff equation of state for the
strange infinite medium. Within our model, Λ particles start to appear in the
neutron bulk around twice the saturation density, consistently with different theo-
retical previsions. However, the predicted softening of the equation of state seems
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not to be dramatic, due to the strongly repulsive nature of the employed three-body
hyperon-nucleon force. This fact helps to understand how the necessary appear-
ance of hyperons at some value of the nucleon density in the inner core of a neutron
star might eventually be compatible with the observed neutron star masses of order
2M�.

Both works on hypernuclei and hypermatter represent the first Diffusion Monte
Carlo study of finite and infinite strange nuclear systems, and thus are subject to
further improvements. The algorithm for (hyper)nuclei should be refined in order to
become more independent from the starting trial wave function that should include
also correlations other than the pure central. Together with the accurate treatment
of the tensor (and spin-orbit) potential term and, possibly, with the inclusion of
the density dependent nucleon-nucleon interaction developed in the framework of
correlated basis function [245], the algorithm might become a powerful tool for
the precise investigation not only of energy differences but also of other structural
ground state properties such as density and radii. From the methodological point
of view, the algorithm for infinite strange systems could benefit from the inclusion
of twist-averaged boundary conditions, that would allow for a more refined study
of the equation of state of the hypernuclear medium and thus the derivation of the
maximum mass.

It would be interesting to perform benchmark calculations with the employed
hyperon-nucleon force by means of few-body methods. This would reduce the
uncertainties on the fitted interaction, providing more insight on the structure
of the phenomenological potential for light hypernuclei. On the other hand, by
projecting the three-body interaction on the triplet and singlet isospin channels,
it would be possible to fit the experimental data for large hypernuclei in order
to better capture the features of the interaction that are relevant for the neutron
star physics without significantly change the compatibility of the results with the
lighter strange nuclei. This could definitely determine a stiff equation of state for
the hyperon neutron matter supporting a 2M� star.

In the same contest, the study of asymmetric nuclear matter with the inclusion
of hyperon degrees of freedom is very welcome. At present this project has not
started yet and so the goal is far to be achieved. However this is one of the more
promising direction in order to describe the properties of stellar matter at high
densities by means of accurate microscopic calculations with realistic interactions.

The very recent indication of a bound Λnn three-body system [76], might mo-
tivate the AFDMC investigation of hyper neutron drops. Weakly bound systems
are typically not easily accessible by means of standard AFDMC method for finite
systems. The study of neutron systems confined by an external potential with the
inclusion of one or more hyperons, could give fundamental information about the
hyperon-neutron and hyperon-hyperon interaction in connection with the experi-
mental evidence of light neutron rich hypernuclei, such as 6

ΛH [85], or the theoretical
speculation of exotic neutron systems, as the bound ΛΛnn system.



Appendix A

AFDMC wave functions

A.1 Derivatives of the wave function: CM corrections

As seen in § 3.2.4, for finite systems the single particle orbitals must be referred
to the CM of the system: rp → rp− rCM . Each derivative with respect to nucleon
or hyperon coordinates has thus to be calculated including CM corrections. Let
Call ρi the relative coordinates and ri the absolute ones for nucleons, and ρΛ, rλ
the analogues for the hyperons. Then

ρi = ri − ρCM ρλ = rλ − ρCM , (A.1)

with

ρCM =
1

M

(
mN

∑

k

rk +mΛ

∑

ν

rν

)
M = NN mN +NΛmNmΛ . (A.2)

In order to simplify the notation, in the next we will use rp instead of rp. The
equations for the first derivatives will be valid for the Cartesian component of the
position vectors. In the relations for the second derivatives implicit sums over
Cartesian components will be involved.

Consider a function of the relative nucleon and hyperon coordinates:

f(ρN , ρΛ) ≡ f(ρ1, . . . , ρNN , ρ1, . . . , ρNΛ
) , (A.3)

In order to calculate the derivatives of f(ρN , ρΛ) with respect to rp, we need to
change variable. Recalling that now all the coordinates (nucleons and hyperons)
are connected together via the CM, we have

∂

∂ri
f(ρN , ρΛ) =

∑

j

∂ρj
∂ri

∂

∂ρj
f(ρN , ρΛ) +

∑

µ

∂ρµ
∂ri

∂

∂ρµ
f(ρN , ρΛ) , (A.4)

∂

∂rλ
f(ρN , ρΛ) =

∑

µ

∂ρµ
∂rλ

∂

∂ρµ
f(ρN , ρΛ) +

∑

j

∂ρj
∂rλ

∂

∂ρj
f(ρN , ρΛ) , (A.5)
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where

∂ρj
∂ri

= δij −
mN

M
,

∂ρµ
∂ri

= −mN

M
,

∂ρµ
∂rλ

= δλµ −
mΛ

M
,

∂ρj
∂rλ

= −mΛ

M
. (A.6)

The CM corrected first derivates take then the form:

∂

∂ri
f(ρN , ρΛ) =


 ∂

∂ρi
− mN

M


∑

j

∂

∂ρj
+
∑

µ

∂

∂ρµ




 f(ρN , ρΛ) , (A.7)

∂

∂rλ
f(ρN , ρΛ) =


 ∂

∂ρλ
− mΛ

M


∑

j

∂

∂ρj
+
∑

µ

∂

∂ρµ




 f(ρN , ρΛ) . (A.8)

For the second derivatives we have:

∂2

∂r2
i

f(ρN , ρΛ) =


 ∂2

∂ρ2
i

− 2
mN

M


∑

j

∂2

∂ρi∂ρj
+
∑

µ

∂2

∂ρi∂ρµ




+
m2
N

M2


∑

jk

∂2

∂ρj∂ρk
+
∑

µν

∂2

∂ρµ∂ρν
+ 2

∑

jµ

∂2

∂ρj∂ρµ




 f(ρN , ρΛ) ,

(A.9)

∂2

∂r2
λ

f(ρN , ρΛ) =


 ∂2

∂ρ2
λ

− 2
mΛ

M


∑

µ

∂2

∂ρλ∂ρµ
+
∑

j

∂2

∂ρλ∂ρj




+
m2

Λ

M2


∑

µν

∂2

∂ρµ∂ρν
+
∑

jk

∂2

∂ρj∂ρk
+ 2

∑

µj

∂2

∂ρµ∂ρj




 f(ρN , ρΛ) .

(A.10)

Consider now the hypernuclear wave function of Eq. (3.122) and assume the
compact notation:

ψT =
∏

λi

fΛN
c (rλi)ψ

N
T (RN , SN )ψΛ

T (RΛ, SΛ) ,

=
∏

λi

fΛN
c (rλi)

∏

i<j

fNNc (rij)
∏

λ<µ

fΛΛ
c (rλµ) det

{
ϕNε (ri, si)

}
det
{
ϕΛ
ε (rλ, sλ)

}
,

= JΛN JNN JΛΛ detN detΛ . (A.11)

The trial wave function is written in the single particle representation and thus it
should be possible to factorize the calculation of the derivatives on each compo-
nent. However, when we use the relative coordinates with respect to the CM, the



A.1. Derivatives of the wave function: CM corrections 123

antisymmetric part of the wave function detN detΛ has to be treated as a function
of both nucleon and hyperon coordinates, like the function f(ρN , ρΛ) used above.
The Jastrow correlation functions instead, being functions of the distances between
two particles, are not affected by the CM corrections. It is then possible to obtain
in a simple way the derivatives with respect to the nucleon and hyperon coordinates
by calculating the local derivatives:

∂pψT
ψT

=

∂
∂Rp

ψT

ψT
with p = N,Λ , (A.12)

which are of particular interest in the AFDMC code for the calculation of the drift
velocity of Eq. (3.32) and the local energy of Eq. (3.34). The first local derivatives
read

∂NψT
ψT

=
∂NJNN
JNN

+
∂NJΛN

JΛN
+
∂N (detNdetΛ)

detNdetΛ
, (A.13)

∂ΛψT
ψT

=
∂ΛJΛΛ

JΛΛ
+
∂ΛJΛN

JΛN
+
∂Λ (detNdetΛ)

detNdetΛ
, (A.14)

while the second local derivatives take the form

∂2
NψT
ψT

=
∂2
NJNN
JNN

+
∂2
NJΛN

JΛN
+
∂2
N (detNdetΛ)

detNdetΛ
+ 2

∂NJNN
JNN

∂NJΛN

JΛN

+ 2
∂NJNN
JNN

∂N (detNdetΛ)

detNdetΛ
+ 2

∂NJΛN

JΛN

∂N (detNdetΛ)

detNdetΛ
, (A.15)

∂2
ΛψT
ψT

=
∂2

ΛJΛΛ

JΛΛ
+
∂2

ΛJΛN

JΛN
+
∂2

Λ (detNdetΛ)

detNdetΛ
+ 2

∂ΛJΛΛ

JΛΛ

∂ΛJΛN

JΛN

+ 2
∂ΛJΛΛ

JΛΛ

∂Λ (detNdetΛ)

detNdetΛ
+ 2

∂ΛJΛN

JΛN

∂Λ (detNdetΛ)

detNdetΛ
. (A.16)

The derivatives of Jastrow correlation functions require a standard calculations,
while for the derivatives of the Slater determinant (SD) we need to include CM
corrections as in Eqs. (A.7), (A.8), (A.9) and (A.10). Moreover, the derivative of a
SD is typically rather computationally expensive and in the above relations many
terms, also with mixed derivatives, are involved. An efficiently way to deal with
derivatives of a SD is described in the next section.
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A.2 Derivatives of a Slater determinant

Consider a Slater determinant |A|. Let us define Aij = fi(j), so that ∂jAij =
f ′i(j). Assume iB a matrix equal to A but with the column i replaced by the
derivative of f : iBki = f ′k(i) and iBkj = fk(j) for j 6= i. Consider then the trivial
identity

|Q| = |Q|
∑

i

QijQ
−1
ji =

∑

i

Qij(Q
−1
ji |Q|) , (A.17)

and the following relation

Q−1
ji |Q| = (−1)i+j |Q(ij)| , (A.18)

where the minor Q(ij) is, by definition, j-independent. The first derivative of a SD
takes the form

∂j |A| = |A|
∑

i

A−1
ji (∂jAij) = |A|

∑

i

A−1
ji f

′
i(j) , (A.19)

and the second derivative reads:

∂2
j |A| = |A|

∑

i

A−1
ji (∂2

jAij) = |A|
∑

i

A−1
ji f

′′
i (j) . (A.20)

An efficient way to compute the second mixed derivative of a SD ∂j∂i|A| is to
write the first derivative as |jB| = ∂j |A|, i.e.

|jB| = |A|
∑

i

A−1
ji f

′
i(j) . (A.21)

Using the relation (A.19) for |iB|, we can write

∂j∂i|A| = ∂j |iB| = |iB|
∑

k

(iB)−1
jk (∂j

iBkj) . (A.22)

Choosing j 6= i we have that (∂j
iBkj) = (∂jAkj) = f ′k(j) and, using (A.21), it is

possible to rewrite the previous equation as:

∂j∂i|A| = |A|
(∑

k

(iB)−1
jk f

′
k(j)

)(∑

k

A−1
ik f

′
k(i)

)
. (A.23)

Consider now the Sherman-Morrison formula

(A+ uvT )−1 = A−1 − (A−1uvTA−1)

1 + vTA−1u
, (A.24)
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with u,v vectors. If we choose (A+ uvT ) = iB, i.e.

uk = f ′k(i)− fk(i)
{
vk = 0 k 6= i

vk = 1 k = i
(A.25)

we can use the Sherman-Morrison relation to to compute (iB)−1:

(iB)−1
jk = A−1

jk −A−1
ik

(∑

k

A−1
jk f

′
k(i)

)
−
(∑

k

A−1
jk fk(i)

)

1 +

(∑

k

A−1
ik f

′
k(i)

)
−
(∑

k

A−1
ik fk(i)

) . (A.26)

Recalling that fk(i) = Aki and assuming j 6= i we have

(iB)−1
jk = A−1

jk −A−1
ik
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k

A−1
jk f

′
k(i)

)
−
�
��
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��

��*
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)
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A−1
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′
k(i)

)
−
��

�
��

�
��(∑

k

A−1
ik Aki

) . (A.27)

Finally the second mixed derivative (j 6= i) of a SD results:

∂j∂i|A| = |A|
{[∑

k

A−1
ik f

′
k(i)

][∑

k

A−1
jk f

′
k(j)

]
−
[∑

k

A−1
ik f

′
k(j)

][∑

k

A−1
jk f

′
k(i)

]}
.

(A.28)

Eqs. (A.19), (A.20) and (A.28) are used to calculate the derivatives with all the
CM corrections of the Slater determinant f(ρN , ρΛ) = detNdetΛ. The derivation
of these equations is actually valid for any single particle operator Oj . Eqs. (A.19),
(A.20) and (A.28) can be thus used to describe the linear or quadratic action of a
single particle operator on a SD, that can be expressed as a local operator:

Oj |A|
|A| =

∑

i

A−1
ji (OjAij) , (A.29)

O2
j |A|
|A| =

∑

i

A−1
ji (O2

jAij) , (A.30)

OjOi|A|
|A| =

{[∑

k

A−1
ik (OiAki)

][∑

k

A−1
jk (OjAkj)

]

−
[∑

k

A−1
ik (OjAkj)

][∑

k

A−1
jk (OiAki)

]}
. (A.31)
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For example, considering the spin term of Eq. (3.65) we have:

σiα σjβ|A|
|A| =

{[∑

k

A−1
jk σjβAkj

][∑

k

A−1
ik σiαAki

]

−
[∑

k

A−1
jk σiαAki

][∑

k

A−1
ik σjβAkj

]}
, (A.32)

where |A| could be again the SD detNdetΛ of the trial wave function.
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ΛN space exchange potential

As proposed by Armani in his Ph.D. thesis [224], the inclusion of the Px opera-
tor in the AFDMC propagator can be possibly realized by a mathematical extension
of the isospin of nucleons

(
p

n

)
⊗
(

Λ
)
−→




p

n

Λ


 , (B.1)

such that in the wave function hyperon and nucleon states can be mixed, referring
now to indistinguishable particles. An antisymmetric wave function with respect
to particle exchange must be an eigenstate of the pair exchange operator Ppair with
eigenvalue −1:

−1 = Ppair = Px Pσ Pτ ⇒ Px = −Pσ Pτ , (B.2)

where Px exchanges the coordinates of the pair, Pσ the spins and Pτ the extended
isospins:

Pσ(i←→ j) =
1

2

(
1 +

3∑

α=1

σiα σjα

)
, (B.3)

Pτ (i←→ j) =
1

2

(
2

3
+

8∑

α=1

λiα λjα

)
. (B.4)

The particle indices i and j run over nucleons and hyperons and the λiα are the
eight Gell-Mann matrices. Px takes now a suitable form (square operators) for
the implementation in the AFDMC propagator. The technical difficulty in such
approach is that we need to deeply modify the structure of the code. The hyper-
nuclear wave function has to be written as a single Slater determinant including
nucleons and hyperons states, matched with the new 3-component isospinor and
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2-component spinors, so a global 6-component vector. All the potential operators
must be represented as 6×6 matrices and the ones acting on nucleons and hyperons
separately must be projected on the correct extended isospin states:

PN =
2 +
√

3λ8

3




1 0 0

0 1 0

0 0 0


 , (B.5)

PΛ =
1−
√

3λ8

3




0 0 0

0 0 0

0 0 1


 . (B.6)

In addition, due to the non negligible mass difference between nucleons and hyper-
ons, also the kinetic operator must be splitted for states with different mass:

e−dτ
~2

2

∑
iOmi∇2

i with Omi =




1/mN 0 0

0 1/mN 0

0 0 1/mΛ


 . (B.7)

Finally, it is not even clear if all the operators of the two- and three-body hyperon-
nucleon interaction will be still written in a suitable form for the application of the
the Hubbard-Stratonovich transformation. For pure neutron systems this approach
might simply reduce to an analog of the nucleonic case. The extended spin-isospin
vector will have four components and all the operators will be represented as 4× 4
matrices coupled with the PN and PΛ on the reduced space. The Omi operator will
have just two diagonal elements with the mass of the neutron and the hyperon.
Although this purely mathematical approach could be applied, many questions
arise from the physical point of view. By considering an extended isospin vec-
tor, states with different strangeness (0 for nucleons and −1 for the Λ particle)
will mix during the imaginary time evolution. This violates the conservation of
strangeness that should be instead verified by the strong interaction. The picture
becomes even less clear if we consider the ΛΛ interaction of Eq. (2.48), because
strangeness will be distributed among all the particles but the potential is explicitly
developed for hyperon-hyperon pairs. Thus, for the phenomenological interactions
introduced in Chapter 2, this mathematical approach is not feasible and it has not
been investigated in this work.
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