
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

Domain Specific Mashup Platforms

as a Service

Stefano Soi

Advisors:

Prof. Fabio Casati and Dr. Florian Daniel

Università degli Studi di Trento

March 2013





Abstract

Since the Web 2.0 advent, Web users have gained more and more power

moving their role from simple information consumers to producers. In line

with this trend, mashup technologies have immediately attracted a lot of at-

tention and many research investments since their birth. The big mashup

promise was to bring application development to the masses, so that

any Web-educated worker, also non-IT skilled, could implement his/her

own situational applications (i.e., relatively small applications meant to

address a temporary need of one or few persons) exploiting the simple

paradigms and visual metaphors provided by mashup tools. After a decade

from the first mashup tools, though, mashups are not really part of

people’s everyday life and are still rather unknown technologies that —

beside some exceptions — hardly find concrete application in the real

world.

During our research in this field our high-level goal was to foster the

adoption of mashup technologies by end users. Aiming at this,

we identified three main characteristics that must be reached by mashup

technologies to get to the expected diffusion: (i) usefulness and (ii) us-

ability for the end users and (iii) affordability for the developers of the

respective mashup tools (in terms of required skills, time and cost). We

identified lacks in these achievements as main hindering factors for the

wide adoption of mashup technologies. Making mashup technologies use-

ful, usable and affordable, therefore, are the three main challenges we

addressed in our research work. This work contributes to the achievement

of all these three major goals: first, by enabling a so-called universal in-



tegration paradigm, focussing on the creation of more powerful and com-

plete mashups allowing data, application logic and user interface integration

in one single language and tool; then, by introducing and developing do-

main specific mashup technologies, able to lower mashups’ complexity

and make them usable by domain experts (i.e., end users expert of a given

target domain); finally, by realizing a system able to generate domain spe-

cific mashup platforms as a service, basically relieving developers of

platforms implementation and, therefore, making platform development af-

fordable. This thesis specifically focusses on the last two points, i.e., on the

domain specific mashup approach and on the semi-automatic generation of

domain specific mashup platforms.

Keywords

Mashups, Mashup tools, Domain specific mashups, mashup platform de-

sign, mashup platform meta-design, mashup platform as a service



Contents

Executive summary 3

1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background: Universal Integration . . . . . . . . . . . . . 5

3 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Domain Specific Mashups as EUD Enablers . . . . . . . . 12

5 DSM Platforms as a Service . . . . . . . . . . . . . . . . . 14

6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 20

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7.1 Validation and Limitations . . . . . . . . . . . . . . 23

7.2 Lessons Learned . . . . . . . . . . . . . . . . . . . . 25

7.3 Future works . . . . . . . . . . . . . . . . . . . . . 27

Bibliography 28

APPENDIXES 33

A Hosted Universal Integration on the Web: the mashArt

Platform [5] 33

B From Mashup Technologies to Universal Integration: Search

Computing the Imperative Way [9] 36

C Distributed Orchestration of User Interfaces [12] 59

i



D From People to Services to UI: Distributed Orchestration

of User Interfaces [10] 75

E MarcoFlow: Modeling, Deploying, and Running Distributed

User Interface Orchestrations [11] 91

F Distributed User Interface Orchestration: On the Compo-

sition of Multi-User (Search) Applications [8] 101

G Domain-specific Mashups: From All to All You Need [22] 111

H Developing Mashup Tools for End-Users: On the Impor-

tance of the Application Domain [7] 123

I On the Systematic Development of Domain-Specific Mashup

Tools for End Users [16] 150

J ResEval Mash: A Mashup Tool for Advanced Research

Evaluation [15] 158

K Developing Domain-Specific Mashup Tools for End Users

[6] 162

L From Mashups to Telco Mashups: A Survey [14] 164

M Orchestrated User Interface Mashups Using W3C Widgets

[27] 174

N Conceptual Design of Sound, Custom Composition Lan-

guages [24] 186

O Domain-Specific Mashup Platforms as a Service: A Con-

ceptual Development Approach [23] 212

ii



Structure of the Thesis

This thesis is structured as a collection of articles that we published during

this work and that, therefore, have been reviewed and accepted by peers

in the scientific community1. This dissertation presents an executive sum-

mary of our research work, providing an overview of the main problems and

solutions, and the references to our articles describing in deeper details the

various parts of the work. The executive summary is structured as follows.

First, we provide the context of this thesis and some background work

(Section 1 and 2, respectively). Then, we define the problems we identi-

fied in this context (in Section 3) and the proposed solutions to address

them, which are discussed in Section 4 and 5. Section 6 provides the list of

our main contributions and Section 7, finally, discusses the key lessons we

learned during this research work and its main limitations. All the articles

composing this work (cited in Figure 3) are included as appendixes at the

end of this dissertation.

1The only not yet published article in this thesis is [23], which is a technical report and will be

submitted for publication soon

1



2



Executive summary

1 Context

During the last decade a vast amount of functionalities have been made

available as online services, in form of Web Services, REST or JavaScript

APIs, RSS/Atom feeds and so on. While these services can also be used in-

dependently of each other, putting them together to create a value-adding

combination could lead to much more fruitful results. This is exactly what

mashups try to achieve. We define mashups as web applications that in-

tegrate data, application logic, and/or user interfaces (UIs) sourced from

the Web. We define mashup tools as development environments allowing

the creation and execution of mashup compositions integrating the three

types of components just mentioned, typically through a graphical Web in-

terface. In addition, most mashup tools aim at empowering non-IT skilled

Web users to develop such composite applications, therefore, enabling end

user development (EUD). A number of studies [13, 2] discuss the ben-

efits of moving the development of this kind of composite applications

from IT-experts to non-programmers. This would be a radical paradigm

shift bringing two main advantages: (i) avoid requirements transfer from

domain-experts to IT-experts and (ii) allow the effective development of

situational applications, i.e., applications addressing transient or very spe-

cific needs regarding one or few persons for which a standard software

3



1. CONTEXT

development lifecycle would not be time- and cost-effective. These reasons

have motivated our and others’ research in the mashup area and pushed

the proliferation of mashup tools.

The goal of this thesis is to bring mashup development to end

users. With the term end user we refer to non-programmers possessing

a minimum level of IT skills, for example, that of the average Excel user

or perhaps, using Nardi’s terminology [20], that of the “local developers”

(i.e., non-programmers passionate about new software technologies).

To achieve this goal, we identify two main characteristics that mashup

technologies (intended in the broad sense, including mashup approaches,

models and tools) must have to be suitable for end users. Mashup tech-

nologies must be:

• powerful: they must provide enough expressive power to allow the

users to realize applications able to address and solve real-life practical

problems;

• simple: they must be simple enough so that also non-IT skilled end

users are able to use them to build their own — useful — compositions,

achieving, thus, so-called end user development (EUD).

We identified lacks in these achievements as main hindering factors for

the wide adoption of mashup technologies by end users. Many mashup

solutions allow users to only define part of an application (e.g., the ser-

vice composition) requiring the manual implementation and integration of

other needed parts (e.g., the UIs). These solutions alone are therefore not

powerful enough to let users create complete applications from start to end.

Moreover, they are typically too complex to be used by end users to create

real-life, useful applications; for example, Yahoo Pipes1 presents composi-

tional elements representing programming concepts, like feed fetching or

regular expressions, that end users are not able to understand.
1Yahoo Pipes hompage: http://pipes.yahoo.com

4



2. BACKGROUND: UNIVERSAL INTEGRATION

Making mashup technologies useful (by making them more powerful)

and usable (by making them simpler), therefore, is the main challenge

we addressed in our research work. To further foster mashup technologies’

adoption, we also aim at making mashup platform development easier and

faster, allowing the achievement of efficient cost/benefit ratios. In other

words, this means making them affordable for those who need to develop

a mashup platform.

This dissertation focusses on the solutions we developed to address the

usability and affordability challenges, discussed in Section 4 and 5, re-

spectively. In the next section we present our background work, which

contributes to improve the usefulness of mashups.

2 Background: Universal Integration

When we started our investigations in the mashup research area, we identi-

fied a gap in the integration possibilities offered by the mashup tools avail-

able at the time, which was limiting mashups’ expressive power. Some of

the available tools mainly focussed on the integration of data (e.g., Karma

[25]), others more on the integration of services (e.g., ServFace Builder

[21]) and yet others on the composition of user interfaces (e.g., Intel Mash

Maker), but none of them was providing integration spanning over different

layers allowing the composition of data, application logic and user inter-

face (UI) components in one and the same language and tool. This was a

big gap, since most applications (in particular in the Web context) need to

integrate different types of components. This gap was significantly limiting

the usefulness of the mashups that could be produced, which often required

a manual — expert — intervention for the development and integration of

the missing parts (e.g., to implement suitable UIs to be integrated with

a service composition). The seamless integration at the data, application

5



2. BACKGROUND: UNIVERSAL INTEGRATION

Figure 1: The mashArt mashup tool

logic and UI layer is what we called universal integration. To address the

universal integration gap, we started an industrial project aiming at build-

ing a mashup platform providing universal integration and targeting end

users. The resulting mashup tool is mashArt [4, 5] (shown in Figure 1), a

hosted Web mashup tool allowing its users to develop and run compositions

including components belonging to all the three mentioned layers2. The

major challenge faced during the mashArt project was the design of both

a model and a corresponding language able to accommodate the different

types of components and the different composition paradigms they require

(e.g., UI integration is event driven while service integration is typically

managed through the control flow paradigm). Another challenging aspect

was the design and implementation of a user friendly, graphical develop-

ment environment and of a runtime engine able to execute the compositions

generated by the development environment. We coherently included both

2The mashArt project has been funded and developed in collaboration with SAP, Palo Alto - California

6



2. BACKGROUND: UNIVERSAL INTEGRATION

the development and execution environments in the same tool, so as to

enable a faster and simpler application development and testing lifecycle.

Both environments run within the browser on the client side, although some

functionalities are implemented on the server-side. The runtime engine, in

particular, also comprises a set of server-side modules needed to support

asynchronous services integration in the mashup compositions. This is an-

other innovative feature of the mashArt tool, representing an important

contribution of the project.

Following on the same research track, we started another industrial

project, MarcoFlow [11, 10, 12], to further investigate the universal inte-

gration concept3. In this case, we decided to build upon standard service

composition technologies, which are widely adopted and developers are al-

ready acquainted with. We extended the service composition layer to allow

the easy integration of UI components, possibly distributed over multiple

Web pages (what we called distributed UI orchestration), so that human

actors could be integrated in the mashups, i.e, in UI-empowered business

processes. This is different from other solutions like BPEL4People and WS-

Human Tasks, since these two specifications only focus on the coordination

of human tasks and do not support the design of the UIs for task execution.

In this case, instead, we use the integration of the UI layer as means to

integrate the “human layer”. In the MarcoFlow project we can identify

two main contributions: first, we extended the standard BPEL model and

language to integrate UI-related constructs (introducing the concepts of UI

component, page and user associated to a page). Then, we designed and

implemented a suitable architecture including a standard BPEL engine

(managing the process orchestration), a client-side runtime engine run-

ning in the browser (managing the UI components included in the process,

3The MarcoFlow project has been funded and developed in collaboration with Huawei, Shenzhen,

China

7



3. THE PROBLEM

which are implemented in JavaScript), and a middleware managing the

communications among the two engines and carefully performing protocol

translations and message buffering/proxying. We also suitably extended

a BPEL editor and developed a deployment system, providing a platform

covering the whole application lifecycle: development, deployment and run-

time. In addition, MarcoFlow allows the design of collaborative processes,

that is, different users can participate and interact with a same process in-

stance, concretely managing it in a collaborative fashion. This is possible

by assigning the different UI components included in a process (that, as we

said, can be distributed over multiple pages) to different users, which can

access their own interface to interact with the process and with the other

collaborators. This feature is quite common in the service composition

area, but is new in the mashup context. MarcoFlow is clearly targeting

programmers (with service composition skills) and not end users.

As examples, in [9] and [8], we provide two use cases showing how

mashArt and MarcoFlow tools, respectively, can be successfully used to

build compositions in the search computing context.

3 The Problem

During our research work within the mashArt and MarcoFlow projects we

contributed to address the first of the three high-level challenges we dis-

cussed above, i.e., making mashups useful. The other goal of the mashArt

platform was to also tackle the second challenge in the list, that is, making

mashup technologies usable by non-programmers, a still open issue that

none of the available mashup solutions was able to effectively address. De-

spite our intentions, similarly to other tools, mashArt failed in enabling

end user development.

Today, the situation is still the same. The main cause we identify behind

8



3. THE PROBLEM

Figure 2: The Yahoo Pipes mashup tool

this problem is that the mashup platforms developed so far expose con-

cepts, terminology and functionalities that are too low-level and com-

plex for end users. Keeping a low level of abstraction allows having pow-

erful and flexible tools that are, though, too complex for non-programmers.

Non-IT skilled users are typically not able to use these tools or can achieve

only the development of toy applications, i.e., applications too simple to be

actually useful in real-life scenarios. Giving a concrete example, Figure 2

shows the popular Yahoo Pipes mashup environment and some of the com-

ponents available in the tool. As exemplified in Figure 2, mashup tools typ-

ically require the user to be aware of concepts like Web Service, RSS feed,

feed fetching, data filtering, data mapping and the like. As Namoun et al.

demonstrated [19, 18], non-programmers do not understand them and, con-

sequently, they do not manage their usage and, even less, their composition.

The core problem is to find the right balance among three dimensions:

expressiveness, flexibility and usability. We think we cannot have tools

9



3. THE PROBLEM

that are characterized by (i) a flexibility level allowing us to cover a wide

range of application domains, (ii) an expressive power allowing users to

go beyond simple, toy applications and (iii) a usability level allowing non-

programmers to effectively use the tool. Therefore, we must understand

which dimensions are more important for our goals and how to balance

them accordingly. The only possible meaningful balance, in our opinion,

is to limit flexibility, since we want our tools to allow the development

of non-trivial mashup compositions (i.e., high expressiveness, which im-

pacts on mashup usefulness) and to be actually usable by non-programmers

(i.e., high usability). Limiting the flexibility dimension only means hav-

ing mashup tools focussing on a well-defined application domain but still

presenting high expressiveness and usability levels thanks to the imple-

mentation of solutions specifically addressing the composition needs of

that domain. This is in line with the requirements discussed in Section

1, where we identified high levels of expressive power and simplicity of use

as fundamental characteristics for mashup technologies to be effective. The

intuition, therefore, is that we need domain specific mashup (DSM) solu-

tions, which is the approach we propose to address the usability challenge,

as we discuss in Section 4.

However, an objection that could be raised is that the development of

this kind of solutions — which are as demanding as developing a general-

purpose tool but designed to be used by a limited audience — may be

in general not affordable (i.e., result in a non-sustainable cost/benefit

ratio). We address this issue by providing specific solutions supporting

and automating DSM platforms design and development, as discussed in

Section 5.

The path that led us to the development of the solutions addressing

the problems highlighted in this section is summarized in Figure 3. The

figure shows our research path using the articles we published, providing a

high-level overview of our work.
10



3. THE PROBLEM

The two articles show how the 
mashArt and MarcoFlow 
m a s h u p t o o l s c a n b e 
successfully applied to  the 
search computing domain, 
taking it as concrete use case. 

Search Computing
[8] [9]

MarcoFlow implements the 
Universal Integration idea 
ex tend ing the s tandard 
service orchestration layer 
(BPEL) with an architecture 
allowing the integration of UIs 
distributed among multiple 
users.

MarcoFlow
[10] [11] [12]

mashArt is the first mashup 
tool introducing the concept of 
Universal Integration, i.e., 
integration at data, application 
logic and UI layers in the 
same language and tool. 

mashArt 
[5]

This position paper explicitly 
introduces  the concept of 
domain specific mashup in the 
literature. It focusses on the 
need for these solutions  and 
provides a first methodological 
a p p r o a c h t o t h e i r 
development.

Domain Specific Mashups
[22]

ResEval Mash is our first 
domain specific mashup 
platform, which focusses on 
t h e a c a d e m i c r e s e a r c h 
evaluation domain. This paper 
describes the system and 
d e m o n s t r a t e s i t s 
functionalities through a use 
case.

ResEval Mash
[15]

In line with the idea of domain 
specific mashup solutions, the 
OMELETTE EU project wants 
to produce a DSM tool for the 
telco domain. The article set 
t h e m a i n a r c h i t e c t u r a l 
guidelines for telco mashup 
platforms.

OMELETTE & 
Telco Mashups [14]

The OMELETTE mashup 
editor targeting end user is 
based on W3C Widgets 
composition. Widgets natively 
do not provide support for 
intercommunication. This 
article proposes a possible 
inter-widget communication 
solution.

W3C Widget Intercomm
[27]

Abst rac t ing the lessons 
learned mainly during the 
development of the ResEval 
Mash tool, in this article it is 
presented a methodology 
mainly focussing on the 
domain analysis preceding the 
the implementation of a DSM 
platform.  

Developing DSMs: the 
methodology [6] [7] [16]

T h e D S M p l a t f o r m 
development methodology is 
very impor tan t , bu t the 
platform implementation effort 
may hinder DSM platform 
adopt ion. These art ic les 
propose a  DSM platform 
generation framework able to 
relieve developers from most 
of the design & development 
effort.

DSM platforms as a Service
[23] [24]

is instance of

is applied to

is use case of is use case of

complements

Main research 
path

Articles relations

In
iti

al
 in

ve
st

ig
at

io
n 

& 
Th

e 
ge

ne
ra

l p
ur

po
se

 p
ro

bl
em

D
SM

 c
on

ce
pt

s 
de

fin
iti

on
 &

 
Th

e 
D

SM
 im

pl
em

en
ta

tio
n 

co
st

 p
ro

bl
em

D
SM

 p
la

tfo
rm

s 
as

 a
 s

er
vi

ce

is instance of

Figure 3: The research path evolution and the article relations

11



4. DOMAIN SPECIFIC MASHUPS AS EUD ENABLERS

4 Domain Specific Mashups as EUD Enablers

Our solution to address the usability challenge without limiting mashup

usefulness is to design mashup platforms focussing on one application do-

main only. This kind of tools is what we call domain specific mashup tools.

Since these tools are tailored to a specific domain, they expose con-

cepts, terminology, functionalities and dynamics (i.e., semantics) that the

domain experts using them (i.e., end users expert of a given target do-

main) are already acquainted with and that they can therefore understand

and effectively manage. This is the key of the approach to enable end

user development.

After introducing this new concept and approach in [22], we applied it

to the design and development of a mashup tool for the research evaluation

domain: ResEval Mash4 [15, 16, 6, 7]. Designing this tool we faced three

main challenges:

• understand what are the most important aspects to analyze of an

application domain and how these can be formalized through suitable

concrete artifacts, to be used to drive platform design;

• understand how to make mashup platforms (including, e.g., editors,

runtime environments, models) more effective (i.e., powerful and us-

able) through the injection of the domain information encoded in the

artifacts mentioned above (i.e., which aspects of the tool to modify

based on this information and how);

• perform the analysis and formalization tasks for the research evalua-

tion domain and, based on this task’s outcomes, design and implement

the complete domain specific platform for this domain.

4I worked on the design of the methodology discussed below in collaboration with Muhammad Imran.

I did not directly work on the tool itself, which has been developed by Muahammad Imran only.

12



4. DOMAIN SPECIFIC MASHUPS AS EUD ENABLERS

The analysis phase took us several months, also because, in parallel, we

defined how to perform the analysis itself, i.e., which domain aspects to

consider and how to formally represent them through concrete artifacts.

This required many analysis, abstraction and modeling efforts. The actual

design and implementation of the DSM tool took even longer, since we had

to develop both a mashup development and runtime environment address-

ing the domain specific requirements elicited during the analysis phase. For

example, from the analysis we found that our domain is characterized by

the need of dealing with large amounts of bibliographic data. To address

this specific requirement we designed an engine supporting data passing

by reference, a peculiar feature proposed for Web Service composition [26],

but that no other mashup platform provides. This way, there is no need to

pass huge data loads among the services involved in the mashups, avoid-

ing the possible associated network bottlenecks potentially disrupting the

mashup execution performance.

Abstracting the lessons learned during the ResEval Mash development,

we devised a structured methodology for the design of DSM platforms,

which supports DSM platform developers through this phase. The method-

ology focusses on the domain analysis and formalization phase, defining the

sequence of steps to be done and the artifacts describing the domain to be

produced as output. This methodology [7, 16] represents a relevant con-

tribution of this work.

Furthermore, we have also validated the DSM approach running a user

study where two groups of domain experts, one with high computing skills

and one with no computing skills, were asked to use ResEval Mash to com-

pose some research evaluation processes. The user study results [7] show

that also non IT-skilled users are able to build non-trivial processes using

our DSM tool, validating therefore our approach as effective EUD enabler.

13



5. DSM PLATFORMS AS A SERVICE

5 DSM Platforms as a Service

Building a mashup platform is definitely a non-trivial task, which requires

to be aware of many design issues and related possible solutions, as de-

scribed in [1]. Developing DSM platforms is, in general, even more complex.

Developing ResEval Mash required many months of work. Surely, the

domain analysis and formalization phase can benefit from the availability of

the methodology we designed. This methodology helps platform developers

stating which domain aspects to analyze and how to formalize the analysis

outcomes through suitable artifacts. Thanks to this, the domain analysis

phase can be significantly shortened. The implementation phase, instead,

does not have significant support allowing us to alleviate developers’ work.

As described in Section 3, in this situation, developing DSM platforms may

result not affordable.

To overcome this affordability problem, we designed and implemented a

DSM platform generation framework relieving developers of most of

the effort required to implement a DSM platform. This system is detailed

in [24] and [23]. Although this framework can be very beneficial also for

the development of generic — non domain specific — platforms, it is par-

ticularly useful in the context of DSM platform development since it allows

developers to create highly customized mashup platforms able to address

domain specific requirements. Figure 4 shows the functional architecture

of the generation framework.

The simple interface of the language and platform design and genera-

tion tool (shown in Figure 5), allows platform designers to select a set of

conceptual features to be supported by the target DSM platform, letting

them abstract from low level design and implementation details. Concep-

tual features allow developers to state high-level requirements like, e.g.,

the support for data flow or control flow paradigms, conditions, UIs, data

14



5. DSM PLATFORMS AS A SERVICE

Domain Analysis Artifacts

DSM Platform 
Generation Framework

DSM Platform 
Configuration Package

DSM
Component 

Implementation

DSM
Editor

Runtime 
Environment

DSM
Composition 
Definitions

executes

DSM
Compos

Def.

invokes

Platform 
Designer Component 

Developer

uses

uses

DSM 
Compos 

Lang 
Schema

DSM 
Compon

Lang
Schema

Configu
ration

takes as input

generates

uses

takes as input

Language & 
Platform 
Design & 

Generation 
Tool

uses

Domain
Expert

uses

complies with

DSM
Compon
Descr.

develops

DSM
Component 
Descriptors stores 

complies with

generates

reads

Domain
Concept
Model
(DCM)

Process 
Model
(PM)

Domain
Syntax

Mashup
Meta-
model
(MM)

DSM 
Components
Registration

Tool

uses

takes as input

Figure 4: Functional system architecture.

passing by reference or by value, and similar features. Based on a set of

selected features, the framework automatically generates a DSM platform

configuration package containing:

• a configuration document. This document contains the list of the

features selected by the platform designer, the references to the do-

main analysis artifacts needed by the DSM editor (provided by the

designer), and the references to the component descriptors and com-

positions repositories;

• the schema definitions of the DSM composition language and DSM

component descriptor language, which DSM composition definitions

and DSM component descriptors, respectively, must comply to. The

languages defined by these documents are generated using the unified

15



5. DSM PLATFORMS AS A SERVICE

mashup meta-model as base and include all the constructs needed to

support the set of selected features.

Figure 5: Features selection user interface used by the platform designer

In addition, the framework provides a runtime environment and a DSM

editor that are able to adapt their functionalities and behavior based on

the information included in a configuration package they take as input.

The runtime environment executes the DSM composition definitions

stored in the composition repository. During composition execution it

interacts with the DSM components invoking their operations.

The DSM editor is used by the domain experts to graphically design

the mashups. To show the available DSM components to domain experts,

the editor reads the DSM component descriptors from the component de-

scriptors repository. Finally, the editor generates a representation of the

designed mashup compliant with the DSM composition language defined

within the configuration package taken as input, and stores it in the com-

positions repository.

16



5. DSM PLATFORMS AS A SERVICE

Indeed, our DSM platform generation framework generates “logical plat-

forms”. In fact, it only generates DSM platform configuration packages

and not the runtime engine and mashup editor program code. Passing a

configuration package as input to the runtime engine and to DSM editor

(which are physically deployed on our server) makes them work with the

languages, features, components and compositions associated to the spe-

cific DSM logical platform described by the given configuration package.

This approach allows us to provide hosted DSM platforms as a service,

which are already deployed and ready to work.

The main challenges we faced building the generation framework are:

• understand the possible requirements that different target DSM plat-

forms may have and how to support them;

• define a platform conceptual design approach allowing developers to

design DSM platforms reasoning at the higher level of abstraction of

conceptual features, letting them concentrate on the core requirements

of the target platform without having to struggle with low-level de-

sign and implementation choices. This requires first to abstract the

wide variety of identified requirements into a set of conceptual fea-

tures, each one representing a subset of these requirements. Then, to

associate each feature to a pattern of low-level design choices able to

support the set of requirements represented by the feature itself. For

example, supporting UI mashups requires designing a language includ-

ing concepts like page and viewport, and design a platform supporting

the integration, for instance, of widgets or JavaScript components;

• design a system enough flexible to integrate all the derived features

and able to provide suitable DSM composition and component descrip-

tion languages, runtime environment, and mashup editor based on a

given set of selected features. This includes the following challenges:

17



5. DSM PLATFORMS AS A SERVICE

– design a mashup meta-model, that is able to integrate the different

constructs needed to support all the conceptual features. Due

to its comprehensiveness, this meta-model cannot be executable

since it contains incompatible constructs (e.g., data flow paradigm

and global variables cannot coexist since there could be conflicts

in the data passing logic);

– design an approach and a set of algorithms allowing us to generate

a DSM composition language and a DSM component description

language, based on a set of selected features. The approach must

guarantee that generated languages are consistent, i.e., do not

include incompatible constructs;

– design a runtime environment able to execute the compositions

defined through any language generated by our system, taking

into account the selected features;

– design a mashup editor that, based on the selected features, ex-

poses suitable functionalities and compositional elements to sup-

port all of (and only) them, finally allowing domain experts to

produce mashup composition definitions complying with the gen-

erated DSM languages.

Addressing these challenges required substantial analysis, abstraction and

modeling efforts (in particular, for designing the base models used for the

language generation [24]) and strong software design and implementation

skills (for all the generation algorithms and, in particular, for the “adap-

tive” runtime environment and editor [23]). Clearly, another fundamental

enabler allowing us to successfully address these challenges has been our

prior experience in the mashup world, thanks to the participation to several

18



5. DSM PLATFORMS AS A SERVICE

mashup projects, i.e., mashArt5, MarcoFlow6, ResEval7 and OMELETTE8

[27, 14], where we have been directly involved in the design and implemen-

tation of different mashup tools.

The DSM platform generation framework is able to relieve developers

of most of the implementation effort. Moreover, it also enables the con-

ceptual design of DSM platforms, letting developers reason in terms of

conceptual features and guaranteeing consistent languages and functional

tools supporting the specific needs of the target domain. Clearly, non neg-

ligible efforts are still on developers’ shoulders. In particular, they have to

implement the mashup components, a fundamental and demanding task in

terms of time and resources; however, for already implemented services, we

provide simple “componentization” mechanisms only requiring the creation

of a component descriptor specifying the main component’s properties and

interface. In addition, depending on the specific needs, also the editor may

require some extension or personalization. We provide a basic editor able

to support the identified features and able to work with any DSM language

generated by our system. However, there could be particular cases where

the editor may benefit from domain specific user interface customization or

from additional mechanisms improving the user experience. In this cases,

the editor can be modified and extended by developers building upon the

basic editor provided.

5mashArt project’s homepage:

https://sites.google.com/site/mashtn/industrial-projects/mashart
6MarcoFlow project’s homepage:

https://sites.google.com/site/mashtn/industrial-projects/marcolfow
7ResEval Mash project’s homepage: http://open.reseval.org/
8OMELETTE project’s homepage: http://www.ict-omelette.eu/

19



6. CONTRIBUTIONS

6 Contributions

Throughout our research activities we designed and developed a range

of models, techniques, approaches, algorithms and tools that, properly

integrated together, compose the methodology and generation framework

discussed in this dissertation. Next, we summarize the key contributions

of our work.

• DSM concept and approach. We introduced the concept of do-

main specific mashup platform and the underlying approach [22].

Many other research fields exploit the “domain specificity strategy”

to create more effective software solutions, but this approach in the

literature was not associated to the mashup context yet.

• User study. We conducted a user study to validate the DSM ap-

proach using our DSM tool for research evaluation (ResEval Mash)

[7]. The results of the study show that non-IT skilled users are able

to manage composition tasks when provided with a DSM tool like

ResEval Mash, supporting the viability of the DSM approach.

• DSM methodology. We defined a general methodology for DSM

platform design [7, 16, 6]. This methodology describes the sequence

of steps needed to analyze a domain and a set of artifacts to formal-

ize the analysis outcomes to be used in the actual platform develop-

ment phase.

• Unified mashup meta-model. We designed a conceptual, unified

mashup meta-model able to seamlessly integrate the variety of con-

structs needed to support all the DSM platforms’ requirements we

identified analyzing existing mashups types and tools [24]. In addi-

tion, we defined a set of translation rules to transform the unified

20



6. CONTRIBUTIONS

mashup meta-model into a unified mashup language, i.e., a transla-

tion of the model into a more easily processable format (we use XSD

for the language schema definition).

• Conceptual mashup features. We defined a set of conceptual

mashup features [24] (abstracting the above identified requirements)

allowing developers to reason at a conceptual level and forget about

lower level language details. Each feature definition also includes: (i)

the specification of possible compatibility or dependency constraints

the feature may have with respect to any other feature (needed to

guarantee languages consistency), and (ii) the specification of the uni-

fied language fragments required to support the feature itself (needed

for the language generation algorithms) .

• DSM platform conceptual design approach. We designed a con-

ceptual design approach allowing developers to design DSM platforms

simply selecting a set of conceptual features representing their core

requirements. Letting developers reason at the higher level of ab-

straction of conceptual features allows them to concentrate on the

core requirements of the target platform without being diverted by

low-level design and implementation choices.

• DSM platform generation framework. We designed and imple-

mented a system (integrating with the above methodology) for DSM

platforms generation that developers can use to build DSM platforms,

addressing their target-domain specific needs, more easily and rapidly

and, therefore, at a more affordable cost [23]. This framework includes

and integrates:

– a platform and language design tool, that is, a Web appli-

cation including a simple interface allowing platform designers to

21



6. CONTRIBUTIONS

perform the conceptual design of the target DSM platform and

languages. The design is realized simply selecting the set of fea-

tures to be supported to address the platform requirements. In

addition, platform designers must also upload a set of required

artifacts previously produced following our methodology;

– a set of DSM language generation algorithms for the defini-

tion of consistent DSM languages [24], which represent a funda-

mental piece of any mashup platform since they set the platform’s

expressive power’s bounds. The algorithms, based on a set of se-

lected mashup features, extract DSM composition and component

descriptor languages from the unified mashup language. All and

only the constructs needed to support the selected features are in-

cluded in the generated DSM languages. Languages’ consistency

is guaranteed by a validity check of the set of selected features,

performed through feature constraints verification;

– a runtime environment for the execution of the mashups de-

fined in any DSM language produced by our framework. It is able

to support all the identified conceptual features and to adapt its

behavior according to the set of selected features passed as input;

– a mashup editor able to adapt its functionalities and behavior

based on a set of selected features passed as input. This editor

exposes to the domain experts all and only the compositional ele-

ments and functionalities needed to support the selected features.

The editor is able to work (i.e., read and generate) with mashup

defined in any DSM language produced by our framework.

22



7. CONCLUSION

7 Conclusion

In this work we addressed the main challenge of bringing application devel-

opment to end users. They key of our approach to address this big challenge

is to develop domain specific mashup solutions to empower domain experts

to develop their own applications. In this context, we provided important

contributions going towards the EUD goal. Next we evaluate our approach

and solutions and discuss the lessons learned during our research work. Fi-

nally, based on these lessons, we provide a set of promising directions for

future works.

7.1 Validation and Limitations

We validated the general domain specific mashup approach through the

user studies ran on ResEval Mash [7], which have shown that domain

experts are able to manage composition tasks when provided with domain

specific mashup tools recalling concepts and semantics of the domain they

work in, therefore, validating the DSM approach as effective EUD enabler.

Moreover, in [24, 23] we have shown that the set of features we sup-

port allows the generation of DSM languages supporting the requirements

of different types of mashup tools, thus, providing a validation for our

conceptual language generation approach.

Validating the DSM platform generation framework itself is extremely

complex. Doing it requires the availability of a number of developers (i)

able to use our framework (i.e., fully aware of mashup technologies and

able to design a mashup platform), (ii) experts in a given application do-

main and (iii) willing to work with us for a relatively long period (in the

order of several weeks). In addition, a test group developing similar plat-

forms through the standard, manual development approach would be also

needed. Being able to perform a similar study would be clearly useful to

23



7. CONCLUSION

evaluate and collect feedbacks about the usability and the effectiveness of

our DSM platform generation framework, but it is evident that this would

be extremely costly in terms of resources (i.e., mashup platform developers)

and, thus, almost impossible to realize.

The DSM platform generation framework provides a set of features al-

lowing us to build languages and tools supporting many different domain

requirements. However, the list of identified features comes without the

claim of completeness and it is meant to grow over time to increase the spec-

trum of requirements the system can effectively support. The framework

will be available as open-source project to let the community participate

in its evolution, e.g., including the support for new features or improving

the current runtime or development environments.

Regarding the mashup editor, we still provide a basic editor whose im-

plementation has still to be completed to support all the identified features.

As already discussed in Section 5, depending on the specific requirements

developers may have, the editor may benefit from domain specific user

interface customizations or from additional mechanisms improving the us-

ability. In this cases, the editor can be modified and extended by developers

building upon the basic editor provided. In addition, the editor uses the

most adopted interaction paradigm in the mashup context, i.e., a visual

language based on wiring. It does not support other interaction paradigms

adopted by other tools, for instance, based on textual DSLs, editable ex-

amples, or spreadsheets.

The runtime environment is fully working and supports all the concep-

tual features we identified.

Finally, in general we do not argue we can build effective platforms for

any domain, but we argue that our methodology and system can be applied

to many domains allowing a faster and more affordable development of

DSM platforms for them.

24



7. CONCLUSION

7.2 Lessons Learned

Our research activities were driven by the inspiring idea that mashup tech-

nologies can enable the radical paradigm shift making non-programmers

the real designers and developers of their own applications, that is, enable

end user development (EUD). Clearly, the development of, e.g., complex

and/or large software systems will still require the work and expertise of

software architects and professional developers. However, for the devel-

opment of simpler applications (realizable through the lightweight com-

position of the huge variety of available data, services, APIs and UI wid-

gets) this paradigm shift would have a huge impact, moving their devel-

opment from IT departments directly to the final consumer (or prosumer,

at this point) and enabling the development of situational applications

that today cannot just be implemented, since they typically require too

many resources to be developed following the standard software develop-

ment lifecycle.

During our work we have learned that to make mashup tools more us-

able (i.e., to go towards EUD) should be the tools to adapt to users and to

their mindset and habits, and not the opposite. This is the difference be-

tween DSM solutions and general-purpose ones. The former provide users

with compositional elements resembling the concepts they face and man-

age in their everyday life, which, therefore, they are able to understand

and manage. The latter, instead, require users to map the concepts they

know to lower-level compositional elements, which, suitably composed, can

be able to represent those concepts. This abstraction and mapping exer-

cise, though, is far from the possibilities of the non-IT skilled end users,

since it typically require programming knowledge (to understand the low-

level compositional elements) and abstraction skills (to map them to the

concepts familiar to the user) that end users do not have. These lessons

25



7. CONCLUSION

motivated us to design the DSM approach proposed in this work, which

allows the creation of simpler mashup tools that, being domain specific, are

closer to domain experts’ mindset and, therefore, more usable for them.

We are convinced that the DSM approach is an important starting point

to achieve our main goal, i.e., bring application development to end users,

but it must be further developed and merged with other approaches and

technologies. In our experience we have been involved in the design of other

approaches going towards EUD and we realized that they can complement

each other, leading to really effective solutions to enable a wider and wider

range of users to develop their own applications. Our approach goes in

the direction of simplifying to the possible extent the mashup tools. Other

approaches follow different ways to enable EUD; for example, a promising

research track focusses on the development of technologies to assist end

users during the mashup development phase, e.g., recommending possible

needed components or how to compose them. An example of this kind of

tools is Baya [3], which has been developed by our research group and is

being applied in the context of the OMELETTE project. The convergence

of the DSM approach with other technologies like the one just described is,

in our vision, the right way to follow to enable EUD in real-life scenarios.

Another important lessons we learned, and that we try to apply to our

solutions, is that to achieve EUD, the tools we provide to end users must

comply with the definition of gentle slope systems [17]. This means that

the tools must allow users to learn how to effectively use the tool step-by-

step without steep learning curves. We have experienced this also during

the user studies we did during our research, understanding that this is par-

ticularly true for end users. This class of users is not prepared to and is not

even interested in learning a large amount of conceptual and technology-

related notions to use a tool. Users must be able to learn by attempts

and constantly perceive the results of their learning efforts. This is very

26



7. CONCLUSION

important also in the mashup context. The inherent complexity of mod-

eling a composition, establishing the components’ execution sequence and

dealing with the data passing require an algorithmic and technical mindset

that end users do not have, but that, as we have seen, they can “gently

learn” when provided with DSM mashup tools [7] (which are simpler to

understand and work with) and, e.g., when assisted during the composition

development (making the learning slope even more gentle).

As we have directly experienced during the development of several mashup

tools (i.e., mashArt, MarcoFlow, OMELETTE Live mashup Environment,

ResEval Mash) developing mashup platforms, in particular DSM ones, is

definitely non-trivial and expensive. To foster and push the adoption of

the DSM approach, which we consider a key ingredient towards the EUD

goal, we designed supporting methodologies and tools for making their

development simpler, faster and more affordable.

Finally, although the approaches and tools proposed in this paper focus

on the development of DSM solutions targeting EUD, we observe that the

generation framework we provide can also be applied to other contexts. In

general, through its conceptual design approach and platform generation

algorithms, it can simplify the development of many types of mashup tools.

For example, it can be used for rapidly building mashup platforms aiming

to ease the work of professional developers (thus, not targeting EUD), for

the development of scientific workflow management systems (like myEx-

periments9) requiring to deal with data-intensive process or, in general, in

any case a custom mashup platform may be useful.

7.3 Future works

As discussed in the previous section, the DSM approach and tools proposed

in this work are a solid base for the achievement of our goals. However, they

9myExperiments homepage: http://www.myexperiment.org/

27



must be further developed and merged with other approaches and technolo-

gies to reach higher usability levels for end users. We plan to improve our

DSM platform generation framework following the next key directions:

• expand the set of features supported by our generation framework.

This will allow us to widen the range of requirements and domains

the framework is able to cover;

• make the tools that the framework generates more stable and com-

plete. In particular, the editor must be completed to support all the

features we identified and must be improved in terms of graphical

aspects and usability;

• make the whole generation framework available as open-source project.

This will let the community use, extend and improve it. In addition,

releasing the framework as open-source project we also facilitate and

foster the adoption of the DSM approach;

• be directly involved in the development of new DSM platforms for

different domains. This will allow us to test the framework, assess

its coverage and then improve it based on the issues identified during

its usage;

• integrate complementary technologies into the mashup editor to im-

prove its usability level and make its learning curve more “gentle”. In

particular, we plan to integrate the above mentioned Baya system in

our mashup editor, so that to assists end users during the composi-

tion tasks.

Following this directions we will improve over time the robustness,

coverage and usability of both the generation framework and the tools

it provides. This will allow us to empower a wider and wider range of

users to develop their own applications.



Bibliography

[1] S. Aghaee, M. Nowak, and C. Pautasso. Reusable decision space for

mashup tool design. In Proceedings of the 4th ACM SIGCHI sympo-

sium on Engineering interactive computing systems, pages 211–220.

ACM, 2012.

[2] S. Bitzer and M. Schumann. Mashups: An Approach to Overcoming

the Business/IT Gap in Service-Oriented Architectures. In Proceedings

of AMCIS, 2009.

[3] S. R. Chowdhury, C. Rodŕıguez, F. Daniel, and F. Casati. Baya:

Assisted Mashup Development as a Service. In Proceedings of WWW

2012 Companion, pages 409–412, April 2012.

[4] F. Daniel, F. Casati, B. Benatallah, and M. C. Shan. Hosted Universal

Composition: Models, Languages and Infrastructure in mashArt. In

Proceedings of ER’09, 2009.

[5] F. Daniel, F. Casati, S. Soi, J. Fox, D. Zancarli, and M. C. Shan.

Hosted Universal Integration on the Web: the mashArt Platform. In

Proceedings of ICSOC/ServiceWave, Stockholm, Sweden, November

2009. Springer Verlag.

[6] F. Daniel, M. Imran, F. Kling, S. Soi, F. Casati, and M. Marchese. De-

veloping Domain-Specific Mashup Tools for End Users. In Proceedings

of WWW Companion, pages 491–492, 2012.

29



BIBLIOGRAPHY

[7] F. Daniel, M. Imran, S. Soi, A. De Angeli, C. R. Wilkinson, F. Casati,

and M. Marchese. Developing Mashup Tools for End-Users: On the

Importance of the Application Domain. International Journal of Next-

Generation Computing (IJNGC), 3(2), July 2012.

[8] F. Daniel, S. Soi, and F. Casati. New Trends in Search Computing,

chapter Distributed User Interface Orchestration: On the Composition

of Multi-User (Search) Applications, pages 187–196. Springer, May

2010.

[9] F. Daniel, S. Soi, and F. Casati. Search Computing - Challenges and

Directions, volume 5950 of LNCS, chapter From Mashup Technolo-

gies to Universal Integration: Search Computing the Imperative Way,

pages 72–93. Springer, March 2010.

[10] F. Daniel, S. Soi, S. Tranquillini, F. Casati, C. Heng, and L. Yan. From

People to Services to UI: Distributed Orchestration of User Interfaces.

In Springer, editor, Proceedings of BPM’10, volume 6336 of LNCS,

pages 310–326, September 2010.

[11] F. Daniel, S. Soi, S. Tranquillini, F. Casati, C. Heng, and L. Yan. Mar-

coFlow: Modeling, Deploying, and Running Distributed User Interface

Orchestrations. In Proceedings of BPM’10 Demo Track, September

2010.

[12] F. Daniel, S. Soi, S. Tranquillini, F. Casati, C. Heng, and L. Yan.

Distributed orchestration of user interfaces. Information Systems, El-

sevier, 37(6):539–556, September 2011.

[13] I. Floyd, M. Jones, D. Rathi, and M. Twidale. Web Mashups and

Patchwork Prototyping: User-driven technological innovation with

Web 2.0 and Open Source Software. In Proceedings of HICCS, 2007.

30



BIBLIOGRAPHY

[14] H. Gebhardt, M. Gaedke, F. Daniel, S. Soi, F. Casati, C. A. Iglesias,

and S. Wilson. From Mashups to Telco Mashups: a Survey. IEEE

Internet Computing, 16(3):70–76, May-June 2012.

[15] M. Imran, F. Kling, S. Soi, F. Daniel, F. Casati, and M. Marchese.

ResEval Mash: A Mashup Tool for Advanced Research Evaluation. In

Proceedings of WWW Companion, pages 361–364, April 2012.

[16] M. Imran, S. Soi, F. Kling, F. Daniel, F. Casati, and M. Marchese.

On the Systematic Development of Domain-Specific Mashup Tools for

End Users. In Proceedings of ICWE, pages 291–298. Springer, July

2012.

[17] B.A. Myers, D. C. Smith, and B. Horn. Languages for Developing User

Interfaces, chapter Report of the ‘End-User Programming’ Working

Group, pages 343–366. Jones and Bartlett, Boston, 1992.

[18] A. Namoun, T. Nestler, and A. De Angeli. Conceptual and Usabil-

ity Issues in the Composable Web of Software Services. In Current

Trends in Web Engineering - 10th International Conference on Web

Engineering ICWE 2010 Workshops, pages 396–407. Springer, 2010.

[19] A. Namoun, T. Nestler, and A. De Angeli. Service Composition for

Non Programmers: Prospects, Problems, and Design Recommenda-

tions. In Proceedings of the 8th IEEE European Conference on Web

Services (ECOWS), pages 123 – 130. IEEE, 2010.

[20] B. A. Nardi. A small matter of programming: perspectives on end user

computing. MIT Press, Cambridge, MA, USA, 1993.

[21] T. Nestler, M. Feldmann, G. Hübsch, A. Preußner, and U. Jugel. The

ServFace Builder - A WYSIWYG approach for building Service-based

Applications. In Proceedings of ICWE, 2010.

31



BIBLIOGRAPHY

[22] S. Soi and M. Báez. Domain-Specific Mashups: From All to All You

Need. In Proceedings of ICWE Workshops, pages 384–395. Springer,

2010.

[23] S. Soi, F. Daniel, and F. Casati. Domain Specific Mashup Platforms:

the Easy Way. to be submitted to ACM Transactions on the Web

(TWEB).

[24] S. Soi, F. Daniel, and F. Casati. Web Services Foundations, chap-

ter Conceptual Design of Sound, Custom Composition Languages.

Springer, 2013 (in press).

[25] R. Tuchinda, P. Szekely, and C. A. Knoblock. Building Mashups by

Example. In Proceedings of IUI, 2008.

[26] M. Wieland, K. Gorlach, D. Schumm, and F. Leymann. Towards

Reference Passing in Web Service and Workflow-Based Applications.

In Proceedings of Enterprise Distributed Object Computing Conference

(EDOC), pages 109–118. IEEE, 1-4 Sept. 2009.

[27] S. Wilson, F. Daniel, U. Jugel, and S. Soi. Orchestrated User Interface

Mashups Using W3C Widgets. In Proceedings of ICWE Workshops,

pages 49–61. Springer, June 2011.

32



APPENDIXES

33



!

!"#$%&'()*+%,#-.'/)$%0,-$*")'")'$1%'2%34''
$1%'5-#16,$'7.-$8",5'

"#$%&'(!)'(&*#+,!"'-&$!.'/'0&+,!10*2'($!1$&+,!3$((4!"$5+,!)'6&7!8'(9'%#&+,!!
:&(;<.=&*(!1='(>!

+!?(&6*%/&04!$2!@%*(0$,!A0'#4!
B7'(&*#,9'/'0&,/$&,2$5,C'(9'%#&DE7&/&FG(&0(F&0!

>!1HI!J'-/<!KL+M!N&##6&*O!H6*(G*,!I'#$!H#0$,!.H!PLKML,!?1H!
Q&(;<9=&*(F/='(E/'RF9$Q!

63#$,-9$:!@%'7&0&$('#!&(0*;%'0&$(!R%'90&9*/!#&S*!T(0*%R%&/*!HRR#&9'0&$(!A(0*;%'<
0&$(! '(7!T(0*%R%&/*! A(2$%Q'0&$(! A(0*;%'0&$(! 'RR%$'9=*/! 04R&9'##4! 2$9G/! $(! 0=*!
'RR#&9'0&$(! #'4*%! '(7! 0=*! 7'0'! #'4*%! &(! /$20O'%*! /4/0*Q/,! &F*F,! $(! #&Q&0*7! '(7!
/R*9&2&9!7*6*#$RQ*(0!'/R*90/F!.G%%*(0!O*-!Q'/=GR!R%'90&9*/,!&(/0*'7,!/=$O!0='0!
0=*%*!&/!'#/$!'!9$(9%*0*!(**7!2$%!U&V!&(0*;%'0&$(!'0!0=*!R%*/*(0'0&$(!#'4*%!'(7!U&&V!
&(0*;%'0&$(!'RR%$'9=*/!0='0!9$(9&#&'0*!'##!0=*!0=%**!#'4*%/!0$;*0=*%F!A(!0=&/!7*Q<
$(/0%'0&$(,!O*!/=$O!=$O!$G%!!"#$%&'!'RR%$'9=!'77%*//*/!0=*/*!9='##*(;*/!'(7!
R%$6&7*/!/S&##*7!O*-!G/*%/!O&0=!()*+,&#"-.*)',/&"'*0)!&(!'!=$/0*7!2'/=&$(F!

;%<=",&#4!N$/0*7!?(&6*%/'#!A(0*;%'0&$(,!:'/=GR/,!1*%6&9*/!.$QR$/&0&$(F!

>! /)$,"&?9$*")'-)&'9")$,*3?$*")#'

1"#$(2#!'%*!$(#&(*!'RR#&9'0&$(/!0='0!'%*!7*6*#$R*7!-4!9$QR$/&(;!9$(0*(0/!'(7!2G(9<
0&$(/!'99*//&-#*!$6*%!0=*!W*-!X+YF!@=*!&(($6'0&6*!'/R*90!$2!Q'/=GR/!&/!0='0!0=*4!'#/$!
0'9S#*! &(0*;%'0&$(! '0! 0=*!G/*%! &(0*%2'9*! U?AV! #*6*#,! &F*F,! -*/&7*/! 'RR#&9'0&$(! #$;&9! '(7!
7'0',!0=*4!'#/$!%*G/*!*5&/0&(;!?A/!U*F;F,!Q'(4!$2!0$7'4Z/!'RR#&9'0&$(/!&(9#G7*!'![$$;#*!
:'RVF!W*!9'##!0=&/!R%'90&9*!$2!&(0*;%'0&(;!7'0',!'RR#&9'0&$(!#$;&9,!'(7!?A/!2$%!0=*!7*<
6*#$RQ*(0!$2!'!9$QR$/&0*!'RR#&9'0&$(!()*+,&#"-.*)',/&"'*0)F!
?(&6*%/'#! &(0*;%'0&$(!9'(!-*!7$(*! U'(7! &/!-*&(;!7$(*V! 0$7'4!-4! \$&(&(;! 0=*!9'R'<

-&#&0&*/!$2!QG#0&R#*!R%$;%'QQ&(;!#'(;G';*/!'(7!0*9=(&]G*/,!-G0!&0!%*]G&%*/!/&;(&2&9'(0!
*22$%0/!'(7!R%$2*//&$('#!R%$;%'QQ*%/F!@=*%*! &/,!=$O*6*%,!'#/$!'!;%$O&(;!(GQ-*%!$2!
!"#$(2.'00-#,!O=&9=!'&Q!'0!'&7&(;!Q'/=GR!7*6*#$RQ*(0!'(7!'0!/&QR#&9&04!Q$%*!0='(!
%$-G/0(*//! $%! 9$QR#*0*(*//! $2! 2*'0G%*/F! "$%! &(/0'(9*,! ^'=$$! I&R*/! 2$9G/*/! $(!
_11`H0$Q!2**7/,!:&9%$/$20!I$R2#4!$(!2**7/!'(7!3'6'19%&R0!9$QR$(*(0/,!A(0*#!:'/=!
:'S*%! $(! ?A/! '(7! '(($0'0*7! 7'0'! &(! O*-! R';*/,! O=&#*! 3'9Sa*! I%*/0$! '#/$! '##$O/!
RG00&(;!'!?A!$(!0$R!$2!7'0'!R&R*/F!b$(*!$2!0=*/*,!=$O*6*%,!9$6*%/!0=*!0=%**!'RR#&9'0&$(!
#'4*%/!7&/9G//*7!'-$6*!0$;*0=*%!&(!'!9$(6*(&*(0!'(7!=$Q$;*(*$G/!2'/=&$(F!
aG&#7&(;!$(!%*/*'%9=!&(!1cH!'(7!9'R0G%&(;!0=*!0%*(7/!$2!W*-!>FM!'(7!Q'/=GR/,!&(!

0=&/!7*Q$!O*!R%$R$/*!'(! &(0*;%'0*7!'(7!9$QR%*=*(/&6*!'RR%$'9=!2$%!G(&6*%/'#! &(0*<
;%'0&$(,! *]G&RR*7!O&0=! '! R%$R*%! =$/0*7! 7*6*#$RQ*(0! '(7! *5*9G0&$(! R#'02$%Q! 9'##*7!
!"#$%&'!U'!/&;(&2&9'(0!*6$#G0&$(!$2!0=*!O$%S!7*/9%&-*7!&(!X>YVF!cG%!'&Q!&/!0$!7$!O='0!
/*%6&9*!9$QR$/&0&$(!='/!7$(*!2$%! &(0*;%'0&(;!/*%6&9*/,!-G0! 0$!7$!/$!'0!'##! #'4*%/,!($0!
\G/0!'0!0=*!'RR#&9'0&$(!#'4*%,!'(7!0$!7$!/$!-4!#*'%(&(;!#*//$(/!'(7!9'R0G%&(;!0=*!0%*(7/!

Appendix A

34



!

"#!$%&!'()!*+,!-*./01.2!3%-"45+6!."-%!"#!7/%!85-57*75"+.!7/*7!9"+.73*5+%,!*!:5,%3!
*,"175"+!"#!:"3;#8":<.%3459%!9"-1".575"+!7%9/+"8"65%.(!
=/%!-*./>37! *113"*9/! *5-.! *7! %-1":%35+6! +"+?13"#%..5"+*8! 13"63*--%3.! :57/!

%*.@?7"?0.%!*+,!#8%A5&8%!*&.73*975"+.!*+,!7%9/+5B0%.!7"!93%*7%!*+,!-*+*6%!9"-1".57%!
:%&!*11859*75"+.(!C1%95#59*88@2!-*./>37!13"45,%.!7/%!#"88":5+62!0+5B0%!9"+735&075"+.D!
! >!!"#$#%&'()*+)"%",'*)&%-! 7/*7!5.!*&8%!7"!*99"--",*7%!*+,!*&.73*97!EF!9"-1"?
+%+7.! GH=IJK2! *11859*75"+! 8"659! 9"-1"+%+7.! GCL>M!"3!NOC=#08! .%3459%.K2! *+,!
,*7*!9"-1"+%+7.!G#%%,.!"3!PIJ<3%8*75"+*8!,*7*K!0.5+6!*!0+5#5%,!-",%8(!!

! >!!"#.%/01-' ()*+)0#,#)"'*)&%-! 7/*7! *88":.!-*./>37!0.%3.! 7"!,%4%8"1! 9"-1".57%!
*11859*75"+.!"+! 7"1!"#! 7/%!0+5#5%,!9"-1"+%+7!-",%8!*+,!9"+9585*7%.! 7/%!+%%,.!"#!
&"7/!EF!.@+9/3"+5Q*75"+!*+,!.%3459%!"39/%.73*75"+!0+,%3!"+%!/"",(!

! >!&%.%-)+*%",'1"&'%2%(!,#)"'+-1,$)/*! #"3!9"-1".57%!*11859*75"+.! 7/*7! #*95857*7%.!
3*15,!,%4%8"1-%+72!7%.75+62!*+,!-*5+7%+*+9%(!-*./>37!5.!%+753%8@!/".7%,!*+,!:%&?
&*.%,2!:57/!Q%3"!985%+7?.5,%!9",%(!

"! #$%&'()*+),&'!()&*-.&+*/!

=/%!854%!,%-"+.73*75"+!5+73",09%.!7/%!7/3%%!9"+735&075"+.!"#!-*./>37!&@!-%*+.!"#!*!
R"5+7!0.%!"#!.85,%.!G#"3!7/%!9"+9%170*8!*.1%97.K!*+,!/*+,.?"+!18*7#"3-!,%-".!G#"3!7/%!
13*9759*8!*.1%97.K(!F+!1*375908*32!7/%!,%-"+.73*75"+!5.!"36*+5Q%,!*.!#"88":.D!

S(! 3",/)4! 5+73",0975"+! "#! 7/%! 9"+9%170*8! *+,! 7/%"3%759*8! &*9;63"0+,! "#! 7/%!
13"R%972!57.!6"*8.!*+,!*-&575"+.2!*+,!57.!9"+735&075"+.(!

'(! 53'#",%6/1,#)"D!%A18*+*75"+!"#!7/%!5,%*!"#!EF!5+7%63*75"+!*+,!/":!EF!9"-1"?
+%+7.!*+,!7/%!9"-1".575"+!8"659!8"";!85;%(!

T(! 53' #",%6/1,#)"' &%*)D! ,%-"+.73*75"+! "#! /":! 7"! ,"!EF! 5+7%63*75"+!:57/!-*?
./>37!.7*375+6!#3"-!*!.%7!"#!%A5.75+6!-*./>37!EF!9"-1"+%+7.(!=:"!-5+07%.!
.0##59%!7"!./":!/":!7"!,%4%8"1!*+,!30+!*!.5-18%!*11859*75"+!7/*7!.@+9/3"+5Q?
%.!*!.%*39/!9"-1"+%+7!*+,!*!-*1!9"-1"+%+7!#"3!6%"?45.0*85Q*75"+!"#!3%.087.(!

U(! 5"#.%/01-' #",%6/1,#)"D! ,%.935175"+! "#! -*./>37V.! 9"-1"+%+7! -",%8! *+,! 57.!
9"-1".575"+!-",%82!:/59/!9/*3*97%35Q%!7/%!0+54%3.*8!5+7%63*75"+!*113"*9/(!

W(! 5"#.%/01-'#",%6/1,#)"'&%*)D!,%-"+.73*75"+!"#!/":!7"!9"-&5+%!.%3459%2!,*7*2!
*+,!EF! 5+7%63*75"+! 5+!-*./>37(!>6*5+2! 7:"!-5+07%.!.0##59%! 7"!./":!/":!7"!
*,,!*+!NCC!3%*,%3!9"-1"+%+7!7"!7/%!13%45"0.!.9%+*35"!*+,!7"!#%%,!57!:57/!,*?
7*!."039%,!#3"-!*!NOC=#08!.%3459%!*+,!73*+.#"3-%,!45*!*!X*/""Y!151%(!

Z(! 7/(8#,%(,!/%D!#0+975"+*8!*39/57%9703%!"#!-*./>37!7"!./":!7/*7!-*./>37!5.!G"3!
:588!&%K!-"3%!7/*+!:/*7!5.!./":+!5+!7/%!,%-"(!

[(! 9)"(-!0#)"'1"&'$!,!/%':)/;0D!.0--*3@!*+,!"0785+%!"#!#0703%!:"3;.(!
>!./"37!4%3.5"+!"#!7/%!,%-"!9*+!&%!13%45%:%,!/%3%D!8,,+4<<*1081/,=)/6<*1087/,=:*.=!

0$1$*$'2$(!
\S]! ^(! X02! %7! *8(2! _E+,%3.7*+,5+6!I*./01! `%4%8"1-%+7! *+,! 57.! `5##%3%+9%.! :57/! =3*,575"+*8!

F+7%63*75"+2_!3",%/"%,'9)*+!,#"62!4"8(!S'2!+"(!W2!11(!UU?W'(!!
\']!^(! X02! %7! *8(2! _>! a3*-%:"3;! #"3! N*15,! F+7%63*75"+! "#! M3%.%+7*75"+! b"-1"+%+7.2_! 5+!

>>>?@A2!'))[2!11(!c'T?cT'(!

35



!

!"#$%&'()*(
+',-(.#/"0$(1&2"3,4,56&/(%,(7368&'/#4(93%&5'#%6,3*(

:&#'2"(!,-$0%635(%"&(9-$&'#%68&(;#<(

"#$%&'(!)'(&*#+!,-*.'($!,$&+!"'/&$!0'1'-&!

2(&3*%1&-4!$.!5%*(-$!6!7&'!,$88'%&3*!9:+!;<=>=!5%*(-$!6!?-'#4!
@A'(&*#+1$&+B'1'-&CDA&1&EF(&-(E&-!

=>/%'#2%?(G'1HFI1+!&E*E+!J*/!'II#&B'-&$(1!-H'-!'%*!A*3*#$I*A!/4!&(-*K%'-&(K!A'6
-'+!'II#&B'-&$(!#$K&B+!'(A!F1*%!&(-*%.'B*1!1$F%B*A!.%$8!-H*!L*/+!%*I%*1*(-!$(*!$.!
-H*! &(($3'-&$(1! -H'-! BH'%'B-*%&M*!L*/! NE=E!O$3*#! B$(-*(-!J%'II&(K! -*BH($#$6
K&*1+!-H*!'3'&#'/&#&-4!$.!1$6B'##*A!J*/!PQ?1!R*EKE+!J*/!1*%3&B*1S+!'(A!-H*!&(B%*'16
&(K! 1$IH&1-&B'-&$(!$.!8'1HFI! -$$#1! '##$J!'#1$! -H*! #*11! 1T&##*A!I%$K%'88*%! R$%!
*3*(! -H*!'3*%'K*!J*/!F1*%S! -$! B$8I$1*!I*%1$('#! 'II#&B'-&$(1!$(! -H*!L*/E! ?(!
8'(4!B'1*1+!1FBH!'II#&B'-&$(1!'#1$!.*'-F%*!1*'%BH!B'I'/&#&-&*1+!'BH&*3*A!/4!*U6
I#&B&-#4!&(-*K%'-&(K!1*'%BH!1*%3&B*1+!1FBH!'1!V$$K#*!$%!W'H$$X+!&(-$!-H*!$3*%'##!
#$K&B!$.!-H*!B$8I$1&-*!'II#&B'-&$(E!
?(!-H&1!BH'I-*%+!J*!.&%1-!$3*%3&*J!-H*!1-'-*!$.!-H*!'%-!&(!8'1HFI!A*3*#$I8*(-!/4!
#$$T&(K!'-!JH&BH!-*BH($#$K&*1!'!8'1HFI!A*3*#$I*%!1H$F#A!8'1-*%!'(A!JH&BH!&(6
1-%F8*(-1!*U&1-!-H'-!.'B&#&-'-*!-H*!$3*%'##!A*3*#$I8*(-!I%$B*11E!5H*(!J*!1I*B&.&6
B'##4!.$BF1!$(!$F%!$J(!8'1HFI!I#'-.$%8+!!"#$%&'+!'(A!A&1BF11!&-1!'II%$'BH!-$!
JH'-!J*!B'##!F(&3*%1'#!&(-*K%'-&$(+!&E*E+!&(-*K%'-&$(!'-!-H*!A'-'+!'II#&B'-&$(+!'(A!
F1*%!&(-*%.'B*!#'4*%!&(1&A*!$(*!'(A!-H*!1'8*!8'1HFI!*(3&%$(8*(-E!5$!/*--*%!*U6
I#'&(!-H*!($3*#!&A*'1!$.!-H*!I#'-.$%8!'(A!&-1!3'#F*!&(!-H*!B$(-*U-!$.!1*'%BH!B$86
IF-&(K+!J*!A&1BF11!'(!*U'8I#*!&(1I&%*A!/4!-H*!&A*'!$.!1*'%BH!B$8IF-&(KE!

@! 93%',A02%6,3(

5H*!'A3*(-!$.!L*/!NE=!#*A!-$!-H*!I'%-&B&I'-&$(!$.!-H*!F1*%!&(-$!-H*!B$(-*(-!B%*'-&$(!'(A!
'II#&B'-&$(!A*3*#$I8*(-!I%$B*11*1+!'#1$! -H'(T1! -$! -H*!J*'#-H!$.!1$B&'#!J*/!'II#&B'6
-&$(1!R*EKE+!J&T&1+!/#$K1+!IH$-$!1H'%&(K!'II#&B'-&$(1+!*-BES! -H'-!'##$J!F1*%1!-$!/*B$8*!
'(!'B-&3*!B$(-%&/F-$%!$.!B$(-*(-!%'-H*%!-H'(!YF1-!'!I'11&3*!B$(1F8*%+!'(A!-H'(T1!-$!()*+
!"#$,-#+ Z9[E!G'1HFI! -$$#1! *('/#*! .'&%#4! 1$IH&1-&B'-*A!A*3*#$I8*(-! -'1T1! &(1&A*! -H*!
J*/!/%$J1*%E!5H*4!'##$J!F1*%1!-$!A*3*#$I!-H*&%!$J(!'II#&B'-&$(1!1-'%-&(K!.%$8!*U&1-6
&(K!B$(-*(-! '(A! .F(B-&$('#&-4E!,$8*!'II#&B'-&$(1! .$BF1!$(! &(-*K%'-&(K!\,,!$%!P-$8!
.**A1+!$-H*%1!$(!&(-*K%'-&(K!\],5.F#!1*%3&B*1+!$-H*%1!$(!1&8I#*!2?!J&AK*-1+!*-BE!G'6
1HFI!'II%$'BH*1! '%*! &(($3'-&3*! *1I*B&'##4! &(! -H'-! -H*4! -'BT#*! &(-*K%'-&$(! '-! -H*!F1*%!
&(-*%.'B*!#*3*#!'(A!A$!($-!^YF1-_!.$BF1!$(!A'-'!'(A!&(!-H'-!-H*4!'&8!'-!1&8I#&B&-4!8$%*!
-H'(! %$/F1-(*11! $%! B$8I#*-*(*11! $.! .*'-F%*1! RFI! -$! -H*! I$&(-! -$! *('/#*! '#1$! ($(6
I%$.*11&$('#!I%$K%'88*%1!-$!A*3*#$I!$J(!8'1HFI1SE!?(-*K%'-&(K!B$(-*(-!'(A!1*%3&B*1!
.%$8! -H*!L*/! '#1$!8*'(1! &(-*K%'-&(K! #)"&.$+ &)#,/'#+$%+ #)&01.)#+! JH&BH!8'T*1!8'6

Appendix B

36



N!!!!!!+4,'6#3(B#36&4C(:%&D#3,(:,6C(+#>6,(!#/#%6(!

!
!

1HFI1! '! ('-F%'#! B'(A&A'-*! .$%! 1*'%BH! B$8IF-&(K! 'II#&B'-&$(1+! /F-! '#1$! I$1*1! ($3*#!
%*`F&%*8*(-1!&(!-*%81!$.!B$8I$1&-&$(!.*'-F%*1!a!*1I*B&'##4!'1!.$%!JH'-!%*K'%A1!2?1E!
?(1I&%*A!/4!'(A!/F&#A&(K!FI$(! %*1*'%BH! &(!,bP!'(A!B'I-F%&(K! -H*! -%*(A1!$.!L*/!

NE=!'(A!8'1HFI1+!-H&1!BH'I-*%!&(-%$AFB*1!-H*!B$(B*I-!$.!,210)&#"/+12')3&"'142+!-H'-!&1+!
-H*!B%*'-&$(!$.!B$8I$1&-*!J*/!'II#&B'-&$(1! -H'-! &(-*K%'-*!A'-'+!'II#&B'-&$(+!'(A!F1*%!
&(-*%.'B*! R2?S! B$8I$(*(-1+! *..*B-&3*#4! *('/#&(K! -H*! &8I*%'-&3*! A*3*#$I8*(-! $.! 'A6
3'(B*A!1*'%BH!B$8IF-&(K!'II#&B'-&$(1E!bF%!'&8!&1!-$!A$!JH'-!1*%3&B*!B$8I$1&-&$(!H'1!
A$(*!.$%!&(-*K%'-&(K!1*%3&B*1+!/F-!-$!A$!1$!'-!'##!#'4*%1+!($-!YF1-!'-!-H*!'II#&B'-&$(!#'4*%+!
'(A! %*8$3*! 1$8*! $.! -H*! #&8&-'-&$(1! -H'-! B$(1-%'&(*A! '! J&A*%! 'A$I-&$(! $.!
J$%T.#$Jc1*%3&B*!B$8I$1&-&$(!-*BH($#$K&*1E!2(&3*%1'#!&(-*K%'-&$(!B'(!/*!A$(*!R'(A!&1!
/*&(K!A$(*S!-$A'4!/4!Y$&(&(K!-H*!B'I'/&#&-&*1!$.!8F#-&I#*!I%$K%'88&(K!#'(KF'K*1!'(A!
-*BH(&`F*1+! /F-! &-! %*`F&%*1! 1&K(&.&B'(-! *..$%-1! '(A! I%$.*11&$('#! I%$K%'88*%1E! ?(! -H&1!
BH'I-*%!J*!I%$3&A*!'/1-%'B-&$(1+!8$A*#1!'(A!-$$#1!1$!-H'-! -H*!A*3*#$I8*(-!'(A!A*I6
#$48*(-! $.! F(&3*%1'#! B$8I$1&-&$(1! &1! K%*'-#4! 1&8I#&.&*A+! FI! -$! -H*! *U-*(-! -H'-! *3*(!
($(6I%$.*11&$('#!I%$K%'88*%1!B'(!A$!&-!&(!-H*&%!J*/!/%$J1*%E!!

!
+650'&(@(E&D&'&32&(/2&3#'6,*(%"&(2,3D&'&32&(%'6$($4#33&'(#$$462#%6,3?(:&4&2%635(#(2,3D&F

'&32&(D',-(%"&(46/%(#4653/(%"&(2,3%&3%(/",G3(><(%"&(2,-$,3&3%/(63(%"&($#5&?(

:2&3#'6,E!P1!'! %*.*%*(B*! 1B*('%&$! -H%$FKH$F-! -H&1! BH'I-*%+!J*! %*F1*! -H*! B$(.*%*(B*!
1*'%BH!1B*('%&$!A*1B%&/*A!&(!Z9<[+!/'1*A!$(!-H*!1*'%BH!`F*%4!^5126+"//+6"'"*"#)+.425)7
&)2.)#+ 12+ '$)+ 2)8'+ #18+ !42'$#+ 12+ /4."'142#+ ($)&)+ '$)+ "0)&"3)+ ')!-)&"',&)+ 1#+ 9:;<+
6)3&))#+ "26+ 54&+ ($1.$+ "+ .$)"-+ '&"0)/+ #4/,'142+ 12./,6123+ "+ /,8,&=+ "..4!!46"'142+
)81#'#_E!P(1J*%&(K!-H&1!%*`F*1-!%*`F&%*1!R&S!.&(A&(K!&(-*%*1-&(K!B$(.*%*(B*1d!R&&S!F(A*%6
1-'(A&(K!JH*-H*%! -H*! B$(.*%*(B*! #$B'-&$(! &1! 1*%3*A! /4! #$J6B$1-! .#&KH-1d! R&&&S! .&(A&(K!

37



+',-(.#/"0$(1&2"3,4,56&/(%,(7368&'/#4(93%&5'#%6,3!!!!!!;!

!

#FUF%4!H$-*#1!B#$1*!-$!-H*!B$(.*%*(B*!#$B'-&$(!J&-H!'3'&#'/#*!%$$81d!'(A!R&3S!BH*BT&(K!
-H*!*UI*B-*A!'3*%'K*!-*8I*%'-F%*!$.!-H*!#$B'-&$(E!?(1-*'A!$.!'F-$8'-&B'##4!A*%&3&(K!'!
`F*%4!I#'(!-$!'(1J*%!-H*!%*`F*1-+!&(!-H&1!BH'I-*%!J*!.$BF1!$(!H$J!-H*!%*`F*1-!B'(!/*!
'(1J*%*A!-H%$FKH!'!B$8I$1&-*!'II#&B'-&$(!.$%!-H*!L*/!-H'-!&(-*%'B-&3*#4!&(3$#3*1!-H*!
F1*%!&(-$!-H*!1*'%BH!I%$B*11E!!
5H*!1B%**(1H$-!&(!"&KF%*!9!1H$J1!H$J!1FBH!'!<425)&)2.)+>&1-+?/"22)&!R05QS!'I6

I#&B'-&$(!B$F#A!#$$T!#&T*E!5H*!'II#&B'-&$(!&1!B$8I$1*A!$.!'!3'%&*-4!$.!A&..*%*(-!B$86
I$(*(-1e! ?(! -H*!FII*%! #*.-! B$%(*%!J*!H'3*!'!<425)&)2.)#+@)"&.$! B$8I$(*(-! -H'-!'#6
#$J1!-H*!F1*%!$.!-H*!'II#&B'-&$(!-$!1I*B&.4!'!`F*%4!1-%&(K!'(A!-$!1*'%BH!.$%!B$(.*%*(B*1!
-H'-!1'-&1.4!-H*!`F*%4d!%*-%&*3*A!%*1F#-1!'%*!A&1I#'4*A!/*#$J!-H*!1*'%BH!.$%8E!5H&1!&1!'!
1$6B'##*A!2?!B$8I$(*(-+!'1!a!/*1&A*1!1FII$%-&(K!-H*!B$(.*%*(B*!1*'%BH!.F(B-&$(!a!&-!
'#1$!B$8*1!J&-H!&-1!$J(!2?+!JH&BH!&1!%*F1*A!'16&1!/4!-H*!B$8I$1&-*!'II#&B'-&$(E!,&8&6
#'%#4+!&(!-H*!#$J*%!#*.-!B$%(*%+!J*!H'3*!'!AA<+B)"'$)&!2?!B$8I$(*(-!-H'-!1H$J1!-H*!
'3*%'K*!J*'-H*%!B$(A&-&$(1!.$%!'!1*#*B-*A!B&-4+!'(A!&(!-H*!FII*%!%&KH-!B$%(*%!J*!H'3*!
'(!C8-)61"+D4')/!2?!B$8I$(*(-!-H'-!I%$3&A*1!'!#&1-!$.!H$-*#1!K&3*(!-H*!('8*!$.!'!B&-4E!
"&('##4+!&(!-H*!#$J*%!%&KH-!B$%(*%+!J*!H'3*!'(!E@@+E)"6)&!2?!B$8I$(*(-!-H'-!A&1I#'41!
'!#&1-!$.!I$11&/#*!.#&KH-!B$((*B-&$(1!.%$8!G&#'($!-$!-H*!A*1-&('-&$(!B&-4E!!
5H*!.$F%!2?!B$8I$(*(-1!'%*!14(BH%$(&M*A!3&'!-H*!<425)&)2.)#+@)"&.$!B$8I$(*(-+!

JH&BH! 1$8*H$J! %*I%*1*(-1! -H*! *(-%4! I$&(-! .$%! -H*! *3'#F'-&$(!$.! -H*!$3*%'##! ^1*'%BH!
`F*%4_+!&E*E+!-H*!B$(-*(-!A&1I#'4*A!/4!-H*!2?!B$8I$(*(-1E!,I*B&.&B'##4+!/4!1*#*B-&(K!'(!
*3*(-!$.!&(-*%*1-!.%$8!-H*!%*-%&*3*A!B$(.*%*(B*1+!-H*!F1*%!14(BH%$(&M*1!-H*!B$(-*(-!$.!
-H*! $-H*%!2?! B$8I$(*(-1! &(! -H*! I'K*+! %*1F#-&(K! &(! '! %*6B$8IF-'-&$(! $.! -H*!J*'-H*%+!
H$-*#!'(A!.#&KH-!B$8I$(*(-1E!f4!B#&BT&(K!$(!-H*!I%$I$1*A!H$-*#1!$%!.#&KH-1+!-H*!F1*%!&1!
A&%*B-#4! .$%J'%A*A! -$! -H*! %*1I*B-&3*! /$$T&(K! I'K*1+!JH*%*! H*c1H*! B'(! B$(B#FA*! -H*!
%*1I*B-&3*!/$$T&(KE!!
L*!'11F8*!-H'-!-H*!<425)&)2.)#+@)"&.$!B$8I$(*(-!&1!&8I#*8*(-*A!3&'!'!1&8I#*+!

K*(*%&B!1*'%BH!B$8I$(*(-!&(!B$(YF(B-&$(!J&-H!'(!*U-*%('#!B$(.*%*(B*!1*'%BH!1*%3&B*d!
&(!$F%!*U'8I#*+!J*!F1*!'!W'H$$X!Q&I*! -$!1*'%BH!.$%!B$(.*%*(B*1!'(A!.&#-*%! -H*8!'B6
B$%A&(K! -$! -H*!F1*%g1!`F*%4E!,&8&#'%#4+!J*!F1*!'!1-'(A'%A!E@@+E)"6)&!B$8I$(*(-! -$!
3&1F'#&M*! .#&KH-1! -H'-! '%*! %*-%&*3*A! 3&'! -H*! F"="FG.4!! 1*'%BH! *(K&(*E! "$%! -H*! AA<+
B)"'$)&! '(A! -H*!C8-)61"+D4')/! B$8I$(*(-1+! &(1-*'A+!J*! '11F8*! -H'-! -H*4! '%*!/$-H!
I%$3&A*A! '1! %*'A&#4! F1'/#*! 2?! B$8I$(*(-1! /4! -H*! %*1I*B-&3*! B$8I'(&*1! RYF1-! #&T*!
B$88$(!J*/!1*%3&B*1SE!
5H*!'II#&B'-&$(!&(!"&KF%*!9!%*I%*1*(-1!$(#4!$(*!I$11&/#*!'II#&B'-&$(!'/#*!-$!'(1J*%!

-H*! &(&-&'#! `F*%4E! ?(! .'B-+! $-H*%! B$8/&('-&$(1! $.! B$8I$(*(-1! '(A! 1*%3&B*1! B$F#A! /*!
'A$I-*A+!*EKE+!F1&(K! /,5'$"2#"G.4!! &(1-*'A!$.!F"="FG.4!!$%!1J&-BH&(K!-H*!I$1&-&$(!$.!
-H*!J*'-H*%! '(A! -H*! H$-*#! B$8I$(*(-1+! /F-! &(! -H&1! BH'I-*%!J*! '%*! ($-! &(-*%*1-*A! &(!
&A*(-&.4&(K!-H*!/*1-!B$8/&('-&$(!$.!B$8I$(*(-1!R&E*E+!-H*!/*1-!^`F*%4!I#'(_!F1&(K!-H*!
-*%8&($#$K4! $.! Z9<[SE! 5H*! BH'##*(K*!J*! 'AA%*11! &1! H$J! -$! )2"*/)+ '$)+ "0)&"3)+()*!
,#)&!'4+.4!-4#)!'(!'II#&B'-&$(!#&T*!-H*!$(*!&(!"&KF%*!9+!%*#4&(K!$(!H&1cH*%!$J(!YFAK6
8*(-!$.!H$J!B$8I$(*(-1!'%*!/*1-!K#F*A!-$K*-H*%E!
=$$',#2"(#3A(2,3%'6>0%6,3/?(?(!-H*!.$##$J&(K!J*!A*1B%&/*!'!F(&3*%1'#!B$8I$1&-&$(!
8$A*#!'(A!-$$#+!B'##*A!!"#$%&'+! -H'-!1FII$%-!-H&1!T&(A!$.!B$8I$1&-&$(!1B*('%&$E!G'6
1HP%-!'&81!'-!)!-4()&123+,#)&#+(1'$+)"#=7'47,#)+"26+5/)81*/)+"*#'&".'142#+"26+').$7
21H,)#+'4+.&)"')+"26+!"2"3)+.4!-4#1')+()*+"--/1."'142#G+?(!I'%-&BF#'%+!&(!-H&1!BH'I-*%!
J*!8'T*!-H*!.$##$J&(K!B$(-%&/F-&$(1e(

38



:!!!!!!+4,'6#3(B#36&4C(:%&D#3,(:,6C(+#>6,(!#/#%6(!

!
!

! P!,210)&#"/+.4!-42)2'+!46)/+!'##$J&(K!-H*!8$A*#&(K!$.!2?!B$8I$(*(-1+!'I6
I#&B'-&$(! B$8I$(*(-1! R*EKE+! 1*%3&B*1! J&-H! '(! PQ?S! '(A! A'-'! B$8I$(*(-1!
R%*I%*1*(-&(K!.**A1!$%!'BB*11!-$!hGic%*#'-&$('#!A'-'S!F1&(K!'!F(&.&*A!8$A*#E!!

! P!,210)&#"/+.4!-4#1'142+!46)/+! -$!B$8/&(*!-H*!/F&#A&(K!/#$BT1!'(A!*UI$1*!
-H*!B$8I$1&-&$(!'1!'!G'1HP%-!B$8I$(*(-+!I$11&/#4!'BB*11&/#*!3&'!%*1-c1$'I+!
'(Ac$%!I%$3&A&(K!.**A1+!'(Ac$%!H'3&(K!&-1!$J(!RB$8I$1*AS!2?E!!

! 5H*!!"#$%&'+ -/"'54&!!JH&BH! &1! '! 1*%3&B*! I%$3&A&(K! '! (F8/*%! .'B&#&-&*1! .$%!
.'B&#&-'-&(K!-H*!%'I&A!A*3*#$I8*(-!'(A!8'('K*8*(-!$.!B$8I$1&-*!J*/!'II#&6
B'-&$(1E!G'1HP%-!&1!H$1-*A+!J*/6/'1*A!'(A!J&-H!M*%$!B#&*(-61&A*!B$A*E!!

?(! -H&1! BH'I-*%!J*! .$BF1!$(! -H*! B$(B*I-F'#! '(A! '%BH&-*B-F%'#! '1I*B-1!$.!8'1HP%-+!
JH&BH!B$(1-&-F-*! -H*!8$1-! &(($3'-&3*!B$(-%&/F-&$(1!$.! -H&1!J$%T+!('8*#4! -H*!.4!-47
2)2'!'(A!.4!-4#1'142+!46)/1!'1!J*##!'1!-H*!6)0)/4-!)2'!'(A!&,2'1!)+I'%-!$.!-H*!&(.%'6
1-%FB-F%*E!L*!(*U-!A&1BF11!-H*!1-'-*!$.!-H*!'%-!&(!8'1HFI1!'(A!B$8I$1&-&$(!-*BH($#$6
K&*1!R,*B-&$(!NS!'(A!-H*(!&(-%$AFB*!-H*!I%&(B&I#*1!-H'-!KF&A*!$F%!J$%T!R,*B-&$(!;SE!?(!
,*B-&$(!:!'(A!,*B-&$(!>!J*!&(-%$AFB*!-H*!8'1HP%-!B$8I$(*(-!'(A!B$8I$1&-&$(!8$A6
*#1E! ,*B-&$(! j! A*1B%&/*1! -H*! I#'-.$%8! '(A! H$1-*A! *U*BF-&$(! *(3&%$(8*(-E! ,*B-&$(! k!
I%$3&A*1!B$(B#FA&(K!%*8'%T1E!

H! I3(2,-$,/6%6,3(#3A(-#/"0$/(D,'(%"&(;&>(

,*3*%'#!'%*'1!$.!%*1*'%BH!'%*!%*#'-*A!-$!R#&KH-J*&KH-S!B$8I$1&-&$(!'(A!8'1HFI1!$(!-H*!
L*/E!?(!-H&1!1*B-&$(+!J*!/%&*.#4!1F%3*4!-H*!'%*'1!$.!#)&01.)+.4!-4#1'142+!IJ+.4!-4#17
'142+!.4!-,')&7"16)6+()*+ )2312))&123+ '44/#+!()*!-4&'"/#+ "26+-4&'/)'#+! '(A! -H*(!IF-!
1$8*!8$%*!.$BF1!$(!!"#$,-#+!'##!'%*'1!J*!.**#!I'%-&BF#'%#4!%*#'-*A!-$!F(&3*%1'#!B$86
I$1&-&$(!.$%!-H*!L*/E!

H?@! :&'862&(2,-$,/6%6,3(#$$',#2"&/(

P!%*I%*1*(-'-&3*!$.!1*%3&B*!$%BH*1-%'-&$(!'II%$'BH*1!&1!fQ]i!Zj[+!'!1-'(A'%A!B$8I$1&6
-&$(! #'(KF'K*!/4!bP,?,E!fQ]i!&1!/'1*A!$(!L,)i6,bPQ!J*/!1*%3&B*1+!'(A!fQ]i!
I%$B*11*1! '%*! -H*81*#3*1! *UI$1*A! '1!J*/! 1*%3&B*1E! 0$(-%$#! .#$J1! '%*! *UI%*11*A! /4!
8*'(1!$.!1-%FB-F%*A!'B-&3&-&*1!'(A!8'4!&(B#FA*!%'-H*%!B$8I#*U!*UB*I-&$(!'(A!-%'(1'B6
-&$(!1FII$%-E!)'-'!&1!I'11*A!'8$(K!1*%3&B*1!3&'!3'%&'/#*1!Rl'3'!1-4#*SE!,$!.'%+!fQ]i!&1!
-H*! 8$1-! J&A*#4! 'BB*I-*A! 1*%3&B*! B$8I$1&-&$(! #'(KF'K*E! P#-H$FKH! fQ]i! H'1! I%$6
AFB*A!I%$8&1&(K!%*1F#-1!-H'-!'%*!B*%-'&(#4!F1*.F#+!&-!&1!I%&8'%&#4!-'%K*-*A!'-!I%$.*11&$(6
'#!I%$K%'88*%1!#&T*!/F1&(*11!I%$B*11!A*3*#$I*%1E!?-1!B$8I#*U&-4!R%*.*%*(B*!Zj[!B$F(-1!
Nj:!I'K*1S!8'T*1!&-!H'%A#4!'II#&B'/#*!.$%!J*/!8'1HFI1E!!
G'(4!3'%&'-&$(1!$.!fQ]i!H'3*!/**(!A*3*#$I*A+!*EKE+!'&8&(K!'-!&(3$B'-&$(!$.!\],5!

1*%3&B*1!Zk[!'(A!'-!*UI$1&(K!fQ]i!I%$B*11*1!'1!\],5!1*%3&B*1!Z<[E!?(!Zm[!-H*!'F-H$%1!
A*1B%&/*!f&-*+!'!fQ]i6#&T*! #&KH-J*&KH-!B$8I$1&-&$(! #'(KF'K*!1I*B&.&B'##4!A*3*#$I*A!
.$%!\],5.F#! *(3&%$(8*(-1E! ?fGg1! ,H'%'/#*!0$A*! I#'-.$%8! Z9=[! .$##$J1! '! A&..*%*(-!
1-%'-*K4!.$%!-H*!B$8I$1&-&$(!$.!\],5!$%!,bPQ!1*%3&B*1e!'!A$8'&(61I*B&.&B!I%$K%'86
8&(K!#'(KF'K*!.%$8!JH&BH!\F/4!$(!\'&#1!'II#&B'-&$(!B$A*!&1!K*(*%'-*A+!'#1$!B$8I%&16
&(K!F1*%!&(-*%.'B*1!.$%!-H*!L*/E!?(!Z99[+!-H*!'F-H$%1!B$8/&(*!-*BH(&`F*1!.%$8!A*B#'%'6

39



+',-(.#/"0$(1&2"3,4,56&/(%,(7368&'/#4(93%&5'#%6,3!!!!!!>!

!

-&3*!`F*%4!#'(KF'K*1!'(A!1*%3&B*1!B$8I$1&-&$(!-$!1FII$%-!8F#-&6A$8'&(!`F*%&*1!$3*%!
8F#-&I#*! R1*'%BHS! 1*%3&B*1E! P##! -H*1*! 'II%$'BH*1! .$BF1! $(! -H*! 'II#&B'-&$(! '(A! A'-'!
#'4*%d!2?1!B'(! -H*(!/*!I%$K%'88*A!$(! -$I!$.! -H*!1*%3&B*! &(-*K%'-&$(! #$K&BE!8'1HP%-!
.*'-F%*1!&(1-*'A!F(&3*%1'#!&(-*K%'-&$(!'1!'!I'%'A&K8!.$%!-H*!1&8I#*!'(A!1*'8#*11!B$86
I$1&-&$(!$.!2?+!A'-'+!'(A!'II#&B'-&$(!B$8I$(*(-1E!L*!'%KF*!-H'-!F(&3*%1'#!&(-*K%'-&$(!
J&##!I%$3&A*!/*(*.&-1!-H'-!'%*!1&8&#'%!-$!-H$1*!-H'-!,bP!'(A!I%$B*11!B*(-%&B!&(-*K%'-&$(!
I%$3&A*A!.$%!1&8I#&.4&(K!-H*!A*3*#$I8*(-!$.!*(-*%I%&1*!I%$B*11*1E!

H?H! 79(2,-$,/6%6,3(#$$',#2"&/(

?(! Z9N[! J*! A&1BF11*A! -H*! I%$/#*8! $.! &(-*K%'-&$(! '-! -H*! I%*1*(-'-&$(! #'4*%! '(A! B$(6
B#FA*A!-H'-!-H*%*!'%*!($!%*'#!2?!B$8I$1&-&$(!'II%$'BH*1!%*'A&#4!'3'&#'/#*e!)*1T-$I!2?!
B$8I$(*(-! -*BH($#$K&*1! 1FBH! '1! EO]5! 0Pf! Z9;[! $%! ]B#&I1*! \0Q! Z9:[! '%*! H&KH#4!
-*BH($#$K46A*I*(A*(-! '(A! ($-! %*'A4! .$%! -H*! L*/E! f%$J1*%! I#FK6&(1! 1FBH! '1! l'3'!
'II#*-1+! G&B%$1$.-! ,&#3*%#&KH-+! $%! G'B%$8*A&'! "#'1H! B'(! *'1&#4! /*! *8/*AA*A! &(-$!
n5Gi!I'K*1d! B$88F(&B'-&$(1! '8$(K! A&..*%*(-! -*BH($#$K&*1! %*8'&(! H$J*3*%! BF86
/*%1$8*! R*EKE+! 3&'! BF1-$8! l'3',B%&I-SE! l'3'! I$%-#*-1! Z9>[! $%!L,\Q! ZN[! %*I%*1*(-! '!
8'-F%*!'(A!L*/6.%&*(A#4!1$#F-&$(!.$%!-H*!A*3*#$I8*(-!$.!I$%-'#!'II#&B'-&$(1d!I$%-#*-1!
'%*!H$J*3*%!-4I&B'##4!*U*BF-*A!&(!'(!&1$#'-*A!.'1H&$(!'(A!B$88F(&B'-&$(!$%!14(BH%$6
(&M'-&$(!J&-H!$-H*%!I$%-#*-1!$%!J*/!1*%3&B*1!%*8'&(1!H'%AE!Q$%-'#1!A$!($-!I%$3&A*!1FI6
I$%-!.$%!1*%3&B*!$%BH*1-%'-&$(!#$K&BE!!

H?J! !,-$0%&'F#6A&A(G&>(&3563&&'635(%,,4/(

?(! $%A*%! -$! '&A! -H*! A*3*#$I8*(-! $.! B$8I#*U!J*/! 'II#&B'-&$(1+! -H*!J*/! *(K&(**%&(K!
B$88F(&-4!H'1!1$!.'%!-4I&B'##4!.$BF1*A!$(!8$A*#6A%&3*(!A*1&K(!'II%$'BH*1E!P8$(K!
-H*!8$1-!($-'/#*!'(A!'A3'(B*A!8$A*#6A%&3*(!J*/!*(K&(**%&(K! -$$#1!J*!.&(A+! .$%! &(6
1-'(B*+!L*/\'-&$!Z9j[!'(A!7&1F'#L'A*!Z9k[E!5H*!.$%8*%!&1!/'1*A!$(!'!J*/61I*B&.&B!
3&1F'#!8$A*#&(K!#'(KF'K*!RL*/GiS+! -H*!#'--*%!$(!'(!$/Y*B-6$%&*(-*A!8$A*#&(K!($-'6
-&$(! Rbb6nSE!,&8&#'%+! /F-! #*11! 'A3'(B*A+!8$A*#&(K! -$$#1! '%*! '#1$! '3'&#'/#*! .$%!J*/!
8$A*#&(K!#'(KF'K*1c8*-H$A1!#&T*!n*%'+!bbn)G+!'(A!2L]E!P##!-H*1*!-$$#1!I%$3&A*!
*UI*%-!J*/!I%$K%'88*%1!J&-H!8$A*#&(K!'/1-%'B-&$(1!'(A!'F-$8'-*A!B$A*!K*(*%'-&$(!
B'I'/&#&-&*1+!JH&BH!'%*!H$J*3*%!.'%!/*4$(A!-H*!B'I'/&#&-&*1!$.!$F%!-'%K*-!'FA&*(B*+!&E*E+!
'A3'(B*A!J*/!F1*%1!'(A!($-!J*/!I%$K%'88*%1E!

H?K! L,'%#4/(#3A($,'%4&%/(

,-&##! &(!-H*!B$(-*U-!$.!J*/!'II#&B'-&$(1+!I$%-'#1!'(A!I$%-#*-1!%*I%*1*(-!'!A&..*%*(-!'I6
I%$'BH! -$! -H*!2?! &(-*K%'-&$(! I%$/#*8!$(! -H*!L*/E!5H*&%! 'II%$'BH! *UI#&B&-#4! A&1-&(6
KF&1H*1! /*-J**(!2?! B$8I$(*(-1! R-H*! I$%-#*-1S! '(A! B$8I$1&-*! 'II#&B'-&$(1! R-H*! I$%6
-'#1S! '(A! &-! &1! I%$/'/#4! -H*!8$1-! 'A3'(B*A! 'II%$'BH! -$!2?! B$8I$1&-&$(! '1! $.! -$A'4!
RL*!F1*!-H*!-*%8!^I$%-#*-1_!-'T*(!.%$8!-H*!l,\69j<!I$%-#*-!1I*B&.&B'-&$(!Z9>[+!/F-!$F%!
B$(1&A*%'-&$(1!'#1$!H$#A!.$%!P,QEO]5!L*/!Q'%-1SE!Q$%-#*-1!'%*!.F##6.#*AK*A+!I#FKK'/#*!
L*/! 'II#&B'-&$(! B$8I$(*(-1! -H'-! K*(*%'-*! A$BF8*(-! 8'%TFI! .%'K8*(-1! R*EKE+!

40



j!!!!!!+4,'6#3(B#36&4C(:%&D#3,(:,6C(+#>6,(!#/#%6(!

!
!

RhSn5GiS!'(A!.'B&#&-'-*!B$(-*(-!'KK%*K'-&$(!&(!'!I$%-'#!1*%3*%E!Q$%-#*-1!'%*!B$(B*I6
-F'##4!3*%4!1&8&#'%!-$!1*%3#*-1E!5H*!8'&(!A&..*%*(B*!/*-J**(!-H*8!B$(1&1-1!&(!-H*!.'B-!
-H'-!JH&#*!'!1*%3#*-!K*(*%'-*1!'!B$8I#*-*!J*/!I'K*+!I$%-#*-1!K*(*%'-*1!YF1-!'!I&*B*!$.!
I'K*!RB$88$(#4!B'##*A!.%'K8*(-S!-H'-!&1!A*1&K(*A!-$!/*!&(B#FA*A!&(-$!'!I$%-'#!I'K*E!
n*(B*+!JH&#*!'!1*%3#*-!B'(!/*!%*'BH*A!-H%$FKH!'!1I*B&.&B!2\i+!'!I$%-#*-!B'(!$(#4!/*!
%*'BH*A!-H%$FKH!-H*!2\i!$.!-H*!JH$#*!I$%-'#!I'K*E!P!I$%-#*-!H'1!($!A&%*B-!B$88F(&6
B'-&$(!J&-H!-H*!J*/!/%$J1*%+!/F-!-H&1!B$88F(&B'-&$(1!'%*!8'('K*A!/4!-H*!I$%-'#!'(A!
-H*! I$%-#*-! B$(-'&(*%! -H'-! '##$J! -H*! %*`F*1-6%*1I$(1*! .#$J1! '(A! -H*! B$88F(&B'-&$(!
/*-J**(!I$%-#*-1E!P!I$%-'#!1*%3*%!-4I&B'##4!'##$J1!F1*%1!-$!BF1-$8&M*!B$8I$1&-*!I'K*1!
R*EKE+! -$! %*'%%'(K*!$%! 1H$JcH&A*! I$%-#*-1S! '(A!I%$3&A*! 1&(K#*! 1&K(6$(! '(A! %$#*6/'1*A!
I*%1$('#&M'-&$(E!!
5$A'4+!-H*%*!'%*!1*3*%'#!1-'(A'%A1!.$%!I$%-#*-1+!l,\69j<!/*&(K!-H*!$%&K&('#!1I*B&.&6

B'-&$(E! ! l,\6N<j! &(-%$AFB*A! &(-*%6I$%-#*-! B$88F(&B'-&$(!3&'! '!I$%-#*-! B$(-'&(*%! -H'-!
8'('K*1!'!IF/#&1H61F/1B%&/*! &(.%'1-%FB-F%*! -H'-!B'(!/*!F1*A!/4! -H*!I$%-#*-1E!"&('##4+!
L,\Q!ZN[!'#1$!'AA*A!1FII$%-!.$%!'BB*11&(K!%*8$-*!I$%-#*-1!'1!J*/!1*%3&B*1!$3*%!-H*!
L*/E!5H*!I$%-#*-!8$A*#! &1!I$J*%.F#!'1!.$%!JH'-!%*K'%A1!-H*!I%*1*(-'-&$(! &(-*K%'-&$(!
I'%-+!4*-!I$%-'#1!A$!($-!('-F%'##4!1FII$%-!&(-*%'B-&$(1!J&-H!K*(*%&B!J*/!1*%3&B*1!$%!-H*!
1I*B&.&B'-&$(!$.!$%BH*1-%'-&$(!#$K&B1E!

H?)! ;&>(-#/"0$/(

L*/! 8'1HFI1! 1$8*H$J! 'AA%*11! -H*! '/$3*! 1H$%-B$8&(K1E! L*/! 8'1HFI1! '%*! J*/!
'II#&B'-&$(1! -H'-! '%*! A*3*#$I*A!/4! B$8/&(&(K! B$(-*(-+! I%*1*(-'-&$(+! '(A! 'II#&B'-&$(!
.F(B-&$('#&-4!.%$8!A&1I'%'-*!L*/!1$F%B*1!Z9[E!5H*!-*%8!8'1HFI!-4I&B'##4!&8I#&*1!*'14!
'(A!.'1-! &(-*K%'-&$(!/'1*A!$(!$I*(!PQ?1!'(A!A'-'!1$F%B*1+!4&*#A&(K!'II#&B'-&$(1! -H'-!
'AA!3'#F*!-$!-H*!&(A&3&AF'#!B$8I$(*(-1!$.!-H*!'II#&B'-&$(!'(A!-H*%*/4!$.-*(!F1*!B$86
I$(*(-1!&(!J'41!-H'-!A&..*%!.%$8!-H*!'B-F'#!%*'1$(!-H'-!#*A!-$!-H*!$%&K&('#!I%$AFB-&$(!$.!
-H*!%'J!1$F%B*1E!!!
G'1HFI1!'%*! 1-%$(K#4! %*#'-*A!J&-H! -H*!L*/E!5H*!L*/! &1! -H*!('-F%'#!*(3&%$(8*(-!

.$%!IF/#&1H&(K!B$(-*(-!'(A!1*%3&B*1!-$A'4+!'(A!-H*%*.$%*!&-!&1!-H*!('-F%'#!*(3&%$(8*(-!
JH*%*! -$! 'BB*11! '(A! %*F1*! -H*8E!0$(-*(-! '(A! 1*%3&B*1! '%*!IF/#&1H*A! &(! '!3'%&*-4!$.!
A&..*%*(-!.$%81!'(A!/4!F1&(K!'!8F#-&I#&B&-4!$.!A&..*%*(-!-*BH($#$K&*1d!J*!B'(!B'-*K$%6
&M*!-H*!8*'(1!-$!1$F%B*!B$(-*(-!'(A!1*%3&B*1!.%$8!-H*!L*/!&(-$!-H%**!/'1&B!K%$FI1e!
! K"'"+#)&01.)#! #&T*!\,,!R\*'##4!,&8I#*!,4(A&B'-&$(S!$%!P-$8!.**A1+!l,bO!Rl'6
3',B%&I-!b/Y*B-!O$-'-&$(S!$%!hGi!%*1$F%B*1+!$%!1&8I#*!-*U-!.&#*1E!P!-4I&B'#!*U6
'8I#*!&1!(*J1I'I*%1!'(A!8'K'M&(*1!-H'-!IF/#&1H!-H*&%!(*J1!H*'A*%1!3&'!\,,!$%!
P-$8!.**A1!-H'-!'##$J!F1*%1!-$!*'1&#4!YF8I!-$!-H*!%*1I*B-&3*!'%-&B#*1E!5H*1*!1&86
I#*! -*BH($#$K&*1! '%*! F1*A! -$! IF/#&1H! A'-'! $(! -H*!L*/! -H'-! '%*!8*'(-! .$%! B$(6
1F8I-&$(!/4!8'BH&(*1+!($-!HF8'(1E!?(!.'B-+!-H*4!.$BF1!$(!-H*!*..&B&*(-!A&1-%&/F6
-&$(!$.!B$(-*(-+!%'-H*%!-H'(!$(!-H*!*..*B-&3*!I%*1*(-'-&$(!$.!1FBH!B$(-*(-1!-$!HF6
8'(!F1*%1E!,$F%B&(K!A'-'!3&'!$(*!$.!-H*1*!-*BH($#$K&*1!&1!-4I&B'##4!3*%4!1&8I#*e!
&-!8$1-#4!%*`F&%*1!'BB*11&(K!'(!$(#&(*!%*1$F%B*!'(A!I%$B*11&(K!-H*!%*1I$(1*E!)'6
-'!1*%3&B*1!-$!($-!H'3*!B$8I#*U!&(-*%'B-&$(!I'--*%(1!-$!/*!.$##$J*AE!

! B)*+ #)&01.)#+ 4&+ -,*/1.+%?J#+ "..)##1*/)+ 40)&+ '$)+B)*+! 1FBH! '1! ,bPQ! R,&8I#*!
b/Y*B-!PBB*11!Q%$-$B$#S!$%!\],5.F#!R\]I%*1*(-'-&$('#!,-'-*!5%'(1.*%S!J*/!1*%6
3&B*1!$%+!-$!'!#$J*%!A*K%**+!l'3'!B#'11*1!R'BB*11*A!3&'!-H*!??bQ!I%$-$B$#S!$%!1&8&6

41



+',-(.#/"0$(1&2"3,4,56&/(%,(7368&'/#4(93%&5'#%6,3!!!!!!k!

!

#'%E!5H*1*!-*BH($#$K&*1!'%*!F1*A!-$!IF/#&1H!'II#&B'-&$(!#$K&B!$(!-H*!L*/E!5H*&%!
K$'#!&1!-H*%*.$%*!($-!YF1-!-$!I%$3&A*!'BB*11!-$!B$(-*(-1!$%!A'-'+!/F-!'#1$!-$!B$8IF6
-&(K!#$K&B!R*EKE+!-H*!I%$B*11&(K!$.!'(!$%A*%!.$%!'!/$$T!1H$ISE!54I&B'##4+!-H*!&(-*6
%'B-&$(! J&-H! J*/! 1*%3&B*1! $%! PQ?1! &1! %F#*A! /4! 1$6B'##*A! &(-*%'B-&$(! I%$-$B$#1+!
JH&BH!1-'-*!JH&BH!$I*%'-&$(1!B'(!/*!&(3$T*A+!&(!JH&BH!$%A*%+!/4!JH&BH!I'%-(*%1+!
*-BE!O$-!.$##$J&(K!-H*!%F#*1!1-'-*A!/4!-H*!I%$-$B$#!8'4!&8I*A*!-H*!B$%%*B-!.F(B6
-&$(&(K!$.!-H*!1*%3&B*!$%!PQ?E+

! I#)&+12')&5".)+)/)!)2'#+!1FBH!'1!n5Gi!B#&I1!$%!l'3',B%&I-!PQ?1!J&-H!$J(!F1*%!
&(-*%.'B*!R*EKE+!V$$K#*!G'I1S+!/F-!'#1$!/'((*%1!$%!'A3*%-&1*8*(-1E!0$(-*(-!8'4!
'#1$!/*!%*I%*1*(-*A!/4!'#%*'A4!.$%8'--*A!'(A!K%'IH&B'##4!%*(A*%*A!A'-'!R-4I&B'##4!
&(!n5GiSE!?(!8'(4!B'1*1+!'BB*11&(K!1FBH!T&(A!$.!B$(-*(-!8*'(1!*U-%'B-&(K!-H*8!
.%$8!'!J*/!I'K*+!'1!-H*%*!&1!($!*`F&3'#*(-!A'-'!1*%3&B*!'3'&#'/#*!-H'-!B'(!/*!F1*A!
-$!1$F%B*!-H*!1'8*!A'-'E!54I&B'##4+!-H&1!$BBF%1!J&-H$F-!-H*!I%$3&A*%!$.!-H*!B$(6
-*(-1!'B-F'##4!T($J&(K!-H'-!-H*%*!&1!1$8*$(*!*U-%'B-&(K!A'-'!.%$8!&-1!J*/!I'K*1E!
?(!$-H*%! B'1*1+! *EKE+!V$$K#*!G'I1+! -H*!I%$3&A*%!$.! -H*! B$(-*(-1! *UI#&B&-#4!IF/6
#&1H*1!&-1!A'-'!'-!-H*!F1*%!&(-*%.'B*!#*3*#!$(#4E!

5H*!3*%4! &(($3'-&3*!'1I*B-!$.!J*/!8'1HFI1! &1! -H'-! -H*4! &(-*K%'-*! 1$F%B*1!'#1$!'-!
-H*!2?!#'4*%+!($-!$(#4!'-!-H*!A'-'!'(A!'II#&B'-&$(!#$K&B!#'4*%1E!?(-*K%'-&$(!'-!-H*!A'-'!
'(A!'II#&B'-&$(!#$K&B!#'4*%1!H'1!/**(!*U-*(1&/#*!1-FA&*A!&(!-H*!I'1-+!JH&#*!&(-*K%'-&$(!
'-!'##!-H%**!#'4*%1!&1!1-&##!'!K$'#!-H'-!IF-!'%BH&-*B-1!'(A!I%$K%'88*%1!&(!.%$(-!$.!&8I$%6
-'(-!B$(B*I-F'#!'(A!-*BH(&B'#!I%$/#*81E!!
G'1HFI!A*3*#$I8*(-!&1!1-&##!'(!'A6H$B!'(A!-&8*6B$(1F8&(K!I%$B*11+!%*`F&%&(K!'A6

3'(B*A! I%$K%'88&(K! 1T&##1! R*EKE+! J%'II&(K! J*/! 1*%3&B*1+! *U-%'B-&(K! B$(-*(-1! .%$8!
J*/!1&-*1+!&(-*%I%*-&(K!-H&%A6I'%-4!l'3',B%&I-!B$A*+!*-BSE!5H*%*!'%*!'!3'%&*-4!$.!8'1HFI!
-$$#1!'3'&#'/#*!$(#&(*+!/F-+! '1!J*!J&##! 1**+!$(#4! .*J!$.! -H*8!'A*`F'-*#4!'AA%*11! -H*!
I%$/#*8!$.!&(-*K%'-&$(!'-!'##!&-1!#'4*%1E!?(!-H&1!1*B-&$(+!J*!J&##!K&3*!'(!$3*%3&*J!$.!-H*!
1-'-*! $.! -H*! '%-! &(! -H*!8'1HFI!J$%#A+! 1I'((&(K! .%$8!8'(F'#! A*3*#$I8*(-! -$! 1*8&6
'11&1-*A!'(A!.F##4!'11&1-*A!A*3*#$I8*(-!'II%$'BH*1E!!

.#30#4(A&8&4,$-&3%(

)*3*#$I&(K!'II#&B'-&$(1! -H'-!'KK%*K'-*!A'-'+!'II#&B'-&$(! #$K&B!'(A!2?1!B$8&(K!.%$8!
A&3*%1*!1$F%B*1!%*`F&%*1!A**I!T($J#*AK*!'/$F-!-*BH($#$K&*1!#&T*e!RhSn5Gi+!A4('86
&B!n5Gi+!PlPh!RP14(BH%$($F1!l'3',B%&I-!'(A!hGiS+!\,,+!P-$8d!hGi!1I*B&.&B'6
-&$(1!#&T*!)5)+!h,)+!h,i5d!I%$-$B$#1!#&T*!,bPQ!$%!n55Q!.$%!,bPQ!'(A!\],5.F#!
J*/!1*%3&B*1d!I%$K%'88&(K!#'(KF'K*1!#&T*!l'3',B%&I-+!QnQ+!\F/4+!l'3'+!0o+!'(A!1$!
$(d! %*#'-&$('#!$%!$/Y*B-6$%&*(-*A!A'-'/'1*1+!*-BE! ?(!'AA&-&$(+! &-!8&KH-!/*!(*B*11'%4! -$!
8'1-*%!-H*!/F1&(*11!I%$-$B$#1!$.!*8I#$4*A!1*%3&B*1!'(A!-$!H'3*!T($J#*AK*!'/$F-!H$J!
-$!B$8I$1*!1*%3&B*1! &(-$!1*%3&B*!$%BH*1-%'-&$(1E!5H&1! #$(K!'(A!($-!*UH'F1-&3*! #&1-!$.!
-*BH($#$K&*1!H&KH#&KH-1!H$J!8'1H&(K!FI!*3*(!'!1&8I#*!'II#&B'-&$(+!1FBH!'1!-H*!$(*!&(!
$F%!%*.*%*(B*!1B*('%&$+!&1!'!H'%A!'(A!-&8*6B$(1F8&(K!-'1T!-H'-!B'(!$(#4!/*!B$8I#*-*A!
/4!1T&##*A!I%$K%'88*%1E!
5H*!A*3*#$I8*(-!$.!$F%!0$(.*%*(B*!5%&I!Q#'((*%!%*`F&%*1+!.$%!&(1-'(B*+!-H*!.$##$J6

&(K! 1T&##1e! "&%1-! $.! '##+! -H*!A*3*#$I*%!(**A1! -$! F(A*%1-'(A!J*##! -H*!A4('8&B1! /*H&(A!
'(A!&(-*%'B-&$(!#$K&B!$.!-H*!L"$44M+?1-)#!'(A!N"="F!1*%3&B*1!'(A!-H*!AA<+B)"'$)&+!
C8-)61"+D4')/#! '(A!E@@+ E)"6)&! 2?! B$8I$(*(-1! $.! -H*! 'II#&B'-&$(E! ?(! -H*! 1I*B&.&B!
B'1*+!C8-)61"+D4')/#!'(A!AA<+B)"'$)&!*UI$1*!l'3',B%&I-!PQ?1!-H'-!'##$J!-H*!A*3*#6

42



<!!!!!!+4,'6#3(B#36&4C(:%&D#3,(:,6C(+#>6,(!#/#%6(!

!
!

$I*%! -$! F1*! '(A! &(-*%'B-! J&-H! -H*&%! 1*%3&B*1d!?1-)#! '(A!N"="F+! &(1-*'A+! %*-F%(! -H*&%!
$F-IF-!'1!\,,!.**A1+!JH&BH!(**A!-$!/*!'II%$I%&'-*#4!I'%1*A!-$!*U-%'B-!'##! -H*!(*B*16
1'%4!&(.$%8'-&$(E!LH&#*!-H*!2?!B$8I$(*(-1!'#%*'A4!B$8*!J&-H!-H*&%!$J(!2?1+!.$%!-H*!
B$(.*%*(B*!'(A! .#&KH-! 1*'%BH! %*1F#-1!'(!'A6H$B!F1*%! &(-*%.'B*!H'1! -$!/*!A*3*#$I*A! &(!
n5GiE!O*U-+!-H*!A*3*#$I*%!(**A1!-$!&8I#*8*(-!-H*!(*B*11'%4!14(BH%$(&M'-&$(!#$K&B!
'8$(K!-H*!<425)&)2.)#+@)"&.$!B$8I$(*(-!'(A!-H*!$-H*%1+!1FBH!-H'-!$(!-H*!1*#*B-&$(!
$.!'!B$(.*%*(B*!-H*!$-H*%!B$8I$(*(-1!J&##!B$H*%*(-#4!FIA'-*!-H*&%!B$(-*(-E!?(!'AA&-&$(!
-$! &(3$T&(K!1$8*!l'3',B%&I-! .F(B-&$(1!$.! -H*!2?!B$8I$(*(-1+! -H&1!'#1$! &8I#&*1! &(-*6
%'B-&(K!J&-H! -H*! %*8$-*! 1*'%BH!1*%3&B*1!FI$(! -H*! 1*#*B-&$(!$.!'!B$(.*%*(B*! .%$8! -H*!
#&1-E!"&('##4+!-H*!A*3*#$I*%!(**A1!-$!B%*'-*!'!1F&-'/#*!#'4$F-!.$%!-H*!B$8I$1&-*!'II#&B'6
-&$(+!JH&BH!&1!'/#*!-$!'BB$88$A'-*!-H*!A*3*#$I*A!B$8I$(*(-1!'(A!-$!%*(A*%!-H*!.&('#!
8'1HFI!'II#&B'-&$(E!
5H*!A*1B%&/*A!1&-F'-&$(!&1!'#%*'A4!'(!&A*'#!$(*e!'##!B$8I$(*(-1!I%$3&A*!1$8*!T&(A!

$.!B$8I$(*(-&M'-&$(E!?.+!&(1-*'A+!J*!&8'K&(*!-H'-!-H*!A*3*#$I*%!'#1$!(**A1!-$!A*3*#$I!
-H*! B$8I$(*(-1! -$! /*!8'1H*A! FI+! -H&(K1! K*-! *3*(!J$%1*E! "$%! &(1-'(B*+! &-! B$F#A! /*!
(*B*11'%4! -$! &8I#*8*(-! '!J%'II*%! .$%! -H*!AA<+B)"'$)&! B$8I$(*(-! -H'-! &1! '/#*! -$!
'F-$8'-&B'##4!%*`F*1-!J*'-H*%!.$%*B'1-1!.$%!-H*!B$%%*B-!B&-4+!-$!*U-%'B-!-H*!n5Gi!B$A*!
$.!-H*!'3*%'K*!J*'-H*%!B$(A&-&$(1+!'(A!-$!*UI$1*!'!l'3',B%&I-!&(-*%.'B*!-H'-!'##$J1!-H*!
&(-*%'B-&$(! J&-H! $-H*%! B$8I$(*(-1! &(! -H*! 'II#&B'-&$(E! ,&8&#'%! $I*%'-&$(! J$F#A! /*!
(*B*11'%4!'#1$!.$%!-H*!$-H*%!B$8I$(*(-1!$.!-H*!'II#&B'-&$(E!

:&-6F#//6/%&A(A&8&4,$-&3%((

5$!1I**A!FI!'(A!1&8I#&.4!-H*!A*3*#$I8*(-!*1I*B&'##4!$.!B$8I$(*(-1!-$!/*!8'1H*A!FI+!
1$8*!F1*.F#!J*/!-$$#1!'(A!.%'8*J$%T1!H'3*!/**(!%*B*(-#4!&(-%$AFB*AE!54I&B'##4+!-H*4!
'AA%*11! -H*!I%$/#*8!$.!A'-'!*U-%'B-&$(! .%$8!J*/! 1&-*1! '(A! -H*!I%$3&1&$(&(K!$.! 1FBH!
A'-'!&(!.$%8!$.!A'-'!1*%3&B*1!$%!%*6F1'/#*!F1*%!&(-*%.'B*!*#*8*(-1E!?(!-H*!.$##$J&(K+!J*!
'('#4M*!-J$!%*I%*1*(-'-&3*!-$$#1+!&E*E+!)'II*%9!'(A!bI*(T'I$JN+!JH&BH!'%*!3*%4!F1*%6
.%&*(A#4E!

B#$$&'! &1! '! .%**! $(#&(*! &(1-%F8*(-! .$%! -H*!K*(*%'-&$(!$.! A'-'!J%'II*%1! -H'-! *U-%'B-!
A'-'!.%$8!J*##61-%FB-F%*A!J*/!I'K*1E!)'II*%!&1!/'1*A!$(!'!I$&(-!'(A!B#&BT!-*BH(&`F*!
'/#*!-$!'11&1-!-H*!F1*%!&(!-H*!1*#*B-&$(!$.!-H*!B$(-*(-1!-$!/*!*U-%'B-*A!'(A!-$!&(.*%!1F&-'6
/#*!*U-%'B-&$(!%F#*1!R*EKE+!%*KF#'%!*UI%*11&$(1SE!,I*B&.&B'##4+!A'-'!*U-%'B-&$(!#*3*%'K*1!
-H*!1-%FB-F%*!$.!-H*!n5Gi!.$%8'--&(K!-$!F(A*%1-'(A!JH&BH!*#*8*(-1!-$!*U-%'B-!R*EKE+!
-H*!.&%1-!B*##1!$.!'##!-H*!%$J1!&(!'!-'/#*SE!b(B*!I%$I*%#4!&A*(-&.&*A+!*U-%'B-*A!A'-'!.&*#A1!
B'(!/*!('8*A!'(A!1-%FB-F%*A!'(A!-H*(!IF/#&1H*A+!.$%! &(1-'(B*+!'1!\,,!$%!hGi!A'-'!
1*%3&B*1E! QF/#&1H*A! 1*%3&B*1! B'(! *'1&#4! /*! 'BB*11*A! 3&'! '! F(&`F*! 2\i! '(A! '%*!
I%$B*11*A!*'BH!-&8*!-H*!%*1I*B-&3*!2\i!&1!'BB*11*AE!

I$&3M#$,G! &1! '! 1&8&#'%! $I*(! 1*%3&B*! I#'-.$%8! /'1*A! $(! -H*! B$(B*I-! $.! *U-%'B-&$(!
%$/$-+!-H'-!&1+!F1*%6B%*'-*A!J%'II*%1E!21*%1!$.!bI*(T'I$J!B'(!/F&#A!-H*&%!$J(!%$/$-1+!
*UI$1*! -H*&%! %*1F#-1! 3&'!J*/! 1*%3&B*1+! '(A! %F(! -H*8! .%$8! $I*(T'I$JEB$8! .$%! .%**E!
\$/$-1!'%*!'/#*!-$!'BB*11!J*/!1&-*1!'(A!1FII$%-!-H*!*U-%'B-&$(!'(A!%*F1*!$.!A'-'+!.F(B6
-&$('#&-4!'(A!*3*(!I&*B*1!$.!F1*%! &(-*%.'B*1E!\$/$-1!'%*!/F&#-! -H%$FKH!'!3&1F'#!A*3*#6
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!

9!H--IeccJJJEA'II*%E(*-c$I*(c!
N!H--Iecc$I*(T'I$JEB$8!

43



+',-(.#/"0$(1&2"3,4,56&/(%,(7368&'/#4(93%&5'#%6,3!!!!!!m!

!

$I8*(-!*(3&%$(8*(-!B'##*A!\$/$G'T*%E!\$/$G'T*%!'##$J1!-H*!F1*%!('3&K'-*! &(1&A*!
-H*! -'%K*-!J*/! 1&-*! '(A! -$!A*.&(*! '! 1*%&*1!$.! 1&8I#*! 1-*I1+! *'BH!$(*! %*I%*1*(-&(K! '(!
*3*(-! &(! -H*!I'K*+!F(-&#! -H*! -'%K*-!A'-'! &1! %*'BH*AE!5H*!*U-%'B-&$(! %*1F#-1! B'(!/*!*U6
I$1*A!&(!-J$!8'&(!J'41e!'1!'!\],5.F#!1*%3&B*!$%!'1!'(!\,,!.**A+!A*I*(A&(K!$(!-H*!
*U-%'B-*A!B$(-*(-!'(A!$(!-H*!*UI*B-*A!F1*!$.!&-E!P.-*%!-H*&%!IF/#&B'-&$(!$(!-H*!bI*(T'6
I$J!1*%3*%1+!%$/$-1!'%*!'BB*11&/#*!-H%$FKH!'!IF/#&B!2\i+!JH&BH!&A*(-&.&*1!-H*!1I*B&.&B!
%$/$-!-$!%F(E!,$!*UI$1*A!1*%3&B*1!8'4!'#1$!(**A!1$8*!&(IF-!3'#F*1!R*EKE+!F1*%6&A!'(A!
I'11J$%AS!-H'-!B'(!/*!F1*A!-$!I'%'8*-*%&M*!-H*!1*%3&B*1E!?(IF-1!B'(!*'1&#4!/*!I'11*A!
/4!'II*(A&(K! -H*8! -$! -H*! 1*%3&B*!2\i!'1!('8*63'#F*!I'&%1+! .$##$J&(K! -H*! 1-'(A'%A!
2\i!8$A*#E!!

5$!/*--*%!F(A*%1-'(A!H$J!-H*1*!-$$#1!B'(!/*!F1*A!&(!-H*!8'1HFI!B$(-*U-+!#*-g1!%*.*%!
'K'&(! -$! -H*!0$(.*%*(B*!5%&I!Q#'((*%!*U'8I#*E!i*-!F1!1FII$1*! -H'-! -H*!N"="F! .#&KH-!
1*'%BH!1&-*!A$*1!($-!H'3*!'(!\,,!$F-IF-!.$%!&-1!1*'%BH!%*1F#-1E!?(!-H&1!B'1*+!'!A'-'!*U6
-%'B-&$(!1*%3&B*!B'(!/*!F1*A!-$!'F-$8'-&B'##4!*U-%'B-!-H*!.#&KH-!B$8/&('-&$(1!.%$8!-H*!
%*1F#-!I'K*E!L&-H!)'II*%+!.$%!&(1-'(B*+!'!A*3*#$I*%!(**A1!-$!#$'A!$(*!$%!8$%*!*U'86
I#*!I'K*1!&(-$!-H*!)'II*%!*(3&%$(8*(-E!5H*!8$%*!*U'8I#*!I'K*1!'%*!#$'A*A+!-H*!/*-6
-*%!-H*!&(.*%%*A!%F#*1E!5H*(+!-H*!A*3*#$I*%!(**A1!-$!&A*(-&.4!-H*!&(A&3&AF'#!A'-'!&-*81!
H*c1H*!J'(-1!-$!*U-%'B-!.%$8!-H*!I'K*!/4!B#&BT&(K!$(!-H*!%*1I*B-&3*!n5Gi!*#*8*(-1!
R*EKE+!'&%#&(*+!A*I'%-F%*!-&8*+!'%%&3'#!-&8*+!I%&B*+!&(-*%8*A&'-*!1-$I1+!#&(T!-$!/$$T&(KS+!
-$!#'/*#!-H*8!'(A!-$!'11*8/#*!-H*!.&('#!$F-IF-!R*EKE+!'(!\,,!.**ASE!5H*%*!&1!($!(**A!-$!
J%&-*!'(4!$J(!#&(*!$.!B$A*+!&(!$%A*%!-$!IF/#&1H!-H*!*U-%'B-&$(!%*1F#-1!$(!-H*!L*/E!
LH&#*!-H&1!T&(A!$.!-$$#1!F(A$F/-*A#4!1I**A1!FI!-H*!A*3*#$I8*(-!$.!A'-'!*U-%'B-&$(!

.%$8!*U&1-&(K!J*/!1&-*1+!-H*!A*3*#$I8*(-!*..$%-!%*K'%A&(K!-H*!B$8I$1&-&$(!$.!B$8I$6
(*(-1!&(-$!'!(*J!'II#&B'-&$(!%*8'&(!&(!F(BH'(K*AE!5H*%*.$%*+!-H*!A*3*#$I*%!1-&##!H'1!-$!
/*!.'8&#&'%!J&-H! -H*!1*%3&B*1!'(A!PQ?1! -$!/*! &(-*K%'-*A+! -$!A&1I#'4!1$F%B*A!A'-'! &(!'!
1F&-'/#*!J'4+!'(A! -$!8'('K*! -H*!B$88F(&B'-&$(!'(A!14(BH%$(&M'-&$(! #$K&B!/*-J**(!
-H*!B$8I$(*(-1E!]3*(!'11F8&(K!-H'-!A'-'!*U-%'B-&$(!-$$#1!B'(!/*!1FBB*11.F##4!F1*A!/4!
($(6I%$K%'88*%1+!-H*!.&('#!8'1HFI!A*3*#$I8*(-!-H*%*.$%*!1-&##!%*8'&(1!-H*!H'%A!-'1T!
-H'-!B'(!/*!I*%.$%8*A!$(#4!/4!1T&##*A!I%$K%'88*%1E!

+044<F#//6/%&A(A&8&4,$-&3%((

5H*!I%*3&$F1!'('#41*1!'(A!B$(1&A*%'-&$(!1H$J!-H'-!8'1HFI!A*3*#$I8*(-!&1!-4I&B'##4!'!
T($J#*AK*6&(-*(1&3*!J$%T+! &(3$#3&(K! '! 3'%&*-4! $.! -*BH($#$K&*1! '(A! B$8I$(*(-1E! ?(!
'AA&-&$(! -$! 1&8I#&.4&(K! -H*! B%*'-&$(! $.! A'-'! *U-%'B-&$(! &(1-%F8*(-1! .$%! J*/! I'K*1+!
JH&BH!'AA%*11!-H*!I%$/#*8!$.!A*3*#$I&(K!.4!-42)2'#!.$%!8'1HFI1+!&-!&1!&8I$%-'(-!-$!
'#1$!'&A!-H*!'B-F'#!.4!-4#1'142!$.!B$8I$(*(-1!&(-$!'II#&B'-&$(1+!JH&BH!&1!'1!H'%A!'(A!
-&8*6B$(1F8&(K!'1!A*3*#$I&(K!B$8I$(*(-1+! &.!($-!I%$I*%#4!1FII$%-*AE!G'1HFI!-$$#1!
$%!8'1HFI!I#'-.$%81!'AA%*11!*U'B-#4!-H&1!I%$/#*8+!*'BH!$.!-H*8!.$BF1&(K!$(!A&..*%*(-!
B$8I$1&-&$(!'1I*B-1!'(A!.$##$J&(K!A&..*%*(-!8'1HFI!'II%$'BH*1E!?(!-H*!.$##$J&(K+!J*!
'('#4M*! .$F%!$.! -H*1*! -$$#1+!JH&BH!J*! -H&(T!'%*!8$1-! %*I%*1*(-'-&3*! .$%! -H&1!T&(A!$.!
'11&1-*A!8'1HFI!A*3*#$I8*(-e!W'H$$X!Q&I*1;+!l'BTf*!Q%*1-$:+!G&B%$1$.-!Q$I.#4>+!'(A!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!

;!H--IeccI&I*1E4'H$$EB$8cI&I*1!
:!H--IeccJJJEY'BT/*EB$8c! !
>!H--IeccI$I.#4-*'8E1I'B*1E#&3*EB$8!a!G,!Q$I.#4!H'1!/**(!A&1B$(-&(F*A!1&(B*!PFKF1-!N:+!N==mE!

44



9=!!!!!!+4,'6#3(B#36&4C(:%&D#3,(:,6C(+#>6,(!#/#%6(!

!
!

?(-*#!G'1H!G'T*%jE! 5H*%*! '%*! '#1$! $-H*%! -$$#1! #&T*! V$$K#*! PII! ](K&(*k! $%! ?fGg1!
i$-F1!G'1HFI1<!'(A!1$!$(+!/F-!-H*&%!A&1BF11&$(!*UB**A1!-H*!1B$I*!$.!-H&1!BH'I-*%E!

N#",,O(L6$&/!I%$3&A*1!'!1&8I#*!'(A!&(-F&-&3*!3&1F'#!*A&-$%!-H'-!'##$J1!$(*!-$!A*1&K(!
A'-'6B*(-%&B!B$8I$1&-&$(1E!?-!-'T*1!A'-'!'1!&(IF-!'(A!I%$3&A*1!A'-'!'1!$F-IF-d!-H*!8$1-!
&8I$%-'(-! 1FII$%-*A! .$%8'-1! '%*! \,,cP-$8+! hGi+! '(A! l,bOE! P! I&I*! &1! '! A'-'!
I%$B*11&(K! I&I*#&(*! &(! JH&BH! &(IF-! A'-'! RB$8&(K! .%$8! A&3*%1*! A'-'! 1$F%B*1S! '%*!
I%$B*11*A+!8'(&IF#'-*A!'(A!F1*A!'1! &(IF-! .$%!$-H*%!I%$B*11&(K!1-*I1+!F(-&#! -H*! -'%K*-!
-%'(1.$%8'-&$(! &1! B$8I#*-*AE!5H&1! I&I*#&(*61-4#*! I%$B*11! &1! &8I#*8*(-*A! -H%$FKH! '(!
'%/&-%'%4! (F8/*%! $.! &(-*%8*A&'-*! $I*%'-$%1+!JH&BH!8'(&IF#'-*! A'-'! &-*81! &(1&A*! -H*!
A'-'!.**A1!$%!I%$3&A*!.*'-F%*1! #&T*!#$$I1+!%*KF#'%!*UI%*11&$(1!$%!8$%*!'A3'(B*A!.*'6
-F%*1!#&T*!'F-$8'-&B!#$B'-&$(!*U-%'B-&$(!$%!B$((*B-&$(!-$!*U-*%('#!1*%3&B*1E!5H*!1*-!$.!
$I*%'-$%1!'%*!I%*A*.&(*A!'(A!.&U*Ad!(*J!.F(B-&$('#&-4!B'(!/*!&(B#FA*A!&(!.$%8!$.!J*/!
1*%3&B*1E!P#1$+!1-$%*A!I&I*1!B'(!/*!%*F1*A!'1!1$F%B*1!$.!'($-H*%!I&I*E!
W'H$$X!Q&I*1g!A*3*#$I8*(-!*(3&%$(8*(-!&1!BH'%'B-*%&M*A!/4!'!1&8I#*!'(A!&(-F&-&3*!

A*3*#$I8*(-!I'%'A&K8! -H'-! &1!H$J*3*%! -'%K*-*A!'-! 'A3'(B*A!J*/!F1*%1!$%!I%$K%'86
8*%1E! ?(! .'B-+! -H*! #*3*#! $.! '/1-%'B-&$(! $.! &-1! $I*%'-&$(1! R*EKE+! -H*! %*KF#'%! *UI%*11&$(!
B$8I$(*(-S! '(A! -H*! BH'%'B-*%&1-&B! A'-'! .#$J! #$K&B! &1! $(#4! H'%A#4! F(A*%1-'(A'/#*! -$!
($(6I%$K%'88*%1E!Q&I*g1!$F-IF-! &1! ($-!8*'(-! .$%!HF8'(! B$(1F8I-&$(! R\,,+!P-$8+!
l,$(+!*-BES!/F-!%'-H*%!.$%!&(-*K%'-&$(!&(!$-H*%!'II#&B'-&$(1E!5H&1!#&8&-1!/$-H!-H*!3'%&*-4!
$.! &(IF-! 1$F%B*1! -H'-!B'(!/*!F1*A!'(A! -H*!'BB*11&/&#&-4!$.! &-1!$F-IF-E! ?(! .'B-+! -H*!'/6
1*(B*!$.!'(4!1FII$%-!.$%!2?1!I%*3*(-1!-H*!A&%*B-!F1*!$.!Q&I*g1!$F-IF-!/4!B$88$(!J*/!
F1*%1E!n$J*3*%+!Q&I*1! &1! '!3*%4!I$IF#'%!A'-'68'1HFI!A*3*#$I8*(-! -$$#+! 3*%4! #&T*#4!
AF*!-$!&-1!*..&B&*(-!'(A!&(-F&-&3*!B$8I$(*(-!I#'B&(K!'(A!B$((*B-&$(!8*BH'(&18E!!
5H*! A*3*#$I8*(-! -$$#! A$*1! ($-! (**A! '(4! &(1-'##'-&$(! $%! I#FK6&(1d! &-! %F(1! &(! '(4!

PlPh6*('/#*A!J*/!/%$J1*%E!5H*!A*3*#$I8*(-!*(3&%$(8*(-!B$8*1!J&-H!'!3*%4!*..&6
B&*(-+! &(-*K%'-*A! A*/FKK&(K! -$$#! -H'-! H*#I1! -H*! A*3*#$I*%! AF%&(K! -H*! A*1&K(! IH'1*E!
Q&I*1! '%*! 1-$%*A!$(#&(*! '(A! 'BB*11&/#*! 3&'! '(! $J(!2\iE!LH*(! &(3$T&(K! '! I&I*+! '(!
*U*BF-&$(!I%$B*11!&1!1-'%-*A!$(!-H*!1*%3*%!1&A*+!%*#&*3&(K!-H*!B#&*(-!.%$8!-H*!*U*BF-&$(!
$3*%H*'AE!5H&1! BH'%'B-*%&1-&B! B$F#A! %*I%*1*(-! '!I%$/#*8!F(A*%!'! 1B'#'/&#&-4!I*%1I*B6
-&3*e!&.!'!#'%K*!(F8/*%!$.!1&8F#-'(*$F1!'BB*11*1!-$!'!I&I*!'%*!8'A*+!I*%.$%8'(B*!'(A!
1-'/&#&-4!8&KH-!1F..*%E!
0$(1&A*%&(K!$F%!*U'8I#*!'II#&B'-&$(+!J&-H!W'H$$!Q&I*1!&-!J$F#A!/*!F(.*'1&/#*!-$!

%*'#&M*!-H*!'II#&B'-&$(!'1!A*1B%&/*A!&(!-H*!%*.*%*(B*!1B*('%&$+!'1!-H*%*!&1!($!1FII$%-!.$%!
-H*!F1*%!&(-*%.'B*!$.!-H*!'II#&B'-&$(E!n$J*3*%+!JH'-!J*!B'(!A$+!.$%!&(1-'(B*+!&1!F1&(K!
Q&I*1!-$!1&8I#&.4!-H*!B$##*B-&$(+!'KK%*K'-&$(!'(A!.&#-*%&(K!$.!B$(.*%*(B*1!1$F%B*A!.%$8!
A&..*%*(-! J*/! 1$F%B*1+! 1FBH! '1! .425)&)2.)7#)&01.)G.4!! '(A! "//.425)&)2.)#G.4!E! b(!
-$I!$.!-H&1!I&I*+!&-!&1!-H*(!(*B*11'%4!-$!I%$3&A*!'!1F&-'/#*!F1*%!&(-*%.'B*E!!

P#2MQ&(L'&/%,(&1!'!%$/F1-!'(A!B$8I#*-*!8'1HFI!I#'-.$%8!JH&BH!I%$3&A*1!*(-*%I%&1*6
#*3*#!1$#F-&$(1E!Q%*1-$!K&3*1!-H*!I$11&/&#&-4!-$!*'1&#4!I%$AFB*!RA*1&K(+!-*1-!'(A!A*I#$4S!
8'1HFI1! 8*%K&(K! A'-'! B$8&(K! .%$8! A&1I'%'-*! 1$F%B*1E! ?(! I'%-&BF#'%! &-! B'(! /*! '#1$!
B$((*B-*A! -$! A'-'! 1$F%B*1! 3*%4! B$88$(! &(! -H*! /F1&(*11! J$%#A! R#&T*! ]UB*#! 1I%*'A6

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!

j!H--Iecc8'1H8'T*%E&(-*#EB$8cJ*/!
k!H--IeccB$A*EK$$K#*EB$8c&(-#c&-6?5c'II*(K&(*c!
<!H--IeccJJJ6=9E&/8EB$8c1$.-J'%*c#$-F1cI%$AFB-1c8'1HFI1c!

45



+',-(.#/"0$(1&2"3,4,56&/(%,(7368&'/#4(93%&5'#%6,3!!!!!!99!

!

1H**-1+!b%'B#*!A'-'!1$.-J'%*+!*-BES+!-H'-!8$1-!$.!8'1HFI!B$8I*-&-$%g1!1$#F-&$(1!B'(($-!
'BB*11E!,&8I#*!8'1HFI!B$8I$1&-&$(!B'(!/*!A$(*+!'#1$!/4!($(6?5!F1*%1+! -H%$FKH! -H*!
Q%*1-$!L&%*1!-$$#E!G$%*!'A3'(B*A!B$8I$1&-&$(!B'(!/*!$/-'&(*A!$(#4!/4!I%$.*11&$('#!
A*3*#$I*%1! &8I#*8*(-&(K! -H*8! &(! ]GGi! #'(KF'K*! J&-H! -H*! 1FII$%-! $.! -H*! Q%*1-$!
G'1HFI! ,-FA&$! I#FK6&(! .$%! ]B#&I1*E! 5H&1! #'(KF'K*! &1! -H*! 8'&(! 'B-$%! $.! -H*! bGP!
RbI*(!G'1HFI!P##&'(B*S! I%$Y*B-+! JH&BH! '&81! -$! A*.&(*! '(! $I*(! #'(KF'K*! '##$J&(K!
*(-*%I%&1*!8'1HFI!&(-*%$I*%'/&#&-4!'(A!I$%-'/&#&-4E!!
5H*!A*3*#$I8*(-!*(3&%$(8*(-!&1!B$(1-&-F-*A!/4!1*3*%'#!&(A*I*(A*(-!-$$#1E!L&%*1!&1!
'!3&1F'#!*A&-$%!/'1*A!$(!'!1&8I#*!'(A!&(-F&-&3*!A'-'!I&I*#&(*!B$8I$1&-&$(!'II%$'BHE!?-!
'##$J1!$(*!-$!8*%K*!A'-'!B$8&(K!.%$8!A&1I'%'-*!&(-*%('#!'(A!*U-*%('#!1$F%B*1!I%$AFB6
&(K! '! .&('#! $F-IF-! -H'-! B'(! /*! K%'IH&B'##4! A&1I#'4*A! '1! '!8'1H#*-E!G'1H#*-1! B'(! /*!
I#FKK*A!&(-$!'!A'1H6/$'%A!#&T*!F1*%!&(-*%.'B*!$%!'!I$%-'#+!$%!-H*4!B'(!/*!*8/*AA*A!&(-$!
'!%*KF#'%!J*/!I'K*E!G'1H#*-!A*3*#$I8*(-!&1!'11&1-*A!/4!-H*!Q%*1-$!G'1H#*-!-$$#+!JH&#*!
-H*!G'1HFI!,-FA&$!&1!'(!]B#&I1*!I#FK6&(!I%$3&A&(K!l'3'!I%$K%'88*%1!J&-H!B$8I#*-*!
B$(-%$#!$(!-H*!8'1HFI!A*3*#$I8*(-!I%$B*11E!0$((*B-$%1!'##$J!$(*!-$!H$$T!FI!Q%*1-$!
-$!A&3*%1*!1$.-J'%*+!1FBH!'1!G&B%$1$.-!]UB*#+!J*/!I$%-'#1+!'(4!b%'B#*!-*BH($#$K4+!'(A!
1&8&#'%E! Q%*1-$! 1*%3&B*1! B'(!/*! 'BB*11*A! -H%$FKH!PQ?1+! '3'&#'/#*! .$%!8'&(!I%$K%'86
8&(K!#'(KF'K*1!Rl'3'+!l'3',B%&I-+!0o+!Q4-H$(+!*-BESE!
5H*!%F(-&8*!1*%3*%!I%$3&A*1!1*BF%*!8*BH'(&181!-$!3&%-F'#&M*!R'/1-%'B-!-H*!F1*%!.%$8!
'B-F'#! &8I#*8*(-'-&$(! A*-'&#1S! '(A! ($%8'#&M*! RIF-! -H*! 1*%3&B*! $F-IF-! &(-$! 1-'(A'%A!
.$%8'-1e!l,bO!$%!hGiS!'(4!T&(A!$.!1*%3&B*!$%!A'-'!R,bPQ+!\],5+!\,,+!)f+!]UB*#S!
'(A!*UI$1*! -H*8! &(!'! 1*BF%*!'(A!K$3*%(*A!J'4E!Q%*1-$! &1!($-!'!H$1-*A!1*%3&B*+! #&T*!
W'H$$X!Q&I*1d!&-!(**A1!-$!/*!&(1-'##*A!'(A!B$(.&KF%*A!&(!*'BH!B$8I'(4!&(A&3&AF'##4E!
i*-!F1!/%&*.#4!'('#4M*!-H*!I$11&/&#&-4!-$!B%*'-*!$F%!0$(.*%*(B*!5%&I!Q#'((*%!'II#&B'6
-&$(!J&-H!Q%*1-$E!lF1-!#&T*!W'H$$X!Q&I*1+!L&%*1!K&3*1!-H*!$II$%-F(&-4!-$!*'1&#4!'BB*11+!
8*%K*!'(A!.&#-*%!-H*!\,,!BH'((*#1!$.!-H*!B$(.*%*(B*1!1*'%BH!1*%3&B*1!'(A!-H*!p'4'T!
.#&KH-1! 1*'%BH! 1*%3&B*E!\*-%&*3*A! &-*81! B'(!/*! A&1I#'4*A!/4!8*'(1! $.! -J$!8'1H#*-1E!
5H*! A*3*#$I8*(-! $.! -H*! $-H*%! 2?! B$8I$(*(-1! &(! .$%8! $.!8'1H#*-1! H'1! -$! /*! A$(*!
8'(F'##4!&(!G'1HFI!,-FA&$!F1&(K!'!1-'(A'%A!I%$K%'88&(K!#'(KF'K*!#&T*!l'3'E!P-!-H&1!
I$&(-!-H*!I%$AFB*A!8'1H#*-1!B'(!/*!IF-!-$K*-H*%!&(1&A*!$(*!J*/!I'K*E!n$J*3*%+!-H&1!
1$#F-&$(!A$*1!($-!I%$3&A*!.$%!-H*!14(BH%$(&M'-&$(!$.!-H*!/'1&B!B$8I$(*(-1!&(!-H*!'I6
I#&B'-&$(!R-H*!8'1H#*-1S+!1$!-H'-!-H*!1*#*B-&$(!$.!'!B$(.*%*(B*!FIA'-*1!-H*!A'-'!1H$J(!
&(!-H*!$-H*%!B$8I$(*(-1E!5H*%*!&1!($-!&(-*%68'1H#*-!B$88F(&B'-&$(E!

.62',/,D%(L,$D4<(K'&(*A!'!K%*'-!B$(1*(1F1! &(! -H*!8'1HFI!B$88F(&-4!'(A!'BH&*3*A!
K$$A!#*3*#1!$.!I$IF#'%&-4!'(A!F1'K*E!P#-H$FKH!-H*!Q$I.#4!I%$Y*B-!H'1!/**(!A&1B$(-&(6
F*A+!J*!'('#4M*!-H&1!8'1HFI!-$$#!/*B'F1*!J*!B$(1&A*%!&-!'(!&(-*%*1-&(K!*U'8I#*!.$%!2?!
B$8I$1&-&$(!J&-H!I*BF#&'%&-&*1!-H'-!B'(($-!/*!.$F(A!&(!$-H*%!-$$#1E!!
Q$I.#4!I%$3&A*1!'!3&1F'#!A*3*#$I8*(-!*(3&%$(8*(-!.$%!-H*!%*'#&M'-&$(!$.!8'1HFI1!

/'1*A!$(!-H*!B$(B*I-!$.!B$8I$(*(-1+!$%!*/4.F!'1!-H*4!'%*!B'##*A!&(!Q$I.#4E!P!B$8I$1&6
-&$(!&1!B%*'-*A!/4!A%'KK&(K!'(A!A%$II&(K!/#$BT1!$.!&(-*%*1-!$(-$!'!A*1&K(!B'(3'1!'(A!
/4!K%'IH&B'##4!B$((*B-&(K! -H*8! -$!B%*'-*! -H*!A*1&%*A!'II#&B'-&$(! #$K&BE!P!/#$BT!B'(!
-'T*!-H*!%$#*!$.!B$((*B-$%!-$!*U-*%('#!1*%3&B*1!$%!&-!B'(!%*I%*1*(-!1$8*!&(-*%('#!.F(B6
-&$('#&-4!R&8I#*8*(-*A!-H%$FKH!'!l'3',B%&I-!.F(B-&$(SE!]'BH!/#$BT!I%$3&A*1!&(IF-!'(A!
$F-IF-! I$%-1! -H'-! *('/#*! &-1! B$((*B-&$(! -$! $-H*%! /#$BT1E! f#$BT1! B'(! '#1$! /*! F1*A! -$!
I%$3&A*!'!F1*%!&(-*%.'B*!-H'-!B'(!A&1I#'4!-H*!%*1F#-!$.!1$8*!I%$B*11&(KE!Q#'B&(K!8F#6
-&I#*!3&1F'#&M'-&$(!/#$BT1!&(-$!'!1'8*!I'K*!'##$J1!$(*!-$!A*.&(*!-H*!$3*%'##!#'4$F-!$.!
-H*!I'K*E!5H*!&(-*%('#!#'4$F-!$.!/#$BT1!B'(!/*!BF1-$8&M*A!/4!&(1*%-&(K!'A6H$B!n5Gi+!

46



9N!!!!!!+4,'6#3(B#36&4C(:%&D#3,(:,6C(+#>6,(!#/#%6(!

!
!

0,,! $%! l'3',B%&I-! B$A*E! Q$I.#4! H'1! '!J&A*! B$##*B-&$(! $.! '3'&#'/#*! /#$BT1+! $..*%&(K!
.F(B-&$('#&-&*1! #&T*!\,,!%*'A*%1+! 1*%3&B*!B$((*B-$%1+!8'I!B$8I$(*(-1!/'1*A!$(!7&%6
-F'#!]'%-H+!*-BE!O*J!/#$BT1!'(A!B$8I$1&-&$(1!B'(!/*!A*.&(*A!R&(!l'3',B%&I-S+! 1'3*A+!
1H'%*A!'(A!8'('K*A!&(!'!A*A&B'-*A!1*B-&$(!$.!-H*!I#'-.$%8E!!
P-!%F(-&8*+!-H*!B$88F(&B'-&$(!.#$J!&1!*3*(-6A%&3*(+!-H'-!&1+!-H*!'B-&3'-&$(!$.!'!B*%6

-'&(!B$8I$(*(-!A*I*(A1!$(!-H*!%'&1&(K!$.!1$8*!*3*(-!/4!'($-H*%!B$8I$(*(-E!5H*%*!&1!
($!1FII$%-!.$%!*UB*I-&$(!'(A!-%'(1'B-&$(!H'(A#&(K+!/F-!Q$I.#4!I%$3&A*1!'!1*B-&$(!A*A&6
B'-*A! -$! -H*! -*1-!'(A!I%*3&*J!$.! -H*!B$8I$1&-&$(E!\*'A4!B$8I$1&-&$(1!'%*!1-$%*A!$(!
-H*!Q$I.#4! 1*%3*%+! /F-! -H*! *U*BF-&$(! &1! A$(*!$(! -H*! B#&*(-! a! '1!8'(4!$.! -H*!/F&#-6&(!
/#$BT1! '%*! /'1*A! $(! -H*! ,&#3*%#&KH-! I#'-.$%8E! 5H*! B#&*(-61&A*! *U*BF-&$(! $.!8'1HFI1!
'##*3&'-*1!-H*!1*%3*%!.%$8!H*'34!#$'A1!'(A!#&8&-1!1B'#'/&#&-4!'(A!I*%.$%8'(B*E!
0$(1&A*%&(K! -H*!0$(.*%*(B*!5%&I!Q#'((*%! 'II#&B'-&$(+!Q$I.#4! &1! -H*! .&%1-! -$$#! -H'-!

B'(!/*!F1*A!-$!.F##4!&8I#*8*(-!-H*!'II#&B'-&$(E!L*!'11F8*!-H'-!1T&##*A!I%$K%'88*%1!
'#%*'A4!A*3*#$I*A!'(A!IF/#&1H*A!'##!/#$BT1!(**A*A!.$%!-H*!B$8I$1&-&$(+!*1I*B&'##4!-H*!
2?! B$8I$(*(-1!<425)&)2.)#+ @)"&.$+! C8-)61"+ D4')/#! '(A! AA<+B)"'$)&+! JH&#*! -H*!
\,,!%*'A*%!(*B*11'%4!-$!A&1I#'4!-H*!$F-IF-!$.!-H*!B$(.*%*(B*!'(A!.#&KH-!1*'%BH!1*%3&B6
*1!'#%*'A4!*U&1-1E!P-! -H&1!I$&(-+! -H*!A*3*#$I*%!$.! -H*!B$8I$1&-&$(!B'(!A%'K!'(A!A%$I!
-H*1*! B$8I$(*(-1!$(-$! -H*!8$A*#&(K! B'(3'1! '(A! B$((*B-! -H*!/#$BT1+! '#1$!I%$3&A&(K!
.$%!-H*!(*B*11'%4!8'II&(K!$.!-H*!A'-'!I'%'8*-*%1!.%$8!$F-IF-1!-$!&(IF-1E!?(!I'%-&BF#'%+!
-H*!<425)&)2.)#+@)"&.$!/#$BT!8F1-!/*!B$((*B-*A! -$!'##! -H*!$-H*%!/#$BT1+! &(!$%A*%! -$!
I%$3&A*!.$%! -H*!14(BH%$(&M'-&$(!$.! -H*!JH$#*!B$8I$1&-&$(E!"&('##4+! -H*!K%'IH&B'#!'I6
I*'%'(B*!$.! -H*!'II#&B'-&$(g1! #'4$F-! B'(!/*! 1*-!FI!/4! &(B#FA&(K!'!BF1-$8!0,,!1-4#*!
1H**-!&(-$!-H*!I'K*E!LH'-!&1!8&11&(K!&(!Q$I.#4!&1!-H*!I$11&/&#&-4!-$!A*.&(*!8$%*!B$86
I#*U+! I%$B*116#&T*! 1*%3&B*! B$8I$1&-&$(1+! '1! B$F#A! .$%! *U'8I#*! /*! (**A*A! -$! I%$B*11!
-H*!B$(.*%*(B*!1*'%BH!%*1F#-1!A&%*B-#4!&(!Q$I.#4E!

93%&4(.#/"(.#M&'! I%$3&A*1! '! B$8I#*-*#4! A&..*%*(-! 8'1HFI! 'II%$'BHe! '(! *(3&%$(6
8*(-!.$%!-H*!&(-*K%'-&$(!$.!A'-'!.%$8!'(($-'-*A!1$F%B*!J*/!I'K*1!/'1*A!$(!'!I$J*%6
.F#+!A*A&B'-*A!/%$J1*%!I#FK6&(!.$%!-H*!"&%*.$U!J*/!/%$J1*%E!\'-H*%!-H'(!-'T&(K!&(IF-!
.%$8!1-%FB-F%*A!A'-'!1$F%B*1!1FBH!'1!\,,cP-$8!.**A1!$%!J*/!1*%3&B*1+!G'1H!G'T*%!
'##$J1!F1*%1!-$!%*F1*!*(-&%*!J*/!I'K*1!'(A+!&.!1F&-'/#4!'(($-'-*A+!-$!*U-%'B-!A'-'!.%$8!
-H*! I'K*1E!5H'-! &1+! -H*! ^B$8I$(*(-1_! -H'-! B'(!/*!F1*A! &(!G'1H!G'T*%! '%*! 1-'(A'%A!
J*/!I'K*1E!?.!'!I'K*!H'1!/**(!'(($-'-*A!&(!-H*!I'1-+!&-!&1!I$11&/#*!-$!*U-%'B-!-H*!'(($6
-'-*A! A'-'! .%$8! -H*! I'K*! '(A! 1H'%*! &-!J&-H! $-H*%! B$8I$(*(-1! &(! -H*! /%$J1*%E! ?.! -H*!
I'K*!H'1!($-!/**(!'(($-'-*A+!&-!&1!I$11&/#*!%*F1*!-H*!I'K*!'1!&1!J&-H$F-!H$J*3*%!1FI6
I$%-&(K!'(4!&(-*%6I'K*!B$88F(&B'-&$(E!
?(!$%A*%!-$!'(($-'-*!'!I'K*+!G'1H!G'T*%!'##$J1!A*3*#$I*%1!'(A!F1*%1!-$!'(($-'-*!

-H*!1-%FB-F%*!$.!J*/!I'K*1!JH&#*!/%$J1&(K!'(A!-$!F1*!1FBH!'(($-'-&$(1!-$!1B%'I!B$(6
-*(-1! .%$8! '(($-'-*A! I'K*1E! PA3'(B*A! F1*%1! 8'4! #*3*%'K*! -H*! &(-*K%'-*A! ,-%FB-F%*!
]A&-$%! -$! &(IF-! hQ'-H! *UI%*11&$(1! J&-H! -H*! H*#I! .%$8! "&%*fFKg1! )bG! ?(1I*B-$%!
R'($-H*%!I#FK6&(!.$%!-H*!"&%*.$U!J*/!/%$J1*%SE!P(($-'-&$(1!'%*!#&(T*A!-$!-'%K*-!I'K*1!
'(A!1-$%*A!$(!-H*!G'1H!G'T*%!1*%3*%!&(!$%A*%!-$!1H'%*!-H*8!J&-H!$-H*%!F1*%1E!
0$8I$1&(K!8'1HFI1!J&-H!G'1H!G'T*%!$BBF%1!3&'!'!B$I4cI'1-*!I'%'A&K8+!/'1*A!$(!

-J$!8$A*1!$.!8*%K&(K!B$(-*(-1e!($4/)+-"3)!!)&3123+!JH*%*!-H*!B$(-*(-!$.!$(*!I'K*!
&1!&(1*%-*A!'1!'!H*'A*%!&(-$!'($-H*%!I'K*d!'(A!1')!7(1#)!!)&3123+!JH*%*!B$(-*(-1!.%$8!
-J$!I'K*1!'%*!B$8/&(*A!'-!%$J!#*3*#+!/'1*A!$(!'AA&-&$('#!F1*%!'(($-'-&$(1E!5H*!-J$!
-*BH(&`F*1! B'(! /*! F1*A! -$!8*%K*! '#1$!8$%*! -H'(! -J$! I'K*1E!)'-'! *UBH'(K*! '8$(K!
B$8I$(*(-1!&1!'BH&*3*A!/4!8*'(1!$.!'!/#'BT/$'%A6#&T*!'II%$'BH+!JH*%*!A'-'!$.!B$86

47



+',-(.#/"0$(1&2"3,4,56&/(%,(7368&'/#4(93%&5'#%6,3!!!!!!9;!

!

I$(*(-1! &(-*K%'-*A! &(-$!'(!'II#&B'-&$(!'%*! &88*A&'-*#4!'3'&#'/#*! -$!'##!$-H*%!B$8I$6
(*(-1E!O$-!$(#4! -H*!A*3*#$I8*(-+!/F-!'#1$! -H*!*U*BF-&$(!$.!8'1HFI1! &1!*(-&%*#4!I*%6
.$%8*A!J&-H! -H*!H*#I! .%$8! -H*!/%$J1*%!I#FK6&(!'-! -H*!B#&*(-! 1&A*d!$(! -H*! 1*%3*%! 1&A*!
-H*%*!'%*!$(#4!-H*!'(($-'-&$(1!.$%!A'-'!*U-%'B-&$(!'(A!-H*!1-$%*A!8'1HFI!A*.&(&-&$(1E!
5$!/F&#A!-H*!0$(.*%*(B*!5%&I!Q#'((*%!J&-H!G'1HG'T*%+!.&%1-!J*!(**A!-$!A*3&1*!-H*!

(*B*11'%4!B$8I$(*(-1!&(!.$%8!$.!'(($-'-*A!J*/!I'K*1E!"$%!&(1-'(B*+!&(1-*'A!$.!F1&(K!
-H*!\,,! &(-*%.'B*! -$J'%A! -H*!B$(.*%*(B*! 1*'%BH!1*%3&B*1!$%! -$J'%A! -H*! .#&KH-! 1*'%BH!
1*%3&B*+!J*!(**A!-$!('3&K'-*!-H*!%*1I*B-&3*!J*/!1&-*1!'(A!'(($-'-*!-H*!A'-'!&-*81!-H'-!
'%*!(*B*11'%4! -$! '(1J*%!$F%! %*.*%*(B*!`F*%4E!,&8&#'%#4+!J*!(**A! -$! '(($-'-*! -H*!2?!
B$8I$(*(-1! $.! $F%! 'II#&B'-&$(E!O*U-+! '##! -H*1*! &(A&3&AF'#! I&*B*1! $.!n5Gi!8'%TFI!
'(A!'(($-'-&$(1!8F1-!/*!Y$&(*A!.$##$J&(K!'(!&-*86J&1*!8*%K&(K!1-%'-*K4E!?-!&1!I$11&/#*!
-$! &8I#*8*(-! -H*!(**A*A!14(BH%$(&M'-&$(!8*BH'(&181!-$!B$$%A&('-*! -H*!B$8I$(*(-1!
$.! -H*!'II#&B'-&$(!J&-H!*'BH!$-H*%!/4!8*'(1!$.! 1$IH&1-&B'-*A!8*%K*!$I*%'-&$(1E!5H*!
JH$#*!A*3*#$I8*(-!I%$B*AF%*! &1!'!($(6-%&3&'#!'(A! -&8*6B$(1F8&(K+! &-! %*`F&%*1!1$8*!
($(6&(-F&-&3*! 1T&##1! -$! '(($-'-*+! A*B$8I$1*+! 8*%K*! '(A! %*B$(1-%FB-! I'K*1! '(A! J*/!
'II#&B'-&$(1!$.!'%/&-%'%4!B$8I#*U&-4E!L&-H$F-!'A3'(B*A!I%$K%'88&(K!1T&##1!&-!&1!H'%A!
-$!&8I#*8*(-!-H*!14(BH%$(&M'-&$(!$.!B$8I$(*(-1!FI$(!1*#*B-&$(!$.!'!B$(.*%*(B*E!

J! 7368&'/#4(2,-$,/6%6,3*(506A635($'6326$4&/(

P1!H&KH#&KH-*A!'/$3*+!'#-H$FKH!*U&1-&(K!8'1HFI!'II%$'BH*1!H'3*!I%$AFB*A!I%$8&1&(K!
%*1F#-1!-*BH(&`F*1!-H'-!B'-*%!.$%!1&8I#*!'(A!F(&3*%1'#!&(-*K%'-&$(!$.!J*/!B$8I$(*(-1!
'-!'##! -H*!-H%**!#'4*%1!$.! -H*!'II#&B'-&$(!1-'BT!'%*!1-&##!8&11&(KE!L*!-H&(T+!1FBH!-*BH6
(&`F*1!'%*!(*B*11'%4!-$!-%'(1&-&$(!L*/!NE=!I%$K%'88&(K!.%$8!*#&-*! -4I*1!$.!B$8IF6
-&(K!*(3&%$(8*(-1!-$!*(3&%$(8*(-1!JH*%*!F1*%1!#*3*%'K*!1&8I#*!'/1-%'B-&$(1!-$!B%*'-*!
B$8I$1&-*! J*/! 'II#&B'-&$(1! $3*%! I$-*(-&'##4! %&BH! J*/! B$8I$(*(-1! A*3*#$I*A! '(A!
8'&(-'&(*A!/4!I%$.*11&$('#!I%$K%'88*%1E!
L*!'&8!'-!F(&3*%1'#!&(-*K%'-&$(+!'(A!-H&1!H'1!.F(A'8*(-'#!A&..*%*(B*1!J&-H!%*1I*B-!

-$! -%'A&-&$('#! B$8I$1&-&$(E! ?(! I'%-&BF#'%+! -H*! .'B-! -H'-!J*! '&8! '-! '#1$! &(-*K%'-&(K!2?!
&8I#&*1! R&S! -H'-! #=2.$&421O"'142+! '(A! ($-! R$(#4S! $%BH*1-%'-&$(! '! #'!fQ]i+! 1H$F#A! /*!
'A$I-*A! '1! &(-*%'B-&$(!I'%'A&K8+! R&&S! -H'-! B$8I$(*(-1!8F1-! /*! '/#*! -$! %*'B-! -$! /$-H!
HF8'(! F1*%! &(IF-! '(A! I%$K%'88'-&B! &(-*%'B-&$(+! '(A! R&&&S! -H'-! J*! 8F1-! /*! '/#*! -$!
A*1&K(! -H*! 2?! $.! -H*! .4!-4#1')! 'II#&B'-&$(+! ($-! YF1-! -H*! /*H'3&$%! '(A! &(-*%'B-&$(!
'8$(K!-H*!B$8I$(*(-1E!5H&1!1H$J1!-H*!(**A!.$%!'!8$A*#!/'1*A!$(!1-'-*+!*3*(-1!'(A!
14(BH%$(&M'-&$(!8$%*!-H'(!$(!8*-H$A!B'##1!'(A!$%BH*1-%'-&$(E!L*!%*B$K(&M*!&(!I'%-&B6
F#'%!-H'-!)0)2'#+!4-)&"'142#+!'!($-&$(!$.!#'"')!'(A!.42513,&"'142+-&4-)&'1)#!'%*!'##!J*!
(**A!-$!8$A*#!'!F(&3*%1'#!B$8I$(*(-E!L&-H!%*1I*B-!-$!-H*!A*1&K(!$.!-H*!B$8I$1&-*!2?+!
J*!'11F8*!A*3*#$I*%1!J&##!F1*!-H*&%!.'3$%&-*!L*/!A*3*#$I8*(-!-$$#!RJ*!A$!($-!'&8!'-!
B$8I*-&(K!J&-H!-H*1*!-$$#1+!'#-H$FKH!J*!A$!$..*%!'!1&8I#*!-*8I#'-&(K!8*BH'(&18!.$%!
%'I&A! A*3*#$I8*(-! $.! I%$-$-4I*! 'II#&B'-&$(1! -H'-! %F(! &(! -H*! /%$J1*%SE! \'-H*%+! J*!
8'T*!&-!*'14!-$!*8/*A!8'1HP%-!B$8I$(*(-1!&(1&A*!'!L*/!'II#&B'-&$(E!
b(!-H*!A'-'!1&A*+!J*!%*'#&M*!-H'-!6"'"!&(-*K%'-&$(!$(!-H*!L*/!8'4!'#1$!%*`F&%*!A&.6

.*%*(-!8$A*#1e!.$%!*U'8I#*!\,,!.**A1!'%*!('-F%'##4!8'('K*A!3&'!'!I&I*6$%&*(-*A!A'-'!

.#$Jc1-%*'8&(K! 8$A*#! R'6#'! W'H$$! Q&I*1S! %'-H*%! -H'(! '! 3'%&'/#*6/'1*A! 'II%$'BH! '1!
A$(*!&(!B$(3*(-&$('#!1*%3&B*!B$8I$1&-&$(E!!

48



9:!!!!!!+4,'6#3(B#36&4C(:%&D#3,(:,6C(+#>6,(!#/#%6(!

!
!

P($-H*%!A&8*(1&$(!$.!F(&3*%1'#&-4! #&*1!&(!-H*!&(-*%'B-&$(!I%$-$B$#1E!G'1HP%-!'&81!
'-! H&A&(K! -H*! B$8I#*U&-4! $.! -H*! 1I*B&.&B! I%$-$B$#! $%! A'-'!8$A*#! 1FII$%-*A! /4! *'BH!
B$8I$(*(-!R\],5+!,bPQ+!\,,+!P-$8+!l,bO+!*-BS!1$!'!A*1&K(!K$'#!&1!-H'-!.%$8!-H*!
I*%1I*B-&3*!$.!-H*!B$8I$1*%!'##!-H*1*!1I*B&.&B&-&*1!'%*!H&AA*(!a!J&-H!-H*!*UB*I-&$(1!$.!
-H*!'1I*B-1!-H'-!H'3*!'!/*'%&(K!$(!-H*!B$8I$1&-&$(!R*EKE+!&.!'!B$8I$(*(-!&1!'!.**A+!-H*(!
J*!'%*!'J'%*!-H'-!&-!$I*%'-*1+!B$(B*I-F'##4+!/4!IF1H&(K!B$(-*(-!I*%&$A&B'##4!$%!$(!-H*!
$BBF%%*(B*!$.!B*%-'&(!*3*(-1SE!
V*(*%'#&-4! '(A! F(&3*%1'#&-4! '%*! $.-*(! '-! $AA1!J&-H! -H*! $-H*%! T*4! A*1&K(! K$'#!J*!

H'3*e!#1!-/1.1'=E!L*!J'(-!-$!*('/#*!'A3'(B*A!J*/!F1*%1!-$!B%*'-*!'II#&B'-&$(1!R'(!$#A!
A%*'8!$.!1*%3&B*!B$8I$1&-&$(!#'(KF'K*1!JH&BH!&1!1-&##!1$8*JH'-!'!.'%!%*'BH&(K!$/Y*B6
-&3*SE! 5H&1! 8*'(1! -H'-! 8'1HP%-! 8F1-! /*! .F(A'8*(-'##4! 1&8I#*%! -H'(! I%$K%'88&(K!
#'(KF'K*1!'(A!BF%%*(-! B$8I$1&-&$(! #'(KF'K*1E!L*! -'%K*-! -H*!B$8I#*U&-4!$.! B%*'-&(K!
J*/!I'K*1!J&-H!'!J*/!I'K*!*A&-$%+!$%!-H*!B$8I#*U&-4!$.!/F&#A&(K!'!I&I*!J&-H!W'H$$!
Q&I*1!R1$8*-H&(K!-H'-!B'(!/*!#*'%(*A!&(!'!8'--*%!$.!H$F%1!%'-H*%!-H'(!J**T1SE!
5$!'BH&*3*!1&8I#&B&-4!J*!8'T*!-J$!A*1&K(!A*B&1&$(1e!.&%1-+!J*!T**I!-H*!B$8I$1&6

-&$(!8$A*#! #&KH-J*&KH-e! .$%! *U'8I#*+! -H*%*! '%*!($! B$8I#*U! *UB*I-&$(!$%! -%'(1'B-&$(!
8*BH'(&181+! ($! fQ]i61-4#*! 1-%FB-F%*A! 'B-&3&-&*1! $%! B$8I#*U! A*'A6I'-H! *#&8&('-&$(!
1*8'(-&B1E!5H&1!1-&##!'##$J1!'!8$A*#!-H'-!8'T*1!&-!1&8I#*!-$!A*.&(*!.'&%#4!1$IH&1-&B'-*A!
'II#&B'-&$(1E! 0$8I#*U! %*`F&%*8*(-1! B'(! 1-&##! /*! &8I#*8*(-*A! /F-! -H&1! (**A1! -$! /*!
A$(*!&(!'(!^'A!H$B_!8'((*%!R*EKE+!-H%$FKH!I%$I*%!B$8/&('-&$(1!$.!*3*(-!#&1-*(*%1!'(A!
B$8I$(*(-!#$K&BS!/F-!-H*%*!'%*!($!1I*B&'#&M*A!B$(1-%FB-1!.$%!-H&1E!,FBH!B$(1-%FB-1!8'4!
/*!'AA*A!$3*%!-&8*!&.!J*!%*'#&M*!-H'-!-H*!8'Y$%&-4!$.!'II#&B'-&$(1!(**A!-H*8E!!
5H*!1*B$(A!A*B&1&$(!&1!-$!.$BF1!$(!1&8I#&B&-4!$(#4!5&4!+'$)+-)&#-).'10)+45+'$)+,#)&+

$.! -H*! B$8I$(*(-1+! -H'-! &1+! -H*! A*1&K(*%! $.! -H*! B$8I$1&-*! 'II#&B'-&$(1E! ?(! B$8I#*U!
'II#&B'-&$(1+! B$8I#*U&-4! 8F1-! %*1&A*! 1$8*JH*%*+! '(A! J*! /*#&*3*! -H'-! '1! 8FBH! '1!
I$11&/#*!&-!(**A1!-$!/*!&(1&A*!-H*!B$8I$(*(-1E!0$8I$(*(-1!F1F'##4!I%$3&A*!B$%*!.F(B6
-&$('#&-&*1! '(A! '%*! %*F1*A! $3*%! '(A! $3*%! R-H'-g1! $(*! $.! -H*! 8'&(! K$'#1! $.! B$8I$6
(*(-1SE5HF1+!&-!8'T*1!1*(1*!-$!H'3*!I%$.*11&$('#!I%$K%'88*%1!A*3*#$I!'(A!8'&(-'&(!
B$8I$(*(-1E!L*!/*#&*3*!-H&1!&1!(*B*11'%4!.$%!-H*!8'1HFI!I'%'A&K8!-$!%*'##4!-'T*!$..E!!
"$%!*U'8I#*+!&11F*1!1FBH!'1!&(-*%'B-&$(!I%$-$B$#1!R*EKE+!,bPQ!31E!\],5!$%!$-H*%1S!$%!
&(&-&'#&M'-&$(! $.! &(-*%'B-&$(1! J&-H! B$8I$(*(-1! R*EKE+! 8*11'K*! *UBH'(K*1! .$%! B#&*(-!
'F-H*(-&B'-&$(S!8F1-!/*!*8/*AA*A!&(!-H*!B$8I$(*(-1E!

K! 1"&(-#/"='%(!,-$,3&3%(.,A&4(

5H*!.&%1-! 1-*I! -$J'%A! -H*!F(&3*%1'#!B$8I$1&-&$(!8$A*#! &1! -H*!A*.&(&-&$(!$.!'!B$8I$6
(*(-!8$A*#E!P"#$%&'+B$8I$(*(-1!J%'I!2?+!'II#&B'-&$(+!'(A!A'-'!1*%3&B*1!'(A!*UI$1*!
-H*&%!.*'-F%*1c.F(B-&$('#&-&*1!'BB$%A&(K!-$!-H*!8'1HP%-!B$8I$(*(-!8$A*#E!5H*!8$A*#!
A*1B%&/*A!H*%*!*U-*(A1!$F%!&(&-&'#!2?6$(#4!B$8I$(*(-!8$A*#!I%*1*(-*A!&(!Z;[!-$!B'-*%!
.$%! F(&3*%1'#! B$8I$(*(-1E! 5H*! 8$A*#! &1! /'1*A! $(! .$F%! '/1-%'B-&$(1e! 1-'-*+! *3*(-1+!
$I*%'-&$(1+!'(A!I%$I*%-&*1e!
! 5H*!#'"')(&1!%*I%*1*(-*A!'1!'!1*-!$.!('8*63'#F*!I'&%1E!LH'-!-H*!1-'-*!*U'B-#4!B$(6
-'&(1!'(A!&-1!#*3*#!$.!'/1-%'B-&$(!&1!A*B&A*A!/4!-H*!B$8I$(*(-!A*3*#$I*%+!/F-!&(!
K*(*%'#!&-!1H$F#A!/*!1FBH!-H'-!&-1!BH'(K*!%*I%*1*(-1!1$8*-H&(K!%*#*3'(-!'(A!1&K6
(&.&B'(-! .$%! -H*! $-H*%! B$8I$(*(-1! -$! T($JE! "$%! *U'8I#*+! &(! $F%! <425)&)2.)+

49



+',-(.#/"0$(1&2"3,4,56&/(%,(7368&'/#4(93%&5'#%6,3!!!!!!9>!

!

@)"&.$+B$8I$(*(-!J*!B'(!BH'(K*!-H*!1*'%BH!1-%&(K!$.!-H*!`F*%4!'(A!%*6B$8IF-*!
-H*! #&1-!$.!I*%-'&(&(K!B$(.*%*(B*1d! -H&1! B$8I$(*(-6&(-*%('#! 'B-&3&-4! &1! &%%*#*3'(-!
.$%!-H*!$-H*%!B$8I$(*(-1!JH$!'%*!($-!&(-*%*1-*A!&(!1FBH!#$J!#*3*#!$.!A*-'&#E!?(6
1-*'A+!B#&BT&(K!$(!R1*#*B-&(KS!'!1I*B&.&B!B$(.*%*(B*!*UI%*11*1!'(!&(.$%8'-&$(!-H'-!
8'4!#*'A!$-H*%!B$8I$(*(-1!-$!1H$J!%*#'-*A!&(.$%8'-&$(!$%!'II#&B'-&$(!1*%3&B*1!
-$!I*%.$%8!'B-&$(1!R*EKE+!`F*%4!.$%!.#&KH-1SE!5H&1!&1!'!1-'-*!BH'(K*!J*!J'(-!-$!B'I6
-F%*E!?(!$F%!B'1*!1-FA4+!-H*!1-'-*!.$%!-H*!<425)&)2.)+@)"&.$+B$8I$(*(-!&1!-H*!1*-!
$.!B$(.*%*(B*1!/*&(K!A&1I#'4*A!I#F1!-H*!1*#*B-*A!B$(.*%*(B*E!!
G$A*#&(K! 1-'-*! .$%! 'II#&B'-&$(! B$8I$(*(-1! &1! 1$8*-H&(K! A*/'-'/#*! '1! 1*%3&B*1!
'%*!($%8'##4!F1*A!&(!'!1-'-*#*11!.'1H&$(E!5H&1!&1!'#1$!JH4!L,)i!A$*1!($-!H'3*!'!
($-&$(!$.!1-'-*E!n$J*3*%+!JH&#*!&8I#*8*(-'-&$(1!B'(!/*!1-'-*#*11+!.%$8!'!8$A*#6
&(K!I*%1I*B-&3*!&-!B'(!/*!F1*.F#!-$!8$A*#!-H*!1-'-*+!'(A!J*!/*#&*3*!-H'-!&-1!$8&16
1&$(!.%$8!L,)i!'(A!L,6q!1-'(A'%A1!J'1!'!8&1-'T*!RJ&-H!8'(4!I'%-&'#!'--*8I-1!
-$!B$%%*B-!&-!/4!&(-%$AFB&(K!1-'-*!8'BH&(*1!-H'-!B'(!/*!'--'BH*A!-$!1*%3&B*!8$A6
*#1SE!P#-H$FKH!($-!A&1BF11*A!H*%*+!-H*!1-'-*!&1!'!('-F%'#!/%&AK*!/*-J**(!'II#&B'6
-&$(! 1*%3&B*1! '(A! A'-'6$%&*(-*A! 1*%3&B*1! R1*%3&B*1! -H'-! *11*(-&'##4!8'(&IF#'-*! '!
A'-'!$/Y*B-SE!!

! ]3*(-1! B$88F(&B'-*! 1-'-*! BH'(K*1! '(A! $-H*%! &(.$%8'-&$(! -$! -H*! B$8I$1&-&$(!
*(3&%$(8*(-+!'#1$!'1!('8*63'#F*!I'&%1E!]U-*%('#!($-&.&B'-&$(1!/4!,bPQ!1*%3&B*1+!
B'##/'BT1! .%$8! \],5.F#! 1*%3&B*1+! '(A! *3*(-1! .%$8! 2?! B$8I$(*(-1! B'(! /*!
8'II*A! -$!*3*(-1E!LH*(!*3*(-1! %*I%*1*(-! 1-'-*! BH'(K*1+! &(&-&'-*A!*&-H*%!/4! -H*!
F1*%!/4!B#&BT&(K!$(! -H*!B$8I$(*(-g1!2?!$%!/4!I%$K%'88'-&B! %*`F*1-1! R-H%$FKH!
$I*%'-&$(1+!A&1BF11*A!/*#$JS+!-H*!*3*(-!A'-'!&(B#FA*1!-H*!(*J!1-'-*E!b-H*%!B$86
I$(*(-1!1F/1B%&/*!-$!-H*1*!*3*(-1!1$!-H'-!-H*4!B'(!BH'(K*!-H*&%!1-'-*!'II%$I%&'-*6
#4!R&E*E+!-H*4!14(BH%$(&M*SE!"$%!&(1-'(B*+!JH*(!1*#*B-&(K!'!B$(.*%*(B*!&(!-H*!0$(6
.*%*(B*!,*'%BH!B$8I$(*(-+!'(!*3*(-!&1!K*(*%'-*A!-H'-!B'%%&*1!A*-'&#1!R*EKE+!('8*+!
B&-4+!1-'%-c*(A!A'-*S!'/$F-!-H*!I*%.$%8*A!1*#*B-&$(E!!

! bI*%'-&$(1!'%*! -H*!AF'#!$.!*3*(-1E!5H*4!'%*! -H*!8*-H$A1!&(3$T*A!'1!'!%*1F#-!$.!
*3*(-1+!'(A!$.-*(!%*I%*1*(-!1-'-*!BH'(K*!%*`F*1-1E!"$%!*U'8I#*+!-H*!0$(.*%*(B*6
,*'%BH! B$8I$(*(-! H'1! '! 1-'-*! BH'(K*! $I*%'-&$(! ,H$J0$(.*%*(B*1! -H'-! B'(! /*!
F1*A!-$!A&1I#'4!%*-%&*3*A!B$(.*%*(B*1E!?(!-H&1!B'1*+!-H*!$I*%'-&$(!I'%'8*-*%1!&(6
B#FA*! -H*! (*B*11'%4! &(.$%8'-&$(! '/$F-! -H*! 1-'-*! -$!JH&BH! -H*! B$8I$(*(-!8F1-!
*3$#3*! R-H*! #&1-!$.!B$(.*%*(B*1SE! ?(!K*(*%'#+!$I*%'-&$(1!B$(1F8*!'%/&-%'%4!I'%'6
8*-*%1+!JH&BH+!'1!.$%!*3*(-1+!'%*!*UI%*11*A!'1!('8*63'#F*!I'&%1!-$!T**I!-H*!8$A6
*#! 1&8I#*E!\*`F*1-6%*1I$(1*!$I*%'-&$(1! '#1$! %*-F%(! '! 1*-! $.!('8*63'#F*!I'&%1!a!
-H*!1'8*!.$%8'-!'1!-H*!B'##!a!'(A!'##$J!-H*!8'II&(K!$.!%*`F*1-6%*1I$(1*!$I*%'6
-&$(1!$.!,bPQ!1*%3&B*1+!V*-!'(A!Q$1-!%*`F*1-1!$.!\],5.F#!1*%3&B*1+!'(A!V*-!%*6
`F*1-1!$.! .**A1E!b(*6J'4!$I*%'-&$(1!'##$J!-H*!8'II&(K!$.!$(*6J'4!$I*%'-&$(1!
$.!,bPQ!1*%3&B*1+!QF-!'(A!)*#*-*!%*`F*1-1!$.!\],5.F#!1*%3&B*1+!'(A!$I*%'-&$(1!
$.!2?!B$8I$(*(-1E!5H*!#&(T'K*!/*-J**(!*3*(-1!'(A!$I*%'-&$(1+!'1!J*!J&##!1**+!&1!
A$(*! &(! -H*! B$8I$1&-&$(! 8$A*#E! L*! .$F(A! -H*! B$8/&('-&$(! $.! R'II#&B'-&$(6
1I*B&.&BS!1-'-*1+!*3*(-1+!'(A!$I*%'-&$(1!-$!/*!'!3*%4!B$(3*(&*(-!'(A!*'14!-$!F(6
A*%1-'(A! I%$K%'88&(K! I'%'A&K8! .$%! 8$A*#&(K! '##! 1&-F'-&$(1! -H'-! %*`F&%*! 14(6
BH%$(&M'-&$(!'8$(K!2?+!'II#&B'-&$(+!$%!A'-'!B$8I$(*(-1E!

! "&('##4+!B$(.&KF%'-&$(!I%$I*%-&*1!&(B#FA*!'%/&-%'%4!B$8I$(*(-!1*-FI!&(.$%8'-&$(E!!
"$%! *U'8I#*+! 2?! B$8I$(*(-1! 8'4! &(B#FA*! #'4$F-! I'%'8*-*%1+! JH&#*! 1*%3&B*!
B$8I$(*(-1! 8'4! (**A! B$(.&KF%'-&$(! I'%'8*-*%1+! 1FBH! '1! -H*! F1*%('8*! '(A!

50



9j!!!!!!+4,'6#3(B#36&4C(:%&D#3,(:,6C(+#>6,(!#/#%6(!

!
!

I'11J$%A! .$%! #$K&(E! 5H*! 1*8'(-&B1! $.! -H*1*! I%$I*%-&*1! &1! *(-&%*#4! B$8I$(*(-6
1I*B&.&Be!($!^1-'(A'%A_! &1!I%*1B%&/*A!/4! -H*!B$8I$(*(-!8$A*#E!PK'&(+! -H*4!'%*!
('8*63'#F*!I'&%1E!

?(!'AA&-&$(!-$!-H*!BH'%'B-*%&1-&B1!A*1B%&/*A!'/$3*+!B$8I$(*(-1!H'3*!'1I*B-1!-H'-!'%*!
12')&2"/+!8*'(&(K!-H'-!-H*4!'%*!($-!$.!B$(B*%(!-$!-H*!B$8I$1&-&$(!A*1&K(*%+!/F-!$(#4!-$!
-H*!I%$K%'88*%!JH$!B%*'-*1!-H*!B$8I$(*(-E!?(!I'%-&BF#'%+!'!B$8I$(*(-!8&KH-!(**A!-$!
H'(A#*! -H*! &(3$B'-&$(!$.! '! 1*%3&B*+!/$-H! &(! -*%81!$.!8'II&(K!/*-J**(! -H*! RI$11&/#4!
B$8I#*US!A'-'!1-%FB-F%*!-H'-!-H*!1*%3&B*!1FII$%-1!'(A!-H*!.#'-!A'-'!1-%FB-F%*!$.!8'1HP%-!
R('8*63'#F*!I'&%1S+!'(A!'#1$!&(! -*%81!$.! &(3$B'-&$(!I%$-$B$#!R*EKE+!,bPQ!$3*%!H--ISE!
5H*%*!'%*!-J$!$I-&$(1!.$%!-H&1e!5H*!.&%1-!&1!-$!A*3*#$I!'A!H$B!#$K&B!&(!.$%8!$.!'!J%'I6
I*%E!5H*!J%'II*%!-'T*1!-H*!8'1HP%-!B$8I$(*(-!&(3$B'-&$(!I'%'8*-*%1+!'(A!J&-H!'%/&6
-%'%4!#$K&B!'(A!F1&(K!'%/&-%'%4!#&/%'%&*1+!/F&#A1!-H*!8*11'K*!'(A!&(3$T*1!-H*!1*%3&B*!'1!
'II%$I%&'-*E!5H*!1*B$(A!&1!-$!F1*!-H*!/F&#-6&(!8'1HP%-!/&(A&(K1E!?(!-H&1!B'1*+!-H*!B$86
I$(*(-! A*1B%&I-&$(! &(B#FA*1! B$8I$(*(-! /&(A&(K1! 1FBH! '1! .4!-42)2'Q$''-+! .4!-47
2)2'Q@R%?+! .4!-42)2'QE@@+! $%! .4!-42)2'Q%'4!E! V&3*(! '! B$8I$(*(-! /&(A&(K+! -H*!
%F(-&8*! *(3&%$(8*(-! &1! '/#*! -$!8*A&'-*! I%$-$B$#1! '(A! .$%8'-1! /4!8*'(1! $.! A*.'F#-!
8'II&(K!1*8'(-&B1d!8'II&(K1!B'(!'#1$!/*!BF1-$8&M*A! R8$%*!A*-'&#1!'%*!I%$3&A*A! &(!
-H*! &8I#*8*(-'-&$(! 1*B-&$(SE?(! 1F88'%4+! -H*! 8'1HP%-! 8$A*#! &(-F&-&3*#4! 'BB$88$6
A'-*1!8F#-&I#*!B$8I$(*(-!8$A*#1+!1FBH!'1!2?!B$8I$(*(-1+!,bPQ!'(A!\],5.F#!1*%6
3&B*1+!\,,!'(A!P-$8!.**A1E!
?(!"&KF%*!NR'S!J*!&(-%$AFB*!$F%!K%'IH&B'#!8$A*#&(K!($-'-&$(!.$%!8'1HP%-!B$8I$6

(*(-1!-H'-!B'I-F%*1!-H*!I%*3&$F1#4!A&1BF11*A!BH'%'B-*%&1-&B1!$.!B$8I$(*(-1+!&E*E+!1-'-*+!
*3*(-1+!$I*%'-&$(1+! '(A!2?E!@'"')/)##! B$8I$(*(-1! '%*! %*I%*1*(-*A!/4!B&%B#*1+!#'"')5,/!
B$8I$(*(-1!/4!%*B-'(KF#'%!/$U*1E!0$8I$(*(-1!J&-H!IJ!'%*!*UI#&B&-#4!#'/*#*A!'1!1FBHE!
L*! F1*! '%%$J1! -$!8$A*#! 6"'"+ 5/4(#+!JH&BH! &(! -F%(! '##$J! F1! -$! *UI%*11! *3*(-1! '(A!
$I*%'-&$(1e! '%%$J1! K$&(K! $F-! .%$8! '! B$8I$(*(-! '%*! )0)2'#d! '%%$J1! B$8&(K! &(! -$! '!
B$8I$(*(-!'%*!4-)&"'142#E!5H*%*!8&KH-!/*!8F#-&I#*!*3*(-1!'(A!$I*%'-&$(1!'11$B&'-*A!
J&-H! $(*! B$8I$(*(-E! )*I*(A&(K! $(! -H*! I'%-&BF#'%! -4I*! $.! $I*%'-&$(! $%! *3*(-! $.! '!
1-'-*#*11! 1*%3&B*+! -H*%*!8&KH-! /*! $(#4! $(*! &(B$8&(K! A'-'! .#$J! R.$%! $(*6J'4! $I*%'6
-&$(1S+! '(! &(B$8&(K!'(A! '(!$F-K$&(K!A'-'! .#$J! R.$%! %*`F*1-6%*1I$(1*!$I*%'-&$(1S+!$%!
$(#4! '(! $F-K$&(K! A'-'! .#$J! R.$%! *3*(-1SE! bI*%'-&$(1! '(A! *3*(-1! '%*! /$F(A! -$! -H*&%!
B$8I$(*(-!/4!8*'(1!$.!'!1&8I#*!A$-6($-'-&$(e!.4!-42)2'GS4-)&"'142T)0)2'UE!!
5H*! 'B-F'#! 8$A*#! $.! '! 1I*B&.&B! B$8I$(*(-! &1! 1I*B&.&*A! /4! 8*'(1! $.! '(! '/1-%'B-!

B$8I$(*(-! 6)#.&1-'4&+! .$%8F#'-*A! &(! -H*!!"#$%&'+ K)#.&1-'142+ V"23,"3)+ RG)iS! '!
1&8I#*+!hGi6/'1*A!&(-*%.'B*!A*1B%&I-&$(!#'(KF'K*E!G)i!&1!.$%!8'1HP%-!B$8I$(*(-1!
JH'-!L,)i!&1!.$%!J*/!1*%3&B*1E!

)! 7368&'/#4(!,-$,/6%6,3(.,A&4(

,&(B*!J*!-'%K*-!F(&3*%1'#!B$8I$1&-&$(!J&-H!/$-H!1-'-*.F#!'(A!1-'-*#*11!B$8I$(*(-1+!'1!
J*##! '1! 2?! B$8I$1&-&$(+! JH&BH! %*`F&%*1! 14(BH%$(&M'-&$(+! '(A! 1*%3&B*! B$8I$1&-&$(+!
JH&BH!&1!8$%*!$%BH*1-%'-&$('#! &(!('-F%*+! -H*!%*1F#-&(K!8$A*#!B$8/&(*1!.*'-F%*1!.%$8!
)0)2'7*"#)6+ B$8I$1&-&$(! J&-H! 5/4(7*"#)6! B$8I$1&-&$(E! P1! J*! J&##! 1**+! -H*1*! B'(!
('-F%'##4!B$*U&1-!J&-H$F-!8'T&(K!-H*!8$A*#!$3*%#4!B$8I#*UE!

51



+',-(.#/"0$(1&2"3,4,56&/(%,(7368&'/#4(93%&5'#%6,3!!!!!!9k!

!

?(!*11*(B*+!B$8I$1&-&$(!&1!A*.&(*A!/4!#&(T&(K!*3*(-1!R$%!$I*%'-&$(!%*I#&*1S!-H'-!$(*!
B$8I$(*(-!*8&-1!J&-H!$I*%'-&$(!&(3$B'-&$(1!$.!'($-H*%!B$8I$(*(-E!!?(!-*%81!$.!.#$J!
B$(-%$#+!-H*!8$A*#!$..*%1!B$(A&-&$(1!$(!$I*%'-&$(1!'(A!1I#&-cY$&(!B$(1-%FB-1+!A*.&(*A!/4!
-'KK&(K!$I*%'-&$(1!'1!$I-&$('#!$%!8'(A'-$%4E!)'-'!&1!-%'(1.*%%*A!/*-J**(!B$8I$(*(-1!
.$##$J&(K!'!I&I*cA'-'!.#$J!'II%$'BH+!%'-H*%!-H'(!-H*!3'%&'/#*16/'1*A!'II%$'BH!-4I&B'#!
$.!fQ]i!$%!$.!I%$K%'88&(K!#'(KF'K*1E!5H*!BH$&B*!$.! -H*!A'-'!.#$J!8$A*#! &1!8$-&6
3'-*A!/4!-H*!.'B-! -H'-!JH&#*!3'%&'/#*1!J$%T!3*%4!J*##!.$%!I%$K%'81!'(A!'%*!J*##!F(6
A*%1-$$A! /4! I%$K%'88*%1+! A'-'! .#$J1! 'II*'%! -$! /*! *'1&*%! -$! F(A*%1-'(A! .$%! ($(6
I%$K%'88*%1!'1!-H*4!B'(!.$BF1!$(!-H*!B$88F(&B'-&$(!/*-J**(!'!I'&%!$.!B$8I$(*(-1E!
5H&1!&1!'#1$!JH4!.%'8*J$%T1!1FBH!'1!W'H$$!Q&I*1!B'(!/*!F1*A!/4!($(6I%$K%'88*%1E!
5$!T**I!-H*!1$#F-&$(!1&8I#*!'1!I*%!$F%!%*`F&%*8*(-1!R4*-+!'1!B$8I#*-*!'(A!.#*U&/#*!

'1! (*B*11'%4S! J*! H'A! -$!8'T*! 1$8*! B$8I%$8&1*1E! "$%! *U'8I#*+! -H*! 8$A*#! B$8*1!
J&-H$F-!'(4!1-%FB-F%*A!$%!B$8I#*U!141-*8!'B-&3&-&*1!R*EKE+!1B$I*1+!(*1-*A!1B$I*1+!1F/6
I%$B*11*1+! -&8*%1S! '(A! A$*1! ($-! &(B#FA*! -%'(1'B-&$(!8'('K*8*(-! $%! *UB*I-&$(! H'(6
A#&(KE!?.!8$%*!B$8I#*U!8$A*#&(K!B$(1-%FB-1!'%*!(*B*11'%4!R*EKE+!'!Y$&(!B$(1-%FB-!J&-H!'!
1I*B&'#!A'-'!8*%K&(K!.F(B-&$(+!'!B$8I#*U!A'-'!-%'(1.$%8'-&$(!1*%3&B*+!$%!'!A*'-H6I'-H!
*#&8&('-&$(!fQ]i61-4#*S+! -H*4!B'(!/*! R&S! &8I#*8*(-*A!F1&(K! -H*! #'(KF'K*!B$(1-%FB-1!
R'#-H$FKH!-H*4!B$F#A!%*`F&%*!8'(4!B$8I$(*(-1!'(A!*3*(-1!'(A!%*(A*%!-H*!K%'IH!B$86
I#*US+!R&&S!&(-*K%'-*A!&(!-H*!.$%8!$.!A*A&B'-*A!1*%3&B*1!R&8I#*8*(-*A!'1!B$8I$(*(-1S+!
$%!R&&&S!/4!B%*'-&(K!'!fQ]i!1F/.#$J!&(3$T*A!/4!8'1HP%-!R-H&1!&1!1FII$%-*A!/4!-H*!-$$#!
/F-!($-!A*1B%&/*A!H*%*+!'1!&-!&1!&8I#*8*(-'-&$(!'(A!($-!'(!$%&K&('#!B$(-%&/F-&$(SE!5H*!
8$A*#!'(A! -H*! #'(KF'K*!A*1B%&/*A!H*%*!I%$3&A*! .$%! -H*!(*B*11'%4!/'1&B!B$8I$1&-&$(!
#$K&B+!JH&#*!8$%*!B$8I#*U!#$K&B1!'%*!&(-*K%'-*A!J&-H$F-!%*`F&%&(K!'(4!*U-*(1&$(!'-!-H*!
#'(KF'K*!#*3*#E!P1!J*!K$!'#$(K!'(A!J*!%*'#&M*!-H'-!B*%-'&(!.*'-F%*1!'%*!B%FB&'#+! -H*4!
J&##!/*!'AA*A!-$!-H*!8$A*#E!!!
5H*! F(&3*%1'#! B$8I$1&-&$(! 8$A*#! &1! A*.&(*A! &(! -H*! 2(&3*%1'#! 0$8I$1&-&$(! i'(6

KF'K*!R20iS+!JH&BH!$I*%'-*1!$(!G)i!A*1B%&I-$%1!$(#4E!20i!&1!.$%!F(&3*%1'#!B$8I$6
1&-&$(1!JH'-!fQ]i!&1!.$%!J*/!1*%3&B*!B$8I$1&-&$(1!R/F-!'K'&(+!1&8I#*%!'(A!.$%!F(&3*%6
1'#!B$8I$1&-&$(1SE!P!F(&3*%1'#!B$8I$1&-&$(!&1!BH'%'B-*%&M*A!/4e!
! <4!-42)2'+6)./"&"'142#e!n*%*!J*!A*B#'%*!-H*!B$8I$(*(-1!F1*A!&(!-H*!B$8I$1&6
-&$(!'(A!I%$3&A*!%*.*%*(B*1!-$!-H*!G)i!A*1B%&I-$%!$.!*'BH!B$8I$(*(-E!5H&1!'#6
#$J1!'BB*11!-$!'##!B$8I$(*(-!A*-'&#1!R*EKE+!-H*!/&(A&(KSE!bI-&$('##4+!A*B#'%'-&$(1!
8'4!'#1$!B$(-'&(!-H*!1*--&(K!$.!B$(1-%FB-$%!I'%'8*-*%1E+

! V1#')2)&#e!i&1-*(*%1!'%*!-H*!B$%*!B$(B*I-!$.!-H*!F(&3*%1'#!B$8I$1&-&$(!'II%$'BHE!
5H*4!'11$B&'-*!*3*(-1!J&-H!$I*%'-&$(1+!*..*B-&3*#4!&8I#*8*(-&(K!1&8I#*!IF/#&1H6
1F/1B%&/*! #$K&B1E! ]3*(-1! I%$AFB*! I'%'8*-*%1d! $I*%'-&$(1! B$(1F8*! -H*8! R1-'-&B!
I'%'8*-*%!3'#F*1!8'4!/*!1I*B&.&*A!&(!-H*!B$8I$1&-&$(SE!?(1&A*!'!#&1-*(*%+!&(IF-1!
'(A!$F-IF-1!B'(!/*!'%/&-%'%&#4!B$((*B-*A!R/4!%*.*%%&(K!-$!-H*!%*1I*B-&3*!?)1!'(A!
I'%'8*-*%!('8*1S!%*1F#-&(K!&(-$!-H*!A*.&(&-&$(!$.!6"'"+5/4(#!'8$(K!B$8I$(*(-1E!
P(! $I-&$('#! B$(A&-&$(! 8'4! %*1-%&B-! -H*! *U*BF-&$(! $.! $I*%'-&$(1d! B$(A&-&$('#!
1-'-*8*(-1! '%*!hQ'-H! 1-'-*8*(-1! *UI%*11*A! $3*%! -H*! $I*%'-&$(g1! &(IF-! I'%'8*6
-*%1E!b(#4!&.!-H*!B$(A&-&$(!H$#A1+!-H*!$I*%'-&$(!&1!*U*BF-*AE+

! >=-)+6)5121'142#e!P1!.$%!8'1HP%-!B$8I$(*(-1+!-H*!1-%FB-F%*1!$.!B$8I#*U!I'%'8*6
-*%!3'#F*1!B'(!/*!1I*B&.&*A!3&'!A*A&B'-*A!A'-'!-4I*1E+

L*!'%*!($J!%*'A4!-$!B$8I$1*!$F%!0$(.*%*(B*!5%&I!Q#'((*%E!0$8I$1&(K!'(!'II#&6
B'-&$(!8*'(1!B$((*B-&(K!*3*(-1!'(A!$I*%'-&$(1!3&'!A'-'!.#$J1+!'(A+!&.!(*B*11'%4+!1I*6

52



9<!!!!!!+4,'6#3(B#36&4C(:%&D#3,(:,6C(+#>6,(!#/#%6(!

!
!

B&.4&(K! B$(A&-&$(1! B$(1-%'&(&(K! -H*! *U*BF-&$(!$.!$I*%'-&$(1E!5H*!K%'IH&B'#!8$A*#! &(!
"&KF%*! NR'S! %*I%*1*(-1+! .$%! &(1-'(B*+! -H*! ^&8I#*8*(-'-&$(_! $.! -H*! %*.*%*(B*! 1B*('%&$!
A*1B%&/*A! &(! -H*! &(-%$AFB-&$(E! L*! B'(! 1**! -H*! .$F%! 2?! B$8I$(*(-1! <425)&)2.)#+
@)"&.$+!C8-)61"+D4')/#+!E@@+E)"6)&!'(A!AA<+B)"'$)&!'(A!-H*!-J$!1-'-*#*11!1*%3&B*!
B$8I$(*(-1!<425)&)2.)?1-)!'(A!N"="FE!!

!
R'S!5H*!8'1HP%-!B$8I$1&-&$(!8$A*#!I#F1!-H*!8$A*#&(K!($-'-&$(!($-!F1*A!&(!-H*!8$A*#!

!
R/S!5H*!&(-*%('#1!$.!-H*!B$(.*%*(B*!1*'%BH!'KK%*K'-&$(!'(A!.&#-*%&(K!I&I*!

+650'&(H(!,-$,/6%6,3(-,A&4(D,'(%"&(!,3D&'&32&(1'6$(L4#33&'(#$$462#%6,3(

5H*!B$8I$1&-&$(!H'1!.$F%!#&1-*(*%1e!

9E! ?.!'!F1*%!*(-*%1!'!B$(.*%*(B*!1*'%BH!1-%&(K!'(A!1-'%-1!-H*!1*'%BH!R@)"&.$<425)&)2.)!
*3*(-S+! -H*!<425)&)2.)?1-)! 1*%3&B*! &1! &(3$T*A!/4!I%$B*11&(K! '!W'H$$X!I&I*! -H'-!
`F*%&*1! -J$! $-H*%! 1*%3&B*1e! .425)&)2.)7#)&01.)G.4!! '(A!"//.425)&)2.)#G.4!E! 5H*!
&(-*%('#1!$.! -H*!I&I*!'%*!1H$J(!&(!"&KF%*!;R/SE!5H*!I&I*!Y$&(1! -H*!%*1F#-1!B$8&(K!
.%$8!-H*!-J$!1*%3&B*1!'(A!'II#&*1!-H*!.&#-*%!B$(A&-&$(!I%$3&A*A!/4!-H*!F1*%d!-H*!%*6
1F#-!&1!I'11*A!/'BT!-$!-H*!8'1HP%-!B$8I$1&-&$(!/4!&(3$T&(K!-H*!@$4(<425)&)2.)#!
$I*%'-&$(!$.!-H*!<425)&)2.)#+@)"&.$!2?!B$8I$(*(-E!!
O$-*! -H'-! 1&8&#'%! $I*%'-$%1! '(A! .**A! I%$B*11&(K! #$K&B1! '1! 1H$J(! &(! "&KF%*! ;R/S!
B$F#A!*'1&#4!/*!&8I#*8*(-*A!'#1$!A&%*B-#4!&(!8'1HP%-+!/F-!J*!I%*.*%!%*F1&(K!W'6
H$$X!Q&I*1!-$!1H$J!'(!*U'8I#*!$.!H$J!8'1HFI!I#'-.$%81!B'(!&(-*%$I*%'-*E!

NE! ?.!'!F1*%!1*#*B-1!'!B$(.*%*(B*!.%$8!-H*!#&1-!$.!%*-%&*3*A!B$(.*%*(B*1!R<425)&)2.)@)7
/).')6!*3*(-S+!-H%**!#&1-*(*%1!%*'B-&(K!-$!-H*!1'8*!*3*(-!'%*!'B-&3'-*AE!5H*!.&%1-!#&16

"#$%&'&$(&)!
*&+'(,

"#

--"
.&+/,&'

"#

0**
0&+1&'

"#

234&15+
6#/&7)

"#"#$%&'&$(&
*&7&(/&1

"#$%&'&$(&854&9
:&/"#$%&'&$(&)

;+<+=9
)&+'(,>75:,/)

*&+'(,6#/&7)

*,#?0**

*&+'(,.&+/,&'!"#$%&'%()(*#+,*-#
).)(*/#0(1#%')20*,%(/#

*,#?"#$%&'&$(&)

*&+'(,"#$%&'&$(&)

"#$%&'&$(&
*&7&(/&1

"#$%&'&$(&
*&7&(/&1

30*0#45%+

6*0*)5)//#7)89)/*:7)/'%(/)#
/)2.,$)#,(.%$0*,%(

*/+/&%@7!
(#A4#$&$/

;%*0*,%(#(%*#9/)1#,(#
*-)#)<0&'5)

*/+/&7&))92B&$/

*/+/&7&))9C$&.+<

53



+',-(.#/"0$(1&2"3,4,56&/(%,(7368&'/#4(93%&5'#%6,3!!!!!!9m!

!

-*(*%!I%$I'K'-*1! -H*!1*#*B-*A!B$(.*%*(B*!#$B'-&$(!'(A!A'-*1! -$! -H*!C8-)61"+D4')/!
1*%3&B*!-H'-!%*-%&*3*1!'!#&1-!$.!'3'&#'/#*!H$-*#1!.%$8!-H*!]UI*A&'!%*I$1&-$%4E!

;E! 5H*! 1*B$(A! #&1-*(*%! 'B-&3'-*A! '.-*%! -H*! 1*#*B-&$(! $.! '! B$(.*%*(B*! 1*'%BH*1! .$%!
8'-BH&(K!.#&KH-1!'(A!3&1F'#&M*1!-H*8!&(!-H*!E@@+E)"6)&E!5H*!.#&KH-1!'%*!%*-%&*3*A!
/4!&(3$T&(K!'!.#&KH-!1*'%BH!1*%3&B*!I%$3&A&(K!'BB*11!-$!-H*!F"="FG.4!!A'-'/'1*!'(A!
A*#&3*%&(K!&-1!%*1F#-1!'1!\,,!.**AE!,FBH!.**A!&1!I%$3&A*A!'1!&(IF-!-$!-H*!E@@+E)"67
)&!3&'!-H*!@$4(E@@!$I*%'-&$(E!

:E! "&('##4+! -H*! #'1-! #&1-*(*%! 'B-&3'-*A!FI$(! 1*#*B-&$(!$.! '! B$(.*%*(B*!'#&K(1! -H*!A'-'!
1H$J(! &(! -H*!AA<+B)"'$)&! B$8I$(*(-! /4! .$%J'%A&(K! -H*! ('8*! $.! -H*! B&-4! -H*!
B$(.*%*(B*! &1! #$B'-*A! &(! -H%$FKH! -H*! @)"&.$B)"'$)&! $I*%'-&$(E! 5H&1! B'F1*1! -H*!
B$8I$(*(-!-$!3&1F'#&M*!-H*!'3*%'K*!J*'-H*%!B$(A&-&$(1!.$%!-H*!1*#*B-*A!B&-4E!

5H*!K%'IH&B'#!8$A*#!%*I%*1*(-1!-H*!&(.$%8'-&$(!-H'-!&1!(*B*11'%4!-$!F(A*%1-'(A!-H*!
B$8I$1&-&$(!.%$8!-H*!B$8I$1*%g1!I$&(-!$.!3&*JE!b.!I'%-&BF#'%!&(-*%*1-!.$%!-H*!1-%FB-F%*!
$.!-H*!B$8I$1&-&$(!&1!-H*!A&1-&(B-&$(!/*-J**(!1-'-*.F#!'(A!1-'-*#*11!B$8I$(*(-1e!,-'-*6
.F#! B$8I$(*(-1! H'(A#*! 8F#-&I#*! &(3$B'-&$(1! AF%&(K! -H*&%! #&.*-&8*d! 1-'-*#*11! B$8I$6
(*(-1!'#J'41!%*I%*1*(-!$(#4!$(*!&(3$B'-&$(E!"$%!&(1-'(B*+!-H*!<425)&)2.)?1-)!1*%3&B*!
&1!&(3$T*A!*'BH!-&8*!'!F1*%!&(IF-1!'!(*J!1*'%BH!`F*%4+!JH&#*!-H*!<425)&)2.)#+@)"&.$!
B$8I$(*(-!&1!&(1-'(-&'-*A!$(#4!$(B*!'(A!H'(A#*1!8F#-&I#*!*3*(-1!'(A!$I*%'-&($1E!
\*K'%A&(K! -H*! 1*8'(-&B1! $.! -H*! -H%**! A'-'! .#$J1! #*'3&(K! -H*!<425)&)2.)#+ @)"&.$+

B$8I$(*(-! FI$(! '!<425)&)2.)@)/).')6! *3*(-+! &-! &1! J$%-H! ($-&(K! -H'-! J*! '##$J! -H*!
'11$B&'-&$(! $.! .4261'142#! $I*%'-&$(1E! P! .4261'142! &1! '! f$$#*'(! *UI%*11&$(! $3*%! -H*!
$I*%'-&$(g1! &(IF-!R*EKE+!1&8I#*!*UI%*11&$(1!$3*%!('8*63'#F*!I'&%1! #&T*!&(!@WV+($)&)!
B#'F1*1S!-H'-!B$(1-%'&(1!-H*!*U*BF-&$(!$.!-H*!$I*%'-&$(E!5H*!-H%**!A'-'!.#$J1!&(!"&KF%*!
NR'S! %*I%*1*(-! '! -"&"//)/+ *&"2.$! RB$(YF(B-&3*! 1*8'(-&B1Sd! &.! B$(A&-&$(1!JH*%*! '11$6
B&'-*A!J&-H!*&-H*%!@)"&.$D4')/+!@$4(E@@!$%!@)"&.$B)"'$)&!-H*!.#$J1!J$F#A!%*I%*1*(-!
'! .4261'142"/+ *&"2.$! RA&1YF(B-&3*! 1*8'(-&B1SE! P! 1&8&#'%! #$K&B! 'II#&*1! -$! $I*%'-&$(1!
J&-H!8F#-&I#*!&(B$8&(K!.#$J1!-H'-!B'(!/*!F1*A!-$!8$A*#!X412!B$(1-%FB-1E!?(IF-1!8'4!/*!
4-'142"/+!8*'(&(K! -H'-! -H*4!'%*!($-!8'(A'-$%4!.$%! -H*!*U*BF-&$(!$.! -H*!$I*%'-&$(E! ?.!
$(#4!8'(A'-$%4!&(IF-1!'%*!F1*A+! -H*!1*8'(-&B1! &1!B$(YF(B-&3*d!$-H*%J&1*+! -H*!1*8'(6
-&B1!&1!A&1YF(B-&3*E!!
P!/%'(BHcY$&(!&(1&A*!'!#&1-*(*%!RB$8I$1*A!$.!8F#-&I#*!1*%3&B*!&(3$B'-&$(1S!B$%%*16

I$(A1! -$! '! #=2.$&424,#+ /%'(BHcY$&(E! L*! 1I*'T! &(1-*'A! $.! '(! "#=2.$&424,#+
/%'(BHcY$&(+!JH*(!/%'(BH&(K!'(A! Y$&(&(K!'! .#$J!%*`F&%*1!A*.&(&(K! -J$! #&1-*(*%1+!$(*!
J&-H! -H*!/%'(BH!'(A!$(*!J&-H! -H*! Y$&(E!5H*! #&1-*(*%!J&-H! -H*!/%'(BH! -*%8&('-*1!J&-H!
8F#-&I#*!$I*%'-&$(1d! -H*! #&1-*(*%!J&-H! -H*! Y$&(! %*'B-1! -$!8F#-&I#*! *3*(-1!$%!$I*%'-&$(!
%*1F#-1E!PK'&(+! *3*(-1!8'4! /*! $I-&$('#! $%!8'(A'-$%4E! ?.! $(#4!8'(A'-$%4! *3*(-1! '%*!
F1*A+! -H*! 1*8'(-&B1! &1!B$(YF(B-&3*d! &.!$I-&$('#!*3*(-1!'%*!F1*A+! -H*!1*8'(-&B1! &1!A&16
YF(B-&3*E!5H*%*! &1! ($!fQ]i61-4#*! A*'A!I'-H! *#&8&('-&$(+! '(A! &(! B'1*! $.! B$(YF(B-&3*!
Y$&(1!"?"b!1*8'(-&B1!&1!F1*A!.$%!I'&%&(K!*3*(-1E!5H*!K%'IH6/'1*A!A*.&(&-&$(!$.!$I-&$(6
'#!*3*(-1c$I*%'-&$(1!B$(B&#&'-*1!'!IF/c1F/!'II%$'BH!J&-H!'(!$%BH*1-%'-&$(!'II%$'BHE!
"&('##4+! A'-'! I'11&(K!A$*1!($-! %*`F&%*! '(4!3'%&'/#*1! -$! 1-$%*! &(-*%8*A&'-*! %*1F#-1E!

Q'%'8*-*%! ('8*1! '(A! A'-'! -4I*1! $(#4! %*.*%! -$! -H*! A'-'! '(A! -H*! A'-'! 1-%FB-F%*1! *U6
BH'(K*A!3&'!A'-'!.#$J1E!)'-'!-%'(1.$%8'-&$(1!'%*!A*.&(*A!/4!B$((*B-&(K!-H*!*3*(-!$%!
.**A!I'%'8*-*%1!J&-H!-H*!I'%'8*-*%1!$.!-H*!$I*%'-&$(1!&(3$T*A!'1!'!%*1F#-!$.!-H*!*3*(-!
-%&KK*%&(KE!!G$%*!B$8I#*U!8'II&(K1!%*`F&%*!T($J#*AK*!'/$F-!-H*!*U'B-!A'-'!-4I*!$.!
*'BH!$.! -H*!&(3$#3*A!I'%'8*-*%1E!?(!K*(*%'#+!$F%!'II%$'BH!1FII$%-1!'!3'%&*-4!$.!A'-'!
-%'(1.$%8'-&$(1e!R&S!1&8I#*!I'%'8*-*%!8'II&(K1!'1!A*1B%&/*A!'/$3*d!R&&S!&(#&(*!1B%&I-6

54



N=!!!!!!+4,'6#3(B#36&4C(:%&D#3,(:,6C(+#>6,(!#/#%6(!

!
!

&(K+!*EKE+!.$%!-H*!B$8IF-'-&$(!$.!'KK%*K'-*A!$%!B$8/&(*A!3'#F*1d!R&&&S!%F(-&8*!h,i5!
-%'(1.$%8'-&$(1d!'(A!R&3S!A*A&B'-*A!A'-'!-%'(1.$%8'-&$(!1*%3&B*1!-H'-!-'T*!'!A'-'!.#$J!
&(!&(IF-+!-%'(1.$%8!&-+!'(A!I%$AFB*!'!(*J!A'-'!.#$J!&(!$F-IF-E!5H*!F1*!$.!-H*!A*A&B'-*A!
A'-'!-%'(1.$%8'-&$(!1*%3&B*1!&1!*('/#*A!/4!20ig1!*U-*(1&/&#&-4!8*BH'(&18E!

!
+650'&(J(1"&(-#/"='%(&A6%,'(

R! 9-$4&-&3%635(#3A(L',86/6,3635(7368&'/#4(!,-$,/6%6,3/(
B&8&4,$-&3%(&386',3-&3%?(?(!#&(*!J&-H!-H*!&A*'!$.!-H*!L*/!'1!&(-*K%'-&$(!I#'-.$%8+!
-H*!8'1HP%-! *A&-$%! %F(1! &(1&A*! -H*! B#&*(-! /%$J1*%d! ($! &(1-'##'-&$(! $.! 1$.-J'%*! &1! %*6
`F&%*AE!5H*! 1B%**(1H$-! &(! "&KF%*! ;! 1H$J1! H$J! -H*! F(&3*%1'#! B$8I$1&-&$(!$.!"&KF%*!
NR'S!B'(!/*!8$A*#*A!&(!-H*!*A&-$%E!5H*!8$A*#&(K!.$%8'#&18!$.!-H*!*A&-$%!1#&KH-#4!A&.6
.*%1!.%$8!-H*!$(*!&(-%$AFB*A!*'%#&*%+!'1!&(!-H*!*A&-$%!J*!B'(!'#1$!#*3*%'K*!&(-*%'B-&3*!
I%$K%'8! .*'-F%*1! -$! *(H'(B*! F1*%! *UI*%&*(B*! R*EKE+! F1*%1! B'(! &(-*%'B-&3*#4! BH$$1*!
*3*(-1!'(A!$I*%'-&$(1! .%$8!%*1I*B-&3*!A%$I6A$J(!I'(*#1SE!fF-! -H*!*UI%*11&3*!I$J*%!
$.!-H*!*A&-$%!&1!-H*!1'8*!'1!A&1BF11*A!'/$3*E!
5H*!/1#'+45+"0"1/"*/)+.4!-42)2'#!$(!-H*!#*.-!H'(A!1&A*!$.!-H*!1B%**(1H$-!1H$J1!-H*!

B$8I$(*(-1!'(A!1*%3&B*1!-H*!F1*%!H'1!'BB*11!-$!&(!-H*!$(#&(*!%*K&1-%4!R*EKE+!-H*!<425)7
&)2.)#+ @)"&.$! $%! -H*!AA<+B)"'$)&+ B$8I$(*(-SE! 5H*!!46)/123+ ."20"#! '-! -H*! %&KH-!
H'(A! 1&A*! H$1-1! -H*! B$8I$1&-&$(! #$K&B! %*I%*1*(-*A! /4!IJ+ .4!-42)2'#! R-H*! /$U*1S+!
#)&01.)+.4!-42)2'#+R-H*!B&%B#*1S+!'(A!/1#')2)&#!R-H*!B$((*B-$%1SE!P!B#&BT!$(!'!#&1-*(*%!
'##$J1!-H*!F1*%!-$!8'I!$F-IF-1!-$!&(IF-1!'(A!-$!1I*B&.4!$I-&$('#!&(IF-!I'%'8*-*%1E!!

"#A4#$&$/!D'#?)&' "#A4#)5/5#$!(+$B+)

2B&$/)!+$1!
#4&'+/5#$)

EF!(#A4#$&$/*&'B5(&!(#A4#$&$/ G+/+!%7#?!(#$$&(/#'

55



+',-(.#/"0$(1&2"3,4,56&/(%,(7368&'/#4(93%&5'#%6,3!!!!!!N9!

!

?(! -H*! #$J*%! I'%-! $.! -H*! 1B%**(1H$-+! -'/1! '##$J!F1*%1! -$! 1J&-BH! /*-J**(! A&..*%*(-!
3&*J1!$(!-H*!1'8*!B$8I$1&-&$(e!3&1F'#!8$A*#!31E!-*U-F'#!20i+!&(-*%'B-&3*!#'4$F-!31E!
-*U-F'#! n5Gi+! '(A! 'II#&B'-&$(! I%*3&*JE! 5H*! #'4$F-! $.! '(! 'II#&B'-&$(! &1! /'1*A! $(!
1-'(A'%A!n5Gi!-*8I#'-*1d!J*!I%$3&A*!1$8*!A*.'F#-!#'4$F-1+!$J(!-*8I#'-*1!B'(!*'1&6
#4!/4!FI#$'A*AE!i'4&(K!$F-!'(!'II#&B'-&$(!1&8I#4!8*'(1!I#'B&(K!'##!2?!B$8I$(*(-1!$.!
-H*!B$8I$1&-&$(! &(-$!I#'B*H$#A*%1!$.! -H*! -*8I#'-*! R'K'&(+!/4!A%'KK&(K!'(A!A%$II&(K!
B$8I$(*(-1SE!5H*!I%*3&*J!I'(*#!'##$J1! -H*!F1*%! -$! %F(! -H*!B$8I$1&-&$(!'(A! -*1-! &-1!
B$%%*B-(*11E!0$8I$1&-&$(1!B'(!/*!1-$%*A!$(!-H*!8'1HP%-!1*%3*%E!
5H*! &8I#*8*(-'-&$(! $.! -H*! *A&-$%! &1! /'1*A! $(! l'3',B%&I-! '(A! -H*! bI*(6YP0bf!

)%'JN)!#&/%'%4!RH--IeccA%'JNAE$%KcA%'JNAcS! .$%! -H*!K%'IH&B'#!B$8I$1&-&$(! #$K&B!'(A!
PlPh!.$%! -H*!B$88F(&B'-&$(!/*-J**(!B#&*(-! '(A! 1*%3*%E!5H*! %*K&1-%4!$(! -H*! 1*%3*%!
1&A*+!F1*A!-$!#$'A!B$8I$(*(-1!'(A!1*%3&B*1!'(A!-$!1-$%*!B$8I$1&-&$(1+!&1!&8I#*8*(-*A!
'1!'!\],5.F#!J*/!1*%3&B*!&(!l'3'E!5H*!I#'-.$%8!%F(1!$(!PI'BH*!5$8B'-E!

!

+650'&(K(7368&'/#4(&S&20%6,3(D'#-&G,'M(

TS&20%6,3(&386',3-&3%?!?(!A*3*#$I&(K!'!8'1HP%-!*U*BF-&$(!*(3&%$(8*(-+!-H*!&11F*1!
-H'-! (**A! -$! /*! 1$#3*A! &(B#FA*! R&S! -H*! 1*'8#*11! &(-*K%'-&$(! $.! 1-'-*.F#! '(A! 1-'-*#*11!
B$8I$(*(-1!'(A!$.!2?!'(A!1*%3&B*!B$8I$(*(-1+!R&&S!-H*!B$(B&#&'-&$(!$.!1H$%-6#&3*A!'(A!
#$(K6#'1-&(K!/F1&(*11!I%$B*11! #$K&B1! &(!$(*!H$8$K*(*$F1!*(3&%$(8*(-+! R&&&S! -H*!B$(6
1&1-*(-!A&1-%&/F-&$(!$.!'B-F'#!*U*BF-&$(!-'1T1!$3*%!B#&*(-!'(A!1*%3*%+!'(A!R&3S!-H*!-%'(16
I'%*(-!H'(A#&(K!$.!8F#-&I#*!B$88F(&B'-&$(!I%$-$B$#1E!)*-'&#1!B'(!/*!.$F(A!&(!Z9m[E(
"&KF%*!:!B$(-*U-F'#&M*1!-H*!I%*3&$F1!B$(1&A*%'-&$(1!&(!-H*!.F(B-&$('#!'%BH&-*B-F%*!$.!

$F%! *U*BF-&$(! *(3&%$(8*(-E!5H*! *(3&%$(8*(-! &1! A&3&A*A! &(-$! '! B#&*(-6! '(A! '! 1*%3*%6
1&A*!I'%-+!JH&BH! *UBH'(K*! *3*(-1!3&'! '! 14(BH%$(&M'-&$(! BH'((*#E!b(! -H*! B#&*(-! 1&A*+!
-H*!F1*%!&(-*%'B-1!J&-H!-H*!'II#&B'-&$(!3&'!&-1!2?+!&E*E+!&-1!2?!B$8I$(*(-1+!'(A!-H*%*/4!
K*(*%'-*1!*3*(-1!-H'-!'%*!&(-*%B*I-*A!/4!-H*!B#&*(-61&A*!*3*(-!/F1E!5H*!/F1!&8I#*8*(-1!
-H*! #&1-*(*%1! -H'-! '%*! *U*BF-*A! $(! -H*! B#&*(-! 1&A*! '(A! 8'('K*! -H*! A'-'! '(A! ,bPQ6
n55Q! 'A'I-*%1E! 5H*! A'-'! 'A'I-*%! I*%.$%81! A'-'! -%'(1.$%8'-&$(1+! -H*! ,bPQ6n55Q!
'A'I-*%1!'##$J! -H*!*(3&%$(8*(-! -$!B$88F(&B'-*!J&-H!*U-*%('#!1*%3&B*1E!,-'-*.F#!1*%6
3&B*!&(1-'(B*1!8&KH-!'#1$!F1*!-H*!,bPQ6n55Q!'A'I-*%1!.$%!B$88F(&B'-&$(!IF%I$1*1E!

.&D!@)&'!
5$/&'%+(&

EF!(#A4#$&$/!
5$)/+$(&)

EF!(#A4#$&$/!
5$)/+$(&)

EF!(#A4#$&$/!
5$)/+$(&

8'#(&))!&$:5$&

H#/5%5(+/5#$!
,+$17&'

I#$:J'@$$5$:!
4'#(&))&)

23/&'$+7!
)&'B5(&)

E)&'

G+/+!
+1+4/&'

*CK8!
+1+4/&'

6LL8!
+1+4/&'

EF!(#A4#$&$/!
5$)/+$(&)

EF!(#A4#$&$/!
5$)/+$(&)

*/+/&%@7!)&'B5(&!
5$)/+$(&)

"75&$/J)51&!D@) *&'B&'J)51&!D@)

G+/+!
+1+4/&'

6LMI!
7+<#@/ MGI E"I

"75&$/ *&'B&'

6=>?@#
ABB?

6=>?@#
ABB?

*CK8!
+1+4/&'

6LL8!
+1+4/&'

56



NN!!!!!!+4,'6#3(B#36&4C(:%&D#3,(:,6C(+#>6,(!#/#%6(!

!
!

5H*!1*%3*%61&A*!I'%-!&1!1-%FB-F%*A!1&8&#'%#4+!J&-H!-H*!A&..*%*(B*!-H'-!-H*!H'(A#&(K!$.!
*U-*%('#! ($-&.&B'-&$(1! &1! A$(*! 3&'! A*A&B'-*A! ($-&.&B'-&$(! H'(A#*%1+! '(A! #$(K6#'1-&(K!
I%$B*11! #$K&B1! -H'-! B'(!/*! &1$#'-*A! .%$8! -H*! B#&*(-61&A*! #&1-*(*%1! '(A! *U*BF-*A! &(A*6
I*(A*(-#4!B'(!/*!A*#*K'-*A!-$!'!B$(3*(-&$('#!I%$B*11!*(K&(*!R*EKE+!'!fQ]i!*(K&(*SE!!
5H*!JH$#*!.%'8*J$%T+!&E*E+!2?!B$8I$(*(-1+!#&1-*(*%1+!A'-'!'A'I-*%1+!,bPQ6n55Q!

'A'I-*%1+! '(A!($-&.&B'-&$(!H'(A#*%1! '%*! &(1-'(-&'-*A!JH*(!I'%1&(K! -H*!20i!B$8I$1&6
-&$(!'-!'II#&B'-&$(!1-'%-FIE!5H*!&(-*%('#!B$(.&KF%'-&$(!$.!H$J!-$!H'(A#*!-H*!&(A&3&AF'#!
B$8I$(*(-1!&1!'BH&*3*A!/4!I'%1&(K!*'BH!B$8I$(*(-g1!G)i!A*1B%&I-$%!R*EKE+!-$!F(A*%6
1-'(A!JH*-H*%!'!B$8I$(*(-!&1!'!2?!$%!'!1*%3&B*!B$8I$(*(-SE!5H*!B$8I$1&-*!#'4$F-!$.!
-H*!'II#&B'-&$(! &1! &(1-'(-&'-*A! .%$8! -H*!n5Gi! -*8I#'-*! .&##*A!J&-H! -H*! %*(A*%&(K!$.!
-H*!'II#&B'-&$(g1!2?!B$8I$(*(-1E!
5H*! B#&*(-61&A*! *(3&%$(8*(-! &1! '(! *3$#F-&$(! $.! -H*! '#%*'A4! 1FBB*11.F##4! &8I#*6

8*(-*A!'(A!-*1-*A!2?!&(-*K%'-&$(!.%'8*J$%T!$.!-H*!G&UFI!I%$Y*B-!Z;[+!-H'-!J'1!H$J6
*3*%! #&8&-*A! -$!2?!B$8I$(*(-1!$(#4E!5H*!*(3&%$(8*(-!B$8*1!J&-H!'(!PlPh!&8I#*6
8*(-'-&$(!$.!-H*!20i!'(A!G)i!I'%1*%1!'(A!&1!&(-*K%'-*A!J&-H!-H*!8*(-&$(*A!$(#&(*!
%*K&1-%4!1-$%&(K!B$8I$(*(-1!'(A!B$8I$1&-&$(1E!5H*!1*%3*%61&A*!*(3&%$(8*(-!H'1!1FB6
B*11.F##4! I'11*A! '! I%$-$-4I*! &8I#*8*(-'-&$(! R-H*! *..$%-! $.! 1*3*%'#! G'1-*%! -H*1*1S!
/'1*A!$(!l'3'!'(A!-H*!5$8B'-!J*/!1*%3*%E!5H*!&(-*K%'-&$(!J&-H!-H*!*U-*%('#!I%$B*11!
*(K&(*!R*EKE+!PB-&3*6fQ]iS!'(A!$.!-H*!B#&*(-6!'(A!1*%3*%61&A*!I'%-1!&1!$(K$&(KE!!
P!.&%1-!B$(B#F1&$(!-H'-!B'(!/*!A%'J(!.%$8!$F%!*UI*%&*(B*1!&1!-H'-!I*%.$%8'(B*!A$*1!

($-!I#'4!'!8'Y$%!%$#*!$(!-H*!B#&*(-!1&A*E!5H&1!&1!/*B'F1*!&(!'!K&3*(!B$8I$1&-&$(+!$(#4!'!
#&8&-*A!(F8/*%!$.!B$8I$(*(-1!%F(!$(!-H*!B#&*(-+!'(A!-H*!B#&*(-!(**A1!-$!H'(A#*!$(#4!
$(*!&(1-'(B*!$.!-H*!'II#&B'-&$(E!b(!-H*!1*%3*%61&A*+!I*%.$%8'(B*!/*B$8*1!'(!&11F*!&.!
8F#-&I#*! B$8I$1&-*! 'II#&B'-&$(1! J&-H! '! H&KH! (F8/*%! $.! #$(K6#'1-&(K! I%$B*11*1! '%*!
%F((&(K!&(!-H*!1'8*!J*/!1*%3*%E!P#-H$FKH!J*!A&A!($-!%F(!1B'#'/&#&-4!*UI*%&8*(-1!4*-+!
-H*!%*6F1*!$.!*U&1-&(K!'(A!'..&%8*A!-*BH($#$K&*1+!1&8I#*!1*%3#*-1!.$%!($-&.&B'-&$(!H'(6
A#*%1+!'(A!fQ]i!*(K&(*1!.$%!I%$B*11!#$K&B1!J&##!I%$3&A*!.$%!-H*!(*B*11'%4!1B'#'/&#&-4E!

U! !,3240/6,3(
?(!-H&1!BH'I-*%+!J*!H'3*!B$(1&A*%*A!'!($3*#!'II%$'BH!-$!2?!'(A!1*%3&B*!B$8I$1&-&$(!
$(!-H*!L*/+!&E*E+!,210)&#"/+.4!-4#1'142E!5H&1!B$8I$1&-&$(!'II%$'BH!&1!-H*!.$F(A'-&$(!
$.! -H*!8'1HP%-!I%$Y*B-+!JH&BH!'&81!'-!*('/#&(K!*3*(!($(6I%$.*11&$('#!I%$K%'88*%1!
R$%!L*/!F1*%1S!-$!I*%.$%8!B$8I#*U!2?+!'II#&B'-&$(+!'(A!A'-'!&(-*K%'-&$(!-'1T1!$(#&(*!
'(A!&(!'!H$1-*A!.'1H&$(!R&(-*K%'-&$(!'1!'!1*%3&B*SE!PBB*11&/&#&-4!'(A!*'1*!$.!F1*!$.!-H*!
B$8I$1&-&$(! &(1-%F8*(-1! &1! .'B&#&-'-*A! /4! -H*! 1&8I#*! B$8I$1&-&$(! #$K&B! '(A! &8I#*6
8*(-*A!/4! -H*! &(-F&-&3*!K%'IH&B'#! *A&-$%! '(A! -H*!H$1-*A!*U*BF-&$(!*(3&%$(8*(-E!5H*!
I#'-.$%8! B$8*1! J&-H! '(! $(#&(*! %*K&1-%4! .$%! B$8I$(*(-1! '(A! B$8I$1&-&$(1! '(A! J&##!
I%$3&A*!-$$#1!.$%!8$(&-$%&(K!'(A!'('#41&1!$.!H$1-*A!B$8I$1&-&$(1E!!
5H%$FKH$F-!-H*!BH'I-*%+!J*!H'3*!B$(1-'(-#4!T*I-!'(!*4*!$(!-H*!B$((*B-&$(!/*-J**(!

F(&3*%1'#!B$8I$1&-&$(!'(A!#)"&.$+.4!-,'123E!5H*!0$(.*%*(B*!5%&I!Q#'((*%! -$$#! &86
I#*8*(-*A!F1&(K!-H*!8'1HP%-!&(1-%F8*(-1!'(A!#'(KF'K*1!1H$J1!-H'-!&-!&1!&(A**A!I$11&6
/#*!-$!A*3*#$I!'!B$8I$(*(-6/'1*A!'II#&B'-&$(!-H'-!I%$3&A*1!'(1J*%1!-$!-H*!B$(.*%*(B*!
1*'%BH!I%$/#*8+!I%$3&A*A! -H'-! -H*!(*B*11'%4!/'1&B!B$8I$(*(-1!'%*! %*'A&#4!'3'&#'/#*E!
5H*!'II#&B'-&$(g1! &(-*K%'-&$(! #$K&B! &1!'BH&*3*A!/4!8*'(1!$.!'(! &8I*%'-&3*!A%'K6'(A6
A%$I!B$8I$1&-&$(!I'%'A&K8!-H'-!'##$J1!-H*!F1*%1!$.!-H*!8'1HP%-!I#'-.$%8!-$!B$8I$1*!
'II#&B'-&$(1!'BB$%A&(K! -$! -H*&%!$J(!T($J#*AK*!'/$F-!JH&BH!B$8I$(*(-1!'%*!(**A*A!

57



+',-(.#/"0$(1&2"3,4,56&/(%,(7368&'/#4(93%&5'#%6,3!!!!!!N;!

!

'(A! '/$F-! H$J! -$!K#F*! -H*8! -$K*-H*%E!5H*%*! *U&1-!8'(4! '#-*%('-&3*! 1$#F-&$(1! -$! -H*!
&8I#*8*(-'-&$(!$.! -H*!1'8*!'II#&B'-&$(d!4*-+!F(#&T*!&(!Z9<[+!JH*%*!'(!$I-&8'#!`F*%4!
I#'(!&1!&A*(-&.&*A!'F-$8'-&B'##4+!&(!8'1HP%-!&-!&1!FI!-$!-H*!A*3*#$I*%!-$!A*B&A*!JH&BH!
1$#F-&$(!.&-1!/*1-!H&1cH*%!&(A&3&AF'#!(**A1E!!
?(!-*%81!$.!$F-IF-!$.!-H*!B$8I$1&-&$(+!&-!&1!&(-*%*1-&(K!-$!($-*!-H'-!JH&#*!&(!-H*!-%'6

A&-&$('#!1*'%BH!1B*('%&$! -H*!$F-IF-! &1!'!1*-!$.! %*1F#-! -FI#*1+! -H*!$F-IF-! &(!8'1HP%-! &1!
%'-H*%!%*I%*1*(-*A!/4!-H*!JH$#*!'II#&B'-&$(+!&E*E+!-H*!&(A&3&AF'#!B$8I$(*(-1!'(A!-H*&%!
&(-*%B$((*B-&$(E!V&3*(!-H*!1*'%BH!`F*%4!&(-%$AFB*A!&(!-H*!&(-%$AFB-&$(!$.!-H&1!BH'I-*%+!
&-1! '(1J*%! &1! -H*%*.$%*! %*I%*1*(-*A! /4! -H*! 1B%**(1H$-! &(! "&KF%*! 9+! JH&BH! ('-F%'##4!
B$8/&(*1!1&8I#*!1*'%BH!$F-IF-1!J&-H!1$IH&1-&B'-*A!2?!B$8I$(*(-1E!!

V! E&D&'&32&/(
Z9[! lE!WF+!*-!'#E+!2(A*%1-'(A&(K!G'1HFI!)*3*#$I8*(-!'(A!&-1!)&..*%*(B*1!J&-H!5%'A&-&$('#!

?(-*K%'-&$(+!J2')&2)'+<4!-,'123+!3$#E!9N+!($E!>+!N==<+!IIE!::6>NE!
ZN[! bP,?,E!L*/!,*%3&B*1!.$%!\*8$-*!Q$%-#*-1+!PFKF1-!N==;E!Zb(#&(*[E!JJJE$'1&16

$I*(E$%KcB$88&--**1cJ1%I!
Z;[! lE!WF+!*-!'#E+!P!"%'8*J$%T!.$%!\'I&A!?(-*K%'-&$(!$.!Q%*1*(-'-&$(!0$8I$(*(-1+!BBBYZ[+!

N==k+!IIE!mN;6m;NE!
Z:[! VE!P#$(1$+!"E!0'1'-&+!nE!pF($+!7E!G'BH&%'YF+!B)*+@)&01.)#\+<42.)-'#]+%&.$1').',&)#+"26+

%--/1."'142#E!,I%&(K*%+!N==;E!
Z>[! ,E!)F1-A'%+!LE!,BH%*&(*%+!P!1F%3*4!$(!J*/!1*%3&B*1!B$8I$1&-&$(+!J2'G+^G+B)*+_&16+@)&7

01.)#+!3$#E!9+!($E!9+!IIE!96;=+!N==>E!
Zj[! bP,?,E!L*/!,*%3&B*1!fF1&(*11!Q%$B*11!]U*BF-&$(!i'(KF'K*!7*%1&$(!NE=+!PI%&#!N==kE!

Zb(#&(*[E!H--IeccA$B1E$'1&16$I*(E$%KcJ1/I*#cNE=cb,cJ1/I*#63NE=6b,EH-8#!
Zk[! 0E!Q'F-'11$+!fQ]i!.$%!\],5+!A?PYZ:+!G&#'($+!N==<E!
Z<[! 5E!3'(!i*11*(+!*-!'#E!P!G'('K*8*(-!"%'8*J$%T!.$%!L,6fQ]i+!C<4B@YZ:+!)F/#&(+!

N==<E!
Zm[! "E!0F%/*%'+!*-!'#E!f&-*e!L$%T.#$J!0$8I$1&-&$(!.$%!-H*!L*/+!J<@R<YZ[+!7&*(('+!N==k+!IIE!

m:69=jE!
Z9=[! ]E!GE!G'U&8&#&*(+!*-!'#E!P(!b(#&(*!Q#'-.$%8!.$%!L*/!PQ?1!'(A!,*%3&B*!G'1HFI1+!J2')&7

2)'+<4!-,'123+!3$#E!9N+!($E!>+!IIE!;N6:;+!,*IE!N==<E!
Z99[! )E!f%'K'+!*-!'#E!bI-&8&M'-&$(!$.!GF#-&6)$8'&(!rF*%&*1!$(!-H*!L*/+!&(!`VKAYZ:+!PFBT6

#'(A+!N==<+!IIE!>jN6>k;E!
Z9N[! "E!)'(&*#+!*-!'#E!2(A*%1-'(A&(K!2?!?(-*K%'-&$(!6!P!,F%3*4!$.!Q%$/#*81+!5*BH($#$K&*1+!'(A!

bII$%-F(&-&*1+!JCCC+J2')&2)'+<4!-,'123+!IIE!>m6jj+!G'4!N==kE!
Z9;[! G&B%$1$.-!0$%I$%'-&$(E!,8'%-!0#&*(-!6!0$8I$1&-*!2?!PII#&B'-&$(!f#$BT+!)*B*8/*%!N==>E!

Zb(#&(*[E!H--Iecc81A(E8&B%$1$.-EB$8c*(6F1c#&/%'%4c'':<=:>=E'1IU!
Z9:[! 5H*!]B#&I1*!"$F(A'-&$(E!\&BH!0#&*(-!Q#'-.$%8+!bB-$/*%!N==<E!Zb(#&(*[E!

H--IeccJ&T&E*B#&I1*E$%Kc&(A*UEIHIc\0Q!
Z9>[! ,F(!G&B%$141-*81E!l,\6===9j<!Q$%-#*-!,I*B&.&B'-&$(+!bB-$/*%!N==;E!Zb(#&(*[E!

H--IeccYBIE$%Kc'/$F-l'3'cB$88F(&-4I%$B*11c.&('#cY1%9j<c!
Z9j[! \E!PB*%/&1+!*-!'#E!L*/!PII#&B'-&$(1!)*1&K(!'(A!)*3*#$I8*(-!J&-H!L*/Gi!'(A!L*/\'6

-&$!>E=E!>RRV@!R:jS!N==<+!IIE!;mN6:99E!
Z9k[! lE!Vs8*M+!*-!'#E!5$$#!,FII$%-!.$%!G$A*#6)%&3*(!)*3*#$I8*(-!$.!L*/!PII#&B'-&$(1+!

BJ@CaZb+!IIE!kN96k;=E!
Z9<[! )E!f%'K'+!,E!0*%&+!"E!)'(&*#+!)E!G'%-&(*(KH&E!!bI-&8&M'-&$(!$.!GF#-&6)$8'&(!rF*%&*1!$(!

-H*!L*/E!!!`VKAYZ:+!PFKF1-!N==<+!PFBT#'(A+!O*J!t*'#'(A+!Q'K*1!>jN6>k;E!
Z9m[! "E!)'(&*#+!"E!0'1'-&+!fE!f*('-'##'H+!GE60E!,H'(E!n$1-*A!2(&3*%1'#!0$8I$1&-&$(e!G$A*#1+!

i'(KF'K*1!'(A!?(.%'1-%FB-F%*!&(!8'1HP%-E!!CEYZc+!O$3*8/*%!N==mE!

58



Distributed Orchestration of User Interfaces

Florian Daniela,1, Stefano Soia, Stefano Tranquillinia, Fabio Casatia, Chang Hengb, Li Yanb

aDepartment of Information Engineering and Computer Science, University of Trento
Via Sommarive 5, 38123 Povo (TN), Italy

bHuawei Technologies
Shenzhen, P.R. China

Abstract

Workflow management systems focus on the coordination of people and work items, service composition approaches
on the coordination of service invocations, and, recently, web mashups have started focusing on the integration and
coordination also of pieces of user interfaces (UIs), e.g., a Google map, inside simple web pages. While these three
approaches have evolved in a rather isolated fashion – although they can be seen as evolution of the componentization
and coordination idea from people to services to UIs – in this paper we describe a component-based development
paradigm that conciliates the core strengths of these three approaches inside a single model and language. We call
this new paradigm distributed UI orchestration, so as to reflect the mashup-like and process-based nature of our target
applications. In order to aid developers in implementing UI orchestrations, we equip the described model and language
with suitable design, deployment, and runtime instruments, covering the whole life cycle of distributed UI orchestrations.

Keywords: UI orchestration, Distributed UIs, UI orchestration patterns, BPEL4UI, Mashups, UI components,
MarcoFlow

1. Introduction

Workflow management systems support office automa-
tion processes, including the automatic generation of form-
based user interfaces (UIs) for executing the human tasks
in a process. Service orchestrations and related languages
focus instead on integration at the application level. As
such, this technology excels in the reuse of components
and services but does not facilitate the development of UI
front-ends for supporting human tasks and complex user
interaction needs, which is one of the most time consuming
tasks in software development [1].

Only recently, web mashups [2] have turned lessons
learned from data and application integration into
lightweight, simple composition approaches featuring a sig-
nificant innovation: integration at the UI level. Besides
web services or data feeds, mashups reuse pieces of UI (e.g.,
content extracted from web pages or JavaScript UI wid-
gets) and integrate them into a new web page. Mashups,
therefore, manifest the need for reuse in UI development
and suitable UI component technologies. Interestingly,
however, unlike what happened for services, this need has
not yet resulted in accepted component-based develop-
ment models and practices.

Email addresses: daniel@disi.unitn.it (Florian Daniel),
soi@disi.unitn.it (Stefano Soi), tranquillini@disi.unitn.it
(Stefano Tranquillini), casati@disi.unitn.it (Fabio Casati),
changheng@huawei.com (Chang Heng), liyanmr@huawei.com (Li
Yan)

1Corresponding author. Tel. +39 0461 283780, Fax +39 0461
282093

This paper tackles the development of applications that
require service composition/process automation logic but
that also include human tasks, where humans interact with
the system via possibly complex and sophisticated UIs that
are tailored to help them in performing the specific job
they want to carry out. In other words, this work tar-
gets the development of mashup-like applications that
require process support , including applications that re-
quire distributed mashups coordinated in real time, and
provides design and tool support for professional develop-
ers, yielding an original composition paradigm based on
web-based UI components and web services.

This class of applications manifests a common need that
today is typically fulfilled by developing UIs in ad hoc ways
and using and manually configuring a process engine in the
back-end for process automation. As an example, consider
the scenario in Figure 1: The figure shows a home assis-
tance application for the Province of Trento whose devel-
opment we want to aid in one of our projects. A patient
can ask for the visit of a home assistant (e.g., a paramedic)
by calling (via phone) an operator of the assistance service.
Upon request, the operator inputs the respective details
and inspects the patient’s data and personal health his-
tory in order to provide the assistant with the necessary
instructions (steps 1-5). There is always one assistant on
duty. The home assistant views the description, visits the
patient, and files a report about the provided service (steps
6-7). The report is processed by the back-end system and
archived (steps 8-9). If no further exams are needed, the
process ends (steps 10-11). If exams are instead needed,

Preprint submitted to Information Systems February 14, 2013

Appendix C

59



Patient DB service

yes

no

Further exams 
needed?

Report DB 
service

Archive report

Get 
patients

1
3

4

5

6

7

8

9

12

13

14

10

11

2

Send info to 
book exam

Register 
booking

Exam DB 
service15 11

Figure 1: A home assistance application integrating both web services and UI components into a process-like orchestration logic.

the operator books the exam in the local hospital ask-
ing confirmation to the patient via phone (steps 12-13).
Upon confirmation of the exam booking, the system also
archives the booking, which terminates the responsibility
of the home assistance service (steps 14-15).

The application in the scenario includes, besides the pro-
cess logic, two mashup-like, web-based control consoles for
the operator and the assistant that are themselves part
of the orchestration, need to interact with the process,
and are affected by its progress. In addition, the UIs are
themselves component-based and created by reusing and
combining existing UI components that are instantiated
in the users’ web browsers (both web pages in Figure 1
are composed of four components). The two applications,
once instantiated, allow the operator and assistant to man-
age an individual request for assistance; each new request
requires starting a new instance of the application.

In summary, the scenario requires the coordination of
the individual actors in the process and the development
of the necessary distributed user interface and service or-
chestration logic. Doing so requires addressing a set of
challenges and contributions:

1. Understanding how to componentize UIs and compose
them into web applications;

2. Defining a logic that is able to orchestrate both UIs
and web services ;

3. Providing a language and tool for implementing dis-
tributed UI compositions; and

4. Developing a runtime environment that is able to ex-
ecute distributed UI and service compositions.

Implementing the process of the scenario is a non-trivial
composition problem that involves multiple development
aspects that are only partly addressed by the current state
of the art (Section 2). In Section 3, we identify the nec-
essary requirements and outline the approach we follow in
this paper, including the architecture of our MarcoFlow
platform that will serve as guide throughout the rest of
the paper. In Section 4, we then introduce the concept
of HTML/JavaScript UI component and show how defin-
ing a new type of binding allows us to leverage the stan-
dard WSDL [3] language to abstractly describe them. We
then build on existing composition languages (in particu-
lar WS-BPEL [4]) to introduce the notions of UI compo-
nents, pages, and actors into service compositions (Section
6) and explain how such extension can be used to model UI
orchestrations (Section 6). In Section 7 we discuss the dif-
ferent types of UI orchestrations that can be implemented.
In Section 8, we show how we extended the Eclipse BPEL
editor to support design, and we describe how to run UI or-
chestrations. Finally, in Section 9 we report on the lessons
we learned in the development and use of MarcoFlow and
then conclude the paper in Section 10.

60



2. State of the Art in Orchestrating Services, Peo-
ple and UIs

In most service orchestration approaches, such as
BPEL [4], there is no support for UI design. Many vari-
ations of BPEL have been developed, e.g., aiming at the
invocation of REST services [5] or at exposing BPEL pro-
cesses as REST services [6]. IBM’s Sharable Code plat-
form [7] follows a slightly different strategy in the com-
position of REST and SOAP services and also allows the
integration of user interfaces for the Web; UIs are how-
ever not provided as components but as ad-hoc Ruby on
Rails HTML templates filled at runtime with dynamically
generated content.

BPEL4People [8] is an extension of BPEL that intro-
duces the concept of people task as first-class citizen into
the orchestration of web services. The extension is tightly
coupled with the WS-HumanTask [9] specification, which
focuses on the definition of human tasks, including their
properties, behavior and operations used to manipulate
them. BPEL4People supports people activities in form of
inline tasks (defined in BPEL4People) or standalone hu-
man tasks accessible as web services. In order to control
the life cycle of service-enabled human tasks in an interop-
erable manner, WS-HumanTask also comes with a suitable
coordination protocol for human tasks, which is supported
by BPEL4People. The two specifications focus on the co-
ordination logic only and do not support the design of the
UIs for task execution.

The systematic development of web interfaces and
applications has typically been addressed by the web en-
gineering community by means of model-driven web de-
sign approaches. Among the most notable and advanced
model-driven web engineering tools we find, for instance,
WebRatio [10] and VisualWade [11]. The former is based
on a web-specific visual modeling language (WebML), the
latter on an object-oriented modeling notation (OO-H).
Similar, but less advanced, modeling tools are also avail-
able for web modeling languages/methods like Hera [12],
OOHDM [13], and UWE [14]. These tools provide expert
web programmers with modeling abstractions and auto-
mated code generation capabilities for complex web appli-
cations based on a hyperlink-based navigation paradigm.
WebML has also been extended toward web services [15]
and process-based web applications [16]; reuse is however
limited to web services and UIs are generated out of dy-
namically filled HTML templates.

A first approach to component-based UI develop-
ment is represented by portals and portlets [17], which ex-
plicitly distinguish between UI components (the portlets)
and composite applications (the portals). Portlets are
full-fledged, pluggable Web application components that
generate document markup fragments (e.g., in (X)HTML)
that can however only be reached through the URL of the
portal page. A portal server typically allows users to cus-
tomize composite pages (e.g., to rearrange or show/hide
portlets) and provides single sign-on and role-based per-

sonalization, but there is no possibility to specify process
flows or web service interactions; also the new WSRP [18]
specification only provides support for accessing remote
portlets as web services.

Finally, the web mashup [2] community has produced
a set of so-called mashup tools, which aim at assisting
mashup development by means of easy-to-use graphical
user interfaces targeted also at non-professional program-
mers. For instance, Yahoo! Pipes (http://pipes.yahoo.
com) focuses on data integration via RSS or Atom feeds via
a data-flow composition language; UI integration is not
supported. Microsoft Popfly (http://www.popfly.ms;
discontinued since August 2009) provided a graphical user
interface for the composition of both data access appli-
cations and UI components; service orchestration was
not supported. JackBe Presto (http://www.jackbe.com)
adopts a Pipes-like approach for data mashups and allows
a portal-like aggregation of UI widgets (so-called mash-
lets) visualizing the output of such mashups; there is no
synchronization of UI widgets or process logic. IBM QED-
Wiki (http://services.alphaworks.ibm.com/qedwiki)
provides a wiki-based (collaborative) mechanism to glue
together JavaScript or PHP-based widgets; service com-
position is not supported. Intel Mash Maker (http:
//mashmaker.intel.com) features a browser plug-in that
interprets annotations inside web pages supporting the
personalization of web pages with UI widgets; service com-
position is outside the scope of Mash Maker.

In the mashArt [19] project, we worked on a so-called
universal integration approach for UI components and
data and application logic services. MashArt comes with a
simple editor and a lightweight runtime environment run-
ning in the client browser and targets skilled web users.
MashArt aims at simplicity: orchestration of distributed
(i.e., multi-browser) applications and complex features like
transactions or exception handling are outside its scope.
The CRUISe project [20] has similarities with mashArt,
especially regarding the componentization of UIs. Yet,
is does not support the seamless integration of UI com-
ponents with service orchestration, i.e., there is no sup-
port for complex process logic. CRUISe rather focuses
on adaptivity and context-awareness. Finally, the Serv-
Face project [21] aims to support even unskilled web users
in composing web services that come with an annotated
WSDL description. Annotations are used to automatically
generate form-like interfaces for the services, which can be
placed onto one or more web pages and used to graphi-
cally specify data flows among the form fields. The result
is a simple, user-driven web service orchestration. None
of these projects, however, supports the coordination of
multiple different actors inside a same process.

As this analysis shows, existing development approaches
for web-based applications lack an integrated support for
service orchestration, component-based UI development,
and coordination of users, three ingredients that instead
are necessary to fully implement applications like the one
described in our example scenario.

61



3. Distributed User Interface Orchestration: Def-
initions, Requirements, and Architecture

If we analyze the home assistance scenario, we see
that the envisioned application (as a whole) is highly dis-
tributed over the Web: The UIs for the actors participating
in the application are composed of UI components, which
can be components developed in-house (like the Patient

Profile component) or sourced from the Web (like the
Map component); service orchestrations are based on web
services. The UI exposes the state of the application and
allows users to interact with it and to enact service calls.
The two applications for the operator and the assistant
are instantiated in different web browsers, contributing to
the distribution of the overall UI and raising the need for
synchronization.

The key idea to approach the coordination of (i) UI com-
ponents inside web pages, (ii) web services providing data
or application logic, and (iii) individual pages, as well as
the people interacting with them, is to split the coordina-
tion problem into two layers: intra-page UI synchroniza-
tion and distributed UI synchronization and web service
orchestration. We call an application that is able to man-
age these two layers in an integrated fashion a distributed
UI orchestration [22].

3.1. Requirements and approach

Supporting the development of distributed UI orchestra-
tions is a complex and challenging task. Especially the aim
of providing a development approach that is able to cover
all development aspects in an integrated fashion poses re-
quirements to the whole life cycle of UI orchestrations, in
particular, in terms of design, deployment, and execution
support.

Indeed, supporting the design of distributed UI orches-
trations requires:

• Defining a new type of component, the UI component,
which is able to modularize pieces of UI and to ab-
stract their external interfaces. For the description of
UI components, we slightly extend WSDL [3], obtain-
ing what we call WSDL4UI, a language that is able to
deal with the novel technological aspects that charac-
terize UI components by reusing the standard syntax
of WSDL.

• Bringing together the needs of UI synchronization and
service orchestration in one single language. UIs are
typically event-based (e.g., user clicks or key strokes),
while service invocations are coordinated via control
flows. In this paper, we show how to extend the stan-
dard BPEL [4] language in order to support UIs. We
call this extended language BPEL4UI.

• Implementing a suitable, graphical design environ-
ment that allows developers to visually compose ser-
vices and UI components and to define the group-
ing of UI components into pages. BPEL comes with

graphical editors and ready, off-the-shelf runtime en-
gines that we can reuse. For instance, we extend the
Eclipse BPEL editor with UI-specific modeling con-
structs in order to design UI orchestrations and gen-
erate BPEL4UI in output.

Supporting the deployment of UI orchestrations re-
quires:

• Splitting the BPEL4UI specification into the two or-
chestration layers for intra-page UI synchronization
and distributed UI synchronization and web service
orchestration. For the former we use a lightweight
UI composition logic, which allows specifying how UI
components are coordinated in the client browser. For
the latter we rely on standard BPEL.

• Providing a set of auxiliary web services that are able
to mediate communications between the client-side UI
composition logic and the BPEL logic. We achieve
this layer by automatically generating and deploying
a set of web services that manage the UI-to-BPEL
and BPEL-to-UI interactions.

Supporting the execution of UI orchestrations requires:

• Providing a client-side runtime framework for UI syn-
chronization that is able to instantiate UI components
inside web pages and to propagate events from one
component to other components. Events of a UI com-
ponent may be propagated to components running in
the same web page or in other pages of the application
as well as to web services.

• Providing a communication middleware layer that is
able to run the generated auxiliary web services for
UI-to-BPEL and BPEL-to-UI communications. We
implement this layer by reusing standard web server
technology able to instantiate SOAP and RESTful
web services.

• Setting up a BPEL engine that is able to run stan-
dard BPEL process specifications. The engine is in
charge of orchestrating web services and distributed
UI-to-UI communications. Again, we rely on standard
technology and reuse an existing BPEL engine.

• Implementing a management console for both devel-
opers and participants in UI orchestrations, enabling
them to deploy UI orchestrations, to instantiate them,
and to participate in them as required.

These requirements and the respective hints to our solu-
tion show that the main methodological goals in achieving
our UI orchestration approach are (i) relying as much as
possible on existing standards (to start from a commonly
accepted and known basis), (ii) providing the developer
with only few and simple new concepts (to facilitate fast
learning), and (iii) implementing a runtime architecture

62



Event buffer/
proxy WSDLs

UI engine client (web browser)UI engine client (web browser)

BPEL4UI editor

Web service 
WSDLs

UI component 
WSDL4UIs

BPEL4UI Compiler

BPEL engine

UI engine server (web server)

UI engine client (web browser)

UI event bus

BPEL4UI

BPEL

UI2BPEL 
communication

BPEL2UI 
communication

JSON via 
HTTP

XML via 
SOAP

SOAP web 
services

Application 
developer

System 
configuration

Design time
Deployment time

Runtime

JS via HTTP

Layout and UI 
logic generator

BPEL generator

Comm. services 
generator

AB
C

UI components

A B C
UI component container

JSON via 
HTTP

XML via 
SOAP

XML via SOAP

Layout 
configurator

UI partner link 
configurator

HTML 
templates

UI 
compositions

Layout and 
UI logic

System components

Document flows
System/human communications
Automatically generated elements

Event 
forwarder
Event 

forwarder
Event 

forwarders

Notification 
handler

Notification 
handler

Notification 
handlers

Event 
proxy

Event 
proxy

Event 
buffer

Event 
proxy

Event 
proxy

Event 
proxy

Users

Figure 2: From design time to runtime: overall system architecture of MarcoFlow.

that associates each concern to the right level of abstrac-
tion and software tool (to maximize reuse), e.g., UI syn-
chronization is handled in the browser, while service or-
chestration is delegated to the BPEL engine.

3.2. Architecture

A possible system architecture that meets the above re-
quirements is shown in Figure 2. It’s the architecture of
our MarcoFlow platform, which has been developed jointly
by Huawei Technologies and the University of Trento. For
presentation purposes, we discuss a slightly simplified ver-
sion and partition its software components into design
time, deployment time, and runtime components.

The design part comprises a BPEL4UI editor, which
comes with a UI partner link configurator, enabling the
setup of UI components inside a UI orchestration, and a
layout configurator, assisting the developer in placing UI

components into pages. Starting from a set of web ser-
vice WSDLs, UI component WSDL4UIs, and HTML tem-
plates the application developer graphically models the UI
orchestration, and the editor generates a corresponding
BPEL4UI specification in output, which contains in a sin-
gle file the whole logic of the UI orchestration.

The deployment of a UI orchestration requires trans-
lating the BPEL4UI specification into executable formats.
In fact, as we will see, BPEL4UI is not immediately ex-
ecutable neither by a standard BPEL engine nor by the
UI rendering engine (the so-called UI engine in the right
hand side of the figure). This task is achieved by the
BPEL4UI compiler, which, starting from the BPEL4UI
specification, the set of used HTML templates and UI
component WSDL4UIs, and the system configuration of
the runtime part of the architecture, generates three kinds
of outputs:

63



1. A set of communication channels (to be deployed in
the so-called UI engine server), which mediate com-
munications between the UI engine client (the client
browser) and the BPEL engine. These channels are
crucial in that they resolve the technology conflict in-
herently present in BPEL4UI specifications: a BPEL
engine is not able to talk to JavaScript UI components
running inside a client browser, and UI components
are not able to interact with the SOAP interface of a
BPEL engine. For each UI component in a page, the
compiler therefore generates (i) an event proxy that is
able to forward events from the client browser to the
BPEL engine and (ii) an event buffer that is able to
accept events from the BPEL engine and store them
on behalf of the UI engine client. The compiler also
generates suitable WSDL files for proxies and buffers.

2. A standard BPEL specification containing the dis-
tributed UI synchronization and web service orches-
tration logic (see Section 6.1). Unlike the BPEL4UI
specification, the generated BPEL specification does
no longer contain any UI-specific constructs and can
therefore be executed by any standards-compliant
BPEL engine. This means that all references to UI
components in input to the compilation process are
rewritten into references to the respective communi-
cation channels of the UI components in the UI engine
server, also setting the correct, new SOAP endpoints.

3. A set of UI compositions2 (one for each page of the ap-
plication) consisting of the layout of the page, the list
of UI components of the page, the assignment of UI
components to place holders, the specification of the
intra-page UI synchronization logic (see Section 6.1),
and a reference to the client-side runtime framework.
Interactions with web services or UI components run-
ning in other pages are translated into interactions
with local system components (the notification han-
dlers and event forwarders), which manage the neces-
sary interaction with the communication channels via
suitable RESTful web service calls.

Finally, the BPEL4UI compiler also manages the de-
ployment of the generated artifacts in the respective run-
time environments. Specifically, the generated communi-
cation channels and the UI compositions are deployed in
the UI engine server and the standard BPEL specification
is deployed in the BPEL engine.

The execution of a UI orchestration requires the setting
up and coordination of three independent runtime environ-
ments: First, the interaction with the users is managed in
the client browser by an event-based JavaScript runtime
framework that is able to parse the UI composition stored
in the UI engine server, to instantiate UI components in
their respective place holders, to configure the notification
handlers and event forwarders, and to set up the necessary

2Details about the format and logic of these UI compositions can
be found in [19].

logic ruling the interaction of the components running in-
side the client browser. While event forwarders are called
each time an event is to be sent from the client to the
BPEL engine, the notification handlers are active compo-
nents that periodically poll the event buffers of their UI
components on the UI engine server in order to fetch pos-
sible events coming from the BPEL engine.

Second, the UI engine server must run the web services
implementing the communication channels. In practice we
generate standard Java servlets and SOAP web services,
which can easily be deployed in a common web server,
such as Apache Tomcat. The use of web server technol-
ogy is mandatory in that we need to be able to accept
notifications from the BPEL engine and the UI engine
client, which requires the ability of constantly listening.
The event buffer is implemented via a simple relational
database (in PostgreSQL, http://www.postgresql.org)
that manages multiple UI components and distinguishes
between instances of UI orchestrations by means of a ses-
sion key that is shared among all UI components partici-
pating in a same UI orchestration instance.

Third, running the BPEL process requires a BPEL en-
gine. Our choice to rely on standard BPEL allows us
to reuse a common engine without the need for any UI-
specific extensions. In our case, we use Apache ODE
(http://ode.apache.org), which is characterized by a
simple deployment procedure for BPEL processes.

We discuss each of the ingredients in the following.

4. The Building Blocks: Web Services and UI
Components

Orchestrating remote application logic and pieces of UI
requires, first of all, understanding the exact nature of
the components to be integrated, i.e., web services and UI
components.

For the integration of application logic, we rely on stan-
dard web service technologies, such as WSDL-SOAP
web services , i.e., remote web services whose exter-
nal interface is described in WSDL, which supports in-
teroperability via four message-based types of opera-
tions: request-response, notification, one-way, and solicit-
response. Most of today’s web services of this kind are
stateless, meaning that the order of invocation of their op-
erations does not influence the success of the interaction,
while there are also stateful services whose interaction re-
quires following a so-called business protocol that describes
the interaction patterns supported by the service.

For the integration of UI, we rely instead on
JavaScript/HTML UI components, which are simple,
stand-alone web applications that can be instantiated and
run inside any common web browser [19]. Figure 3 illus-
trates an example of UI component (the Patient Profile

UI component of our reference scenario), along with an ex-
cerpt of its JavaScript code. The figure shows that, unlike
web services, UI components are characterized by:

64



        
    function PatientProfile(id,divId,params){
        this.backgroundColor = params["backgroundColor"]; // Property
        ...

        this.load = function() {    // Initialiazation function
            var mydiv= document.getElementById(this.divId);

mydiv.innerHTML="<div style='overflow:auto; background-color:"+ 
    backgroundColor + “><h2>No patient selected" + ... ;

        }

        this.show=function(patient){ ... }   //  Internal function

        this.sendPatientCoord= function(inputArray){    // Event
var outputArray= new Array();
outputArray["latitude"]=parseFloat(this.lat);
outputArray["longitude"]=parseFloat(this.lng);
MarcoFlow.FW.raiseEvent(id,"sendPatientCoord",outputArray);

        }
 

        this.showPatientProfile= function(inputArray){ // Operation
var patient =inputArray["patient"];
this.lat= patient["latitude"];
this.lng= patient["longitude"];
this.show(patient);

        }
    }

The component's 
JavaScript code

Event
Graphical rendering 
of the Patient Profile 
UI component

Figure 3: Graphical rendering and internal logic of a UI component

• A user interface . UI components can be instanti-
ated inside a web browser and can be accessed and
navigated by a user via standard HTML. The UI al-
lows the user to interactively inspect and alter the
content of the component, just like in regular web ap-
plications. UI components are therefore stateful, and
the component’s navigation features replace the busi-
ness protocol needed for services.

• Events. Interacting with the UI generates system
events (e.g., mouse clicks) in the browser used to man-
age the update of contents. Some events may be ex-
posed as component events, in order to communicate
state changes. For instance, a click on the “map” link
in Figure 3 launches a sendPatientCoord event.

• Operations. Operations enact state changes from
the outside. Typically, we can map the event of one
component to the operation of another component in
order to synchronize the components’ state (so that
they show related information).

• Properties. The graphical setup of a component
may require the setting of constructor parameters,
e.g., to align background colors or set other style prop-
erties.

In order to make UI components accessible to BPEL,
each component must be equipped with a descriptor that
describes its events, operations, and properties in terms
of WSDL operations. As already anticipated in the pre-
vious section, doing so requires extending the standard

Definition

Import

Types Service

Port

Binding

Port Type

Operation

Part

Message

1..N

0..N

1..N

1..N

1..1

1..1
located on

1..1

1..1
accessed by

1..N

1..N

1..N1..N

1..N
1..N

0..1

0..1
0..1

1..N
fault

output

input

Constructor

0..N

JS Binding
Version

JS Function
Name

1..N

UIOperationUIEvent

references

WSDL4UI conventions:
(1) All Operations are either UIOperations, UIEvents, or a Constructor.
(2) UIOperations only have inputs.
(3) UIEvents only have outputs.
(4) The Constructor is unique and has only inputs.
(5) The service's port address points to the JavaScript class of the UI component.

Figure 4: Simplified WSDL4UI meta-model (inspired by [23] and
extended – via the gray boxes – toward UI components).

WSDL description logic, i.e., its meta-model, from web
services to UI components. The result of this extension
is called WSDL4UI . Figure 4 illustrates its meta-model,
from which we can see that the extension toward UI com-
ponents occurs via two different techniques:

1. First, we introduce a set of conventions of how the
abstract WSDL constructs can be used to describe
UI components. The properties of the UI component
are encapsulated by means of a dedicated constructor
operation that can be used to set properties at instan-
tiation time of the component. Next, all operations
specified in the description are either UIOperations,
UIEvents, or a constructor. UIOperations have only
inputs; UIEvents have only outputs; the constructor
is an operation. Finally, the port address of the de-
scribed service corresponds to the URL at which the
actual UI component can be downloaded for instanti-
ation (in form of a JavaScript file).

2. Second, we introduce a new JavaScript binding that
allows us to associate to each abstractly defined op-
eration a JavaScript function of the UI component.
Doing so enables the client-side runtime environment
(the UI engine client) to parse the WSDL4UI descrip-
tion of a component, to invoke its constructor, and to
correctly access events and operations in JavaScript.

Only WSDL files that conform to these rules are
considered correct WSDL4UI descriptors of UI compo-
nents. Figure 5, for instance, shows the descriptor of the
Patient Profile UI component. Its interface is charac-
terized by three WSDL operations: ShowPatientProfile,
SendPatientCoord, and constructor (lines 9-17), corre-
sponding, respectively, to a UIOperation, to a UIEvent
and to the component’s custructor, as stated in the

65



 1 <?xml version="1.0" encoding="utf-8"?>
 2 <wsdl:definitions name="PatientProfile" targetNamespace="http://www.unitn.it/
 3 JS/Patient" ... >
 4   <!-- types definition -->
 5   ...
 6   <!-- massages definition -->
 7   ...
 8   <wsdl:portType name="PatientPortType">
 9       <wsdl:operation name="constructor">
10            <wsdl:input message="tns:constructorMessage"/>
11        </wsdl:operation>
12        <wsdl:operation name="ShowPatientProfile">
13            <wsdl:input message="tns:ShowPatientProfileMessage"></wsdl:input>
14            </wsdl:operation>
15        <wsdl:operation name="SendPatientCoord">
16            <wsdl:output message="tns:SendPatientCoordMessage"></wsdl:output>
17        </wsdl:operation>
18    </wsdl:portType>
19
20    <wsdl:binding name="PatientJS" type="tns:PatientPortType">
21        <js:binding version="1.0" />
22        <wsdl:operation name="constructor">
23            <js:operation jsFunction="load" />
24        </wsdl:operation>
25        <wsdl:operation name="ShowPatientProfile">
26            <js:operation jsFunction="showPatientProfile" />
27        </wsdl:operation>
28        <wsdl:operation name="SendPatientCoord">
29            <js:event jsFunction="sendPatientCoord" />
30        </wsdl:operation>
31    </wsdl:binding>
32
33    <wsdl:service name="PatientProfile">
34        <wsdl:port name="PatientJS" binding="tns:PatientJS">
35            <soap:address location="http://www.unitn.it/JS/Patient.js" />
36        </wsdl:port>
37    </wsdl:service>
38 </wsdl:definitions>

Figure 5: Example of WSDL/UI description of a UI component.

JavaScript binding (lines 20-31). In the binding, there are
also specified, through the related jsFunction attributes
(e.g., line 23), the actual JavaScript functions implement-
ing the operations, which are contained in the file located
at the URL defined in the service’s port address (line 35).

For the BPEL engine, in order to interact with a com-
ponent, the BPEL4UI compiler introduced in Section 3.2
generates a respective event buffer and event proxy for
the UI engine server and equips them with two standard
WSDL descriptors. These descriptors contain the abstract
service description as defined in the WSDL4UI file (the
event buffer contains all operations of the UI components,
the event proxy all events), yet their port addresses point
to the newly generated services and their JavaScript bind-
ing is turned into a SOAP binding.

5. The UI Orchestration Meta-Model

Starting from web services and UI components, develop-
ing a UI orchestration requires modeling two fundamental
aspects: (i) the interaction logic that rules the passing
of data among UI components and web services and (ii)
the graphical layout of the final application. Supporting
these tasks in service orchestration languages (like BPEL)
requires extending the expressive power of the languages
with UI-specific constructs.

Figure 6 shows the simplified meta-model of BPEL4UI,
addressing these two concerns. Specifically, the figure de-
tails all the new modeling constructs necessary to spec-
ify UI orchestrations (gray-shaded) and omits details of
the standard BPEL language, which are reused as is by
BPEL4UI (a detailed meta-model for BPEL can be found,

Process

Activity Container

Activity

Catch

Message 
Exchange

Correlation 
Set

Variable
Partner Link

Page
Name
Description
TemplateURL
UIEngineName
isStartPage

Actor
Name

Place Holder
Name

UI Component
Name

UI Type
WSDL-UI

Property
Name
Value
Type

Partner Link Type

fault handlers

accessible to

contains

rendered in

has

described by

0..N

1..1
0..N

1..1
1..N

1..1

1..1

1..1 0..N

1..1

0..N
described by

0..N

1..1

0..N

0..N

0..N

0..N

1..N

0..N

Figure 6: Simplified BPEL4UI meta-model in UML. White classes
correspond to standard BPEL constructs [24]; gray classes corre-
spond to constructs for UI and user management.

for instance, in [24]). The code snippet in Figure 7 exem-
plifies the syntax that we use, in order to express the novel
concepts in BPEL4UI.

In terms of standard BPEL [4], a UI orchestration is a
process that is composed of a set of associated activities
(e.g., sequence, flow, if, assign, validate, or similar), vari-
ables (to store intermediate processing results), message
exchanges, correlation sets (to correlate messages in con-
versations), and fault handlers. The services or UI com-
ponents integrated by a process are declared by means of
so-called partner links, while partner link types define the
roles played by each of the services or UI components in
the conversation and the port types specifying the opera-
tions and messages supported by each service or compo-
nent. There can be multiple partner links for each partner
link type.

Modeling UI-specific aspects requires instead introduc-
ing a set of new constructs that are not yet supported by
BPEL. The constructs, illustrated in Figure 6, are:

• UI type : The introduction of UI components into
service compositions asks for a new kind of partner
link type. Although syntactically there is no differ-
ence between web services and UI components (the
JavaScript binding introduced into WSDL4UI comes
into play only at runtime), it is important to distin-
guish between services and UI components as (i) their
semantics and, hence, their usage in the model will be
different from that of standard web services, and (ii)
the UI orchestration editor must be aware of whether
an object manipulated by the developers is a web ser-
vice or a UI component, in order to support the set-
ting of UI-specific properties.

As exemplified in Figure 7, we specify the new partner
link type like a standard web service type (lines 7-10).

66



In order to reflect the events and operations of the UI
component, we distinguish the two roles. Lines 1-
5 define the necessary name spaces and import the
WSDL4UI descriptor of the UI component.

• Page : The distributed UI of the overall application
consists of one or more web pages, which can host
instances of UI components. Pages have a name, a
description, a reference to the pages’ layout template,
the name of the UI engine they will run on, and an
indication of whether they are a start page of the ap-
plication or not (as we will see in Section 7, inside a
process model, not all pages allow the correct instan-
tiation of the process).

The code lines 13-20 in Figure 7 show the definition of
a page called “operator”, along with its layout tem-
plate and the name of the UI engine on which the
page will be deployed; the page is a start page for the
process.

• Place holder : Each page comes with a set of place
holders, which are empty areas inside the layout tem-
plate that can be used for the graphical rendering
of UI components. Place holders are identified by
a unique name, which can be used to associate UI
components.

Place holders are associated with page definitions and
specified as sub-elements, as shown in lines 16-19 in
Figure 7.

• UI component : UI types can be instantiated as UI
components. For instance, there may be one UI type
but two different instances of the type running in two
different web pages. Declaring a UI component in a
BPEL4UI model leads to the creation of an instance
of the UI component in one of the pages of the appli-
cation. Each component has a unique name.

We specify UI component partner links by extend-
ing the standard partner link definition of BPEL with
three new attributes, i.e., isUiComponent, pageName,
and placeHolderName. Lines 25-32 in Figure 7 show
how to declare the Patient Profile component of
our example scenario.

• Property : As we have seen in the previous section,
UI components may have a constructor that allows
one to set configuration properties. Therefore, each
UI component may have a set of associated proper-
ties than can be parsed at instantiation time of the
component. We use simple name-value pairs to store
constructor parameters.

Properties extend the definition of UI component link
types by adding property sub-elements to the partner
link definition, one for each constructor parameter, as
shown in lines 30-31 in Figure 7.

 1 <bpel:process name="HomeAssistance" targetNamespace="http://www.unitn.it/
 2 example/HomeAssistance" xmlns:wsdl6="http://www.unitnt.it/JS/Patient" ...>
 3  <bpel:import namespace="http://www.unitnt.it/JS/Patient"
 4                location="Patient.wsdl" importType="http://
 5                schemas.xmlsoap.org/wsdl/" />
 6  ...
 7  <bpel:partnerLinkType name="PatientPL">
 8      <bpel:role name="receive" portType="wsdl6:PatientPortTypeReceive"/>
 9      <bpel:role name="invoke" portType="wsdl6:PatientPortTypeInvoke"/>
10  </bpel:partnerLinkType>
11  ...
12  <bpel4ui:pages>
13      <bpel4ui:page name="operator" templateURL="operator.html"
14                 uiEngineName="HAEngine" actorName="SteS" 
15                 description="the operator page" isStartPage="true" >
16          <bpel4ui:placeHolder name="marcoflow-top-left" />
17          <bpel4ui:placeHolder name="marcoflow-top-right" />
18          <bpel4ui:placeHolder name="marcoflow-bottom-left" />
19          <bpel4ui:placeHolder name="marcoflow-bottom-right" />
20      </bpel4ui:page>
21      ...
22  </bpel4ui:pages>
23
24  <bpel:partnerLinks>           
25      <bpel:partnerLink name="PatientProfileUI_operator"
26                        partnerLinkType="tns:PatientPL" 
27                        myRole="receive" partnerRole="invoke" 
28                        isUiComponent="yes" pageName="operator"
29                        placeholderName="marcoflow-top-left">
30      <bpel4ui:property name="backgroundColor" type="xsd:string" 
31                         value="white" />
32      </bpel:partnerLink>
33      ...
34  </bpel:partnerLinks>
35          
36  <!-- orchestration logic definition -->
37  ...
38 </bpel:process>

Figure 7: Excerpt of the BPEL4UI home assistance process (new
constructs in bold)

• Actor : In order to coordinate the people in a process,
pages of the application can be associated with indi-
vidual actors, i.e., humans, which are then allowed to
access the page and to interact with the UI orches-
tration via the UI components rendered in the page.
As for now, we simply associate static actors to pages
(using their names); yet, actors can easily be assigned
also dynamically at deployment time or at runtime by
associating roles instead of actors and using a suitable
user management system.

Actors are simply added to page definitions by means
of the actorName attribute, as highlighted in line 14
in Figure 7.

The addition of these new concepts to BPEL turns the
service orchestration language into a language that, in ad-
dition to service invocation logic, is also able to specify
the organization of an application’s UI and its distribu-
tion over multiple servers and actors. Our goal in doing
so was to keep the number of new concepts as small as
possible, while providing a fully operational specification
language for UI orchestrations.

6. Modeling Distributed UI Orchestrations

The code example in Figure 7 shows that the UI-specific
modeling constructs have a very limited impact on the
syntax of BPEL and are mostly concerned with the ab-
stract specification of the layout and the declaration of UI
partner links. The actual composition logic, instead, re-
lies exclusively on standard BPEL constructs. Yet, since
UI components are different from web services (e.g., it is

67



UI operations of the 
Exams and Map UI 
components

Intra-page UI 
synchronization 

that can be 
executed entirely 
on the client side

Distributed UI synchronization and service orchestration that requires mediation 
by the BPEL engine. The two events (Receive activities) are correlated by means of a 
BPEL correlation set composed of the parameter tuple <UIOrchestrationID, VisitID>, 
i.e., an identified assigend by the UI engine and the identifier of the re-quested visit 
(carried in the report). 

UI events 
coming from 
the client side

Figure 8: Part of the BPEL4UI model of the home assistance process
as modeled in the extended Eclipse BPEL editor (the dashed and
dotted lines/arrows have been overlaid as a means to explain the
model).

important to know in which page they are running), mod-
eling UI orchestrations requires a profound understanding
of the necessary modeling constructs and their semantics.
In particular, it is important to understand the effect that
individual modeling patterns have on the execution of the
final application, i.e., the semantics of the patterns, and
which other modeling tasks (data transformations, mes-
sage correlations, and layout design) are necessary to fully
specify a working UI orchestration.

6.1. Core UI orchestration design patterns

The first step toward this understanding is mastering
the core design patterns that characterize UI orchestra-
tions. As hinted at in Section 3 and illustrated in Figure
8, we distinguish three main design patterns:

• Intra-page UI synchronization : The small model
block (a BPEL sequence construct) in the right part
of Figure 8 shows the internals of step 7 in Figure
1. When the assistant clicks on the “map” link, the
patient’s address is shown on the Google map. In
BPEL terms, we receive a message from the Patient

Profile UI component (the event) and forward it to
the operation of the Map component, both running in-
side the web page of the assistant. The pattern, hence,
implements a so-called intra-page UI synchronization,
i.e., a synchronization of UI components that run in-
side a same page. From a runtime point of view, this
kind of UI synchronization can be performed entirely
on the client side without requiring support from the
BPEL engine.

• Distributed UI synchronization : The bigger
model block (again a BPEL sequence construct) in

the left part of the figure, instead, contains a dis-
tributed UI synchronization that cannot be executed
on the client side only, as the two UI components
involved in the communication (Visit Report and
Exams Booking) run in different web pages. The
event generated upon submission of a new report is
processed by the BPEL engine, which then decides
whether an additional exam needs to be booked by
the operator or not. As such, the BPEL engine man-
ages two independent concerns, i.e., the forwarding of
the event from one UI component to another and the
evaluation of the condition, of which only the former
is necessary to implement a distributed UI synchro-
nization pattern. The execution of a distributed UI
synchronization pattern always requires the cooper-
ation of both the BPEL engine and the client-side
runtime environment.

• Service orchestration : The distributed UI synchro-
nization also involves the orchestration of the Report

DB and Exam DB web services, as well as some BPEL
flow control constructs. In fact, the modeled logic
checks whether the report expresses the need for fur-
ther exams or not. In either case, the further process-
ing of the report involves the invocation of either one
or both the web services, in order to correctly termi-
nate the handling of a visit request. The pure invo-
cation of web services represents a service invocation
pattern, whose execution can be entirely managed by
the BPEL engine without requiring support from the
client-side runtime environment.

The BPEL4UI excerpt in Figure 8 shows that, when
modeling a UI orchestration, it is important to keep in
mind who communicates with whom and which UI com-
ponent will be rendered where. Depending on these two
considerations, the modeled composition logic will either
be executed on the client side, in the BPEL engine, or
in both layers. For instance, it suffices to associate the
Map component with a different page, in order to turn the
intra-page UI synchronization in the right hand side of
Figure 8 into a distributed UI synchronization and, hence,
to require support from the BPEL engine.

6.2. Data transformations

When composing services or UI components, it is not
enough to model the communication flow only. An impor-
tant and time-consuming aspect is that of transforming
the data passed from one component to another. With
BPEL4UI we support all data transformation options pro-
vided by BPEL by means of its Assign construct. This
allows us to leverage on technologies, such as XPath,
XQuery, XSLT, or Java, for the implementation of also
very complex data transformations.

Yet, it is important to keep in mind that the type of
data transformation may affect the logic of the UI orches-
tration: For instance, if the SetPosition activity in the

68



top-right corner of Figure 8 does not transform data at
all or only performs simple parameter mappings (with the
BPEL Copy construct), we fully support the execution of
the intra-page UI synchronization in the client browser. If
instead a more complex transformation is needed, we rely
on the BPEL engine to perform it.

The reason for this choice is that UI synchronization
typically requires the exchange of only simple data (e.g.,
parameter-value pairs), which do not require complex
transformation capabilities like the ones we need when
interacting with web services. Supporting only simple
parameter-parameter mappings on the client side allows us
to keep the client-side runtime framework as lightweight as
possible, without however giving up any of BPEL’s data
transformation capabilities.

6.3. Message correlation

Independently of the format of data, UI orchestrations
may require a careful design of the messages used in the
orchestration and of how these must be correlated, in or-
der to enable the runtime environment to dispatch each
message to its correct UI orchestration instance. In fact,
just like in conventional workflow or service orchestration
engines, there may be multiple instances of UI orchestra-
tions running concurrently in a same BPEL/UI engine.
Message correlation is required in all those cases where
the orchestration involves multiple entry points into the
orchestration logic (e.g., callbacks from external web ser-
vices or a condition that requires input from two different
events).

If we look at our modeling example in Figure 8, we see
that the intra-page UI synchronization in the top-right
corner does not involve multiple entry points. It is there-
fore not necessary to implement any correlation logic in
BPEL4UI, in order to propagate the SendPatientCoord

event from the Patient Profile UI component to the
ShowPoint operation of the Map UI component. Since both
UI components involved in this synchronization run inside
the same web page and, therefore, there is no ambiguity
regarding which instance of the Map UI component is the
target of the SendPatientCoord event. In Section 7, we
will see that this is not always the case.

The distributed UI synchronization, instead, involves
two UI events from two different actors and, hence, differ-
ent pages: ReportCompleted and BookingConfirmed. In
this case, it is necessary to configure a so-called correlation
set (in BPEL terminology) that allows the BPEL engine
to understand when two instances of those events belong
to a same process instance. In the example in Figure 8, we
use UIOrchestrationID (provided by the UI engine) and
VisitID (part of the report) as correlation set.

6.4. Graphical layout

Finally, the complete definition of a UI orchestration
also requires the design of suitable HTML templates and
the assignment of UI components to their place hold-
ers inside the pages. As our goal is the development of

PlaceHolder
 marcoflow-top-left

PlaceHolder
 marcoflow-bottom-right

PlaceHolder
 marcoflow-top-right

PlaceHolder
 marcoflow-bottom-left

Figure 9: The HTML template of the assistant’s web page highlight-
ing the empty place holders for UI components.

an enabling middleware layer for UI orchestrations, for
the layout templates we rely on standard web design in-
struments and technologies (e.g., Adobe Dreamweaver).
The only requirement the templates must satisfy is that
they provide place holders in form of HTML DIV el-
ements that can be indexed via standard HTML iden-
tifiers following a predefined naming convention: <div

id="marcoflow-..."></div>.
Figure 9, for instance, depicts the empty HTML tem-

plate of the assistant’s web page, whose filled version we
have already seen in Figure 1. The template is a sim-
ple HTML page with a page title and the four uniquely
identified placeholders to be filled with UI components at
runtime. Differently from dynamic HTML and most of the
approaches discussed in Section 2, in which the template
typically also contains the formatting logic for the data to
be rendered inside the place holders, in our case the tem-
plate only identifies the location of the UI components;
the rendering of content is then managed autonomously
by the UI components.

Once all HTML templates for all pages in the UI or-
chestration are defined, the definition of the pages and the
association of UI partner links with place holders therein
proceeds as exemplified in Section 6.

7. Types of UI orchestrations

So far we have seen how BPEL4UI supports the devel-
opment of distributed UI orchestrations. Yet, developing
correct UI orchestrations is still a non-trivial task, in that
the distribution of UI synchronizations and service orches-
trations over two different runtime engines (the UI engine
and the BPEL engine) complicates the instantiation logic
of distributed UI orchestrations, an aspect that developers

69



should understand thoroughly. As illustrated in Figure 10,
we identify four main types of UI orchestrations that can
be implemented by means of the core patterns described
in Section 6.1, i.e., pure UI synchronizations, pure service
orchestrations, UI-driven UI orchestrations, and process-
driven UI orchestrations. The developer needs to master
these configurations if he doesn’t want to encounter unex-
pected behaviors or errors at runtime. We discuss each of
these configurations next.

7.1. Pure UI synchronizations

From a UI point of view, the basic type of UI orchestra-
tion is represented by applications that involve UI compo-
nents only and, hence, exclusively focus on the synchro-
nization of UIs via events. Typical examples of this type of
UI orchestration are UI-based mashups, portlets/portals,
applications that integrate widgets/gadgets, or similar
component-based UI applications.

Figure 10(a) illustrates a simple example: There are
two concurrent pages, possibly associated with two differ-
ent users and with a total of three UI components, one
in Page 1 and two in Page 2. By interacting with the UI
component A, the user can generate an event that synchro-
nizes component B in the other page; likewise, another user
can interact with B and synchronize both A and C, while C

allows the user to synchronize again B. The three UI com-
ponents are instantiated in their web pages and run until
the users close their web browsers or navigate to another
web page. As such, UI components are stateful: their UI
constantly reflects the interaction state of the users with
the component (e.g., in terms of selections or navigation
actions performed). During their lifetime, each UI compo-
nent may generate multiple events as output and accept
multiple events as input. That is, while in one instance of
the UI orchestration in Figure 10(a) each UI component is
instantiated only once, there may be multiple instances of
synchronization events (the dashed arrows).

Supporting the execution of this type of UI orchestra-
tion requires the presence of both a client-side runtime en-
vironment and a server-side environment. Specifically, the
intra-page UI synchronization of B and C can be handled in
the client, since both UI components run inside the same
web page, i.e., web browser. The synchronization of A and
B, instead, requires help from the server side, in that they
implement a distributed UI synchronization. Therefore,
the event proxy on the server side (cf. Figure 2) is needed,
in order to get the two web pages into communication.

Sending an event through the event proxy raises the
need for correlation, in that there may be multiple in-
stances of a same UI orchestration running concurrently
and, therefore, it is necessary to identify which event be-
longs to which instance. The solution we adopt is to add
to each generated UI event a so-called UIOrchestrationID,
which uniquely identifies the UI orchestration instance.
The identifier is generated by the UI engine at applica-
tion startup and shared with all the users participating in

the orchestration. This feature is automated in our run-
time framework and does not require any specific modeling
at design time.

7.2. Pure service orchestrations

From a web service point of view, the basic type of UI
orchestration is the one that completely comes without
UI, i.e., a common web service orchestration. Although
this configuration represents a “degenerated” UI orches-
tration (given that there is no UI), it is fully supported
by BPEL4UI and deserves an explanation in that it rep-
resents the building block for the next UI orchestration
types. Typical examples are order processing logics or
payment processes.

Figure 10(b) provides an example: There are six
web service invocations (specifically, synchronous request-
response invocations) and one incoming event arranged in
a typical service orchestration. For presentation purpose,
we adopt a data flow logic to model the orchestration, as
for the discussion in this section it is not important to
explicitly distinguish between control and data flow. The
important aspect of the model is that, upon instantiation
of the service orchestration, each element in the model is
instantiated exactly once – including the data flow connec-
tors (differently from what happened with the UI synchro-
nization events in Figure 10(a)). The data flow connectors
rule both which service invocation can be performed and
how data are passed from one invocation to another.

Executing such a service orchestration requires support
from an orchestration engine/server, such as a BPEL en-
gine, which is able to instantiate on orchestration model,
to invoke the services as prescribed by the model, to trans-
form data formats between service invocations, to accept
incoming notifications or events, and to keep the state of
the progress in the orchestration instance. The actual ser-
vices run remotely, and are outside the scope of the or-
chestration environment.

The important aspect of the model in Figure 10(b) is
the incoming event (graphically represented by the letter
in the circle), as the event raises the need for correlation
in the service orchestration. In fact, without the incoming
event, the model would consist only of synchronous ser-
vice invocations, which could be processed easily step by
step by the orchestration engine. The engine would simply
invoke a service, wait for its response, pass the response
to the next service, and so on till the whole orchestration
logics ends. In the presence of the incoming event, instead,
the engine must be able to correlate each incoming event
it receives with the correct target orchestration instance
of the event. Doing so requires sharing at least a sim-
ple key or identifier (the correlation set) among the run-
ning orchestration instance and the incoming event. For
instance, the name of the person who starts the orches-
tration instance could be used as correlation identifier, as
such could be known to both the engine and the external
service sending the event – provided that there is always
only one instance per person running in the engine.

70



Page 2

Page 1

Page 2

A

a

B

C

A

B C

b c

dd

a

c

b

f

e

Page 1

Page 1

A B

Page 2

C D

a

c

b

f

e

d

Legend

Page 1

A

a

Page with one 
UI component

Invocation of a web service

UI synchronization event

Data flow

Start node End node

(a) Pure UI synchronization of multiple UI components 

(b) Pure service orchestration of multiple web service invocations 

(c) UI-driven UI orchestration with UI components 
triggering the execution of service orchestration 
instances

(d) Process-driven UI orchestration with 
the process instance enabling/disabling the 
access to pages

Orchestration part 
that is instantiated 
multiple times

Incoming message/event

Figure 10: The four types of (UI) orchestration supported by BPEL4UI and the MarcoFlow system.

7.3. UI-driven UI orchestrations

A “full” UI orchestration, however, is characterized by
the joint use of both UI synchronizations and service or-
chestrations inside a same application. Depending on
which of these two ingredients dominates the behavior of
the application, we can have either UI-driven orchestra-
tions (where service orchestrations are enacted by the UI)
or process-driven orchestrations (where the UIs are en-
acted by the service orchestration). Here we focus on the
former type, in the next section we discuss the latter. For
instance, a web mashup that integrates RSS data from a
Yahoo! Pipe may invoke the pipe processing logic multiple
times while running.

Figure 10(c) abstracts this type of UI orchestration:
There are two pages with respective UI components and

two service orchestration flows. While the intra-page UI
synchronization of B and C does not involve any web ser-
vice, the distributed UI synchronizations of A and B are
based on intermediate service invocations in both direc-
tions. Just like we can have multiple UI synchronization
events (the dashed arrows) for each instance of UI compo-
nent, we now also have for each synchronization of A and
B a new instance of the intermediate service orchestration
logic (graphically represented by the dashed box around
the service orchestrations).

In order to execute such a UI-driven UI orchestration, we
need to join also the power of the runtime environments of
the two previous configurations. Specifically, UI synchro-
nizations involving service invocations can no longer be
performed with a simple event proxy on the server side

71



only (like in pure UI orchestrations); instead, the syn-
chronization requires a tight integration of the client-side
runtime environment for UIs with the server-side service
orchestration engine. Specifically, a UI synchronization
event from one page must be able to instantiate and pro-
vide input to a service orchestration logic on the server
side, which, in turn, must be able to deliver its output in
form of a UI synchronization event sent to another page.
That is, we need to have a full two-way communication
channel between the two runtime environments, a feature
that is implemented by the UI components’ event proxies
and event buffers in the UI engine server.

In terms of correlation, all UI synchronization events
carry the UIOrchestrationID, as already introduced for
pure UI orchestrations, while the service orchestration
parts may require additional correlation information in-
side BPEL4UI, depending on their individual topology.
For instance, the service orchestration enacted by prop-
agating an event from B to A only involves synchronous
service invocations and does therefore not require any ad-
ditional correlation information. The other service orches-
tration in Figure 10(c), instead, also involves the reception
of an external event, which requires the setup of an addi-
tional correlation identifier, as already described for Figure
10(b).

7.4. Process-driven UI orchestrations

Finally, we have a process-driven UI orchestration each
time we have an application that brings together UI syn-
chronizations and service orchestrations in which the ser-
vice orchestration dominates over the UI synchronization.
For instance, workflow management or, more in general,
business process management applications that integrate
both web services and UI components and that orchestrate
tasks (work items) to be performed by either users or au-
tomated resources, such as our reference scenario, can be
considered of this type of UI orchestration.

Figure 10(d) schematically illustrates the situation: The
application starts with a pure service orchestration that
enacts a set of services and, only after the successful pro-
cessing of services a, b, c, and d, allows the users to access
their respective web pages. Inside the pages, there are UI
components that allow the users to interact with the pages
and to perform and conclude their tasks, which causes the
UI orchestration to leave again and disable the pages and
to proceed with the processing of the remaining part of
the service orchestration. That is, in process-driven UI or-
chestrations pages are invoked like services, but they are
targeted at users and, therefore, expose a UI the users can
interact with. The overall UI orchestration keeps waiting
until the user successfully completes his/her task, which is
communicated via an outgoing UI synchronization event.

In terms of required execution support, process-driven
UI orchestrations are similar to UI-driven UI orchestra-
tions, with the difference that the main service orchestra-
tion is instantiated only ones, not multiple times.

Correlation requirements are similar, too. As shown in
Figure 10(d), if there is an incoming event that needs to
be injected into a running instance of the UI orchestration,
correlation is needed; otherwise, the whole UI orchestra-
tion can also be processed without correlation. UI synchro-
nization events are again managed via the orchestration’s
unique identifier associated by the UI engine.

7.5. Complex UI orchestrations

The four types of UI orchestrations above represent
those classes of UI orchestrations that characterize the
most important application scenarios we encountered
throughout the development of the MarcoFlow system.
Yet, UI orchestrations may easily also get more complex.
For instance, it is possible to use a process-driven UI or-
chestration (including again UIs and actors) in place of
any of the simple service orchestrations in Figure 10(c), or
it is possible to expand the simple pages in Figure 10(d)
into complete UI-driven UI orchestrations (including new
service orchestrations), or we could establish UI synchro-
nizations among the two pages in Figure 10(d), and sim-
ilar. While these kinds of UI orchestrations are theoreti-
cally possible and supported by BPEL4UI and MarcoFlow,
luckily it is hard to find practical examples that indeed re-
quire such a level of complexity.

8. Implementing and Running UI Orchestrations

In order to ease the development, deployment, and ex-
ecution of UI orchestrations, MarcoFlow comes with two
tools that aid the different actors involved: a graphical
BPEL4UI editor for developers and a web-based manage-
ment console for both developers and users.

The graphical BPEL4UI editor for developers has
been implemented as an extension of the Eclipse BPEL
editor (http://www.eclipse.org/bpel/) and comes with
(i) a panel for the specification of the pages in which UI
components can be rendered and (ii) a property panel that
allows the developer to configure the web pages, to set the
properties of UI partner links, and to associate them to
place holders in the layout.

The screenshot in Figure 11 shows the editor at work.
The layout structure of the editor is the same of the stan-
dard Eclipse editor, except for some differences in the right
and bottom side. On the right side, now it is also possible
to define the pages of the UI orchestration (as elements
of the Pages group). Selecting a page in the list shows
the respective details in the Properties panel in the lower
part of the figure and allows the developer to assign the
actor, i.e., the user that will be allowed to access the page,
and the HTML template for the page. Still on the right
side, where usually there are only partner links for web
services, now it is also possible to define UI partner links
for UI components. Selecting a partner link from the list
again shows its details in the Properties panel. Ticking
the UI component checkbox turns the partner link into a

72



Figure 11: The extended Eclipse BPEL editor for developing UI
orchestrations at work.

UI partner link and allows the developer to define in which
page and place holder inside the page the UI component
will be rendered. The actual composition logic is specified
in the modeling canvas in the central part of the editor.

The web-based management console helps (i) devel-
opers in deploying ready UI orchestrations and (ii) users
in instantiating and participating in running UI orches-
trations. Deploying a new UI orchestration requires the
developer to pack all the project files (web service WS-
DLs, UI component WSDL4UIs, BPEL4UI specification,
HTML templates, and the system configuration) into a
single archive file and to upload it to the management
console. Doing so allows the developer to deploy the ap-
plication by means of a simple mouse click, which invokes
the BPEL4UI compiler and generates the standard BPEL
file, the event buffers and event proxies, their respective
WSDL files, and the UI compositions and then deploys
all generated artifacts in the respective runtime environ-
ments.

Figure 12, instead, shows the interface of the manage-
ment console for regular users, where they can see which
UI orchestrations have been deployed they have also access
to. Specifically, a user can either start a new instance of
UI orchestration (via the upper list in the figure) or par-
ticipate in an already running instance of UI orchestration
(via the lower list in the figure), which – in the case of
the operator and assistant in our example scenario – leads
him/her, for example, to one of the pages in Figure 1.
The operator is allowed to instantiate the orchestration,
and the assistant is enabled to participate.

The MarcoFlow system shown in Figure 2 is fully im-
plemented and running (a demo of the tool is available at
http://mashart.org/marcoflow/demo.htm). In our test
setting, we run the UI engine server and the BPEL en-
gine on the same machine, yet these components could
also easily be distributed over different physical machines,
a feature that is already supported by our code generator.

Figure 12: The management console for developers and users allow-
ing them to deploy, instantiate, and participate in UI orchestrations.

9. Lessons Learned

We conclude the paper with a few considerations on
lessons learned while developing and applying MarcoFlow.
In hindsight, these correspond to design decisions we
would have done a little bit differently or to next steps
that we are indeed undertaking.

One observation is that developers seemed to prefer a
web-based environment rather than an Eclipse-based one.
We had chosen Eclipse because it already comes with an
open-source editor for BPEL, and we felt it was rather
powerful and reasonably easy to extend as opposed to de-
veloping a new editor. In the end, working with the editor
took a lot of time, so that we did not get the benefits of a
web-based editor nor the time savings we hoped for.

A second issue relates to the large number of conversions
of messages from SOAP to REST and vice versa. In the
current approach, even when two rest services are commu-
nicating we always need to soap-ify them. While we aim
to minimize this kind of conversions as much as possible
(by keeping intra-page UI synchronizations on the client),
this limits the scalability if a single UI engine is used.

Another interesting finding we did not realize in the be-
ginning was that, since UI orchestrations intermix stateless
elements (web service invocations) with stateful elements
(UI components) the need for correlation in UI orches-
trations is higher than in pure web service orchestrations.
Design-time and runtime constructs here may be needed to
simplify specifications and make the engine more scalable.

However the main considerations that will drive our re-
search are in terms of usability and applicability. While
working with BPEL was a strong requirement initially,
many companies are increasingly considering mashup lan-
guages for non mission-critical applications, targeting rela-
tively simple ways to integrate and present web-accessible
data. This would fit well with the MarcoFlow approach,
which can be extended to deal with mashup languages.

73



Finally, working with MarcoFlow and experimenting its
usage helped us strengthen our belief that BPEL, its vari-
ations, and actually even mashup languages are not suit-
able for end users, no matter how good development tools
are. Our conclusion here is that if we want to bring de-
velopment power to the end users or at least to knowledge
workers we need to define domain-specific models and tools
rather than general purpose ones. This is the road we be-
gun to undertake in our efforts within the Omelette EU
FP7 project. Yet, we also recognize that the intrinsic com-
plexity of UI orchestrations hardly suits the capabilities of
less-skilled developers or end users.

10. Conclusion

The spectrum of applications whose design intrinsically
depends on a structured flow of activities, tasks or ca-
pabilities is large, but current workflow or business pro-
cess management software is not able to cater for all of
them. Especially lightweight, component-based applica-
tions or Web 2.0 based, mashup-like applications typically
do not justify the investment in complex process support
systems, either because their user basis is too small or be-
cause there is need only for few, simple applications. Yet,
these applications too demand for abstractions and tools
that are able to speed up their development, especially in
the context of the Web with its fast development cycles.

We introduced an approach to what we call distributed
UI orchestration, a component-based development tech-
nique that introduces a new first-class concept into the
workflow management and service composition world, i.e.,
UIs, and that fits the needs of many of today’s web ap-
plications. We proposed a model for UI components and
showed how dealing with them requires extending the ex-
pressive power of a standard service composition language,
such as BPEL. We equipped the language with a modeling
environment and a code generator able to produce artifacts
that can be executed straightaway by our runtime environ-
ment, which separates intra-page UI synchronization from
distributed UI synchronization and service orchestration.
The result is an approach to distributed UI orchestration
that is comprehensive and free.

A strong point of the described approach is that it recog-
nizes the need for abstraction and more expressive models
and languages at design time, while – thanks to its strong
separation of concerns and powerful code generator – it
does not require any new language or system at runtime.

References

[1] B. A. Myers, M. B. Rosson, User interface programming survey,
SIGCHI Bull. 23 (1991) 27–30.

[2] J. Yu, B. Benatallah, F. Casati, F. Daniel, Understanding
Mashup Development, IEEE Internet Computing 12 (2008) 44–
52.

[3] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, Web
Services Description Language (WSDL) 1.1, W3C Note, W3C,
http://www.w3.org/TR/wsdl, 2001.

[4] OASIS, Web Services Business Process Execution Language
Version 2.0, Technical Report, http://docs.oasis-open.org/

wsbpel/2.0/OS/wsbpel-v2.0-OS.html, 2007.
[5] C. Pautasso, BPEL for REST, in: BPM’08, pp. 278–293.
[6] T. v. Lessen, F. Leymann, R. Mietzner, J. Nitzsche, D. Schle-

icher, A Management Framework for WS-BPEL, in: Proceed-
ings of the 2008 Sixth European Conference on Web Services,
IEEE Computer Society, Washington, DC, USA, 2008, pp. 187–
196.

[7] E. M. Maximilien, A. Ranabahu, K. Gomadam, An Online
Platform for Web APIs and Service Mashups, IEEE Internet
Computing 12 (2008) 32–43.

[8] Active Endpoints, Adobe, BEA, IBM, Oracle, SAP, WS-BPEL
Extension for People (BPEL4People) Version 1.0, Technical Re-
port, 2007.

[9] Active Endpoints, Adobe, BEA, IBM, Oracle, SAP, Web Ser-
vices Human Task (WS-HumanTask) Version 1.0, Technical Re-
port, 2007.

[10] R. Acerbis, A. Bongio, M. Brambilla, S. Butti, S. Ceri, P. Frater-
nali, Web Applications Design and Development with WebML
and WebRatio 5.0, in: Objects, Components, Models and Pat-
terns, volume 11 of LNBIP, Springer, 2008, pp. 392–411.

[11] J. Gómez, A. Bia, A. Parraga, Tool Support for Model-Driven
Development of Web Applications, in: Web Information Sys-
tems Engineering – WISE 2005, volume 3806 of LNCS, Springer
Berlin / Heidelberg, 2005, pp. 721–730.

[12] R. Vdovjak, F. Frasincar, G.-J. Houben, P. Barna, Engineering
Semantic Web Information Systems in Hera, Journal of Web
Engineering 2 (2003) 3–26.

[13] D. Schwabe, G. Rossi, S. D. J. Barbosa, Systematic Hyperme-
dia Application Design with OOHDM, in: HYPERTEXT ’96:
Proceedings of the the seventh ACM conference on Hypertext,
ACM Press, New York, NY, USA, 1996, pp. 116–128.

[14] N. Koch, A. Kraus, R. Hennicker, The Authoring Process of
the UML-based Web Engineering Approach, in: D. Schwabe
(Ed.), First International Workshop on Web-oriented Software
Technology (IWWOST01).

[15] I. Manolescu, M. Brambilla, S. Ceri, S. Comai, P. Fraternali,
Model-driven design and deployment of service-enabled web ap-
plications, ACM Trans. Internet Technol. 5 (2005) 439–479.

[16] M. Brambilla, S. Ceri, P. Fraternali, I. Manolescu, Process mod-
eling in Web applications, ACM Trans. Softw. Eng. Methodol.
15 (2006) 360–409.

[17] Sun Microsystems, JSR-000168 Portlet Specification, Tech-
nical Report, http://jcp.org/aboutJava/communityprocess/

final/jsr168/, 2003.
[18] OASIS, Web Services for Remote Portlets, Technical Report,

www.oasis-open.org/committees/wsrp, 2003.
[19] F. Daniel, F. Casati, B. Benatallah, M.-C. Shan, Hosted Uni-

versal Composition: Models, Languages and Infrastructure in
mashArt, in: Proceedings of the 28th International Conference
on Conceptual Modeling, ER ’09, Springer-Verlag, Berlin, Hei-
delberg, 2009, pp. 428–443.

[20] S. Pietschmann, M. Voigt, A. Rümpel, K. Meißner, CRUISe:
Composition of Rich User Interface Services, in: Proceedings of
the 9th International Conference on Web Engineering, ICWE
’9, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 473–476.

[21] M. Feldmann, T. Nestler, K. Muthmann, U. Jugel, G. Hübsch,
A. Schill, Overview of an end-user enabled model-driven de-
velopment approach for interactive applications based on anno-
tated services, in: Proceedings of the 4th Workshop on Emerg-
ing Web Services Technology, WEWST ’09, ACM, New York,
NY, USA, 2009, pp. 19–28.

[22] F. Daniel, S. Soi, S. Tranquillini, F. Casati, C. Heng, L. Yan,
From People to Services to UI: Distributed Orchestration of
User Interfaces, in: BPM’10, pp. 310–326.

[23] A. D’Ambrogio, A Model-driven WSDL Extension for Describ-
ing the QoS of Web Services, in: IEEE International Conference
on Web Services (ICWS’06), pp. 789–796.

[24] WSPER.org, WS-BPEL 2.0 Metamodel, Technical Report,
http://www.ebpml.org/wsper/wsper/ws-bpel20.html, 2007.

74



!"#$%&'#()'%*#%+'",-.'/%*#%012%%

3-/*"-45*'6%7".8'/*"9*-#:%#;%0/'"%1:*'";9.'/%%

!"#$%&'()&'%*"+(,-*.&'#(,#%+(,-*.&'#(/$&'01%""%'%+(!&2%#(3&4&-%(

5'%6*$4%-7(#.(/$*'-#+(8#6#(9/:;+(<-&"7(

=>&'%*"+4#%+-$&'01%""%'%+?&4&-%@A>%4%B1'%-'B%-(

3C&'D(E*'D+(F%(G&'(

E1&H*%(/*?C'#"#D%*4+(,C*'IC*'+(8BJB(3C%'&(

=?C&'DC*'D+"%7&'K$@AC1&H*%B?#K(

<4/*"9.*=( /$&>%-%#'&""7+( H#$L."#H( K&'&D*K*'-( 474-*K4( &%K( &-( &""*6%&-%'D(

M*#M"*N4(21$>*'(#.(?##$>%'&-%'D($*M*-%-%6*(214%'*44(M$#?*>1$*4+(%B*B+(-C*7(?##$O

>%'&-*(!"#!$"B(P*2(4*$6%?*(#$?C*4-$&-%#'(&MM$#&?C*4+(%'4-*&>+(?##$>%'&-*(M%*?*4(
#.( 4#.-H&$*( 9-C*(%"&'(")*+,"(;+(C%>%'D( -C*(C1K&'(&4M*?-4( -C&-(&$*( %'-$%'4%?&""7(
M$*4*'-( %'( &'7(214%'*44(M$#?*44(2*C%'>( -C*( 4*$6%?*4B(/C*( $*?*'-(*K*$D*'?*(#.(

-*?C'#"#D%*4( "%L*(Q8RFS8*#M"*(&'>(P,OE1K&'/&4L+(HC%?C( %'-$#>1?*(C1K&'(

&?-#$4( %'-#( 4*$6%?*( ?#KM#4%-%#'4+(K&'%.*4-( -C&-( -&L%'D( %'-#( &??#1'-( -C*( M*#M"*(

%'6#"6*>( %'( 214%'*44( M$#?*44*4( %4( C#H*6*$( %KM#$-&'-B( G*-+( '#'*( #.( -C*4*( &MO

M$#&?C*4(&""#H(#'*(-#(&"4#(>*6*"#M(-C*(-(")'+./")01,"(( 95<4;( -C*(14*$4('**>(-#(
?#'?$*-*"7(M&$-%?%M&-*(%'(&(214%'*44(M$#?*44B(

P%-C(-C%4(M&M*$+(H*(H&'-(-#(D#(#'*(4-*M(2*7#'>(4-&-*O#.O-C*O&$-(H#$L."#H(K&'O

&D*K*'-(&'>(4*$6%?*(?#KM#4%-%#'(&'>(M$#M#4*(&'(#$%D%'&"(K#>*"+("&'D1&D*(&'>(

$1''%'D(474-*K(.#$(-C*(?#KM#4%-%#'(#.(>%4-$%21-*>(5<4+(&'(&MM$#&?C(-C&-(&""#H4(

14(-#(2$%'D(-#D*-C*$(5<4+(H*2(4*$6%?*4(&'>(M*#M"*(%'(&(4%'D"*(#$?C*4-$&-%#'("#D%?(

&'>(-##"B(/#(>*K#'4-$&-*(-C*(*..*?-%6*'*44(#.(-C*(%>*&+(H*(&MM"7(-C*(&MM$#&?C(-#(

&($*&"OH#$">(C#K*(&44%4-&'?*(4?*'&$%#B(

>! 1:*"#65.*-#:%

2#)30$#%' 41.15"4"./' (6(/"4(( 41MM#$-( #..%?*( &1-#K&-%#'( M$#?*44*4+( %'?"1>%'D( -C*(
&1-#K&-%?( D*'*$&-%#'( #.( .#$KO2&4*>( 14*$( %'-*$.&?*4( 95<4;( .#$( *T*?1-%'D( -C*( C1K&'(

-&4L4(%'(&(M$#?*44B(7")*+,"'#),8"(/)1/+#.((&'>($*"&-*>("&'D1&D*4(.#?14(%'4-*&>(#'(%'-*O
D$&-%#'(&-(-C*(&MM"%?&-%#'("*6*"B(U4(41?C+(-C%4(-*?C'#"#D7(*T?*"4(%'(-C*($*14*(#.(?#KO

M#'*'-4(&'>(4*$6%?*4(21-(>#*4('#-(.&?%"%-&-*(-C*(>*6*"#MK*'-(#.(5<(.$#'-O*'>4(.#$(41MO

M#$-%'D( C1K&'( -&4L4( &'>( ?#KM"*T( 14*$( %'-*$&?-%#'( '**>4+(HC%?C( %4( #'*( #.( -C*(K#4-(

-%K*(?#'41K%'D(-&4L4(%'(4#.-H&$*(>*6*"#MK*'-(VWXB(

Y'"7($*?*'-"7+(%"&'41(8-!((VZX(C&6*(-1$'*>("*44#'4("*&$'*>(.$#K(>&-&(&'>(&MM"%?&O
-%#'( %'-*D$&-%#'( %'-#( "%DC-H*%DC-+( 4%KM"*(?#KM#4%-%#'(&MM$#&?C*4( .*&-1$%'D(&( 4%D'%.%O

?&'-( %''#6&-%#'[( %'-*D$&-%#'(&-( -C*(5<("*6*"B(Q*4%>*4(H*2(4*$6%?*4(#$(>&-&(.**>4+(K&O

4C1M4( $*14*( M%*?*4( #.(5<( 9*BDB+( ?#'-*'-( *T-$&?-*>( .$#K(H*2( M&D*4( #$( \&6&,?$%M-(5<(

H%>D*-4;(&'>( %'-*D$&-*( -C*K( %'-#(&('*H(H*2(M&D*B(]&4C1M4+( -C*$*.#$*+(K&'%.*4-( -C*(

'**>( .#$( $*14*( %'(5<(>*6*"#MK*'-( &'>( 41%-&2"*(5<(?#KM#'*'-( -*?C'#"#D%*4B( <'-*$*4O

Appendix D

75



-%'D"7+(C#H*6*$+(1'"%L*(HC&-(C&MM*'*>(.#$(4*$6%?*4+(-C%4('**>(C&4('#-(7*-($*41"-*>(%'(

&??*M-*>(?#KM#'*'-O2&4*>(>*6*"#MK*'-(K#>*"4(&'>(M$&?-%?*4B(

/C%4(M&M*$( -&?L"*4( -C*(>*6*"#MK*'-(#.( &MM"%?&-%#'4( -C&-( $*01%$*( 4*$6%?*( ?#KM#4%O

-%#'^M$#?*44(&1-#K&-%#'("#D%?(21-(-C&-(&"4#(%'?"1>*(C1K&'(-&4L4+(HC*$*(C1K&'4(%'-*O

$&?-(H%-C( -C*( 474-*K(6%&(&(M#44%2"7(?#KM"*T(&'>( 4#MC%4-%?&-*>(5<( -C&-( %4( -&%"#$*>( -#(

C*"M(-C*K(%'(M*$.#$K%'D(-C*(4M*?%.%?(_#2(-C*7('**>(-#(?&$$7(#1-B(<'(#-C*$(H#$>4+(-C%4(

H#$L( -&$D*-4( -C*( >*6*"#MK*'-( #.(K&4C1MO"%L*( &MM"%?&-%#'4( -C&-( $*01%$*( M$#?*44( 41MO

M#$-+(%'?"1>%'D(&MM"%?&-%#'4(-C&-($*01%$*(>%4-$%21-*>(K&4C1M4(?##$>%'&-*>(%'($*&"(-%K*+(

&'>(M$#6%>*4(>*4%D'(&'>(-##"(41MM#$-(.#$(M$#.*44%#'&"(>*6*"#M*$4+(7%*">%'D(&'(#$%D%'&"(

?#KM#4%-%#'(M&$&>%DK(2&4*>(#'(H*2O2&4*>(5<(?#KM#'*'-4(&'>(H*2(4*$6%?*4B((

/C%4(%4(&(?#KK#'('**>(-C&-(-#>&7(%4(-7M%?&""7(.1".%""*>(27(>*6*"#M%'D(5<4(%'(&>(C#?(

H&74(&'>(14%'D(&(M$#?*44(*'D%'*(%'(-C*(2&?LO*'>(.#$(M$#?*44(&1-#K&-%#'B(U4(&'(*T&KO

M"*+(?#'4%>*$(-C*(.#""#H%'D(4?*'&$%#B(

(

!-?5"'%>%,%KM"%.%*>(C#K*(&44%4-&'?*(M$#?*44[(D$&7(4C&>*>(4H%K("&'*4(&$*(%'4-&'-%&-*>(#'"7(

#'?*(9%'(.#$K(#.(41%-&2"*(5<4;(&'>(C&'>"*(K1"-%M"*(%'4-&'?*4(#.(HC%-*(4C&>*>(4H%K("&'*4B(

+.':9"-#B(!%D1$*(W( 4C#H4( -C*(C%DCO"*6*"(K#>*"(#.( &(C#K*(&44%4-&'?*(M$#?*44( %'( -C*(

8$#6%'?*(#.(/$*'-#(H*(H&'-( -#(&%>( %'(#'*(#.(#1$(M$#_*?-4B(U(!1/+"./(?&'(&4L( .#$( -C*(
6%4%-(#.(&(C#K*(&44%4-&'-(9*BDB+(&(M&$&K*>%?;(27(?&""%'D(96%&(MC#'*;(&'(#M*$&-#$(#.(-C*(

&44%4-&'?*( 4*$6%?*B( 5M#'( $*01*4-+( -C*( #!")1/#)( %'M1-4( -C*( $*4M*?-%6*( >*-&%"4( &'>( %'O
4M*?-4( -C*(M&-%*'-N4(>&-&(&'>(M*$4#'&"(C*&"-C(C%4-#$7(%'(#$>*$( -#(M$#6%>*(-C*(&44%4-&'-(

"
#
$%
&'
(
%

)
**
+*
'&
,
'

-
.*
'$
/

!"#$"%&'(')*%*&

0
&'
+$
,
'

+*",'
*-%&.$/&*0-%

+*%*&'
1(&*"-&

2.*&"'
."10.&

3"%

-0

4./5*)"'
6007*-8

4./5*)"'
."10.&

9$.&5".'":(;%'
-""<"<=

>007'":(;

4./5*)"'."10.&

?:(;%'@A'/0;10-"-&B'
/0-C*.;(&*0-')*('."8$D(.'
150-"

+*%*&'(-<'E(1'@A'
/0;10-"-&% F53%*/(D')*%*&G'-0&'

(%%*%&"<'63'AH

F(&*"-&'(-<'+*%*&'
@A'/0;10-"-&%

I3%&";'(/&*)*&*"%'
*;1D";"-&"<'63';"(-%'0C'
0-"'0.';0."',"6'%".)*/"%

!"10.&'@A'/0;10-"-&

+*%*&'(-<'E(1'@A'/0;10-"-&%

!"8$D(.'150-"

?-&".'."#$"%&'
(-<'/5"/7'
1(&*"-&'<(&(

I"-<'
*-%&.$/&*0-%

?:/".1&'0C'&5"'(#$%&'(%1*!2$3!&##4+5&'+(, JC0.'
1."%"-&(&*0-'1$.10%"G',"'0;*&'&5"'<*%/$%%*0-'0C'

&5"'!"#$%&@A'/0;10-"-&KL'&5"'*-&".C(/"'*%'
/0;10%"<'0C'(''#()*+(&@A'/0;10-"-&'1D$%'@A'
/0;10-"-&%'&5(&'(."'."$%"<'*-'&5"'(%%*%&(-&M%'
,"6'(11D*/(&*0-G'*N"NG'&5"',)%)(%&@A'/0;10-"-&'

(-<'&5"'-#.%&@A'/0;10-"-&N'@10-'%"D"/&*0-'0.'
/."(&*0-'0C'(')*%*&'."#$"%&'*-'&5"',)%)(%&

/0;10-"-&G'&5"''#()*+(&(-<'-#.&/0;10-"-&'
(."'%3-/5.0-*O"<'*-'0.<".'&0'%50,'."D(&"<'

*-C0.;(&*0-N'H5"'(%%*%&(-&'J4K'(-<'&5"'%"D"/&"<'
1(&*"-&'J>K'(."'10%*&*0-"<'0-'&5"';(1N'H5"'

6.,&/+5!3$7&8+(%!0C'&5"'(11D*/(&*0-'*%'(/5*)"<'
)*('P()(I/.*1&N

>FEQRD*7"'
;0<"D'0C'&5"'
(11D*/(&*0-%M'
$-<".D3*-8'
1.0/"%%'D08*/

76



H%-C(-C*('*?*44&$7(%'4-$1?-%#'4B(/C*$*(%4(&"H&74(#'*(&44%4-&'-(#'(>1-7B(/C*(8#4"(1(9
(+(/1./(6%*H4(-C*(>*4?$%M-%#'+(6%4%-4( -C*(M&-%*'-+(&'>(.%"*4(&($*M#$-(&2#1-( -C*(M$#6%>*>(
4*$6%?*B( /C*( $*M#$-( %4( M$#?*44*>( 27( -C*(&1,39".:' (6(/"4( &'>( &$?C%6*>( %.( '#( .1$-C*$(
*T&K4(&$*('**>*>B( <.(*T&K4(&$*( %'4-*&>('**>*>+( -C*(#M*$&-#$(2##L4( -C*(*T&K( %'( -C*(

"#?&"( C#4M%-&"( &4L%'D( ?#'.%$K&-%#'( -#( -C*( M&-%*'-( 9&D&%'( 6%&( MC#'*;`( %'( M&$&""*"+( -C*(

474-*K(&$?C%6*4(-C*($*M#$-B(5M#'(?#'.%$K&-%#'(#.(-C*(*T&K(2##L%'D+(-C*(474-*K(&"4#(

&$?C%6*4(-C*(2##L%'D+(HC%?C(-*$K%'&-*4(-C*($*4M#'4%2%"%-7(#.(-C*(C#K*(&44%4-&'?*(4*$O

6%?*B(

Y1$(D#&"( %4( -#(>*6*"#M(&'(&MM"%?&-%#'( -C&-( 41MM#$-4( -C%4(M$#?*44B(/C%4(&MM"%?&-%#'(

%'?"1>*4+(2*4%>*4(-C*(M$#?*44("#D%?+(-H#(K&4C1MO"%L*+(H*2O2&4*>(?#'-$#"(?#'4#"*4(.#$(

-C*(#M*$&-#$(&'>(-C*(&44%4-&'-(-C&-(&$*(-C*K4*"6*4(M&$-(#.(-C*(#$?C*4-$&-%#'(&'>('**>(-#(

%'-*$&?-(H%-C(9&'>(&$*(&..*?-*>(27;( -C*(*6#"1-%#'(#.( -C*(M$#?*44B(!1$-C*$K#$*+( -C*(5<(

?&'( 2*( %-4*".( ?#KM#'*'-O2&4*>( &'>( ?$*&-*>( 27( $*14%'D( &'>( ?#K2%'%'D( *T%4-%'D( 5<(

?#KM#'*'-4B(/C*(-H#(&MM"%?&-%#'4+(#'?*(%'4-&'-%&-*>+(4C#1">(2*(&2"*(-#(K&'&D*(K1"O

-%M"*($*01*4-4(.#$(&44%4-&'?*+(HC%"*(-C*(474-*K(&?-%6%-%*4(H%""(2*(%'4-&'-%&-*>(%'>*M*'O

>*'-"7(.#$(*&?C($*M#$-(-#(2*(M$#?*44*>B(

@89))':?'/%9:6%.#:*"-45*-#:/B(/C*(4?*'&$%#($*01%$*4(-C*(?##$>%'&-%#'(#.(-C*(%'>%6%>O

1&"(&?-#$4(%'(-C*(M$#?*44(&'>(-C*(>*6*"#MK*'-(#.(-C*('*?*44&$7(:+(/)+&-/":(14*$(%'-*$O
.&?*(1.:(4*$6%?*(#$?C*4-$&-%#'("#D%?B()#%'D(4#($*01%$*4(9%;(1'>*$4-&'>%'D(C#H(-#(,#49
!#."./+;"'<=('1.:',#4!#("' /8"4' +./#'%"&'1!!$+,1/+#.(+( 9%%;( >*.%'%'D( &( "#D%?( -C&-( %4(
&2"*(-#(#),8"(/)1/"'&#/8'<=('1.:'%"&'(")*+,"(+(9%%%;(M$#6%>%'D(&("&'D1&D*(&'>(-##"(.#$(
(!",+06+.5' :+(/)+&-/":'<=' ,#4!#(+/+#.(+( &'>( 9%6;( >*6*"#M%'D( &( $1'-%K*( *'6%$#'K*'-(
-C&-(%4(&2"*(-#(">",-/"':+(/)+&-/":'<='1.:'(")*+,"',#4!#(+/+#.(B(
+*"5.*5"'% #;% *8'% (9('"B( <KM"*K*'-%'D( -C*( M$#?*44( #.( -C*( 4?*'&$%#( %4( &( '#'O-$%6%&"(

?#KM#4%-%#'(M$#2"*KB(U.-*$(>*4?$%2%'D(-C*(5<(#$?C*4-$&-%#'(&MM$#&?C(9,*?-%#'(a;+( %'(

-C%4( M&M*$(H*( 4C#H( C#H( >*.%'%'D( &( '*H( -7M*( #.( 2%'>%'D( &""#H4( 14( -#( "*6*$&D*( -C*(

4-&'>&$>(P,)F(VSX("&'D1&D*(-#(>*4?$%2*(E/]F^\&6&,?$%M-(5<(?#KM#'*'-4(9,*?-%#'(

S;B(P*(-C*'(21%">(#'(*T%4-%'D(?#KM#4%-%#'("&'D1&D*4(9%'(M&$-%?1"&$(P,OQ8RF(VbX;(-#(

%'-$#>1?*(-C*('#-%#'4(#.(5<(?#KM#'*'-4+(M&D*4+(&'>(&?-#$4(-#(41MM#$-(-C*(4M*?%.%?&-%#'(

#.(>%4-$%21-*>(5<(?#KM#4%-%#'4(9,*?-%#'(b;B(/C*(*T-*'>*>(Q8RF(%4(?#KM%"*>(-#(D*'*$O

&-*(-C*(5<(?#KM#4%-%#'("#D%?(9-C&-($1'4(*'-%$*"7(#'(-C*(2$#H4*$+(.#$(M*$.#$K&'?*($*&O

4#'4;(&'>(-C*(4*$6*$O4%>*("#D%?(-C&-(M*$.#$K4(4*$6%?*(#$?C*4-$&-%#'(&'>(>%4-$%21-*>(5<(

47'?C$#'%I&-%#'B(!%'&""7+(H*(*T-*'>(-C*(R?"%M4*(Q8RF(*>%-#$(-#(41MM#$-(-C%4(*T-*'4%#'+(

&'>(H*(>*4?$%2*(&(474-*K(-C&-(%4(&2"*(-#(*T*?1-*(>%4-$%21-*>(5<(?#KM#4%-%#'4+(4-&$-%'D(

.$#K( -C*( *T-*'>*>( Q8RF( 4M*?%.%?&-%#'B( /C*4*(K#>*"4( &'>( -##"4( &$*( %'-*D$&-*>( %'( &(

C#4-*>( >*6*"#MK*'-( &'>( *T*?1-%#'( M"&-.#$K+( ?&""*>(]&$?#!"#H( 9,*?-%#'( c;+( _#%'-"7(

>*6*"#M*>(27(E1&H*%(/*?C'#"#D%*4(&'>(-C*(5'%6*$4%-7(#.(/$*'-#B(

A! +*9*'%#;%*8'%<"*%-:%7".8'/*"9*-:?%+'",-.'/B%&'#()'%9:6%01/%

<'(K#4-(/'",-.'%#".8'/*"9*-#:(&MM$#&?C*4+(41?C(&4(Q8RF(VbX+(-C*$*(%4('#(41MM#$-(.#$(

5<(>*4%D'B(]&'7(6&$%&-%#'4(#.(Q8RF(C&6*(2**'(>*6*"#M*>+(*BDB+(&%K%'D(&-(-C*(%'6#?&O

-%#'( #.( JR,/( 4*$6%?*4( VcX( #$( &-( *TM#4%'D( Q8RF( M$#?*44*4( &4( JR,/( 4*$6%?*4( VdXB(

<Q]N4(,C&$&2"*(3#>*(M"&-.#$K(VeX(.#""#H4(&(4"%DC-"7(>%..*$*'-(4-$&-*D7(%'(-C*(?#KM#O

4%-%#'(#.(JR,/(&'>(,YU8(4*$6%?*4(&'>(&"4#(&""#H4(-C*(%'-*D$&-%#'(#.(14*$(%'-*$.&?*4(

77



.#$( -C*(P*2`(5<4( &$*( C#H*6*$( '#-( M$#6%>*>( &4( ?#KM#'*'-4( 21-( &4( &>OC#?(J127( #'(

J&%"4(E/]F(-*KM"&-*4B(

C&DEF&'#()'( VfX( %4(&'(*T-*'4%#'(#.(Q8RF(-C&-( %'-$#>1?*4(-C*(?#'?*M-(#.(M*#M"*(

-&4L( &4( .%$4-O?"&44( ?%-%I*'( %'-#( -C*( #$?C*4-$&-%#'( #.( H*2( 4*$6%?*4B( /C*( *T-*'4%#'( %4(

-%DC-"7( ?#1M"*>(H%-C( -C*(G+HI5$9:J9/K( VWgX( 4M*?%.%?&-%#'+(HC%?C( .#?14*4( #'( -C*(

>*.%'%-%#'(#.(C1K&'(-&4L4+(%'?"1>%'D(-C*%$(M$#M*$-%*4+(2*C&6%#$(&'>(#M*$&-%#'4(14*>(-#(

K&'%M1"&-*(-C*KB(Q8RFS8*#M"*(41MM#$-4(M*#M"*(&?-%6%-%*4(%'(.#$K(#.(%'"%'*(-&4L4(9>*O

.%'*>(%'(Q8RFS8*#M"*;(#$(4-&'>&"#'*(C1K&'(-&4L4(&??*44%2"*(&4(H*2(4*$6%?*4B(<'(#$O

>*$(-#(?#'-$#"(-C*("%.*(?7?"*(#.(4*$6%?*O*'&2"*>(C1K&'(-&4L4(%'(&'(%'-*$#M*$&2"*(K&'O

'*$+( P,OE1K&'/&4L( &"4#( ?#K*4( H%-C( &( 41%-&2"*( ?##$>%'&-%#'( M$#-#?#"( .#$( C1K&'(

-&4L4+(HC%?C(%4(41MM#$-*>(27(Q8RFS8*#M"*B(/C*(-H#(4M*?%.%?&-%#'4(.#?14(#'(-C*(?##$O

>%'&-%#'("#D%?(#'"7(&'>(>#('#-(41MM#$-(-C*(>*4%D'(#.(-C*(5<4(.#$(-&4L(*T*?1-%#'B(

/C*(474-*K&-%?(>*6*"#MK*'-(#.(H*2(%'-*$.&?*4(&'>(&MM"%?&-%#'4(C&4(-7M%?&""7(2**'(

&>>$*44*>(27(-C*(H*2(*'D%'**$%'D(?#KK1'%-7(27(K*&'4(#.($#6')H6"-,':%L'4%6'/-?:%

9(("#9.8'/B(UK#'D( -C*(K#4-( '#-&2"*( &'>( &>6&'?*>(K#>*"O>$%6*'(H*2(*'D%'**$%'D(

-##"4(H*(.%'>+(.#$(%'4-&'?*+(P*2J&-%#(VWWX(&'>(h%41&"P&>*(VWZXB(/C*(.#$K*$(%4(2&4*>(

#'( &( H*2O4M*?%.%?( 6%41&"( K#>*"%'D( "&'D1&D*( 9P*2]F;+( -C*( "&--*$( #'( &'( #2_*?-O

#$%*'-*>(K#>*"%'D( '#-&-%#'( 9YYOE;B( ,%K%"&$+( 21-( "*44( &>6&'?*>+(K#>*"%'D( -##"4( &$*(

&"4#(&6&%"&2"*(.#$(H*2(K#>*"%'D("&'D1&D*4^K*-C#>4("%L*(E*$&+(YYE)]+(&'>(5PRB(

/C*4*( -##"4( M$#6%>*( *TM*$-(H*2( M$#D$&KK*$4(H%-C(K#>*"%'D( &24-$&?-%#'4( &'>( &1-#O

K&-*>(?#>*(D*'*$&-%#'(?&M&2%"%-%*4( .#$( ?#KM"*T(H*2(&MM"%?&-%#'4(2&4*>(#'(&(C7M*$O

"%'LO2&4*>('&6%D&-%#'(M&$&>%DKB(P*2]F(C&4(&"4#(2**'(*T-*'>*>(-#H&$>(H*2(4*$6%?*4(

VWaX(&'>(M$#?*44O2&4*>(H*2(&MM"%?&-%#'4(VWSX`($*14*(%4(C#H*6*$("%K%-*>(-#(H*2(4*$6%?O

*4(&'>(5<4(&$*(D*'*$&-*>(#1-(#.(E/]F(-*KM"&-*4(.#$(%'>%6%>1&"(?#KM#'*'-4B(

U( .%$4-( &MM$#&?C( -#( ?#KM#'*'-O2&4*>( 5<( >*6*"#MK*'-( %4( $*M$*4*'-*>( 27((#"*9)/%

9:6%(#"*)'*/'VWbX+(HC%?C(*TM"%?%-"7(>%4-%'D1%4C(2*-H**'(5<(?#KM#'*'-4(9-C*(M#$-"*-4;(
&'>( ?#KM#4%-*( &MM"%?&-%#'4( 9-C*( M#$-&"4;B( 8#$-"*-4( &$*( .1""O."*>D*>+( M"1DD&2"*( P*2(

&MM"%?&-%#'(?#KM#'*'-4( -C&-(D*'*$&-*(>#?1K*'-(K&$L1M(.$&DK*'-4( 9*BDB+( 9i;E/]F;(

-C&-(?&'(C#H*6*$(#'"7(2*($*&?C*>(-C$#1DC(-C*(5JF(#.(-C*(M#$-&"(M&D*B(U(M#$-&"(4*$6*$(

-7M%?&""7(&""#H4(14*$4(-#(?14-#K%I*(?#KM#4%-*(M&D*4(9*BDB+( -#($*&$$&'D*(#$(4C#H^C%>*(

M#$-"*-4;( &'>(M$#6%>*4( 4%'D"*( 4%D'O#'( &'>( $#"*O2&4*>(M*$4#'&"%I&-%#'+( 21-( -C*$*( %4('#(

M#44%2%"%-7(-#(4M*?%.7(M$#?*44(."#H4(#$(H*2(4*$6%?*(%'-*$&?-%#'4(9-C*('*H(P,J8(VWcX(

4M*?%.%?&-%#'( #'"7( M$#6%>*4( 41MM#$-( .#$( &??*44%'D( $*K#-*( M#$-"*-4( &4( H*2( 4*$6%?*4;B(

U"4#(M9,9+'",'"%!9.'/(VWdX(.*&-1$*(&(?#KM#'*'-(K#>*"(.#$($*14&2"*(5<(?#KM#'*'-4(

&'>(41MM#$-(-C*(>*.%'%-%#'(#.('&6%D&-%#'(."#H4`(-C*(-*?C'#"#D7(%4(C#H*6*$(C&$>"7($*14O

&2"*( %'('#'O\&6&(2&4*>(H*2(&MM"%?&-%#'4+('&6%D&-%#'(."#H4(>#('#-(41MM#$-( ."#H(?#'O

-$#"4+(&'>(-C*$*(%4('#(41MM#$-(.#$(4*$6%?*(#$?C*4-$&-%#'(&'>(5<(>%4-$%21-%#'B(

!%'&""7+( -C*( H*2( K&4C1M( VZX( MC*'#K*'#'( M$#>1?*>( &( 4*-( #.( 4#O?&""*>($9/85(%

*##)/+(HC%?C(&%K(&-(&44%4-%'D(K&4C1M(>*6*"#MK*'-(27(K*&'4(#.(*&47O-#O14*(D$&MC%?&"(

14*$( %'-*$.&?*4( -&$D*-*>(&"4#(&-('#'OM$#.*44%#'&"(M$#D$&KK*$4B(!#$( %'4-&'?*+(G&C##j(

8%M*4(9C--M[^^M%M*4B7&C##B?#K;(.#?14*4(#'(>&-&(%'-*D$&-%#'(6%&(J,,(#$(U-#K(.**>4(6%&(

&(>&-&O."#H(?#KM#4%-%#'("&'D1&D*`(5<(%'-*D$&-%#'(%4('#-(41MM#$-*>B(]%?$#4#.-(8#M."7(

9C--M[^^HHHBM#M."7BK4`( >%4?#'-%'1*>( 4%'?*( U1D14-( Zggf;( M$#6%>*>( &( D$&MC%?&"( 14*$(

%'-*$.&?*( .#$( -C*( ?#KM#4%-%#'( #.( 2#-C( >&-&( &??*44( &MM"%?&-%#'4( &'>(5<( ?#KM#'*'-4`(

4*$6%?*( #$?C*4-$&-%#'( H&4( '#-( 41MM#$-*>B( \&?LQ*( 8$*4-#( 9C--M[^^HHHB_&?L2*B?#K;(

&>#M-4(&(8%M*4O"%L*(&MM$#&?C(.#$(>&-&(K&4C1M4(&'>(&""#H4(&(M#$-&"O"%L*(&DD$*D&-%#'(#.(

5<(H%>D*-4( 94#O?&""*>(K&4C"*-4;(6%41&"%I%'D( -C*(#1-M1-(#.( 41?C(K&4C1M4`( -C*$*( %4('#(

78



47'?C$#'%I&-%#'(#.(5<(H%>D*-4(#$(M$#?*44("#D%?B(<Q](kR)P%L%(9C--M[^^4*$6%?*4B&"MC&O

H#$L4B%2KB?#K^0*>H%L%;( M$#6%>*4( &( H%L%O2&4*>( 9?#""&2#$&-%6*;( K*?C&'%4K( -#( D"1*(

-#D*-C*$(\&6&,?$%M-(#$(8E8O2&4*>(H%>D*-4`(4*$6%?*(?#KM#4%-%#'(%4('#-(41MM#$-*>B(<'-*"(

]&4C(]&L*$(9C--M[^^K&4CK&L*$B%'-*"B?#K;(.*&-1$*4(&(2$#H4*$(M"1DO%'(HC%?C(%'-*$M$*-4(

&''#-&-%#'4(%'4%>*(H*2(M&D*4(&""#H%'D(-C*(M*$4#'&"%I&-%#'(#.(H*2(M&D*4(H%-C(5<(H%>O

D*-4`(4*$6%?*(?#KM#4%-%#'(%4(#1-4%>*(-C*(4?#M*(#.(]&4C(]&L*$B((

<'( -C*( K&4CU$-( VaX( M$#_*?-+( H*( H#$L*>( #'( &( 4#O?&""*>( 1'%6*$4&"( %'-*D$&-%#'( &MO

M$#&?C( .#$(5<( ?#KM#'*'-4( &'>(>&-&( &'>( &MM"%?&-%#'( "#D%?( 4*$6%?*4B(]&4CU$-( ?#K*4(

H%-C( &( 4%KM"*( *>%-#$( &'>( &( "%DC-H*%DC-( $1'-%K*( *'6%$#'K*'-( $1''%'D( %'( -C*( ?"%*'-(

2$#H4*$( &'>( -&$D*-4( 4L%""*>(H*2(14*$4B(]&4CU$-( &%K4( &-( 4%KM"%?%-7[( #$?C*4-$&-%#'(#.(

>%4-$%21-*>( 9%B*B+( K1"-%O2$#H4*$;( &MM"%?&-%#'4+( K1"-%M"*( &?-#$4+( &'>( ?#KM"*T( .*&-1$*4(

"%L*(-$&'4&?-%#'4(#$(*T?*M-%#'(C&'>"%'D(&$*(#1-4%>*(%-4(4?#M*B(/C*(3J5<,*(M$#_*?-(VWdX(

C&4(4%K%"&$%-%*4(H%-C(K&4CU$-+(*4M*?%&""7($*D&$>%'D(-C*(?#KM#'*'-%I&-%#'(#.(5<4B(G*-+(

%4(>#*4('#-(41MM#$-(-C*(4*&K"*44(%'-*D$&-%#'(#.(5<(?#KM#'*'-4(H%-C(4*$6%?*(#$?C*4-$&O

-%#'+( %B*B+( -C*$*( %4( '#( 41MM#$-( .#$( ?#KM"*T( M$#?*44( "#D%?B(3J5<,*( $&-C*$( .#?14*4( #'(

&>&M-%6%-7(&'>(?#'-*T-O&H&$*'*44B(!%'&""7+(-C*(,*$6!&?*(M$#_*?-(VWfX(&%K4(&-(41MM#$-O

%'D(*6*'(1'4L%""*>(H*2(14*$4(%'(?#KM#4%'D(H*2(4*$6%?*4(-C&-(?#K*(H%-C(&'(&''#-&-*>(

P,)F( >*4?$%M-%#'B(U''#-&-%#'4( &$*( 14*>( -#( &1-#K&-%?&""7( D*'*$&-*( .#$KO"%L*( %'-*$O

.&?*4(.#$(-C*(4*$6%?*4+(HC%?C(?&'(2*(M"&?*>(#'-#(#'*(#$(K#$*(H*2(M&D*4(&'>(14*>(-#(

D$&MC%?&""7( 4M*?%.7( >&-&( ."#H4( &K#'D( -C*( .#$K( .%*">4B( /C*( $*41"-( %4( &( 4%KM"*+( 14*$O

>$%6*'(H*2(4*$6%?*(#$?C*4-$&-%#'B(:#'*(#.(-C*4*(M$#_*?-4+(C#H*6*$+(41MM#$-4(-C*(?##$O

>%'&-%#'(#.(K1"-%M"*(>%..*$*'-(&?-#$4(%'4%>*(&(4&K*(M$#?*44+(&'>('#'*(#.(-C*(&MM$#&?CO

*4(>%4?144*>(%'(-C%4(4*?-%#'(41MM#$-4(-C*(>%4-$%21-%#'(#.(5<4(#6*$(K1"-%M"*(2$#H4*$4B(

N! 3-/*"-45*'6%0/'"%1:*'";9.'%7".8'/*"9*-#:2%<(("#9.8%

<.(H*(&'&"7I*(-C*(C#K*(&44%4-&'?*(4?*'&$%#+(H*(4**(-C&-(-C*(*'6%4%#'*>(&MM"%?&-%#'(9&4(

&(HC#"*;(%4(8+58$6':+(/)+&-/":(#6*$(-C*(P*2[(/C*(5<4(.#$(-C*(&?-#$4(M&$-%?%M&-%'D(%'(-C*(
&MM"%?&-%#'(&$*(?#KM#4*>(#.(5<(?#KM#'*'-4+(HC%?C(?&'(2*(?#KM#'*'-4(>*6*"#M*>(%'O

C#14*(9"%L*(-C*(?+(+/(?#KM#'*'-;(#$(4#1$?*>(.$#K(-C*(P*2(9"%L*(-C*(@1!(?#KM#'*'-;`(
4*$6%?*(#$?C*4-$&-%#'4(&$*(2&4*>(#'(H*2(4*$6%?*4B(/C*(5<(*TM#4*4(-C*(4-&-*(#.(-C*(&MO

M"%?&-%#'(&'>(&""#H4(14*$4(-#(%'-*$&?-(H%-C(%-(&'>(-#(*'&?-(4*$6%?*(?&""4B(/C*(-H#(&MM"%O

?&-%#'4( .#$( -C*(#M*$&-#$( &'>( -C*(&44%4-&'-( &$*( %'4-&'-%&-*>( %'(>%..*$*'-(H*2(2$#H4*$4+(

?#'-$%21-%'D(-#(-C*(>%4-$%21-%#'(#.(-C*(#6*$&""(5<(&'>($&%4%'D(-C*('**>(.#$(47'?C$#'%I&O

-%#'B((

/C*(3"6'+:"1(-#(&MM$#&?C(-C*(?##$>%'&-%#'(#.(9%;(5<(?#KM#'*'-4(%'4%>*(H*2(M&D*4+(
9%%;( H*2( 4*$6%?*4( M$#6%>%'D( >&-&( #$( &MM"%?&-%#'( "#D%?+( &'>( 9%%%;( %'>%6%>1&"( M&D*4( 9&4(

H*""(&4(-C*(M*#M"*(%'-*$&?-%'D(H%-C(-C*K;(%4(-#(4M"%-(-C*(?##$>%'&-%#'(M$#2"*K(%'-#(-H#(

"&7*$4[( +./)19!15"' <=' (6.,8)#.+;1/+#.( &'>( :+(/)+&-/":' <=' (6.,8)#.+;1/+#.' 1.:' %"&'
(")*+,"'#),8"(/)1/+#.B((
P*(C&6*(4**'(-C&-(K&'7(#.(-C*($*4*&$?C(?C&""*'D*4($&%4*>(27(-C*(C#K*(&44%4-&'?*(

&MM"%?&-%#'(&$*('#-(7*-(?#6*$*>(&>*01&-*"7(27(*T%4-%'D(H#$L4B(R4M*?%&""7( -C*(&%K(#.(

M$#6%>%'D(&(4%'D"*(>*6*"#MK*'-(&MM$#&?C(-C&-(%4(&2"*(-#(?#6*$(&""(>*6*"#MK*'-(&4M*?-4(

%'( &'( %'-*D$&-*>( .&4C%#'(M#4*4( $*01%$*K*'-4( -#( -C*(%8#$"' $+0"' ,6,$"( #.(5<(#$?C*4-$&O
-%#'4+(*4M*?%&""7(%'(-*$K4(#.(>*4%D'+(>*M"#7K*'-(&'>(*T*?1-%#'(41MM#$-B(

79



<'>**>+(41MM#$-%'D(-C*':"(+5.'#.(>%4-$%21-*>(5<(#$?C*4-$&-%#'4(41?C(&4(-C*(#'*4('**>*>(
%'(-C*(*T&KM"*(4?*'&$%#($*01%$*4[(

' )*.%'%'D(&('*H(-7M*(#.(?#KM#'*'-+( -C*(01%.#$(#:':*+(HC%?C( %4(&2"*( -#(K#>O

1"&$%I*(M%*?*4(#.(5<(&'>( -#(&24-$&?-( -C*%$(*T-*$'&"( %'-*$.&?*4( %'(&(H&7(-C&-(?#'O

.#$K4(-#(-C*(4-&'>&$>(P,)F(VSX(.#$K&-(.#$(4*$6%?*(>*4?$%M-%#'4(9-#(L**M(?#KM&O

-%2%"%-7(H%-C(-C*(Q8RF(*>%-#$4(&'>("&'D1&D*;B(P*(>*&"(H%-C(-C*('#6*"(-*?C'#"#D%O

?&"(&4M*?-4(%'-$#>1?*>(27(5<(?#KM#'*'-4(27(>*.%'%'D(&('*H(-7M*(#.(P,)F(2%'>O

%'D+(HC%?C( &""#H4(14( -#( 4M*?%.7(C#H( -#( -$&'4"&-*( -C*( &24-$&?-(P,)F(#M*$&-%#'(

>*4?$%M-%#'4(%'-#(\&6&,?$%M-(.1'?-%#'(?&""4B(

' Q$%'D%'D(-#D*-C*$( -C*('**>4(#.(01%/O:.8"#:-P9*-#:%9:6%/'",-.'%#".8'/*"9*-#:(

%'( #'*( 4%'D"*( "&'D1&D*B(5<4( &$*( -7M%?&""7( *6*'-O2&4*>( 9*BDB+( 14*$( ?"%?L4( #$( L*7(

4-$#L*4;+(HC%"*(4*$6%?*(%'6#?&-%#'4(&$*(?##$>%'&-*>(6%&(?#'-$#"(."#H4B(<'(-C%4(M&O

M*$+(H*(4C#H(C#H(-#(*T-*'>(-C*(4-&'>&$>(Q8RF("&'D1&D*(%'(#$>*$(-#(41MM#$-(5<4(

9Q8RF( ?#K*4( H%-C( D$&MC%?&"( *>%-#$4( &'>( $*&>7+( #..O-C*O4C*".( $1'-%K*( *'D%'*4(

-C&-( H*( H&'-( -#( $*14*+( '#-( $*O%KM"*K*'-;B( P*( ?&""( -C%4( *T-*'>*>( "&'D1&D*(

ABCDE<=B(
' <KM"*K*'-%'D(&(41%-&2"*+(D$&MC%?&"(6'/-?:%':,-"#:$':*( -C&-(&""#H4(>*6*"#M*$4(

-#(6%41&""7(?#KM#4*(4*$6%?*4(&'>(5<(?#KM#'*'-4(&'>(-#(>*.%'*(-C*(D$#1M%'D(#.(

5<(?#KM#'*'-4(%'-#(M&D*4B(P*(&?C%*6*(-C%4(27(*T-*'>%'D(-C*(R?"%M4*(Q8RF(*>%O

-#$(H%-C(5<O4M*?%.%?(K#>*"%'D(?#'4-$1?-4( -C&-(&$*(&2"*( -#(D*'*$&-*(Q8RFS5<( %'(

#1-M1-B(

,1MM#$-%'D(-C*':"!$#64"./(#.(5<(#$?C*4-$&-%#'4($*01%$*4[(
' +()-**-:?%*8'%C&DEF01%/('.-;-.9*-#:(%'-#(-C*(-H#(#$?C*4-$&-%#'("&7*$4(.#$(%'-$&O

M&D*(5<(47'?C$#'%I&-%#'(&'>(>%4-$%21-*>(5<(47'?C$#'%I&-%#'(&'>(H*2(4*$6%?*(#$O

?C*4-$&-%#'B( !#$( -C*( .#$K*$( H*( 14*( &( "%DC-H*%DC-( 5<( ?#KM#4%-%#'( "&'D1&D*(

95<3F;+( HC%?C( &""#H4( 4M*?%.7%'D( C#H( 5<( ?#KM#'*'-4( &$*( ?##$>%'&-*>( %'( -C*(

?"%*'-(2$#H4*$B(!#$(-C*("&--*$(H*($*"7(#'(4-&'>&$>(Q8RFB(

' 8$#6%>%'D(&(4*-(#.(95Q-)-9"O%L'4%/'",-.'/(-C&-(&$*(&2"*(-#(K*>%&-*(?#KK1'%?&O

-%#'4( 2*-H**'( -C*( ?"%*'-O4%>*( 5<( ?#KM#4%-%#'( "#D%?( &'>( -C*( Q8RF( "#D%?B( P*(

&?C%*6*( -C%4( "&7*$(27(&1-#K&-%?&""7(D*'*$&-%'D(&'>(>*M"#7%'D(&( 4*-(#.(H*2(4*$O

6%?*4(-C&-(K&'&D*(-C*(5<O-#OQ8RF(&'>(Q8RFO-#O5<(%'-*$&?-%#'4B(

,1MM#$-%'D(-C*'">",-/+#.(#.(5<(#$?C*4-$&-%#'4($*01%$*4[(
' 8$#6%>%'D(&(.)-':*H/-6'%"5:*-$'%;"9$'L#"K(.#$(5<(47'?C$#'%I&-%#'(-C&-(%4(&2"*(

-#(%'4-&'-%&-*(5<(?#KM#'*'-4(%'4%>*(H*2(M&D*4(&'>(-#(M$#M&D&-*(*6*'-4(.$#K(#'*(

?#KM#'*'-(-#(#-C*$(?#KM#'*'-4+(4-&$-%'D(.$#K(&(5<3F(4M*?%.%?&-%#'B(R6*'-4(#.(&(

5<(?#KM#'*'-(K&7(2*(M$#M&D&-*>(-#(?#KM#'*'-4($1''%'D(%'(-C*(4&K*(H*2(M&D*(

#$(%'(#-C*$(M&D*4(#.(-C*(&MM"%?&-%#'(&'>(-#(H*2(4*$6%?*4B(

' 8$#6%>%'D(&(.#$$5:-.9*-#:%$-66)'L9"'%)9O'"(-C&-(%4(&2"*(-#($1'(-C*(D*'*$&-*>(

&1T%"%&$7(H*2( 4*$6%?*4( .#$( 5<O-#OQ8RF( &'>( Q8RFO-#O5<( ?#KK1'%?&-%#'4B(P*(

%KM"*K*'-(-C%4("&7*$(27($*14%'D(4-&'>&$>(H*2(4*$6*$(-*?C'#"#D7(&2"*(-#(%'4-&'O

-%&-*(,YU8(&'>(JR,/.1"(H*2(4*$6%?*4B(

' ,*--%'D(1M(&(C&DE%':?-:'(-C&-(%4(&2"*(-#($1'(4-&'>&$>(Q8RF(M$#?*44(4M*?%.%?&O

-%#'4B(/C*(*'D%'*(%4(%'(?C&$D*(#.(#$?C*4-$&-%'D(H*2(4*$6%?*4(&'>(>%4-$%21-*>(5<O

5<( ?#KK1'%?&-%#'4B( P*( $*"7( #'( 4-&'>&$>( -*?C'#"#D7( &'>( $*14*( &'( *T%4-%'D(

Q8RF(*'D%'*B(

80



/C*4*($*01%$*K*'-4(&'>(-C*($*4M*?-%6*(C%'-4(-#(#1$(4#"1-%#'(4C#H(-C&-(-C*(K&%'(K*O

-C#>#"#D%?&"(D#&"4(%'(&?C%*6%'D(#1$(5<(#$?C*4-$&-%#'(&MM$#&?C(&$*(9%;($*"7%'D(&4(K1?C(

&4(M#44%2"*(#'(*T%4-%'D((/1.:1):(+(9%%;(M$#6%>%'D(-C*(>*6*"#M*$(H%-C(#'"7(0"%'1.:'(+49
!$"'."%',#.,"!/(+(&'>(9%%%;( %KM"*K*'-%'D(&( $1'-%K*(&$?C%-*?-1$*( -C&-(&44#?%&-*4(*&?C(
?#'?*$'(-#(-C*()+58/'$"*"$'#0'1&(/)1,/+#.'1.:'(#0/%1)"'/##$(9*BDB+(5<(47'?C$#'%I&-%#'(%4(
C&'>"*>(%'(-C*(2$#H4*$+(HC%"*(4*$6%?*(#$?C*4-$&-%#'(%4(>*"*D&-*>(-#(-C*(Q8RF(*'D%'*;B((

F! J8'%C5-)6-:?%C)#.K/2%G'4%+'",-.'/%9:6%01%@#$(#:':*/%

Y$?C*4-$&-%'D( $*K#-*(&MM"%?&-%#'( "#D%?(&'>(M%*?*4(#.(5<( $*01%$*4+( .%$4-(#.(&""+(1'>*$O

4-&'>%'D( -C*(*T&?-('&-1$*(#.( -C*(?#KM#'*'-4( -#(2*( %'-*D$&-*>B(!#$( -C*( %'-*D$&-%#'(#.(

&MM"%?&-%#'( "#D%?+( H*( $*"7( #'( 4-&'>&$>( H*2( 4*$6%?*( -*?C'#"#D%*4+( 41?C( &4( P,)FO

,YU8( 4*$6%?*4+( %B*B+( $*K#-*( H*2( 4*$6%?*4( HC#4*( *T-*$'&"( %'-*$.&?*( %4( >*4?$%2*>( %'(

P,)F+(HC%?C(41MM#$-4( %'-*$#M*$&2%"%-7(6%&( .#1$(K*44&D*O2&4*>( -7M*4(#.(#M*$&-%#'4[(

)"F-"(/9)"(!#.("+( .#/+0+,1/+#.+( #."9%16+( &'>( (#$+,+/9)"(!#.("B( ]#4-( #.( -#>&7N4( H*2(
4*$6%?*4(#.(-C%4(L%'>(&$*((/1/"$"((+(K*&'%'D(-C&-(-C*(#$>*$(#.(%'6#?&-%#'(#.(-C*%$(#M*$&O
-%#'4( >#*4( '#-( %'."1*'?*( -C*( 41??*44( #.( -C*( %'-*$&?-%#'+(HC%"*( -C*$*( &$*( &"4#( (/1/"0-$(
4*$6%?*4(HC#4*( %'-*$&?-%#'( $*01%$*4( .#""#H%'D( &( 4#O?&""*>( 214%'*44( M$#-#?#"( -C&-( >*O

4?$%2*4(-C*(%'-*$&?-%#'(M&--*$'4(41MM#$-*>(27(-C*(4*$6%?*B((

(

!-?5"'%A%l$&MC%?&"($*'>*$%'D(&'>(%'-*$'&"("#D%?(#.(&(\&6&,?$%M-^E/]F(5<(?#KM#'*'-(

!#$( -C*( %'-*D$&-%#'(#.(5<+(H*( $*"7( %'4-*&>(#'( \&6&,?$%M-^E/]F(01%.#$(#:':*/+(

HC%?C(&$*(4%KM"*+(4-&'>O&"#'*(H*2(&MM"%?&-%#'4(-C&-(?&'(2*(%'4-&'-%&-*>(&'>($1'(%'4%>*(

&'7(?#KK#'(H*2(2$#H4*$B(!%D1$*(Z(4C#H4(&'(*T&KM"*(#.(5<(?#KM#'*'-(9-C*(?+(+/(5<(
?#KM#'*'-(#.(#1$( $*.*$*'?*(4?*'&$%#;+( &"#'D(H%-C(&'(*T?*$M-(#.( %-4( \&6&,?$%M-( ?#>*B(

5'"%L*(H*2(4*$6%?*4+(5<(?#KM#'*'-4(&$*(?C&$&?-*$%I*>(27[(

' U(5/'"%-:*'";9.'B(5<(?#KM#'*'-4(?&'(2*(%'4-&'-%&-*>(%'4%>*(&(H*2(2$#H4*$(&'>(

?&'(2*(&??*44*>(&'>('&6%D&-*>(27(&(14*$(6%&(4-&'>&$>(E/]FB(/C*(5<(&""#H4(-C*(

14*$( -#( %'-*$&?-%6*"7( %'4M*?-( &'>( &"-*$( -C*( ?#'-*'-( #.( -C*( ?#KM#'*'-+( *BDB+( -C*(

/0#.1)2#3&0*+4*0)+5&67&(1*&,)%)(&89&
26$.6+*+(

:1*&26$.6+*+(;%&
<#=#>20).(&264*

!"#$%&'#()&*&%+,-'./'#0#%1&232&4,23$'#*%56757.*89
:::
%;&*:<'72(=(!"#$%&'#18(9(>>$'#*%5"$%'5?(50#205*(!&5*%(/7@0

%;&*:.AB&4=(2'$".0#%:@0%C<0.0#%DA,21%;&*:2&4,28E
%;&*:.AB&4:&##05FGHI=JK7(;50!=L'4054&0M:/;/LNO4054&0MK>7N(P(:::JE

Q

%;&*:4&*&%R0<0$%02(=(!"#$%&'#1&#/"%S557A89(>>4&*&%R0<0$%02(040#%
475(20%7&<*B&4=(%;&*:.AB&4:@0%C<0.0#%*DAG7@T7.01J2&4J8UVWE
20%7&<*B&4:&##05FGHI=(JK;XNR;'5%(20*$5&/%&'#(J(Y(&#/"%S557AUJ#7.0JW(Y(JK>;XNJY

&#/"%S557AUJ20*$JW(Y(J(K7(;50!=L20%7&<*:/;/Z&2=J(Y(&#/"%S557AUJ&2JW(Y(
JNH'50(20%7&<*K>7NJE(>>50#205*(*;'5%(20*$5&/%&'#

H75$'[<'M:[\:57&*0C40#%1&23L4&*&%R0<0$%02L3&#/"%S557A8E(>>57&*0*(040#%
Q

%;&*:20%7&<*]0^"0*%02=(!"#$%&'#1&#/"%S557A89(>>20%7&<*]0^"0*%02(040#%
H75$'[<'M:[\:57&*0C40#%1&23L20%7&<*]0^"0*%02L3&#/"%S557A8E

Q

%;&*:722]0^"0*%=(!"#$%&'#1&#/"%S557A89(>>(722]0^"0*%('/057%&'#*
:::

Q
Q

!=*+(

81



4C#$-(>*4?$%M-%#'(%'(!%D1$*(ZB(5<(?#KM#'*'-4(&$*(-C*$*.#$*((/1/"0-$+(&'>(-C*(?#KO
M#'*'-N4('&6%D&-%#'(.*&-1$*4($*M"&?*(-C*(214%'*44(M$#-#?#"('**>*>(.#$(4*$6%?*4B(

' D,':*/B(<'-*$&?-%'D(H%-C(-C*(5<(D*'*$&-*4(474-*K(*6*'-4(9*BDB+(K#14*(?"%?L4;( %'(

-C*( 2$#H4*$( 14*>( -#(K&'&D*( -C*( 1M>&-*( #.( ?#'-*'-4B( ,#K*( *6*'-4(K&7( 2*( *TO

M#4*>(&4(?#KM#'*'-(*6*'-4(%'(#$>*$(-#(,#44-.+,1/"'(/1/"',81.5"(B(!#$(%'4-&'?*+(
&(?"%?L(#'(-C*(G"/1+$(("%'L(%'(!%D1$*(Z("&1'?C*4(&(*+(+/7"$",/":(*6*'-B(

' 7('"9*-#:/B(YM*$&-%#'4(".1,/((/1/"',81.5"((.$#K(-C*(#1-4%>*B(/7M%?&""7+(H*(?&'(
K&M(-C*(*6*'-(#.(#'*(?#KM#'*'-(-#(-C*(#M*$&-%#'(#.(&'#-C*$(?#KM#'*'-(%'(#$>*$(

-#(47'?C$#'%I*(-C*(?#KM#'*'-4N(4-&-*(94#(-C&-(-C*7(4C#H($*"&-*>(%'.#$K&-%#';B(

' &"#('"*-'/B(/C*(D$&MC%?&"(4*-1M(#.(&(?#KM#'*'-(K&7($*01%$*(-C*(4*--%'D(#.(,#.9
(/)-,/#)'!1)14"/")(+(*BDB+(-#(&"%D'(2&?LD$#1'>(?#"#$4(#$(-#(4M*?%.7(-C*(4-&$-(M&D*(
#.(&(?#KM#'*'-B(

<'(#$>*$(-#(K&L*(5<(?#KM#'*'-4(&6&%"&2"*(%'(Q8RF+(*&?C(?#KM#'*'-(%4(*01%MM*>(H%-C(

&(4-&'>&$>(P,)F(>*4?$%M-#$(-C&-(>*4?$%2*4(-C*(*6*'-4(&'>(#M*$&-%#'4(9-C*(?#'4-$1?-#$(

%4( *TM$*44*>( &4( #M*$&-%#';( %'( -*$K4( #.( #'*OH&7( &'>( '#-%.%?&-%#'(P,)F( #M*$&-%#'4+(

$*4M*?-%6*"7B(/#(41MM#$-(-C*(%'4-&'-%&-%#'(&'>(*T*?1-%#'(#.(?#KM#'*'-4+(H*(C&6*(>*O

.%'*>(&('*H(H1*17,)+!/'&+.:+.5(.#$(P,)F+(HC%?C(2%'>4(-C*(&24-$&?-(#M*$&-%#'4(-#(-C*(
\&6&,?$%M-(.1'?-%#'4(#.(-C*(?#KM#'*'-B(/C*(P,)FO5<(>*4?$%M-#$(?&'(2*(14*>(&4(%4(27(

-C*(?"%*'-O4%>*($1'-%K*(.$&K*H#$L(&'>(&>&M-*>(.#$(%-4(14*(27(-C*(Q8RF(*'D%'*B(

R! S#6')-:?%01%7".8'/*"9*-#:/%

,M*?%.7%'D(&(5<(#$?C*4-$&-%#'($*01%$*4(K#>*"%'D(-H#(.1'>&K*'-&"(&4M*?-4[(9%;(-C*(+./"9
)1,/+#.' $#5+,( -C&-( $1"*4( -C*(M&44%'D(#.(>&-&(&K#'D(5<(?#KM#'*'-4(&'>(H*2(4*$6%?*4(
&'>(9%%;(-C*(5)1!8+,1$'$16#-/(#.(-C*(.%'&"(&MM"%?&-%#'B(,1MM#$-%'D(-C*4*(-&4L4(%'(Q8RF(
$*01%$*4(*T-*'>%'D(-C*(*TM$*44%6*(M#H*$(#.(-C*("&'D1&D*(H%-C(5<O4M*?%.%?(?#'4-$1?-4B(

R=>! C&DEF012%.#:.'(*/%9:6%/O:*9Q%

!%D1$*(a(4C#H4( -C*(4%KM"%.%*>(K*-&OK#>*"(#.(Q8RFS5<B(,M*?%.%?&""7+( -C*( .%D1$*(>*O

-&%"4( &""( -C*( '*H(K#>*"%'D( ?#'4-$1?-4( '*?*44&$7( -#( 4M*?%.7( 5<( #$?C*4-$&-%#'4( 9D$&7O

4C&>*>;(&'>(#K%-4(>*-&%"4(#.(-C*(4-&'>&$>(Q8RF("&'D1&D*+(HC%?C(&$*($*14*>(&4(%4(27(

Q8RFS5<(9&(>*-&%"*>(K*-&OK#>*"(.#$(Q8RF(?&'(2*(.#1'>(%'(VZgX;B(

<'(-*$K4(#.(4-&'>&$>(Q8RF(VbX+(&(5<(#$?C*4-$&-%#'(%4(&(!)#,"(((-C&-(%4(?#KM#4*>(#.(
&(4*-(#.(&44#?%&-*>(1,/+*+/+"((9*BDB+(4*01*'?*+(."#H+(%.+(&44%D'+(6&"%>&-*+(#$(4%K%"&$;+(*19
)+1&$"((9-#(4-#$*(%'-*$K*>%&-*(M$#?*44%'D($*41"-4;+(4"((15"'">,81.5"(+(,#))"$1/+#.'("/((
9-#(?#$$*"&-*(K*44&D*4(%'(?#'6*$4&-%#'4;+(&'>(01-$/'81.:$")(B(/C*(4*$6%?*4(#$(5<(?#KO
M#'*'-4( %'-*D$&-*>( 27( &( M$#?*44( &$*( >*?"&$*>( 27( K*&'4( #.( 4#O?&""*>( !1)/.")' $+.3(+(
HC%"*(!1)/.")'$+.3'/6!"((>*.%'*(-C*($#"*4(M"&7*>(27(*&?C(#.(-C*(4*$6%?*4(#$(5<(?#KM#O
'*'-4( %'( -C*(?#'6*$4&-%#'(&'>( -C*(!#)/' /6!"(( 4M*?%.7%'D( -C*(#M*$&-%#'4(&'>(K*44&D*4(
41MM#$-*>(27(*&?C(4*$6%?*(#$(?#KM#'*'-B(/C*$*(?&'(2*(K1"-%M"*(M&$-'*$("%'L4(.#$(*&?C(

M&$-'*$("%'L(-7M*B(

]#>*"%'D(5<O4M*?%.%?(&4M*?-4($*01%$*4( %'4-*&>(%'-$#>1?%'D(&(4*-(#.('*H(?#'4-$1?-4(

-C&-(&$*('#-(7*-(41MM#$-*>(27(Q8RFB(/C*(?#'4-$1?-4+(%""14-$&-*>(%'(!%D1$*(a+(&$*[(

82



(

!-?5"'%N%,%KM"%.%*>(Q8RFS5<(K*-&OK#>*"(%'(5]FB(PC%-*(?"&44*4(?#$$*4M#'>(-#(4-&'>&$>(

Q8RF(?#'4-$1?-4(VZgX`(D$&7(?"&44*4(?#$$*4M#'>(-#(?#'4-$1?-4(.#$(5<(&'>(14*$(K&'&D*K*'-B(

' 01%*O('[(/C*(14*(#.(5<(?#KM#'*'-4(%'(4*$6%?*(?#KM#4%-%#'4(&4L4(.#$(&('*H(L%'>(

#.(M&$-'*$("%'L(-7M*B(U"-C#1DC(47'-&?-%?&""7(-C*$*(%4('#(>%..*$*'?*(2*-H**'(H*2(

4*$6%?*4(&'>(5<(?#KM#'*'-4(9-C*(\&6&,?$%M-(2%'>%'D(%'-$#>1?*>(%'-#(P,)FO5<(

?#K*4(%'-#(M"&7(#'"7(&-($1'-%K*;+(%-(%4(%KM#$-&'-(-#(>%4-%'D1%4C(2*-H**'(4*$6%?*4(

&'>(5<(?#KM#'*'-4(&4(-C*%$(4*K&'-%?4(&'>+(C*'?*+(-C*%$(14&D*(%'(-C*(K#>*"(H%""(

2*(>%..*$*'-B(U"4#+(%-(%4('*?*44&$7(-#(K&$L(5<(?#KM#'*'-(-7M*4(&4(41?C+(%'(#$>*$(

-#(41MM#$-(-C*(D*'*$&-%#'(#.(4-&'>&$>(Q8RF+(&4(>*4?$%2*>(%'(,*?-%#'(cB(

U4(*T*KM"%.%*>(%'(!%D1$*(S+(H*(4M*?%.7(-C*('*H(M&$-'*$("%'L(-7M*("%L*(&(4-&'>&$>(

H*2(4*$6%?*( -7M*( 9"%'*4(WgOWa;B( <'(#$>*$( -#( $*."*?-( -C*(*6*'-4(&'>(#M*$&-%#'4(#.(

-C*(5<(?#KM#'*'-+(H*(>%4-%'D1%4C(-C*(-H#($#"*4B(F%'*4(WOe(>*.%'*(-C*('*?*44&$7(

'&K*(4M&?*4(&'>(%KM#$-(-C*(P,)FO5<(>*4?$%M-#$(#.(-C*(5<(?#KM#'*'-B(

' &9?'[(/C*(>%4-$%21-*>(5<(#.(-C*(#6*$&""(&MM"%?&-%#'(?#'4%4-4(#.(#'*(#$(K#$*(H*2(

M&D*4+(HC%?C( ?&'( C#4-( %'4-&'?*4( #.(5<( ?#KM#'*'-4B( 8&D*4( C&6*( &(.14"+( &(:"9
(,)+!/+#.+(&( $*.*$*'?*( -#( -C*(M&D*4N( $16#-/' /"4!$1/"+( -C*('&K*(#.( -C*(<='".5+."(
94**(,*?-%#'(c;( -C*7(H%""( $1'(#'+( &'>(&'( %'>%?&-%#'(#.(HC*-C*$( -C*7(&$*(&((/1)/'
!15"(#.(-C*(&MM"%?&-%#'(#$('#-(94%K%"&$(-#(-C*(4-&$-(&?-%6%-7(%'(M$#?*44(K#>*"4;B(
/C*(?#>*( "%'*4(WcOZW( %'(!%D1$*(S(4C#H(-C*(>*.%'%-%#'(#.(&(M&D*(?&""*>(mYM*$&O

-#$n+(&"#'D(H%-C(%-4("&7#1-(-*KM"&-*(&'>(-C*('&K*(#.(-C*(5<(*'D%'*(#'(HC%?C(-C*(

M&D*(H%""(2*(>*M"#7*>`(-C*(M&D*(%4(&(4-&$-(M&D*(.#$(-C*(M$#?*44B(

' &)9.'% 8#)6'"[( R&?C( M&D*( ?#K*4(H%-C( &( 4*-( #.( M"&?*( C#">*$4+(HC%?C( &$*( *KM-7(

&$*&4( %'4%>*(-C*("&7#1-( -*KM"&-*( -C&-(?&'(2*(14*>(.#$( -C*(D$&MC%?&"($*'>*$%'D(#.(

5<( ?#KM#'*'-4B( 8"&?*( C#">*$4( &$*( %>*'-%.%*>( 27( &( 1'%01*(.14"+(HC%?C( ?&'( 2*(
14*>(-#(&44#?%&-*(5<(?#KM#'*'-4B(

8"&?*(C#">*$4(&$*(&44#?%&-*>(H%-C(M&D*(>*.%'%-%#'4(&'>(4M*?%.%*>(&4(412O*"*K*'-4+(

&4(4C#H'(%'("%'*4(WfOZg(%'(!%D1$*(SB(

' 01% .#$(#:':*[(5<( -7M*4( ?&'( 2*( %'4-&'-%&-*>( &4(5<( ?#KM#'*'-4B( !#$( %'4-&'?*+(

-C*$*(K%DC-(2*(#'*(5<(-7M*(21-(-H#(>%..*$*'-(%'4-&'?*4(#.(-C*(-7M*($1''%'D(%'(-H#(

>%..*$*'-(H*2(M&D*4B()*?"&$%'D(&(5<(?#KM#'*'-( %'( &(Q8RFS5<(K#>*"( "*&>4( -#(

-C*(?$*&-%#'(#.(&'(%'4-&'?*(#.(-C*(5<(?#KM#'*'-(%'(#'*(#.(-C*(M&D*4(#.(-C*(&MM"%O

?&-%#'B(R&?C(?#KM#'*'-(%4(M&$-(#.(#'*(M$#?*44(&'>(C&4(&(1'%01*(.14"B(

4/&*)*&3

F.0/"%%

4/&*)*&3S0-&(*-".

E"%%(8"?:/5(-8"

+(.*(6D"

F(.&-".T*-7

S0.."D(&*0-I"&

S(&/5
C($D&U(-<D".%

0&9$

)5'(%

:;<(/#(,$,'

04&5$=(46$%>&/$
?$*5%+#'+(,
@$/#4&'$:AB
:;C,9+,$>&/$
+*-'&%'0&9$

>&/$

>&/$

>&/$

(//"%%*6D"H0

."-<"."<A-

0%(#$%'.
>&/$
D&4E$
@.#$

VNNW

VNNV

XNNW

VNNV
VNNV

VNNV

XNNWVNNV

XNNW

F(.&-".T*-7H31"
:;@.#$

<"%/.*6"<>3
VNNV

XNNV

F-?BG:;

5(%

/0-&(*-%

83



P*(4M*?%.7(5<(?#KM#'*'-(M&$-'*$( "%'L4(27(*T-*'>%'D( -C*(4-&'>&$>(M&$-'*$( "%'L(

>*.%'%-%#'( #.(Q8RF(H%-C( -C$**( '*H( &--$%21-*4+( %B*B+( +(<+I#4!#."./+(!15"J14"(
&'>'!$1,"K#$:")J14"B(F%'*4(ZbOaW(%'(!%D1$*(S(4C#H(C#H(-#(>*?"&$*(-C*(?+(+/'<='
,#4!#."./(#.(#1$(*T&KM"*(4?*'&$%#B(

' &"#('"*O[(U4(H*(C&6*(4**'(%'(-C*(M$*6%#14(4*?-%#'+(5<(?#KM#'*'-4(K&7(C&6*(&(

?#'4-$1?-#$( -C&-( &""#H4(#'*( -#( 4*-( ?#'.%D1$&-%#'(M$#M*$-%*4B(/C*$*.#$*+( *&?C(5<(

?#KM#'*'-(K&7(C&6*(&(4*-(#.(&44#?%&-*>(M$#M*$-%*4(-C&'(?&'(2*(M&$4*>(&-(%'4-&'O

-%&-%#'( -%K*( #.( -C*( ?#KM#'*'-B(P*( 14*( 4%KM"*( .14"9*1$-"( M&%$4( -#( 4-#$*( ?#'O
4-$1?-#$(M&$&K*-*$4B(

8$#M*$-%*4(*T-*'>(-C*(>*.%'%-%#'(#.(5<(?#KM#'*'-("%'L(-7M*4(27(&>>%'D(!)#!")/6(
412O*"*K*'-4( -#( -C*(M&$-'*$( "%'L(>*.%'%-%#'+(#'*(.#$(*&?C(?#'4-$1?-#$(M&$&K*-*$+(

&4(4C#H'(%'("%'*4(ZfOag(%'(!%D1$*(SB(

' <.*#"[( <'(#$>*$( -#(?##$>%'&-*( -C*(M*#M"*( %'(&(M$#?*44+(M&D*4(#.( -C*(&MM"%?&-%#'(

?&'(2*(&44#?%&-*>(H%-C(%'>%6%>1&"(&?-#$4+(%B*B+(C1K&'4+(HC%?C(&$*(-C*'(&""#H*>(-#(

&??*44(-C*(M&D*(&'>(-#(%'-*$&?-(H%-C(-C*(5<(#$?C*4-$&-%#'(6%&(-C*(5<(?#KM#'*'-4(

$*'>*$*>(%'(-C*(M&D*B(U4(.#$('#H+(H*(4%KM"7(&44#?%&-*(4-&-%?(&?-#$4(-#(M&D*4(914O

%'D(-C*%$(.14"(;`(7*-+(&?-#$4(?&'(*&4%"7(2*(&44%D'*>(&"4#(>7'&K%?&""7(&-(>*M"#7O
K*'-(-%K*(#$($1'-%K*(27(&44#?%&-%'D($#"*4(%'4-*&>(#.(&?-#$4(&'>(14%'D(&(41%-&2"*(

14*$(K&'&D*K*'-(474-*KB(

U?-#$4( &$*( &>>*>( -#( M&D*( >*.%'%-%#'4( 27(K*&'4( #.( -C*(1,/#)J14"( &--$%21-*+( &4(
C%DC"%DC-*>(%'("%'*(We(%'(!%D1$*(SB(

(

!"

#"

$"

%"

&"

'"

("

)"

*"

!+"

!!"

!#"

!$"

!%"

!&"

!'"

!("

!)"

!*"

#+"

#!"

##"

#$"

#%"

#&"

#'"

#("

#)"

#*"

$+"

$!"

$#"

$$"

$%"

,-./01.234/55"678/9:;38/<55=5>764/:"

"">72?/>@78/5.74/9AAABC6=>6B=>D-./0%C=D;38/<55=5>764/"

""E80651-./09:F>>.1DDG345B375=5H3./6B32?DA5-./0D#B+D.234/55D"

""/E/4C>7-0/:"E80651I=5=>9:F>>.1DDAAABC6=>6>B=>DJKDL=5=>JKM38.36/6>:"BBBN"

" " "

,-./01=8.32>"678/5.74/9:F>>.1DDAAABC6=>6B=>DJKDL=5=>JKM38.36/6>:""

""0347>=369:L=5=>JKBA5G0:"=8.32>OP./9:F>>.1DD54F/875BE80537.B32?DA5G0D:N"

,D-./01=8.32>N"

BBB"

,-./01.72>6/2Q=6ROP./"678/9:L=5=>JKM38.36/6>:N"

"",-./01230/"678/9:S/4/=I/:".32>OP./9:I=5=>1L=5=>JKTSUMUKLU:DN"

"",-./01230/"678/9:K6I3R/:".32>OP./9:I=5=>1L=5=>JKTK@LVWU:DN"

,D-./01.72>6/2Q=6ROP./N"

BBB"

,!"#$%N"
"",!"#$"&"'$9:V./27>32:"($%)*+!,+-&9:V./27>32X5"F38/".7?/:""
"""",$'!.",$/019:F>>.1DDAAABC6=>6B=>DYZUQ%JKD3./27>32Q7P3C>BF>80:"
""""2+3&#+&$4"'$9:J@KO@:"+%5,"*,6"#$9:P/5:""),-*4"'$9:Z7C0:N"
"""""",!.")$7-.($*"&"'$9:87243[03AH0/[>:DN"
"""""",!.")$7-.($*"&"'$9:87243[03AH2=?F>:DN"
"",D!"#$N"
""BBB"

,D!"#$%N"
,-./01.72>6/2Q=6R5N"

"",-./01.72>6/2Q=6R"678/9:L=5=>JKTV./27>32:""

"""".72>6/2Q=6ROP./9:L=5=>JKM38.36/6>:"8PS30/9:S/4/=I/:""

"""".72>6/2S30/9:K6I3R/:"+%/+8-'!-&$&,9:P/5:"!"#$4"'$9:Z7>=/6>:""
""""!.")$9-.($*4"'$9:87243[03AH0/[>:N"
"""""",!*-!$*,:"&"'$9:\>72>Z7?/:",:!$9:E5G15>2=6?:N@/A"L=5=>,D!*-!$*,:N"
"""""",!*-!$*,:"&"'$9:Y74R?23C6GM3032:",:!$9:E5G15>2=6?:NAF=>/,D!*-!$*,:N"
"",D-./01.72>6/2Q=6RN"

,D-./01.72>6/2Q=6R5N"

BBB"

,D-./01.234/55N"

!-?5"'%F%RT?*$M-(#.(-C*(Q8RFS5<(C#K*(&44%4-&'?*(M$#?*44(9'*H(?#'4-$1?-4(%'(2#">;"

84



(

!-?5"'%R%8&$-(#.(-C*(Q8RFS5<(K#>*"(#.(-C*(C#K*(&44%4-&'?*(M$#?*44(K#>*"*>(%'(-C*(*T-*'>*>(

R?"%M4*(Q8RF(*>%-#$(9-C*4*(&'>(#-C*$(7"F-".,"(?#'4-$1?-4($1'(%'4%>*(&(L$#%;B(

R=A! S#6')-:?%*8'%#".8'/*"9*-#:%)#?-.%

/C*(?#>*(*T&KM"*(%'(!%D1$*(S(4C#H4(-C&-(-C*(5<O4M*?%.%?(K#>*"%'D(?#'4-$1?-4(C&6*(&(

6*$7("%K%-*>(%KM&?-(#'(-C*(47'-&T(#.(Q8RF(&'>(&$*(?#'?*$'*>(H%-C(-C*(&24-$&?-(4M*?%O

.%?&-%#'(#.(-C*("&7#1-(&'>(-C*(>*?"&$&-%#'(#.(5<(M&$-'*$("%'L4B(/C*(&?-1&"(?#KM#4%-%#'(

"#D%?($*"%*4(*T?"14%6*"7(#'(4-&'>&$>(Q8RF(?#'4-$1?-4+(7*-(o(4%'?*(5<(?#KM#'*'-4(&$*(

>%..*$*'-(.$#K(H*2(4*$6%?*4(9*BDB+(%-(%4(%KM#$-&'-(-#(L'#H(%'(HC%?C(M&D*(-C*7(&$*($1'O

'%'D;(o(%-(%4(%KM#$-&'-(-#(1'>*$4-&'>(-C*(*..*?-(%'>%6%>1&"(K#>*"%'D(M&--*$'4(C&6*(#'(

-C*(*T*?1-%#'(#.(-C*(.%'&"(&MM"%?&-%#'+(%B*B+(-C*(("41./+,((#.(-C*(M&--*$'4B(U4(C%'-*>(&-(
%'(,*?-%#'(a(&'>(%""14-$&-*>(%'(!%D1$*(b+(H*(>%4-%'D1%4C(-C$**(K&%'(>*4%D'(M&--*$'4[((

' 1:*"9H(9?'% 01% /O:.8"#:-P9*-#:[( /C*( 4*01*'?*( ?#'4-$1?-( %'( -C*( $%DC-( M&$-( #.(

!%D1$*(b(4C#H4(-C*(%'-*$'&"4(#.(-C*(?+"%'+.(/)-,/+#.((-&4L(%'(!%D1$*(WB(PC*'(-C*(
&44%4-&'-(?"%?L4(#'(&(6%4%-($*01*4-+(-C*(M&-%*'-N4(&>>$*44(%4(4C#H'(#'(-C*(l##D"*(

K&MB( <'(Q8RF( -*$K4+(H*( $*?*%6*( &(K*44&D*( .$#K( -C*(?+(+/(5<( ?#KM#'*'-( 9-C*(
*6*'-;(&'>(.#$H&$>(%-(-#(-C*(#M*$&-%#'(#.(-C*(@1!(?#KM#'*'-+(%KM"*K*'-%'D(&'(
%'-$&OM&D*( 5<( 47'?C$#'%I&-%#'B( Q#-C(5<( ?#KM#'*'-4( %'6#"6*>( %'( -C*( 4*01*'?*(

&$*(&44#?%&-*>(H%-C(-C*(M&D*(#.(-C*(&44%4-&'-B(E*'?*+(-C%4(L%'>(#.(5<(47'?C$#'%I&O

-%#'(?&'(2*(M*$.#$K*>(#'(-C*(,$+"./'(+:"(H%-C#1-(%'6#"6%'D(-C*(Q8RF(*'D%'*B(
' 3-/*"-45*'6%01%/O:.8"#:-P9*-#:[(/C*(4*01*'?*(?#'4-$1?-(%'(-C*("*.-(M&$-(#.(-C*(

.%D1$*+(%'4-*&>+(?#'-&%'4(&(>%4-$%21-*>(47'?C$#'%I&-%#'(-C&-(?&''#-(2*(*T*?1-*>(#'(

-C*(?"%*'-(#'"7+(&4( -C*(-H#(5<(?#KM#'*'-4( %'6#"6*>(%'( -C*(?#KK1'%?&-%#'(9M"9
!#)/(&'>(C>14;( $1'( %'(>%..*$*'-(H*2(M&D*4B(/C*(*6*'-(D*'*$&-*>(1M#'(412K%4O
4%#'( #.( &( '*H( $*M#$-( %4( M$#?*44*>( 27( -C*( ABCD' ".5+."+( HC%?C( -C*'( >*?%>*4(
HC*-C*$(&'(&>>%-%#'&"(*T&K('**>4(-#(2*(2##L*>(27(-C*(#M*$&-#$(#$('#-B%

' +'",-.'%#".8'/*"9*-#:[(/C*(>%4-$%21-*>(5<(47'?C$#'%I&-%#'(&"4#(%'6#"6*4(-C*(#$O

?C*4-$&-%#'(#.(-C*(M"!#)/'1),8+*+.5(&'>(A##3+.5'1),8+*+.5(H*2(4*$6%?*4+(&4(H*""(
&4(4#K*(Q8RF(."#H(?#'-$#"(?#'4-$1?-4B(!#$( %'4-&'?*+( -C*(K#>*"*>( "#D%?(?C*?L4(

HC*-C*$(-C*($*M#$-(*TM$*44*4(-C*('**>(.#$(.1$-C*$(*T&K4(#$('#-B(<'(*%-C*$(?&4*+(-C*(

:;!(#$%&'+(,*!0C'&5"'
?:(;%'(-<'E(1'@A'
/0;10-"-&%

;,'%&G#&9$!@A'
%3-/5.0-*O(&*0-'

&5(&'/(-'6"'
":"/$&"<'"-&*."D3'
0-'&5"'/D*"-&'%*<"

?+*'%+3E'$6!:;!
*.,57%(,+H&'+(,!(-<'
*$%8+5$!(%57$*'%&G
'+(,!&5(&'."#$*."%'
;"<*(&*0-'63'&5"'

>F?T'"-8*-"N'H5"'
&,0'")"-&%'J?*2*)=*&

(/&*)*&*"%K'(."'
5(%%$4&'$6!63';"(-%'
0C'('>F?T'/0.."D(&*0-'
%"&'/0;10%"<'0C'&5"'

1(.(;&".'&$1D"'
@89A021*%(0#()6+9BC&

,)%)(9BDG'*N"NG'(-'
*<"-&*C*"<'(%%*8"-<'63'
&5"'@A'"-8*-"'(-<'&5"'

*<"-&*C*".'0C'&5"'."R
#$"%&"<')*%*&'J/(..*"<'

*-'&5"'."10.&KN'

:;!$8$,'*!
/0;*-8'C.0;'
&5"'/D*"-&'%*<"

85



.1$-C*$(M$#?*44%'D(#.(-C*($*M#$-(%'6#"6*4(-C*(%'6#?&-%#'(#.(*%-C*$(#'*(#$(2#-C(-C*(

H*2(4*$6%?*4+(%'(#$>*$(-#(?#$$*?-"7(-*$K%'&-*(-C*(C&'>"%'D(#.(&(6%4%-($*01*4-B%

/C*(Q8RFS5<(*T?*$M-(%'(!%D1$*(b(4C#H4(-C&-+(HC*'(K#>*"%'D(&(5<(#$?C*4-$&-%#'+(%-(

%4( %KM#$-&'-( -#(L**M( %'(K%'>(HC#(?#KK1'%?&-*4(H%-C(HC#K(&'>(HC*$*(5<(?#KM#O

'*'-4(H%""(2*($*'>*$*>B()*M*'>%'D(#'(-C*4*(-H#(?#'4%>*$&-%#'4+(-C*(K#>*"*>(?#KM#4%O

-%#'( "#D%?(H%""(*%-C*$(2*(*T*?1-*>(#'( -C*(?"%*'-(4%>*+( %'( -C*(Q8RF(*'D%'*+(#$( %'(2#-C(

"&7*$4B(!#$(%'4-&'?*+(%-(41..%?*4(-#(&44#?%&-*(-C*(@1!(?#KM#'*'-(H%-C(&(>%..*$*'-(M&D*(
4#(&4(-#(-1$'(-C*(%'-$&OM&D*(5<(47'?C$#'%I&-%#'(%'(-C*($%DC-(C&'>(4%>*(#.(!%D1$*(b(%'-#(&(

>%4-$%21-*>(?#KK1'%?&-%#'(&'>+(C*'?*+(-#($*01%$*(41MM#$-(.$#K(-C*(Q8RF(*'D%'*B(

39*9%*"9:/;#"$9*-#:/=(PC*'(?#KM#4%'D(4*$6%?*4(#$(5<(?#KM#'*'-4+(%-(%4('#-(*'#1DC(

-#(K#>*"( -C*(?#KK1'%?&-%#'(."#H(#'"7B(U'(%KM#$-&'-(&'>(-%K*O?#'41K%'D(&4M*?-( %4(

-C&-(#.(-$&'4.#$K%'D(-C*(>&-&(M&44*>(.$#K(#'*(?#KM#'*'-(-#(&'#-C*$B(P%-C(Q8RFS5<(

H*(41MM#$-(&""(>&-&(-$&'4.#$K&-%#'(.*&-1$*4(M$#6%>*>(27(Q8RF(27(K*&'4(#.(%-4(N((+5.(
&?-%6%-7B(/C%4(&""#H4(14(-#("*6*$&D*(#'(-*?C'#"#D%*4+(41?C(&4(i8&-C+(ik1*$7+(i,F/(#$(

\&6&+(.#$(-C*(%KM"*K*'-&-%#'(#.(&"4#(6*$7(?#KM"*T(>&-&(-$&'4.#$K&-%#'4B(G*-+(-C*(-7M*(

#.(>&-&(-$&'4.#$K&-%#'(K&7(&..*?-(-C*("#D%?(#.(-C*(5<(#$?C*4-$&-%#'B(!#$(%'4-&'?*+(%.(-C*(

7"/B#(+/+#.(&?-%6%-7(%'(!%D1$*(b(>#*4('#-(-$&'4.#$K(>&-&(&-(&""(#$(#'"7(M*$.#$K4(4%KM"*(
M&$&K*-*$(K&MM%'D4(9H%-C(-C*(Q8RF(I#!6(?#'4-$1?-;(-C*(%'-$&OM&D*(5<(47'?C$#'%I&O
-%#'(?&'(2*(*T*?1-*>(%'(-C*(?"%*'-(2$#H4*$B(<.(%'4-*&>(&(K#$*(?#KM"*T(-$&'4.#$K&-%#'(

%4('**>*>+(H*($*"7(#'(-C*(Q8RF(*'D%'*(-#(M*$.#$K(%-B((

/C*($*&4#'(.#$(-C%4(?C#%?*(%4(-C&-(5<(47'?C$#'%I&-%#'(-7M%?&""7(%'6#"6*4(*T?C&'D%'D(

#'"7(4%KM"*(>&-&(9*BDB+(M&$&K*-*$O6&"1*(M&%$4;(&'>(>#*4('#-($*01%$*(?#KM"*T(-$&'4.#$O

K&-%#'4( "%L*(HC*'( %'-*$&?-%'D(H%-C(H*2( 4*$6%?*4B(/C%4( ?C#%?*(&""#H4(14( -#(L**M( -C*(

?"%*'-O4%>*(.$&K*H#$L(&4("%DC-H*%DC-(&4(M#44%2"*+(HC%"*('#-(D%6%'D(1M(&'7(>&-&(-$&'4O

.#$K&-%#'(?&M&2%"%-%*4B(/C*(>*?%4%#'(#.(HC*$*(-#(-$&'4.#$K(>&-&(%4(-&L*'(2&4*>(#'(-C*(

'&-1$*(#.(-C*(%'6#"6*>(M&$-'*$("%'L4(&'>(-C*(-7M*(#.(-$&'4.#$K&-%#'B(

@#""')9*-#:B( /C*( %'-$&OM&D*( 5<( 47'?C$#'%I&-%#'( %'( !%D1$*( b( >#*4( '#-( %'6#"6*( &'7(

1(6.,8)#.#-((?#KK1'%?&-%#'(M&--*$'(#$(K1"-%M"*(*'-$7(M#%'-4(%'-#(-C*(M$#?*44("#D%?B(
<-(%4(-C*$*.#$*('#-('*?*44&$7(-#(%KM"*K*'-(&'7(?#$$*"&-%#'("#D%?(%'(Q8RFS5<(%'(#$>*$(

-#(M$#M&D&-*(-C*(?+(+/7"$",/":(*6*'-(-#(-C*(78#%B#+./(#M*$&-%#'B(/C*(?#$$*"&-%#'(#.(-C*(
*6*'-(&'>(-C*(#M*$&-%#'(%'(-C*(-H#(H*2(M&D*4(%4(&?C%*6*>(#1-4%>*(-C*(Q8RF(*'D%'*(9%'(

-C*(<='".5+."'(")*")(%'(!%D1$*(c;(27(4C&$%'D(&(?#KK#'(L*7(9-C*(<=O),8"(/)1/+#.=G;(
-C&-(%4(?&$$%*>(27(*&?C(*6*'-(&'>(14*>(-#(>%4M&-?C(*6*'-4B(/C%4(L%'>(#.(?#$$*"&-%#'(%4(

&1-#K&-*>(%'(#1$($1'-%K*(*'6%$#'K*'-(&'>(>#*4('#-($*01%$*(4M*?%.%?(K#>*"%'DB(

/C*(>%4-$%21-*>(5<(47'?C$#'%I&-%#'+(%'4-*&>+(%'6#"6*4(-H#(5<(*6*'-4(.$#K(-H#(>%.O

.*$*'-(&?-#$4[(M"!#)/I#4!$"/":(&'>(A##3+.5I#.0+)4":B(<'(-C%4(?&4*+(%-(%4('*?*44&$7(-#(
?#'.%D1$*( &( 4#O?&""*>( ,#))"$1/+#.' ("/( 9%'( Q8RF( -*$K%'#"#D7;( -C&-( &""#H4( -C*( Q8RF(
*'D%'*(-#(1'>*$4-&'>(HC*-C*$(-C*7(2*"#'D(-#(-C*(4&K*(M$#?*44(%'4-&'?*(#$('#-B(<'(!%DO

1$*(b+(H*(14*(<=O),8"(/)1/+#.=G(&'>(?+(+/=G(9M&$-(#.(-C*($*M#$-;(&4(?#$$*"&-%#'(4*-B(
T"9(8-.9)% )9O#5*B()*.%'%'D(H*2(M&D*4( &'>( &44#?%&-%'D(5<( M&$-'*$( "%'L4(H%-C( M"&?*(

C#">*$4(-C*$*%'($*01%$*4(%KM"*K*'-%'D(41%-&2"*(E/]F(-*KM"&-*4(-C&-(&$*(&2"*(-#(C#4-(

5<(?#KM#'*'-4B(U4(H*(.#?14(#'( -C*(K%>>"*H&$*( "&7*$(.#$(5<(#$?C*4-$&-%#'4+( .#$( -C*(

"&7#1-( -*KM"&-*4(H*($*"7(#'(4-&'>&$>(H*2(>*4%D'( %'4-$1K*'-4(&'>( -*?C'#"#D%*4B(/C*(

#'"7($*01%$*K*'-(-C*(-*KM"&-*4(K14-(4&-%4.7(%4(-C&-(-C*7(M$#6%>*(M"&?*(C#">*$4(%'(.#$K(

#.(E/]F()<h(*"*K*'-4(-C&-(?&'(2*(%'>*T*>(6%&(4-&'>&$>(E/]F(%>*'-%.%*$4(.#""#H%'D(

&(M$*>*.%'*>('&K%'D(?#'6*'-%#'[(P:+*'+:QR41),#0$#%9$"0/STU'PV:+*TB(

86



(

!-?5"'%U%!$#K(>*4%D'(-%K*(-#($1'-%K*[(#6*$&""(474-*K(&$?C%-*?-1$*(#.(]&$?#!"#HB(

U! 3'()#O-:?%9:6%V5::-:?%01%7".8'/*"9*-#:/%

/C*(Q8RFS5<("&'D1&D*(%4(#'"7(&(M%*?*(#.(-C*(%'-*D$&-*>(474-*K(.#$(5<(#$?C*4-$&-%#'+(

?&""*>(@1),#L$#%B(/C*(#6*$&""( &$?C%-*?-1$*(#.( -C*( 474-*K( %4( 4C#H'( %'(!%D1$*(c( 9.#$(
M$*4*'-&-%#'(M1$M#4*4+(H*(>%4?144(&( 4"%DC-"7( 4%KM"%.%*>(6*$4%#';+(HC%?C(M&$-%-%#'4( %-4(

4#.-H&$*(?#KM#'*'-4(%'-#(>*4%D'(-%K*+(>*M"#7K*'-(-%K*+(&'>($1'-%K*(?#KM#'*'-4B((

/C*(6'/-?:%M&$-(?#KM$%4*4(-C*(ABCDE<='":+/#)(H%-C(%-4(<='!1)/.")'$+.3',#.0+5-)19
/#)(&'>($16#-/',#.0+5-)1/#)B(,-&$-%'D(.$#K(&(4*-(#.(%"&'(")*+,"'27GD(+(<=',#4!#."./'
27GD(+( &'>(KW@D' /"4!$1/"(( -C*( &MM"%?&-%#'( >*6*"#M*$( D$&MC%?&""7( K#>*"4( -C*(5<(
#$?C*4-$&-%#'+(&'>(-C*(*>%-#$(D*'*$&-*4(&(?#$$*4M#'>%'D(ABCDE<=(4M*?%.%?&-%#'(%'(#1-O
M1-B(/C*(?#KM#4%-%#'("#D%?(%'(!%D1$*(b(C&4(2**'(K#>*"*>(%'(#1$(Q8RFS5<(*>%-#$+(&'(

*T-*'>*>(R?"%M4*(Q8RF(*>%-#$(H%-C( 9%;( &( M&'*"( .#$( -C*( 4M*?%.%?&-%#'(#.( -C*( M&D*4( %'(

HC%?C(5<(?#KM#'*'-4(?&'(2*($*'>*$*>(&'>(9%%;(&(M$#M*$-7(M&'*"(-C&-(&""#H4(-C*(>*6*"O

@A'"-8*-"'/D*"-&'J,"6'6.0,%".K@A'"-8*-"'/D*"-&'J,"6'6.0,%".K

>F?TY@A'"<*&0.

I".)*/"'
2IZT%

@A'/0;10-"-&'
2IZT%

>F?TY@A'S0;1*D".

>F?T'"-8*-"

@A'"-8*-"'%".)".'J,"6'%".)".K

@A'"-8*-"'/D*"-&'J,"6'6.0,%".K

@A'")"-&'6$%

>F?TY@A

>F?T

89EF'!G&
26$$H+)2#()6+

F'!GE89&
26$$H+)2#()6+

<>AI&=)#&
J::'

K-G&=)#&
>AL'

I[4F',"6'
%".)*/"%

411D*/(&*0-'
<")"D01".

I3%&";'
/0-C*8$.(&*0-

?$*+9,!'+/$
?$#4(./$,'!'+/$

AE,'+/$

<>&=)#&J::'

T(30$&'(-<'@A'
D08*/'8"-".(&0.

>F?T'8"-".(&0.

S0;;N'%".)*/"%'
8"-".(&0.

4>
S

@A'/0;10-"-&%

4 >
S

89&26$.6+*+(&26+(#)+*0

<>AI&=)#&
J::'

K-G&=)#&
>AL'

K-G&=)#&>AL'

T(30$&'
/0-C*8$.(&0.

@A'1(.&-".'D*-7'
/0-C*8$.(&0.

UHET'
&";1D(&"%

@A'
/0;10%*&*0-

G#M6H(&#+4&
89&365)2

>M%(*$&26$.6+*+(%

B62H$*+(&736N%
>M%(*$O1H$#+&26$$H+)2#()6+%
LH(6$#()2#33M&5*+*0#(*4&*3*$*+(%

?)"-&'
C0.,(.<".
?)"-&'

C0.,(.<".
?)"-&'

C0.,(.<".%

Q0&*C*/(&*0-'
5(-<D".

Q0&*C*/(&*0-'
5(-<D".

Q0&*C*/(&*0-'
5(-<D".%

?)"-&'
1.0:3
?)"-&'
1.0:3
?)"-&'
6$CC".

?)"-&'
1.0:3
?)"-&'
1.0:3
?)"-&'
1.0:3

@%".%

87



#M*$(-#(?#'.%D1$*(-C*(H*2(M&D*4+(-#(4*-(-C*(M$#M*$-%*4(#.(5<(M&$-'*$("%'L4+(&'>(-#(&44#O

?%&-*(-C*K(-#(M"&?*(C#">*$4(%'(-C*("&7#1-B(

/C*(6'()#O$':*(#.(&(5<(#$?C*4-$&-%#'($*01%$*4(-$&'4"&-%'D(-C*(Q8RFS5<(4M*?%.%?&O

-%#'+(HC%?C(%4('#-(%KK*>%&-*"7(*T*?1-&2"*('*%-C*$(27(&(4-&'>&$>(Q8RF(*'D%'*('#$(27(

-C*(5<($*'>*$%'D(*'D%'*(9-C*(4#O?&""*>(<='".5+."+(HC%?C(H*(>%4?144(%'(-C*(.#""#H%'D;+(
%'-#(*T*?1-&2"*(.#$K&-4B(/C%4(-&4L(%4(&?C%*6*>(27(-C*(ABCDE<=',#4!+$")+(HC%?C+(4-&$-O
%'D(.$#K(-C*(ABCDE<=(4M*?%.%?&-%#'+(-C*(4*-(#.(14*>(KW@D'/"4!$1/"((&'>(<=',#4!#9
."./'27GD(+(&'>(-C*((6(/"4',#.0+5-)1/+#.(#.(-C*($1'-%K*(M&$-(#.(-C*(&$?C%-*?-1$*+(D*O
'*$&-*4(-C$**(L%'>4(#.(#1-M1-4[(

WB' U(4*-(#.(,#44-.+,1/+#.',81.."$(' 9-#(2*(>*M"#7*>( %'( -C*(4#O?&""*>(<='".5+."'
(")*");+(HC%?C(K*>%&-*(2*-H**'(-C*(<='".5+."',$+"./( 9-C*(?"%*'-(2$#H4*$;(&'>(
-C*(ABCD'".5+."B(/C*4*(?C&''*"4(&$*(?$1?%&"(%'(-C&-(-C*7($*4#"6*(-C*(-*?C'#"#O
D7( ?#'."%?-( %'C*$*'-"7( M$*4*'-( %'(Q8RFS5<( 4M*?%.%?&-%#'4[( &(Q8RF( *'D%'*( %4(

'#-(&2"*(-#(-&"L(-#(\&6&,?$%M-(5<(?#KM#'*'-4($1''%'D(%'4%>*(&(?"%*'-(2$#H4*$+(

&'>(5<(?#KM#'*'-4(&$*('#-(&2"*(-#(%'-*$&?-(H%-C(-C*(,YU8(%'-*$.&?*(#.(&(Q8RF(

*'D%'*B(!#$(*&?C(5<(?#KM#'*'-(%'(&(M&D*+(-C*(?#KM%"*$(-C*$*.#$*(D*'*$&-*4(9%;(

&'( "*"./' !)#>6( -C&-( %4( &2"*( -#( .#$H&$>( *6*'-4( .$#K( -C*( ?"%*'-( 2$#H4*$( -#( -C*(
Q8RF( *'D%'*( &'>( 9%%;( &'( "*"./' &-00")( -C&-( %4( &2"*( -#( &??*M-( *6*'-4( .$#K( -C*(
Q8RF(*'D%'*(&'>(4-#$*4(-C*K(#'(2*C&".(#.(-C*(<='".5+."',$+"./B(

ZB' U((/1.:1):'ABCD( 4M*?%.%?&-%#'(?#'-&%'%'D( -C*(>%4-$%21-*>(5<(47'?C$#'%I&-%#'(
&'>( H*2( 4*$6%?*( #$?C*4-$&-%#'( "#D%?B( 5'"%L*( -C*( Q8RFS5<( 4M*?%.%?&-%#'+( -C*(

D*'*$&-*>(Q8RF( 4M*?%.%?&-%#'( >#*4( '#( "#'D*$( ?#'-&%'( &'7( #.( -C*(5<O4M*?%.%?(

?#'4-$1?-4( %'-$#>1?*>( %'( ,*?-%#'( bBW( &'>( ?&'( -C*$*.#$*( 2*( *T*?1-*>( 27( &'7(

4-&'>&$>4O?#KM"%&'-(Q8RF(*'D%'*B(/C%4(K*&'4( -C&-(&""( $*.*$*'?*4( -#(5<(?#KO

M#'*'-(M&$-'*$("%'L4(%'(%'M1-(-#(-C*(?#KM%"&-%#'(&$*($*H$%--*'(%'-#($*.*$*'?*4(-#(

-C*($*4M*?-%6*(?#KK1'%?&-%#'(?C&''*"4(#.(-C*(5<(?#KM#'*'-4(%'(-C*(<='".5+."'
(")*")+(&"4#(4*--%'D(-C*(?#$$*?-+('*H(,YU8(*'>M#%'-4B(

aB' U(4*-(#.(<=',#4!#(+/+#.((9#'*(.#$(*&?C(M&D*(#.(-C*(&MM"%?&-%#';(?#'4%4-%'D(#.(
-C*("&7#1-(#.(-C*(M&D*+(-C*("%4-(#.(5<(?#KM#'*'-4(#.(-C*(M&D*+(-C*(&44%D'K*'-(#.(

5<( ?#KM#'*'-4( -#( M"&?*( C#">*$4+( -C*( 4M*?%.%?&-%#'( #.( -C*( %'-$&OM&D*(5<( 47'O

?C$#'%I&-%#'("#D%?+(&'>(&($*.*$*'?*(-#(-C*(?"%*'-O4%>*($1'-%K*(.$&K*H#$LB(<'-*O

$&?-%#'4(H%-C(H*2(4*$6%?*4(#$(5<(?#KM#'*'-4($1''%'D(%'(#-C*$(M&D*4(&$*(-$&'4O

"&-*>(%'-#(%'-*$&?-%#'4(H%-C("#?&"(474-*K(?#KM#'*'-4(9-C*(.#/+0+,1/+#.'81.:$")((
&'>("*"./'0#)%1):")(;+(HC%?C(K&'&D*(-C*('*?*44&$7(%'-*$&?-%#'(H%-C(-C*(,#49
4-.+,1/+#.',81.."$((6%&(41%-&2"*(JR,/.1"(H*2(4*$6%?*(?&""4B(

!%'&""7+(-C*(ABCDE<=',#4!+$")(&"4#(K&'&D*4(-C*(>*M"#7K*'-(#.(-C*(D*'*$&-*>(&$-%O
.&?-4(%'(-C*($*4M*?-%6*($1'-%K*(*'6%$#'K*'-4B(,M*?%.%?&""7+(-C*(D*'*$&-*>(,#44-.+,19
/+#.',81.."$((&'>(-C*(5<(?#KM#4%-%#'4(&$*(>*M"#7*>(%'(-C*(<='".5+."'(")*")(&'>(-C*(
4-&'>&$>(ABCD'(!",+0+,1/+#.(%4(>*M"#7*>(%'(-C*(ABCD'".5+."B((
/C*( 'Q'.5*-#:( #.( &(5<( #$?C*4-$&-%#'( $*01%$*4( -C*( 4*--%'D( 1M( &'>( ?##$>%'&-%#'( #.(

-C$**( %'>*M*'>*'-( $1'-%K*(*'6%$#'K*'-4[(!%$4-+( -C*( %'-*$&?-%#'(H%-C( -C*(14*$4( %4(K&O

'&D*>( %'( -C*(?"%*'-(2$#H4*$(27(&'(*6*'-O2&4*>(\&6&,?$%M-( $1'-%K*(.$&K*H#$L( -C&-( %4(

&2"*(-#(M&$4*(-C*(5<(?#KM#4%-%#'(4-#$*>(%'(-C*(5<(*'D%'*(4*$6*$+(-#(%'4-&'-%&-*(5<(?#KO

M#'*'-4( %'( -C*%$( $*4M*?-%6*(M"&?*(C#">*$4+( -#( ?#'.%D1$*( -C*(.#/+0+,1/+#.'81.:$")(( &'>(
"*"./'0#)%1):")(+(&'>(-#(4*-(1M(-C*('*?*44&$7(M12"%4CO4124?$%2*("#D%?($1"%'D(-C*(*6*'-O
-#O#M*$&-%#'( K&MM%'D( #.( -C*( ?#KM#'*'-4( $1''%'D( %'4%>*( -C*( ?"%*'-( 2$#H4*$B( PC%"*(

88



"*"./' 0#)%1):")(( &$*( ?&""*>( *&?C( -%K*( &'( *6*'-( %4( -#( 2*( 4*'-( .$#K( -C*( ?"%*'-( -#( -C*(
Q8RF(*'D%'*+( -C*(.#/+0+,1/+#.'81.:$")(( &$*(&?-%6*(?#KM#'*'-4( -C&-(M*$%#>%?&""7(M#""(
-C*( *6*'-( 21..*$4( #.( -C*%$(5<( ?#KM#'*'-4( #'( -C*(<=' ".5+."' (")*")( %'( #$>*$( -#( .*-?C(
M#44%2"*( *6*'-4( ?#K%'D( .$#K( -C*(ABCD' ".5+."( 9H*( &$*( ?1$$*'-"7( 4-1>7%'D( 41%-&2"*(
M14C(K*?C&'%4K4(.#$(*6*'-4;B(

,*?#'>+(-C*(<='".5+."'(")*")(K14-($1'(-C*(H*2(4*$6%?*4(%KM"*K*'-%'D(-C*(?#KK1O
'%?&-%#'(?C&''*"4B(<'(M$&?-%?*(H*(D*'*$&-*(4-&'>&$>(\&6&(4*$6"*-4(&'>(,YU8(H*2(4*$O

6%?*4+(HC%?C(?&'(*&4%"7(2*(>*M"#7*>(%'(&(?#KK#'(H*2(4*$6*$+(41?C(&4(UM&?C*(/#KO

?&-B(/C*(14*(#.(&(H*2(4*$6*$(%4(K&'>&-#$7(%'(-C&-(H*('**>(-#(2*(&2"*(-#(&??*M-('#-%.%?&O

-%#'4( .$#K( -C*(Q8RF(*'D%'*( &'>( -C*(5<( *'D%'*( ?"%*'-+(HC%?C( $*01%$*4( -C*( &2%"%-7(#.(

?#'4-&'-( "%4-*'%'DB(/C*(*6*'-(21..*$( %4( %KM"*K*'-*>(6%&(&( 4%KM"*( $*"&-%#'&"(>&-&2&4*(

9%'( 8#4-D$*,kF;( -C&-( K&'&D*4( K1"-%M"*( 5<( ?#KM#'*'-4( &'>( >%4-%'D1%4C*4( 2*-H**'(

%'4-&'?*4(#.(5<(#$?C*4-$&-%#'4(27(K*&'4(#.(&(4*44%#'(L*7(-C&-(%4(4C&$*>(&K#'D(&""(5<(

?#KM#'*'-4(M&$-%?%M&-%'D(%'(&(4&K*(5<(#$?C*4-$&-%#'(%'4-&'?*B(

/C%$>+( $1''%'D( -C*(Q8RF(M$#?*44( $*01%$*4( &(ABCD'".5+."B(Y1$(?C#%?*( -#( $*"7(#'(
4-&'>&$>(Q8RF( &""#H4( 14( -#( $*14*( &( ?#KK#'( *'D%'*(H%-C#1-( -C*( '**>( .#$( &'7(5<O

4M*?%.%?( *T-*'4%#'4B( <'( #1$( ?&4*+(H*( 14*(UM&?C*(Y)RX(HC%?C( %4( ?C&$&?-*$%I*>( 27( &(
4%KM"*(>*M"#7K*'-(M$#?*>1$*(.#$(Q8RF(M$#?*44*4B(

/C*(]&$?#!"#H( 474-*K( 4C#H'( %'( !%D1$*( c( %4( .1""7( %KM"*K*'-*>( &'>( $1''%'DB(U(

>*K#(#.(-C*(-##"(%4(&6&%"&2"*(&-(8//!YVV41(81)/Z#)5V41),#0$#%V:"4#Z8/4Z((

W! @#:.)5/-#:%

/C*(4M*?-$1K(#.(&MM"%?&-%#'4(HC#4*(>*4%D'(%'-$%'4%?&""7(>*M*'>4(#'(&(4-$1?-1$*>(."#H(

#.( &?-%6%-%*4+( -&4L4(#$( ?&M&2%"%-%*4( %4( "&$D*+(21-( ?1$$*'-(H#$L."#H(#$(214%'*44(M$#?*44(

K&'&D*K*'-(4#.-H&$*(%4('#-(&2"*(-#(?&-*$(.#$(&""(#.(-C*KB(R4M*?%&""7("%DC-H*%DC-+(?#KO

M#'*'-O2&4*>( &MM"%?&-%#'4( #$(P*2( ZBg( 2&4*>+(K&4C1MO"%L*( &MM"%?&-%#'4( -7M%?&""7( >#(

'#-( _14-%.7( -C*( %'6*4-K*'-( %'( ?#KM"*T( M$#?*44( 41MM#$-( 474-*K4+( *%-C*$( 2*?&14*( -C*%$(

14*$(2&4%4(%4(-##(4K&""(#$(2*?&14*(-C*$*(%4('**>(#'"7(.#$(.*H+(4%KM"*(&MM"%?&-%#'4B(G*-+(

-C*4*(&MM"%?&-%#'4(-##(>*K&'>(.#$(&24-$&?-%#'4(&'>(-##"4(-C&-(&$*(&2"*(-#(4M**>(1M(-C*%$(

>*6*"#MK*'-+(*4M*?%&""7(%'(-C*(?#'-*T-(#.(-C*(P*2(H%-C(%-4(.&4-(>*6*"#MK*'-(?7?"*4B(

P*(%'-$#>1?*>(-C*(%>*&(#.(:+(/)+&-/":'<='#),8"(/)1/+#.+(&(?#KM#'*'-O2&4*>(>*6*"O
#MK*'-( -*?C'%01*( -C&-( %'-$#>1?*4( &( '*H( .%$4-O?"&44( ?#'?*M-( %'-#( -C*(H#$L."#H(K&'O

&D*K*'-(&'>(4*$6%?*(?#KM#4%-%#'(H#$">+(%B*B+(5<4+(&'>(-C&-(.%-4(-C*('**>4(#.(K&'7(#.(

-#>&7N4(H*2(&MM"%?&-%#'4B(P*(M$#M#4*>(&(K#>*"(.#$(5<(?#KM#'*'-4(&'>(4C#H*>(C#H(

-C*%$( 14*( $*01%$*4( *T-*'>%'D( -C*( *TM$*44%6*( M#H*$( #.( 4-&'>&$>( 4*$6%?*( ?#KM#4%-%#'(

"&'D1&D*4B( /C*( "&'D1&D*( ?#K*4( H%-C( &( 41%-&2"*( K#>*"%'D( *'6%$#'K*'-( &'>( &( ?#>*(

D*'*$&-#$(&2"*(-#(M$#>1?*(?#>*(&'>(%'4-$1?-%#'4(-C&-(?&'(2*(*T*?1-*>(4-$&%DC-&H&7(27(

#1$($1'-%K*(*'6%$#'K*'-+(HC%?C(4*M&$&-*4(-C*(M$#2"*K(#.(%'-$&OM&D*(5<(47'?C$#'%I&O

-%#'(.$#K(-C&-(#.(>%4-$%21-*>(5<(47'?C$#'%I&-%#'(&'>(4*$6%?*(#$?C*4-$&-%#'B(/C*($*41"-(

%4(&'(&MM$#&?C(-#(>%4-$%21-*>(5<(#$?C*4-$&-%#'(-C&-(%4(?#KM$*C*'4%6*(&'>(.$**B(

5'"%L*( %'(#1$( $*4*&$?C(#'(1'%6*$4&"( ?#KM#4%-%#'( VaX( &'>(1'"%L*(K&4C1M( -##"4+( %'(

-C%4(M&M*$(H*(>#('#-(&%K(&-(*'&2"%'D("*44(4L%""*>(H*2(14*$4(-#(>*6*"#M(4%KM"*(&MM"%?&O

-%#'4B(]&$?#!"#H(-&$D*-4(4L%""*>(H*2(>*6*"#M*$4(-C&-(&$*(.&K%"%&$(H%-C(Q8RF(&'>(&MO

M"%?&-%#'4( -C&-(&$*(?#KM"*T(&'>(M#44%2"7( %'6#"6*(K1"-%M"*( &?-#$4( -C&-( &$*(>%4-$%21-*>(

89



#6*$(-C*(P*2+(21-(-C&-('**>(#$?C*4-$&-%#'B(PC%"*(-C*(%>*&(#.(*6*'-O2&4*>(5<(?#KM#O

'*'-4( C&4( 2**'( &$#1'>( .#$( 4#K*( -%K*( '#H+( >%4-$%21-*>( 5<( #$?C*4-$&-%#'( &'>(K1"-%O

2$#H4*$^K1"-%O&?-#$(&MM"%?&-%#'4(&4(M$#M#4*>(%'(-C%4(M&M*$(&$*('*HB(

:*T-+(H*(M"&'(-#(41MM#$-(-C*(:6.14+,'("$",/+#.'#0'1,/#)((9>1$%'D(>*M"#7K*'-(#$(&-(
$1'-%K*;+( &>6&'?*>( 1,,"((' !#$+,+"(+( &'>( :1/1' 0$#%'K*?C&'%4K4( -C&-( D#( 2*7#'>( -C*(
?1$$*'-(*6*'-O2&4*>(?#KK1'%?&-%#'(9*BDB+(-C$#1DC(&(41%-&2"*(M*$4%4-*'?*("&7*$;B((

V';'"':.'/%

WB' QBUB(]7*$4+(]BQB(J#44#'B( ,1$6*7( #'( 14*$( %'-*$.&?*( M$#D$&KK%'DB(7=[IK=\]^+( MMB( WfbO
ZgZB(

ZB' \B( G1+( QB( Q*'&-&""&C+( !B( 3&4&-%+( !B( )&'%*"B( 5'>*$4-&'>%'D(]&4C1M( )*6*"#MK*'-( &'>( %-4(
)%..*$*'?*4(H%-C(/$&>%-%#'&"( <'-*D$&-%#'B( =CCC' =./")."/'I#4!-/+.5+(h#"B( WZ+(:#B( b+( ,*MO
-*K2*$OY?-#2*$(Zgge+(MMB(SSObZB(

aB' !B()&'%*"+(!B(3&4&-%+(QB(Q*'&-&""&C+(]BO3B(,C&'B( (E#4-*>(5'%6*$4&"(3#KM#4%-%#'[(]#>*"4+(
F&'D1&D*4(&'>(<'.$&4-$1?-1$*(%'(K&4CU$-B(CM_`]+(MMB(SZeOSSaB(

SB' RB(3C$%4-*'4*'+(!B(31$2*$&+(lB(]*$*>%-C+(,B(P**$&H&$&'&B(P*2(,*$6%?*4()*4?$%M-%#'(F&'O
D1&D*(9P,)F;(WBWB(Pa3(:#-*+(]&$?C(ZggWB(VY'"%'*X(8//!YVV%%%Z%aZ#)5VWMV%(:$(

bB' YU,<,B(P*2(,*$6%?*4(Q14%'*44(8$#?*44(RT*?1-%#'(F&'D1&D*(h*$4%#'(ZBg+(UM$%"(ZggdB(VY'O
"%'*XB(8//!YVV:#,(Z#1(+(9#!".Z#)5V%(&!"$V^Z`VO7V%(&!"$9*^Z`9O7Z8/4$(

cB' 3B(8&1-&44#B(Q8RF(.#$(JR,/B(AB@_`b+(]%"&'#+(MMB(ZdeOZfaB(
dB' /B( 6&'( F*44*'+( !B( F*7K&''+( JB( ]%*-I'*$+( \B( :%-I4?C*+( )B( ,?C"*%?C*$B( U( ]&'&D*K*'-(

!$&K*H#$L(.#$(P,OQ8RF+(CI#27_`b+()12"%'+(MMB(WedOWfcB(
eB' RB(]B(]&T%K%"%*'+( UB( J&'&2&C1+( pB( l#K&>&KB( U'(Y'"%'*( 8"&-.#$K( .#$(P*2( U8<4( &'>(

,*$6%?*(]&4C1M4+(=./")."/'I#4!-/+.5+(6#"B(WZ+('#B(b+(MMB(aZOSa+(,*MB(ZggeB(
fB' U?-%6*( R'>M#%'-4+( U>#2*+( QRU+( <Q]+( Y$&?"*+( ,U8B( P,OQ8RF( RT-*'4%#'( .#$( 8*#M"*(

9Q8RFS8*#M"*;+(h*$4%#'(WBgB(\1'*(ZggdB(

WgB'U?-%6*(R'>M#%'-4+(U>#2*+(QRU+(<Q]+(Y$&?"*+(,U8B(P*2(,*$6%?*4(E1K&'(/&4L(9P,OE1O
K&'/&4L;+(h*$4%#'(WBgB(\1'*(ZggdB(

WWB'JB(U?*$2%4+(UB( Q#'D%#+(]B(Q$&K2%""&+( ,B( Q1--%+( ,B( 3*$%+( 8B( !$&-*$'&"%B(P*2(UMM"%?&-%#'4(
)*4%D'(&'>()*6*"#MK*'-(H%-C(P*2]F(&'>(P*2J&-%#(bBgB(WOOD7\`b+(MMB(afZOSWWB(

WZB'\B(lqK*I+(UB(Q%&+(UB(8&$$&D&B(/##"(,1MM#$-(.#$(]#>*"O)$%6*'()*6*"#MK*'-(#.(P*2(UMM"%O
?&-%#'4+(2=7C\`c+(MMB(dZWOdagB(

WaB'<B(]&'#"*4?1+(]B(Q$&K2%""&+( ,B( 3*$%+( ,B( 3#K&%+( 8B( !$&-*$'&"%B(]#>*"O)$%6*'()*4%D'( &'>(
)*M"#7K*'-(#.(,*$6%?*OR'&2"*>(P*2(UMM"%?&-%#'4B(NI@'W)1.(Z'=./")."/'W",8.#$Z+(h#"B(b+(
:#B(a+(U1D14-(Zggb+(MMB(SafOSdfB(

WSB']B(Q$&K2%""&+(,B(3*$%+(8B(!$&-*$'&"%+(<B(]&'#"*4?1B(8$#?*44(]#>*"%'D(%'(P*2(UMM"%?&-%#'4B(
NI@'W)1.(Z'7#0/%Z'C.5Z'@"/8#:#$Z+(h#"B(Wb+(:#B(S+(Y?-#2*$(Zggc+(MMB(acgOSgfB(

WbB',1'(]%?$#474-*K4B( \,JOgggWce( 8#$-"*-( ,M*?%.%?&-%#'+( Y?-#2*$( ZggaB( VY'"%'*XB( 8//!YVVd,!Z'
#)5V1&#-/H1*1V,#44-.+/6!)#,"((V0+.1$Vd()efbV(

WcB'YU,<,B(P*2( ,*$6%?*4( .#$( J*K#-*( 8#$-"*-4+( U1D14-( ZggaB( VY'"%'*XB(%%%Z#1(+(9#!".Z#)5V'
,#44+//""(V%()!(

WdB'Y$&?"*B(\&6&,*$6*$(!&?*4(/*?C'#"#D7B(VY'"%'*X(8//!YVVd1*1Z(-.Z,#4Vd1*1""Vd1*1(")*")01,"(V(
WeB',B(8%*-4?CK&''+(]B(h#%D-+(UB(JrKM*"+(pB(]*%44'*$B(3J5<,*[(3#KM#4%-%#'(#.(J%?C(54*$(

<'-*$.&?*(,*$6%?*4B(=I2C\`]+(MMB(SdaOSdcB(
WfB']B(!*">K&''+(/B(:*4-"*$+(5B(\1D*"+(pB(]1-CK&''+(lB(Er24?C+(UB(,?C%""B(Y6*$6%*H(#.(&'(

*'>(14*$(*'&2"*>(K#>*"O>$%6*'(>*6*"#MK*'-(&MM$#&?C(.#$(%'-*$&?-%6*(&MM"%?&-%#'4(2&4*>(#'(

&''#-&-*>(4*$6%?*4B(2C27W\`]+(MMB(WfOZeB(
ZgB'P,8RJB#$DB( P,OQ8RF( ZBg( ]*-&K#>*"B( VY'"%'*X( 8//!YVV%%%Z"&!4$Z#)5V%(!")V%(!")V%(9

&!"$^`Z8/4$(

90



!

!"#$%&'%()*!%+,'-./0*1,2'%3-./0*".+*45..-./*
1-67#-857,+*96,#*:.7,#;"$,*<#$=,67#"7-%.6**

>1,?%.67#"7-%.*@#%2%6"'A*

"#$%&'(!)'(&*#+!,-*.'($!,$&+!,-*.'($!/%'(01&##&(&+!"'2&$!3'4'-&!

5(&6*%4&-7!$.!/%*(-$+!8$6$!9/:;+!<-'#7!

=>'(&*#+4$&+-%'(01&##&(&+?'4'-&@A>&4&B1(&-(B&-!

3C'(D!E*(D+!F&!G'(!

E1'H*&!/*?C($#$D&*4+!,C*(IC*(+!8BJB!3C&('!

=?C'(DC*(D+#&7'(K%@AC1'H*&B?$K!

B867#"$7C*/C&4!>*K$!&(-%$>1?*4!-C*!&>*'!$.!!"#$%"&'$(!)*%+,(#$%-$"*.)*/)'#(%)".0
$(%/-+(#! 95<4;+! '(! 'LL#&?'-&$(! >*6*#$LK*(-! 'LL%$'?C! -C'-! '##$H4! 14! -$! *'4&#7!
2%&(D!-$D*-C*%!5<4+!H*2!4*%6&?*4!'(>!L*$L#*!&(!'!4&(D#*!$%?C*4-%'-&$(!#$D&?+!#'(M

D1'D*+!'(>!-$$#B!/C*!-$$#!&4!?'##*>!1-%+*23*4+!'(>!&-!?$6*%4!-C%**!K'&(!LC'4*4!
$.!-C*!4$.-H'%*!>*6*#$LK*(-!#&.*?7?#*N!>*4&D(!927!K*'(4!$.!'!>*>&?'-*>+!6&41'#!

*>&-$%;+!>*L#$7K*(-!927!K*'(4!$.!'!4*-!$.!?$>*!D*(*%'-$%4;+!'(>!*O*?1-&$(!927!

K*'(4!$.!'!>&4-%&21-*>! %1(-&K*!*(6&%$(K*(-! .$%!5<!$%?C*4-%'-&$(4;B!P*!4C$HM

?'4*! -C*!2*(*.&-4!$.!Q'%?$"#$H!&(!*'?C!$.! -C*!LC'4*4!27!>*6*#$L&(D!'(>! %1(M

(&(D!'!L%'?-&?'#!'(>!*OL%*44&6*!'LL#&?'-&$(!.$%!-C*!K'('D*K*(-!$.!C$K*!'44&4M

-'(?*!'(>!27!*OL#'&(&(D+!&(!*'?C!LC'4*+!HC&?C!'%*!-C*!?C'##*(D*4+!HC&?C!-C*!&(M

-1&-&$(4+!'(>!HC&?C!-C*!4$#1-&$(4B!/C*!>*K$!-'%D*-4!-C*!>*6*#$LK*(-!$.!5-#,'60
3"7()-663"+-$"*.#) $,-$)%(8'"%() 9!"#$%"&'$(!:)6%*+(##)#'66*%$!'(>+!C*(?*+! -'%D*-4!
%*4*'%?C*%4!'(>!L%'?-&-&$(*%4!&(-*%*4-*>!&(!K'4C1L4+!#&DC-H*&DC-!L%$?*44!>*4&D(+!

H*2!4*%6&?*4+!'(>!&(($6'-&6*!9'(>!.%**;!H'74!$.!L%$6&>&(D!L%$?*44!41LL$%-B!

D! :.7#%+5$7-%.*

R.-*%!H$%S.#$H!K'('D*K*(-! 9HC&?C! 41LL$%-4! -C*! '1-$K'-&$(! $.! 214&(*44! L%$?*44*4!

'(>! C1K'(! -'4S4;! '(>! 4*%6&?*! $%?C*4-%'-&$(! 9HC&?C! .$?14*4! $(!H*2! 4*%6&?*4! '-! -C*!

'LL#&?'-&$(!#'7*%;+!H*2!K'4C1L4!TUV!.*'-1%*!'!4&D(&.&?'(-!&(($6'-&$(N!".$(;%-$"*.)-$)$,()
<=) 3(>(3B! W*4&>*4! H*2! 4*%6&?*4! $%! >'-'! .**>4+! K'4C1L4! &(>**>! %*14*! L&*?*4! $.! 5<4!
9*BDB+!?$(-*(-!*O-%'?-*>!.%$K!H*2!L'D*4!$%!X'6',?%&L-!5<!H&>D*-4;!'(>!&(-*D%'-*!-C*K!

&(-$!(*H!H*2!L'D*4!$%!'LL#&?'-&$(4B!PC&#*!K'4C1L4! -C*%*.$%*!K'(&.*4-! -C*!(**>!.$%!

%*14*!&(!5<!>*6*#$LK*(-!'(>!.$%!41&-'2#*!5<!?$KL$(*(-!-*?C($#$D&*4+!4$!.'%!-C*7!$(#7!

L%$>1?*>! %'-C*%! 4&KL#*! 'LL#&?'-&$(4+!K$4-! $.! -C*! -&K*4! ?$(4&4-&(D! $.! $(#7! $(*!H*2!

L'D*!'(>!$.!#&--#*!1-&#&-7B!!

/C&4!>*K$!?$KL#*K*(-4!-C*!?$(?*L-4!&(-%$>1?*>!&(!TYV+!HC*%*!H*!'%D1*!-C'-!-C*%*!

&4!'!C1D*!4L*?-%1K!$.!'LL#&?'-&$(4!-C'-!>*K'(>!.$%!>*6*#$LK*(-!'LL%$'?C*4!-C'-!'%*!

4&K&#'%!-$!-C$4*!$.!K'4C1L4!21-!-C'-!D$!.'%!2*7$(>!4&(D#*!L'D*!'LL#&?'-&$(4!'(>!&(!.'?-!

41LL$%-!K1#-&L#*! L'D*4+!K1#-&L#*! '?-$%4+! ?$KL#*O! ('6&D'-&$(! 4-%1?-1%*4+! '(>! Z!K$%*!

&KL$%-'(-#7!Z!L%$?*44M2'4*>!'LL#&?'-&$(!#$D&?!$%!('6&D'-&$(!.#$H4B!!

Appendix E

91



!

R4!$.!-$>'7+!-C*%*!&4!($!4&(D#*!>*6*#$LK*(-!&(4-%1K*(-!-C'-!'##$H4!$(*!-$!>*6*#$L!

-C&4!S&(>!$.! 'LL#&?'-&$(4!14&(D!$(*! #'(D1'D*!'(>!$(*!*(6&%$(K*(-!$(#7B!"&##&(D! -C&4!

D'L!&4!-C*!D$'#!$.!Q'%?$"#$HB!

E! 1,?%*6$,."#-%*

<(!-C&4!>*K$+!H*!H'(-!-$!>*6*#$L!'(!'LL#&?'-&$(!-C'-!41LL$%-4!-C*!4?*('%&$!D%'LC&?'##7!

>*4?%&2*>!&(!"&D1%*!UN!R!6-$"(.$!?'(!'4S!.$%!-C*!6&4&-!$.!'!C$K*!'44&4-'(-!9*BDB+!'!L'%'M
K*>&?;!27!?'##&(D! 96&'!LC$(*;!'(!$L*%'-$%!$.! -C*!C$K*!'44&4-'(?*! 4*%6&?*B!5L$(! %*M

01*4-+! -C*! *6(%-$*%! &(L1-4! -C*! %*4L*?-&6*! >*-'&#4! &(-$! C&4! K'('D*K*(-! ?$(4$#*! '(>!
&(4L*?-4!-C*!L'-&*(-[4!>'-'!'(>!L*%4$('#!C*'#-C!C&4-$%7!&(!$%>*%!-$!L%$6&>*!-C*!'44&4-'(-!

H&-C! -C*! (*?*44'%7! &(4-%1?-&$(4! -$! '44&4-! -C*! L'-&*(-B! /C*! ,*5(! -##"#$-.$! 6&*H4! -C*!
>*4?%&L-&$(!&(!C&4!$H(!'LL#&?'-&$(+!6&4&-4!-C*!L'-&*(-+!'(>!.&#*4!'!%*L$%-!'2$1-!-C*!L%$M

6&>*>! 4*%6&?*B! /C*! %*L$%-! &4! L%$?*44*>! 27! -C*! &-+70(.!) #?#$(5! '(>! '%?C&6*>B! <.! ($!
.1%-C*%!*O'K4!'%*!(**>*>+!-C*!5<!$%?C*4-%'-&$(!*(>4B!<.!*O'K4!'%*!&(4-*'>!(**>*>+!-C*!

%*4L*?-&6*!>*-'&#4!(**>!-$!2*!4*(-!-$!-C*!$L*%'-$%!4$!-C'-!C*!?'(!2$$S!-C*!*O'K!&(!-C*!

#$?'#!C$4L&-'#+!'4S&(D!-C*!L'-&*(-!.$%!?$(.&%K'-&$(!9'D'&(!6&'!LC$(*;B!5L$(!?$(.&%K'M

-&$(!$.!-C*!*O'K!2$$S&(D+!-C*!474-*K!'#4$!'%?C&6*4!-C*!2$$S&(D+!HC&?C!-*%K&('-*4!-C*!

%*4L$(4&2&#&-7!$.!-C*!C$K*!'44&4-'(?*!4*%6&?*B!

!

&-/5#,*D*/C*!>&4-%&21-*>!5<!$%?C*4-%'-&$(!-$!2*!>*6*#$L*>!>1%&(D!-C*!>*K$B!/C*!D%'7!'%%$H4!
&(>&?'-*!47(?C%$(&I'-&$(!$%!$%?C*4-%'-&$(!L$&(-4\!-C*7!(1K2*%!#'2*#4!&(>&?'-*!-C*&%!$%>*%!&(!-&K*B!

]1%!D$'#! &4! -$!>*6*#$L!'(!'LL#&?'-&$(! -C'-! 41LL$%-4! -C&4!L%$?*44B!/C&4!'LL#&?'-&$(!

&(?#1>*4+!2*4&>*4!-C*!L%$?*44!#$D&?+!-H$!K'4C1LM#&S*+!H*2M2'4*>!?$(-%$#!?$(4$#*4!.$%!

-C*!$L*%'-$%!'(>!-C*!'44&4-'(-!-C'-!'%*!-C*K4*#6*4!L'%-!$.!-C*!$%?C*4-%'-&$(!'(>!(**>!-$!

&(-*%'?-!H&-C!9'(>!'%*!'..*?-*>!27;!-C*!*6$#1-&$(!$.!-C*!L%$?*44B!"1%-C*%K$%*+!-C*!5<!&4!

!"#$%&#'()'
*%+,$-%

.%*

&/

01+#2%+'
%3"4*'
&%%5%56

7%8/+#'()'*%+,$-%

9+-2$,%'+%8/+#

:%#'
8"#$%&#*

!

"

#

$

%

&

'

(

!)

!)

!"

!*

!!

!!

)

;%&5'$&</'#/'
=//>'%3"4

7%?$*#%+'
=//>$&?

@3"4'()'
*%+,$-%

!#

92



!

&-4*#.! ?$KL$(*(-M2'4*>! '(>! ?%*'-*>! 27! %*14&(D! '(>! ?$K2&(&(D! *O&4-&(D! 5<! ?$KL$M

(*(-4!9*'?C!$.!-C*!-H$!L'D*4!&(!"&D1%*!U!&4+!.$%!&(4-'(?*+!?$KL$4*>!$.!.$1%!5<!?$KL$M

(*(-4;B! "$%! *'?C! (*H! %*01*4-+! -C*! $L*%'-$%! 4-'%-4! '! (*H! &(4-'(?*! $.! -C*! 'LL#&?'-&$(+!

%'&4&(D!-C*!(**>!.$%!?$%%*#'-&$(!$.!4*%6&?*4!'(>!5<!?$KL$(*(-4B!

<.!H*!'('#7I*!-C*!4?*('%&$+!H*!4**!-C'-! -C*!*(6&4&$(*>!'LL#&?'-&$(!9'4!'!HC$#*;! &4!

,";,3?)!"#$%"&'$(!!$6*%!-C*!P*2N!/C*!5<4!.$%!-C*!'?-$%4!L'%-&?&L'-&(D!&(!-C*!'LL#&?'-&$(!
'%*!?$KL$4*>!$.!5<!?$KL$(*(-4+!HC&?C!?'(!2*!?$KL$(*(-4!>*6*#$L*>!&(MC$14*!9#&S*!

-C*!@(4)A(8'(#$! ?$KL$(*(-;! $%! 4$1%?*>! .%$K! -C*!P*2! 9#&S*! -C*!1-6! ?$KL$(*(-;\!
4*%6&?*!$%?C*4-%'-&$(4!'%*!2'4*>!$(!H*2!4*%6&?*4B!/C*!5<!*OL$4*4!-C*!4-'-*!$.!-C*!'LM

L#&?'-&$(!'(>!'##$H4!14*%4!-$!&(-*%'?-!H&-C!&-!'(>!-$!*('?-!4*%6&?*!?'##4B!/C*!-H$!'LL#&M

?'-&$(4! .$%! -C*!$L*%'-$%! '(>! -C*!'44&4-'(-! '%*! &(4-'(-&'-*>! &(!>&..*%*(-!H*2!2%$H4*%4+!

?$(-%&21-&(D!-$!-C*!>&4-%&21-&$(!$.!-C*!$6*%'##!5<!'(>!%'&4&(D!-C*!(**>!.$%!47(?C%$(&I'M

-&$(B!!

F! !"#$%&'%()*B.*G.H-#%.?,.7*%;*1-67#-857,+*9:*<#$=,67#"7-%.*

/C*!7(?)"!(-!-$!'LL%$'?C!-C*!?$$%>&('-&$(!$.!9&;!5<!?$KL$(*(-4!&(4&>*!H*2!L'D*4+!9&&;!
H*2!4*%6&?*4!L%$6&>&(D!>'-'!$%!'LL#&?'-&$(!#$D&?+!'(>!9&&&;!&(>&6&>1'#!L'D*4!9'4!H*##!'4!

-C*!L*$L#*!&(-*%'?-&(D!H&-C!-C*K;!&4!-$!4L#&-!-C*!?$$%>&('-&$(!L%$2#*K!&(-$!-H$!#'7*%4N!

".$%-06-;() <=) #?.+,%*."B-$"*.! '(>! !"#$%"&'$(!) <=) #?.+,%*."B-$"*.) -.!) 4(&) #(%>"+()
*%+,(#$%-$"*.B!!
"&D1%*!Y!4C$H4!-C*!94&KL#&.&*>;!'%?C&-*?-1%*!$.!-C*!Q'%?$"#$H!*(6&%$(K*(-+!HC&?C!

'&>4! -C*!>*6*#$LK*(-!'(>!*O*?1-&$(!$.! -C*!>*K$!4?*('%&$B!/C*!'%?C&-*?-1%*! &4!L'%-&M

-&$(*>!&(-$!>*4&D(!-&K*+!>*L#$7K*(-!-&K*+!'(>!%1(-&K*!?$KL$(*(-4+!'??$%>&(D!-$!-C*!

-C%**!LC'4*4!$.!-C*!4$.-H'%*!>*6*#$LK*(-!#&.*?7?#*!41LL$%-*>!27!Q'%?$"#$HB!

/C*!+,6-/.* L'%-! ?$KL%&4*4! -C*!CDEFG<=) (!"$*%! -C'-! 41LL$%-4! W8^F_5<! TYV+! -C*!
?$KL$4&-&$(!#'(D1'D*!H*!14*!-$!4L*?&.7!>&4-%&21-*>!5<!$%?C*4-%'-&$(4B!/C*!*>&-$%!&4!'(!

*O-*(>*>!^?#&L4*!W8^F!*>&-$%!H&-C! 9&;! '! L'(*#! .$%! -C*! 4L*?&.&?'-&$(!$.! -C*! L'D*4! &(!

HC&?C!5<!?$KL$(*(-4!?'(!2*!%*(>*%*>!'(>!9&&;!'!L%$L*%-7!L'(*#!-C'-!'##$H4!-C*!>*6*#M

$L*%!-$!?$(.&D1%*!-C*!H*2!L'D*4+!-$!4*-!-C*!L%$L*%-&*4!$.!5<!L'%-(*%!#&(S4+!'(>!-$!'44$M

?&'-*!-C*K!-$!L#'?*!C$#>*%4!&(!-C*!#'7$1-B!

/C*!+,2'%3?,.7!$.!'!5<!$%?C*4-%'-&$(!%*01&%*4!-%'(4#'-&(D!-C*!W8^F_5<!4L*?&.&?'M
-&$(! &(-$! *O*?1-'2#*! ?$KL$(*(-4N! 9&;! '! 4*-! $.! +*55'."+-$"*.) +,-..(3#! -C'-!K*>&'-*!
2*-H**(! -C*!5<!?$KL$(*(-4! &(! -C*!?#&*(-!2%$H4*%!'(>! -C*!W8^F!*(D&(*\! 9&&;!'!#$-.0
!-%!)CDEF)#6(+"/"+-$"*.!?$(-'&(&(D!-C*!>&4-%&21-*>!5<!47(?C%$(&I'-&$(!'(>!H*2!4*%M
6&?*!$%?C*4-%'-&$(!#$D&?\!'(>!9&&&;!'!4*-!$.!<=)+*56*#"$"*.#!9$(*!.$%!*'?C!L'D*!$.!-C*!
'LL#&?'-&$(;!?$(-'&(&(D! -C*! &(-%'ML'D*!5<!47(?C%$(&I'-&$(4B!/C&4! -'4S! &4!'?C&*6*>!27!

-C*!CDEFG<=)+*56"3(%+!HC&?C!'#4$!K'('D*4!-C*!>*L#$7K*(-!$.!-C*!D*(*%'-*>!'%-&.'?-4!
&(!-C*!%*4L*?-&6*!%1(-&K*!*(6&%$(K*(-4B!

/C*!,I,$57-%.! $.! '!5<!$%?C*4-%'-&$(! %*01&%*4! -C*! 4*-1L!'(>!?$$%>&('-&$(!$.! -C%**!
&(>*L*(>*(-! %1(-&K*! *(6&%$(K*(-4N! 9&;! -C*! &(-*%'?-&$(!H&-C! 14*%4! '(>! &(-%'ML'D*!5<!

47(?C%$(&I'-&$(!&4!K'('D*>!&(! -C*!?#&*(-!2%$H4*%!27!'(!(>(.$0&-#(!)H->-I+%"6$)%'.0
$"5()/%-5(4*%7\!9&&;!'!4$M?'##*>!<=)(.;".()#(%>(%!%1(4!-C*!H*2!4*%6&?*4!&KL#*K*(-&(D!
-C*! ?$KK1(&?'-&$(! ?C'((*#4\! '(>! 9&&&;! '! #$-.!-%!)CDEF) (.;".(!K'('D*4! -C*! >&4-%&M
21-*>!5<!47(?C%$(&I'-&$(!'(>!H*2!4*%6&?*!$%?C*4-%'-&$(B!

93



!

/C*!Q'%?$"#$H!474-*K!4C$H(!&(!"&D1%*!Y!&4!.1##7!&KL#*K*(-*>!'(>!%1((&(DB!R!L'M

-*(-!'LL#&?'-&$(!.$%!L'%-4!$.!-C*!474-*K!C'4!2**(!.&#*>B!

J! 1,?%.67#"7-%.*K$#-27*

)1%&(D! -C*! >*K$!H*! &(-*(>! -$! >*6*#$L! -C*!5<! $%?C*4-%'-&$(! >*4?%&2*>! &(! ,*?-&$(! Y!

.%$K!4?%'-?C!'(>!%1(!&-!#&6*+!HC&#*!&(-*%'?-&(D!H&-C!-C*!'1>&*(?*!'(>!'(4H*%&(D!01*4M

-&$(4!'(>!?#'%&.7&(D!>*-'&#4B!/C*!L#'((*>!>*K$!.#$H!&4!'4!.$##$H*>N!

UB' J*-3#)*/)1-%+*23*4N!*OL#'('-&$(!$.!-C*!K$-&6'-&$(!-C'-!#*>!14!-$!-C*!>*6*#$LK*(-!
$.! -C*!>&4-%&21-*>!5<!$%?C*4-%'-&$(!'LL%$'?C!'(>!$.! -C*!D$'#4! -C'-!H*!L1%41*>! &(!

>$&(D!4$B!

!

&-/5#,*E*"%$K!>*4&D(!-&K*!-$!%1(-&K*N!$6*%'##!474-*K!'%?C&-*?-1%*!$.!Q'%?$"#$H!

AB'%&?$&%'-C$%&#'DE%='=+/E*%+FAB'%&?$&%'-C$%&#'DE%='=+/E*%+F

)!@GHAB'%5$#/+

;%+,$-%'
I;(G*

AB'-/48/&%&#'
I;(G*

)!@GHAB'J/48$C%+

)!@G'%&?$&%

AB'%&?$&%'*%+,%+'DE%='*%+,%+F

AB'%&?$&%'-C$%&#'DE%='=+/E*%+F

AB'%,%&#'=1*

)!@GHAB

)!@G

!"#$%&'(
)*++,-.)/0.*-

$%&'#!"(
)*++,-.)/0.*-

1234(5./(
677%

89'(5./(
23:%

;K9!'E%='
*%+,$-%*

988C$-"#$/&'
5%,%C/8%+

;.*#%4'
-/&<$?1+"#$/&

"#$%&'!(%)#
"#*+,-)#'(!(%)#

./'(%)#

12(5./(677%

G"./1#'"&5'AB'
C/?$-'?%&%+"#/+

)!@G'?%&%+"#/+

J/44L'*%+,$-%*'
?%&%+"#/+

9)
J

AB'-/48/&%&#*

9 )
J

!"()*+;*-<-0()*-0/.-<=

1234(5./(
677%

89'(5./(
23:%

89'(5./(23:%

G"./1#'
-/&<$?1+"#/+

AB'8"+#&%+'C$&>'
-/&<$?1+"#/+

MNOG'
#%48C"#%*

AB'
-/48/*$#$/&

'/>*,0(/-?(
!"(@*A.)

2>B0<+()*+;*-<-0B

C*),+<-0(D@*EB
2>B0<+FG,+/-()*++,-.)/0.*-B
:,0*+/0.)/@@>(A<-<=/0<?(<@<+<-0B

@,%&#'
</+E"+5%+
@,%&#'

</+E"+5%+
@,%&#'

</+E"+5%+*

P/#$<$-"#$/&'
2"&5C%+

P/#$<$-"#$/&'
2"&5C%+

P/#$<$-"#$/&'
2"&5C%+*

@,%&#'
8+/3.
@,%&#'
8+/3.
@,%&#'
=1<<%+

@,%&#'
8+/3.
@,%&#'
8+/3.
@,%&#'
8+/3.

A*%+*

94



!

YB' K,(),*5()-##"#$-.+()#+(.-%"*N!*OL#'('-&$(!$.!-C*!4?*('%&$!>*4?%&2*>!&(!,*?-&$(!Y+!
-C*!>*6*#$LK*(-!?C'##*(D*4!&-!&KL#&*4+!'(>!-C*!2'4&?!'441KL-&$(4!H*!C'6*!%*D'%>M

&(D!L*$L#*+!14*%!&(-*%.'?*4+!'(>!H*2!4*%6&?*4B!

`B' K,()1-%+*23*4)-66%*-+,N!*OL#'&(!-C*!S*7!&>*'!2*C&(>!-C*!Q'%?$"#$H!'LL%$'?C!
-$!5<!$%?C*4-%'-&$(+!&B*B+!4L#&--&(D!-C*!?$$%>&('-&$(!L%$2#*K!&(-$!&(-%'ML'D*!5<!47(M

?C%$(&I'-&$(!'(>!>&4-%&21-*>!5<!47(?C%$(&I'-&$(!'(>!H*2!4*%6&?*!$%?C*4-%'-&$(B!

_B' I?#$(5) -%+,"$(+$'%(N! >*4?%&L-&$(! $.! -C*! '%?C&-*?-1%*! '(>! -C*! &(-*%('#4! $.!Q'%?$M
"#$HB!/C*! >*4?%&L-&$(! C&DC#&DC-4!HC&?C! ?$KL$(*(-4! 41LL$%-!HC&?C! LC'4*! &(! -C*!

>*6*#$LK*(-!?7?#*N!>*4&D(+!>*L#$7K*(-+!'(>!%1(-&K*B!

aB' K,()&-#"+)+*56*.(.$#N!C*%*!H*!*OL#'&(!C$H!-C*!5<!?$KL$(*(-4!'(>!H*2!4*%6&?*4!
H*!?$KL$4*!#$$S!#&S*!'(>!C$H!-C*7!?'(!2*!'24-%'?-#7!>*4?%&2*>!&(!'!C$K$D*($14!

.'4C&$(+!14&(D!4-'(>'%>!P,)F!'(>!'!(*H!X'6',?%&L-!2&(>&(D!.$%!5<!?$KL$(*(-4B!

bB' L(#";.".;)!"#$%"&'$(!)<=)*%+,(#$%-$"*.#N!*OL#'('-&$(!'(>!#&6*!>*K$!$.!-C*!6&41'#+!
W8^F_5<!*>&-$%B!/C*!D$'#!C*%*!&4!-$!>*6*#$L!4-*L!27!4-*L!-C*!5<!$%?C*4-%'-&$(!$.!

-C*!%*.*%*(?*!4?*('%&$!'(>!-$!C&DC#&DC-!K$>*#&(D!?$(6*(-&$(4!'(>!L'--*%(4B!

cB' M*!() ;(.(%-$"*.) -.!) !(63*?5(.$N! '4! C&DC#&DC-*>! HC*(! *OL#'&(&(D! -C*! 474-*K!
'%?C&-*?-1%*+!Q'%?$"#$H!&4!'!?$KL#*O!474-*K!&(!HC&?C!K'(7!$.! -C*!?$KL$(*(-4!

'%*!D*(*%'-*>!'1-$K'-&?'##7!4-'%-&(D!.%$K!'!W8^F_5<!4L*?&.&?'-&$(B!E*%*!H*!*OM

L#'&(!HC&?C!?$KL$(*(-4!'%*!?%*'-*>+!C$H+!'(>!HC*%*!-C*7!'%*!>*L#$7*>+!&(!$%>*%!

-$!L%$6&>*!.$%!-C*!(*?*44'%7!*O*?1-&$(!41LL$%-B!

dB' A'..".;)$,()-663"+-$"*.N!'.-*%!-C*!>*L#$7K*(-+!-C*!'LL#&?'-&$(!&4!%*'>7!.$%!*O*?1M
-&$(B!J1((&(D!'(!'LL#&?'-&$(!&4!41LL$%-*>!27!'!4&KL#*!H*2!?$(4$#*!.$%!14*%4!-C'-!

'##$H4!-C*K!-$!*'4&#7!4-'%-!5<!$%?C*4-%'-&$(4!9-C*!$L*%'-$%;!'(>!-$!L'%-&?&L'-*!&(!'#M

%*'>7!%1((&(D!5<!$%?C*4-%'-&$(4!9-C*!'44&4-'(-;B!E*%*!H*!4C$H!C$H!14*%4!?'(!&(-*M

%'?-!H&-C!-C*&%!&(>&6&>1'#!H*2!L'D*4!'(>!C$H!-C*4*!'(>!-C*!5<!?$KL$(*(-4!&(4&>*!

-C*!L'D*4!'%*!$%?C*4-%'-*>!'4!L'%-!$.!-C*!$6*%'##!L%$?*44!#$D&?B!,L*?&'#!*KLC'4&4!&4!

D&6*(!-$!-C*!>&4-&(?-&$(!$.!-C*!-H$!'?-$%4+!&B*B+!-C*!$L*%'-$%!'(>!-C*!C$K*!'44&4-'(-B!

eB' M*.+3'#"*.N!.&('##7+!H*!?$(?#1>*!-C*!L%*4*(-'-&$(!H&-C!'!%*?'L!$.!-C*!>*K$(4-%'M
-&$(!'(>!-C*!Q'%?$"#$H!474-*K!'(>!H*!$1-#&(*!$1%!&>*'4!.$%!.1-1%*!H$%S4B!

!

R!>*K$!$.!-C*!-$$#!&4!'6'&#'2#*!'-!,$$6NOO5-#,-%$P*%;O5-%+*/3*4O!(5*P,$5)!

4,;,#,.$,6*

UB' XB! G1+! WB! W*('-'##'C+! "B! 3'4'-&+! "B! )'(&*#B! 5(>*%4-'(>&(D!Q'4C1L! )*6*#$LK*(-! '(>! &-4!
)&..*%*(?*4!H&-C!/%'>&-&$('#! <(-*D%'-&$(B! =EEE) =.$(%.($)M*56'$".;+!f$#B! UY+!:$B! a+! ,*LM
-*K2*%M]?-$2*%!Yggd+!LLB!__MaYB!

YB' "B!)'(&*#+!,B!,$&+!,B!/%'(01&##&(&+!"B!3'4'-&+!3B!E*(D+!FB!G'(B!"%$K!8*$L#*!-$!,*%6&?*4!-$!
5<N!)&4-%&21-*>!]%?C*4-%'-&$(!$.!54*%!<(-*%.'?*4B!CD1QRS+!E$2$S*(+!:X+!5,RB!

95



!

!"#$%&'%()*!%+,'-./0*1,2'%3-./0*".+*45..-./*
1-67#-857,+*96,#*:.7,#;"$,*<#$=,67#"7-%.6**

>1,?%.67#"7-%.*@"2,#A*

"#$%&'(!)'(&*#+!,-*.'($!,$&+!,-*.'($!/%'(01&##&(&+!"'2&$!3'4'-&!
5(&6*%4&-7!$.!/%*(-$+!8$6$!9/:;+!<-'#7!

=>'(&*#+4$&+-%'(01&##&(&+?'4'-&@A>&4&B1(&-(B&-!

3C'(D!E*(D+!F&!G'(!
E1'H*&!/*?C($#$D&*4+!,C*(IC*(+!8BJB!3C&('!

=?C'(DC*(D+#&7'(K%@AC1'H*&B?$K!

B867#"$7C*/C&4!>*K$!&(-%$>1?*4!-C*!&>*'!$.!!"#$%"&'$(!)*%+,(#$%-$"*.)*/)'#(%)".0
$(%/-+(#! 95<4;+! '(! 'LL#&?'-&$(! >*6*#$LK*(-! 'LL%$'?C! -C'-! '##$H4! 14! -$! *'4&#7!
2%&(D! -$D*-C*%! 5<4+! H*2! 4*%6&?*4+! '(>! L*$L#*! &(! '! 4&(D#*! $%?C*4-%'-&$(! #$D&?+!
#'(D1'D*+! '(>! -$$#B! /C*! -$$#! &4! ?'##*>!1-%+*23*4+! '(>! &-! ?$6*%4! -C%**! K'&(!
LC'4*4!$.!-C*!4$.-H'%*!>*6*#$LK*(-!#&.*?7?#*M!>*4&D(!927!K*'(4!$.!'!>*>&?'-*>+!
6&41'#!*>&-$%;+!>*L#$7K*(-!927!K*'(4!$.!'!4*-!$.!?$>*!D*(*%'-$%4;+!'(>!*N*?1-&$(!
927!K*'(4!$.!'!>&4-%&21-*>!%1(-&K*!*(6&%$(K*(-!.$%!5<!$%?C*4-%'-&$(4;B!O'%?$"P
#$H! -'%D*-4! -C*! >*6*#$LK*(-! $.!5-#,'603"7() -663"+-$"*.#) $,-$) %(8'"%() 9!"#$%"0
&'$(!:) 6%*+(##) #'66*%$! '(>+! C*(?*+! -'%D*-4! %*4*'%?C*%4! '(>! L%'?-&-&$(*%4! &(-*%P
*4-*>!&(!K'4C1L4+!#&DC-H*&DC-!L%$?*44!>*4&D(+!H*2!4*%6&?*4+!'(>!&(($6'-&6*!9'(>!
.%**;!H'74!$.!L%$6&>&(D!L%$?*44!41LL$%-B!

D! :.7#%+5$7-%.*

Q.-*%!H$%R.#$H!K'('D*K*(-! 9HC&?C! 41LL$%-4! -C*! '1-$K'-&$(! $.! 214&(*44! L%$?*44*4!
'(>! C1K'(! -'4R4;! '(>! 4*%6&?*! $%?C*4-%'-&$(! 9HC&?C! .$?14*4! $(!H*2! 4*%6&?*4! '-! -C*!
'LL#&?'-&$(! #'7*%;+!H*2!K'4C1L4! STU! .*'-1%*!'! 4&D(&.&?'(-! &(($6'-&$(M! -.7,/#"7-%.*"7*
7=,*9:*',E,'B!V*4&>*4!H*2!4*%6&?*4!$%!>'-'!.**>4+!K'4C1L4!&(>**>!%*14*!L&*?*4!$.!5<4!
9*BDB+!?$(-*(-!*N-%'?-*>!.%$K!H*2!L'D*4!$%!W'6',?%&L-!5<!H&>D*-4;!'(>!&(-*D%'-*!-C*K!
&(-$!(*H!H*2!L'D*4!$%!'LL#&?'-&$(4B!XC&#*!K'4C1L4! -C*%*.$%*!K'(&.*4-! -C*!(**>!.$%!
%*14*! &(! 5<! >*6*#$LK*(-! '(>! .$%! 41&-'2#*! 5<! ?$KL$(*(-! -*?C($#$D&*4+! 4$! .'%! -C*7!
L%$>1?*>!%'-C*%!4&KL#*!'LL#&?'-&$(4!?$(4&4-&(D!$.!$(*!H*2!L'D*!'(>!$.!#&--#*!1-&#&-7B!!
/C&4! >*K$! ?$KL#*K*(-4! -C*! ?$(?*L-4! '(>! 4$#1-&$(4! &(-%$>1?*>! &(! SYU+!HC*%*!H*!

'%D1*!-C'-!-C*%*!&4!'!C1D*!4L*?-%1K!$.!'LL#&?'-&$(4!-C'-!>*K'(>!.$%!>*6*#$LK*(-!'LP
L%$'?C*4!-C'-!'%*!4&K&#'%!-$!-C$4*!$.!K'4C1L4!21-!-C'-!D$!.'%!2*7$(>!4&(D#*!L'D*!'LL#&P
?'-&$(4!'(>!&(!.'?-!41LL$%-!K1#-&L#*!L'D*4+!K1#-&L#*!'?-$%4+!?$KL#*N!('6&D'-&$(!4-%1?P
-1%*4+!'(>!Z!K$%*!&KL$%-'(-#7!Z!L%$?*44P2'4*>!'LL#&?'-&$(!#$D&?!$%!('6&D'-&$(!.#$H4B!
X*!?'##! -C&4! -7L*!$.!'LL#&?'-&$(4!+-67#-857,+*9:*%#$=,67#"7-%.6+!'4!9&;!2$-C!?$KL$P
(*(-4! '(>! -C*!'LL#&?'-&$(! &-4*#.!K'7!2*!>&4-%&21-*>!$6*%! -C*!X*2+! 9&&;! &(! '>>&-&$(! -$!
-%'>&-&$('#!H*2!4*%6&?*4!H*!'#4$! &(-*D%'-*!($6*#!W'6',?%&L-!5<!?$KL$(*(-4+!'(>!9&&&;!
4*%6&?*4!'(>!5<4!'%*!$%?C*4-%'-*>!&(!'(!&(-*D%'-*>!.'4C&$(B!!

96



!

F="'',./,6*".+*$%.7#-857-%.6B!)*6*#$L&(D!>&4-%&21-*>!5<!$%?C*4-%'-&$(4!&KL#&*4!-C*!
?$$%>&('-&$(!$.!&(>&6&>1'#!'?-$%4!'(>!-C*!>*6*#$LK*(-!$.!'!!"#$%"&'$(!!14*%!&(-*%.'?*!
-.!! 4*%6&?*!$%?C*4-%'-&$(! #$D&?B!)$&(D! 4$! %*01&%*4! 9&;!1(>*%4-'(>&(D!C$H! -$!+*56*0
.(.$";()<=#)-.!)+*56*#()$,(5)".$*)4(&)-663"+-$"*.#+!9&&;!>*.&(&(D!'!#$D&?!-C'-!&4!'2#*!
-$!*%+,(#$%-$()&*$,)<=#)-.!)4(&)#(%>"+(#+!9&&&;!L%$6&>&(D!'!#'(D1'D*!'(>!-$$#!.$%!#6(0
+"/?".@)!"#$%"&'$(!)<=)+*56*#"$"*.#+!'(>!9&6;!>*6*#$L&(D!'!%1(-&K*!*(6&%$(K*(-!-C'-!&4!
'2#*!-$!(A(+'$()!"#$%"&'$(!)<=)-.!)#(%>"+()+*56*#"$"*.#B!

:..%E"7-E,.,66*%;* 7=,* 7%%'B!Q4!$.! -$>'7+! -C*%*! &4!($!4&(D#*!>*6*#$LK*(-! &(4-%1K*(-!
-C'-!'(4H*%4!-C*4*!?C'##*(D*4!'(>!'##$H4!$(*!-$!>*6*#$L!5<!$%?C*4-%'-&$(4!14&(D!$(*!
#'(D1'D*! '(>! $(*! *(6&%$(K*(-! $(#7B! BCDE! S[U! .$?14*4! $(! H*2! 4*%6&?*4! $(#7B!
BCDEFC(*63(! S\U! '>>4! C1K'(! -'4R4! '(>! '?-$%4! '4! .&%4-P?#'44! ?$(?*L-4+! 21-! H&-C$1-!
41LL$%-&(D! -C*! >*6*#$LK*(-! $.! 41&-'2#*! 5<4B!1*!(30!%">(.) 4(&) !(#"@.) ".#$%'5(.$#+!
41?C! '4!X*2J'-&$! S]U! $%!^&41'#X'>*! S_U+! '##$H! -C*! >*6*#$LK*(-! $.! '>6'(?*>!H*2!
'LL#&?'-&$(4+!H&-C$1-!C$H*6*%! .'?&#&-'-&(D! %*14*!$.!5<!?$KL$(*(-4!4$1%?*>! .%$K!-C*!
X*2B!C*%$-3#) -.!) 6*%$3($#! S`U+! &(4-*'>+! .$?14! 4L*?&.&?'##7! $(! %*14*+! 21-! -C*7! .'&#! &(!
41LL$%-&(D!4*%6&?*! &(-*D%'-&$(!'(>!L%$?*44!.#$H4B!1-#,'6)$**3#! STU!41LL$%-! -C*! &(-*P
D%'-&$(!$.!5<4!'(>!$.!4*%6&?*4+!21-!-C*7!-7L&?'##7!>$!($-!41LL$%-!?$KL#*N!$%?C*4-%'-&$(!
L'--*%(4!9&.!($-!C'(>P?$>*>;B!<(!K'4CQ%-!SaU+!H*!>&>!4$K*!.&%4-!4-*L4!&(-$!-C'-!>&%*?P
-&$(+!21-!H&-C$1-!?$(4&>*%&(D!K1#-&P14*%!'(>!>&4-%&21-*>!5<!41LL$%-B!

G-/.-;-$".$,* 7%* 7=,*H@!*;-,'+B!X&-C!O'%?$"#$H+!H*!D$!$(*! 4-*L!2*7$(>! 4-'-*P$.P
-C*P'%-!V8O!'(>! 4*%6&?*! ?$KL$4&-&$(! '(>!L%$L$4*! '(!$%&D&('#!K$>*#+! #'(D1'D*! '(>!
%1((&(D!474-*K!.$%!-C*!?$KL$4&-&$(!$.!>&4-%&21-*>!5<4B!/C*!'LL%$'?C!2%&(D4!-$D*-C*%!
5<4+!H*2!4*%6&?*4!'(>!L*$L#*!&(!'!4&(D#*!$%?C*4-%'-&$(!#$D&?!'(>!-$$#!'(>!41LL$%-4!-C*!
>*6*#$LK*(-!$.!K'4C1LP#&R*!'LL#&?'-&$(4!-C'-!%*01&%*!9>&4-%&21-*>;!L%$?*44!41LL$%-+!'!
R&(>!$.!'LL#&?'-&$(!-C'-!4$!.'%!H'4!($-!41LL$%-*>!27!V8O!L%'?-&?*4!'(>!4$.-H'%*B!

I! 1-67#-857,+*9:*<#$=,67#"7-%.*

/C*!J,3*-+,"!-$!'LL%$'?C!-C*!?$$%>&('-&$(!$.!9&;!5<!?$KL$(*(-4!&(4&>*!H*2!L'D*4+!9&&;!
H*2!4*%6&?*4!L%$6&>&(D!>'-'!$%!'LL#&?'-&$(!#$D&?+!'(>!9&&&;!&(>&6&>1'#!L'D*4!9'4!H*##!'4!
-C*!L*$L#*!&(-*%'?-&(D!H&-C!-C*K;!&4!-$!4L#&-!-C*!?$$%>&('-&$(!L%$2#*K!&(-$!-H$!#'7*%4M!
".$%-06-@() <=) #?.+,%*.";-$"*.! '(>! !"#$%"&'$(!) <=) #?.+,%*.";-$"*.) -.!) 4(&) #(%>"+()
*%+,(#$%-$"*.B!5<4! '%*! -7L&?'##7! *6*(-P2'4*>! 9*BDB+!14*%! ?#&?R4!$%!R*7! 4-%$R*4;+!HC&#*!
4*%6&?*! &(6$?'-&$(4! '%*! ?$$%>&('-*>! 6&'! ?$(-%$#! .#$H4B! <(! -C&4! >*K$! '(>! &(! SYU+! H*!
4C$H!C$H!-$!>*4?%&2*!5<!?$KL$(*(-4!&(!-*%K4!$.!4-'(>'%>!X,)F!>*4?%&L-$%4+!C$H!-$!
2&(>!-C*K!-$!W'6',?%&L-+!'(>!C$H!-$!*N-*(>!-C*!4-'(>'%>!V8bF!#'(D1'D*!&(!$%>*%!-$!
41LL$%-!-C*!-H$!'2$6*!?$KL$4&-&$(!#'7*%4B!X*!?'##!-C&4!*N-*(>*>!#'(D1'D*!BCDEF<=B!
"&D1%*! T! 4C$H4! -C*! 4&KL#&.&*>!K*-'PK$>*#! $.!H@KLM9:B! ,L*?&.&?'##7+! -C*! .&D1%*!

>*-'&#4!'##!-C*!(*H!K$>*#&(D!?$(4-%1?-4!(*?*44'%7!-$!4L*?&.7!5<!$%?C*4-%'-&$(4!9D%'7P
4C'>*>;!'(>!$K&-4!>*-'&#4!$.!-C*!4-'(>'%>!V8bF!#'(D1'D*+!HC&?C!'%*!%*14*>!'4!&4!27!
V8bF\5<B!<(!-*%K4!$.!4-'(>'%>!V8bF!S[U+!'!5<!$%?C*4-%'-&$(!&4!'!6%*+(##!-C'-!&4!?$KP
L$4*>! $.! '! 4*-! $.! '44$?&'-*>! -+$">"$"(#! 9*BDB+! 4*01*(?*+! .#$H+! &.+! '44&D(+! 6'#&>'-*+! $%!
4&K&#'%;+! >-%"-&3(#! 9-$! 4-$%*! &(-*%K*>&'-*! L%$?*44&(D! %*41#-4;+! 5(##-@() (A+,-.@(#+!
+*%%(3-$"*.) #($#! 9-$! ?$%%*#'-*! K*44'D*4! &(! ?$(6*%4'-&$(4;+! '(>! /-'3$) ,-.!3(%#B! /C*!
4*%6&?*4!$%!5<!?$KL$(*(-4!&(-*D%'-*>!27!'!L%$?*44!'%*!>*?#'%*>!27!K*'(4!$.!4$P?'##*>!

97



!

6-%$.(%)3".7#+!HC&#*!6-%$.(%)3".7)$?6(#!>*.&(*!-C*!%$#*4!L#'7*>!27!*'?C!$.!-C*!4*%6&?*4!
$%!5<!?$KL$(*(-4!&(!-C*!?$(6*%4'-&$(!'(>!-C*!6*%$)$?6(#!4L*?&.7&(D!-C*!$L*%'-&$(4!'(>!
K*44'D*4!41LL$%-*>!27!*'?C!4*%6&?*!$%!?$KL$(*(-B!!

!

&-/5#,*D*,&KL#&.&*>!V8bF\5<!K*-'PK$>*#!&(!5OFB!XC&-*!?#'44*4!?$%%*4L$(>!-$!4-'(>'%>!
V8bF!?$(4-%1?-4c!D%'7!?#'44*4!?$%%*4L$(>!-$!?$(4-%1?-4!.$%!5<!'(>!14*%!K'('D*K*(-B*

O$>*#&(D!5<P4L*?&.&?!'4L*?-4!%*01&%*4!&(4-*'>!&(-%$>1?&(D!'!4*-!$.!.,(*$%.67#5$76!
-C'-! '%*!($-! 7*-! 41LL$%-*>!27!V8bFB!/C*!?$(4-%1?-4+! &##14-%'-*>! &(!"&D1%*!T+! '%*M!<=)
$?6(! 9-C*!L'%-(*%! #&(R!-7L*!.$%!5<!?$KL$(*(-4;+!6-@(!9-C*!H*2!L'D*4!$6*%!HC&?C!H*!
>&4-%&21-*! -C*!5<!$.! -C*!'LL#&?'-&$(;+!63-+(),*3!(%! 9-C*!('K*!$.! -C*!L#'?*!C$#>*%4! &(!
HC&?C!H*!?'(!%*(>*%!5<!?$KL$(*(-4;+!<=)+*56*.(.$!9-C*!L'%-(*%!#&(R!.$%!5<!?$KL$P
(*(-4;+!6%*6(%$?!9-C*!?$(4-%1?-$%!L'%'K*-*%4!$.!5<!?$KL$(*(-4;+!'(>!-+$*%!9-C*!C1K'(!
'?-$%4!H*!'44$?&'-*!H&-C!H*2!L'D*4;B!!
<-! &4! &KL$%-'(-! -$! ($-*! -C'-! '#-C$1DC! 47(-'?-&?'##7! -C*%*! &4! ($! >&..*%*(?*! 2*-H**(!

H*2!4*%6&?*4!'(>!5<!?$KL$(*(-4!9-C*!(*H!W'6',?%&L-!2&(>&(D!&(-%$>1?*>!&(-$!X,)F!
-$!K'L!'24-%'?-!$L*%'-&$(4! -$!?$(?%*-*! W'6',?%&L-! .1(?-&$(4!?$K*4! &(-$!L#'7!$(#7!'-!
%1(-&K*;+! &-! &4! &KL$%-'(-!-$!>&4-&(D1&4C!2*-H**(!4*%6&?*4!'(>!5<!?$KL$(*(-4!'4!-C*&%!
#(5-.$"+#!'(>+!C*(?*+! -C*&%!14'D*!&(! -C*!K$>*#!H&##!2*!>&..*%*(-B!Q!>*-'&#*>!>*4?%&LP
-&$(!$.!-C*!(*H!?$(4-%1?-4!'(>!-C*&%!14'D*!?'(!2*!.$1(>!&(!SYUB!
Q4!.$%!-C*!'"3%57!$.!>&4-%&21-*>!5<!$%?C*4-%'-&$(4+!>*.&(&(D!H*2!L'D*4!'(>!'44$?&'-P

&(D!5<!L'%-(*%! #&(R4!H&-C!L#'?*!C$#>*%4! %*01&%*4! &KL#*K*(-&(D! 41&-'2#*!E/OF! -*KP
L#'-*4!-C'-!'%*!'2#*!-$!C$4-!-C*!5<!?$KL$(*(-4!$.!-C*!$%?C*4-%'-&$(!'-!%1(-&K*B!"$%!-C*!
>*4&D(! $.! #'7$1-! -*KL#'-*4! H*! %*#7! $(! 4-'(>'%>! H*2! >*4&D(! &(4-%1K*(-4B! /C*! $(#7!
%*01&%*K*(-! -C*! -*KL#'-*4!K14-!4'-&4.7! &4! -C'-! -C*7!L%$6&>*!L#'?*!C$#>*%4! &(!.$%K!$.!
E/OF!)<^!*#*K*(-4!-C'-!?'(!2*!&(>*N*>!6&'!4-'(>'%>!E/OF!&>*(-&.&*%4!.$##$H&(D!'!
L%*>*.&(*>!('K&(D!?$(6*(-&$(+!&B*B+!G!">)"!HI5-%+*/3*403(/$JKL)GM!">KB!

/C*!K'&(!?,7=%+%'%/-$"'* /%"'6! &(! &KL#*K*(-&(D! $1%!5<! $%?C*4-%'-&$(! 'LL%$'?C!
H*%*!9&;!%*#7&(D!'4!K1?C!'4!L$44&2#*!$(!*N&4-&(D!#$-.!-%!#+!9&&;!L%$6&>&(D!-C*!>*6*#$LP
*%!H&-C!$(#7!/(4)-.!)#"563().(4)+*.+(6$#+!'(>!9&&&;!&KL#*K*(-&(D!'!%1(-&K*!'%?C&-*?P
-1%*! -C'-! '44$?&'-*4! *'?C! ?$(?*%(! -$! -C*! %"@,$) 3(>(3) */) -&#$%-+$"*.)-.!) #*/$4-%() $**3!
9*BDB+! 5<! 47(?C%$(&I'-&$(! &4! C'(>#*>! &(! -C*! 2%$H4*%+! HC&#*! 4*%6&?*! $%?C*4-%'-&$(! &4!
>*#*D'-*>!-$!-C*!V8bF!*(D&(*;B!!

!"#$%$#&

'()"*++

!"#$%$#&,)-#.$-*(

/*++.0*12"3.-0*

4.($.56*

'.(#-*(7$-8

,)((*6.#$)-9*#

,.#"3
:.;6#<.-=6*(+

"#$%

&'()*

+,-)./)0%0(

"1#'%2)13%*4#.%
5%6'*7/(7)0
8%./1#(%+9:
+,;0$70%4#.%
76<(#*("#$%

4#.%

4#.%

4#.%

.""*++$56*>)

(*-=*(*=?-

"*)/%*(=
4#.%
>#1?%
8=/%

@AAB

@AA@

CAAB

@AA@
@AA@

@AA@

CAAB@AA@

CAAB

'.(#-*(7$-8>&D*
+,8=/%

=*+"($5*=E&
@AA@

CAA@

@<5:A+,

3.+

")-#.$-+

98



!

N! O=,*!"#$%&'%(*K.E-#%.?,.7*

"&D1%*! Y! 4C$H4! -C*! 94&KL#&.&*>;! '%?C&-*?-1%*! $.! -C*!O'%?$"#$H! *(6&%$(K*(-+!HC&?C!
'&>4!-C*!>*6*#$LK*(-!'(>!*N*?1-&$(!$.!>&4-%&21-*>!5<!$%?C*4-%'-&$(4B!/C*!'%?C&-*?-1%*!
&4!L'%-&-&$(*>!&(-$!>*4&D(!-&K*+!>*L#$7K*(-!-&K*+!'(>!%1(-&K*!?$KL$(*(-4+!'??$%>&(D!
-$!-C*!-C%**!LC'4*4!$.!-C*!4$.-H'%*!>*6*#$LK*(-!#&.*?7?#*!41LL$%-*>!27!O'%?$"#$HB!
/C*!+,6-/.* L'%-! ?$KL%&4*4! -C*!BCDEF<=) (!"$*%! -C'-! 41LL$%-4! V8bF\5<! SYU+! -C*!

?$KL$4&-&$(!#'(D1'D*!H*!14*!-$!4L*?&.7!>&4-%&21-*>!5<!$%?C*4-%'-&$(4B!/C*!*>&-$%!&4!'(!
*N-*(>*>!b?#&L4*!V8bF!*>&-$%!H&-C! 9&;! '! L'(*#! .$%! -C*! 4L*?&.&?'-&$(!$.! -C*! L'D*4! &(!
HC&?C!5<!?$KL$(*(-4!?'(!2*!%*(>*%*>!'(>!9&&;!'!L%$L*%-7!L'(*#!-C'-!'##$H4!-C*!>*6*#P
$L*%!-$!?$(.&D1%*!-C*!H*2!L'D*4+!-$!4*-!-C*!L%$L*%-&*4!$.!5<!L'%-(*%!#&(R4+!'(>!-$!'44$P
?&'-*!-C*K!-$!L#'?*!C$#>*%4!&(!-C*!#'7$1-B!
/C*!+,2'%3?,.7!$.!'!5<!$%?C*4-%'-&$(!%*01&%*4!-%'(4#'-&(D!-C*!V8bF\5<!4L*?&.&?'P

-&$(! &(-$! *N*?1-'2#*! ?$KL$(*(-4M! 9&;! '! 4*-! $.! +*55'."+-$"*.) +,-..(3#! -C'-!K*>&'-*!

!
&-/5#,*I*"%$K!>*4&D(!-&K*!-$!%1(-&K*M!$6*%'##!474-*K!'%?C&-*?-1%*!$.!O'%?$"#$H*

F?G*-0$-*G"6$*-#GHI*5G5()I+*(JF?G*-0$-*G"6$*-#GHI*5G5()I+*(J

E'17KF?G*=$#)(

9*(%$"*G
L9M7+

F?G")ND)-*-#G
L9M7+

E'17KF?G,)ND$6*(

E'17G*-0$-*

F?G*-0$-*G+*(%*(GHI*5G+*(%*(J

F?G*-0$-*G"6$*-#GHI*5G5()I+*(J

F?G*%*-#G5;+

E'17KF?

E'17

!"#$%&'(
)*++,-.)/0.*-

$%&'#!"(
)*++,-.)/0.*-

1234(5./(
677%

89'(5./(
23:%

9O!'GI*5G
+*(%$"*+

!DD6$".#$)-G
=*%*6)D*(

9&+#*NG
")-:$0;(.#$)-

5%67$0!(7.%
5%/1)=.%0(!(7.%

9?0(7.%

12(5./(677%

7.&);#G.-=GF?G
6)0$"G0*-*(.#)(

E'17G0*-*(.#)(

,)NNAG+*(%$"*+G
0*-*(.#)(

!E
,

F?G")ND)-*-#+

! E
,

!"()*+;*-<-0()*-0/.-<=

1234(5./(
677%

89'(5./(
23:%

89'(5./(23:%

7.&);#G
")-:$0;(.#)(

F?GD.(#-*(G6$-8G
")-:$0;(.#)(

<>/7G
#*ND6.#*+

F?G
")ND)+$#$)-

'/>*,0(/-?(
!"(@*A.)

2>B0<+()*+;*-<-0B

C*),+<-0(D@*EB
2>B0<+FG,+/-()*++,-.)/0.*-B
:,0*+/0.)/@@>(A<-<=/0<?(<@<+<-0B

1%*-#G
:)(I.(=*(
1%*-#G

:)(I.(=*(
1%*-#G

:)(I.(=*(+

P)#$:$".#$)-G
3.-=6*(

P)#$:$".#$)-G
3.-=6*(

P)#$:$".#$)-G
3.-=6*(+

1%*-#G
D()2&
1%*-#G
D()2&
1%*-#G
5;::*(

1%*-#G
D()2&
1%*-#G
D()2&
1%*-#G
D()2&

F+*(+

99



!

2*-H**(! -C*!5<!?$KL$(*(-4! &(! -C*!?#&*(-!2%$H4*%!'(>! -C*!V8bF!*(D&(*c! 9&&;!'!#$-.0
!-%!)BCDE)#6(+"/"+-$"*.!?$(-'&(&(D!-C*!>&4-%&21-*>!5<!47(?C%$(&I'-&$(!'(>!H*2!4*%P
6&?*!$%?C*4-%'-&$(!#$D&?c!'(>!9&&&;!'!4*-!$.!<=)+*56*#"$"*.#!9$(*!.$%!*'?C!L'D*!$.!-C*!
'LL#&?'-&$(;!?$(-'&(&(D! -C*! &(-%'PL'D*!5<!47(?C%$(&I'-&$(4B!/C&4! -'4R! &4!'?C&*6*>!27!
-C*!BCDEF<=)+*56"3(%+!HC&?C!'#4$!K'('D*4!-C*!>*L#$7K*(-!$.!-C*!D*(*%'-*>!'%-&.'?-4!
&(!-C*!%*4L*?-&6*!%1(-&K*!*(6&%$(K*(-4B!
/C*!,P,$57-%.! $.! '!5<!$%?C*4-%'-&$(! %*01&%*4! -C*! 4*-1L!'(>!?$$%>&('-&$(!$.! -C%**!

&(>*L*(>*(-! %1(-&K*! *(6&%$(K*(-4M! 9&;! -C*! &(-*%'?-&$(!H&-C! 14*%4! '(>! &(-%'PL'D*!5<!
47(?C%$(&I'-&$(!&4!K'('D*>!&(! -C*!?#&*(-!2%$H4*%!27!'(!(>(.$0&-#(!)N->-O+%"6$)%'.0
$"5()/%-5(4*%7c!9&&;!'!4$P?'##*>!<=)(.@".()#(%>(%!%1(4!-C*!H*2!4*%6&?*4!&KL#*K*(-&(D!
-C*! ?$KK1(&?'-&$(! ?C'((*#4c! '(>! 9&&&;! '! #$-.!-%!)BCDE) (.@".(!K'('D*4! -C*! >&4-%&P
21-*>!5<!47(?C%$(&I'-&$(!'(>!H*2!4*%6&?*!$%?C*4-%'-&$(B!

/C*!O'%?$"#$H!474-*K!4C$H(!&(!"&D1%*!Y!&4!.1##7!&KL#*K*(-*>!'(>!%1((&(DB!Q!L'P
-*(-!'LL#&?'-&$(!.$%!L'%-4!$.!-C*!474-*K!C'4!2**(!.&#*>B!

M! 1,?%*6$,."#-%*

Q!*N'KL#*!$.!C$H!O'%?$"#$H!?'(!2*!14*>! .$%! -C*!>*6*#$LK*(-!$.!'!>&4-%&21-*>!5<!
$%?C*4-%'-&$(! &4! '6'&#'2#*! '-! ,$$6PMM5-#,-%$Q*%@M5-%+*/3*4M!(5*Q,$5B! /C*! >*K$! &(!
.$%K!$.!'!6&>*$!&##14-%'-*4!&(!.*H!K&(1-*4!-C*!K'&(!.*'-1%*4!$.!O'%?$"#$H!&(!-C*!?$(P
-*N-! $.! '! 4&KL#*! C$K*! '44&4-'(?*! K'('D*K*(-! 'LL#&?'-&$(B! 8'%-&?1#'%! *KLC'4&4! &4!
D&6*(!-$!-C*!-C%**!>*6*#$LK*(-!LC'4*4!41LL$%-*>!27!-C*!-$$#!9>*4&D(+!>*L#$7K*(-+!'(>!
%1(-&K*;!'(>!-$!-C*!14*!$.!-C*!.&('#!'LL#&?'-&$(!27!-C*!>&..*%*(-!'?-$%4!&(6$#6*>!&(!-C*!
>&4-%&21-*>!L%$?*44!#$D&?B!

4,;,#,.$,6*

TBG WB! G1+! VB! V*('-'##'C+! "B! 3'4'-&+! "B! )'(&*#B! 5(>*%4-'(>&(D!O'4C1L! )*6*#$LK*(-! '(>! &-4!
)&..*%*(?*4!H&-C!/%'>&-&$('#! <(-*D%'-&$(B! =DDD) =.$(%.($)R*56'$".@+!^$#B! TY+!:$B! ]+! ,*LP
-*K2*%Pd?-$2*%!Yeea+!LLB!\\P]YB!

YBG "B!)'(&*#+!,B!,$&+!,B!/%'(01&##&(&+!"B!3'4'-&+!3B!E*(D+!FB!G'(B!"%$K!8*$L#*!-$!,*%6&?*4!-$!
5<M!)&4-%&21-*>!d%?C*4-%'-&$(!$.!54*%!<(-*%.'?*4B!BC1STU+!E$2$R*(+!:W+!5,QB!

[BG dQ,<,B! X*2! ,*%6&?*4! V14&(*44! 8%$?*44! bN*?1-&$(! F'(D1'D*! ^*%4&$(! YBe+! QL%&#! Yee`B!
Sd(#&(*UB!,$$6PMM!*+#Q*-#"#0*6(.Q*%@M4#&6(3MVQUMWOM4#&6(30>VQU0WOQ,$53!

\BG Q?-&6*! b(>L$&(-4! <(?B+! Q>$2*! ,74-*K4! <(?B+! VbQ! ,74-*K4! <(?B+! <(-*%('-&$('#! V14&(*44!
O'?C&(*4!3$%L$%'-&$(+!d%'?#*!<(?B+!,Q8!QfB!X,PV8bF!bN-*(4&$(!.$%!8*$L#*!9V8bF\8*$P
L#*;+!^*%4&$(!TBeB!W1(*!Yee`B!

]BG JB!Q?*%2&4+!QB! V$(D&$+!OB!V%'K2&##'+! ,B! V1--&+! ,B! 3*%&+! 8B! "%'-*%('#&B!X*2!QLL#&?'-&$(4!
)*4&D(!'(>!)*6*#$LK*(-!H&-C!X*2OF!'(>!X*2J'-&$!]BeB!XWWEOSUY+!LLB![gYP\TTB!

_BG WB!fhK*I+!QB!V&'+!QB!8'%%'D'B!/$$#!,1LL$%-!.$%!O$>*#P)%&6*(!)*6*#$LK*(-!$.!X*2!QLL#&P
?'-&$(4+!Z=ODSU[+!LLB!`YTP`[eB!

`BG ,1(!O&?%$474-*K4B! W,JPeeeT_a! 8$%-#*-! ,L*?&.&?'-&$(+! d?-$2*%! Yee[B! Sd(#&(*UB! ,$$6PMM\+6Q)
*%@M-&*'$N->-M+*55'."$?6%*+(##M/".-3M\#%T]YM!

aBG "B!)'(&*#+!"B!3'4'-&+!VB!V*('-'##'C+!OBP3B!,C'(B! !E$4-*>!5(&6*%4'#!3$KL$4&-&$(M!O$>*#4+!
F'(D1'D*4!'(>!<(.%'4-%1?-1%*!&(!K'4CQ%-B!D^_U`+!LLB!\YaP\\[B!

100



 

Distributed User Interface Orchestration: 
On the Composition of Multi-User (Search) Applications 

Florian Daniel, Stefano Soi, and Fabio Casati 
University of Trento, 38123 Povo (TN), Italy 

{daniel,soi,casati}@disi.unitn.it 

Abstract. While mashups may integrate into a new web application data, appli-
cation logic, and user interfaces sourced from the Web – a highly intricate and 
complex task – they typically come in the form of simple applications (e.g., 
composed of only one web page) for individual users. In this chapter, we intro-
duce the idea of distributed user interface orchestration, a mashup-like devel-
opment paradigm that, in addition to the above features, also provides support 
for the coordination of multiple users inside one shared application or process. 
We describe the concepts and models underlying the approach and introduce 
the MarcoFlow system, a platform for the assisted development of distributed 
user interface orchestrations. As a concrete development example, we show 
how the system can be profitably used for the development of an advanced, col-
laborative search application. 

1 Introduction 

After workflow management (which supports the automation of business processes 
and human tasks) and service orchestration (which focuses on web services at the 
application layer), web mashups [1] feature a significant innovation: integration at 
the UI level. Besides web services or data feeds, mashups indeed reuse pieces of UIs 
(e.g., content extracted from web pages or JavaScript UI widgets) and integrate them 
into new web pages or applications. While mashups therefore manifest the need for 
reuse in UI development and for suitable UI component technologies, so far they 
produced rather simple applications consisting of one web page only. 

We argue that there is a huge spectrum of applications that demand for develop-
ment approaches that are similar to those of mashups but that go far beyond single 
page applications and, in fact, support multiple pages, multiple actors, complex navi-
gation structures, and – more importantly – process-based application logic or naviga-
tion flows. We call this type of applications distributed UI orchestrations [2], as (i) 
both components and the application itself may be distributed over the Web and oper-
ated  by different actors, (ii) in addition to traditional web services we also integrate 
novel JavaScript UI components, and (iii) services and UIs are orchestrated in a ho-
mogeneous fashion. 

Developing distributed UI orchestrations therefore raises the need for the coordina-
tion of individual actors and the development of a distributed user interface and serv-
ice orchestration logic. Doing so requires: 
! Understanding how to componentize UIs and compose them; 

Appendix F

101



 

! Defining a logic that is able to orchestrate both UIs and web services; 
! Providing a language and tool for specifying distributed UI compositions; and  
! Developing a runtime environment that is able to execute distributed UI and 

service compositions. 
In this chapter, we describe how the above challenges have been solved in the con-

text of the MarcoFlow project [2] and how the resulting approach can be leveraged 
for the development of a distributed search computing application that requires the 
coordination of services, UIs, and people.  

This chapter is organized as follows: Next, we describe the search application that 
raises the need for distributed UI orchestration. In Section 3, we look at how existing 
techniques and technologies may support the development of such kind of applica-
tion, while in Section 4 we introduce the distributed UI orchestration approach in 
order to fill the gaps. In Section 5, we describe our current development prototype, 
and in Section 6 we conclude the paper. 

2 A Search Scenario 

Let us consider the following collaborative search scenario illustrated in Figure 1, an 
extension of the single-user scenario discussed in [3]. 

 
Fig. 1 Trip authorization distributed application. The gray arrows indicate synchronization or 
orchestration points; the number labels indicate their order in time. 

This time we want to assist an employee that needs to request the authorization of a 
business trip to his superior. The employee can enter the relevant information about 
the trip (the origin and destination, and the start and end dates) and search for related 
flights and accommodations. He/she can select his/her preferred choices from the list 
of flights and hotels and send the request to the superior. The superior can inspect the 

yes

no

Response approved?

Mail WS

Archive report

Search

1
5

7

8

12

1011

Send Auth. 
Request

Hotel Search 
WS

Send trip info 
to secretary

Flight Search 
WS

6c

2a 2b

3a
3b

4b4a

6a

6b

Send Reject 
Response

9

13

14

15

Send Auth. 
Response

102



 

request, along with its details, and send a response (accept or redo) to the employee, 
together with some optional comment. If the request is approved, the response will be 
sent to the employee and the procedure will end with archiving and mailing oper-
ations. If the request is rejected the previous steps (all or a part of them) can be re-
peated until the authorization request is approved. 

If we analyze the scenario, we see that the envisioned application (as a whole) is 
distributed over the Web. The application includes, besides the process logic, two 
mashup-like, web-based control consoles for the employee and the superior that are 
themselves part of the orchestration and need to interact with the underlying process 
logic. The UIs for the actors participating in the application are composed of UI com-
ponents, which can be components developed in-house (like the Trip Authorization 
component) or sourced from the Web (like the Hotel Search and the Kayak Flights 
Search component); service orchestrations are based on web services. In our case, the 
latter two UI components serve only to render content, which still needs to be queried 
from the Web via dedicated web services. The Trip Authorization component, instead, 
collects data from the user (via its input fields) and from the other two UI components 
(via suitable synchronization operations). Finally, the two applications for the em-
ployee and the superior are instantiated in different web browsers, contributing to the 
distribution of the overall UI and raising the need for synchronization.  

3 Distributed UI Orchestration 

The key idea to approach the coordination of (i) UI components inside web pages, (ii) 
web services providing data or application logic, and (iii) individual pages (as well as 
the people interacting with them) is to split the coordination problem into two layers: 
intra-page UI synchronization and distributed UI synchronization and web service 
orchestration.  

UIs are typically event-based (e.g., user clicks or key strokes), while service invo-
cations are coordinated via control flows. In [2] we show how to describe UI compo-
nents (as also introduced in [4]) in terms of standard WSDL descriptors, how to bind 
them to JavaScript, and how to extend the standard BPEL language in order to sup-
port the two above composition layers. We call this extended language BPEL4UI. 
Fig. 2 shows the simplified meta-model of the language and details all the new model-
ing constructs necessary to specify UI orchestrations (gray-shaded), omitting details 
of the standard BPEL language, which are reused as is by BPEL4UI. The model in 
Fig. 2 exclusively focuses on the composition aspects, while the events and operations 
of UI components are defined in their WSDL descriptors [2]. 

In terms of standard BPEL [5], a UI orchestration is a process that is composed of 
a set of associated activities (e.g., sequence, flow, if, assign, validate, or similar), 
variables (to store intermediate processing results), message exchanges, correlation 
sets (to correlate messages in conversations), and fault handlers. The services or UI 
components integrated by a process are declared by means of so-called partner links, 
while partner link types define the roles played by each of the services or UI compo-
nents in the conversation and the port types specifying the operations and messages 
supported by each service or component. 

103



 

Modeling UI-specific aspects requires instead introducing a set of new constructs 
that are not yet supported by BPEL. The constructs, illustrated in Fig. 2, are: UI type 
(the partner link type for UI components), page (the web pages over which we dis-
tribute the UI of the application), place holder (the name of the place holders in which 
we can render UI components), UI component (the partner link for UI components), 
property (the constructor parameters of UI components), and actor (the human actors 
we associate with web pages).  

 
Fig. 2 Simplified BPEL4UI meta-model in UML. White classes correspond to standard BPEL 
constructs; gray classes correspond to constructs for UI and user management. 

It is important to note that although syntactically there is no difference between 
web services and UI components (the new JavaScript binding introduced into WSDL 
to map abstract operations to concrete JavaScript functions comes into play only at 
runtime), it is important to distinguish between services and UI components as their 
semantics and, hence, their usage in the model will be different. A detailed descrip-
tion of the new constructs and their usage can be found in [2], while in Figure 3 we 
illustrate the BPEL4UI model of our example search application (shown in Figure 
Fig. 1) as modeled in our extended Eclipse BPEL editor. 

The BPEL4UI model is structured into four main blocks: one repeat-until and three 
sequences (sub-types of the Activity entity in Fig. 2). The repeat-until block at the left 
manages the flights and hotels search operations. The processing of the block starts 
upon the reception of the relevant data about the trip from the employee’s console, 
then it invokes the external search web services and, finally, sends the respective 
results to the UI components rendering the flight and hotel offers. This block of op-
erations can be repeated an arbitrary number of times (e.g., in case the employee want 
to input new search criteria or a trip request has been rejected and needs to be redone), 
until the authorization is accepted. Once the search results are rendered in their UI 
components, the employee can choose a flight and a hotel combination by clicking on 
the respective choices. This allows the employee to compose his trip request summa-
rized in the Trip Authorization component. The two sequence blocks (Flight Selection 
and Hotel Selection) in the middle of the model implement the operations that are 
necessary to synchronize the Trip Authorization UI-component, which is then in 

 

Modeling UI-specific aspects requires instead introducing a set of new constructs 
that are not yet supported by BPEL. The constructs, illustrated in Fig. 2, are: UI type 
(the partner link type for UI components), page (the web pages over which we dis-
tribute the UI of the application), place holder (the name of the place holders in which 
we can render UI components), UI component (the partner link for UI components), 
property (the constructor parameters of UI components), and actor (the human actors 
we associate with web pages).  

 
Fig. 2 Simplified BPEL4UI meta-model in UML. White classes correspond to standard BPEL 
constructs; gray classes correspond to constructs for UI and user management. 

It is important to note that although syntactically there is no difference between 
web services and UI components (the new JavaScript binding introduced into WSDL 
to map abstract operations to concrete JavaScript functions comes into play only at 
runtime), it is important to distinguish between services and UI components as their 
semantics and, hence, their usage in the model will be different. A detailed descrip-
tion of the new constructs and their usage can be found in [2], while in Figure 3 we 
illustrate the BPEL4UI model of our example search application (shown in Figure 
Fig. 1) as modeled in our extended Eclipse BPEL editor. 

The BPEL4UI model is structured into four main blocks, i.e., sequences in BPEL 
terminology. The leftmost block manages the flights and hotels search operations. The 
processing of the block starts upon the reception of the relevant data about the trip 
from the employee’s console, then it invokes the external search web services and, 
finally, sends the respective results to the UI components rendering the flight and 
hotel offers. This block of operations can be repeated an arbitrary number of times 
(e.g., in case the employee want to input new search criteria or a trip request has been 
rejected and needs to be redone), until the authorization is accepted. Once the search 
results are rendered in their UI components, the employee can choose a flight and a 
hotel combination by clicking on the respective choices. This allows the employee to 
compose his trip request summarized in the Trip Authorization component. The two 
sequence blocks in the middle of the model implement the operations that are neces-
sary to synchronize the Trip Authorization UI-component, which is then in charge of 
storing the combination and computing the total cost of the trip. These communica-

N

104



 

charge of storing the combination and computing the total cost of the trip. These 
communications, involving only UI-components belonging to the same page, are 
completely managed inside the employee’s web browser. Once all the trip data are 
available, the Send Request button in the employee console is activated and can be 
used to forward the authorization request to the superior. Receiving the authorization 
request starts the right block in the model (Authorization Request and Response), 
which waits for the trip request data and then forwards them to the Trip Authorization, 
Hotel and Flight UI-components of the superior’s console. Now the superior can 
inspect the request and send a response that is forwarded to the employee’s console. If 
the superior approves the request, two web services are invoked, respectively for 
archiving and mailing, and, finally, the process is terminated. If the response is a 
reject, the whole block of operations can be repeated, allowing the employee to mod-
ify his request. The right block of service orchestration hence requires the coordina-
tion of the two actors, i.e., employee and superior, and the distributed orchestration of 
UI components and web services. Doing so requires the help from the BPEL engine 
and the setting of a suitable BPEL correlation set. 

 
Fig. 3 BPEL4UI modeling example for the Trip Authorization application. 

105



 

As for the layout of distributed UI orchestrations, defining web pages and associat-
ing UI partner links with placeholders requires implementing suitable HTML tem-
plates that are able to host the UI components of the orchestration at runtime. For the 
design of layout templates, we do not propose any new development instrument and 
rather allow the developer to use his/her preferred development tool (from simple text 
editors to model-driven design tools). The only requirement the templates must satisfy 
is that they provide place holders in form of HTML DIV elements that can be indexed 
via standard HTML identifiers following a predefined naming convention, i.e., <div 
id=“marcoflow-left”>…</div>. For instance, all the activities with a “[UI]” prefix in 
Figure 3 are associated to placeholders, in order to fill the two pages composing our 
reference scenario. 

As this discussion shows, the main methodological goals in implementing our UI 
orchestration approach were (i) relying as much as possible on existing standards, (ii) 
providing the developer with only few and simple new concepts, and (iii) implement-
ing a runtime architecture that associates each concern to the right level of abstraction 
and software tool (e.g., UI synchronization is handled in the browser, while service 
orchestration is delegated to the BPEL engine). These decisions, for instance, allow us 
to reuse BPEL’s internal exception handling mechanisms to manage also exceptions 
in distributed UI orchestrations. 

4 The MarcoFlow Environment 

Fig. 4 shows the (simplified) architecture of the MarcoFlow environment, which aids 
the development and execution of distributed UI orchestrations. The architecture is 
partitioned into design time, deployment time, and runtime components, according to 
the three phases of the software development lifecycle supported by MarcoFlow. 

The design part comprises theBPEL4UI editor that supports the full BPEL4UI lan-
guage as defined in [2]. The editor is an extended Eclipse BPEL editor with (i) a panel 
for the specification of the pages in which UI components can be rendered and (ii) a 
property panel that allows the developer to configure the web pages, to set the proper-
ties of UI partner links, and to associate them to place holders in the layout. 

The deployment of a UI orchestration requires translating the BPEL4UI specifica-
tion into executable components: (i) a set of communication channels that mediate 
between the UI components in the client browser and the BPEL engine; (ii) a stan-
dard BPEL specification containing the distributed UI synchronization and web serv-
ice orchestration logic; and (iii) a set of UI compositions (one for each page of the 
application) containing the intra-page UI synchronizations. This task is achieved by 
the BPEL4UI compiler, which also manages the deployment of the generated artifacts 
in the respective runtime environments. 

The execution of a UI orchestration requires the setup and coordination of three 
independent runtime environments: (i) the interaction with users and intra-page UI 
synchronization is managed in the client browser by an event-based JavaScript run-
time framework; (ii) a so-called UI engine server runs the web services implementing 
the communication channels; and (iii) a standard BPEL engine manages the distrib-
uted UI synchronization and web service orchestration. 

106



 

 
Fig. 4 From design time to runtime: overall system architecture of MarcoFlow 

In order for the superior and the employee to manage their trip authorizations, 
MarcoFlow also comes with a simple task manager (not detailed in Fig. 4), which 
allows them to start new trip authorizations (the employee) and to participate in run-
ning instances of the application (the manager). Each new request requires a new 
instantiation of the process. All running instances are shown to both actors in their 
personalized lists. An instance terminates upon successful approval of the trip.  

The MarcoFlow system shown in Fig. 4 is fully implemented and running. A pat-
ent application for parts of the system has been filed. A detailed demonstration of how 
MarcoFlow can be used for the development of distributed UI orchestration is avail-
able at http://mashart.org/marcoflow/demo.htm. 

5 Related Work 

In most service orchestration approaches, such as BPEL [5], there is no support for 
UI design. Many variations of BPEL have been developed, e.g., aiming at the invoca-

107



 

tion of REST services [6] or at exposing BPEL processes as REST services [7]. 
IBM’s Sharable Code platform [8] follows a slightly different strategy in the compo-
sition of REST and SOAP services and also allows the integration of user interfaces 
for the Web; UIs are however not provided as components but as ad-hoc Ruby on 
Rails HTML templates. 

BPEL4People [9] is an extension of BPEL that introduces the concept of people 
task as first-class citizen into the orchestration of web services. The extension is 
tightly coupled with the WS-HumanTask [10] specification, which focuses on the 
definition of human tasks, including their properties, behavior and operations used to 
manipulate them. BPEL4People supports people activities in form of inline tasks 
(defined in BPEL4People) or standalone human tasks accessible as web services. In 
order to control the life cycle of service-enabled human tasks in an interoperable 
manner, WS-HumanTask also comes with a suitable coordination protocol for human 
tasks, which is supported by BPEL4People. The two specifications focus on the coor-
dination logic only and do not support the design of the UIs for task execution. 

The systematic development of web interfaces and applications has typically been 
addressed by the web engineering community by means of model-driven web design 
approaches. Among the most notable and advanced model-driven web engineering 
tools we find, for instance, WebRatio [11] and VisualWade [12]. The former is based 
on a web-specific visual modeling language (WebML), the latter on an object-
oriented modeling notation (OO-H). Similar, but less advanced, modeling tools are 
also available for web modeling languages/methods like Hera, OOHDM, and UWE. 
These tools provide expert web programmers with modeling abstractions and auto-
mated code generation capabilities for complex web applications based on a hyper-
link-based navigation paradigm. WebML has also been extended toward web services 
[13] and process-based web applications [14]; reuse is however limited to web serv-
ices and UIs are generated out of HTML templates for individual components. 

A first approach to component-based UI development is represented by portals 
and portlets [15], which explicitly distinguish between UI components (the portlets) 
and composite applications (the portals). Portlets are full-fledged, pluggable Web 
application components that generate document markup fragments (e.g., (X)HTML) 
that can however only be reached through the URL of the portal page. A portal server 
typically allows users to customize composite pages (e.g., to rearrange or show/hide 
portlets) and provides single sign-on and role-based personalization, but there is no 
possibility to specify process flows or web service interactions (the new WSRP [16] 
specification only provides support for accessing remote portlets as web services). 
Also JavaServer Faces [17] feature a component model for reusable UI components 
and support the definition of navigation flows; the technology is however hardly reus-
able in non-Java based web applications, navigation flows do not support flow con-
trols, and there is no support for service orchestration and UI distribution. 

Finally, the web mashup [1] phenomenon produced a set of so-called mashup 
tools, which aim at assisting mashup development by means of easy-to-use graphical 
user interfaces targeted also at non-professional programmers. For instance, Yahoo! 
Pipes (http://pipes.yahoo.com) focuses on data integration via RSS or Atom feeds via 
a data-flow composition language; UI integration is not supported. Microsoft Popfly 
(http://www.popfly.ms; discontinued since August 2009) provided a graphical user 
interface for the composition of both data access applications and UI components; 

108



 

service orchestration was not supported. JackBe Presto (http://www.jackbe.com) 
adopts a Pipes-like approach for data mashups and allows a portal-like aggregation of 
UI widgets (so-called mashlets) visualizing the output of such mashups; there is no 
synchronization of UI widgets or process logic.IBM QEDWiki (http://services.alpha-
works.ibm.com/qedwiki) provides a wiki-based (collaborative) mechanism to glue 
together JavaScript or PHP-based widgets; service composition is not supported. Intel 
Mash Maker (http://mashmaker.intel.com) features a browser plug-in which interprets 
annotations inside web pages allowing the personalization of web pages with UI wid-
gets; service composition is outside the scope of Mash Maker.  

In the mashArt [4] project, we worked on a so-called universal integration ap-
proach for UI components and data and application logic services. MashArt comes 
with a simple editor and a lightweight runtime environment running in the client 
browser and targets skilled web users. MashArt aims at simplicity: orchestration of 
distributed (i.e., multi-browser) applications, multiple actors, and complex features 
like transactions or exception handling are outside its scope. The CRUISe project [18] 
has similarities with mashArt, especially regarding the componentization of UIs. Yet, 
is does not support the seamless integration of UI components with service orchestra-
tion, i.e., there is no support for complex process logic. CRUISe rather focuses on 
adaptivity and context-awareness. Finally, the ServFace project [19] aims at support-
ing even unskilled web users in composing web services that come with an annotated 
WSDL description. Annotations are used to automatically generate form-like inter-
faces for the services, which can be placed onto one or more web pages and used to 
graphically specify data flows among the form fields. The result is a simple, user-
driven web service orchestration. None of these projects, however, supports the coor-
dination of multiple different actors inside a same process, and none of the ap-
proaches discussed supports the distribution of UIs over multiple browsers. 

6 Conclusion and Future Works 

In this chapter, we addressed the problem of designing and orchestrating component-
based web applications that are distributed over multiple web browsers and that in-
volve multiple different actors. We particularly discussed the case of a search comput-
ing application that leverages on a collaborative search and browsing approach, an 
application feature whose development with traditional techniques would be every-
thing but trivial. In fact, while the integration of UIs and web services is, for instance, 
also supported by current mashup platforms, the coordination of the actors involved in 
the application and the synchronization of their respective UIs would still require 
manual intervention. The MarcoFlow platform introduced in this chapter, instead, 
supports the seamless integration of services, UIs, and people in one and the same 
development environment, sensibly speeding up the development of process-based, 
mashup-like web applications. 

The basic idea of MarcoFlow, i.e., the component-based development of applica-
tions is inspired by current web mashup practices, which in many cases aim at ena-
bling also the less skilled developer (or even unskilled end users) to compose own 
applications. Given the complexity of the applications supported by MarcoFlow, it is 

109



 

however important to note that MarcoFlow rather targets skilled developers (e.g., 
developers that are familiar with composite web service development in BPEL). 

One of the challenges to be addressed in our future work is therefore lowering the 
complexity of the design environment for distributed UI orchestrations, hiding 
BPEL4UI behind an easier to learn, graphical modeling language. Also, we would 
like to extend the approach toward streaming web services, for example to support the 
design of continuous queries over sensor networks. 

References 

1. J. Yu, B. Benatallah, F. Casati, F. Daniel. Understanding Mashup Development and its 
Differences with Traditional Integration. IEEE Internet Computing, Vol. 12, No. 5, Sep-
tember-October 2008, pp. 44-52. 

2. F. Daniel, S. Soi, S. Tranquillini, F. Casati, C. Heng, L. Yan. From People to Services to 
UI: Distributed Orchestration of User Interfaces. Proceedings of BPM'10, pp. 310-326. 

3. F. Daniel, S. Soi, F. Casati. From Mashup Technologies to Universal Integration: Search 
Computing the Imperative Way. Search Computing - Challenges and Directions, June 
2009, pp. 72-93. 

4. F. Daniel, F. Casati, B. Benatallah, M.-C. Shan.  Hosted Universal Composition: Models, 
Languages and Infrastructure in mashArt. ER'09, pp. 428-443. 

5. OASIS. Web Services Business Process Execution Language Version 2.0, April 2007. 
[Online]. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html 

6. C. Pautasso. BPEL for REST. BPM'08, Milano, pp. 278-293. 
7. T. van Lessen, F. Leymann, R. Mietzner, J. Nitzsche, D. Schleicher. A Management 

Framework for WS-BPEL, ECoWS'08, Dublin, pp. 187-196. 
8. E. M. Maximilien, A. Ranabahu, K. Gomadam. An Online Platform for Web APIs and 

Service Mashups, Internet Computing, vol. 12, no. 5, pp. 32-43, Sep. 2008. 
9. Active Endpoints, Adobe, BEA, IBM, Oracle, SAP. WS-BPEL Extension for People 

(BPEL4People), Version 1.0. June 2007. 
10. Active Endpoints, Adobe, BEA, IBM, Oracle, SAP. Web Services Human Task (WS-Hu-

manTask), Version 1.0. June 2007. 
11. R. Acerbis, A. Bongio, M. Brambilla, S. Butti, S. Ceri, P. Fraternali. Web Applications 

Design and Development with WebML and WebRatio 5.0. TOOLS’08, pp. 392-411. 
12. J. Gómez, A. Bia, A. Parraga. Tool Support for Model-Driven Development of Web Appli-

cations, WISE’05, pp. 721-730. 
13. I. Manolescu, M. Brambilla, S. Ceri, S. Comai, P. Fraternali. Model-Driven Design and 

Deployment of Service-Enabled Web Applications. ACM Trans. Internet Technol., Vol. 5, 
No. 3, August 2005, pp. 439-479. 

14. M. Brambilla, S. Ceri, P. Fraternali, I. Manolescu. Process Modeling in Web Applications. 
ACM Trans. Softw. Eng. Methodol., Vol. 15, No. 4, October 2006, pp. 360-409. 

15. Sun Microsystems. JSR-000168 Portlet Specification, October 2003. [Online]. 
http://jcp.org/aboutJava/communityprocess/final/jsr168/ 

16. OASIS. Web Services for Remote Portlets, August2003. [Online]. www.oasis-open.org/ 
committees/wsrp 

17. Oracle. JavaServer Faces Technology. [Online] http://java.sun.com/javaee/javaserverfaces/ 
18. S. Pietschmann, M. Voigt, A. Rümpel, K. Meissner. CRUISe: Composition of Rich User 

Interface Services. ICWE’09, pp. 473-476. 
19. M. Feldmann, T. Nestler, U. Jugel, K. Muthmann, G. Hübsch, A. Schill. Overview of an 

end user enabled model-driven development approach for interactive applications based on 
annotated services. WEWST’09, pp. 19-28. 

110



Domain-specific Mashups: From All to All You Need 

 Stefano Soi and Marcos Baez 
Dipartimento di Ingegneria e Scienza dell’Informazione 

University of Trento 
Via Sommarive, 14 38123 

Trento, Italy 
{soi,baez}@disi.unitn.it 

Abstract. Last years, aside the proliferation of Web 2.0, we assisted to the 
drastic growth of the mashup market. An increasing number of different 
mashup solutions and platforms emerged, some focusing on data integration (a 
la Yahoo! Pipes), others on user interface (UI) integration and some trying to 
integrate both UI and data. Most of proposed solutions have a common 
characteristic: they aim at providing non-programmers with a flexible and 
intuitive general-purpose development environment. While these generic 
environments could be useful for web users to develop simple applications, they 
are often too generic to address domain-specific needs and to allow users to 
develop real-life complex applications. In particular, proposed mashup 
mechanisms do not reflect those specific concepts that are proper of a given 
domain, which domain-experts are familiar with and could autonomously 
manage. We argue the need for domain-specific mashup architectures, also 
going beyond today's enterprise platforms, in which standard mashup 
mechanisms and components are driven by an underlying domain-specific 
layer. This layer will provide a service and component ecosystem built upon a 
shared and uniform conceptual model specific for the given domain. This way, 
domain experts will be provided with mashup components and mechanisms, 
following those well-known concepts and rules proper of the domain they 
belong to, that they are able to understand, use and, finally, profitably compose. 
In this paper, we will show the necessity of such an architecture through a real-
life use case in the context of scientific publications and journals. 
 

Keywords:  domain specific mashups, vertical mashups, end-user centric 
mashups 

1 Introduction  

During last decade a vast amount of functionalities have been made available as 
online services, in form of Web Services, APIs, RSS/Atom feeds and so on. While 
these services can also be used independently from one other, putting them together to 
create a value-adding combination could lead to much more fruitful results, as 
described in [1]. This is exactly what mashup solutions try to achieve. In addition, 

Appendix G

111



2  Stefano Soi  and Marcos Baez 

most of available mashup platforms aim at giving the possibility to develop such 
composite applications to domain experts, i.e. users with very limited programming 
skills but deep knowledge of the domain being the context of the problem to be 
solved. A number of studies (e.g., [2], [3]) discuss about benefits of moving the 
development of this kind of composite applications from IT-experts to non-
programmers. This would be a radical paradigm shift bringing two main advantages, 
that is, first, avoiding requirement transfer from domain-experts to IT-experts and, 
moreover, allowing to face the development of situational applications1, that is 
applications addressing transient or very specific needs for which the standard 
development lifecycle is not adequate since it would not be time- and cost-effective.  

Current mashup building tools have the - non trivial - target of enabling domain-
experts to develop such mashed up applications without - almost - any programming 
skill or any intervention of expert developers. This is often the main claim of 
available mashup platforms but, from our studies and experience in the mashup field, 
we found that this claim is only partially fulfilled. In particular, available mashup 
solutions provide easy mechanisms, suited for non-programmers, allowing them to 
produce very simple applications (often just "toy applications") or covering only some 
aspects of the integration needs of the users [4]. When users' needs go beyond this 
complexity level, available solutions show up their limitations.  

In our opinion, main reasons underlying difficulties in overcoming these 
complexity limits are related to the fact that current mashup platforms (like [5],[6] 
and similar) have the ambitious goal of "integrating all the Web". In other words, they 
are not targeted at a specific domain but aim to give the possibility to make 
interacting user interfaces (UIs) and services coming from completely different 
domains and producers. For the time being, we think that "integrating all the Web" is 
a too ambitious goal. The lack of widely adopted - official or de facto - standards in 
this area make the integration of highly heterogeneous components a complex task 
that, at the end, is not sufficiently supported with mechanisms well-suited for non-
programmers.  

Starting from these considerations, we argue that there is the need for domain-
specific mashup solutions. In particular, we propose to place the mashup system upon 
a layer defining concepts and policies of the given domain. We will see that this layer 
should include all the knowledge about the specific domain that could be then used to 
ease the mashup development, making actually possible to move the mashup 
application development from IT-experts to domain-experts. 

Summarizing, the main contributions of this work are: 

• stating the need for moving from horizontal general-purpose mashup solutions to 
vertical domain-specific ones, allowing domain-experts to autonomously compose 
their applications playing in their well-know playground 

• proposing a modular architecture that makes a net separation between mashup 
layer and – pluggable – domain layer 

• giving a first characterization of the “domain” concept, in terms of domain entities 
and rules, and first proposals on how the mashup platform should adapt to these. 

                                                           
1 For details and references about the concept of situational application we refer to the 

Wikipedia page: http://en.wikipedia.org/wiki/Situational_application 

112



Domain-specific Mashups: From All to All You Need  3 

To make our proposal clearer, we will explain the proposed solutions with the help 
of a use case, taken from the scientific publications context. In particular, we will 
make reference to a project our group is working on, called LiquidPub 
(http://liquidpub.org/), and we will show how the solution we propose could be 
profitably applied in that context. This will be the domain we will try to characterize 
and on which verticalize. We will base our example on a mashup tool coming from 
another project of our group, called mashArt (http://mashart.org/), which provides a 
complete mashup platform allowing for Universal Integration [7], that is seamless 
integration of data, services and user interfaces (UIs), targeted to non-programmer 
web users. 

The rest of this paper is structured as follows. Section 2 will introduce and 
describe the motivating scenario, with particular reference to the LiquidPub project. 
In Section 3 we will see in more detail how generic mashup platforms work and what 
are their limitations. Section 4 will propose an architecture trying to overcome the 
issues presented in the previous section. In Section 6 will be presented the final 
conclusions and future work.!

2 Motivating Scenario: Knowledge Dissemination 

The Web has pushed forward technological and social changes in different areas and 
the scientific domain has not been the exception. It has opened a brand new world of 
possibilities for how the scientific knowledge can be consumed, produced, shared and 
disseminated. This has motivated an extensive research on how to exploit these 
opportunities, leading to novel models, new forms of scientific contributions, metrics, 
services and sources of information. Having a virtually infinite number of possibilities 
also implies that there could be different ways of consuming /disseminating 
/evaluating the scientific research work. The selection of the right configuration in 
terms of type of content (peer-reviewed papers, preprints, blogs, datasets...), the 
metrics (h-index, citation count, pagerank,..), sources (reputed publishers, open 
archives or the whole web) and the actual process will probably depend on the final 
usage scenario and the believes of the community. Implementing a particular 
dissemination model would normally require programming knowledge to produce the 
required code (e.g., in java, perl, ruby…), following a particular development process. 
Considering that everybody in the scientific domain has different thoughts on how to 
do this, it will be unnecessarily limiting to restrict this to programmers. It is clearly 
something end-users, or domain experts, should be able to do, and not only 
programmers. 

Mashups provide the foundations for supporting such a scenario. However, current 
mashup platforms provide rather generic components, and so, at a level the scientist 
(non-programmer) cannot manage.  For example, if a scientist strongly believes that i) 
blogs and open archives are valid dissemination venues, ii) sharing and consumption 
should be the main goal of a dissemination model, and therefore iii) sharing data 
should be used as base to evaluate researchers; presenting her a component that 
connects to a web service as primary tool does not help her in the composition of the 
dissemination model she believes in. Configuring and wiring components would 
become extremely complex (e.g., setting up a web service connection, or even 

113



4  Stefano Soi  and Marcos Baez 

selecting the right web service), and the user would be required to provide the 
mapping in terms of I/O among heterogeneous web services (when the whole concept 
of “mapping” is probably obscure to her), to reflect a flow and a process at such low 
level. Maintaining and reasoning over such a composition would also be a complex 
task, not to mention that there is no way to ensure that the final outcome is actually a 
dissemination model. Hence, in this context, defining the desired dissemination model 
would not only be complex but it would require programming skills to specify the 
mashup, regardless how fancy the user interface might be.  

Thus, domain concepts and processes (e.g., notions of publication, review, paper, 
venue,…) should be exploited in order to really assist her in the composition. Taking 
this as reference scenario, we discuss the limitations and required extensions to 
current mashup platforms, in the following sections.!

3 Understanding Current Mashups and their Limitations 

As introduced in Section 1, the mashup approach should provide domain-experts with 
no programming skills with suitable mechanisms allowing them to develop 
autonomously their situational applications, leading to the above mentioned 
advantages in terms of responsiveness and effectiveness of solutions.  

What makes possible moving application development from IT-experts to domain-
experts, is probably the complete separation of roles, and thus of required skills, 
among component and composition developer, as depicted in Figure 1. 
!

!
Figure. 1. Separation of roles among component and composition developer. Dotted 
representation among composition developer and mashup user, indicates that both roles can be 
covered by the same person, as typically happens in the context of situational applications. The 
figure is an adaptation of the one presented in [15]. 

The former is responsible to create and publish the building blocks that will be 
glued together to realize the final composite application. These components will 
implement or wrap some services or will represent a user interface. Complexity is 
primarily pushed into components, leaving compositions simpler and lightweight. It is 
clear that component development requires specific programming skills, in particular 

114



Domain-specific Mashups: From All to All You Need  5 

in the web-programming field, since mashup platforms are typically offered as web 
applications, following the Software as a Service (SaaS) approach [8]. To this end, a 
number of web tools have been proposed to help and simplify the creation of services 
and components (e.g., data extraction from web pages, web clipping) [9]. Some 
examples are OpenKapow and Dapper. Both this tools provide simple mechanisms to 
grab contents from web pages and expose extracted data as web services or RSS 
feeds. However, this kind of tools still requires a not negligible knowledge 
of programming concepts to be effectively used. 

Assuming that components have been developed and made available, composition 
developers, now, only need to define the business logic addressing their needs, 
connecting available components, usually through simple visual mechanism (e.g., 
drag and drop). This operation should not need any particular programming 
knowledge or complex operation and should be tackled by advanced web users that 
have a deep knowledge in their domain but no skills in programming. Typically, in 
the context of situational applications development, the domain-expert plays both the 
mashup developer and mashup consumer role (as indicated by dotted representation in 
Figure 1), since she develops compositions to automate processes covering her 
situational needs. 

Providing autonomy in mashups composition to advanced web users is the big 
claim of most mashup platforms, but our experience and studies showed that it is not 
actually fulfilled in general. Proposed solutions allow domain-experts to compose 
their applications without the need to write programming code, but this does not mean 
that the composition process is easily and intuitively affordable by non-programmers 
[10]. In the example of Section 2, this would the case for the scientist trying to select 
publication venues but that find herself with a web service connector. Analyzing 
available mashup tools, we concluded that they are often confusing for domain-
experts, starting from the components selection that, given the vast amount of 
available possibilities, could be time-consuming and error prone. For example, if we 
analyze two popular visual environments for "Consumer mashup" composition, 
Yahoo! Pipes and Microsoft PopFly2, we can see that they provide users with about 
50 components for Yahoo! solution and more than 300 for Microsoft one. Moreover, 
when the needs require more complex mashup solutions many tools either are no 
more sufficient or start requiring to the composition developer (domain expert) a 
deeper and deeper understanding of programming concepts. In fact, a significant part 
of offered components provide functionalities that can be exploited only by those 
users that have good programming knowledge (e.g., regular expressions, loops). 
Another important lack of currently available solutions is that almost none of them 
provide universal integration, that is, as discussed in [7], the seamless integration of 
data, application, and user interface (UI) components, characteristic that we consider 
necessary to actually enable end-users to develop their situational applications. For 
instance, Yahoo! Pipes is mainly oriented toward data integration while Intel 
MashMaker mainly focuses on UI integration, but to build real-life complex 
applications both ingredients are needed. In the field of the "Enterprise mashup" tools 
many efforts is being done to address some business-critical issues, like security, 

                                                           
2 Microsoft PopFly was discontinued on August 2009, but still remain an important mashup 

platform example that attracted thousands of developers. 

115



6  Stefano Soi  and Marcos Baez 

privacy, reliability and accountability. From the point of view of domain-experts 
usability, enterprise solutions suffer of the same problems of consumer ones. In 
particular, although there exist powerful and complete mashup solutions, they are 
usually targeted at programming-skilled users. A noticeable example is the 
Tibco3 suite, providing users with a vast amount of different components and 
mechanisms, covering every possible need, but often strictly related to programming 
concept that domain-experts could completely ignore or, however, difficultly 
manage.  

All the generic components and mechanisms that available mashup solutions, both 
consumer and enterprise, provide and their programming-nature limit the possibilities 
of composition of domain-experts to "toy applications". 

We argue that the main reasons for these limitations regarding most of the 
available tools need to be searched in their aim to be generic-application building 
tools. This general purpose attitude make it difficult for domain-experts to get familiar 
with components, functionalities and mechanisms representing concepts and entities 
they are not acquainted - and which they are not interested in. Moreover, such an 
approach aims at integrating components from different sources belonging to different 
domains, so, very often, making possible the communication among different 
components is a complex task still requiring specific programming efforts. Back to 
our example of Section 2, this would be the case for the scientist who wants to 
aggregate, according to her, valid venues of scientific resources (e.g., publishers, 
blogs, eprints) to incorporate them in her model. This would lead to complex 
mappings requiring, most probably, some programming skills. 

Overcoming these issues requires a different mashup platform architecture 
allowing domain experts to work in their natural playground, where they are familiar 
with concepts and issues, so that they can tackle the development of their situational 
applications. To the best of our knowledge, there is no related work actually exploring 
the concept of domain-specific mashup. Next section will describe our proposed 
solution and architecture, aiming to enable real-life application development for 
domain-experts.!

4 Domain-specific Mashups  

Domain-specific mashups is our proposal to exploit domain concepts at the mashup 
composition level in order to put domain-experts at the center by providing an 
environment that can really assist them in the composition of domain-specific 
mashups. So, we need specific solutions pushing domain concepts up to the 
composition editor level, so that users can play in their well-known conceptual 
environment. To achieve such a system, we propose a modular architecture including 
two main layers, as depicted in Figure 2.  
!

                                                           
3 http://www.tibco.com 

116



Domain-specific Mashups: From All to All You Need  7 

 
Figure 2. High-level architecture of a domain-specific mashup platform.  

The upper layer is the actual Mashup Layer, that is, a mashup tool similar to some 
available today. In particular, this layer should - at least - include a composition visual 
editor, providing end-user friendly mechanisms for composition development through 
a common web browser, and a component repository, providing all the components 
that could be useful for building compositions in a given domain. In addition, other 
parts should be included at this level, like a runtime environment able to run the 
produced composition and other implementation-specific components, but those go 
beyond the scope of this work that is trying to focus on the composition-development 
phase seen from the domain-experts point of view. Our proposal to actually help and 
enable domain-experts to autonomously create their composite applications is to 
transform our generic mashup tool into a domain-specific one injecting domain 
related concepts into the development environment. Aiming at this, we create 
a Domain Layer that will be then plugged into the Mashup Layer. This lower layer is 
responsible for the domain characterization. In other words, it will define all the 
concepts and entities proper of the domain, their representation and general rules 
regulating the interactions among them. Furthermore, this layer will provide the 
domain related ecosystem of services, either implemented inside the layer or 
wrapping web-sourced services. 

In this section we provide the two aspects covered by our proposal: modeling and 
characterizing the domain and its projection to the mashup platform.!

4.1 Characterizing the Domain: Domain Layer 

In order to leverage domain-experts knowledge in the composition, we need to 
understand the concepts, properties, rules and processes that make the domain. The 
definition of these elements is key to the selection of the right level of abstraction for 
users. To this end, we rely on the definition of the conceptual model, the business 
level operations and the domain rules. 
 
Conceptual model. In the context of a particular domain, there are concepts and 
relations among these concepts that are known in the domain and familiar to domain 
experts. These concepts are commonly represented in a conceptual model. For 

117



8  Stefano Soi  and Marcos Baez

instance, in Figure 3, we show a p
introduced in Section 2.
!

The Figure above captures the concepts in the knowledge dissemination domain. It 
is based on the liquid journal 
traditional ones to the ones m
that journal is a first-
datasets, ...), organized in
lifecycle.  We can also see that 
 
Business-level operations
are highly relevant. These relate to users' every
at which the expert can better reason. Following our example, these are the operations 
which are meaningful in the domain such as 
other more social such as 
 
Business rules. Business rules are well known by domain experts. They are very 
important as they give shape to the business logic and processes. In our example, we 
could establish as a business
to first select/review a paper before 
 

The information we have described above is present in the domain but not 
exploited in the mashup composition. Mashup composition envi
rely on the domain expert to build application from usually low
and so they do little or nothing to assist users. To inject these elements into the 
composition environment we propose to build a
unnecessary complexity which is currently exposed to users. Although 
convinced that the complexity could 
such a platform will make component development much easier and would ensure 
consistency and, finally,
layer is the increasing existence o
terms, concepts and operations are captured typically by a platform exposing an API. 
In our example, the liquid journal

Stefano Soi  and Marcos Baez 

, we show a possible conceptual model for the example 
introduced in Section 2. 

Figure 3. Liquid journals conceptual model 

The Figure above captures the concepts in the knowledge dissemination domain. It 
is based on the liquid journal model, which represents a family of models from the 
traditional ones to the ones more social and web-aware [11]. In this model we can see 

-class entity composed of scientific resources (papers, blogs, 
datasets, ...), organized in journal issues, driven by editors and that follows a certain 

We can also see that scientific resources belong to certain sources (venues).

level operations. Operations and processes that affect the shared concepts 
These relate to users' every-day life and as such provide the level 

at which the expert can better reason. Following our example, these are the operations 
which are meaningful in the domain such as publish, evaluate, review, submi
other more social such as share, annotate, search, etc. 

Business rules are well known by domain experts. They are very 
important as they give shape to the business logic and processes. In our example, we 
could establish as a business rule that whatever publication model we follow, we need 
to first select/review a paper before publishing it in journal.  

The information we have described above is present in the domain but not 
exploited in the mashup composition. Mashup composition environments strongly 
rely on the domain expert to build application from usually low-level components, 
and so they do little or nothing to assist users. To inject these elements into the 
composition environment we propose to build a Domain Layer as a way of h
unnecessary complexity which is currently exposed to users. Although 

the complexity could be pushed into the component design, having 
such a platform will make component development much easier and would ensure 

, finally, smooth composition. Another good reason for having such a 
increasing existence of domain specific ecosystems. Thus, in practical 

terms, concepts and operations are captured typically by a platform exposing an API. 
liquid journal platform provides the services and key entities via 

ossible conceptual model for the example 

!

The Figure above captures the concepts in the knowledge dissemination domain. It 
model, which represents a family of models from the 

]. In this model we can see 
(papers, blogs, 

and that follows a certain 
belong to certain sources (venues). 

Operations and processes that affect the shared concepts 
day life and as such provide the level 

at which the expert can better reason. Following our example, these are the operations 
, review, submit, and 

Business rules are well known by domain experts. They are very 
important as they give shape to the business logic and processes. In our example, we 

rule that whatever publication model we follow, we need 

The information we have described above is present in the domain but not 
ronments strongly 
level components, 

and so they do little or nothing to assist users. To inject these elements into the 
as a way of hiding the 

unnecessary complexity which is currently exposed to users. Although we are 
the component design, having 

such a platform will make component development much easier and would ensure 
smooth composition. Another good reason for having such a 

f domain specific ecosystems. Thus, in practical 
terms, concepts and operations are captured typically by a platform exposing an API. 

platform provides the services and key entities via 

118



Domain-specific Mashups: From All to All You Need  9 

RESTful services4. This platform builds on existing sources of information (e.g., 
Google Scholar, eprints, DBLP) and allows upper layer to access them using the 
common conceptual model in Figure 3. Solving the heterogeneity at this level has the 
advantage of not only providing homogeneous programmatic access, but also of 
avoiding taking complex mappings to the mashup environment by preparing the 
components according to the shared concepts. Of course, taking these and all the 
domain elements described here requires some work to make it happen. We discuss 
these and other related issues in the next subsection.!

4.2 Taking the Domain into the Mashup Platform 

Injecting the domain information provided by the ecosystem into the composition 
environment requires some work on both the component development and the mashup 
platform. More precisely, it requires (i) a proper design of the components in what 
regards the level of abstraction and composition, (ii) making the composition 
environment aware (to some extent) of the business rules by defining some 
composition rules, and thus taking to the mashup environment what is already on the 
backend, and (iii) making the environment aware of the coupling among the 
components (and concepts managed by the components) in order to assist users in the 
component selection.  

In what follows we describe our approach using mashArt as reference platform, 
albeit the ideas described here could be applied to other mashup platforms.  
 
Building domain components. Good quality components are key to the success of 
any mashup platform and derived applications, and so is the case for domain-specific 
components. Thus, in addition to known practices for component development (e.g., 
[12]), building domain components puts some extra usability requirements. To reach 
users, we must select the right level of abstraction for the components and 
composition. It should be the one at which users find in the environment only 
concepts they know, expressed with the same terminology, i.e., components should be 
meaningful to the domain expert and be related to the business-level concepts and 
operations. In practice, we pass from components that represent just technology (e.g., 
a component connecting to a service) to components that have a precise semantic that 
is familiar to the domain expert (e.g., the component that publishes a paper). This is a 
conceptual shift. 

Components should also be designed for smooth composition. Composing 
components should be straightforward to domain experts and complex mappings 
avoided to the possible extent. To this end, components events and operations I/O 
should be presented in terms of the domain concepts. In practical terms, this means 
that a domain-specific namespace should be made available to the component 
definition. Additionally, to ease and, at the same time, check the component 
development process, the platform could possibly provide a domain-specific 
component editor able to guide developers in the generation of new components 

                                                           
4http://docs.google.com/Doc?docid=0ARoLwpXLTjBGZGt6Mng0cl8yZG00N3Y4Y24&hl=en

  

119



10  Stefano Soi  and Marcos Baez 

(particularly for their descriptors), based on the knowledge coming from the Domain 
Layer (e.g., available entities and their representations). 

In Listing 1, we illustrate the definition of a component designed taking into 
account a domain-level operation for providing familiar functionality, and domain-
concepts in the I/O to ease the composition. 
!
<?xml version=“1.0” encoding=“utf-8” ?> 
<mdl version=“0.1“ xmlns:lj=” http://liquidjournal.org/schema/liquidjournal.xsd”> 
 <component name=“Publish” binding=“component/UI” stateful=”yes”  
   url=“http://mashart.org/registry/X/Publish/”> 
   <event name=“Paper published” ref=”onPublish”> 
      <output name=“Published Entity” type=“lj:entity”></output> 
   </event> 
   <operation name=“Publish paper” ref="doPublish”> 
      <input name=“Entity” type=“lj:entity”></input> 
   </operation> 
  </component> 
</mdl> 

Listing 1. MDL of the component Publish 

As seen in the Publish component I/O refers to the type entity, an abstraction 
introduced in the conceptual model. A strong point of this approach is that it does not 
introduce any change into the MDL (mashArt Description Language, used to define 
each component of the mashArt platform) but it introduces higher level types based 
on the conceptual model. In Listing 2 we show part of the definition of the XSD used 
to make the mashup platform aware of the conceptual model5"!
!
<?xml version=“1.0” encoding=“utf-8” ?> 
<xs:schema ... xmlns:tns="http://liquidjournal.org/schema/liquidjournal.xsd">  
... 

  <xs:complexType name="entity">  
    <xs:choice>  
      <xs:element ref="tns:liquidjournal" />  
      <xs:element ref="tns:issue" />  
      <xs:element ref="tns:sciResource" />  
    </xs:choice>  
  </xs:complexType> 
 ... 
</xs:schema> 

Listing 2. XSD Definition of domain-level concepts  

Business-level composition policies. As mentioned before, business rules are 
important and usually enforced at the backend. In order to ensure some patterns in the 
output and help users in the definition of consistent mashups we believe it is 
important to abstract these rules and take them to the level of composition. Of course, 
domain rules can be very complex to be completely pushed to the composition, so we 
target composition policies as a tool for "assistance" rather than "enforcement". There 
                                                           
5 The complete XSD can be found here https://dev.liquidpub.org/svn/liquidpub/ 

prototype/ljdemo/server/resources/meta/liquidjournal.xsd 

120



Domain-specific Mashups: From All to All You Need  11 

could be different ways of defining such policies, but in this paper we consider 
syntactic constraints based on category of components as simple starting strategy (that 
will be then extended in future). Components providing some common functionality 
could be categorized and category-level policies defined on them. Thus, policies 
allowing/denying cross-category couplings could be defined. Taking our scenario as 
an example, we could define categories such as review processes, selection modes, 
publication modes, sources and venues, people, metrics and entities, and on these 
define policies such as publication cannot be performed before the selection. Note that 
categorization is not mandatory and so "free" components not regulated by the 
policies are perfectly allowed. Implementation-wise, policies can be defined using 
XML and the mashup editor can check and guide the user during the composition 
based on the rules regulating that domain.  
 
Mashup composition environment.  The information about the domain components 
and policies should finally be reflected on the mashup composition environment. 
Domain components provide the opportunity to make meaningful suggestions based 
on components coupling (I/O matching) and so introduce a basic yet useful proactive 
behavior in the component selection. In its simplest, we could see composition as a 
domino where the domain-expert select components among the compatible ones. 
Domain policies provide even richer information. Policies will have higher priority 
over coupling based suggestions, filtering out and ranking eligible components. In 
addition to this, the mashup composition environment should provide intuitive UI 
representation for components and the connections (e.g., meaningful icons for 
components) to ease the selection. 

Finally, having composition information at this level will enable further 
improvements in the composition environment. It would make it easier to extract 
usage information that could be used to improve the selection process (by reusing past 
experiences), since all components are defined at business level, making possible to 
extract the semantics of the compositions and usage. 

5 Conclusion 

In this paper we have introduced domain-specific mashups as a way to inject domain 
knowledge into the mashup composition, with the ultimate goal of providing domain-
experts with the tools to compose mashup applications from familiar domain 
concepts. Our approach rather than proposing a technological change, proposes a 
paradigm shift in going from generic platforms with mainly low level (and 
technological-oriented) components to domain-specific vertical extensions. To this 
end, we have introduced a layered architecture in which we distinguish the mashup 
layer from a domain layer that can be plugged in. The definition of this domain layer 
is what allows us to describe the level of abstraction familiar to the user. In addition, 
the separation among the two layers allows the same mashup tool to be reused for 
different domain verticals, simply replacing the underlying domain layer. 

As immediate future work we need to investigate more on how to define and 
model the domain characteristics (entities and rules) such that they are at the same 

121



12  Stefano Soi  and Marcos Baez 

time useful to help the composition phase but also not too rigid, guaranteeing the 
needed flexibility. Then, we plan to go from the conceptual modeling to the actual 
implementation of the extensions to the mashup environment. In particular, we plan to 
do that working on the mashArt platform and on the domain of scientific publishing, 
as introduced in this paper. 

6 References 

[1] A. Jhingran. Enterprise information mashups: integrating information, simply. In VLDB 
’06, pages 3–4. VLDB Endowment, 2006. 

[2] I. Floyd, M. Jones, D. Rathi, M. Twidale. Web Mash-ups and Patchwork Prototyping: User-
driven technological innovation with Web 2.0 and Open Source Software. Proc. Of HICCS 
‘07 

[3] S. Bitzer, M. Schumann. Mashups: An Approach to Overcoming the Business/IT Gap in 
Service-Oriented Architectures. Proc. of AMCIS 2009. 

[4] J. Wong and J. I. Hong. Making mashups with marmite: towards end-user programming for 
the web. Proc. of the SIGCHI  '07, pag. 1435-1444, 2007. 

[5] Yahoo! Pipes project. [Online] http://pipes.yahoo.com/. 
[6] Intel MashMaker project. [Online] http://mashmaker.intel.com/. 
[7] F. Daniel, F. Casati, B. Benatallah, M. Shan. Hosted Universal Composition: Models, 

Languages and Infrastructure in mashArt. Proc. of ER'09, Pages 428-443. 
[8] M. Shan. Software as a Service(SaaS) The challenges of application service hosting, Proc. 

of Int. Conference on Web Engineering, Como, Italy, July 2007. 
[9] F. Daniel, S. Soi, F. Casati. Search Computing - Challenges and Directions, edited by S. 

Ceri and M. Brambilla, LNCS, Volume 5950, March 2010, Springer, Pages 72-93. 
[10] R. Tuchinda, P. Szekely, C. A. Knoblock. Building Mashups by example. In Proc. of the 

13th international Conference on intelligent User interfaces IUI '08, p. 139-148 
[11] M. Baez,  F. Casati, A. Birukou, M. Marchese. Liquid journals: Knowledge dissemination 

in the Web Era. http://eprints.biblio.unitn.it/archive/00001814/ 
[12] Daniel, F., Matera, M.: Turning Web applications into mashup components: issues, models 

and solutions. Proc. of ICWE’2009. 

122



Developing Mashup Tools for End-Users: On the
Importance of the Application Domain

Florian Daniel, Antonella De Angeli, Muhammad Imran, Stefano Soi, Chritopher R. Wilkinson, Fabio

Casati and Maurizio Marchese

University of Trento, Via Sommarive 5, 38123, Trento, Italy

lastname@disi.unitn.it

The recent emergence of mashup tools has refueled research on end-user development, i.e., on enabling end-users

without programming skills to compose own applications. Yet, similar to what happened with analogous promises
in web service composition and business process management, research has mostly focused on technology and, as

a consequence, has failed its objective. Plain technology (e.g., SOAP/WSDL web services) or simple modeling

languages (e.g., Yahoo! Pipes) don’t convey enough meaning to non-programmers.
In this article, we propose a domain-specific approach to mashups that “speaks the language of the user”, i.e.,

that is aware of the terminology, concepts, rules, and conventions (the domain) the user is comfortable with. We

show what developing a domain-specific mashup tool means, which role the mashup meta-model and the domain
model play and how these can be merged into a domain-specific mashup meta-model. We exemplify the approach

by implementing a mashup tool for a specific scenario (research evaluation) and describe the respective user study.

The results of a first user study confirm that domain-specific mashup tools indeed lower the entry barrier to
mashup development.

General Terms: Design, Experimentation

1. INTRODUCTION

Mashups are typically simple web applications (most of the times consisting of just one single
page) that, rather than being coded from scratch, are developed by integrating and reusing
available data, functionalities, or pieces of user interfaces accessible over the Web. For instance,
housingmaps.com integrates housing offers from Craigslist with a Google map, adding value to
the two individual applications.

Mashup tools, i.e., online development and runtime environments for mashups, ambitiously
aim at enabling non-programmers (regular web users) to develop own applications, sometimes
even situational applications developed ad hoc for a specific immediate need. Yet, similar to what
happened in web service composition, the mashup platforms developed so far tend to expose too
much functionality and too many technicalities so that they are powerful and flexible but suitable
only for programmers. Alternatively, they only allow compositions that are so simple to be of
little use for most practical applications.

For example, mashup tools typically come with SOAP services, RSS feeds, UI widgets, and the
like. Non-programmers do not understand what they can do with these kinds of compositional
elements [Namoun et al. 2010a; 2010b]. We experienced this with our own mashup and com-
position platforms, mashArt [Daniel et al. 2009] and MarcoFlow [Daniel et al. 2010], which we
believe to be simpler and more usable than many composition tools but that still failed in being
suitable for non-programmers [Mehandjiev et al. 2011]. Yet, being amenable to non-programmers
is increasingly important as the opportunity given by the wider and wider range of available on-
line applications and the increased flexibility that is required in both businesses and personal life
management raise the need for situational (one-use or short-lifespan) applications that cannot be
developed or maintained with the traditional requirement elicitation and software development
processes.

Author’s address: Stefano Soi, University of Trento - Department of Information Engineering and Computer
Science, Via Sommarive 5, 38122 Povo (TN), Italy.

Appendix H

123



2 · F. Daniel et al.

We believe that the heart of the problem is that it is impractical to design tools that
are generic enough to cover a wide range of application domains, powerful enough to enable the
specification of non-trivial logic, and simple enough to be actually accessible to non-programmers.
At some point, we need to give up something. In our view, this something is generality, since
reducing expressive power would mean supporting only the development of toy applications, which
is useless, while simplicity is our major aim. Giving up generality in practice means narrowing
the focus of a design tool to a well-defined domain and tailoring the tool’s development paradigm,
models, language, and components to the specific needs of that domain only.

In this paper, we therefore champion the notion of domain-specific mashup tools and
describe what they are composed of, how they can be developed, how they can be extended for the
specificity of any particular application context, and how they can be used by non-programmers
to develop complex mashup logics within the boundaries of one domain. We provide the following
contributions:

(1) We describe a methodology for the development of domain-specific mashup tools, defining the
necessary concepts and design artifacts. As we will see, one of the most challenging aspects
is to determine what is a domain, how it can be described, and how it can both constrain
a mashup tool (to the specific purpose of achieving simplicity of use) and ease development.
The methodology targets expert developers, who implement mashup tools.

(2) We detail and exemplify all design artifacts that are necessary to implement a domain-specific
mashup tool, in order to provide expert developers with tools they can reuse in their own
developments.

(3) We apply the methodology in the context of an example mashup platform that aims to support
a domain most scientists are acquainted with, i.e., research evaluation. This prototypal tool
targets domain experts.

(4) We perform a user study in order to assess the usability of the developed platform and the
viability of the respective development methodology.

While we focus on mashups, the techniques and lessons learned in the paper are general in
nature and can easily be applied to other composition or modeling environments, such as web
service composition or business process modeling.

Next, we first introduce a reference scenario. In Section 3, we present key definitions and
provide the problem statement. Section 4 outlines the methodology followed to implement the
scenario. In Section 5 we describe ResEval Mash, the actual implementation of our prototype
tool, and in Section 6 we report on a user study conducted with the tool and the respective
results. In Section 7, we review related works. We conclude the paper in Section 8.

2. SCENARIO: RESEARCH EVALUATION

As an example of a domain specific application scenario, let us describe the evaluation procedure
used by the central administration of the University of Trento (UniTN) for checking the pro-
ductivity of each researcher who belongs to a particular department. The evaluation is used to
allocate resources and funding for the university departments. In essence, the algorithm compares
the quality of the scientific production of each researcher in a given department of UniTN with
respect to the average quality of researchers belonging to similar departments (i.e., departments
in the same disciplinary sector) in all Italian universities. The comparison uses the following
procedure based on one simple bibliometric indicator, i.e., a weighted publication count metric.

(1) A list of all researchers working in Italian universities is retrieved from a national registry,
and a reference sample of faculty members with similar statistical features (e.g., belonging
to the same disciplinary sector) of the evaluated department is compiled.

(2) Publications for each researcher of the selected department and for all Italian researchers in
the selected sample are extracted from an agreed-on data source (e.g., Microsoft Academic,
Scopus, DBLP, etc.).

124



Developing Mashup Tools for End-Users · 3

(3) The publication list obtained in the previous step is then weighted using a venue classifica-
tion. That is, the publications are classified by an internal committee in three quality cate-
gories mainly based on ISI Journal Impact Factor: A/1.0(top), B/0.6(average), C/0.3(low).
For each researcher a single weighted publication count parameter is thus obtained with a
weighted sum of his/her publications.

(4) The statistical distribution – more specifically, a negative binomial distribution – of the
weighted publication count metric is then computed out of the Italian researchers’ reference
sample.

(5) Each researcher in the selected department is ranked based on his/her weighted publication
count by comparing this value with the statistical distribution. That is, for each researcher
the respective percentile (e.g., top 10%) in the distribution of the researchers in the same
disciplinary sector is computed.

Italian Researchers
[Sector="ComputerScience"]

Bar Chart

Microsoft Academic 
Publications

Italian Researchers 
[University="UniTN",

Department="ComputerScience"]

Venue Rankings
Impact

Percentiles

GetImpact

GetImpact

SetVenueWeights

GetPercentiles

SetDistribution Plot

Set-
Researcher

Impact

Impact

SetVenueWeights

Set-
Researcher

Microsoft Academic 
Publications

Figure. 1. University of Trento’s internal researcher evaluation procedure.

The percentile for each researcher in the selected department is considered as an estimation of
the publishing profile of that researcher and is used for comparison with other researchers in the
same department. As one can notice, plenty of effort is required to compute the performance of
each researcher, which is currently mainly done manually. Fervid discussion on the suitability of
the selected criteria often arise, as people would like to understand how the results would differ
changing the publications ranking, the source of the bibliometric information, or the criteria of
the reference sample. Indeed all these factors have a big impact on the final result and have been
locally at the center of a heated debate. Many researchers would like to use different metrics, like
citation-based metrics (e.g., h-index). Yet, computing different metrics and variations thereof is
a complex task that costs considerable human resources and time.

The requirement we extract from this scenario is that we need to empower people involved in
the evaluation process (i.e.,, the average faculty member or the administrative persons in charge
of it) so that they can be able to define and compare relatively complex evaluation processes,
taking and processing data in various ways from different sources, and visually analyze the results.
This task, requiring to extract, combine, and process data and services from multiple sources, and
finally represent the information with visual components, has all the characteristics of a mashup,
especially if the mashup logic comes from the users.

In Figure 1 we illustrate the mashup model we are aiming at for our researchers evaluation
scenario within a specific department. The model starts with two parallel flows: one computing
the weighted publication number (the “impact” metric in the specific scenario) for all Italian
researchers in a selected disciplinary sector (e.g., Computer Science). The other computes the

125



4 · F. Daniel et al.

same “impact” metric for the researchers belonging to UniTN Computer Science department.
The former branch defines the distribution of the Italian researchers for the Computer Science
disciplinary sector, the latter is used to compute the impact percentiles of UniTN’s researchers
and to determine their individual percentiles, which are finally visualized in a bar chart.

Although the composition model in Figure 1 is apparently similar to conventional web service
composition or data flow models, in the following we will show why we are confident that also
end-users will be able to model this or similarly complex evaluation scenarios, while, instead,
they are not yet able to compose web services in general.

3. ANALYSIS AND PROBLEM

If we carefully look at the described mashup scenario, we see that the proposed model is domain-
specific, i.e., it is entirely based on concepts that are typical of the research evaluation domain.
For instance, the scenario processes domain objects (researchers, publications, metrics, and so
on), uses domain-specific components (the Italian researchers data source, the Impact metric,
etc.), and complies with a set of domain-specific composition rules (e.g., that publications can be
ranked based on the importance of the venue they have been published in).

In order to enable the development of an application for the described evaluation procedure,
there is no need for a composition or mashup environment that supports as many composition
technologies or options as possible. The intuition we elaborate in this article is that, instead, a
much more limited environment that supports exactly the basic tasks described in the scenario
(e.g., fetch the set of Italian researchers) and allows its users to mash them up in an as easy as
possible way (e.g., without having to care about how to transform data among components) is
more effective. The challenge lies in finding the right trade-off between flexibility and simplicity.
The former, for example, pushes toward a large number of basic components, the latter toward
a small number of components. As we will see, it is the nature of the specific domain that tells
us where to stop.

Throughout this paper, we will therefore show how the development of the example scenario
can be aided by a domain-specific mashup tool. Turning the previous consideration into practice,
the development of this tool will be driven by the following key principles:

(1) Intuitive user interface. Enabling domain experts to develop own research evaluation
metrics, i.e., mashups, requires an intuitive and easy-to-use user interface (UI) based on the
concepts and terminology the target domain expert is acquainted with. Research evaluation,
for instance, speaks about metrics, researchers, publications, etc.

(2) Intuitive modeling constructs. Next to the look and feel of the platform, it is important
that the functionalities provided through the platform (i.e., the building blocks in the com-
position design environment) resemble the common practice of the domain. For instance, we
need to be able to compute metrics, to group people and publications, and so on.

(3) No data mapping. Our experience with prior mashup platforms, i.e., mashArt [Daniel
et al. 2009] and MarcoFlow [Daniel et al. 2010], has shown that data mappings are one of the
least intuitive tasks in composition environments and that non-programmers are typically
not able to correctly specify them. We therefore aim to develop a mashup platform that is
able to work without data mappings.

Before going into the details, we introduce the necessary concepts, starting from our interpre-
tation of web mashups [Yu et al. 2008]:

Definition A web mashup (or mashup) is a web application that integrates data, application
logic, and/or user interfaces (UIs) sourced from the Web. Typically, a mashup integrates and
orchestrates two or more elements.

Our reference scenario requires all three ingredients listed in the definition: we need to fetch
researchers and publication information from various Web-accessible sources (the data); we need

126



Developing Mashup Tools for End-Users · 5

to compute indicators and rankings (the application logic); and we need to render the output to
the user for inspection (the UI). We generically refer to the services or applications implementing
these features as components. Components must be put into communication, in order to support
the described evaluation algorithm.

Simplifying this task by tailoring a mashup tool to the specific domain of research evaluation
first of all requires understanding what a domain is. We define a domain and, then, a domain-
specific mashup as follows:

Definition A domain is a delimited sphere of concepts and processes; domain concepts consist
of data and relationships; domain processes operate on domain concepts and are either atomic
(activities) or composite (processes integrating multiple activities).

Definition A domain-specific mashup is a mashup that describes a composite domain process
that manipulates domain concepts via domain activities and processes. It is specified in a domain-
specific, graphical modeling notation.

The domain defines the “universe” in the context of which we can define domain-specific
mashups. It defines the information that is processed by the mashup, both conceptually and
in terms of concrete data types (e.g., XML schemas). It defines the classes of components that
can be part of the process and how they can be combined, as well as a notation that carries
meaning in the domain (such as specific graphical symbols for components of different classes).
For instance, in our reference scenario, concepts include publications, researchers, metrics, etc.
The process models define classes of components such as data extraction from digital libraries,
metric computation, or filtering and aggregation components. These domain restrictions and
the exposed domain concepts at the mashup modeling level is what enables simplification of the
language and its usage.

Definition A domain-specific mashup tool (DMT) is a development and execution envi-
ronment that enables domain experts, i.e., the actors operating in the domain, to develop and
execute domain-specific mashups via a syntax that exposes all features of the domain.

A DMT is initially “empty”. It then gets populated with specific components that provide
functionality needed to implement mashup behaviors. For example, software developers (not
end-users) will define libraries of components for research evaluation, such as components to
extract data from Google Scholar, or to compute the h-index, or to group researchers based
on their institution, or to visualize results in different ways. Because all components fit in the
classes and interact based on a common data model, it becomes easier to combine them and to
define mashups, as the DMT knows what can be combined and can guide the user in matching
components. The domain model can be arbitrarily extended, though the caveat here is that a
domain model that is too rich can become difficult for software developers to follow.

Given these definitions, the problem we solve in this paper is that of providing the necessary
concepts and a methodology for the development of domain-specific mashup models and DMTs.
The problem is neither simple nor of immediate solution. While domain modeling is a common
task in software engineering, its application to the development of mashup platforms is not trivial.
For instance, we must precisely understand which domain properties are needed to exhaustively
cover all those domain aspects that are necessary to tailor a mashup platform to a specific domain,
which property comes into play in which step of the development of the platform, how domain
aspects are materialized (e.g., visualized) in the mashup platform, and so on.

The DMT idea is heavily grounded on a rich corpus of research in Human-Computer In-
teraction (HCI), demonstrating that consideration of user knowledge and prior experience are
required to create truly usable and inclusive products, and are key considerations in the perfor-
mance of usability evaluations [Nielsen 1993]. The prior experience of products is important to
their usability, and the transfer of previous experience depends upon the nature of prior and sub-
sequent experience of similar tasks [Thomas and van-Leeuwen 1999]. Familiarity of the interface

127



6 · F. Daniel et al.

design, its interaction style, or the metaphor it conforms to if it possesses one, are key features for
successful and intuitive interaction [Okeye 1998]. More familiar interfaces, or interface features,
allow for easier information processing in terms of user capability, and the subsequent human
responses can be performed at an automatic and subconscious level. Karlsson and Wikstrom
[2006] identified that the use of semantics could be an effective tool for enhancing product design
and use, particularly for novel users, as they can indicate how the product or interface will be-
have and how interaction is likely to occur. Similarly, Monk [1998] stressed that to be usable and
accessible, interfaces need to be easily understood and learned, and in the process, must cause
minimal cognitive load. Effective interaction consists of users understanding potential actions,
the execution of specific action, and the perception of the effects of that action.

As we cannot exploit the users’ technical expertise, we propose here to exploit their knowledge
of the task domain. In other words, we intend to transform mashups from technical tools built
around a computing metaphor to true cognitive artifacts [Norman 1991], capable to operate upon
familiar information in order to “serve a representational function that affect human cognitive
performance.”

4. METHODOLOGY

Throughout this paper we show how we have developed a mashup platform for our reference
scenario, in order to exemplify how its development can approach the above challenges systemat-
ically. The development of the platform has allowed us to conceptualize the necessary tasks and
ingredients and to structure them into a methodology for the development of domain-specific
mashup platforms. The methodology encodes a top-down approach, which starts from the anal-
ysis of the target domain and ends with the implementation of the specifically tailored mashup
platform. Specifically, developing a domain-specific mashup platform requires:

(1) Definition of a domain concept model (DCM) to express domain data and relationships.
The concepts are the core of each domain. The specification of domain concepts allows the
mashup platform to understand what kind of data objects it must support. This is different
from generic mashup platforms, which provide support for generic data formats, not specific
objects.

(2) Identification of a generic mashup meta-model1 (MM) that suits the composition needs of
the domain and the selected scenarios. A variety of different mashup approaches, i.e., meta-
models, have emerged over the last years, e.g., ranging from data mashups, over user interface
mashups to process mashups. Before thinking about domain-specific features, it is important
to identify a meta-model that is able to accommodate the domain processes to be mashed
up.

(3) Definition of a domain-specific mashup meta-model. Given a generic MM, the next step is
understanding how to inject the domain into it so that all features of the domain can be
communicated to the developer. We approach this by specifying and developing:
(a) A domain process model (PM) that expresses classes of domain activities and, possibly,

ready processes. Domain activities and processes represent the dynamic aspect of the
domain. They operate on and manipulate the domain concepts. In the context of
mashups, we can map activities and processes to reusable components of the platform.

(b) A domain syntax that provides each concept in the domain-specific mashup meta-model
(the union of MM and PM) with its own symbol. The claim here is that just catering for
domain-specific activities or processes is not enough, if these are not accompanied with
visual metaphors that the domain expert is acquainted with and that visually convey the
respective functionalities.

1We use the term meta-model to describe the constructs (and the relationships among them) that rule the design
of mashup models. With the term instance we refer to the actual mashup application that can be operated by the

user.

128



Developing Mashup Tools for End-Users · 7

(c) A set of instances of domain-specific components. This is the step in which the reusable
domain-knowledge is encoded, in order to enable domain experts to mash it up into new
applications.

(4) Implementation of the DMT as a tool whose expressive power is that of the domain-specific
mashup meta-model and that is able to host and integrate the domain-specific activities and
processes.

The above steps mostly focus on the design of a domain-specific mashup platform. Since
domains, however, typically evolve over time, in a concrete deployment it might be necessary
to periodically update domain models, components, and the platform implementation (that is,
iterating over the above design steps), in order to take into account changing requirements or
practices. The better the analysis and design of the domain in the first place, the less modifications
will be required in the subsequent evolution steps, e.g., limiting evolution to the implementation
of new components only.

In the next subsections, we expand each of the above design steps; we do not further elaborate
on evolution.

4.1 The Domain Concept Model

The domain concept model is constructed by the IT experts via verbal interaction with the
domain experts or via behavioral observation of the experts performing their daily activities and
performing a suitable task-analysis. The concept model represents the information experts know,
understand, and use in their work. Modeling this kind of information requires understanding the
fundamental information items and how they relate to each other, eventually producing a model
that represents the knowledge base that is shared among the experts of the domain.

In domain-specific mashups, the concept model has three kinds of stakeholders (and usages),
and understanding this helps us to define how the domain should be represented. The first stake-
holders are the mashup modelers (domain experts), i.e., the end-users that will develop different
mashups from existing components. For them it is important that the concept model is easy
to understand, and an entity-relationship diagram (possibly with a description) is a commonly
adopted technique to communicate conceptual models. The second kind of stakeholders are the
developers of components, which are programmers. They need to be aware of the data format in
which entities and relationships can be represented, e.g., in terms of XML schemas, in order to
implement components that can interoperate with other components of the domain. The third
stakeholder is the DMT itself, which enforces compliance of data exchanges with the concept
model. Therefore:

Definition The domain concept model (DCM) describes the conceptual entities and the
relationships among them, which, together, constitute the domain knowledge.

We express the domain-model as a conventional entity-relationship diagram. It also includes
a representation of the entities as XML schemas. For instance, in Figure 2 we put the main
concepts we can identify in our reference scenario into a DCM, detailing entities, attributes,
and relationships. The core element in the evaluation of scientific production and quality is the
publication, which is typically published in the context of a specific venue, e.g., a conference or
journal, by a publisher. It is written by one or more researchers belonging to an institution.
Increasingly – with the growing importance of the Internet as information source for research
evaluation – also the source (e.g., Scopus, the ACM digital library or Microsoft Academic) from
which publications are accessed is gaining importance, as each of them typically provides only
a partial view on the scientific production of a researcher and, hence, the choice of the source
will affect the evaluation result. The actual evaluation is represented in the model by the metric
entity, which can be computed over any of the other entities.

In order to develop a DMT, the ER (Entity-Relationship) model has to be generated through
several interactions between the domain expert and the IT expert, who has knowledge of concep-

129



8 · F. Daniel et al.

PublicationPublisher

ResearcherInstitution Metric

Venue

Source Journal Conference

Name
Address

Name
Address

FirstName
LastName
Title

Title
PublicationDate
Keywords

Name
Value

Name
URL

Name
StartDate
EndDate
City
Country

written by
0..N

1..N

belongs to

1..N0..N

published by

1..N1..1

published in

1..10..N

cites

0..N

0..N

...

Figure. 2. Domain concept model for the research evaluation scenario

tual modeling. The IT expert also generates the XML schemas corresponding to the ER model,
which are the actual artifacts processed by the DMT. In fact, although the ER model is part of
the concept model, it is never processed itself by the DMT. It rather serves as a reference for
any user of the platform to inform them on the concepts supported by it. In principle, other
formalisms can be adopted (such as UML Class diagrams). We notice that each concept model
implicitly includes the concept of grouping the entities in arbitrary ways, so groups are also an
implicitly defined entity.

4.2 The Generic Mashup Meta-Model

When discussing the domain concept model we made the implicit choice to start from generic
(i.e. domain-independent) models like Entity-Relationship diagrams and XML, as these are well
established data modeling and type specification languages amenable to humans and machines.
For end-user development of mashups, the choice is less obvious since it is not easy to identify a
modeling formalism that is amenable to defining end-user mashups (which is why we endeavor to
define a domain-specific mashup approach). If we take existing mashup models and simply inject
specific data types in the system, we are not likely to be successful in reducing the complexity
level. However, the availability of the DCM makes it possible to derive a different kind of mashup
modeling formalism, as discussed next.

To define the type of mashups and, hence, the modeling formalism that is required, it is
necessary to model which features (in terms of software capabilities) the mashups should be
able to support. Mashups are particular types of web applications. They are component-based,
may integrate a variety of services, data sources, and UIs. They may need an own layout for
placing components, require control flows or data flows, ask for the synchronization of UIs and
the orchestration of services, allow concurrent access or not, and so on. Which exact features a
mashup type supports is described by its mashup meta-model.

In the following, we first define a generic mashup meta-model, which may fit a variety of
different domains, then we show how to define the domain-specific mashup meta-model, which
will allow us to draw domain-specific mashup models.

Definition The generic mashup meta-model (MM) specifies a class of mashups and, thereby,
the expressive power, i.e., the concepts and composition paradigms, the mashup platform must
know in order to support the development of that class of mashups.

The MM therefore implicitly specifies the expressive power of the mashup platform. Identifying
the right features of the mashups that fit a given domain is therefore crucial. For instance, our re-

130



Developing Mashup Tools for End-Users · 9

search evaluation scenario asks for the capability to integrate data sources (to access publications
and researchers via the Web), web services (to compute metrics and perform transformations),
and UIs (to render the output of the assessment). We call this capability universal integration.
Next, the scenario asks for data processing capabilities that are similar to what we know from
Yahoo! Pipes, i.e., data flows. It requires dedicated software components that implement the
basic activities in the scenario, e.g., compute the impact of a researcher (the sum of his/her
publications weighted by the venue ranking), compute the percentile of the researcher inside the
national sample (producing outputs like “top 10%”), or plot the department ranking in a bar
chart.

4.2.1 The meta-model. We start from a very simple MM, both in terms of notation and
execution semantics, which enables end-users to model own mashups. Indeed, it can be fully
specified in one page:

(1) A mashup m = �C, P, V P, L�, defined according to the meta-model MM, consists of a
set of components C, a set of data pipes P , a set of view ports V P that can host and render
components with own UI, and a layout L that specifies the graphical arrangement of components.

(2) A component c = �IPT, OPT, CPT, type, desc�, where c ∈ C, is like a task that performs
some data, application, or UI action.
Components have ports through which pipes are connected. Ports can be divided in input (IPT )
and output ports (OPT ), where input ports carry data into the component, while output ports
carry data generated (or handed over) by the component. Each component must have at least
either an input or an output port. Components with no input ports are called information
sources. Components with no output ports are called information sinks. Components with both
input and output ports are called information processors. UI components are always information
sinks.
Configuration ports (CPT ) are used to configure the components. They are typically used to
configure filters (defining the filter conditions) or to define the nature of a query on a data source.
The configuration data can be a constant (e.g., a parameter defined by the end-user) or can arrive
in a pipe from another component. Conceptually, constant configurations are as if they come
from a component feeding a constant value.
The type (type) of the components denotes whether they are UI components, which display data
and can be rendered in the mashup’s layout, or application components, which either fetch or
process information.
Components can also have a description desc at an arbitrary level of formalization, whose purpose
is to inform the user about the data the components handle and produce.

(3) A pipe p ∈ P carries data (e.g., XML documents) between the ports of two components,
implementing a data flow logic. So, p ∈ IPT × (OPT ∪ CPT ).

(4) A view port vp ∈ V P identifies a place holder, e.g., a DIV element or an IFRAME,
inside the HTML template that gives the mashup its graphical identity. Typically, a template
has multiple place holders.

(5) Finally, the layout L defines which component with own UI is to be rendered in which
view port of the template. Therefore l ∈ C × V P .

Each mashup following this MM must have at least a source and a sink, and all ports of all
components must be attached to a pipe or manually filled with data (the configuration port).

This is all we need to define a mashup and as we will see, this is an executable specification.
There is nothing else besides this picture. This is not that far from the complexity of specifying a
flowchart, for example. It is very distant from what can be an (executable) BPMN specification
or a BPEL process in terms of complexity.

In the model above there are no variables and no data mappings. This is at the heart of
enabling end-user development as this is where much of the complexity resides. It is unrealistic
to ask end-users to perform data mapping operations. Because there is a DCM, each component

131



10 · F. Daniel et al.

Name
[(Static conf. 
parameters)*]

Input port 
(multiple input 
ports are allowed)

Pipe

Output port (multiple 
output ports are allowed)

Shape 
(may vary)

Port 
name

Configuration port for dynamic configuration 
parameters (multiple ports are allowed)

Figure. 3. Basic syntax for the concepts in the mashup meta-model.

is required to be able to process any document that conforms to the model. This does not mean
that a component must process every single XML element. For example, a component that
computes the h-index will likely do so for researchers, not for publications, and probably not for
publishers (though it is conceivable to have an h-index computed for publishers as well). So the
component will “attach” a metric only to the researcher information that flows in. Anything else
that flows in is just passed through without alterations. The component description will help
users to understand what the component operates on or generates, and this is why an informal
description suffices. What this means is that each component in a domain-specific mashup must
be able to implement this pass-through semantics and it must operate on or generate one or more
(but not all) elements as specified in the DCM. Therefore, our MM assumes that all components
comply to understand the DCM.

Furthermore, in the model there are also no gateways a-la BPMN, although it is possible to
have dedicated components that, for example, implement an if-then semantics and have two
output ports for this purpose. In this case, one of the output ports will be populated with an
empty feed. Complex routing semantics are virtually impossible for non-experts to understand
(and in many cases for experts as well) and for this reason if they are needed we delegate them to
the components which are done by programmers and are understood by end-users in the context
of a domain.

4.2.2 Operational semantics. The behavior of the components and the semantics of the MM
are as follows:

(1) Executions of the mashups are initiated by the user.

(2) Components that are ready for execution are identified. A component is ready when all the
input and configuration ports are filled with data, that is, they have all necessary data to
start processing.

(3) All ready components are then executed. They process the data in input ports, consuming
the respective data items form the input feed, and generate output on their output ports.
The generated outputs fill the inputs of other components, turning them executable.

(4) The execution proceeds by identifying ready components and executing them (i.e., reiterating
steps 2 and 3), until there are no components to be executed left. At this point, all components
have been executed, and all the sinks have received and rendered information.

4.2.3 Generic mashup syntax. Developing mashups based on this meta-model, i.e., graphically
composing a mashup in a mashup tool, requires defining a syntax for the concepts in the MM.
In Figure 3 we map the above MM to a basic set of generic graphical symbols and composition
rules. In the next section, we show where to configure domain-specific symbols.

4.3 The Domain-Specific Mashup Meta-Model

The mashup meta-model (MM) described in the previous section allows the definition of a class
of mashups that can fit in different domains. Thus, it is not yet tailored to a specific domain, e.g.

132



Developing Mashup Tools for End-Users · 11

Source name
[Query?]

Static source

Metric name
[Parameters*]

Metric

Filter name
[Filter condition]

Filter

Chart name

Chart

Source name
[Query?]

Parametric source

Aggregator name
[Aggregation function]

Aggregator

Figure. 4. Domain-specific syntax for the concepts in the domain-specific meta-model extension

research evaluation. Now we want to push the domain into the mashup meta-model constraining
the class of the mashups that can be produced to that of our specific domain. The next step is
therefore understanding the dynamics of the concepts in the model, that is, the typical classes
of processes and activities that are performed by domain experts in the domain, in order to
transform or evolve concrete instances of the concepts in the DCM and to arrive at a structuring
of components as well as to an intuitive graphical notation. What we obtain from this is a
domain-specific mashup meta-model. Each domain-specific meta-model is a specialization of the
mashup meta-model along three dimensions: (i) domain-specific activities and processes, (ii)
domain-specific syntax, and (iii) domain instances.

4.3.1 Domain process model

Definition The domain process model (PM) describes the classes of processes or activities
that the domain expert may want to mash up to implement composite, domain-specific processes.

Operatively, the process model is again derived by specializing the generic meta-model based
on interactions with domain experts, just like for the domain concept model. This time the topic
of the interaction is aimed at defining classes of components, their interactions and notations. In
the case of research evaluation, this led to the identification of the following classes of activities,
i.e., classes of components:

(1) Source extraction activities. They are like queries over digital libraries such as Scopus
or Scholar. They have no input port, and have one output port (the extracted data). These
components may have one or more configuration ports that specify in essence the “query”. For
example a source component may take in input a set of researchers and extract publications and
citations for every researcher from Scopus.

(2) Metric computation activities, which can take in input institutions, venues, researchers,
or publications and attach a metric to them. The corresponding components have at least one
input and one output ports. For example, a component determines the h-index for researchers,
or determines the percentile of a metric based on a distribution.

(3) Aggregation activities, which define groups of items based on some parameter (e.g., affili-
ation).

(4) Filtering activities, which receive an input pipe and return in output a filtering of the input,
based on a criterion that arrives in a configuration port. For example we can filter researchers
based on the nationality or affiliation or based on the value of a metric.

(5) UI widgets, corresponding to information sink components that plot or map information
on researchers, venues, publications, and related metrics.

For simplicity, we discuss only the processes that are necessary to implement the reference
scenario.

4.3.2 Domain syntax. A possible domain-specific syntax for the classes in the PM is shown
in Figure 4, which is used for our reference scenario in Figure 1 shown earlier. Its semantic is
the one described by the MM in Section 4.2. In practice, defining a PM that fully represents a
domain requires considering multiple scenarios for a given domain, aiming at covering all possible
classes of processes in the domain.

133



12 · F. Daniel et al.

4.3.3 Domain instances. Figure 1 actually exemplifies the use of instances of domain-specific
components. For example, the Microsoft Academic Publications component is an instance of
source extraction activity with a configuration port (SetResearchers) that allows the setup of the
researchers for which publications are to be loaded from Microsoft Academic. The component is
implemented as web service, and its symbol is an instantiation of the parametric source component
type in Figure 4 without static query. Similarly, we need to implement web services for the
Italian Researchers (source extraction activity), the Venue Ranking (source extraction activity),
the Impact (metric computation activity), the Impact Percentiles (metric computation activity),
and the Bar Chart (UI widget) components.

In summary, what we do is limiting the flexibility of a generic mashup tool to a specific class of
mashups, gaining however in intuitiveness, due the strong focus on the specific needs and issues
of the target domain. Given the models introduced so far, we can therefore refine our definition
of DMT given earlier as follows:

Definition A domain-specific mashup tool (DMT) is a development and execution environ-
ment that (i) implements a domain-specific mashup meta-model, (ii) exposes a domain-specific
modeling syntax, and (iii) includes an extensible set of domain-specific component instances.

5. THE RESEVAL MASH TOOL FOR RESEARCH EVALUATION

The methodology described above is the result of our experience with the implementation of our
own domain-specific mashup platform, ResEval Mash (http://open.reseval.org/). ResEval
Mash is a mashup platform for research evaluation, i.e., for the assessment of the productivity
or quality of researchers, teams, institutions, journals, and the like. The platform is specifically
tailored to the need of sourcing data about scientific publications and researchers from the Web,
aggregating them, computing metrics (also complex and ad-hoc ones), and visualizing them.
ResEval Mash is a hosted mashup platform with a client-side editor and runtime engine, both
running inside a common web browser. It supports the processing of also large amounts of data,
a feature that is achieved via the sensible distribution of the respective computation steps over
client and server.

In the following, we show how ResEval Mash has been implemented, starting from the domain
models introduced throughout the previous sections.

5.1 Design Principles

Starting from the considerations stated in Section 3, the implementation of ResEval Mash is
based on specific design principles. These principles have not been adopted in existing mashup
tools, leaving unsolved some usability issues and domain-specific needs, that we have to address
in our domain. The following points present our solutions to them which are mainly driven by
our past experience, careful analysis of the domain and preliminary user study’s results.

(1) Hidden data mappings. As identified in [Namoun et al. 2010b], dealing with data mapping
is a complex task for the users. In order to prevent them from defining data mappings,
the mashup component used in the platform are all able to understand and manipulate
the domain concepts expressed in the DCM, which defines the domain entities and their
relations. That is, they accept as input and produce as output only domain entities (e.g.,
researchers, publications, metric values). Since all the components, hence, speak the same
language, composition can do without explicit data mappings and it is enough to model
which component feeds input to which other component.

(2) Data-intensive processes. Although apparently simple, the chosen domain is peculiar in
that it may require the processing of large amounts of data (e.g., we may need to extract
and process the publications of the Italian researchers, i.e., publications of around sixtyone
thousound researchers). Data processing should therefore be kept at the server side (we
achieve this via dedicated RESTful web services running on the mashup server). In fact,

134



Developing Mashup Tools for End-Users · 13

loading large amounts of data from remote services and processing them in the browser at
the client side is unfeasible, due to bandwidth, resource, and time restrictions.

(3) Platform-specific services. As opposed to common web services, which are typically
designed to be independent of the external world, the previous two principles instead demand
for services that are specifically designed and implemented to efficiently run in our domain-
specific architecture. That is, they must be aware of the platform they run in. As we will see,
this allows the services to access shared resources (e.g., the data passed among components)
in a protected and speedy fashion.

(4) Runtime transparency. Finally, research evaluation processes like our reference scenario
focus on the processing of data, which – from a mashup paradigm point of view – demands
for a data flow mashup paradigm. Although data flows are relatively intuitive at design time,
they typically are not very intuitive at runtime, especially when processing a data flow logic
takes several seconds (as could happen in our case). In order to convey to the user what
is going on during execution, we therefore want to provide transparency into the state of a
running mashup.

We identify two key points where transparency is important in the mashup model: compo-
nent state and processing state. At each instant of time during the execution of a mashup,
the runtime environment should allow the user to inspect the data processed and produced
by each component, and the environment should graphically communicate the processing
progress by animating a graphical representation of the mashup model with suitable colors.

These principles require ResEval Mash to specifically take into account the characteristics of
the research evaluation domain. Doing so produces a platform that is fundamentally different
from generic mashup platforms, such as Yahoo! Pipes (http://pipes.yahoo.com/pipes/).

5.2 Architecture

Figure 5 illustrates the internal architecture that takes into account the above principles and the
domain-specific requirements introduced throughout the previous sections: Hidden data map-
pings are achieved by implementing mashup components that all comply with the domain con-
ceptual model described in Figure 2. The processing of large amounts of data is achieved at
the server side by implementing platform-specific services that all operate on a shared memory,
which allows the components to read and write back data and prevents them from having to pass
data directly from one service to another. The components and services implement the domain
process model discussed in Section 4.3, i.e., all the typically domain activities that characterize
the research evaluation domain. Runtime transparency is achieved by controlling data processing
from the client and animating accordingly the mashup model in the Composition Editor. Doing
so requires that each design-time modeling construct has an equivalent runtime component that
is able to render its runtime state to the user. The modeling constructs are the ones of the
domain-specific syntax illustrated in Figure 4, which can be used to compose mashups like the
one in our reference scenario (see Figure 1). Given such a model, the Mashup Engine is able to
run the mashup according to the meta-model introduced in Section 4.2.

The role of the individual elements in Figure 5 is as follows:

Mashup Engine: The most important part of the platform is the mashup engine, which is
developed for the client-side processing, that is we control data processing on the server from
the client. The engine is primarily responsible for running a mashup composition, triggering
the component’s actions and managing the communication between client and server. As a
component either binds with one or more services or with a JavaScript implementation, the
engine is responsible for checking the respective binding and for executing the corresponding
action. The engine is also responsible for the management of complex interactions among
components. A detailed view of these possible interaction scenario is given later in this
section.

135



14 · F. Daniel et al.

Figure. 5. Mashup Platform Architecture

Component and Composition mappers: The component and composition mappers parse
component and composition descriptors to represent them in the composition editor at design
time and to bind them at run time.

Composition editor: The composition editor provides the mashup canvas to the user. It
shows a components list from which users can drag and drop components onto the canvas and
connect them. The composition editor implements the domain-specific mashup meta-model
and exposes it through the domain syntax. From the editor it is also possible to launch the
execution of a composition through a run button and hand the mashup over to the mashup
engine for execution.

Server-Side Services: On the server side, we have a set of RESTful web services, i.e.,
the repository services, authentication services, and components services. Repository services
enable CRUD operations for components and compositions. Authentication services are
used for user authentication and authorization. Components services manage and allow
the invocation of those components whose business logic is implemented as a server-side web
service. These web services, together with the client-side components, implement the domain
process model. A detail explanation of how to develop a service for a component is given in
section 5.4.

CDM Memory Manager: The common data model (CDM) memory manager implements
the domain concept model (DCM) and supports the checking of data types in the system.
As explained above, CDM interacts with a shared memory that provides a space for each
mashup execution instance. As shared memory we decided to use a server’s physical memory
(RAM) area, allowing for high performance also when dealing with data-intensive processes.
All data processing services read and write to this shared memory through the CDM memory
manager. In order to configure the CDM, the CDM memory manger generates corresponding
Java classes (e.g., in our case these classes are POJO, annotated with JAXB annotations)
from an XSD that encodes the domain concept model.

Server-engine: All services are managed by the server-side engine, which is responsible for
managing all the modules that are at the server side, e.g., the CDM memory manager, the
repository, and so on. The server-side engine is the place where requests coming from the

136



Developing Mashup Tools for End-Users · 15

client side are dispatched to the respective service implementing the required operations.

Local Database and the Web: Both the local database and the Web represent the data
which is required and used by the components services. We as platform provider provides an
initial database and a basic set of services on top of it. A third-party service can be deployed
and thus it can use an external database anywhere on the Web.

Component registration interface: The platform also comes with a component registra-
tion interface for developers, which aids them in the setup and addition of new components
to the platform. The interface allows the developer to define components starting from ready
templates. In order to develop a component, the developer has to provide two artifacts: (i)
a component definition and (ii) a component implementation. The implementation consists
either of JavaScript code for client-side components or it is linked by providing a binding to
a web service for server-side components.

5.3 Components Models and Data Passing Logic

There are two component models in ResEval Mash, depending on whether the respective busi-
ness logic resides in the client or in the server side: server components (SC) are implemented as
RESTful web services that run at the server side; client components (CC) are implemented in
JavaScript file and run at the client side. Independently of the component model, each component
has a client-side component front-end, which allows (i) the Mashup Engine to enact component
operations and (ii) the user to inspect the state of the mashup during runtime. All commu-
nications among components are mediated by the Mashup Engine, internally implementing a
dedicated event bus for shipping data via events. Server components require interactions with
their server-side business logic and the shared memory; this interaction needs to be mediated by
the Mashup Engine. Client components directly interact with their client-side business logic; this
interaction does not require the intervention of the Mashup Engine.

Components consume or produce different types of data: actual data (D), configuration param-
eters (CP), and control data like request status (RS), a flag telling whether actual data is required
in output (DR), and a key (K) identifying data items in the shared memory. All components
can consume and produce actual data, yet, as we will see, not always producing actual data in
output is necessary. The configuration parameters enable the setup of the components. The
request status enables rendering the processing status at runtime. The key is crucial to identify
data items produced by one component and to be “passed” as input to another component. As
explained earlier, instead of directly passing data from one service to another, for performance
reasons we use a shared memory that all services can access and only pass a key, i.e., a reference
to the actual data from component to component.

Based on the flow of components in the mashup model, we can have different data passing
patterns. Given the two different types of components, we can recognize four possible interaction
patterns. The four patterns are illustrated in Figure 6 and described in the following paragraphs:

(1) SC-SC interaction: Both the components are of type SC. In Figure 6, component A is
connected with component B. Since component A is the first component in the composition
and it does not require any input, it can start the execution immediately. It is the responsi-
bility of the Mashup Engine to trigger the operation of the component A (step 1). At this
point, component A calls its back-end web service through the Mashup Engine, passing only
the configuration parameters (CP) to it (2). The Mashup Engine, analyzing the composition
model, knows that the next component in the flow is also a server component (component
B), so it extends component A’s request adding a key control information to the original
request, which can be used by component A’s service to mark the data it produces in the
shared memory. Hence, the Mashup Engine invokes service A (3). Service A receives the
control data, executes its own logic, and stores its output into the Shared Memory (4). Once
the execution ends, Service A sends back the control data (i.e., key and request status) to
the Mashup Engine (5), which forwards the request status to component A (6); the engine

137



16 · F. Daniel et al.

SC A SC B CC C CC D SC E

Service A Service B Service E

Mashup Engine

Shared Memory

Component services

Component front-ends

JS logic C JS logic D

Se
rv

er
   

 C
lie

nt

Logical data flow

Physical data flow

1:
 a

ut
o 

ru
n

2:
 [C

P]
3:

 [K
,C

P]

10: [K,D]

5:
 [K

,R
S]

6:
 [R

S]

7:
 [K

]

8:
 [K

,C
P]

9:
 [K

,C
R

,C
P]

11
: [

K,
R

S,
D

]
12

: [
R

S]

13
: [

D
]

14
: [

D
]

15
: [

D
]

18
: [

D
,C

P]
19

: [
K,

D
,C

P]

20: [K,D]

21
: [

K,
R

S]
22

: [
R

S]

4: [K,D]

16
: [

D
]

17
: [

D
]

Payload

Component-internal communiation

SC = Server component
CC = Client component

K = Key
DR = Output data required
CP = Configuration parameters
D = Data
RS = Request status

Figure. 6. ResEval Mash’s internal data passing logic.

keeps track of the key. With this, component A has completed and the engine can enable
the next component (7). In the SC-SC interaction, we do not need to ship any data from the
server to the client.

(2) SC-CC interaction: Once activated, component B enacts its server-side logic (8, 9, 10).
The Mashup Engine detects that the next component in the flow is a client component, so it
adds the DR control data parameter in addition to the key and the configuration parameters,
in order to instruct the web service B to send actual output data back to the client side after
it has been stored in the Shared Memory. In this way, when service B finishes its execution, it
returns the control data and the actual output data of the service (i.e., key, request status and
output data) to the Mashup Engine (11), which then passes the request status to component
B (12) and the actual data to the next component in the mashup, i.e., component C (13).

(3) CC-CC interaction: Client component to client component interactions do not require
to interact with the server-side services. Once the component C’s operation is triggered in
response to the termination of component B, it is ready to start its execution and to pass
component B’s output data to the JavaScript function implementing its business logic. Once
component C finishes its execution, it sends its output data back to the engine (14), which
is then able to start component D (15) by passing C’s output data.

(4) CC-SC interaction: After the completion of component D (16), the Mashup Engine passes
the respective data to component E as input (17). At this point, component E calls its
corresponding service E, passing to it the actual data and possible configuration parameters
(18), along with the key appended by the Mashup Engine (19). Possibly, also the Output
Data Request flag could be included in the control data but, as explained, this depends on the
next component in the flow, which for presentation purpose is not further defined in Figure
6. Eventually, service E returns its response (i.e., key and request status – plus possible
output data if the DR flag is present) to the Mashup Engine (21), which is then delivered to

138



Developing Mashup Tools for End-Users · 17

component E (22).

While ResEval Mash fully supports these four data passing patterns and is able to understand
whether data are to be processed at the client or the server side, it has to be noted that the
actual decision of where data are to be processed is up to the developer of the respective mashup
component. Client components by definition require data at the client side; server components
at the server side. Therefore, if large amounts of data are to be processed, a sensible design
of the respective components is paramount. As a rule of thumb, we can say that data should
be processed at the server side whenever possible, and component developers should use client
components only when really necessary. For instance, visualization components of course require
client-side data processing. Yet, if they are used as sinks in the mashup model (which is usually
the case), they will have to process only the final output of the actual data processing logic, which
is typically of smaller size compared to the actual data sourced from the initial data sources (e.g.,
a table of h-indexes vs. the lists of publications by the set of the respective researchers).

5.4 The Domain-Specific Service Ecosystem

An innovative aspect of our mashup platform is its approach based on the concept of domain-
specific components. In Section 5.2 we described the role of the Components services in the
architecture of the system. These are not simply generic web services, but web services that
constitute a domain-specific service ecosystem, i.e., a set of services respecting shared models
and conventions and that are designed to work collaboratively where each of them provides a
brick to solve more complex problems proper of the specific domain. Having such an ecosystem
of compatible and compliant services, introduces several advantages that make our tool actually
usable and able to respond to the specific requirements of the domain we are dealing with.

Given the important role domain-specific components and services play in our platform, next
we describe how they are designed and illustrate some details of their implementation and their
interactions with the other parts of the system.

A ResEval Mash component requires the definition of two main artifacts: the component
descriptor and the component implementation.

The component descriptor describes the main properties of a component, which are:

(1) Operations. Functions that are triggered as consequence of an external event that take some
input data and perform a given business logic.

(2) Events. Messages produced by the component to inform the external world of its state
changes, e.g., due to interactions with the user or an operation completion. Events may
carry output data.

(3) Implementation binding. A binding defining how to reach the component implementation.

(4) Configuration parameters. Parameters that, as opposed to input data, are set up at compo-
sition design time by the designer to configure the component’s behavior.

(5) Meta-data. The component’s information, such as name and natural language description of
the component itself.

In our platform the component descriptors are implemented as XML file, which must comply
with an XML Schema Definition (XSD). The XSD defines both the schema for the component de-
scriptors and the admitted data types. Validating the descriptor against the data types definition
we can actually enforce the adoption of the common domain concept model (DCM), which enable
smooth composability and no need for data mapping in the Composition Editor, as discussed in
Section 5.1.

For example, an excerpt of the Italian Researchers component descriptor along with its rep-
resentation in the Composition Editor is shown in Figure 7. The component is implemented
through a server-side web service. Its descriptor does not present any operation and it has an

139



18 · F. Daniel et al.

Figure. 7. The descriptor of the Italian Researchers component along with its representation in
the Composition Editor

event called Researchers Loaded, which is used to spit out the list of researchers that are re-
trieved by the associated back-end service. The binding among the service and its client-side
counterpart is set up in the descriptor through the <request> tag. As shown, this tag includes
the information needed to invoke the service, i.e., its end-point URL and the configuration pa-
rameters that must be sent along with the request. In addition, the attribute triggers specifies
the event to be raised upon service completion. The attribute runsOn, instead, specifies the
component’s operation that must be invoked to start the service call. In this particular case,
since the component has no operations and no inputs to wait for, when the mashup is started the
Mashup Engine automatically invokes the back-end service associated to the component, causing
the process execution to start. If we were dealing with a component implemented via client-side
JavaScript, we would not need the <request> tag, and the implementation binding would be
represented by the ref attribute of the component operation or event, whose value would be the
name of the JavaScript function implementing the related business logic.

The component in Figure 7 has different configuration parameters, which are used to define
the search criteria to be applied to retrieve the researchers. We can see the uniId parameter.
Beside the name of the related label, we must specify the renderer to be used, that is, the
way in which the parameter will be represented in the Composition Editor. In this case, we are
using a text input field with auto-completion features. The auto-completion feature is provided
by a dedicated service operation that can be reached at the address specified in the url option.
Finally, we can see the presence of the configTemplate tag, which is just used to set the order
in which the parameters must be presented in the component representation in the Composition
Editor.

The other main artifact that constitutes a ResEval Mash component is its implementation .
As already discussed above, a component can be implemented in two different ways: through

140



Developing Mashup Tools for End-Users · 19

client-side JavaScript code (client component) or through a server-side web service (server com-
ponent). The choice of having a client-side or a server-side implementation depends mainly on
the type of component to be created, which may be a UI component (i.e., a component the
user can interact with at runtime through a graphical interface) or a service component (i.e., a
component that runs a specific business logic but does not have any UI). UI components (e.g.,
the Bar Chart of our scenario) are always implemented through client-side JavaScript files since
they must directly interact with the browser to create and manage the graphical user interface.
Service components (e.g., the Microsoft Academic Publications of our scenario), instead, can be
implemented in both ways, depending on their characteristics. In the research evaluation domain,
since they typically deal with large amounts of data, service components are commonly imple-
mented through server-side web services. In such a way, they do not have the computational
power constraints present at the client-side and, moreover, they can exploit the platform features
offered at the server-side, like the Shared Memory mechanism, which, e.g., permit to efficiently
deal with data-intensive processes. In other cases, where we do not have particular computa-
tional requirements, a service component can be implemented via client-side JavaScript, which
runs directly in the browser. The JavaScript implementation, both in case of UI and service
components, must include the functions implementing the component’s business logic.

For example, our Italian Researchers service component is implemented at server-side since
it has to deal with large amounts of data (i.e., thousands of researchers), so it belongs to the
server components category (introduced in Section 5.3). This type of components, to correctly
work within our domain-specific platform, must be implemented as Java RESTful web service
following specific implementation guidelines. In particular, the service must be able to properly
communicate with the other parts of the system and, thus, it must be aware of the data passing
patterns discussed before and the shared memory. Figure 8 shows the interaction protocol with
the other components of the platform the service must comply with.

The service is invoked through an HTTP POST request by the client-side Mashup Engine,
performed through an asynchronous Ajax invocation (the half arrowheads in the figure represent
asynchronous calls). The need to expose all the operations through HTTP POST comes from the
fact that in many cases it must be possible to send complex objects as parameters to the service,
which would not be possible in general using a GET request. For instance, in our example, the op-
eration is invoked through a POST request at the URL http://dev.liquidjournal.org:8081/

resevalmash-api/resources/italianSource/researchers and the component’s configuration
parameters (e.g., selected university or department) are posted in the request body. Besides the
parameters, the body also includes control data, that is the key and the OutputDataRequired

flag.

Once the request coming from the Mahup Engine is received by the service, the service code
must process it following the sequence diagram shown in Figure 8. If the service is designed to
accept input data, first it will get the data from the Shared Memory through the API provided
by the Server-Side Engine, using the received key as parameter.

Then, the service may need to have access to other data for executing its core business logic.
The services developed and deployed by us (as platform owners) can use the system database to
persistently store their data, as show in the second optional box. This is, for instance, the case
of our Italian Researchers component that retrieves the researchers from the system database,
where the whole Italian researchers data source has been pre-loaded for efficiency reasons. Third-
party services, instead, do not have access to the system database but they can use external data
sources as external databases or online services available on the Web. Clearly, the usage of the
system database guarantees higher performances and avoids possible network bottlenecks.

Once the service has retrieved all the necessary data, it starts executing its core business logic
(for our example component, it consists in the filtering of the researchers of interest based on
the configuration parameters). The business logic execution results are then stored in the Shared
Memory using the Server-Side Engine API methods. Typically, all the services will produce some

141



20 · F. Daniel et al.

Database.getData(SQL)

Response: Data

Client-Side 
Mashup Engine Service

Server-Side 
Engine Database

(Key, OutputDataRequired, ConfigParams) SharedMemory.getData(Key)

Response: InputData

Core Business Logic

SharedMemory.storeData(Key, OutputData)

Response: OutputData

HTTP POST http://.../resource OPT:

[if OutputDataRequired = false]
Response: Key, RequestStatus

[else]
Response: Key, RequestStatus, OuputData

ALT:

OPT:

Figure. 8. Platform-specific interaction protocol each service must comly with

output data, although, possibly, there could be exceptions like, for instance, a service that is only
designed to send emails.

Finally, the service must send a response back to the Mashup Engine. The response content
depends on the OutputDataRequest flag value. If it is set to false, as shown in the upper part
of the alternative box in the figure, the response will contain the Key and the RequestStatus

of the service (success or error). If the flag is set to true, in addition to those control data, the
response will also contain the actual OutputData produced by the service logic.

So far, all components and services for ResEval Mash have been implemented by ourselves,
yet the idea is to open the platform also to external developers for the development of custom
components. In order to ease component development, e.g., the setup of the connection with
the Shared Memory and the processing of the individual control data items, we will provide a
dedicated Java interface that can be extended with the custom logic. The description, regis-
tration, and deployment of custom components is then possible via the dedicated Component
Registration Interface briefly described in Section 5.2.

6. USER STUDY AND EVALUATION

A summative evaluation was conducted to analyse the user experience with ResEval Mash. The
results reported in this paper concentrate on usability, with an emphasis on the role of prior ex-
perience on learning. Prior experience was differentiated in two categories which are fundamental
in our approach to mashup design: domain knowledge and computing skills. Domain knowledge
was controlled by selecting all users with expertise in research evaluation, computing skills varied

142



Developing Mashup Tools for End-Users · 21

Figure. 9. Mashup composition to compute G-Index

in the sample from people with no programming knowledge at all, to expert programmers.
The study applied a concurrent talk-aloud protocol, a technique requiring users to verbalise

all their thoughts and opinions while performing a set of tasks. Verbalisation capture techniques
have been found to be particularly effective when conducting experimental investigations, which
provide an opportunity to study communication between products, designers and users [Jarke
et al. 1998; Rouse and Morris 1986]. Responses given during task completion are considered more
representative of the behavior and problems users have during assessment [Hands and Davidoff
2001] and concurrent talk-aloud protocols have been shown to encourage participants to go into
greater detail, to provide more in-depth evaluation, and help pin-point usability problems and
places where their expectations fail to be met [Teague et al. 2001].

6.1 Method

Ten participants covering a broad range of academic and technical expertise were invited to use
ResEval Mash. At the beginning of the study, they signed a consent form presenting ResEval
Mash as a tool for allowing non-programmers to develop their own computing applications. Then,
they were asked to fill in a questionnaire reporting their computing skills and knowledge about
research evaluation alongside some basic demographic information (e.g., age and job position).
Specifically, participants were asked to estimate their skills with the use of software similar to the
Microsoft Office Suite tools, programming languages, flowcharts and mashup tools, on a 4-point
scale, ranging from very skilled to no skilled at all. They were also presented with a list of 21
concepts related to research evaluation and asked to indicate for each of them whether they were
aware of it and able to understand its meaning, on a 2 point scale (yes vs. no).

After the questionnaire, participants watched a video tutorial (lasting approximately 10 min-
utes) that instructed them how to operate ResEval Mash. The video introduced the basic func-
tionalities of the tool, quickly explaining the concept of components, configuration parameters,
and data compatibility. It then showed how to create a simple mashup of 4 components to display
the H-index of the researchers of the Department of Computer Science and Engineering of the
University of Trento on a bar chart according to the Microsoft Academics publication source.
Finally, the video presented another mashup example used to summarize and reinforce the con-
cepts shown up to this point, where 4 components were connected to visualize on a bar chart the
G-index of a researcher (Figure 9).

After training, participants were asked to use the system. The first task asked people to start
from the first composition presented in the video tutorial and to modify the year parameter of
the Microsoft Academic component, to select a different department from the Italian Researchers
component and finally to replace the publication source component currently used in the composi-
tion with the Google Scholar component. The second task required them to design a composition
to compute the participant’s own publication count and visualize it on a chart. The correct
solution required linking together 4 components, as highlighted in Figure 10.

Whilst completing these two tasks, participants were asked to “talk aloud” regarding their
thoughts and actions. This interaction was filmed, as was the interview that followed task com-
pletion. The interview focused on interactional difficulties experienced, the evolution of partici-

143



22 · F. Daniel et al.

Figure. 10. Mashup composition to compute publication count

pants’ conceptual understanding over time, and a detailed usability evaluation stressing a feature
based assessment reporting which features were considered to be beneficial to interaction, which
were understood, and what participants, as users, would like to see in the system.

6.2 Results

The video-capture and talk aloud protocols were used to establish strengths and weaknesses in
design and conceptual understanding. A subsequent usability assessment was used to identify the
difficulties participants reported experiencing and their understanding of key features of mashup
tool interaction. Anonimized data related to the initial and final questionnairs are available at .
Videos recording user interactions with the tool can not be provided for privacy reasons.

6.2.1 Sample description. The sample covered a broad range of job positions and technical
skills. Half of it was composed of people who reported not being skilled in programming languages,
the other half reported being very skilled or good in relation to programming languages. All
the participants possessed moderate to no experience with mashup tools. The breakdown of
participants according to Position is reported in Table I.

IT Skills Position

High Computing Skills PhD Students (3), Post-doc (1), Senior Faculty Member (1)

No Computing Skills Administrative People (3), PhD student (1), Senior Faculty Member (1)

Table I. User Categories

On average as a group, participants had a good understanding of the domain. They pos-
sessed experience of 80% of the 21 domain specific conceptual components listed during the
pre-interaction assessment. This value ranged from a minimum of 48% to a maximum of 100%.

6.2.2 Usability evaluation. Overall, the tool was deemed as usable and something with which
participants were comfortable. Independently of their level of computing knowledge, all partici-
pants were able to accomplish the tasks with minimal or no help at all. The only visible difference
reflected a variable level of confidence in task execution. The IT expert users reflected less before
performing their actions and appeared to be more confident during the test. Overall, among the
users with lower computing skills there was agreement that more training in the use of the tool
would be beneficial, whereas this requirement did not emerge from the more skilled sample. It is
worth noticing however that the people reporting this need also indicated a lower level of domain
knowledge as compared to the other users.

All participants understood the concept of “component” and had no specific issues in terms of
configuring or connecting components. However, the post-doc researcher suggested that it might
be beneficial for the system to indicate clearly when a proposed connection was inappropriate or
illegal by using colour to differentiate the states of legality or appropriateness. Another partici-
pant suggested the possibility of disabling the illegal components from the selection panel when
a component was selected in the composition canvas. Selection of components was highlighted
as a potential problem, as identification of the right component required some time to be per-
formed. During the study, this did not appear to be a major problem, as only a selected number

144



Developing Mashup Tools for End-Users · 23

of components (N= 8) were tested. Yet, it is reasonable to assume that this problem will increase
as the number of available components grows. One participant suggested a search feature, to
complement the current menu selection interaction mode.

The task requiring tailoring an existing mashup was generally performed better than the task
requiring creating a new mashup. In the latter case, a problem emerged with the selection of the
first component (i.e., Researcher Input), as several participants selected the Italian Researchers
component expecting to be capable to personalise their query there. Saving of configurations was
also a source of uncertainty for several participants. The configuration parameters only needed
to be filled in by the users and no other action from them was required. This was not clear to
the users that in many cases expected an explicit saving action to be performed (e.g., through a
“Save configuration” button) and that also expected a feedback to be returned on configuration
completion. Several people used the “Close” button after updating the configuration, leading to
deletion of the component.

Furthermore, most participants reported some difficulty interacting with the tool due to the
physical interaction of double-clicking on the component image in order to open it and been
capable to configure its parameters. This constraint was referenced as taking time to learn.

6.3 Discussion

Our study indicates real potential for the domain-specific mashup approach to allow people with
no computing skills to create their own applications. The comparison between the two groups of
users highlighted good performance independently of participants computing skills. The request
for higher training emerging from a few less expert users appeared to be rather linked to a weaker
domain knowledge than to their computing capabilities. Further research will explore the relative
role of these two factors by a full factorial experimental study on a larger sample. However, this
preliminary study suggested that ResEval Mash is a successful tool appealing both to expert
programmers and end-users with no computing skills.

All participants reported a good level of understanding of the basic concepts implemented in
ResEval Mash, although some suggestions for improvement were collected, mainly related to ver-
bal labels used to denote components. Most usability issues evinced from behavioral observations
can be easily solved. For instance, the uncertainty experienced by several users with saving the
configuration parameters can be counteracted by adding an explicit saving option in the inter-
face of the components. A more serious issue was highlighted as regards selection of components,
which was found to be an error prone and time demanding task. This problem is likely to increase
exponentially with the availability of more components, but it can be partially counteracted by a
smart advice system decreasing the number of items available for selection based on a comparison
between the current application context and previous successful implementations, as presented
in [De Angeli et al. 2011]. For instance, illegal components could be automatically disabled and
the one used more often made salient.

Overall, the study provided some interesting results and highlighted the important role of
user evaluation in the design of interactive systems. A major finding is related to the ease with
which our sample (independently of their technical skills) understood that components had to
be linked together so that information could flow between different services. This is a well-
acknowledged problem evinced in several user studies of EUD tools (e.g., the ServFace Builder,
Namoun et al 2011), which surprisingly did not occur at all in the current study. The mismatch
can be due to a different level of complexity of the evaluation tasks, but also to an important
design difference. Indeed, ResEval Mash only requires users to connect components as holistic
concepts, whereas other tools, such as the ServFace builder required the user to perform complex
connections between individual fields of user interfaces. More research is needed to understand
the boundaries of ResEval Mash, testing it with more complex development scenarios.

145



24 · F. Daniel et al.

7. RELATED WORK

Although the requirement for more intuitive development environments and design support for
end-users clearly emerges from research on end-user development (EUD), for example for web
services [Namoun et al. 2010a; 2010b], little is available to satisfy this need. There are currently
two main approaches to enable less skilled users to develop programs: in general, development
can be eased either by simplifying it (e.g., limiting the expressive power of a programming lan-
guage) or by reusing knowledge (e.g., copying and pasting from existing algorithms). Among the
simplification approaches, the workflow and Business Process Management (BPM) community
was one of the first to propose that the abstraction of business processes into tasks and control
flows would allow also less skilled users to define their own processes. Yet, according to our
opinion, this approach achieved little success and modeling still requires training and knowledge.
The advent of the service-oriented architecture (SOA) substituted tasks with services, yet com-
position is still a challenging task even for expert developers [Namoun et al. 2010a; 2010b]. The
reuse approach is implemented by program libraries, services, or templates (such as generics in
Java or process templates in workflows). It provides building blocks that can be composed to
achieve a goal, or the entire composition (the algorithm - possibly made generic if templates are
used), which may or may not suit a developer’s needs.

Mashups aim to bring together the benefits of both simplification and reuse. In the case of
domain-specific mashup environments, we aim to push simplification even further compared to
generic mashup platforms by limiting the environment (and, hence, its expressive power) to the
needs of a single, well-defined domain only. Reuse is supported in the form of reusable domain
activities, which can be mashed up.

As such, the work presented in this paper is related to three key areas, i.e., domain-specific
modeling, web service composition, and mashups, which we briefly overview in the following.

Domain-specific modeling. The idea of focusing on a particular domain and exploiting its
specificities to create more effective and simpler development environments is supported by a
large number of research works [Lédeczi et al. 2001] [Costabile et al. 2004] [Mernik et al. 2005]
[France and Rumpe 2005]. Mainly these areas are related to Domain Specific Modeling (DSM)
and Domain Specific Language (DSL).

In DSM, domain concepts, rules, and semantics are represented by one or more models, which
are then translated into executable code. Managing these models can be a complex task that is
typically suited only to programmers but that, however, increases his/her productivity. This is
possible thanks to the provision of domain-specific programming instruments that abstract from
low-level programming details and powerful code generators that “implement” on behalf of the
modeler. Studies using different DSM tools (e.g., the commercial MetaEdit+ tool and academic
solution MIC [Lédeczi et al. 2001]) have shown that developers’ productivity can be increased up
to an order of magnitude.

In the DSL context, although we can find solutions targeting end-users (e.g., Excel macros)
and medium skilled users (e.g., MatLab), most of the current DSLs target expert developers
(e.g., Swashup [Maximilien et al. 2007]). Also here the introduction of the “domain” raises the
abstraction level, but the typical textual nature of these languages makes them less intuitive and
harder to manage and less suitable for end-users compared to visual approaches. Benefits and
limits of the DSM and DSL approaches are summarized in [France and Rumpe 2005] and [Mernik
et al. 2005].

Web service composition. BPEL (Business Process Execution Language) [OASIS 2007] is
currently one of the most used solutions for web service composition, and it is supported by
many commercial and free tools. BPEL provides powerful features addressing service composition
and orchestration but no support is provided for UI integration, as, for instance, required in our
reference scenario. This shortcoming is partly addressed by the BPEL4People [Active Endpoints,
Adobe, BEA, IBM, Oracle, SAP 2007b] and WS-HumanTask [Active Endpoints, Adobe, BEA,
IBM, Oracle, SAP 2007a] specifications, which aim at introducing also human actors into service

146



Developing Mashup Tools for End-Users · 25

compositions. Yet, the specifications focus on the coordination logic only and do not support the
design of the UIs for task execution. In the MarcoFlow project [Daniel et al. 2010] we provide
a solution that bridges the gap between service and UI integration, but the approach is however
complex and only suited for expert programmers.

Mashups. Web mashups [Yu et al. 2008] emerged as an approach to provide easier ways to
connect together services and data sources available on the Web [Hartmann et al. 2006], together
with the claim to target non-programmers. Yahoo! Pipes (http://pipes.yahoo.com) provides
an intuitive visual editor that allows the design of data processing logics. Support for UI in-
tegration is missing, and support for service integration is still poor. Pipes operators provide
only generic programming features (e.g., feed manipulation, looping) and typically require basic
programming knowledge. The CRUISe project [Pietschmann et al. 2009] specifically focuses on
composability and context-aware presentation of UIs, but does not support the seamless inte-
gration of UI components with web services. The ServFace project (http://www.servface.eu),
instead, aims to support normal web users in composing semantically annotated web services.
The result is a simple, user-driven web service orchestration tool, but UI integration and process
logic definitions are rather limited and again basic programming knowledge is still required.

8. STATUS AND LESSONS LEARNED

The work described in this paper resulted from actual needs within the university that were not
yet met by current technology. It also resulted from the observation that in general composition
technologies failed to a large extent to strike the right balance between ease of use and expressive
power. They define seemingly useful abstractions and tools, but in the end developers still prefer
to use (textual) programming languages, and at the same time domain experts are not able to
understand and use them. What we have pursued in our work is, in essence, to constrain the
language to the domain (but not in general in terms of expressive power) and provide a domain-
specific notation so that it becomes easier to use. In particular, the language does not require
users to deal with one of the most complex aspects of process modeling (at least for end-users),
that of data mappings, as the components and the DMT take care of this, thanks to the common
data model. This is a very simple, but very powerful concept, because now users just need to take
components, place them next to each other and simply connect them, something very different
from what traditional mashup or service composition tools require.

The results of our user study regarding the ResEval Mash tool, our domain-specific mashup
platform for research evaluation, show that end-users feel comfortable in a mashup environment
that resembles the domain they are acquainted with. The intuitiveness of the used components,
which represent well-known domain concepts and actions, prevails over the lack of composition
knowledge the users (the domain experts) may have and help them to acquire the necessary
composition knowledge step by step by simply “playing” with ResEval Mash. Components in
ResEval Mash have real meaning to users.

Yet, we also acknowledge that there is still work to be done, in order to turn ResEval Mash
into a even more powerful instrument for research evaluation. Before going publicly online, we
still would like to improve the intuitiveness of its user interface, especially as for what regards
the configuration of component parameters, a task that was not perceived as intuitive by users.
We also have to complete the implementation of some of the components. In the context of
both this work and other research conducted in parallel, we have learned that users with only
little IT skills might benefit from contextual help [De Angeli et al. 2011], e.g., provided in the
form of recommendations that suggest the user which next composition action might make sense.
We already designed the respective client-side knowledge base for storing composition knowledge
and a respective recommendation engine to provide interactive, contextual help [Roy Chowdhury
et al. 2011]; next, we will work on the extraction (mining) of reusable composition knowledge
(in the form of composition patterns) from existing mashup models. Joining the power of both
domain-specific design and suitable assistance technologies will allow us to widen even further

147



26 · F. Daniel et al.

the spectrum of people that are able to develop mashups.

Acknowledgment: This work was supported by EU project OMELETTE (contract no.
257635).

REFERENCES

Active Endpoints, Adobe, BEA, IBM, Oracle, SAP. 2007a. Web Services Human Task (WS-HumanTask)

Version 1.0. Tech. rep. June.

Active Endpoints, Adobe, BEA, IBM, Oracle, SAP. 2007b. WS-BPEL Extension for People (BPEL4People)

Version 1.0. Tech. rep. June.

Costabile, M. F., Fogli, D., Fresta, G., Mussio, P., and Piccinno, A. 2004. Software environments for

end-user development and tailoring. PsychNology Journal 2, 1, 99–122.

Daniel, F., Casati, F., Benatallah, B., and Shan, M.-C. 2009. Hosted Universal Composition: Models, Lan-
guages and Infrastructure in mashArt. In ER’09. Berlin, Heidelberg, 428–443.

Daniel, F., Soi, S., Tranquillini, S., Casati, F., Heng, C., and Yan, L. 2010. From People to Services to UI:

Distributed Orchestration of User Interfaces. In BPM’10. 310–326.

De Angeli, A., Battocchi, A., Roy Chowdhury, S., Rodriguez, C., Daniel, F., and Casati, F. 2011. End-user

requirements for wisdom-aware eud. In Proceedings of IS-EUD 2011. 245–250.

France, R. and Rumpe, B. 2005. Domain specific modeling. Software and Systems Modeling 4, 1–3.

Hands, D., A. S. and Davidoff, J. 2001. Recency and duration neglect in television picture quality evaluation.
applied cognitive psychology. Applied Cognitive Psychology 15, 639–657.

Hartmann, B., Doorley, S., and Klemmer, S. 2006. Hacking, Mashing, Gluing: A Study of Opportunistic
Design and Development. Pervasive Computing 7, 3, 46–54.

Jarke, M., Bui, X., and Carroll, J. 1998. Scenario management: An interdisciplinary approach. Requirements

Engineering 3, 3, 155–173.

Karlsson, M. and Wikstrom, L. 2006. Contemporary Ergonomics. Taylor and Francis, Great Britain, Chapter

Safety semantics: A study on the effect of product expression on user safety behaviour, 169–173.

Lédeczi, Á., Bakay, A., Maroti, M., Völgyesi, P., Nordstrom, G., Sprinkle, J., and Karsai, G. 2001.
Composing domain-specific design environments. IEEE Computer 34, 11, 44–51.

Maximilien, E. M., Wilkinson, H., Desai, N., and Tai, S. 2007. A domain-specific language for web apis and

services mashups. In ICSOC. 13–26.

Mehandjiev, N., De Angeli, A., Wajid, U., Namoun, A., and Battocchi, A. 2011. Empowering end-users to

develop service-based applications. End-User Development , 413–418.

Mernik, M., Heering, J., and Sloane, A. M. 2005. When and how to develop domain-specific languages. ACM
Comput. Surv. 37, 4, 316–344.

Monk, A. 1998. Cyclic interaction: a unitary approach to intention, action and the environment. Cognition 68,
95–110.

Namoun, A., Nestler, T., and De Angeli, A. 2010a. Conceptual and Usability Issues in the Composable Web of

Software Services. In Current Trends in Web Engineering - 10th International Conference on Web Engineering

ICWE 2010 Workshops. Springer, 396–407.

Namoun, A., Nestler, T., and De Angeli, A. 2010b. Service Composition for Non Programmers: Pro-spects,
Problems, and Design Recommendations. In Proceedings of the 8th IEEE European Conference on Web Services

(ECOWS). IEEE, 123 – 130.

Nielsen, J. 1993. Usability Engineering. Academic Press, California.

Norman, D. A. 1991. Cognitive artifacts. Cambridge University Press, New York, NY, USA, 17–38.

OASIS. 2007. Web Services Business Process Execution Language Version 2.0. Tech. rep., http://docs.

oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html. April.

Okeye, H. 1998. Metaphor mental model approach to intuitive graphical user interface design. Ph.D. thesis,
Cleveland State University, USA.

Pietschmann, S., Voigt, M., Rümpel, A., and Meißner, K. 2009. Cruise: Composition of rich user interface
services. In ICWE’09. 473–476.

Rouse, W. and Morris, N. 1986. On looking into the black box: Prospects and limits in the search for mental

models. Psychological bulletin 100, 3, 349.

Roy Chowdhury, S., Daniel, F., and Casati, F. 2011. Efficient, Interactive Recommendation of Mashup

Composition Knowledge. In Proceedings of ICSOC 2011. Springer, 374–388.

Teague, R., De Jesus, K., and Ueno, M. 2001. Concurrent vs. post-task usability test ratings. In CHI’01
extended abstracts on Human factors in computing systems. ACM, 289–290.

Thomas, B. and van-Leeuwen, M. 1999. The user interface design of the fizz and spark GSM telephones. Taylor

& Francis, London.

148



Developing Mashup Tools for End-Users · 27

Yu, J., Benatallah, B., Casati, F., and Daniel, F. 2008. Understanding Mashup Development. IEEE Internet

Computing 12, 44–52.

149



On the Systematic Development of
Domain-Specific Mashup Tools for End Users

Muhammad Imran, Stefano Soi, Felix Kling, Florian Daniel,
Fabio Casati and Maurizio Marchese

Department of Information Engineering and Computer Science
University of Trento, Via Sommarive 5, 38123, Trento, Italy

lastname@disi.unitn.it

Abstract. The recent emergence of mashup tools has refueled research
on end user development, i.e., on enabling end-users without program-
ming skills to compose their own applications. Yet, similar to what hap-
pened with analogous promises in web service composition and business
process management, research has mostly focused on technology and, as a
consequence, has failed its objective. In this paper, we propose a domain-
specific approach to mashups that is aware of the terminology, concepts,
rules, and conventions (the domain) the user is comfortable with. We
show what developing a domain-specific mashup tool means, which role
the mashup meta-model and the domain model play and how these can
be merged into a domain-specific mashup meta-model. We exemplify the
approach by implementing a mashup tool for a specific domain (research
evaluation) and describe the respective user study. The results of the
user study confirm that domain-specific mashup tools indeed lower the
entry barrier to mashup development.

1 Introduction

Mashups are typically simple web applications that, rather than being coded
from scratch, are developed by integrating and reusing available data, function-
alities, or pieces of user interfaces accessible over the Web. Mashup tools, i.e.,
online development and runtime environments for mashups, ambitiously aim
at enabling non-programmers to develop their own applications. The mashup
platforms developed so far either expose too much functionality and too many
technicalities, so that they are powerful and flexible but suitable only for pro-
grammers, or only allow compositions that are so simple to be of little use
for most practical applications. Yet, being amenable to non-programmers is in-
creasingly important, as the opportunity given by the wide range of applications
available online and the increased flexibility that is required in both businesses
and personal life management raise the need for situational applications.

We believe that the heart of the problem is that it is impractical to design
tools that are generic enough to cover a wide range of application domains, pow-
erful enough to enable the specification of non-trivial logic, and simple enough
to be actually accessible to non-programmers. At some point, we need to give

Appendix I

150



up something. In our view, this something is generality. Giving up generality in
practice means narrowing the focus of a design tool to a well-defined domain and
tailoring the tool’s development paradigm, models, language, and components
to the specific needs of that domain only.

As an example, in this paper we report on a mashup platform we specifically
developed for the domain of research evaluation, that is, for the assessment of the
performance of researchers, groups of researchers, departments, universities, and
similar. There are no commonly accepted criteria for performing such analysis in
general, and evaluation is highly subjective. Computing evaluation metrics that
go beyond the commonly adopted h-index is still a complex, manual task that
is not adequately supported by software instruments. In fact, computing an own
metric may require extracting, combining, and processing data from multiple
sources, implementing new algorithms, visually representing the results, and
similar. In addition, the people involved in research evaluation are not necessarily
IT experts and, hence, they may not be able to perform such IT-intensive tasks
without help. In fact, we may need to extract, combine, and process data from
multiple sources and render the information via visual components, a task that
has all the characteristics of a data mashup.

In this paper, we champion the notion of domain-specific mashup tools
and describe what they are composed of, how they can be developed, how they
can be extended for the specificity of any particular application context, and
how they can be used by non-programmers to develop complex mashup logics
within the boundaries of one domain. Specifically, (1) we provide a methodology
for the development of domain-specific mashup tools, defining the necessary
concepts and design artifacts; (2) we detail and exemplify all design artifacts
that are necessary to implement a domain-specific mashup tool; (3) we apply
the methodology in the context of an example mashup platform that aims to
support research evaluation, (4) we perform a user study in order to assess the
viability of the developed platform.

Next we outline the methodology we follow to implement the domain-specific
mashup tool. In Section 3 we briefly describe the actual implementation of our
prototype tool, and in Section 4 we report on our preliminary user study. In
Section 5, we review related works. We conclude the paper in Section 6.

2 Methodology

Our development of a specific mashup platform for research evaluation has al-
lowed us to conceptualize the necessary tasks and to structure them into the
following methodology steps:

1. Definition of a domain concept model (CM) to express domain data and
relationships. The domain concepts tell the mashup platform what kind of
data objects it must support. This is different from generic mashup platforms,
which provide support for generic data formats, not specific data objects.

2. Identification of a generic mashup meta-model (MM) that suits the compo-
sition needs of the domain. A variety of different mashup approaches, i.e.,

151



meta-models, have emerged over the last years and before focusing about
domain-specific features, it is important to identify a meta-model that ac-
commodates the domain processes to be mashed up.

3. Definition of a domain-specific mashup meta-model. Given a generic MM, the
next step is understanding how to inject the domain into it. We approach
this by specifying and developing:
(a) A domain process model (PM) that expresses classes of domain activities

and, possibly, ready processes. Domain activities and processes represent
the dynamic aspect of the domain.

(b) A domain syntax that provides each concept in the domain-specific
mashup meta-model (the union of MM and PM) with its own symbol.
Domain concepts and activities must be represented by visual metaphores
conveying their meaning to domain experts.

(c) A set of instances of domain-specific components. This is the step in
which the reusable domain-knowledge is encoded, in order to enable do-
main experts to mash it up into new applications.

4. Implementation of the domain-specific mashup tool (DMT) as a tool whose
expressive power is that of the domain-specific mashup meta-model and that
is able to host and integrate the domain-specific activities and processes.

In the next subsections, we expand each of these steps.

2.1 The Domain Concept Model

The domain concept model (CM) is obtained via interactions between an
IT expert and a domain expert. We represent it as ER diagram or XSD schema.
It describes the conceptual entities and the relationships among them, which,
together, constitute the domain knowledge. For example in the chosen domain
we have researchers, publications, conferences, metrics, etc. The core element
in the evaluation of scientific production and quality is the publication, which
is typically published in the context of a specific venue, e.g., a conference or
journal, and printed by a publisher. It is written by one or more researchers
belonging to an institution.

2.2 The Generic Mashup Meta-Model

We first define a generic mashup meta-model, which may fit a variety of dif-
ferent domains, then we show how to define the domain-specific mashup meta-
model, which will allow us to draw domain-specific mashup models. Specifically,
the generic mashup meta-model (MM) specifies a class of mashups and,
thereby, the expressive power, i.e., the concepts and composition paradigms, a
mashup platform must know in order to support the development of that class of
mashups. Thus the MM implicitly specifies the expressive power of the mashup
platform class. Identifying the right features of the mashups that fit a given do-
main is therefore crucial. For our domain, we start from a very simple MM, both
in terms of notation and execution semantics, which enables end-users to model
their own mashups. Indeed, it can be fully specified in one page:

152



– A mashup m = �C, P, V P, L�, consists of a set of components C, a set of
data pipes P , a set of view ports V P that can host and render components
with own UI, and a layout L that specifies the graphical arrangement of
components.

– A component c = �IPT, OPT, CPT, type, desc�, where c ∈ C, is like a task
that performs some data, application, or UI action. Components have ports
through which pipes are connected. Ports can be divided in input (IPT )
and output ports (OPT ), where input ports carry data into the component,
while output ports carry data generated by the component. Each component
must have at least either an input or an output port. Components with no
input ports are called information sources. Components with no output ports
are called information sinks. Components with both input and output ports
are called information processors.Configuration ports (CPT ) are used to
configure the components. They are typically used to configure filters or to
define the nature of a query on a data source. The configuration data can
be a constant (e.g., a parameter defined by the end user) or can arrive in a
pipe from another component. Conceptually, constant configurations are as
if they come from a component feeding a constant value. The type (type)
of the components denotes whether they are UI components, which display
data and can be rendered in the mashup, or application components, which
either fetch or process information. Components can also have a description
desc at an arbitrary level of formalization, whose purpose is to inform the
user about the data the components handle and produce.

– A pipe p ∈ P carries data (e.g., XML documents) between the ports of two
components, implementing a data flow logic. So, p ∈ IPT × (OPT ∪CPT ).

– A view port vp ∈ V P identifies a place holder, e.g., a DIV element or an
IFRAME, inside the HTML template that gives the mashup its graphical
identity. Typically, a template has multiple place holders.

– Finally, the layout L defines which component with own UI is to be rendered
in which view port of the template. Therefore l ∈ C × V P .

In the model above there are no variables and no data mappings. This is
at the heart of enabling end-user development as this is where much of the
complexity resides. It is unrealistic to ask end-users to perform data mapping
operations. Because there is a CM, each component is required to be able to
process any document that conforms to the model.

The operational semantics of the MM is as follows: execution of the
mashup is initiated by the user. All the components that are ready for exe-
cution are identified. A component is ready when all the input and configuration
ports are filled with data, that is, they have all necessary data to start process-
ing. All ready components are executed. They process the data in input ports,
consuming the respective data items form the input feed, and generate output
on their output ports. The execution proceeds by identifying ready components
and executing them, until there are no components to be executed left.

Developing mashups based on this meta-model, i.e., graphically composing
a mashup in a mashup tool, requires defining a syntax for the concepts in the

153



Name
[(Static conf. 
parameters)*]

Input port (multiple 
input ports are 
allowed)

Pipe

Output port (multiple 
output ports are allowed)

Shape (may vary)

Source name
[Query?]

Static source

Metric name
[Parameters*]

Metric

Filter name
[Filter condition]

Filter

Chart name

Chart

Source name
[Query?]

Parametric source

Aggregator name
[Aggregation function]

Aggregator

(a) Basic syntax for the concepts in the 
mashup meta-model that are to be exposed 
to the user. Data mappings are con!gured 
in a dedicated pop-up window.

(b) Domain-speci!c syntax for the concepts in the 
domain-speci!c meta-model extension

Port 
name

Configuration port for 
dynamic configuration 
parameters (multiple 
ports are allowed)

Fig. 1. Generic and domain-specific syntax for research evaluation

MM. In Figure 1(a) we map the above MM to a basic set of generic graphical
symbols and composition rules. In the next section, we show how to configure
domain-specific symbols.

2.3 The Domain-Specific Mashup Meta-Model

The mashup meta-model (MM) described in the previous section allows the
definition of a class of mashups that can fit into different domains. Thus, it is
not yet tailored to a specific domain. Now we want to push the domain into the
mashup meta-model. The next step is therefore understanding the dynamics of
the concepts in the model, that is, the typical classes of processes and activities
that are performed by domain experts. What we obtain from this is a domain-
specific mashup meta-model. Each domain-specific meta-model is a specialization
of the mashup meta-model along three dimensions: (i) domain-specific activities
and processes, (ii) domain-specific syntax, and (iii) domain instances.

The domain process model (PM) describes the classes of processes or
activities that the domain expert may want to mash up to implement composite,
domain-specific processes. Operatively, the PM is again derived by specializing
the generic meta-model based on interactions with domain experts. This time
the topic of the interaction is aimed at defining classes of components, their
interactions and notations. In the case of research evaluation, this led to the
identification of the following classes of activities, i.e., classes of components:
source extraction, metric computation, filtering, and aggregation activities.

A possible domain-specific syntax for the classes in the PM is shown in
Figure 1(b). Its semantic is the one described by the MM in Section 2.2.

A set of instances of domain activities must be implemented, providing
concrete mashup components. For example, the Microsoft Academic Publications
component is an instance of source extraction activity with a configuration port
(SetResearchers) that allows the setup of the researchers for which publications
are to be loaded from Microsoft Academic.

154



3 The ResEval Mash Tool

The ResEval Mash platform is composed of two parts, i.e., client side and server
side. The heart of the platform is the mashup execution engine on the client
side, which support client-side processing, that is, it controls data processing on
the server from the client. The engine is responsible for running a mashup com-
position, triggering the component’s actions and managing the communication
between client and server. The client side composition editor (shown in Figure 2)
provides the mashup canvas and a list of components from which users can drag
and drop components onto the canvas and connect them. The composition editor
implements the domain-specific mashup meta-model and exposes it through the
domain syntax. The platform also comes with a component registration interface
for developers to set up and configure new components for the platform. On the
server side, we have a set of RESTful web services, i.e., the components ser-
vices, authentication services, components and composition repository services,
and shared memory services. Components services allow the invocation of those
components whose business logic is implemented as a server-side web service.
These web services, together with the client-side components, implement the do-
main process model. Authentication services are used for user authentication and
authorization. Components and composition repository services enable CRUD
operations for components and compositions. Shared memory services provide
an interface for external web services (i.e., services which are not deployed on
our platform) to use the shared memory. The shared memory manager provides
and manages a space for each mashup execution instance on the server side. The
common data model (CDM) module implements the domain concept model (CM)
and supports the checking of data types in the system. CDM configures itself
using an XSD (i.e., an XML schema representing domain concept model). All
services are managed by a server side engine, which fulfills all requests coming
from the client side. A demo of ResEval Mash is described in [3] and a prototype
is available online at http://open.reseval.org/.

4 User Study and Evaluation

In order to evaluate our domain-specific mashup approach, we conducted a user
study with 10 users. Participants covering a broad range of domain and technical
expertise were invited to use ResEval Mash. At the beginning participants were
asked to fill in a questionnaire reporting their computing skills and to watch a
video tutorial followed by a set of tasks to complete.

Overall, the tool was deemed to be usable and the participants were com-
fortable using it. Independently of their level of computing knowledge, all par-
ticipants were able to accomplish the tasks with minimal or no help at all. The
only visible difference was a different level of confidence in task execution. IT
experts appeared to be more confident during the test. The results of our study
indicate real potential for the domain-specific mashup approach to allow people
with no computing skills to create their own applications. The definition of the

155



Fig. 2. Composition editor and example mashup output.

mappings among the components, which is a well-acknowledged problem known
form several user studies of EUD tools [6], did not occur at all in the our study.
This preliminary study suggests that ResEval Mash is a successful tool appealing
to both expert programmers and end-users with no computing skills.

5 Related Work

The idea of focusing on a particular domain and exploiting its specificities to
create more effective and simpler development environments is supported by a
large number of research works [5, 1]. Mainly these areas are related to Domain
Specific Modeling (DSM) and Domain Specific Language (DSL). In DSM, do-
main concepts, rules, and semantics are represented by one or more models,
which are then translated into executable code. Managing these models can be
a complex task that is typically suited only to programmers but that, however,
increases his/her productivity. In the DSL context, although we can find solu-
tions targeting end users (e.g., Excel macros) and medium skilled users (e.g.,
MatLab), most of the current DSLs target expert developers (e.g., Swashup [4]).
Also here the introduction of the “domain” raises the abstraction level, but the
typical textual nature of these languages makes them less intuitive and harder to
manage and less suitable for end users compared to visual approaches. Benefits
and limits of the DSM and DSL approaches are summarized in [1] and [5].

Web mashups [8] have emerged as an approach to provide easier ways to
connect together services and data sources available on the Web [2], together
with the claim to target non-programmers. Yahoo! Pipes (http://pipes.yahoo.
com), for instance, provides an intuitive visual editor that allows the design of
data processing logics. Support for UI integration is missing, and support for

156



service integration is still poor while it provides only generic programming fea-
tures (e.g., feed manipulation, looping) and typically require basic program-
ming knowledge. The CRUISe project [7] specifically focuses on composabil-
ity and context-aware presentation of UIs, but does not support the seam-
less integration of UI components with web services. The ServFace project
(http://www.servface.eu), instead, aims to support normal web users in com-
posing semantically annotated web services. The result is a simple, user-driven
web service orchestration tool, but UI integration and process logic definitions
are rather limited and again basic programming knowledge is still required.

6 Status and Lessons Learned

The work described in this paper resulted from actual needs within our university
and within the context of an EU project, which were not yet met by current
technology. It also resulted from the observation that in general composition
technologies failed to a large extent to strike the right balance between ease of
use and expressive power. They define seemingly useful abstractions and tools,
but in the end developers still prefer to use (textual) programming languages,
and, at the same time, domain experts are not able to understand and use them.
What we have pursued in our work is, in essence, to constrain the language to
the domain (but not in general in terms of expressive power) and to provide
a domain-specific notation so that it becomes easier to use and in particular
does not require users to deal with one of the most complex aspect of process
modeling (at least for end-users), that of data mappings.

References

1. R. France and B. Rumpe. Domain specific modeling. Software and Systems Model-
ing, 4:1–3, 2005.

2. B. Hartmann, S. Doorley, and S. Klemmer. Hacking, Mashing, Gluing: A Study of
Opportunistic Design and Development. Pervasive Computing, 7(3):46–54, 2006.

3. M. Imran, F. Kling, S. Soi, F. Daniel, F. Casati, and M. Marchese. ResEval Mash:
A Mashup Tool for Advanced Research Evaluation. In Proceedings of WWW 2012,
pages 361–364.

4. E. M. Maximilien, H. Wilkinson, N. Desai, and S. Tai. A domain-specific language
for web apis and services mashups. In ICSOC, pages 13–26, 2007.

5. M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-specific
languages. ACM Comput. Surv., 37(4):316–344, 2005.

6. A. Namoun, T. Nestler, and A. De Angeli. Service Composition for Non Pro-
grammers: Prospects, Problems, and Design Recommendations. In Proceedings of
ECOWS, pages 123–130. IEEE, 2010.

7. S. Pietschmann, M. Voigt, A. Rümpel, and K. Meißner. Cruise: Composition of rich
user interface services. In Proceedings of ICWE’09, pages 473–476. 2009.

8. J. Yu, B. Benatallah, F. Casati, and F. Daniel. Understanding Mashup Develop-
ment. IEEE Internet Computing, 12:44–52, 2008.

157



ResEval Mash:
A Mashup Tool for Advanced Research Evaluation

Muhammad Imran, Felix Kling, Stefano Soi, Florian Daniel,
Fabio Casati and Maurizio Marchese,

University of Trento, Via Sommarive 5, 38123, Trento, Italy
lastname@disi.unitn.it

ABSTRACT
In this demonstration, we present ResEval Mash, a mashup
platform for research evaluation, i.e., for the assessment of
the productivity or quality of researchers, teams, institu-
tions, journals, and the like – a topic most of us are ac-
quainted with. The platform is specifically tailored to the
need of sourcing data about scientific publications and re-
searchers from the Web, aggregating them, computing met-
rics (also complex and ad-hoc ones), and visualizing them.

ResEval Mash is a hosted mashup platform with a client-
side editor and runtime engine, both running inside a com-
mon web browser. It supports the processing of also large
amounts of data, a feature that is achieved via the sensible
distribution of the respective computation steps over client
and server. Our preliminary user study shows that ResE-
val Mash indeed has the power to enable domain experts to
develop own mashups (research evaluation metrics); other
mashup platforms rather support skilled developers. The
reason for this success is ResEval Mash’s domain-specificity.

Categories and Subject Descriptors
H.m [Information Systems]: Miscellaneous; D.1 [Softwa-
re]: Programming Techniques

Keywords
Mashup, Domain-Specific Mashup, End-User Development,
Research Evaluation

1. INTRODUCTION
Mashups are typically simple web applications (most of

the times consisting of just one single page) that, rather than
being coded from scratch, are developed by integrating and
reusing available data, functionalities, or pieces of user in-
terfaces accessible over the Web. Mashup tools, i.e., online
development and runtime environments for mashups, typi-
cally aim to enable also non-programmers to develop own
applications. Yet, similar to what happened in web service
composition, the mashup platforms developed so far either
expose too much functionality and too many technicalities
so that they are powerful and flexible but suitable only for
programmers, or only allow compositions that are so simple
to be of little use for most practical applications. For exam-
ple, mashup tools typically come with SOAP services, RSS

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2012 Companion, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1230-1/12/04.

feeds, UI widgets, and the like. Non-programmers simply
do not know how to use these and what to do with them.

We believe that the heart of the problem is that it
is impractical to design tools that are generic enough to
cover a wide range of application domains, powerful enough
to enable the specification of non-trivial logic, and simple
enough to be actually accessible to non-programmers. At
some point, we need to give up something. In our view, this
something is generality. Giving up generality means narrow-
ing the focus of a design tool to a well-defined domain and
tailoring its development paradigm, models, language and
components to the specific needs of that domain only.

Domain-specific development instruments are tradition-
ally the object of domain-specific modeling (DSM) [4] and
domain-specific languages (DSLs) [5], yet they typically tar-
get developers, with only few exceptions. Costabile et al. [1],
for instance, successfully implemented a DSM-based tool en-
abling end user development in the context of a specific com-
pany and technological framework. Given the huge techno-
logical diversity on the Web, however, mashup tools are still
too complex, and non-programmers are not able to manip-
ulate the provided compositional elements [6] (e.g., Yahoo!
Pipes comes with web services, RSS feeds, regular expres-
sions, and the like). Web service composition approaches
like BPEL are completely out of reach.

In this paper we present ResEval Mash i.e., a domain-
specific mashup tool, which we specifically developed for the
domain of research evaluation. The development of complex
evaluation metrics that go beyond the commonly adopted h-
index is usually still a complex and manual task that is not
adequately supported by software instruments. In fact, com-
puting an own metric might mean extracting, combining,
and processing data from multiple sources, implementing
new algorithms, visually representing the results, and sim-
ilar. The Web of Science (http://scientific.thomson.
com/products/wos/) by Thomson Scientific, Publish or Per-
ish (http://www.harzing.com/pop.htm), or Google Scholar
do provide some basic metrics, such as the h-index or g-
index; but they are not able to satisfy more complex evalua-
tion logics. The goal of ResEval Mash is therefore to enable
domain experts (typically non-programmers) to define and
run their own evaluation metrics in a simple and rapid way,
leveraging on suitably tailored mashup technology.

For explanation purpose, throughout this paper we will
use a specific scenario, which we introduce in the next sec-
tion. However, the tool is not restricted to one scenario
only and rather aims at allowing users to develop their own

Appendix J

158



mashups addressing a variety of different scenarios in the
research evaluation domain.

2. EXAMPLE SCENARIO
As an example of a concrete research evaluation task, let’s

look at the procedure used by the central administration of
the University of Trento (UniTN) to assess the productivity
of the researchers of its departments. The evaluation is used
to allocate resources and funding for the university depart-
ments. In essence, the algorithm compares the scientific pro-
duction of each researcher in a given department of UniTN
with the average production of the researchers belonging
to similar departments (i.e., departments in the same dis-
ciplinary sector) in all Italian universities. The comparison
uses a procedure based on a simple bibliometric indicator,
i.e., a weighted publication count metric:

1. A list of all researchers working in Italian universities
is retrieved, and a reference sample with similar statis-
tical features of the evaluated department is compiled.

2. Publications for each researcher of the selected depart-
ment and for all Italian researchers in the selected sam-
ple are extracted from an agreed-on data source (e.g.,
Microsoft Academic, Scopus, DBLP, or similar).

3. The obtained publications are weighted using a venue
classification provided by a UniTN committee, which
is split into three quality categories based on the ISI
Journal Impact Factor. For each researcher, a weighted
publication count is obtained with a simple weighted
sum of his/her publications.

4. A statistical distribution – more specifically, a nega-
tive binomial distribution – of the weighted publica-
tion count metrics is then computed for the national
researcher reference sample.

5. Each researcher of the selected department is then
ranked based on his/her individual weighted publica-
tion count, estimating his/her percentile in the derived
statistical distribution, i.e., the percentage of the re-
searchers in the same disciplinary sector that have the
same or lower values for the specific metric.

The percentile for each researcher in the selected depart-
ment is used as the parameter that estimates the publishing
profile of that researcher and is used for the comparison with
other researchers in the same department. As one can no-
tice, plenty of effort is required to compute the performance
of each researcher, which is currently mainly done manually.

Many factors can significantly impact on the results of
this evaluation process (e.g., the data sources or the sam-
pling criteria), and people (e.g., administrative employees
and researchers) want to check the results of different pos-
sible metrics. If manually done, this would cost too much
time and human resources. The task, however, has all the
characteristics of a mashup, especially if the mashup logic
comes from the users.

3. THE RESEVAL MASH TOOL
The above scenario, the domain, and our target user group,

i.e., domain experts, pose a set of peculiar requirements to
the development of the ResEval Mash tool. In the following

we summarize the design principles that underlie ResEval
Mash and where the domain specifics come into play. Then,
we provide insights into its internals and implementation.

3.1 Principles and Requirements
ResEval Mash is based on the following principles and

requirements:

1. Intuitive graphical user interface. Enabling do-
main experts to develop their own research evaluation
metrics, i.e., mashups, requires an intuitive and easy-
to-use user interface (UI) based on the concepts and
terminology the target domain expert is acquainted
with. Research evaluation, for instance, speaks about
metrics, researchers, publications, etc.

2. Intuitive modeling constructs. Next to the look and
feel of the platform, it is important that the function-
alities provided through the platform (i.e., the building
blocks in the composition design environment) resem-
ble the common practice of the domain. For instance,
we need to be able to compute metrics, to group people
and publications, and so on.

3. No data mappings. Our experience with prior mash-
up platforms, i.e., mashArt [2] and MarcoFlow [3], has
shown that data mappings are one of the least intu-
itive tasks in composition environments and that non-
programmers are typically not able to correctly specify
them. We therefore aim to develop a mashup platform
that is able to work without data mappings.

4. Runtime transparency. In order to convey to the
user what is going on during the execution of a mashup
especially when it takes several seconds, we provide
transparency into the state of a running mashup. We
identify two key points where transparency is impor-
tant in the mashup model: components and processing
state. At each instant of time during the execution, the
runtime environment should allow the user to inspect
the data processed and produced by each component.
In addition, to convey the processing state of each com-
ponent and thus the mashup model the environment
should graphically show the state.

5. Data-intensive processes. Although apparently sim-
ple, the chosen domain is peculiar in that it may re-
quire the processing of large amounts of data (e.g., we
need to extract all the publications of the Italian re-
searchers’ sample for a given scientific sector). While
runtime transparency is important at the client side,
data processing should however be kept at the server
side. In fact, loading large amounts of data from re-
mote services and processing them in the browser at
the client side is unfeasible, due to bandwidth, re-
source, and time restrictions.

3.2 The Domain
Some of the above requirements require ResEval Mash to

specifically take into account the characteristics of the re-
search evaluation domain. Doing so produces a platform
that is fundamentally different from generic mashup plat-
forms, such as Yahoo! Pipes (http://pipes.yahoo.com/
pipes/). We achieve domain-specificity as follows:

159



Figure 1: The ResEval Mash architecture

To provide users with a mashup environment that has an
intuitive graphical UI we design first a domain syntax ,
which provides each object in the composition environment
with a visual metaphor that the domain expert is acquainted
with and that visually convey the respective functionalities.
For instance, ResEval Mash uses a gauge for metrics and
the icons that resemble the chart types of graphical output
components.

The core of the platform are the functionalities exposed to
the domain expert in the form of modeling constructs. These
must address the specific domain needs and cover as many
as possible mashup scenarios inside the chosen domain. To
design these constructs, a thorough analysis of the domain
is needed, so as to produce a so-called domain process
model , which specifies the classes of domain activities and,
possibly, ready processes that are needed (e.g., data sources
and metrics). Next, a set of instances of domain ac-
tivities (e.g., an h-index algorithm) must be implemented,
which can be turned into concrete mashup components.

Finally, in order to relieve users from the definition of data
mappings, ResEval Mash is based on an explicit domain
concept model , which expresses all domain concepts and
their relationships. If all instances of domain activities un-
derstand this domain concept model and produce and con-
sume data according to it, we can omit data mappings from
the composition environment in that the respective compo-
nents simply know how to interpret inputs.

3.3 Architecture and Implementation
Figure 1 shows the architecture of ResEval Mash, which

is divided into two parts, i.e., client side and server side.
The mashup engine is the most important part of the

platform. It is developed for client-side processing, that is,
we control data processing on the server from the client. The
engine is primarily responsible for running a mashup com-
position, triggering the component’s actions, and managing
the communication between client and server. The engine
provides for data flow processing. The composition editor
provides the mashup design canvas to the user. It shows a
components list, from which users can drag and drop compo-
nents onto the canvas in order to connect them. The editor
implements the domain syntax. From the editor, it is also
possible to launch the execution of a composition through
a run button and hand the mashup over to the mashup en-
gine for execution. The composition editor and its various
parts are shown in Figure 3. Component and composition

mappers parse component and composition descriptors to
represent them in the composition editor at design time and
to bind them in the engine at run time.

Figure 2: Component registration interface

The platform also comes with a component registration
interface for developers, which aids them in the setup and
addition of new components to the platform. As shown in
Figure 2, the interface allows the developer to define compo-
nents starting from ready templates. In order to develop a
component, the developer has to provide two artifacts: (i) a
component definition and (ii) a component implementation.
The implementation consists either of JavaScript code, for
client-side components, or a web service, for server-side com-
ponents, which is linked by the component definition.

The whole client-side part of ResEval Mash is developed
in JavaScript, using the Google Closure and WireIt libraries.

On the server side, we have a set of RESTful web ser-
vices, i.e., the repository services, authentication ser-
vices, and components services. Repository services en-
able CRUD operations for components and compositions.
Authentication services are used for user authentication and
authorization. Components services manage and allow the
invocation of those components whose business logic is im-
plemented as a web service. These web services, together
with the client-side components, implement the instances
of domain activities inside the domain process model. The
common data model (CDM) implements the domain con-
cept model and supports the checking of data types in the
system. The CDM is a shared memory that provides a space
for each mashup instance. All data processing services read
and write to this shared memory. In order to configure the
CDM, the CDM memory manger generates corresponding
Java classes (e.g., in our case POJO classes, annotated with
JAXB annotations) from an XSD that encodes the domain
concept model. The server-side engine is responsible for
managing all the modules that are at the server side, e.g.,
the CDM memory manager, the repository, and so on. The
server-side engine is the place where requests coming from
the client side are fulfilled.

In Figure 3, we illustrate the final mashup model of our re-
search evaluation scenario as developed with ResEval Mash.
The model starts with two parallel flows: one computing
the weighted publication number (the“impact”metric in the
specific scenario) for all Italian researchers in the Computer
Science disciplinary sector. The other computing the same
“impact”metric for the researchers belonging to UniTN Com-
puter Science department. The first branch defines the dis-

160



Figure 3: ResEval Mash in action: screen shots of the modeling canvas and the final mashup output

tribution of the Italian researchers for the Computer Science
disciplinary sector, while the second branch is used to com-
pute the impact value of UniTN’s researchers and to deter-
mine their individual percentiles, which are finally visualized
in a bar chart (clearly, we anonymized the respective data).

4. DEMONSTRATION STORYBOARD
The live demo will be presented starting from an introduc-

tion of the reference domain (i.e., research evaluation) and
the motivation behind the implementation of ResEval Mash.
A guided walk-through the tool will be presented to intro-
duce the modeling paradigm of the tool. We will compose
a few example scenarios and describe the various features
provided by the tool. After this, we will ask the audience to
try the tool and to develop their own simple research eval-
uation mashups. Finally, the platform architecture will be
presented to highlight the various aspects of the tool.

A screencast and a continuously updated prototype of Re-
sEval Mash is available at http://open.reseval.org/.

5. EVALUATIONANDLESSONS LEARNED
ResEval Mash stems from the actual needs in our univer-

sity and from our own needs in term of research evaluation.
It also results from the observation that in general compo-
sition technologies failed to a large extent to strike the right
balance between ease of use and expressive power. They
define seemingly useful abstractions and tools, but in the
end domain experts are still not able to understand and use
them. What we have pursued in the development of ResEval
Mash, in essence, is to constrain the language to the domain
and to provide a domain-specific notation so that it becomes
easier to use and in particular does not require users to deal
with one of the most complex aspects of process modeling
(at least for end users), that of data mappings.

We have performed a user study of ResEval Mash with
10 users (5 with and 5 without IT skills and with differ-
ent domain expertise). Participants were asked to fill in a
questionnaire about their computing and research evalua-

tion skills before the test, to watch a video tutorial about
ResEval Mash, and to use the tool, while being filmed.

The comparison between the two groups of users high-
lighted good performance independently of participants’ com-
puting skills. The request for higher training emerging from
a few less expert users appeared to be rather linked to a
weaker domain knowledge than to their computing capa-
bilities. A major finding is related to the ease with which
our sample understood that components had to be linked
together so that information could flow between different
services. This is a well-acknowledged problem evinced in
several user studies of EUD tools (e.g., [6]), which did not
occur at all in the current study. To a large extent, this re-
sult can be achieved thanks to the fact that ResEval Mash
relieves users from the definition of data mappings.

Acknowledgment: This work was supported by EU project
OMELETTE (contract no. 257635).

6. REFERENCES
[1] M. F. Costabile, D. Fogli, G. Fresta, P. Mussio, and

A. Piccinno. Software environments for end-user
development and tailoring. PsychNology Journal,
2(1):99–122, 2004.

[2] F. Daniel, F. Casati, B. Benatallah, and M.-C. Shan.
Hosted Universal Composition: Models, Languages and
Infrastructure in mashArt. In ER’09, pages 428–443.

[3] F. Daniel, S. Soi, S. Tranquillini, F. Casati, C. Heng,
and L. Yan. From People to Services to UI: Distributed
Orchestration of User Interfaces. In BPM’10, pages
310–326.

[4] R. France and B. Rumpe. Domain specific modeling.
Software and Systems Modeling, 4:1–3, 2005.

[5] M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM
Comput. Surv., 37(4):316–344, 2005.

[6] A. Namoun, T. Nestler, and A. De Angeli. Service
Composition for Non Programmers: Prospects,
Problems, and Design Recommendations. In
Proceedings of ECOWS, pages 123–130. IEEE, 2010.

161



Developing Domain-Specific Mashup Tools for End Users

Florian Daniel, Muhammad Imran, Felix Kling, Stefano Soi,
Fabio Casati and Maurizio Marchese

University of Trento, Via Sommarive 5, 38123, Trento, Italy
lastname@disi.unitn.it

ABSTRACT
The recent emergence of mashup tools has refueled research
on end user development, i.e., on enabling end users without
programming skills to compose own applications. Yet, simi-
lar to what happened with analogous promises in web service
composition and business process management, research has
mostly focused on technology and, as a consequence, has
failed its objective. Plain technology (e.g., SOAP/WSDL
web services) or simple modeling languages (e.g., Yahoo!
Pipes) don’t convey enough meaning to non-programmers.

We propose a domain-specific approach to mashups that
“speaks the language of the user”, i.e., that is aware of the
terminology, concepts, rules, and conventions (the domain)
the user is comfortable with. We show what developing a
domain-specific mashup tool means, which role the mashup
meta-model and the domain model play and how these can
be merged into a domain-specific mashup meta-model. We
apply the approach implementing a mashup tool for the re-
search evaluation domain. Our user study confirms that
domain-specific mashup tools indeed lower the entry barrier
to mashup development.

Categories and Subject Descriptors
H.m [Information Systems]: Miscellaneous; D.1 [Softwa-
re]: Programming Techniques

Keywords
Domain-Specific Mashups, End-User Development

1. INTRODUCTION
Mashups are typically simple web applications that, in-

stead of being coded from scratch, are developed by inte-
grating and reusing available data, functionalities, or pieces
of user interfaces accessible over the Web. Mashup tools
aim at enabling non-programmers (web users) to develop
own applications. Yet, similar to what happened in service
composition, the mashup platforms developed so far either
expose too much functionality and too many technicalities
so that they are powerful and flexible but suitable only for
programmers, or they only allow compositions that are so
simple to be of little use for most practical applications.

We believe that the heart of the problem is that it is
impractical to design tools that are generic enough to cover

Copyright is held by the author/owner(s).
WWW 2012 Companion, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1230-1/12/04.

a wide range of application domains, powerful enough to en-
able the specification of non-trivial logic, and simple enough
to be actually accessible to non-programmers. At some
point, we need to give up something. In our view, this some-
thing is generality. Giving up generality in practice means
narrowing the focus of a design tool to a well-defined domain
and tailoring the tool’s development paradigm, models, lan-
guage, and components to the specific needs of that domain
only, therefore creating a domain-specific mashup tool .

Domain-specific development instruments are tradition-
ally the object of domain-specific modeling (DSM) [2] and
domain-specific languages (DSLs) [4], yet they typically tar-
get developers, with only few exceptions. Costabile et al. [1],
for instance, successfully implemented a DSM-based tool en-
abling end user development in the context of a specific com-
pany and technological framework. Given the huge techno-
logical diversity on the Web, however, mashup tools are still
too complex, and non-programmers are not able to manip-
ulate the provided compositional elements [5] (e.g., Yahoo!
Pipes comes with web services, RSS feeds, regular expres-
sions, and the like). Web service composition approaches
like BPEL are completely out of reach.

In this poster, we describe a methodology for the devel-
opment of domain-specific mashup tools, defining the nec-
essary concepts and design artifacts. The methodology tar-
gets expert developers, who implement mashup tools. We
show how we used the methodology to implement a mashup
platform for research evaluation. The platform targets do-
main experts (e.g., scientists). Finally, we report on our
user study , which confirms the viability of the developed
platform and of the respective development methodology.

2. METHODOLOGY
Reverse-engineering our experience with the implementa-

tion of the mashup platform described in the next section,
developing a domain-specific mashup platform requires:

1. Definition of a domain concept model (CM) to ex-
press domain data and relationships, which allow the
mashup platform to understand what kind of data ob-
jects it must support. This is different from generic
mashup platforms, which provide support for generic
data formats, not specific objects.

2. Identification of a generic mashup meta-model (MM)
that suits the composition needs of the domain. A vari-
ety of different mashup approaches, i.e., meta-models,
have emerged over the last years, (e.g., data, user in-
terface and process mashups).

Appendix K

162



3. Definition of a domain-specific mashup meta-model .
Given a generic MM, the next step is understanding
how to inject the domain into it so that all features
of the domain can be communicated to the developer.
We approach this by specifying and developing:

A domain process model (PM) that expresses class-
es of domain activities and, possibly, ready processes
(which we can map to reusable components of the plat-
form). Domain activities and processes represent the
dynamic aspect of the domain. They operate on and
manipulate the domain concepts.

A domain syntax that provides each concept in the
domain-specific mashup meta-model (the union of MM
and PM) with an own symbol that conveys the respec-
tive functionality to domain experts.

A set of instances of domain-specific components.
This is the step in which the reusable domain-knowledge
is encoded in the form of components in order to enable
domain experts to mash it up into new applications.

4. Implementation of the domain-specific mashup tool
(DMT) whose expressive power is that of the domain-
specific mashup meta-model.

3. THE RESEVAL MASH TOOL
ResEval Mash [3] is a mashup platform (a DMT) for re-

search evaluation, i.e., for the assessment of the productivity
or quality of researchers, teams, institutions, journals, and
the like. The platform is specifically tailored to the needs of
sourcing data about scientific publications and researchers
from the Web, aggregating them, computing metrics (also
complex and ad-hoc ones), and visualizing them. ResEval
Mash is a hosted mashup platform with a client-side editor
and runtime engine running inside a common web browser.

Developing ResEval Mash required addressing the specific
requirements coming from the research evaluation domain.
The first step to characterize this domain was the definition
of a suitable domain concept model (CM). Research evalua-
tion deals with publications, researchers, conferences, jour-
nals, metrics (e.g., h-index or citation counts), and so on.
We encoded a respective CM in a suitable XML schema.

Next, composing the above concepts into a new, complex
evaluation logic in essence means processing data (next to vi-
sualizing the output graphically). As generic mashup meta-
model we therefore chose a data flow based meta-model,
which focuses the attention of the user to the passing of data
(e.g., publications) from one computing step to another.

Turning this meta-model into a domain-specific mashup
meta-model then required selecting a set of abstract domain
activities, i.e., defining the domain process model. Here
we have identified data source extraction activities (e.g.,
for Google Scholar or Scopus), metric computation activi-
ties (e.g., h-index, g-index), aggregation and filtering activ-
ities, and finally visualization activities (e.g., UI widgets).
After that, we implemented a set of instances of domain-
specific components for the identified domain activities. For
instance, we developed a Google Scholar and a Microsoft
Academic data component, a h-index component, a cita-
tion count component, a filter component, a bar chart com-
ponent for the visualization of metrics, and others. We
then equipped these components with a domain syntax that
clearly distinguished between data sources, metrics, filters

Figure 1: ResEval Mash in action

and visualization components. Figure 1 shows an example
mashup in ResEval Mash.

4. EVALUATION AND LESSON LEARNED
We have performed a user study of ResEval Mash with

10 users (5 with and 5 without IT skills and with differ-
ent domain expertise). Participants were asked to fill in a
questionnaire about their computing and research evalua-
tion skills before the test, to watch a video tutorial about
ResEval Mash, and to use the tool. This interaction was
filmed, as was the interview that followed task completion.
The results of the user study show that end users indeed
feel comfortable in a mashup environment that resembles
the domain they are acquainted with. The intuitiveness of
the used components, which represent well-known domain
concepts and actions, prevails over the lack of composition
knowledge the users (the domain experts) may have and
help them to acquire the necessary composition skills step
by step by simply “playing” with ResEval Mash.

With ResEval Mash, we constrain the mashup language to
a single domain and the mashup components to the domain’s
concept model. While this might be an additional burden
on the component developer, it allows us to shield the user
from one of the most complex aspects of mashups, i.e., data
mappings. Users only need to think about the data flow,
then the components know themselves which data to use.
This is a very simple, but powerful simplification.

5. REFERENCES
[1] M. F. Costabile, D. Fogli, G. Fresta, P. Mussio, and

A. Piccinno. Software environments for end-user
development and tailoring. PsychNology Journal, pages
99–122, 2004.

[2] R. France and B. Rumpe. Domain specific modeling.
Software and Systems Modeling, 4:1–3, 2005.

[3] M. Imran, F. Kling, S. Soi, F. Daniel, F. Casati, and
M. Marchese. ResEval Mash: Advanced Research
Evaluation for Domain Experts. In WWW’12, 2012.

[4] M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM
Comput. Surv., 37(4):316–344, 2005.

[5] A. Namoun, T. Nestler, and A. De Angeli. Service
Composition for Non Programmers: Prospects,
Problems, and Design Recommendations. In
Proceedings of ECOWS, pages 123–130. IEEE, 2010.

163



 

 
Hendrik Gebhardt, Martin Gaedke 
Chemnitz University of Technology, Germany 
 
Florian Daniel, Stefano Soi, Fabio Casati 
University of Trento, Italy 
 
Carlos A. Iglesias 
Universidad Politecnica de Madrid, Spain 
 
Scott Wilson 
University of Bolton, UK 
 
 
Abstract. In this article, we aim at understanding a type of mashups that has been gaining attention 
recently, i.e., telco mashups, and that, given its novel requirements and characteristics, deserves an 
analysis that goes beyond what has been done so far for mashups in general. We cluster telco 
services into different types, analyze their features, derive a telco mashup reference architecture, and 
survey to which extent existing mashup tools are able to respond to the novel needs, an exercise that 
finally allows us to identify a set of open and challenging research questions. 

Introduction 

Web mashups are web applications developed by integrating data, application logic, and/or pieces of 
user interfaces (UIs) sourced from the Web [1]. A typical example is the housingmaps.com 
application (http://www.housingmaps.com), a mashup that integrates housing offers from 
craigslist.com with a Google map. Although mashups are mostly coded manually, so-called mashup 

tools or platforms aim at mashup development paradigms that do not require programming skills and, 
hence, also target end users. Yet, the scope of the instruments conceived so far is typically very broad 
and technology- centric, which limits their capability to cater for domain-specific features and needs 
when it comes to the development of concrete applications. 
For instance, interconnecting people, possibly via a variety of different channels, such as voice, 
video, or instant messaging in both fixed and mobile settings, is still a hard and time-consuming 
endeavor - if feasible at all. In fact, the peculiarities of the telecommunication (telco) domain, which 
specifically focuses on the transmission of data to enable communication and collaboration among 
people, have not percolated into existing mashup tools. Features like multi-device deployment, 
audio/video streaming, distributed session management, live collaboration, and similar are, for 
example, not supported in an integrated fashion and, hence, available for the general public. The 
same holds for the key non-functional requirement in telco, i.e., quality of service (QoS). 
We believe that one of the main reasons for this weak support for telco features in mashups is the 
general lack of understanding of what telco mashups actually are and of how they can be developed. 
In order to foster research in this area and advance current mashups toward the telco domain, in this 
article we (i) introduce the necessary concepts and terminology, (ii) review the state of the art in telco 
services, (iii) derive a reference architecture for mashup platforms, (iv) compare it with existing 

Appendix L

164



mashup platforms, and (v) identify a set of challenges and open research questions, specifically 
addressing those aspects that are proper of the telco domain. 

Scenario and Challenges 

application scenario. Several consultants from a multinational consultancy firm are discussing the 
technical architecture for a project proposal they are elaborating. They use a corporate collaborative 
environment consisting of a multi-channel web application that integrates the necessary telco 
functionalities and a shared whiteboard. All participants are connected via different clients: Marco 
via a smart phone using a mobile web browser, Steve via a desktop web browser, Jürgen via a tablet 
using a mobile web browser, and Maria via a traditional mobile phone using the phone's built-in 
capabilities.  
The first three consultants are using web-based instant messaging while the latter is using SMS 
messaging. The collaborative environment provides a telco mashup for combining these two 
communication channels with the whiteboard. After a while, they decide to switch to voice, using a 
facility of the collaborative environment based on a dedicated Voice over IP service. Maria can be 
called by the environment or dial-in to the ongoing session. Since Maria cannot draw with her phone, 
she sketches her ideas on paper and sends a photo taken with her phone's built-in camera via MMS to 
the telco mashup, which renders it to the rest of the consultants. 
 
The described scenario is rather complex, and supporting it via a dedicated mashup requires support 
from a mashup platform that is telco-ready. Devising such a platform is non-trivial and requires a 
thorough understanding of the nature of both telco services/APIs and telco mashups. 

Understanding T elco Services & Device APIs 

Analyzing the scenario, we see that some of the features require interacting with remote software 

services (functionalities accessed via the Internet using message exchanges complying with a 
protocol) providing telco support (e.g., the voice over IP service), while others require the ability to 
use local device capabilities 
(software services that provide communication and collaboration support) and the latter device APIs. 

!"#$%&$'(')*#*+*", 
Telco companies, such as Orange1, Telefonica2 or Deutsche Telekom3, have invested in Service 
Delivery Platforms (SDPs) that expose network capabilities to third parties, in order to enable user-
generated, value-adding services. The core of these platforms is the Telecommunication Application 
Server, based on technologies such as SIP Servlets, JAIN SLEE, Parlay-X or IMS. While these telco 
services are evolving only slowly, non-telco companies, such as Google, Yahoo, Twilio or Tropo 
already provide their own telco services for managing calls, messaging or presence. 
 
We distinguish three types of telco services, depending on the used networks and their purpose, 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
"!#$$%&''((()*+,-./%,+$-/+)0*1'23$/'/-45',00/226*+,-./6,%32'%6,00/22)72%!
8!#$$%2&''9:4/;3,)0*1'/-'!
<!#$$%&''((()=/;/:*%/+.,+=/-)0*1',%32'!

165



 Internet telco services are services that operate exclusively in the Internet, using it as 
communication infrastructure. Voice over IP (VoIP) or instant messaging are examples of 
Internet telco services.!

 Converged services operate across the Internet and operator networks, mediating between 
different networks and communication protocols. A VoIP call to a mobile phone or fixed line 
phone is an example of converged service. !

 Signaling services 
a mobile phone about an incoming call or negotiating QoS parameters are examples of 
signaling operations.!

 
We analyzed a set of readily available telco services and APIs, in order to better understand the tasks 
of a mashup developer who wants to integrate telco services or APIs into his own mashup: Given a 
service or API, first of all he needs to understand what kind of service it actually provides (we say, 
what kind of communication paradigm it supports). Once the developer has identified a candidate, he 
typically wants to know how he can use, i.e., interact with, it in his mashup (we call this the 
interaction paradigm of the service). Finally, the typical question is at what cost or service levels a 
candidate service is delivered (we speak about Service Level Agreements - SLAs), in order to further 
discriminate services based on non-functional properties. These three activities inspire three 
dimensions (communication paradigm, interaction paradigm and SLA) that we can use to analyse 
telco services. 
The communication paradigm describes the direction of the communication channel and the number 
of involved parties. In fact, contrary to the commonly used REST APIs, the cardinality plays a 
decisive role in the communication with a telco service. It depends on the service, if we are able to 
use a one-to-one or one-to-many communication. In both cases we have one service as a sender, but a 
different number of receivers. Another important property of telco services is their synchronicity. 
While voice and video communications require a synchronous communication (co-presence of 
participants is required), messaging is asynchronous (participants can operate them at different 
times). 
The interaction paradigm looks at how the interaction with a service/API is handled. A sub-
dimension, binding, describes how content is transferred, i.e., voice and video services are based on 
streaming data, since delays in synchronous communications are not desirable or even prohibited 
(e.g., in real-time streaming). Another sub-dimension is the internal state management of services, 
which is responsible for the instantiation and management of resources and communication channels. 
For instance, establishing a GSM phone call implies acting first on a control channel to obtain a 
separate stream for the actual communication. In mashups, where we might have multiple parallel 
communication connections open at the same time, this demands for suitable stream state 
management. All these aspects differ from common Web mashups where we call, for instance, REST 
APIs that instead are stateless. 
Finally, Service Level Agreements look at QoS, cost, security and related aspects. One advantage of 
common Web mashups is the availability of a wide range of free services on the Web. In the telco 
domain, services are potentially subject to tarification by the network operator, based on different 
options (pay-per-use, subscription model, prepaid / postpaid billing models, discount plans, etc.). 
Thus, telco services are usually executed in a controlled environment where QoS, security, and 
tarification can be guaranteed. 

-".*$"&$'(')*#*+*", 
Modern mobile phones have evolved into full-fledged computing devices that are able to run 
mashups inside mobile browsers, also enabling mashups to leverage on advanced device capabilities, 

166



such as the built-in camera or SMS texting. Telco mashups should therefore be capable of processing 
incoming telco events (e.g., phone calls or SMS messages) and accessing phone facilities (e.g., 
initiate phone calls or consult the agenda). These features can be done through device APIs, which 
allow the access to embedded cameras/webcams, location services, SMS and MMS messaging 
interfaces, and the like via web-ready interfaces (e.g., in JavaScript). For instance, cross-device 
standards, such as the W3C Device APIs (http://www.w3.org/2009/dap/) or the Widget Handset APIs 
developed by the Wholesale Applications Community (WAC, http://www.wacapps.net), provide 
APIs accessible from within regular web applications and cover a wide range of capabilities 
including position, accelerometer, messaging, system information, camera and microphone. For 
example, an application can capture an image using the following JavaScript code using WAC: 
!"#$%"&!"'()%$*#"+$,-./"'()%$*#"+$0)!!$112-./"'()%$*#"+$3%%-%245$1(6."(6-.768
$."#$9:6#"+$1;"&<'+:2=>6+>?$19(%)$@AB 
Or in HTML5 using the W3C DAP Media Capture specification: 
C6.')(=(D'$E:F68$:="!!$'(E:6#"+$;G:=65E:!"'()%$:H 
 
By themselves, device APIs offer nothing especially new. The challenge for telco mashups is to 
seamlessly bring together device APIs and telco services with web mashups in a way that is not tied 
to any specific phone model, operating system, or service operator.  
 
SIDEBOX: On the Role of Gateways in Telco Services 
Telco services like converged services and signaling services are possible thanks to communication 
networks that actually predate the Internet, constitute its backbone, and evolved independently. For 
instance, fixed access is provided via the Public Switched Telephone Network (PSTN, also called 
POTS for Plain Old Telephony System), and mobile access via UMTS, GPRS, and GSM networks. 
Each network uses its own protocols (e.g., GSM MAP) and signaling conventions (e.g., SS7), which 

ay 
implement a web-based telco service that directly interoperates, for instance, with a GSM voice call. 
Implementing such kind of service requires therefore the ability to bridge between the two network 
types and to mediate between their respective protocols. This functionality is provided by telco 
operators in the form of network gateways, which can be reached from the Internet via standard Web 
protocols, such as REST/HTTP or SOAP, and that expose some network capabilities of the operator 
network (e.g., the GSM voice call). 
Specifically, network gateways allow access to telephony infrastructure like the one in Figure 1. A 
telephony network essentially handles two different pieces of information1: (i) the content that is 
transmitted (e.g., voice or data) and (ii) control signals that instruct the network how to transmit 
content and provide for the allocation of the needed resources. In the past, control signals used in-

band signaling techniques, i.e., signals were transmitted together with voice or data in a same 
channel. Due to its intrinsic bandwidth efficiency problems, this technique was soon replaced by out-
of-the-band control channels and dedicated signaling protocols. The most popular out-of-the-band 
signaling protocol is SS7. As we can see in the figure, there are circuit-switched technologies (like 
PSTN or GSM) and packet-switched technologies (like UMTS PSD or VoIP). In circuit-switched 
technologies, a dedicated circuit path is established (via suitable SS7 control signals) before the 
content is transmitted. In package-switched technologies, content is fragmented into packages that 
can be transmitted through different paths and re-assembled by the destination. Package-switched 
technologies, therefore, require establishing a session between the caller and the receiver, which is 
usually done with the Session Instantiation Protocol (SIP). Media gateways provide for the 
conversion between circuit-switched and package-switched technologies, while signaling gateways 
do the same for control signals. 

167



 
Figure 1. re. Solid lines represent content 

flow; dashed lines represent control signals. 
 
Given their crucial role in bridging the Web and the telco world, recently network gateways have 
been the subject of several standardization activities, such as Parlay-X2, OneAPI 
(http://www.gsmworld.com/oneapi), and WAC (http://www.wacapps.net). In order to further reduce 
the complexity and costs of operating heterogeneous networks, so-called next generation networks 
(NGNs), such as the IP multimedia subsystem (IMS3), propose to use just one set of protocols for all 
kinds of networks, i.e., directly the Internet protocols. 
 
1 R. Bates and D. Gregory. Voice & Data Communications Handbook, Fifth Edition, McGraw-Hill 
Communication Series, 2007. 
2 3rd Generation Partnership Project. Open Service Access (OSA); Parlay X web services; Part 1: 
Common. 3GPP TS 29.199-1. 
3 M. Poikselka, G. Mayer, H. Khartabil. The IMS Multimedia Concepts and Services. Wiley, third 
edition, 2008. 

 

A T elco-Specific Mashup Platform 

Now, we define a telco mashup as a web mashup that, in addition to optional data, application logic, 
and UIs, also integrates telco services and/or device APIs, in order to support communication and 
collaboration among multiple users (e.g., our reference scenario) or to provide them with individual 
telco features (e.g., an advanced GPS navigation mashup). 
If we want to aid the development of our reference scenario by means of a suitable telco mashup 
platform, the above analysis shows that our example scenario poses some novel requirements that 
are not yet supported by existing mashup platforms, such as: 

168



 manage streaming media involving multiple users; 
 integrate device APIs running inside client devices; 
 manage quality of service and billing; 
 multi-channel access to support different device types; 
 multi-modal access to support different interaction paradigms; 
 multi-user access to enable communication and collaboration. 

 
Streaming audio/video conferencing is different from just streaming a video or audio file from a web 
server. In the latter case, if the stream breaks, it is enough to start the stream again; no special support 
from the web server is needed. If the stream of any of the participants breaks during the phone 
conversation in the case study, the platform must be able to reconnect the user to the ongoing live 
conference by keeping track of which user is involved in which conversation. Therefore, if a telco 
mashup uses multiple collaborative streams, it must be able to manage the state of each individual 
stream at the client side. This may require suitable browser extensions, client-side state management 
logic, or server-side logic, depending on the nature of each specific telco mashup. The use of device 

APIs does not directly impact the logic of the platform. Yet, if device APIs are used to communicate 
with other participants of a telco mashup, the platform must provide for the necessary client-server 
data communication chann
services) and device APIs may require the monitoring and tracking of QoS. More importantly, 
especially the use of converged and signaling services inside a mashup requires the management of 
billing information, taking into account different contract options. 
Multi-channel access requires the platform to deliver its mashups via different communication 
networks and protocols, such as the Internet or conventional telco networks. Multi-modal access 

requires support for different interaction paradigms, such as voice for Maria and traditional 
hypermedia for Jürgen, Marco and Steve. Multi-user access not only requires proper user identity 
management and authentication, but also the capability to allow multiple users to navigate (co-
browse) the same mashup (e.g., to collaboratively draw the architecture picture), i.e., to work on one 
and the same mashup instance [2]. This is different from providing each user with an own, 
independent mashup i  
 
Understanding these subtleties of telco mashups is paramount for the development of a telco mashup 
platform that is indeed able to adequately support real-life telco mashup scenarios. In Figure 2, we 
illustrate our reference architecture for telco mashups; we specifically focus on the runtime 
architecture and the telco-specific features. 

use the Internet. To enable the execution of the necessary converged and signaling services and to 
mediate between the Internet and the operator networks, either a network gateway (typically provided 
by the operator or upstart telco service providers such as Twillio) or a dedicated telco application 

server [3] (e.g., inside the communications manager) is needed. 

169



 
Figure 2. Telco mashup reference runtime architecture. UI components are represented as rectangles; 

services without UI as cogwheels. 
 
Multi-modal access can be provided by the communications manager, e.g., allowing Maria to 
instantiate the mashup from her phone, even without the presence of Marco, Steve or Jürgen. Like in 
phone conferences, multi-user access requires then the creation of a shared resource everybody can 
connect to and the sharing of a respective identifier. In the architecture, this resource is represented 
by the mashup instances managed by the mashup instance pool which maintains the necessary 

devices. 
To assist client devices in the management of streams (both incoming/outgoing calls and web-based 
streams), a channel table correlates users with their streams and channels and the respective mashup 
instances; the channel table also allows one to book a telephone channel for audio/video conferences 
(scheduling) and to route asynchronous messages. With 

of the platform. The use of device APIs impacts less the capabilities of the server-side runtime 

environment and more those of the client-side runtime environments. These must be able to provide 
access to device capabilities in a way that is compatible with standard web technologies, e.g., by 
means of web browsers that implement the respective W3C or WAC APIs or via suitable browser 
plug-ins. The communication among these APIs and the server-side platform then occurs via 
standard web protocols. QoS and billing are managed by a dedicated QoS manager and a charging 

manager. 
In addition to these telco-specific features, a telco mashup platform will typically be able to host 
services (third-party and own components) in an own mashup service container and ready mashups 

170



in a dedicated mashup repository (in either executable or interpretable format). For instance, the 
repository may cater for the voice call service used in our scenario, while the shared whiteboard may 
be sourced from the Internet. Upon request, the mashup life cycle manager (part of the server-side 

runtime environment) must be able to instantiate a mashup from the mashup repository, causing the 
instantiation of one or more client-side runtime environments, which host the actual UI of the 
mashup. These runtime environments may be native mobile applications, regular web applications, or 
JavaScript libraries running inside the web browser.  

Analysis of Current Mashup Platforms 

In order to understand which of the requirements discussed above are already supported by state-of-
the-art mashup platforms, we have analyzed Yahoo! Pipes (http://pipes.yahoo.com/), Intel Mash 
Maker (http://mashmaker.intel.com/web), JackBe Presto (http://www.jackbe.com/), IBM Mashup 
Center (http://www-01.ibm.com/software/info/mashup-center/), WSO2 Mashup Server 
(http://wso2.com/products/mashup-server/), MyCocktail [4], ServFace [5], Karma [6], CRUISe [7], 
MashArt [8], Mashlight [9], OPUCE [10], SPICE [11], and SOA4All [12]. In the following we 
summarize the main findings of our analysis. 
None of the analyzed platforms provides support for multi-user mashups. This shortcoming also 
impacts on other important requirements of telco mashups, i.e., the capability to manage streaming 

media involving multiple users. Streaming media management in single-user mashup tools is 
relatively simple, and supported by most of the available tools (e.g., embedded YouTube videos), but 
multi-user streaming management is impossible due to the lack of support for multi-user mashups. 
Regarding the access to mashup instances via different channels, i.e., the Internet and operator 
networks, only OPUCE and SPICE support bidirectional network integration, as envisioned by the 
communications manager in Figure 2. For example, OPUCE uses a JAIN SLEE server for integration 
with telco protocols; however, the preferred solution so far is delegating all interactions with operator 
networks to dedicated converged services. We have seen that the possibility to interact with a system 
via different channels also opens up the way for new multi-modal interaction. Instantiating a mashup 
only from a voice device running in an operator network is not possible so far; non-web clients can 
only be included into a running instance of a mashup, e.g., by calling it from the mashup. Also in this 
case dealing with multi-user mashups requires a different management of bidirectional channel 
integration that is not supported by any platform (e.g., the broadcasting of an incoming MMS or 
voice call stream to multiple mashup participants). Only OPUCE and SPICE support the integration 
with operator networks; but they have very limited support for interaction paradigms alternative to 
classic hypermedia and, hence, are not suitable for regular phones.  
Another requirement discussed above is the integration of device APIs. Most of the analyzed 
platforms are able to generate web-based mashup applications; some also allow the creation of native 
device apps (e.g., Mashlight). Therefore, although they could exploit standard interfaces to access 
device APIs (e.g., W3C or WAC interfaces), device APIs are not yet commonly supported.  
Finally, another important requirement for telco mashups is the mangement of QoS and billing. Only 
the telco-specific tools partly address this aspect. OPUCE adds annotations with pricing and QoS 
parameters to service descriptors, yet so far these annotations are not used at runtime. SPICE comes 
with a dedicated component for SLA management and the billing of services (based on the IMS and 
3GPP). 

171



Discussion and Outlook 

Our aim with this paper was to approach the telco domain from the Internet perspective. We 
specifically looked at how web mashups can integrate with telco network and device capabilities. 
Our analysis shows that a minimum level of telco support is already there in some of the analyzed 
mashup platforms, yet advanced telco features still need to be implemented by hand. 
The following research challenges seem crucial for the success of telco mashups: 

 Telco service providers must develop web-ready streaming and signaling services that are 
easy to use and manage. For instance, setting up a video conference using the public Skype 
API still requires the programmer to master the Skype telephony protocol, which is complex 
and vendor-specific. Exposing this level of complexity toward a mashup environment is like 
not exposing the API at all. Although some authors have proposed a framework based on 
state machines [14] or communication hyperlinks [13], there is still a lack of a shared telco 
service model.  

 Browser vendors must implement full support for device APIs. The W3C and WAC 
proposals to interface device capabilities are reasonable and easy to use. Their concrete 
support even inside the latest browser versions is still weak and partly browser-specific, 
which hinders adoption. 

 Network operators and the Web community need to agree on standard, cross-operator APIs 
for the negotiation of quality of service and for payment, as well as respective monitoring and 

charging infrastructures. As of today, the market is fragmented, each operator adopts own 
policies and technologies, QoS is not adequately tracked, and each telco service requires an 
own payment logic. 

 Strictly related with the previous point, the two communities need to develop cross-network 

user identification and authentication protocols to enable a seamless integration of networks. 
Suitable single sign-on and federation protocols seem of paramount importance. 

 We must design mashups that are able to manage intermittent connectivity. Especially in the 
mobile Web, network disconnection is the rule, not the exception. Yet, we are typically still 

robust solutions to deal with connectivity problems at the application level.  
 Similarly, we need to be able to design mashups that are adaptive, e.g., that are able to 

autonomously fall back to lower-quality services if a higher-quality service is not available or 
to switch to a different service if we cross a border and operate in international roaming. 
Telco services are typically country-specific, and using them in roaming may cause huge 
costs.  

 
Luckily, some of the open challenges are already on the research agenda of academia and industry, 
and most network operators open APIs to the public. 
initiative (http://www.gsmworld.com/oneapi/) aims to devise cross-operator, lightweight web APIs 
toward typical telco network capabilities. The Web-telco convergence so far therefore mostly moves 
from traditional telco networks toward the Web, which means that the number and variety of telco 
services available on the Web is destined to grow significantly. This, on the other hand, requires the 
web community to better understand, master, and suitably interface the telco world. 
 
Acknowledgements: This work was supported by funds from the European Commission (project 
Omelette, contract no. 257635). 

172



References 

[1] J. Yu, B. Benatallah, F. Casati, F. Daniel. Understanding Mashup Development. Internet 
Computing, vol. 12, no. 5, Sept-Oct 2008, IEEE Press, pp. 44-52.  
[2] F. Daniel, A. Koschmider, T. Nestler, M. Roy, A. Namoun. Toward Process Mashups: Key 
Ingredients and Open Research Challenges. In , Dec. 2010, ACM. 
[3] OpenCloud Limited. OpenCloud Rhino Telecom Application ServerTM. OpenCloud DataSheet, 
2010. www.opencloud.com 
[4] C.A. Iglesias, J.I. Fernández-Villamor, D. del Pozo, L. Garulli, B. García. Combining Domain-
Driven Design and Mashups for Service Development. In Service Engineering, Springer, 2010. 
[5] M. Feldmann, T. Nestler, U. Jugel, K. Muthmann, G. Hübsch, A. Schill. Overview of an end user 
enabled model-driven development approach for interactive applications based on annotated services. 
In , Nov. 2009, ACM. 
[6] R. Tuchinda, P. Szekely, C. A. Knoblock. Building Mashups by example. In Proc. of IUI '08, Jan. 
2008, ACM. 
[7] S. Pietschmann, M. Voigt, A. Rümpel, K. Meißner. CRUISe: Composition of Rich User Interface 
Services. In , June 2009, Springer. 
[8] F. Daniel, F. Casati, B. Benatallah, M.C. Shan. Hosted universal composition: Models, languages 
and infrastructure in mashArt. In , Nov. 2009, Springer. 
[9] L. Baresi, S. Guinea. Consumer Mashups with Mashlight. In , Dec. 
2010, Springer. 
[10] J. Sienel, A. León, C. Baladrón, L. W. Goix, A. Martínez, B. Carro. OPUCE: A telco-driven 
service mash-up approach, Bell Labs Tech. J. 14, 1, May 2009, pp. 203-218. 
[11] O. Droegehorn, I. Konig, G. Le-Jeune, J. Cupillard, M. Belaunde, E. Kovacs. Professional and 
end-user-driven service creation in the SPICE platform, In , June 2008, IEEE 
Press. 
[12] M. Zuccalà. SOA4All in Action: Enabling a Web of Billions of Services. In Proc. of 

, Dec. 2010, Springer. 
[13] V. Verdot, G. Burnside, and N. Bouché. An adaptable and personalized web telecommunication 
model, vol. 16, issue 1, 2011,  Bell Labs Tech. J., June 2011, pp. 3-17. 
[14] R. Arlein, D. Dams, R. Hull, J. Letourneau and K. Namjoshi. Telco meets the Web: 
Programming shared-experience services, Bell Labs Tech. J., 2009, pp. 167 185.  

173



 

Orchestrated User Interface Mashups Using  
W3C Widgets 

Scott Wilson1, Florian Daniel2, Uwe Jugel3 and Stefano Soi2 
1 University of Bolton, United Kingdom 

scott.bradley.wilson@gmail.com 
2 University of Trento, Povo (TN), Italy 
{daniel,soi}@disi.unitn.it 

3 SAP AG, SAP Research Dresden, Germany 
uwe.jugel@sap.com  

Abstract. One of the key innovations introduced by web mashups into the 
integration landscape (basically focusing on data and application integration) is 
integration at the UI layer. Yet, despite several years of mashup research, no 
commonly agreed on component technology for UIs has emerged so far. We 
believe W3C’s widgets are a good starting point for componentizing UIs and a 
good candidate for reaching such an agreement. Recognizing, however, their 
shortcomings in terms of inter-widget communication – a crucial ingredient in 
the development of interactive mashups – in this paper we (i) first discuss the 
nature of UI mashups and then (ii) propose an extension of the widget model 
that aims at supporting a variety of inter-widget communication patterns. 

Keywords.  UI Mashups, W3C widgets, Inter-widget communication 

1 Introduction 

If we analyze the state of the art in mashups today, we recognize that basically two 
different approaches have reached the necessary critical mass to survive: data 
mashups and UI (user interface) mashups. Data mashups particularly focus on the 
integration and processing of data sources from the Web, e.g., in the form of RSS or 
Atom feeds, XML files, or other simple data formats; mashup platforms like Yahoo! 
Pipes (http://pipes.yahoo.com/pipes/), JackBe Presto (http://www.jackbe.com/), or 
IBM’s Damia [1] are examples of online tools that aim at facilitating data mashup 
development. UI mashups, instead, rather focus on the integration of pieces of user 
interfaces sourced from the Web, e.g., in the form of Ajax APIs or HTML markup 
scrapped from other web sites; Intel Mash Maker [2] or mashArt [3] both support the 
integration of UI components, but most of the times these mashups are still coded by 
hand (e.g., essentially all of the mashups on programmableweb.com are of this type).  

The mashup platforms focusing on data mashups typically come with very similar 
features in terms of supported data sources, operators, filters, and the like. RSS, 
Atom, or CSV are well-known and commonly accepted data formats, and there are 
not many different ways to process them. Unfortunately, this is not what happens in 
the context of UI mashups. In fact, there are still many different ways to look at the 

Appendix M

174



 

problem and, hence, each tool or programmer uses its own way of componentizing 
UIs (both in JavaScript inside the browser and in other languages in the web server) 
and of integrating them into the overall layout of the mashup. As a consequence, UI 
components are not compatible among mashup tools, and we are far from common 
concepts and approaches when it comes to UI mashups. 

Given for granted that UI components are able to encapsulate and deliver pieces of 
UIs that can be embedded into a mashup and operated by its users, the key ingredient 
for UI componentization we identify is the component’s ability to interoperate with 
its surroundings, i.e., with other UI components and the hosting mashup logic. Inter-
operability is needed to enable components to synchronize upon state changes, e.g., in 
response to user interactions or internal logics. While technically this is not a huge 
challenge, conceptually it is not trivial to understand which communication paradigm 
to adopt, which distribution logic to support, or which data format to choose, 
maximizing at the same time the reusability of UI components across different 
mashup platforms, also fostering interoperability among mashups themselves. 

In this paper, we approach these challenges by leveraging on a UI 
componentization technology that we believe will have a major impact in the near 
future, i.e., W3C’s Widgets [4]. This choice is motivated, firstly, by the 
comprehensiveness of W3C’s Widgets specifications family which tries to cover 
models and functionalities proper of the most used widget technologies existing so 
far, e.g., Google gadgets, Yahoo widgets and, in particular, Open Social gadgets. 
Moreover, the W3C consortium is a leading actor in web standards creation and its 
proposal already attracted important vendors that are implementing W3C’s Widget 
compliant tools (e.g., Apache Wookie and Rave).  

Specifically, in this paper, we provide the following contributions: 
! We discuss three types of mashup logics for widgets and identify a set of 

requirements the widgets should satisfy, in order for them to be mashed up. 
! We propose an extension of the W3C widget model expressed in terms of an 

API extension and set of expected behaviours. 
! We report on our experience with the implementation of a UI mashup 

following one of the described mashup logics and the extended widget 
model. 

Before going into the details of our proposal, in the next section we briefly 
summarize the logic of and technologies used in the implementation of W3C widgets. 
Then, in Section 3, we investigate the basic mashup types for widgets. In Section 4 
we specifically look at one type of mashups and derive a set of requirements for 
widgets. In Section 5 we propose an according extension of the W3C widget model, 
also providing concrete implementation examples. Finally, in Section 6 we discuss 
related works, in order to conclude the paper in Section 7. 

2 W3C Widgets 

The World Wide Web Consortium (W3C) provides a set of specifications collectively 
known as the Widget family of specifications. A Widget is defined by W3C 
(http://dev.w3.org/2006/waf/widgets-land/) as “an end-user’s conceptualization of an 

175



 

interactive single purpose application for displaying and/or updating local data or data 
on the Web, packaged in a way to allow a single download and installation on a user’s 
machine or mobile device.”  

Widgets are made available to users by a widget runtime (also known as a widget 
engine). A widget runtime is an application that can import a widget that has been 
packaged according to the W3C Widgets: Packaging and Configuration specification 
[4]; the runtime may also make available at runtime any script objects required by the 
widget, for example the W3C Widget Interface [5] (the API a widget exposes to 
provide access to the widget’s metadata and to persistently store data) or W3C Device 
APIs [6] (client-side APIs that enable the development of widgets that interact with 
device services like calendar, contacts, or camera). Widget runtimes are available on 
mobile devices, as desktop applications, or for embedding widgets in websites. 

The Packaging and Configuration specification defines the metadata terms used to 
describe the widget (such as name, author and description) and to enable the 
configuration of the widget runtime. Configuration information includes the <feature> 
element, which can be used by the widget author to request that the widget runtime 
makes additional features available when the widget is running; examples of features 
include JavaScript APIs, libraries, and video codecs. 

Within the W3C Widget family of specifications, widgets are largely 
conceptualized as operating independently, communicating with the widget runtime 
using the Widget Interface and with the client environment using standard browser 
features such as the Document Object Model and related JavaScript APIs.  

While a widget runtime may render multiple widgets to the user simultaneously – 
for example, on the Home screen of a mobile device, or as part of the layout of a 
portal or social networking site – there are no mechanisms specified by the W3C 
Widget family of specifications by which the widgets communicate with each other as 
members of a mashup. 

3 User Interface Mashups 

Given a set of widgets that comply with the W3C Widget family of specifications, the 
question is therefore how a mashup of widgets could look like. Considering the state 
of the art in which widgets do not support inter-widget communications, we define a 
basic UI mashup, as a tuple ! ! !!!!!!"! with: 
• ! ! !!!  being the layout of the mashup, of which ! is the layout template 

(typically the template consists of an HTML page, a set of JavaScript and 
image files, and one or more CSS style sheets) and ! ! !!  is the set of 
viewports inside ! that can be used for the rendering of the widgets (e.g., 
iframes or div elements); 

• ! ! !!  being the set of widgets in the mashup, where each widget is of type 
!! ! !!!! ! !"#!! !!"#$! ! !"#$%&!! ! !!"#!!! !!"#$!!! with !"#$! being a set of 
configuration preferences (typically, name-value pairs); and 

• !" ! !"!!!"! ! !!!  being the set of widget-viewport associations 
needed for placing and rendering the widgets inside the mashup. 

176



 

This model focuses on the layout only and is clearly not able to represent UI 
mashups like most of the ones that can be found on programmableweb.com. In fact, 
UI mashups typically are able to synchronize their widgets or UI elements upon user 
interactions, a feature that is missing in mashups of type ! above. 

Assuming now that widgets are able to communicate, in the following subsections 
we define three UI mashup models that are able to deal with inter-widget 
communications and to support widget synchronization: 

• Orchestrated UI mashups, where the interactions between the widgets in the 
mashup are defined using a central control logic; 

• Choreographed UI mashups, where the interactions between the widgets in 
the mashup are not defined, but instead emerge in a distributed fashion from 
the internal capabilities of the widgets; 

• Hybrid UI mashups, where the emerging behaviour of a choreographed UI 
mashup is modified by inhibiting individual behaviours, practically 
constraining the ad-hoc nature of choreographed UI mashups. 

We define each of these mashup types in the following, while in the rest of this 
paper we will specifically focus on orchestrated UI mashups, which can be considered 
the basis also for the development of the other two types of UI mashups. 

3.1 Orchestrated UI Mashups  

We define an orchestrated UI mashup as a tuple !! ! !!!!!!"!!! with:  
• ! being the layout as defined before; 
• ! ! !!!!! ! !!!! ! !"#!! !!"#$! ! !"#!"#!! ! !!"#!!! !!"#$!! !!! !!!!  being 

the set of widgets with !! ! !!"!!!" ! !!"#!!" !!!"!  being the set of events 
the widget can generate, !! ! !!"!!!" ! !!"#!!"!!!"!  being the set of 
operations supported by the widget, and !!" and !!", respectively, being the 
sets of output and input parameters; 

• !" ! !"!!!"! ! !!!  being the set of widget-viewport associations; and 
• ! ! !!!!! ! !!!!! ! !!! !! ! !!!  being the set of direct inter-widget 

communications, i.e., message flows between two widgets connecting an event 
of the source widget with an operation of the target widget. 

This definition of UI mashup implies that the mashup (and, therefore, the mashup 
developer) knows which events are to be mapped to which operations and that it is 
able to propagate the respective data items on behalf of the user of the mashup. This is 
common practice, e.g., in web service composition languages like BPEL, and does not 
require the widgets to know about each other.  

The strength of this model is that mashups behave as they are expected to, that is, 
as specified in the mashup specification. A drawback is that this central mashup logic 
must be specified in advance, i.e., before runtime, which require a good knowledge of 
the used widgets by the mashup developer. 

Note that in the above definition and in the following we intentionally do not 
introduce complex data mappings (e.g., requiring data transformation logics) or 
service components (e.g., requiring to follow web servie protocols), in order to keep 

177



 

the model simple and focused. We however assume each inter-widget communication 
!! also contains the necessary mapping of event outputs to operation inputs. 

We believe UI mashups are good candidates for end user development and that 
data transformations or web services are not intuitive enough to them in order to 
profitably use them inside a mashup. Possible complex data transformations or 
service composition logics can always be developed by more skilled developers and 
plugged in in the form of dedicated widgets. 

3.2 Choreographed UI Mashups  

We define a choreographed UI mashup as a tuple !! ! !!!!!!!!"! with:  
• ! being the layout of the mashup; 
• ! ! !!!!! ! !!"#!!!!!!  being the reference topic ontology for events and 

operations, i.e., the set of concepts and associated parameters !! the widgets in 
the mashup can consume as input or produce as output; 

• ! ! !!!!! ! !!!! ! !"!!! !!"#$! ! !"#!"#!! ! !!"#!!! !!"#$!! !!! !!!!  being 
the set of widgets with !! ! !!"!!!" ! !!"#!!" !!"#$%!"!  being the set of 
events the widget can generate, !! ! !!"!!!" ! !!"#!!"!!"#$%!"!  being 
the set of operations supported by the widget, and !"#$%!" !!"#$%!" ! !, 
respectively, being the set of topics an event sends data to and an operation 
reacts to; and 

• !" ! !"!!!"! ! !!!  being the of widget-viewport associations. 
In contrast to orchestrated UI mashups, choreographed UI mashups do not have an 

explicitly defined set of mappings of operations and events. Instead, each widget is 
capable of sending and receiving communications and of acting on them 
independently. Interoperability is achieved in that each widget complies with the 
reference topic ontology !, which provides a reference terminology and semantics 
each widget is able to understand. The behaviour of a choreographed UI mashup, 
therefore, is not modelled centrally by the mashup developer and rather emerges in a 
distributed way by placing one widget after the other into the mashup. That is, only 
placing a widget into the mashup allows the developer to understand how it behaves 
in the mashups and which features it supports. 

The strength of this approach is that there is no need for explicit design of 
interactions: a developer simply drops widgets into his mashup and they 
autonomously interact. One weakness is that the reference topic ontology must be 
“standardized” (or, at least, understood by all widgets), in order for any meaningful 
communication to occur. This may reduce the overall richness of communication 
possible to a small number of fairly primitive topics – for example, location, dates and 
unstructured text. Another weakness is that with no predefined “plan” of the mashup, 
there could be the risk of the emergent behaviour of the widgets being pathological – 
for example, self-reinforcing loops or hunting. This could be a serious problem where 
the mashup components have real-world consequences, such as SMS-sending widgets 
or similar. 

178



 

3.3 Hybrid UI Mashups 

We define a hybrid UI mashup as a tuple !! ! !!!!!!!!"!!! with:  
• ! being the layout of the mashup; 
• ! ! !!!!! ! !!"#!!!!!!  being the reference topic ontology; 
• ! ! !!!!! ! !!!! ! !"#!! !!"#$! ! !"#!"#!! ! !!"#!!! !!"#$!! !!! !!!!  being 

the set of widgets with !! ! !!"!!!" ! !!"#!!" !!"#$%!"!  being the set of 
events the widget can generate and !! ! !!"!!!" ! !!"!!!"!!"#$%!"!  
being the set of operations supported by the widget; 

• !" ! !"!!!"! ! !!!  being the set of widget-viewport associations; and 
• ! ! !!!!! ! !!!!! ! !!!  being a set of constraints preventing 

operations from reacting to the publication of an event referring to a given 
topic. 

In hybrid UI mashups, integration is achieved in a bottom-up fashion by the 
widgets themselves, while there is still the possibility for the mashup developer to 
control the interaction logic of the overall mashup in a top-down fashion by inhibiting 
interactions and, hence, application features that are not necessary for the 
implementation of his mashup idea. 

The strength of this approach is that it brings together the benefits of both 
orchestrated and choreographed UI mashups, that is, simplicity of development and 
control of the behaviour. On the downside, the overall mashup logic is buried inside 
two opposite composition logics: the implicit capabilities of the widgets and the 
explicit constraints by the developer. This may be perceived as non-intuitive by less 
skilled developers or end users. 

4 A W3C Widget Extension for Orchestrated UI Mashups 

As a first step toward supporting the above UI mashup types, in this paper we aim at 
enabling the development of orchestrated UI mashups, a task that is already not 
possible with the W3C widget model as is. From the definition of mo above we can, in 
fact, derive a set of extension requirements for W3C widgets, without which the 
implementation of interactive UI mashups is not possible: 

1. Widgets must be able to communicate internal state changes via events to the 
outside world, i.e., the mashup or other widgets in the mashup. That is, while 
the users interacts with the widget, the widget must implement an internal 
logic that tells the widget when it should raise an event, in order to allow 
other widgets in a same mashup to synchronize. 

2. Widgets must be able to accept inputs via operations, in order to allow the 
outside world to enact widget-internal state changes. The enacting of an 
operation is the natural counterpart of an event being raised. Typically, the 
operation implements the necessary logic to synchronize the state of the 
widget (e.g., the content rendered in the widget’s viewport) with the event. 

3. The data formats for the data exchanged among widgets should be kept as 

179



 

simple as possible (we propose simple name-value pairs), in order to ease 
inter-widget communication. Considering that synchronizing widgets based 
on user interactions or internal state changes typically will require only the 
transfer of one or two parameters [3], e.g., an object identifier upon a 
selection operated by the user, this assumption seems reasonable. Remember 
that here we do not focus on web service orchestration or data processing. 

We approach each of these requirements in the following sections and show how 
so extended widgets can be mashed up into UI mashups. 

5 A Prototype Implementation 

In order to better explain our ideas, in the following we adopt a by-example approach 
and contextualize them in our prototype implementation, finally also showing how the 
extended widget model can be successfully used for the implementation of 
orchestrated UI mashups. 

5.1 Widget configuration 

The W3C Widgets: Packaging and Configuration specification supports the run-time 
loading of extensions using the <feature> element of the widget’s config.xml file. 
This requires that the widget runtime environment can resolve the URI of the feature 
to an installed capability. For example, given the feature URI http://example.org/rpc a 
runtime may install an implementation specific to that runtime environment, or a 
generic one if the functionality is relatively simple. If the URI is not recognized, the 
runtime will reject the installation of the widget if the required attribute is set to 
“true”, but will proceed (optionally warning the user) if it is set to “false”.  

However, it is also possible for a W3C Widget to load capabilities dynamically 
while running, using <script src> elements in the HTML start file or using lazy 
loading techniques to dynamically insert new <script> elements based on the current 
context. Therefore for an orchestration interface we have to make a decision as to 
which approach to take in loading the required capabilities. Each has its advantages 
and disadvantages. 

An advantage of using <feature> loading is that it gives the runtime environment 
the option to use server-side capabilities or augmented functionality. For example, to 
load an API in the widget that then talks to a high-performance server-side messaging 
service. The disadvantage is that if the runtime does not support the feature, then the 
widget is either not able to be installed, or is installed without necessary functionality. 
The advantage of using HTML-based script loading is that it should work in any 
widget runtime environment; however it is not able to take advantage of any special 
capabilities of the runtime. A compromise solution is to use the <feature> declaration 
but to set the required attribute to “false”, and provide a dynamic <script> tag loader 
as a fallback. This enables the widget to take advantage of native runtime 
implementations, but has a fallback option if none is provided. This can be 
implemented using a fairly simple script in the widget, as illustrated in Figure 1. 

180



 

 
 

If (widget.intercom && typeof(widget.intercom)==function){ 
  // the runtime has provided the intercom API 
} else { 
  // load the fallback library – in this case PMRPC 
  widget.intercom = loader.load(“pmrpc.js”);  
} 

Figure 1. Widget-internal JavaScript logic to decide whether to load a fallback library or not. 

5.2 Widget interface 

We enable widgets to participate in orchestrated UI mashups through the specification 
of a so-called Intercom interface as an extension of the W3C Widget Interface. An 
implementation of the Intercom object must have the following three capabilities: 

• It must be able to execute operations on the widget; 
• It must be able to raise events; and 
• It must be able to expose metadata about the operations and events 

supported by the widget. 
The implementation of the Intercom interface may be made available at runtime 

through the use of a <feature> element in the widget configuration document or as a 
direct extension to the W3C Widget Interface specification implemented by the 
widget runtime. 

The Intercom does not specify any orchestration configuration, but the capabilities 
of the orchestration participants and an interface to access the inter-widget 
communication features of the Intercom implementation. Therefore, we propose to 
introduce an attribute intercom to the W3C Widget Interface (see Figure 2). 
 

[NoInterfaceObject] 
interface Widget { 
    readonly attribute DOMString     author; 
    readonly attribute DOMString     authorEmail; 
    readonly attribute DOMString     authorHref; 
    readonly attribute DOMString     description; 
    readonly attribute DOMString     id; 
    readonly attribute DOMString     name; 
    readonly attribute DOMString     shortName; 
    readonly attribute Storage       preferences; 
    readonly attribute DOMString     version; 
    readonly attribute unsigned long height; 
    readonly attribute unsigned long width; 
    readonly attribute Intercom      intercom; 
}; 

Figure 2 Widget interface extended with intercom attribute  

The Intercom interface itself is defined as described in Figure 3: Inspecting the 
metadata attribute of the Intercom interface allows the widget runtime environment 
to obtain the list of events and operations implemented by the widget, along with their 
respective output/input parameters. The two functions raise and call can then be 
used to generate an event and to enact an operation, respectively. 

181



 

 
interface Intercom { 
    void raise(in DOMString operationName, in optional DOMString param1, ... ); 
    void call(in DOMString operationName, in optional DOMString param1, ... );     
    readonly attribute IntercomMetaData metadata; 
} 
interface IntercomMetaData { 
    readonly attribute sequence<IntercomSignature> events; 
    readonly attribute sequence<IntercomSignature> operations; 
} 
interface IntercomSignature { 
    readonly attribute DOMString name; 
    readonly attribute sequence<IntercomArgument> parameters; 
} 
interface IntercomArgument { 
    readonly attribute DOMString name; 
} 

Figure 3. A possible Intercom interface, including access functions and metadata structures. 

For instance, Figure 4 exemplifies how a widget can use its Intercom to raise the 
events “eventName”, and how an external RPC module (e.g., the one used by the 
specific Intercom implementation) can use the widgets’ intercoms to call operations. 
 
//called from widget 
this.intercom.raise(“eventName”, arg1, arg2); 
 
//called from communication module 
widget.intercom.call(“operationName”, arg1, arg2); 

Figure 4. Using the intercom object. 

With the help of the Intercom interface, an automatic composition component or a 
composition tool can use the metadata attribute of several widgets to learn about the 
composition capabilities that the widget supports. 

To keep the Intercom interface as simple as possible, we do not support operation 
return types or complex parameter types. 

5.3 Widget implementation and behaviour 

In Figure 5 we provide a possible implementation of the Intercom interface, which 
makes use of the external communication infrastructure (SOMERPC) declared as 
required <feature> in the widget configuration.  

 
var SOMERPC = {/* some rpc module required by this Intercom implementation */}; 
 
var Intercom = function( widget ) { 
    var w = widget, 
        rpcmodule = SOMERPC, 
        operations = {}, 
 
        // reads the meta data from a config file, xml, etc. 
        metadata = rpcmodule.getMetaData( w.name ),  
        raise = function( eventName ){       //init public raiseEvent method 
            var args = Array.prototype.splice.apply(arguments, 1,  
                                                    arguments.length-1); 

182



 

            rpcmodule.raiseEvent( w, eventName, args ); 
        }, 
        call = function( opName ){ 
            var args = Array.prototype.splice.apply(arguments, 1, 
                                                    arguments.length-1); 
            //call widget operation if it is in the public operations 
            if(operations[opName]) { 
                operations[opName].apply( w, args ); 
            } 
        }, 
        i = 0; 
 
    //setup the private operations list for faster access when 'call' is executed 
    for(i = 0; i < metadata.operations.length; i += 1) { 
        operations[metadata.operation[i].name] = w[metadata.operation[i]]; 
    } 
         
    this.raise = raise; 
    this.call = call; 
    this.metadata = metadata; 
     
    //register this intercom at the rpc module 
    rpcmodule.register( this ); 
}; 

Figure 5. A basic implementation of the Intercom interface.  

The Intercom of a widget should be initialized in the widget constructor to prevent 
modifications from the outside: 

// called from the widget contructor 
this.intercom = new Intercom( this ); 

After the intercom is set up, a widget can start raising events via its own Intercom, 
and all modules that have access to the widget or the widget’s Intercom can call 
operations on the widget. 

5.4 UI mashup implementation 

Using the formalization introduced in Section 3, we are able to model a variety of 
mashups involving multiple widgets. The specification does not include any 
additional runtime aspects, such as message delivery time, message buffering, or 
similar technical aspects. Thereby, it is flexible enough to also accomodate mashups 
with more complex characteristics, such as mashups involving multiple windows or 
multiple origins, and it is agnostic as to whether communication is purely within the 
browser (e.g., using HTML 5 PostMessage) or also involving the server side.   

Implementing a UI mashups can be achieved relatively simply through the use of 
publish-subscribe services propagating events from one widget to others. In 
orchestrated UI mashups of type !! ! !!!!!!"!!!, it is the inter-widget 
communication logic ! that subscribes widgets, i.e., their operations, to events. In 
choreographed UI mashups of type !! ! !!!!!!!!"!, each widget publishes its 
events to the topics in ! and subscribes to the topics it understands. In hybrid UI 
mashups !! ! !!!!!!!!"!!!, the bottom-up subscriptions by the widgets can be 
fine-tuned via the constraints !. All this can implemented using a range of existing 

183



 

mature software technologies, for example, client-side using OpenAjax Hub1 or 
server-side using solutions such as Faye2 or ActiveMQ3.  

6 Related Work 

In our former work [8], we developed an approach to the componentization and 
intercommunication of UI components. The approach is different from the one 
proposed in this paper, in that it aims to wrap full-fledged web applications developed 
with traditional, server-side web technologies. The wrapping logic requires the 
presence of simple event annotations inside the application’s HTML markup in order 
to intercept events and a descriptor for the enacting of operations on the wrapped web 
app. Widgets, instead, are pure client-side apps. 

In the context of widgets, Sire et al. [7] proposed an idea that is similar to what we 
propose in this paper, also advocating the use of events and event listeners (the 
equivalent of our operations). The widget decides whether an event is distributed in a 
unicast (one receiver), multicast (multiple receivers), or broadcast (all possible 
receivers) fashion. This design choice, however, leads to tightly coupled widgets, in 
that a widget must know in advance with which other and how many widgets it will 
communicate, a limitation we do not have in our proposal. In fact, in our case it is the 
mashup logic (which, for choreographed UI mashups, may be missing) that manages 
the inter-widget communication, and widgets are unaware of their neighbours. 

The Java Portlet Specification 2.0 [9] proposes inter-widget communication for 
web portals. Portlets may communicate via events, but interactions occur on the 
server-side, a strong limitation in a UI-intensive Web 2.0 context. So far, the adoption 
of this technique is relatively low, also because its limitation to the Java world. 

Communicating across technical boundaries, as proposed in this paper, is required 
in many networked computing domains. Especially for web browsers, the 
communication across domains and across browser windows (including iframes) is an 
important issue. Therefore, the HTML 5 standard defines a messaging API [10], 
which is, for example, used by the “pmrpc” project [11]. This project provides a 
Javascript module that adds a pmrpc object to a running website window object. All 
scripts running inside this window may access pmrpc to register own operations, or 
make calls to other windows/frames [12].  

Our investigation of these and similar RPC approaches showed that different 
projects use different interface syntax and mainly focus on cross-window 
communication. In comparison to that, our proposed interface extension does not 
specify any cross-domain/window aspects. A single widget, in our case, is similar to a 
window in these related approaches, but there can be many widgets in many windows 
that constitute a mashup. All widgets will use their intercom transparently. Cross-
domain issues must be solved internally by the Intercom implementation, which may 
of course use, e.g., pmrpc internally for this aspect. 
                                                             
1 http://www.openajax.org/whitepapers/Introducing%20OpenAjax%20Hub%202.0% 

20and%20Secure%20Mashups.php 
2 http://faye.jcoglan.com/ 
3 http://activemq.apache.org/ 

184



 

7 Conclusion and Future Work 

In this paper, we addressed a relevant issue in UI-based mashup development, i.e., the 
intercommunication of W3C widgets. Mashups are typically heavily UI-based, but so 
far no standard for how to componentize UIs and how to get them into 
communication has emerged. We believe W3C widgets have the potential to represent 
this agreement and that they will gain importance in the near future in both desktop 
and mobile computing environments. 

The aim of our research in this context is to come up with an inter-widget 
communication interface and respective widget behaviours, which – thanks to our 
involvement in the standardization of the widget technology – we would like to 
propose to the W3C for standardization. This is an effort we carry on in the context of 
the European project Omelette (http://www.ict-omelette.eu). 

In order to obtain a first feedback from the community regarding the proposed 
communication interface, in this paper we focused on inter-widget communication at 
the level of events and operations. In the future, we also aim to identify and propose a 
standard format for the exchange of data among widgets, e.g., based on the OData 
protocol or similar initiatives. 

Acknowledgements: This work was supported by funds from the European 
Commission (project OMELETTE, contract no. 257635). 

References 

1. M. Altinel, P. Brown, S. Cline, R. Kartha, E. Louie, V. Markl, L. Mau, Y.-H. Ng, D. 
Simmen, and A. Singh. Damia: a data mashup fabric for intranet applications. VLDB'07, 
September 2007, VLDB Endowment, pp. 1370-1373. 

2. R. Ennals, E. Brewer, M. Garofalakis, M. Shadle, P. Gandhi. Intel Mash Maker: join the 
web. SIGMOD Rec. 36, 4, December 2007, pp. 27-33. 

3. F. Daniel, F. Casati, B. Benatallah, M.-C. Shan. Hosted Universal Composition: Models, 
Languages and Infrastructure in mashArt. ER'09, November 2009, Springer, pp. 428-443. 

4. W3C. Widget Packaging and Configuration. W3C Working Draft, March 2011, http://www. 
w3.org/TR/widgets/ 

5. W3C. The Widget Interface. W3C Working Draft, September 2010, http://www.w3.org/TR/ 
widgets-apis/ 

6. W3C. Device APIs and Policy Working Group Charter. http://www.w3.org/2009/05/Device 
APICharter 

7. S. Sire, M. Paquier, A. Vagner, J. Bogaerts. A Messaging API for Inter-Widgets Communi-
cation. WWW’09, April 2009, ACM, pp. 1115-1116. 

8. F. Daniel and M. Matera. Turning Web Applications into Mashup Components: Issues, 
Models, and Solutions. ICWE’09, June 2009, Springer, pp. 45-60. 

9. S. Hepper. Java(TM) Portlet Specification Version 2.0. Proposed Final Draft, Rev. 29.  
http://jcp.org/aboutJava/communityprocess/pfd/jsr286/index.html 

10. WHATWG. HTML Living Standard, Communication. WHATWG specification. Website,  
April 2011: http://www.whatwg.org/specs/web-apps/current-work/multipage/comms.html  

11. I. Kovic and I. Zuzak. Pmrpc, HTML5 inter-window and web workers RPC and pubsub 
communication library. Project website, April 2011: http://code.google.com/p/pmrpc/. 

12. I. Kovic and I. Zuzak. List of system that enable inter-window or web worker 
communication. Website, April 2011: http://code.google.com/p/pmrpc/wiki/IWCProjects. 

185



Conceptual Design of Sound, Custom
Composition Languages

Stefano Soi, Florian Daniel, Fabio Casati

Abstract Service composition, web mashups, and business process modeling are
based on the composition and reuse of existing functionalities, user interfaces, or
tasks. Composition tools typically come with their own, purposely built composi-
tion languages, based on composition techniques like data flow or control flow, and
only with minor distinguishing features - besides the different syntax. Yet, all these
composition languages are developed from scratch, without reference specifications
(e.g., XML schemas), and by reasoning in terms of low-level language constructs.
That is, there is neither reuse nor design support in the development of custom com-
position languages.
We propose a conceptual design technique for the construction of custom compo-
sition languages that is based on a generic composition reference model and that
fosters reuse. The approach is based on the abstraction of common composition
techniques into high-level language features, a set of reference specifications for
each feature, and the assembling of features into custom languages by guaranteeing
their soundness. We specifically focus on mashup languages.

1 Introduction

The proliferation of composition instruments like mashup platforms or web service
composition environments, which allow one to integrate Web-accessible APIs and
data into value-adding, composite applications or services, also led to the prolifer-

Stefano Soi
University of Trento, Via Sommarive 5, 38123 Trento - Italy e-mail: soi@disi.unitn.it

Florian Daniel
University of Trento, Via Sommarive 5, 38123 Trento - Italy e-mail: daniel@disi.unitn.it

Fabio Casati
University of Trento, Via Sommarive 5, 38123 Trento - Italy e-mail: casati@disi.unitn.it

1

Appendix N

186



2 Stefano Soi, Florian Daniel, Fabio Casati

ation of respective composition languages. Depending on the type of API or data
source (we call them collectively components), the type of application or service
(e.g., data mashup vs. UI mashup vs. service composition, and similar), and the tar-
get user of the application or service, composition languages differ in the features
they offer to the developer - not only in their syntax. While in many cases lan-
guage differences among tools actually don’t seem to be necessary, in other cases
these differences may indeed “make the difference”. This is, for instance, the case of
domain-specific mashup platforms [1], which aim to provide more effective devel-
opment support (compared to generic tools) by tailoring their composition language
to a specific domain and its very own needs. That is, despite the existence of stan-
dard languages like BPEL, there are good reasons for having different languages for
different uses and different users.

Designing a composition language is however not an easy task. There are lots of
conceptual and technological choices to be made, such as (i) which components to
support (e.g., SOAP services, RESTful services, UI widgets, or proprietary compo-
nent technologies); (ii) which composition logic to adopt (e.g., event-based, control
flow, data flow, blackboard-like data exchange, and so on); (iii) which data integra-
tion capabilities to support (e.g., parameter mapping, template-based transforma-
tions, scripts, etc.); and (iv) which presentation features to provide, if any (e.g., UI
templates, UI widgets, single pages, multiple pages). All these choices do not only
affect the structure of the composition language, but eventually they determine the
complexity and viability of the composition platform built on top. A careless selec-
tion of features and constructs inevitably results in inconsistent languages and tools.
Even worse, oftentimes developers are not even aware of which choices need to be
made and which options are available, or they do not understand which implications
an individual choice has on another choice. For example, it does not make sense
to support both control flow and data flow based composition logics in one and a
same language, as both paradigms specify the order in which component operations
are to be invoked. The former explicitly defines this order independently of how
data is passed from one component to another; the latter defines the order implicitly
focusing instead on how data is passed among components. Having both together
could thus lead to duplicate - possibly inconsistent - definitions of the operations’
invocation order.

Recognizing this difficulty, which we experience ourselves in the development
of our mashup tools, with this paper we would like to lay the foundation for the
conceptual design of custom composition languages for mashup tools, an approach
that aims to modularize and reuse language construction knowledge. The idea is to
enable a developer to reason at a high level of abstraction about the composition
language he would like to obtain and to allow him to interactively construct his
language by specifying the set of composition features that characterize his target
language - everything by guaranteeing the soundness, i.e., consistency, of the final
result. With the help of a hosted design tool, we would like to provide custom com-
position language design as a service and equip the design tool with an according,
hosted runtime environment (an execution engine) that is able to execute composi-
tions/mashups expressed in any of the languages constructed with the tool. The final

187



Conceptual Design of Sound, Custom Composition Languages 3

objective is very ambitious. The approach is to start with a set of core functionalities
and to extend this set over time as new requirements emerge. The contributions we
provide in this paper are:

• We provide a comprehensive conceptualization of the most important composi-
tion features that characterize todays most prominent composition languages.

• We derive a generic, extensible composition language meta-model, which ex-
presses how the identified features can be used together for the construction of
custom composition languages.

• We modularize the identified composition features into reusable language pat-
terns, and equip the patterns with a simple logic-based language to express fea-
ture composition constraints and to guarantee consistency.

• We generate custom composition languages and according custom component
description languages from the developer’s selection of composition features.

The structure of the remainder of the paper is as follows. Next, we provide an ex-
ample scenario and some background knowledge on composition language features.
Then, in Section 4, we describe key requirements and our problem statement. In Sec-
tion 5, we outline our approach. In Section 6, we describe our generic composition
language meta-model, and in Section 7 we describe the structure of composition
features. In Section 8 we show two composition language definition examples, in
Section 9 we discuss related works and in Section 10 we conclude.

2 Scenario

Let’s assume we need to develop a custom composition language with specific prop-
erties. Specifically, let’s assume we want to develop a mashup language presenting
the same characteristics of the language used by the mashArt mashup platform [4],
which we developed from scratch in the context of the mashArt project. A simple
example of a composition instance that the language must be able to support is the
one presented in Figure 1: we want to allow any user to search for a given - user-
selected - object in a specific - user-selected - geographical area and to get a list of
results. Then, by selecting one of the results the user will see its location displayed
on a map and will be provided with the traffic information related to the geograph-
ical area around this location. For example, a user must be able to look for hotels
in Miami, get a list of hotels in the city and, when selecting one of them, visualize
its location on a map and have the traffic information regarding the area around the
selected hotel. This example shows the need for the integration and synchronization
of data, business logic and user interfaces.

Concretely, we need a mashup language allowing one to integrate data, applica-
tion logic (e.g., through Web services) and graphical UI components. This is what
we called universal integration in the context of the mashArt project. Moreover,
as shown in Figure 1, the language has to support the presentation of the UI com-
ponents inside a single Web page, manage their synchronization (considering the

188



4 Stefano Soi, Florian Daniel, Fabio Casati

Fig. 1 Example of mashup application the mashArt language must support

event-based nature of UIs), and allow for the explicit definition of the data flow
schema enabling components to exchange data. Propagating data among compo-
nents may require conditional execution of flows, as well as branching and merging
of parallel flows. UI components, which are implemented in JavaScript, can possi-
bly have parameters for their configuration and one or more operations including an
arbitrary number of input and output parameters. Web services are typically SOAP-
based or RESTful. The resulting mashups are accessible to any user in a single-
user fashion; thus, no user management or collaboration support by the language is
needed.

3 Background: Software Composition

The scenario shows that mashup development is an intricate software integration
and composition endeavor. As highlighted in [1], next to the integration of data
and application logic, mashups also feature integration of user interface, i.e., UI
integration. Figure 2 graphically illustrates the situation from a conceptual point of
view and contextualizes the three integration layers in the domain of the Web with
its very own component technologies
Data level integration. When the focus is on the integration of data, we have spe-
cific needs to address. Typically, solutions for retrieving, combining, splitting and
transforming data are needed. In addition, when more than one entity is involved
in the data integration process data exchange among the involved parties may be

189



Conceptual Design of Sound, Custom Composition Languages 5

ApplicationApplication
Presentation

Business Logic

Data Source 2Data Source 1

Data Integration

Application

Presentation

Data Source 2Data Source 1

Business Logic Integration

Bus. Logic 1 Bus. Logic 2
Data Source 2Data Source 1

Bus. Logic 1 Bus. Logic 2
Presentation 1 Presentation 2

Presentation Integration

MashupMashup
Presentation

Business Logic

Atom FeedRSS Feed

Data Integration

Mashup

Presentation

Data Source 2Data Source 1

Business Logic Integration

SAOP WS REST WS
Data Source 2Data Source 1

Bus. Logic 1 Bus. Logic 2W3C Widget OpenSocial
Gadget

Presentation Integration

(a) (b) (c)

(d) (e) (f)

Fig. 2 The different levels of integration in general and in the specific context of web mashups.

needed. In the context of Web mashups, we have specific conditions and constraints.
Data sources are typically not fully accessible, i.e., the standard way of retrieving
data on the Web is through Web services or Web APIs. This means that we can
only access the data provided by the service and we cannot make arbitrary com-
plex, free queries over the data source, as we could do with conventional databases.
The key problem of data integration is understanding which data items are semanti-
cally similar to which other data items and solving possible formatting differences.
Mashups aren’t any different. They usually integrate data coming from completely
independent sources, which were not designed to work together; thus, data format
and structure mismatches must be solved. Mechanisms to address these kinds of
problems span from simple data mapping solutions, allowing one, e.g., to map part
of the output of one service onto (part of) the input of another service, to more
powerful solutions supporting data transformation languages and processors (like,
e.g., XSLT). On the other side, though, on the Web there are official and de-facto
standards that are oftentimes adopted (e.g., RSS and Atom feeds, XML and JSON
formats), which simplify data integration in that they standardize the syntax and
partly also the semantics of data (e.g., RSS and Atom).

In the mashup context, considering also the usual intent to keep the tools’ com-
plexity as low as possible, a well-known and widely adopted paradigm for data in-
tegration is data flow integration. Specifying a data flow among components means
explicitly expressing (e.g., visually modeling) how data flows from one component
to one or more other components, thereby also stating an order of invocation of
components (the flow) and respective activation conditions (the availability of input
data). In other words, a data flow based composition logic implies also a control
flow logic, i.e., an execution order of components. With the term component we
specifically refer to software artifacts (e.g., Web services) exposing public functions
(also called operations) providing for data provisioning or processing. Data travel-
ling along a flow are visible only to the component involved in the flow. Data flows
allow the easy implementation of data mappings, e.g., by creating separate data flow

190



6 Stefano Soi, Florian Daniel, Fabio Casati

connections for each communicating output-input pair. Features like data aggrega-
tion, splitting or transformation can be supported by the composition language or
through dedicated components offering these kinds of functionalities as a service.

The data flow paradigm is, for instance, the solution adopted also by Yahoo!
Pipes (http://pipes.yahoo.com/pipes/), a popular example of data mashup tool. Pipes
allows users to mash up components retrieving and processing data (typically struc-
tured as data feeds) and to set up data flows (so-called pipes), allowing the produced
data to flow through the composition.
Business logic level integration. When the main target is instead the integration
at the business logic level, the key requirement is orchestrating the services imple-
menting the different pieces of business logic to be integrated. In concrete terms, the
developer must be able to explicitly define the order in which component operations
are to be triggered. The most suitable composition paradigm supporting these fea-
tures is the control flow paradigm. Specifying a control flow means specifying when
to enact which component inside a composition. Doing so may require the definition
of conditional flows, of flow branching (i.e., parallel flows) and flow merging (i.e.,
parallel flows synchronization).

Examples of pure control flow based compositions can be developed, e.g., in
BPMN, which offers many control flow related constructs including conditions,
loops, parallel flows and so forth. Although the focus of the control flow paradigm
is on the order of tasks or components, executing them usually requires complemen-
tary data passing mechanisms to feed them with the necessary inputs. In combina-
tion with the control flow paradigm, the blackboard approach, i.e., global variables
holding data produce and consumed at runtime, is typically used for this (note that
the “data flow” constructs of BPMN do not express a data flow based composition
logic, but rather the writing and reading of business data). This scheme is also used
in the BPEL language, where the main target is the integration of SOAP-based Web
services.
Presentation level integration. As mentioned, in other cases the main focus is on
the integration of user interfaces at the presentation layer. In this case the compo-
sition language must support the graphical representation of UI components with
suitable constructs. Also in this case, our focus on Web mashups sets specific con-
straints. UI presentation takes place inside the browser, normally in standard HTML
pages. As shown by the example of Figure 1, typically a Web page may contain one
or more UI components. UI components are software artifacts that have two main
functions: show a graphical user interface and provide users with a point of direct
interaction with the composition through their interfaces. UI components usually
require synchronization, in order to have them show related content. Typically the
interaction mechanism implementing UI synchronization is event-based, since UI
development is intrinsically event-based and it is just not possible to predict when
and in which order user interactions will take place (which makes asynchronous
events a good instrument to manage communication among components). Support
for data passing among UI components may also be needed and can be implemented
following either the data flow or the blackboard paradigms.

191



Conceptual Design of Sound, Custom Composition Languages 7

Concretely, in the mashup world, languages supporting presentation features typ-
ically include two additional concepts to lay out UI components: pages and view-
ports. A viewport is a placeholder where a UI component is hosted and rendered
(e.g., a div or iframe element contained in an HTML page). A page can contain
one or more viewports, allowing for the presentation of integrated user interfaces.
These concepts are present in the models of several mashup tools, e.g., mashArt and
JackBe Presto, as well as in the W3C Widgets family of specifications (where the
term viewport itself comes from).

Having user interfaces oriented toward human users opens to the introduction of
other composition features, such as user authorization and management mechanisms
in the case of mashups with multiple pages. Individual pages may be assigned to
specific user roles, allowing for the definition of multi-user, collaborative mashup
applications where several users can work on a shared mashup instance acting on
the pages they have access to. This is, for instance, one of the main features in the
MarcoFlow platform [5].

4 Requirements and problem statement

What does it now mean to develop a custom composition language for mashup de-
sign and to support its execution? In order to answer this question, first of all we
define a custom composition language as a composition language that is specifically
tailored to a given combination of component types and a target application/service
type (mashup type). We represent a language (we use the terms language and com-
position language interchangeably) by means of its meta-model or XSD schema.
Standard languages like BPEL [7] or BPMN [8] are very focused languages that are
generally not able to satisfy the requirements of a mashup platform, since mashups
typically go much beyond the orchestration of SOAP web services or human tasks.

In order to develop a custom language, we generally have different design options
that allow us to achieve the desired expressive power:

• Development from scratch: This is the current practice that we want to prevent.
Developing a language from scratch means designing the language without any
reference by looking at the composition problem to be solved and by deriving
suitable, ad-hoc composition constructs. This task is more complex than it looks
like and often leads to poorly designed, inconsistent languages, which can only
be run by specifically tailored runtime environments.

• Selection of off-the-shelf language: This is the other, ideal extreme, in which for
each component and mashup type combination we have a pre-defined language
that supports all features of the given combination. Implementing all these lan-
guages is not feasible, in that the number of potential languages (and execution
engines) grows combinatorially with the number of component types and fea-
tures of the target mashups. Also, the introduction of a new component type or
feature would require the update of the whole languages library.

192



8 Stefano Soi, Florian Daniel, Fabio Casati

• Extension of existing language: A practice that works in many situations is to
take an existing language, e.g., BPEL, and to extend it with new constructs and
semantics, so as to support custom features. Starting from a known language
eases the adoption of the extended language, but it is typically hard to identify a
suitable language, and changes to the original language may involuntarily intro-
duce inconsistencies into the custom extension. Even with small extensions, the
language’s own engine can usually no longer be used for execution.

• Customization of reference language: Another option is to provide a set of
reference languages with predefined extension mechanisms. For instance, we
could have reference languages for data-flow-based, control-flow-based, UI-
based mashups, and combinations thereof. Yet, it is hard to predict all possible
customization requirements and to maintain the library of reference languages
and execution engines up to date with changing technologies and applications.

• Modular composition of language: Finally, we can provide a set of basic lan-
guage features, such as control flow, data flow, UI synchronization, and the like
and allow the developer to compose his own language. Newly emerging features
can be added to the feature library without invalidating prior language specifi-
cations. Given a library of language features, it suffices to implement only one
execution engine that is able to understand all the features, in order to be able to
execute a large set of custom mashups.

In this paper we specifically focus on the problem of developing custom lan-
guages, while our vision is also to provide runtime support for custom languages;
the modular composition approach seems therefore most suitable. But which is a
good granularity for reusable language modules? We again have several options:

• Individual language constructs (with the term construct we generically refer to
both meta-model and XSD constructs): Constructs like components, pages, ports,
inputs, outputs, connectors, and similar are the basic ingredients for every lan-
guage. Yet, constructs represent the lowest level of granularity of a language. It is
therefore hard to encode reusable language construction knowledge, if not in the
form of a library of typical composition constructs. How to use each construct, in
which combination with other constructs, for which typical modeling situation,
and so on can however not be expressed.

• Composite constructs: Modules may express composite constructs, such as the
structured elements sequence, parallel flow, and loop, typically used for the con-
struction of well-formed models. This technique aids the development of compo-
sition languages that are sound, but it is still very syntactic and does not support
reuse of more complex language construction knowledge.

• Language patterns: Modules may also express more complex usage patterns of
constructs that represent semantically meaningful composition language prop-
erties, such as control flow, data flow, UI synchronization, component types,
asynchronous vs. synchronous communications, etc. If such patterns are further
equipped with suitable language composition constraints, it is also possible to
guarantee their sound composition.

193



Conceptual Design of Sound, Custom Composition Languages 9

Given our experience with the reuse of modeling knowledge [2], we advocate
the use of semantically meaningful language patterns to represent reusable language
composition knowledge. We call these patterns language features, since they allow
us to represent composition features in an abstract fashion. The question that re-
mains to be answered is therefore which language features must be provided, so as
to support the construction of a reasonably wide set of possible languages. Looking
at set of existing mashup approaches [3][4][6] and standard composition languages
[7][8] and without trying to crack the whole problem at once, we identify five key
aspects (groups of features) that influence the expressive power of a composition
language:

1. Component types: First and foremost, the object of the composition, i.e., the
types of components, influences the whole logic of the language most promi-
nently. There are many possible component technologies to take into account,
such as SOAP web services, RESTful services, UI widgets, JavaScript classes,
plain XML or CSV data sources, and similar. Composing UI widgets is, for ex-
ample, fundamentally different from orchestrating web services.

2. Control flow logic: Next, it is important to define how the computation of a com-
posite application or service is enacted, that is, how and when individual com-
ponents are processed. Components may be enacted in parallel (e.g., in the case
of simple UI widgets placed in a web page), they may be executed sequentially,
their execution may be subject to conditions, and so on. The possibility to inte-
grate heterogeneous component technologies (e.g., UI widgets and web services)
further increases the number of available control flow options, if the control flow
paradigm is required at all.

3. Data passing logic: In addition to the control flow logic, the language must be
able to express how data is propagated among components. While data flow
paradigms typically bring together aspects of both control flow and data passing,
other paradigms like pure control flow or UI synchronization may rather adopt a
blackboard approach with global variables.

4. Presentation logic: One of the distinguishing features of mashups is that they
also feature integration of user interfaces, not only services and data sources.
This however asks for specific techniques to lay out and render UI elements. For
instance, we may make use of HTML templates with placeholders or we may
have automatic arrangements of UI widgets, there might be the need of special
visualization components for data sources, and so on.

5. Collaboration support: Finally, mashups can be much more than simple, one-
page applications. We can have mashups that implement collaborative business
processes with different actors per task, or we can have mashups that support the
concurrent use of individual pages by multiple users. Supporting these features
requires the possibility to express at least roles of users and to assign them to
pages, while more complex logics can be envisioned.

The problem we want to solve in this paper is to enable developers to design
custom composition languages in an abstract, conceptual fashion, supporting the
five above feature types and guaranteeing that the final languages come without

194



10 Stefano Soi, Florian Daniel, Fabio Casati

internal inconsistencies, i.e., that they are sound. Our focus is on imperative mashup
languages that can be executed by a mashup engine.

5 Approach

Figure 3 graphically illustrates how we decompose the problem into artifacts and
how we finally obtain a custom language. The idea is to express a custom composi-
tion language as a set of composition features that give the language its expressive
power. Features come with a set of feature constraints, which express feature com-
patibilities, conflicts, and subsumptions. For each of the five types of composition
features discussed above, we provide a set of concrete features (we discuss them
next). Each feature has a reference specification, i.e., a pattern of language con-
structs, which implements the feature and represents reusable language composi-
tion knowledge. Patterns are based on a generic composition language meta-model.
The meta-model does not yet represent an executable language. It syntactically puts
composition constructs and features in relation with each other, but it also contains
constructs and features that are not compatible with each other (e.g., control flow
and data flow constructs). The meta-model determines which features are supported
and how they are syntactically integrated; the sensible design of feature constraints
provides for soundness. Hence, given a set of non-conflicting composition features,
the custom composition language is represented by the union of the respective refer-
ence specifications. Similarly, we derive a custom component description language,
which can be used as guide for the implementation of components and to describe
their external interfaces.

In the following, we first construct the generic meta-model, then we describe
how we define composition features on top using patterns and constraints and how
patterns can be used and integrated for the development of custom languages.

6 The generic composition meta-model

Before going into the details of the language meta-model, we introduce the meta-
meta-model it complies with, as such is also the basis for the final code generation.

6.1 Language meta-meta-model

To design the meta-model for the composition languages, we use a notation and
modeling language derived from the UML Class Diagram with some peculiarities.
Specifically, we impose some constraints on the allowed types of modeling con-
structs, tailoring them to the expressive power required by our modeling needs. As

195



Conceptual Design of Sound, Custom Composition Languages 11

Custom composition 
language

Custom component 
description language

Composition 
feature

Feature reference 
specification

Generic composition 
language meta-model

Generic component 
descriptor meta-model

Feature 
constraint

supports

Component feature
1..N

has

0..N

1..N

integrates

1..N

supports

implemented as

1..N 1..N

derives from derives from

0..1 0..1

constrains

based on

Control flow feature

Data passing feature

Presentation feature

0..1

Collaboration feature

Fig. 3 Conceptual approach to the development of custom composition languages

detailed in Section 6.3, applying these constraints allows for an unambiguous trans-
lation of the meta-model into a formal - and machine-readable - language schema
definition, which is then needed for the definition of other artifacts of the system.
In addition, using this constrained modeling language also opens to future exten-
sions of the meta-model by third parties, making them aware of the implications
of each model extension or modification on the resulting language definition (since
deterministic translation rules are defined). Concretely, as defined by the meta-meta-
model depicted in Figure 4, the meta-model may consist of:

• Entities. Represent main constructs of the composition language. They are iden-
tified by a name.

• Attributes. Each entity can have a set of related attributes characterizing it. At-
tributes have a name and a type. The type can be stated through its name or can
be explicitly defined in form of enumeration of possible values. To be noticed,
each entity in our meta-model must contain an attribute named id, representing a
unique identifier for the instances of the entity used to reference them.

• Associations. Relations among the entities are expressed through associations.
Only two possible types of associations are needed: composition and uni-directional
association. The composition is used to state that an entity is contained in another
one, while the uni-directional association states that an entity simply refers to an-
other entity, but it is not contained in it.

• Cardinalities. Represent associations’ multiplicities. The target cardinality rep-
resents the multiplicity of the association when reading it following the speci-
fied association direction, while the source cardinality represents the multiplicity
when reading the association in the opposite direction.

196



12 Stefano Soi, Florian Daniel, Fabio Casati

Name: String
Entity Name: String

Type: String

Attribute

Association

sourcetarget

Composition
Name: String
Uni-directional

has

MinValue: Integer
MaxValue: Integer

Cardinality
source 0..1

1

0..N

1 1

target

Fig. 4 Composition language meta-meta-model

6.2 The generic meta-model

In essence, our approach is to compose composition languages out of composition
features represented as language patterns. Just like in any other composition ap-
proach, the core problem is therefore the identification and formalization of the
“components” to work with. In our case, these components are language patterns
(e.g., XSD fragments). However, these patterns have a distinctive feature that makes
our problem very different form generic component-based development (next to the
fact that we do not handle software modules but document/model fragments): un-
like, for example, web services, language patterns are not independent. That is, the
reference specifications of different composition features may overlap (e.g., inter-
acting with a SOAP service is very similar to interacting with a RESTful service),
include other features (e.g., the data flow paradigm generally subsumes the pres-
ence of data source components), or exclude others (e.g., the data flow paradigm
does not make use of variables). This asks for a thorough design of the language
patterns and their mutual interaction points, a task that we achieve by mapping each
composition feature into the generic composition meta-model (see Figure 5), which
(i) integrates all basic language constructs syntactically, (ii) allows us to define com-
position features as language fragments on top, and (iii) guarantees that fragments
are compatible by design.

We have identified several dozens of composition features that can be used to
describe the expressive power of mashup languages. In the following paragraphs,
we overview the features and provide some examples. For space reasons, however,
we refer the reader to an online resource (http://goo.gl/hfkLO) for the list of sup-
ported features and respective details. The list of identified features comes without
the claim of completeness and is meant to grow over time; however, as we will see in
Section 8, we are already able to express a fairly complex set of mashup languages.
Component features. They specify which kinds of components - in terms of tech-
nologies and communication patterns - the language should support. For instance, a

197



Conceptual Design of Sound, Custom Composition Languages 13

Control flow

       Component Presentation

Collaboration

Data passing     

Id
Name
Type
Reference

Operation
Id
Name
ManualInput
Optional

Input 
Parameter

Id
Name

Output 
Parameter

Id
Name
ManualInput

Configuration 
Parameter

1..N

Name
Mashup

Id
Name

Viewport

Id
Name
URL

Page

Id
Name

User Role

Id
DfConnector

Expression
Language

Condition

Id
Name
Type
DefaultValue

Global Variable

Id
Name
Type
Binding
DescriptorURL

Component

Id
Join

Id
Split

Id
CfConnector

source

0..1 feeds

          1..N

belongsTo

displays

0..1

1

0..1
1

Id
Name
Type
Value

Constant

0..Ntarget

0..N

Id
Name
Definition

Data Type

has

0..1

feeds

0..N

0..N

0..N

0..1

0..N

0..N

0..N

0..N0..N 0..N

has

0..N

1

0..N

0..N

          1..N

0..N

source

source

target

target

1

1

1

1..N

1..N

1

0..N

target

source0..1 0..N

0..1

0..1
0..N

0..N

0..N
0..1

0..1

0..1

0..N

target

source

0..N

0..N

0..N

0..N

0..N

0..N

has 0..N

1

has

1

0..N

0..N

Fig. 5 The generic composition meta-model for custom languages. Gray boxes group entities into
feature types. The Component group is also used to derive component descriptor languages

SOAP web service may come with message-based operations of four different types
(request-response, solicit-response, one-way, notification), custom data formats for
each input and output message, a service endpoint, and a protocol binding (e.g.,
SOAP). We represent such a service in the meta-model as a component that has a
set of operations with different input/output parameter patterns (implementing the
four different operation types), only single input/output parameters per operation to
represent input/output messages, an own data type for each parameter, and respec-
tive binding and endpoint attribute values. Similarly, a W3C UI widget [9] can be
seen as a component with some configuration parameters but without operations,
which can be displayed in a viewport of a page of the mashup.

Analogously, the meta-model so far conciliates the following technologies, which
are the basis of many types of mashups and, as such, widely used and accepted
(component technologies are tracked by the type attribute of the component entity):

• Data source components: RSS feeds, Atom feeds, RESTful data components,
SOAP data components, JavaScript data components.

• Web service components: Atom services, RESTful services, SOAP services,
JavaScript components.

• UI components: W3C UI widgets [9], JavaScript UI components [4] (our own).

198



14 Stefano Soi, Florian Daniel, Fabio Casati

For each of these component technologies, it is then important to specify which
exact communication patterns the language should support. For instance, the lan-
guage could support only synchronous communications (operations with input and
output parameters), only asynchronous communications (operations with either in-
put or output parameters), or both. It might be necessary to limit the number of
operations per component (e.g., in Yahoo! Pipes each component corresponds to
one operation) or the number of parameters per operation (like for SOAP services
as described above). All these options can be represented via patterns that suitably
set the relationship cardinalities in the meta-model.
Control flow features. They specify whether the language is control-flow-based
(e.g., BPMN) or not and, if yes, which control flow constructs to support. Se-
quential execution can be expressed by connecting operations using control flow
connectors (CfConnetors). Parallel executions are supported via split and join con-
structs. Each of these constructs can have one or more conditions, which constrain
the control flow along connectors and, for instance, allow the implementation of
conditional control flow constructs like conditions, conditional split, and conditional
joins. Loops can be implemented by means of conditions and joins. Events for event-
based mashups (e.g., our mashArt platform [4]) are operations with only outputs.
Each of these features can be added to the language by including the respective
entities in the meta-model.
Data passing features. They specify whether the language is data-flow-based or not
and how data is propagated among components. In data-flow-based languages (e.g.,
Yahoo! Pipes) it suffices to connect two operations using a data flow connector (Df-
Connector), in order to propagate the output of the first operation as input to the sec-
ond operation. Implicitly, data flow connectors also determine how components are
enacted and, hence, do not require any additional control flow construct. Data flows
may however be subject to conditional execution. Control-flow-based languages,
instead, require additional constructs to specify how data are passed among com-
ponents. The most common technique is to write/read global variables (blackboard
feature), which are accessible during the execution of a composition (e.g., as in
BPEL). The meta-model represents the writing/reading operations with a data flow
connector between the variable and its target/source parameter. UI-based mashups,
such as widget portals, typically run all widgets in parallel, and data is passed via
global variables or events (operation with only outputs). Configuration parameters
are instead typically set once at the startup of a component (e.g., the background
color of a UI widget); we support this by means of constants. Data passing may
also require mapping output parameters to input parameters, a feature that can be
achieved by specifying data flow connectors between parameters instead of between
operations.
Presentation features. They specify whether the language is UI-based or not and
how UI widgets are laid out into web pages. Unlike service compositions, mashups
typically also come with an own user interface that renders UI components and data
from UI-less components. The minimum support required to express this capability
in the meta-model is represented by the page and viewport entities, which allow the

199



Conceptual Design of Sound, Custom Composition Languages 15

ordering of UI components into pages (HTML web pages) and their rendering in
selected areas inside these pages (typically div or iframe HTML elements). We
assume the HTML pages are given and already linked to each other as necessary.
Collaboration features. They specify whether the language describes single-user
or multi-user mashups and how user roles collaborate. Single-user mashups (the
most common type of mashups) do not require any user management. Multi-user
mashups, instead, may restrict the visibility of individual pages to selected user
roles only. Users may have different views on a mashup (e.g., via different pages)
or they may have the same view (e.g., via the concurrent use of a same page). For
the time being, we start with a simple, role-based user management logic and do not
say anything about how such is implemented, as this is a runtime choice.

The above features and examples show that developing a good generic meta-
model is a trade-off between the simplicity and usability of the final language (the
fewer individual constructs the better) and the ease of mapping features onto the
meta-model (the more constructs the better; in the extreme case, each feature could
have its own construct). The challenge we try to solve in this paper is exactly that
of identifying the right balance between the two, so as to be able to map all relevant
features and to do so in an as elegant as possible fashion from the resulting language
point of view.

6.3 Mapping the generic meta-model to XSD

The information represented by the generic meta-model constitutes the basis for the
definition of the feature reference specifications (see Section 7.1) and is required by
the language generation algorithm (see Section 7.3). Therefore, we need to serialize
the generic meta-model in a machine-readable format. To this aim, also considering
the context where mashup languages are used (i.e., the Web), we map the meta-
model onto an equivalent XSD definition. As introduced in Section 6.1, we impose
some simple conventions and constraints to the admitted modeling constructs for the
meta-model so that we can define a set of rules which guarantees an unambiguous
translation of the model.

Figure 6 exemplifies how the generic meta-model is translated into an equivalent
XSD definition applying the following translation rules:

• Entities (e.g., page) are translated as XSD elements having the same name of the
entity.

• Entity attributes (e.g., a page’s URL) are translated as XSD attributes of the re-
lated element having the same name of the entity’s attribute.

• Composition associations (e.g., the one having viewport as source and page as
target) are translated defining within the element associated to the target entity
an XSD child element (with zero or more possible occurrences depending on the
specified cardinality) having the name of the source entity (e.g., the element page

200



16 Stefano Soi, Florian Daniel, Fabio Casati

1..N

Id
Name

Viewport

Id
Name
URL

Page

Id
Name

UserRole

belongsTo

0..N

0..N

<xs:element name="userRole">
<xs:complexType>

<xs:attribute name="id" type="xs:string" use="required" />
<xs:attribute name="name" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

<xs:element name="page">
<xs:complexType>

<xs:sequence>
<xs:element name="viewport" minOccurs="1" maxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="id" type="xs:string" use="required" />
<xs:attribute name="name" type="xs:string" use="required" />

</xs:complexType>
</xs:element>
<xs:element name="belongsTo_userRole" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="ref" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

</xs:sequence>

<xs:attribute name="id" type="xs:string" use="required" />
<xs:attribute name="name" type="xs:string" use="required" />
<xs:attribute name="URL" type="xs:string" use="required" />

</xs:complexType>
</xs:complexType>

Fig. 6 Example of translation of a meta-model fragment into XSD

has 1 to N child elements viewport). As shown in the example in the figure, the
child elements are contained and defined within the parent element.

• Uni-directional associations (e.g., the one having page as source and userRole
as target) are translated defining within the element associated to the source
entity an XSD child element (with zero or more possible occurrences depend-
ing on the specified cardinality) having the name of the form “association-
Name targetEntityName” and including an attribute ref designed to contain a
reference (i.e., the ID) to a target entity instance (e.g., the element page may
have 0 to N child elements belongsTo userRole). The child elements only refer
to the target entity and do not define it.

Applying the above translation rules to the meta-model presented in Figure 5 we
obtain an equivalent XSD definition that we use as base for the production of the ar-
tifacts and algorithm presented in the next section. The complete schema definition
can be inspected at http://goo.gl/hfkLO.

7 Representing and assembling composition features

The meta-model in Figure 5 solves the problem of integrating the composition lan-
guage constructs needed to specify a varied set of composition features. Designing
the meta-model required both the analysis of the features to be supported and knowl-
edge about their implementation in terms of language constructs. We aim to abstract
away from low-level language constructs and represent concrete composition fea-
tures on top of the generic meta-model so as to allow the language developer to
focus on the selection of features only, in order to design his custom language.

201



Conceptual Design of Sound, Custom Composition Languages 17

We define a composition feature as f = �name, label,desc,spec,Constr�, where
name is a text label that uniquely identifies the feature (e.g., data flow); label
briefly describes the feature and expresses its semantics; desc is a natural language
verbose description of the feature for human consumption; spec is the reference
specification of the feature; and Constr = constri is a set of feature constraints.

<feature name="condition" label="Conditions">

<description> Conditions can be set for each connector to define the
possible flows of the composition. Conditions are supported both for
control flow and data flow composition paradigms.

</description>

<specification>

<include fragments="conditionForCf" if="control_flow"/>
<include fragments="conditionForDf" if="data_flow"/>
<include fragments="conditionForSplit" if="split"/>
<include fragments="conditionForJoin" if="join"/>

</specification>

<constraints>
(control_flow AND blackboard) OR data_flow

</constraints>

</feature>

Listing 1 XML reference specification of the condition composition feature

The XML code in Listing 1 shows an example of how we serialize, for instance,
the condition feature in our feature knowledge base of the form F = f j. The
example shows the two core ingredients that allow us to collapse the assembling of
features into a simple selection of feature names: First, the reference specification
of the feature expresses which specific language constructs - out of all those repre-
sented in the generic meta-model - are needed to implement the feature. From the
XSD representation of the generic meta-model (see Section 6.3), we identify given
subsets of the schema definition representing semantically meaningful parts of it.
An ID uniquely identifies each of these fragments in the XSD. Second, the fea-
ture constraints state feature compatibilities or incompatibilities. They are simple
Boolean conditions. We detail these two aspects in the following.

7.1 Feature specification language

In order for feature specifications to be composable, we adopt a constructive ap-
proach that starts with an empty language specification (we call it the base lan-
guage), which contains only the basic XSD structure (e.g., name space definitions
and types) for the language to be generated, and then incrementally adds new con-
structs based on the specifications the of selected features. Since a given feature may
span multiple constructs of the meta-model, a feature reference specification gen-
erally requires multiple language fragments (identified through manually assigned
IDs) to be included in the final custom language definition. For instance, the specifi-

202



18 Stefano Soi, Florian Daniel, Fabio Casati

cation of the blackboard feature requires several fragments to be included, e.g.,
those related to the specification of the Global Variable construct and those related
to the specification of the DfConnector construct used to connect variables and pa-
rameters. The syntax to require the inclusion of the fragments referenced by a given
feature is as follows:

<include
fragments="[comma separated list of fragments IDs]"
if="[condition]" />

Each feature specification contains one or more include elements that are
composed by an attribute fragments listing the fragments needed to implement
the feature in the custom language XSD definition. The referenced IDs relate to
XSD fragments defining elements, attributes, enumerations and similar. In addition,
the include element may optionally contain an attribute if that can be used to
require a conditional inclusion of the referenced fragment(s). In particular, the con-
dition can require the selection or non-selection of other features for the inclusion
to be performed (as exemplified in Listing 1). The fragments come with default
values for cardinalities (i.e., values for the minOccur and maxOccur XSD at-
tributes), as specified in the meta-model in Figure 5. Some features, such as the
max 1 operation per component or the single page features, may need
to modify them. In order to change cardinality values, we provide a dedicated car-
dinality setting function with the following syntax:

<setCardinality
element="[elementID]"
minOccurs="[value]"
maxOccurs="[value]" />

The function has three attributes, which allow us to select which XSD element
in the current language specification to modify and which minOccurs and/or
maxOccurs values to assign to the element. It can be noticed that an association’s
cardinality setting involves only one XSD element. This is because, according to
our translation rules, associations are translated in one element that is nested into
the associated element and, therefore, the cardinality setting needs only to set the
number of possible occurrences of one element, i.e., the nested one.

7.2 Feature constraints language

Feature constraints are Boolean conditions that check (i) whether all features re-
quired by a given selection of features are contained in the selection and (ii) whether
the selection contains conflicting features. Feature constraints therefore guarantee
for the semantic soundness of a selection of features. Feature constraints are of the
form: constr ::= fbool | ¬ constr | constr op constr.
f bool ∈ FB is a Boolean variable representing the selection (or not) of a feature,
FB = { f b j| f b j = �name,val�,name = f j.name, f j ∈ F,val = true| f alse} is the set
of Boolean variables representing all features, and op ∈ {∧,∨,⊕} is one of the log-
ical AND, OR, and XOR operators.

203



Conceptual Design of Sound, Custom Composition Languages 19

For example, in Listing 1 we have the constraint (control flow AND
blackboard) OR data flow, since for the definition of conditions it is re-
quired the presence of some data passing mechanism in the mashup model. This is
an example of constraint assessing the presence of the features required for the se-
lected one. An example of constraint preventing conflicting features is the one asso-
ciated to the feature max 0 operation per component (e.g., used for simple
UI widget portals), which may state: NOT(data flow OR control flow).
It would not make sense to support any of these paradigms in a language that by
definition does not allow communication among components.

In addition to assigning constraints to individual features, we assign a set of base
constraints to the base language, in order to enforce global constraints that guarantee
the integrity of the overall language. For instance, the constraint (control flow
XOR data flow) OR user interface asks for the selection of at least one
basic mashup paradigm (e.g., a simple state machine or UI widget portal).

7.3 Language generation algorithm

Algorithm 1 summarizes the language generation logic. It takes as input a set of
feature names and produces as output either an according combination of composi-
tion and component description languages or null (in case of constraint conflicts).
After initializing the variables holding the language to be generated and the con-
straints to be evaluated (lines 2-3), the algorithm loads the complete feature speci-
fications of each feature in input from the feature knowledge base (line 4) and sets
the respective Boolean variables to true and all the remaining variables (those asso-
ciated to non-selected features) to false (lines 5-6). This enables the processing of
the checkSoundness function, which checks whether all the constraints associ-
ated to the selected features are satisfied. For this purpose, the function evaluates
the Boolean formula contained in CONSTR based on the variable values assigned
in lines 5-6. If the evaluation returns false, the function stops processing and re-
turns null (lines 7-10). Otherwise, the algorithm constructs the list of IDs of all
the fragments required by the selected features and the set of setCardinality instruc-
tions needed to update the default cardinalities (lines 11-13). Based on these sets the
algorithm constructs the actual output composition language including all the frag-
ments in the FRAGMENTS set and then updates the cardinalities of the elements of
the resulting composition language based on the instructions contained in the SET-
CARDINS set (lines 14-15). Finally the algorithm returns the composition language
definition and the component description language definition, which is extracted by
the former (line 17).

Our current prototype of the language generator comes as a simple command line
tool, which takes as input a text file with the list of desired language features and,
if successful, produces as output two XSD files for the composition and component
description languages. The feature knowledge base F is a plain XML file, which can
easily be extended with new features.

204



20 Stefano Soi, Florian Daniel, Fabio Casati

is  the set of Boolean variables representing all features, and !" ! !!!!!  is one of 
the logical AND, OR, and XOR operators.  

For example, in Listing 1 we have the constraint (control_flow AND black-
board) OR data_flow, since for the definition of conditions it is required the pres-
ence of some data passing mechanism in the mashup model.  

In addition to assigning constraints to individual features, we assign a set of base 
constraints to the base language, in order to enforce global constraints that guarantee 
the integrity of the overall language. For instance, the constraint (control_flow 
XOR data_flow) OR user_interface asks for the selection of at least one basic 
mashup paradigm (e.g., a simple state machine or UI widget portal).  

7.3 Language generation algorithm 

Algorithm 1 summarizes the language generation logic. It takes as input a set of fea-
ture names and produces as output either an according combination of composition 
and component description languages or null (in case of constraint conflicts). After 
initializing the variables holding the language to be generated and the constraints to 
be evaluated, the algorithm loads the complete feature specifications of each feature 
in input from the feature knowledge base and sets the respective Boolean variables to 
true. This enables the processing of the checkSoundness function, which, if false, 
stops processing and returns null. Otherwise, the algorithm constructs the list of IDs 
of all the fragments required by the selected features and the set of setCardinality 

!"#$%&'()*+!"#$%$&'($)'%#*'#$""
,-'-.** +$(",-".$/$0($1"-$'(*&$"%'2$."!"#$%&%'"
/012"'1.** !!"#$"%&'&"()*(+! !"#$"%&%'(&)!*+%,!"0,%('3%3%#"(4$"#$%$&'($1"0,25,.3(3,%"/'%#*'#$"

.5$03-30'(3,%" 3%" 6+7" '%1" (4$" '00,&13%#" 0,25,%$%(" 1$.0&35(3,%" /'%#*'#$" .5$03-30'(3,%" 3%"
6+78",&""(''"3-"(4$"(4$&$"'&$"0,%-/30(."'2,%#"(4$"0,%.(&'3%(.",-"(4$".$/$0($1"-$'(*&$.*

1 // the knowledge base F and the set of Boolean variables FB are accessible 
through global variables 

2 )*$+*,-.-*"/#"019"'#"0(#0%2#,%:"//languageBase is a global variable 
3* 345&67"9"8#,%3*",.9#-".,:"//baseConstraints is global variable"
4* !"#$ ! !!! !!!!! ! !!!! !!"#$ ! !"#$%&%'!!"//load sel. features from knowledge base F"
5* -,&"$'04"!" ! !""//set values of Boolean variables in FB"
6* """"":8;<#'"9";!"!!"#$ ! !"#$%&%'<"="(&*$">"-'/.$:""
7* -,&"$'04"! ! !"#$""//construct set of constraints to be checked"
8* """""!"#$%&! ! !!"#$%& ! !!!"#$%&:"
9* 3-";:(0:;<$2=>=011;345&678"!2<"99"-'/.$<"(4$%"//check soundness"
+?* """""&$(*&%"%*//:"//interrupt processing if constraint conflicts occur"
++* -,&"$'04"! ! !!"#"""
+@* 11111!7=>?@56&19"!7=>?@56&1!1%0'2%=A=:"2>01;-<:"//construct set of fragments IDs"
+3* 11111&@63=7AB5&"9"!"#$%&'()!!!"%0'2%=<0'1;-<:"//construct set of setCardin. opers"
+4* !"#$%&'()*+,'"-./!"#$%&'()01*+,-+./0/+1231423"//construct composition language"
+5* %4&*-'5*)&!"*$!-!'./)&(5#"67')81*+,-+./0/+1231423"//update cardinalities"
+6* //construct result set by generating also the component description language"
+7* &$(*&%"!!"#$"%&'&"()*(+!!"#$%&#'!(&)%*+!!"#$"%&'&"()*(+!!:"

8 Examples

In the following sections, we apply the conceptual design approach introduced
above to two concrete examples with different requirements.

8.1 mashArt

In Section 2, we stated a set of requirements for the mashArt composition language.
In the following, starting from these requirements, we derive the set of features
(emphasized in Courier font in the following paragraphs) to be given as input to
our generation algorithm to produce a mashup language supporting our scenario.

As said, mashArt aims at integrating data, business logic and user interfaces.
Therefore, data component, service component and ui component
features are required to support all the different types of needed compo-
nents. All the components must be implemented through JavaScript, there-
fore the features javascript for data, javascript for service and
javascript for ui have to be included. In particular, data components
must support only request response for data operations, service com-
ponents both request response for service, one way for service

205



Conceptual Design of Sound, Custom Composition Languages 21

Id
Name
Type
Reference

Operation

Id
Name
Optional

Input 
Parameter

Id
Name

Output 
Parameter

Id
Name

Configuration 
Parameter

Name
Mashup

Id
DfConnectorId

Name
Type
Binding
Endpoint

Component

0..1 feeds

          1..N

1

1

Id
Name
Value

Constant

Id
Name
Definition

Data Type

has

0..1

0..N 0..N

has

0..N

1

1..N

0..N

          0..N

0..N 0..N

target

source0..1 0..N

0..1

0..N

has
1

0..N

0..N

1

has

Type = data_component  
            | service_component
            | ui_component ;

Binding = javascript;

Type = request_response  
            | one_way
            | notification;

1..N
Id
Name

Viewport Id
Name
URL

Page
displays

0..1

1..N

Fig. 7 A composition language meta-model supporting the discussed features set

and notification for service operations and UI components only
one way for ui and notification for ui operations. The requirements
do not include isolated UI components (i.e., widgets), so all components
will have minimum one operation, while no maximum number of oper-
ations per component is required (max N operation per component).
Also the number of input and output parameters per operation should
not be constrained to any limit (max N input param per oper and
max N output param per operation). Clearly, it is also required to sup-
port the display and layout of UI components, which is fulfilled by the
user interface feature. In particular, we require compositions to be consti-
tuted by a single page. The components’ intercommunication, according to the
requirements, must be supported through the data flow mechanisms. In addition,
merge and branch features are explicitly required.

The above paragraph provides the list of features supporting our scenario (the
only design artifact to be produced) to be given as input to the language generation
algorithm shown in Algorithm 1. Doing so produces an XSD specification for the
composition language that is equivalent to the meta-model illustrated in Figure 7.

For space reasons we cannot include the whole XSD specification, which can
be inspected at http://goo.gl/hfkLO. Listing 2, though, provides an excerpt of the
XML definition - compliant to this specification - representing the example scenario
introduced in Section 2 (i.e., geo-localized search with traffic information).

<mashup name="GeoLocalSearchWithTraffic">
<component id="C1" name="Yahoo Local Search" type="ui" binding="javascript"

endpoint="http://...">
[...]
<operation id="OP2-1" name="Item Selected" type="notification"

reference="itemSelected">

206



22 Stefano Soi, Florian Daniel, Fabio Casati

<output id="O2-1" name="Latitute" dataType="double"/>
<output id="O3-1" name="Longitue" dataType="double"/>
<output id="O4-1" name="Zoom Level" dataType="int"/>
<output id="O5-1" name="Label" dataType="string"/>

</operation>
</component>

<component id="C2" name="Google Map" type="ui" binding="javascript"
endpoint="http://...">

[...]
<configurationParameter id="CP1-2" name="latitude" dataType="double"

manualInput="yes"/>
<configurationParameter id="CP2-2" name="longitude" dataType="double"

manualInput="yes"/>
<configurationParameter id="CP3-2" name="zoomLevel" dataType="int"

manualInput="yes"/>
[...]
<operation id="OP1-2" name="Show Point" type="one-way" reference="

showPoint">
<input id="I1-2" name="longitude" dataType="double" optional="no" />
<input id="I2-2" name="latitude" dataType="double" optional="no" />

</operation>
</component>

<component id="C3" name="Geo Names" type="service" binding="javascript"
endpoint="http>//...">

[...]
<operation id="OP1-3" name="Get address" type="request-response"

reference="getAddress">
<input id="I1-3" name="longitude" dataType="double" optional="no" />
<input id="I2-3" name="latitude" dataType="double" optional="no" />
<output id="O1-3" name="city" dataType="string"/>
<output id="O2-3" name="street" dataType="string"/>

</operation>

</component>

[...]
<constant id="CNST1" name="Latitude" dataType="double" value="46.0667"

feeds_configurationParameter="CP1-2"/>
<constant id="CNST2" name="Longitude" dataType="double" value="11.1333"

feeds_configurationParameter="CP2-2"/>
<constant id="CNST3" name="Zoom Level" dataType="int" value="13"

feeds_configurationParameter="CP3-2"/>
[...]

<dfConnector id="DF1" source_output="O2-1" target_input="I1-2" />
<dfConnector id="DF2" source_output="O3-1" target_input="I2-2" />
<dfConnector id="DF3" source_output="O1-1" target_input="I1-3" />
<dfConnector id="DF4" source_output="O2-1" target_input="I2-3" />

</mashup>

Listing 2 XML definition of the example mashup application presented in Section 2

Figure 8 shows how the example scenario can be modeled using the graphical
syntax we adopt in the mashArt editor. It can be noticed that all the main compo-
sition features supported by the existing editor are also supported by the language
produced by our system, which are summarized on the right side of this figure.

8.2 Yahoo! Pipes

In the following, we derive part of the mashup language underlying the popular
mashup platform Yahoo! Pipes from an example modeled in its graphical editor.

207



Conceptual Design of Sound, Custom Composition Languages 23

5
6

4

7

3

service_component
request_respone_for_service
one_way_for_service
notification_for_service
javascript_for_service

2

ui_component
one_way_for_ui
notification_for_ui
javascript_for_ui

max_N_operation_per_component

max_N_output_param_per_operation

configuration_param

data_component
request_response_for_data
javascript_for_data

1

4

3

6

7

Selected feature names FnameSel

user_interface
single_page

8

max_N_input_param_per_operation5

data_flow9

1

29

branch
merge

8

Fig. 8 mashArt example composition model and the set of respective language features

1

5

6 6

7

8

3

2

4

service_component
REST_for_service
request_response_for_service

2

manual_input

data_flow

max_1_operation_per_component

max_N_intput_param_per_operation

max_1_output_param_per_operation

configuration_param

data_component
RSS_for_data 
atom_for_data
request_response_for_data

1

4

3

5

6

7

8

Selected feature names FnameSel

branch9

9

Fig. 9 Yahoo Pipes example composition and set of respective language features

Pipes is a data mashup tool for the retrieval and processing of web data feeds. Figure
9 shows an example Pipes model, which we use to analyze Pipes’ language features.

Pipes is based on the data flow paradigm. It supports data component and
service component types to retrieve and process data, respectively. Specifi-
cally, data source components types are RSS for data or atoms for data,
while the only supported service component type is REST for service. Each
component in Pipes provides exactly one function, that is, each component repre-
sents one single operation. Therefore max 1 operation per component. All
operations are of type request-response (request response for data and
request response for service). Each operation may have one or more
inputs (max N input param per operation) but one and only one output

208



24 Stefano Soi, Florian Daniel, Fabio Casati

Id
Name
Type
Reference

Operation
Id
Name
ManualInput
Optional

Input 
Parameter

Id
Name

Output 
Parameter

Id
Name

Configuration 
Parameter

Name
Mashup

Id
DfConnectorId

Name
Type
Binding
Endpoint

Component

0..1 feeds

          1..N

0..1

1

1

Id
Name
Value

Constant

Id
Name
Definition

Data Type

has

0..1

feeds

0..N

0..N 0..N

has

0..N

1

1

0..N

          0..N

0..1 0..1

target

source0..1 0..N

0..1

0..N

has
1

0..N

0..N

1

has
Type = data_component | 
            service_component;

Binding = rest | rss | atom;

Type = request_response;

Fig. 10 A composition language meta-model supporting the discussed features set

(max 1 output param per operation). Manual inputs (manual input)
are used to fill the values of input fields, i.e., of configuration parameter(s).
Some inputs can be fed with both an input pipe and a manually set constant value.
Also in this example, the output of a component can be the source for an arbitrary
number of dataflow connectors, allowing one to branch the data flow into parallel
flows. Input parameters, instead, have at most one input pipe; so, there is not need
for any merge.

The language produced by the language generation algorithm (defined in Algo-
rithm 1) giving as input to it the described features is equivalent to the meta-model
illustrated in Figure 10. The respective language XSD specifications and the XML
model of the scenario can be inspected online at http://goo.gl/hfkLO.

9 Realated work

The problem we aim to solve in this paper, i.e., supporting the design of custom
mashup/composition languages, has not been addressed before. Most contributions
in the area of mashup and service-oriented computing focus on the design of spe-
cific languages taking into account, for example, quality of service [10], adaptivity
or context-awareness [11], energy efficiency [12], and similar. We instead propose
a language (the composition features) for the design of languages - a model weav-
ing approach (at the meta-model level) for black-box composition languages (e.g.,
mashups), in the terminology of Heidenreich et al. [13]. The problem is very com-
plex, but our analysis of a large set of mashup tools and practices has shown that
the design space for non-mission-critical mashups (without fault handling, compen-
sations, transactions, etc.) is limited and manageable, up to the point where we can
provide mashup execution as a service for a large class of custom languages.

209



Conceptual Design of Sound, Custom Composition Languages 25

If we compare the meta-model in Figure 5 with, for example, that of BPEL [7]
(see also http://www.ebpml.org/wsper/wsper/ws-bpel20b.png) or XPDL, we notice
a bias toward simplicity. The reason for this is that mashup platforms (our target)
aim to simplify composition, typically moving complexity from the composition
to the components. For instance, it is common practice to have a dedicated data
filter component, instead of a filter construct at language level (see, for example,
Yahoo! Pipes). The meta-model we propose in this paper shares this interpretation
for both the component model and the composition model. Also Saeed and Pautasso
[14] have a similar perspective, but they focus on the design of a generic mashup
component description language only and do not elaborate on their composition.
Their model contains technology aspects (e.g., component wrappers), which are
instead a runtime aspect. We only propose the use of component types and bindings.

A proposal toward the standardization of a generic mashup language, covering
as many different uses as possible, is represented by the Open Mashup Alliance’s
EMML (Enterprise Mashup Markup Language) specification [15]. The target of the
initiative is however different: data mashups. In our view the key novelty mashups
brought to software integration is integration at the UI layer. Hence, the focus on
data mashups only is too narrow, yet the language has already grown very complex
and has not been adopted so far by vendors outside the Alliance itself.

However, especially with the growing importance of cloud computing and com-
position as a service providers (such as mashup platforms or scientific workflows
[16]), we expect the importance of customization of composition languages - as a
means of diversification - to grow. Also Trummer and Faltings [17] work toward
composition as a service; yet, instead of focusing on custom language design, they
approach the problem from the provider side and study the optimal selection of ser-
vice composition algorithms - a task that could be eased if customers were allowed
to tailor the composition language to be executed to their very specific needs.

10 Conclusion and future work

Component-based development and composition tools, such as mashup tools, are
an increasingly important reality in today’s software development landscape. With
this paper, we aim to lower the barriers to the development of good composition
tools by approaching a relevant and central aspect of composition, i.e., the design
of composition languages. We specifically focus on the problem of developing cus-
tom mashup languages and show that a sensible design of suitable abstractions and
reference specifications enables a conceptual development paradigm for mashup
languages that is based on the assisted selection of desired composition features and
allows developers to neglect low-level details. The paradigm improves awareness
of design choices and fosters reuse of language design knowledge.

In approaching this methodological problem, we also solve a relevant, non-
conventional composition problem per se, i.e., the composition of components (the
language patterns) that are not independent of each other and that require an inte-

210



26 Stefano Soi, Florian Daniel, Fabio Casati

gration that is much tighter than that of traditional component technologies, such
as web services, already before composing them. The key to solve this problem is
mapping composition features to a generic language meta-model, an artifact that
aim to refine and evolve collectively with the help of the scientific community.

The idea is to make the meta-model, the feature reference specifications, and the
language generator open source and to share it with the community. In this context,
we also want to equip the language design paradigm with an interactive language
design tool and a hosted execution engine that is able to run compositions developed
with any variation of language developed on top of the common meta-model. The
final goal is to provide mashup execution as a service. This will eventually lower
the barriers to the development of custom mashup platforms.

References

1. Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Understanding UI In-
tegration: A survey of problems, technologies and opportunities. Internet Computing, Volume
11, Number 3, May/June 2007, IEEE, Pages 59-66.

2. Daniel, F., Rodriguez, C., Roy Chowdhury, S., Motahari Nezhad, H.R., Casati, F.: Discov-
ery and Reuse of Composition Knowledge for Assisted Mashup Development. WWW 2012
Companion, pp. 493-494.

3. Daniel, F., Imran, M., Kling, F., Soi, S., Casati, F., Marchese, M.: Developing Domain-
Specific Mashup Tools for End Users. WWW 2012 Companion, pp. 491-492.

4. Daniel, F., Casati, F., Benatallah, B., Shan, M.C.: Hosted Universal Composition: Models,
Languages and Infrastructure in mashArt. ER 2009, pp. 428-443.

5. Daniel, F. and Soi, S. and Tranquillini, S. and Casati, F. and Heng, C. and Yan, L. Distributed
orchestration of user interfaces. Information Systems, Volume 37, Number 6, September
2012, Elsevier, Pages 539556.

6. Baresi, L., Guinea, S.: Mashups with Mashlight. ICSOC 2010, pp. 711-712.
7. OASIS: Web Services Business Process Execution Language, Version 2.0, April 2007. [On-

line] http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
8. OMG: Business Process Model and Notation, Version 2.0, January 2011. [Online]

http://www.omg.org/spec/BPMN/2.0/
9. W3C. Widget Packaging and Configuration. W3C Working Draft, March 2011. [Online]

http://www.w3.org/TR/widgets/
10. Mohabbati, B., Gasevic, D., Hatala, M., Asadi, M., Bagheri, E., Boskovic, M.: A Quality

Aggregation Model for Service-Oriented Software Product Lines Based on Variability and
Composition Patterns. ICSOC 2011, pp. 436-451.

11. Hermosillo, G., Seinturier, L., Duchien, L.: Creating Context-Adaptive Business Processes.
ICSOC 2010, pp. 228-242.

12. Hoesch-Klohe, K., Ghose, A.K.: Carbon-Aware Business Process Design in Abnoba. ICSOC
2010, pp. 551-556.

13. Heidenreich, F., Johannes, J., Aβmann, U., Zschaler, S.: A Close Look at Composition Lan-
guages. ACoM 2008.

14. Saeed, A. and Pautasso, C.: The mashup component description language. iiWAS 2011, pp.
311-316

15. Open Mashup Alliance: Enterprise Mashup Markup Language (EMML), May 2012. [Online]
http://www.openmashup.org/omadocs/v1.0/index.html

16. Blake, M.B., Tan, W., Rosenberg, F.: Composition as a Service. IEEE Internet Computing
14(1), 2010, pp. 78 - 82.

17. Trummer, I., Faltings, B.: Dynamically Selecting Composition Algorithms for Economical
Composition as a Service. ICSOC 2011, pp. 513-522.

211



A

Domain-Specific Mashup Platforms as a Service:
A Conceptual Development Approach

STEFANO SOI, University of Trento
FLORIAN DANIEL, University of Trento
FABIO CASATI, University of Trento

Despite the common claim by mashup platforms that they enable end users to develop software, in practice
end users still don’t develop own mashups, as the either highly technical or inexistent user bases of existing
mashup platforms testify. Based on more than five years of own experience in mashup development and on
several user studies, we identify the key shortcoming of current platforms in their general purpose nature,
which privileges expressive power over intuitiveness. In our prior work, in fact, we have demonstrated that
a domain-specific mashup approach, which privileges intuitiveness over expressive power, has much more
potential to lower the burden on its users and to effectively enable end user development (EUD). The problem
is that developing a domain-specific mashup platform is complex and time-consuming, which is no different
from generic mashup platforms. Yet, domain-specific mashup platforms, by their very nature, target only a
small user basis, i.e., the experts of the target domain, which makes their development not sustainable if it
is not adequately supported and automated.

In this article, we describe a conceptual design approach for the development of custom, domain-specific
mashup platforms (comprising custom mashup languages, component descriptors, design time and runtime
environments) and show how we automatically generate mashup platforms from conceptual designs and
provision them as a service. We implement a platform design, generation, and hosting environment and
equip it with a suitable methodology for the conceptual development of mashup platforms. The application
of the approach in the development of a mashup platform for research evaluation demonstrates the benefits.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Tools and Techniques—
Computer-aided software engineering (CASE); H.5.4 [Information Systems]: Information Interfaces
and Presentation—Hypertext/Hypermedia; H.3.5 [Information Systems]: Information Storage and Re-
trieval—Online Information Services

General Terms: Design, Languages

Additional Key Words and Phrases: Mashups, Domain-Specific Mashups, Mashup Platforms, Conceptual
Software Development, Meta-Design, Mashup Platforms as a Service

1. INTRODUCTION
During the last decade both industry and academia proposed a variety of different
mashup tools, such as Yahoo! Pipes1, JackBe Presto2, ServFace Builder [], Karma [],
CRUISe [], MashLight [], and similar. Mashup tools (or platforms) are integrated de-
velopment and runtime environments that are typically accessed on-line as a hosted
service and allow their users (ranging from target users with low software develop-
ment skills to experienced programmers) to develop and run own mashups in an graph-
ical, most of the times model-driven fashion. Mashups in this respect are composite
web applications integrating data (e.g., RSS or Atom feeds), application logic (e.g., via
SOAP or RESTful web services) and/or user interfaces (e.g., graphical widgets) ac-
cessible over the Web. That is, mashups are not completely built from scratch; their
development is based on the re-use and integration of existing resources.

In our own research, we worked ourselves on mashup paradigms and tools targeting
both end users (e.g., in the MashArt project3 [Daniel et al. 2009]) and skilled developers
(e.g., in the MarcoFlow project4 [Daniel et al. 2011]). One of the lessons we learned in

1http://pipes.yahoo.com/pipes/
2http://www.jackbe.com/products
3https://sites.google.com/site/mashtn/industrial-projects/mashart
4https://sites.google.com/site/mashtn/industrial-projects/marcoflow

Appendix O

212



A:2 S. Soi et al.

this context is that mashup tools (including our own) are too technical to end users and,
as a consequence, they are not able to (i) understand what exactly they can do with the
tool and (ii) how to do it. This observation is backed by Namoun et al. [2010b], who
performed a set of user studies to understand how end users perceive mashups and
conclude that they generally lack an understanding of what, for instance, web services
are, and of how these can be integrated to form new logics (e.g., via data or control
flows). Yet, they also identified a positive attitude of end uses toward these new kinds
of software development tools and the necessary curiosity to start “playing” with them,
which we consider a necessary requirement for our work.

The level of technicality, i.e., the type and number of development-specific concepts
exposed, of a mashup tool is determined by its development flexibility and expressive
power. Most of the existing mashup platforms are therefore general-purpose mashup
platforms, which enable mashing up all possible kinds of resources available on the
Web, but do not sufficiently abstract away from technologies. Mastering concepts like
web services, data flows, variables, and similar is simply out of the reach of the average
end user without development knowledge.

Based on these considerations, we started investigating the power of what we
call domain-specific mashup platforms for end user development (EUD), where a
domain-specific mashup platform is a mashup platform that is specifically tailored to
given domain only, to its terminology, its tasks, and its needs. The ideal domain-specific
mashup platform presents its users only with concepts, activities, and practices that
are well-known in its target domain and that domain experts (the end users in the
target domain) are aware of and used to deal with in their everyday work. And it does
so by hiding all the technicalities actually implementing the features of the domain
(e.g., a domain expert is simply not interested in knowing whether a payment activity
is provided as SOAP or RESTful web service).

As a proof of concept, we developed an own domain-specific mashup platform for a
domain we are well acquainted with ourselves, i.e., research evaluation, but that also
involves people without software development skills (e.g., administrative staff and re-
search staff from non-IT departments). More and more are we evaluating ourselves,
others, institutions, groups, conferences, and so on, all activities that require integrat-
ing data (e.g., about conferences, workshops, journals, institutions, people), computing
metrics (e.g., an h-index or g-index), and visualizing results for comparison. The tool
that provides these tasks in the form of a dedicated mashup platform is called ResEval
Mash [Daniel et al. 2012], and the user study we performed with our target domain
experts supports our hypothesis that domain-specific mashup platforms are another
step forward toward EUD. Test groups with and without IT skills performed similarly
well, and both were able to implement a set of test research evaluations.

With the development of ResEval Mash, though, we also experienced how complex
and time-consuming the design and implementation of a domain-specific mashup plat-
form can be. In addition to the general technical aspects common to all mashup plat-
forms (a complex task of its own), tailoring a platform to a specific domain does not
only require a thorough analysis and formalization of the domain (which typically also
involves interaction with domain experts), but also a clear understanding of how to
“inject” the acquired domain knowledge into a mashup platform and of how to hide un-
necessary technicalities. We developed ResEval Mash for research purposes, but, given
the relatively small user basis of domain-specific tools, this effort is not sustainable in
general for the large-scale development of domain-specific mashup platforms.

With this article, we conceptualize all the major aspects that characterize the de-
velopment of mashup platforms, be them generic or domain-specific, and we describe
a meta-design approach to the development of domain-specific mashup platforms that
(i) features a conceptual platform development approach and (ii) a complete generative

213



Domain-specific mashup platforms as a service A:3

platform architecture able to automatically produce suitable design time and runtime
mashup environments. Specifically, we provide the following contributions:

(1) We thoroughly analyze the current mashup ecosystem, characterize the most used
types of mashups (e.g., data vs. user interface mashups), and derive a large set of
composition features (e.g., the types of components supported or the way data is
propagated among components) that mashup platforms may have to support.

(2) We define a unified mashup meta-model that brings together all the identified
features in one consistent meta-model and express composition features as meta-
model patterns and feature constraints.

(3) We develop a conceptual approach to the development of custom mashup lan-
guages, based on the selection and configuration of composition features and the
automatic resolution of conflicts.

(4) We describe the implementation of a mashup runtime environment that is able to
execute mashups expressed in any of the conceptually designed mashup languages
in a hosted fashion. We equip the runtime environment with a prototype mashup
editor that can be tailored to a given domain.

The body of this article is structured as follows: In the next section, we elaborate
better on the background and motivations of this work. In Section 3 we state the re-
quirements and design principles that drive the development of the meta-design plat-
form and outline our approach. Then, in Section 4, we specifically focus on mashup
language features, the design of the unified meta-model, and the conceptual develop-
ment of custom mashup languages. In Section 5, we clarify the respective operational
semantics by explaining our mashup runtime environment, and we describe the cus-
tomizable mashup editor. In Section 6, we report on the implementation of the whole
meta-design platform and generative architecture. We apply the approach to a use case
in Section 7, and conclude the paper with a critical evaluation of the work (Section 8),
a discussion of related work (Section 9), and the lessons we learned (Section 10).

2. RATIONALE AND BACKGROUND
Since mashups are a conceptually and technologically complex topic of their own, next
we discuss the major types of mashups and mashup tools in use today, describe our
domain-specific mashup scenario, and define our problem space and background work.

2.1. Mashups
Understanding which mashup types, i.e., which types of applications, exist and their
characteristics is very important for the design of any mashup platform, since they
provide the requirements for the development of mashup tools. Aiming at a high di-
versity of requirements, for the purpose of this work we identify the following types of
mashups:

— Simple data mashups. One of the first and most popular mashup types aims at the
integration of data, typically coming in the form of structured data like RSS or Atom
feeds, JSON or other XML data resources. Data mashup tools are typically based on
a data flow paradigm, where data are fetched from the resources and processed
via different operators by passing data from one operator to the other. Common
operators are filter, split, merge, truncate, and so on. The result of data mashups is
generally a data resource itself, e.g., an RSS feed that can be accessed from the Web.
A well known representative of mashup tool for this category is Yahoo! Pipes.

— Data-intensive data mashups. This type of mashup is a specialization of data
mashups, which is characterized by large volumes of data to be processed. Data-
intensive mashups may work with data amounts that cannot be easily transferred

214



A:4 S. Soi et al.

over the Web, which is instead the preferred solution of generic, hosted data mashup
solutions based on data flows. A solution to this problem is, for example, the use of
components and a mashup environment that pass data by reference, instead of by
value. Scientific workflow tools are examples that adopt this paradigm.

— User interface (UI) mashups. UI mashups integrate UI components into a shared
layout so that the user can directly interact with them, provide inputs, and get vi-
sual outputs. A key characteristic of UI mashups is the event-based synchronization
of UI components (e.g., through a publish/subscribe infrastructure), which allows
the user to control multiple components by interactive with only one of them. Web
portals or widget containers (e.g., based on W3C widgets or OpenSocial gadgets) fall
into this category of mashup tools.

— Simple service mashups. This kind of mashups focuses on web service composi-
tions where web services are integrated and orchestrated in a process-like fashion.
The integration logic is typically expressed as a control flow specifying when which
service is to be invoked. Data is usually passed among services via intermediate
variables that host the output of one service until the invocation of one or more other
services (the so-called blackboard approach). Two key aspects of service mashups
are long-running processes and asynchronous communications, the former requir-
ing an execution environment that is independent of the client starting the service
mashup, the latter requiring message correlation. One example of service mashup
tool is ServFace Builder [], but also simple BPEL compositions fall into this category.

— Hybrid mashups. Mashups express their actual power only in a hybrid setting, in
which a mashup integrates components at different layers of the architectural stack,
i.e., the data, logic, and UI layers. Not mandatorily all layers must be present for
a mashup to be considered hybrid. For instance, a data mashup with external data
processing logic or a UI mashup with web service integration can be considered
hybrid mashups. The key is the seamless integration of all the other mashup types
described, which the mashup logic being possibly distributed over client and server.
An example of mashup tool for this category of mashups is mashArt, which features
a so-called universal integration paradigm.

A domain-specific mashup may be of any of these basic types of mashups and include
some domain-specific features, such as specific components, terminology, composition
rules, and similar.

2.2. Research evaluation mashups
A concrete domain for mashups we have been working on is research evaluation. We
identify with this term all those procedures aimed at providing a quantitative value
representing the quality of a researcher, a research artifact, a group of researchers
(e.g., a department), a group of research artifacts (e.g., conference proceedings) and
similar entities. Producing and having access to these kinds of data is very impor-
tant in different contexts, ranging from self-assessment to the hiring of new personnel
and the distribution of money in departments. For example, in Figure 1 we provide a
graphical representation of the evaluation process adopted in the University of Trento
(UniTN) for distributing resources and research funds among departments based on
their research productivity.

In essence, the process compares the quality of the scientific production of each re-
searcher in a given department of UniTN with the average quality of the research
production of researchers belonging to similar departments (i.e., departments in the
same disciplinary sector) in all Italian universities. The comparison is based on the
weighted publication count.

215



Domain-specific mashup platforms as a service A:5

!"#$%#&'()*)#+,-)+*
./),"0+1 2

3#+'4-#+"

/,056*'
768$%,#"%0&*

!"#$%#&'()*)#+,-)+*'
.9&%:)+*%";1<9&%=><?

@)5#+"A)&"1 2

/,056*'
768$%,#"%0&*

B)&6)'(#&C%&D* !A5#,"
7)+,)&"%$)*

E)"!A5#,"

E)"!A5#,"

/)"B)&6)F)%D-"*

E)"7)+,)&"%$)*

/)"@%*"+%86"%0&

7$0"

/)"G()*)#+,-)+

!A5#,"

!A5#,"

/)"B)&6)F)%D-"*
/)"G()*)#+,-)+

Fig. 1. Model of University of Trento’s internal department evaluation procedure.

Today the computation of research evaluation processes is done manually by, for
example, the university administrative employees, which use fixed criteria for the se-
lection of, e.g., bibliographic information sources or evaluation metrics. Evaluating re-
search, though, is not so easy and straightforward. Many aspects can heavily impact
the evaluation results like, for instance, the publication venues ranking, the source of
the bibliometric information, the algorithms used for the metrics, and the like. Fer-
vid discussion on the suitability of the selected criteria often arise, as people would
like to understand how the results would differ changing these criteria. This would
require, though, the computation of many variations of the process (each one adopt-
ing different criteria). Doing so would cost huge human resources and time. It is clear,
therefore, that developing all these process variations through manual implementa-
tion (as it happens nowadays) or through the standard software development lifecycle
are not viable solutions.

The requirement we extract from this scenario is that we need to empower people
involved in the evaluation process (i.e., the average faculty member or the administra-
tive persons in charge of it) so that they can be able to define and compare relatively
complex evaluation processes, retrieve and filter resources involved in the evaluation
(e.g., publications, people, institutions), and visually analyze the results. Doing so re-
quires to extract, combine, and process large amounts of data through services from
multiple sources available on the Web or locally and to graphically visualize computed
results through suitable visual components.

This task has all the characteristics of a mashup, especially if the mashup logic
comes from the users themselves. Developing a mashup tool that effectively enables
admins and generic faculty members to run evaluation logics as the on in Figure 1,
is challenging and requires (i) supporting all technical intricacies of the scenario (e.g.,
the integration of data, web services and UIs or data transformations), while (ii) hiding
them to the user (e.g., Figure 1 does not present any technical aspects besides source,
metrics, and visualization components and data flows). End users not only do not know
about technicalities, they also don’t want to know about technicalities.

216



A:6 S. Soi et al.

2.3. Domain-specific mashup tools
As anticipated in the Introduction, in order to identify the level of abstraction end
users are comfortable with we developed ResEval Mash5, a mashup platform for re-
search evaluation. The development of ResEval Mash can be divided into two phases:
the formalization and analysis of the above highlighted requirements of research eval-
uation and the actual design and implementation of the platform.

Understanding which requirements to elicit and how to formalize them so that they
can be used to drive the design of a mashup platform was harder than expected and
required significant abstraction and modeling skills. Identifying the key aspects of
research evaluation, the nature of the data involved, and the tasks that characterize
it took several months. This kind of analysis required significant formalization efforts
and deep knowledge about research evaluation, which we built partly based on our own
needs and partly by involving the experts in research evaluation of our Department.

Turning requirements into suitable designs for a mashup platform and eventu-
ally implementing the platform took even longer than the first phase, i.e., five to
six months. The design and implementation of the various mashup components that
populate the mashup platform took then approximately an additional month more. A
big effort we spent on identifying where the specifics of research evaluation manifest
themselves inside a mashup platform (e.g., in the development of components or in the
mashup language underlying the platform?) and on designing suitable architectural
solutions bringing together the specifics of research evaluation with the characteris-
tics of a mashup platform (e.g., component-based development). This activity required
deep knowledge of composition language design, model-driven software development,
client- and server-side web development, client-server communication patterns, web
service orchestration, data integration, user interfaces design, and so on.

Abstracting from the concrete case of research evaluation, i.e., the domain of our
mashup tool, we define a domain as a delimited sphere of concepts and processes. Do-
main concepts express the static aspects of a domain, i.e., they tell which elements
(e.g., researchers and publications) and relationships (e.g., publishes) thereof charac-
terize the domain and introduce the necessary domain-specific terminology. Domain
processes express the dynamic aspects of the domain, i.e., they tell how domain con-
cepts are operated and manipulated (e.g., the computation of an h-index from a set
of publications). Domain processes can be atomic (activities) or composite (processes
integrating multiple activities). A domain-specific mashup is an example of composite
domain process. More precisely, a domain-specific mashup (DSM) is a mashup that
implements a composite domain process manipulating domain concepts via domain
processes. Accordingly, a domain-specific mashup tool6 (DMT) is a development
and execution environment that allows domain experts (the end users of the target
domain) to develop all possible types of domain-specific mashups (and nothing more).
In order to do so, a DMT may feature a domain-specific composition language and a
domain-specific syntax that enable the domain expert to development own mashups in
an as familiar as possible environment. The research evaluation process shown in Fig-
ure 1 is an example of domain-specific mashup expressed in a domain-specific, graph-
ical modeling notation (note the terminology used and the three types of components:
data sources, metrics, and charts).

Aiming at assisting mashup platform designers in the development of mashup plat-
forms specifically targeted to a given domain, we abstracted the lessons learned dur-
ing the development of ResEval Mash and designed a methodology [Daniel et al. 2012]

5ResEval Mash project page: http://open.reseval.org/
6Throughout this paper, we use the terms tool and platform interchangeably, and we specifically focus on
mashup tools that produce mashup specifications that can be interpreted and executed by a suitable engine.

217



Domain-specific mashup platforms as a service A:7

focussing on the domain analysis and formalization phase. This methodology guides
platform designers through this phase defining a set of artifacts to be produced that
describe and formalize different aspects of the target domain. These artifacts will be
then used during the DSM platform design and implementation.

Next we summarize the steps and artifacts constituting the methodology:

(1) Definition of a domain concept model (DCM) to express domain data and relation-
ships. The concepts are the core of each domain. The specification of domain con-
cepts allows the mashup platform to understand what kind of data objects it must
support. This is different from generic mashup platforms, which provide support
for generic data formats, not specific objects.

(2) Identification of a generic mashup meta-model7 (MM) that suits the composition
needs of the domain and the selected scenarios. As discussed in Section 2.3, a va-
riety of different mashup approaches, i.e., meta-models, have emerged over the
last years, e.g., ranging from data mashups, over user interface mashups to hybrid
mashups. Before thinking about domain-specific features, it is important to iden-
tify a meta-model that is able to accommodate the domain processes to be mashed
up. Beside the definition of the actual meta-model constructs and of their relations,
also the MM operational semantics (i.e., the basic rules driving the execution of
mashups) must be specified.

(3) Definition of a domain-specific mashup meta-model. Given a generic MM, the next
step is understanding how to inject the domain into it so that all features of the
domain can be communicated to the developer. We approach this by specifying and
developing:
(a) A domain process model (PM) that expresses classes of domain activities and,

possibly, ready processes. As said, domain activities and processes represent
the dynamic aspect of the domain. They operate on and manipulate the domain
concepts. In the context of mashups, we can map activities and processes to
reusable components of the platform or classes of components.

(b) A domain syntax that provides each concept in the domain-specific mashup
meta-model (the union of MM and PM) with its own symbol. Specific syntax
can be assigned also at the level of component instances. The claim here is
that just catering for domain-specific activities or processes is not enough, if
these are not accompanied with visual metaphors that the domain expert is
acquainted with and that visually convey the respective functionalities.

(c) A set of instances of domain-specific components. This is the step in which the
reusable domain-knowledge is encoded into mashup components, in order to
enable domain experts to mash it up into new applications. Components must
be described stating their functionalities and interface (i.e., available opera-
tions along with their expected inputs and outputs).

Driven by the outcomes of the domain analysis encoded in the artifacts just dis-
cussed, platform designers must then design and implement an according DMT. The
problem we address in this article is how to ease the development of DMTs, both
technically and methodologically.

3. CONCEPTUAL DESIGN OF DSM PLATFORMS
After the domain analysis phase is concluded — following the described methodology
— the DSM platform must be actually implemented. In this paper we propose a DSM

7We use the term meta-model to describe the constructs (and the relationships among them) that rule the
design of mashup models. With the term instance we refer to the actual mashup application that can be
operated by the user.

218



A:8 S. Soi et al.

platform generation framework that is able to ease this phase providing DSM platform
developers with tools assisting and automating to the possible extent the design and
implementation steps.

3.1. Requirements
We identify four core requirements for the DSM platform generation framework, which
are detailed later in this section:

(1) support a large variety of features and mashup types to cover as many domains
domains as possible,

(2) provide a conceptual development approach to design sound DSM platforms more
easily,

(3) automate the actual implementation of the DSM platforms,
(4) provide DSM platforms as a service.

Feature support. We focus on the support of the features of both the commonly adopted
mashup types identified in Section 2.3 and on other less common features that allow
us to expand the coverage of our framework to a broader range of domains, as we will
discuss next. Next we identify and describe the mashup features we want to support
in our DSM platform generation framework (highlighted in bold font). We can group
them in five categories:

— Component features. A first important characteristic associated to the mashup
components relates to the integration layers that mashups can cover. In other words,
a mashup can integrate data components, application logic (service) compo-
nents and/or UI components. We want to support a seamless integration of all
these three layers (i.e., component types), that is the so-called universal integra-
tion[Daniel et al. 2009]. When tools do not provide universal integration, produced
mashups may require a manual, expert intervention for the development and inte-
gration of the application parts related to the missing layer (e.g., implement suitable
UIs to be integrated with a service composition).
Mashup platforms are also characterized by the patterns they support to inter-
act with components. We want to support the four standard interaction patterns:
request-response (for synchronous interaction), solicit-response, one-way and
notification (for asynchronous interaction). Different types of components can pro-
vide different types of interaction patterns, e.g., for UI components only one-way
and notification patterns apply, while for service components all the four patterns
are possible. The first type does not need specific architectural components, while
the others typically require suitable server-side solutions to listen to asynchronous
service responses and manage them correctly with respect to the process logic (e.g.,
managing the correlation among request and responses). Asynchronous service in-
teraction patterns are typically supported in case of long-running processes. Differ-
ently from short-living processes, they require the process logic to be executed on the
server, since running the process on the client would stop its execution on browser
closing. Both process types must be supported to accommodate different domain
needs.
Another important point from the technological perspective is the selection of which
components implementation technologies to support in a mashup platform. We want
to support components implementation through standard technologies. For this rea-
son we select RSS and Atom formats, REST and SOAP services and W3C Widgets
and JavaScript components, which altogether allow the implementation of data,
service and UI components. Different technologies have different communication

219



Domain-specific mashup platforms as a service A:9

protocols, formats and semantics and, thus, to support them we must implement
specific resources to allow a correct interaction between them and the platform.
Mashup components can also include configuration parameters, used to set up
the component when it is loaded, and so-called manual inputs, i.e., input parame-
ters that can be fed by the output of some other component or can be manually set
by the mashup designer during the mashup development.
Finally, it could also be necessary to limit the minimum and maximum number of
operations per component or the number of input/output parameters per operation.
Examples of this kind of features are maximum one operation per component or
maximum N output parameters per operation (supporting these two features,
e.g., would be needed to build a mashup tool like Yahoo Pipes).

— Control flow and data passing features. Control flow and data passing
paradigms are strictly related to each other, therefore it is sensible to discuss them
together. We identify two paradigms defining the flow of control: data flow and
control flow. When adopting a data flow paradigm, once the mashup is started, the
mashup execution is driven by the flowing of the data produced by the mashup com-
ponents. In other words, the control flow is implicitly defined by (and corresponds
to) the data flow (i.e., how the data pass from one component’s outputs to another
component’s inputs. In the control flow paradigm, instead, it is explicitly defined,
stating which operations must be executed and in which order, where are possible
synchronization points and so on. The data passing logic in this case is decoupled
from the control flow and can be defined through the adoption of a blackboard
schema, where global variables are used to let data pass among different compo-
nents.
We also want to support the possibility to have, beside simple sequential flows, also
parallel flows, possibly requiring specific split/branch and join/synchronization
constructs. Having parallel flows requires a precise definition of the semantics of
branching or joining flows. We define that in case of branching flows the semantics
is that from a single flow we generate two or more flows proceeding in parallel. This
semantics is valid in the case of both data flow and control flow. In the case of two
joining flows we may have different semantics, also depending on the paradigm be-
ing used. If the paradigm is data flow, control flow constructs like synchronization
are not present at all, so the only semantic for two joining flows implements a logic
OR, that is, any time there is a message on a flow attached to an input parameter it
activates the operation the parameter belongs to, independently of other flows con-
nected to the same parameter. In this case a flow join/synchronization can still be
realized, but this is demanded to specific mashup components that will implement
it within their internal business logic, which must manage both the flow synchro-
nization and the data merging (requiring some additional predefined or user-defined
semantics). In case of control flow, instead, we may want to implement either a logic
AND or a logic OR. In the first case there will be a specific synchronization construct
taking as input two or more flows and producing a single output flow only when all
the input ones have been activated. In the second case, we can directly connect all
the input flows to the target operation and anytime one of these flows is activated it
triggers the operation, independently of the other flows.
Another functionality we want to support is the possibility to set conditions to
manage the process execution flow. Conditions can work over variable values (in
case of blackboard approach) or over the data flowing through connectors (in case of
data flow).
We also want to support features to effectively deal with data-intensive processing.
In this case, beside the standard data passing by value mechanism, we also want
to support a data passing by reference one (data passing mode feature), which

220



A:10 S. Soi et al.

significantly improves the performance of the system. However, this choice must be
carefully evaluated since it affects the whole mashup platform, requiring shared
memory structures that suitably developed mashup components must use to read
and write their input and output parameters based on the data references.

— Presentation features. As said, we want to allow the integration of UI components
in the mashups. In this context, we want to support single page (all UI components
are laid out on one page) or multi page mashups (UI components are distributed
over multiple, possibly linked, pages).

— Collaboration features. The collaboration of multiple users at runtime, i.e., dur-
ing the execution of a given mashup instance, is another interesting peculiarity of
some mashup platforms that we want to support. Collaboration can either happen
among different users that, based on their role, have access to different pages of the
mashup each containing different UI components (role based access), or among
users acting in parallel over the same instances of UI components (any user).

All the features listed and discussed above are our requirements in term of func-
tionalities to be possibly supported by the DSM platforms produced by our generation
framework.

Conceptual development approach. The second core requirement for our system is
to provide a conceptual development approach for the design of DSM platforms. We
want to let platform designers to abstract from low level design details and focus on
higher level design choices to address their specific domain needs. To address this
requirement, we need to allow designers to work at the level of the conceptual
features identified above, letting them forget about lower level implementation
issues and architectural choices. This means that they must be able to completely
design the platform through the selection of a set of features. Then, we need to define
a clear mapping among features and related software artifacts, that is, it
must be possible to translate the features into according DSM language constructs,
architectural components, tools’ properties and so on, supporting the selected features.
In addition, we have to assist designers in the feature selection, since a wrong
selection may lead to inconsistent languages and platforms. There are incompatibility
and dependency relations among the features that must be taken into account to
assist designers in their selection. For example, if control flow and blackboard features
are selected it does not make sense to also select the data flow or, on the other side,
the choice of having multiple pages depends on the support for UI components and UI
synchronization. This kind of constraints must be identified and checked to assist the
platform design phase, so that to be able to limit to the possible extent inconsistencies
at the language and tools levels.

Implementation automation. After the design phase, the platform must be actually
implemented requiring many efforts. We want to relieve developers of the platform
implementation and automate it to the possible extent. In particular, the system
must be able to automate the implementation of the software artifacts discussed
in Section 4 and 5, i.e., the DSM language, the runtime environment able to run
mashup models defined through this language, the DSM editor facilitating DSM com-
position design. Clearly, it is not possible to automate the DSM components imple-
mentation (due to their logic variability), but we want to provide some mechanism to
allow an easy integration of the components developed through the supported tech-
nologies (that we defined above).

In addition, beside the list of features selected by the platform designers, the DSM
generation framework must also base the generation process on the artifacts devel-

221



Domain-specific mashup platforms as a service A:11

oped following the methodology steps discussed in Section 2.3. In other words, the
framework must provide solutions to inject into the DSM platforms the domain
knowledge encoded into these artifacts.

DSM platforms as a service. Finally, we want to provide the DSM platforms as a ser-
vice. Concretely, we want to allow platform designers to easily select a set of fea-
ture and validate this set (checking that feature constraints are respected). After this
simple steps designers must be provided with a complete and ready-to-run DSM
platform including a DSM language, a DSM runtime environment and a DSM editor
supporting the selected features.

3.2. Approach
One of the main requirements for our system, as defined in Section 3.1, is to let devel-
opers design their DSM platforms thinking in terms of conceptual features and reliev-
ing them from struggling with low-level details and implementation issues. Aiming
at this, we want provide developers with a tool allowing them to design the platform
simply selecting a set of features they require to be supported in their DSM platform.
Then, we want to supply developers with a DSM platform generation framework that,
based on a set of selected features, provides according DSM composition language,
runtime environment and DSM editor, that is, a complete DSM platform only missing
the mashup components, which must be implemented by the developers.

Our approach to generate the DSM languages is to compose them out of composi-
tion features represented as language patterns, i.e., patterns including several lan-
guage constructs and their relations. Just like in any other composition approach, the
core problem is therefore the identification and formalization of the “components” to
work with. In our case, these components are language patterns. However, these pat-
terns have a distinctive feature that makes our problem very different from generic
component-based development (next to the fact that we do not handle software mod-
ules but model fragments): unlike, for example, web services, language patterns are
not independent and may present incompatibility and dependency relations, as al-
ready mentioned in the previous section. More precisely, the reference specifications
of different composition features may overlap (e.g., interacting with a SOAP service is
very similar to interacting with a RESTful service), include other features (e.g., the
data flow paradigm generally subsumes the presence of data source components), or
exclude others (e.g., the data flow paradigm does not make use of variables). This asks
for a thorough design of the language patterns and their mutual interaction points,
a task that we achieve by mapping each composition feature into the unified mashup
meta-model presented in Figure 3 and detailed in Section 4.1. This meta-model (i) in-
tegrates all basic language constructs syntactically, (ii) allows us to define composition
features as language fragments on top, and (iii) guarantees that fragments are com-
patible by design. Based on the unified mashup meta-model, therefore, we are able to
generate the first artifacts to be produced by our DSM platform generation framework,
i.e., the DSM languages.

The just discussed meta-model and approach is key also for the realization of the
runtime environment and mashup editor to be provided by our framework. By design,
all the DSM languages derived by our meta-model will contain a subset of its con-
structs. This property allows us to build single runtime environment that knows and
supports all and only the constructs in the meta-model and the related operational
semantics. The runtime environment, by definition, is consequently able to execute
mashups defined in any of the languages our system can generate based on the meta-
model. The runtime environment only needs to be aware of the set of features the
DSM language is based on to correctly interpret the mashup definition and execute

222



A:12 S. Soi et al.

it accordingly. For example, it must know whether to expect control flow or data flow
constructs, how data passing is defined and so on.

Similarly, also the realization of the mashup editor depends on the above approach.
The editor must provide a graphical representation of the constructs of the DSM lan-
guage it must support, which, as said, are a subset of the ones contained in the unified
mashup meta-model. Also in this case, therefore, we can develop a single mashup ed-
itor able to adapt its behavior and the construct and functionalities it exposes based
on the set of features selected by the platform developers during the design phase. For
instance, if developers choose to adopt a blackboard paradigm (i.e., use global variables
for the data passing), the editor will provide the domain expert using it with suitable
graphical constructs to define global variables and connect them to components’ input
and output parameters, which would not be shown when the blackboard paradigm is
not selected.

Putting together the methodology described in [Daniel et al. 2012] (summarized in
Section 2.3), which helps developers to formalize the target domain requirements and
characteristics, and the conceptual design approach and DSM generation framework
proposed in this article, which guide the design of and semi-automatically builds a cus-
tom and ready-to-run mashup platform, we are able to relieve developers of most of the
efforts needed to design and implement sound and functional DSM platforms. Clearly,
there is still a lot of effort to be provided from developers, which must be spent on these
three main areas: (i) domain analysis and formalization (however, under the guidance
of our methodology), (ii) components development (supported by our service “compo-
nentization” approach - explained later) and (iii) possible extensions or modifications
to the DSM editor (in case more specific customization is required).

In general, we do not argue we can build effective platforms for any domain, but we
argue that our methodology and system can be applied to many domains allowing a
faster and more affordable development of DSM platforms for them.

3.3. Architecture
The functional architecture of the DSM generation framework introduced in the pre-
vious section is shown in Figure 2.

The language and platform design and generator tool is constituted by two main
parts: the design tool and the generator. The first, is a visual interface allowing plat-
form designers to design the target DSM platform by selecting the set of conceptual
features they require to support the specific needs of their target domain, also follow-
ing the indications encoded in the mashup meta-model. The design tool also checks
the validity of the set of selected features, verifying the presence of possible incompat-
ibilities among them. In addition, it takes as input the domain syntax artifact that is
then used to customize the DSM editor, as explained later. Based on the set of selected
features the generator creates a DSM platform configuration package, which is stored
in a repository and identified by a unique URL (which will be then used to retrieve it).
This package includes:

— the configuration document, which contains the list of the features selected by the
platform designer, the reference to the domain syntax artifact (provided by the plat-
form designer), and the references to the components and compositions repositories;

— the schema definitions of the DSM composition language and DSM component de-
scriptor language, which DSM composition definitions and DSM component descrip-
tors, respectively, must comply to. The languages defined by these documents are
generated using the unified mashup meta-model as base and include all the con-
structs needed to support the set of selected features.

223



Domain-specific mashup platforms as a service A:13

Domain Analysis Artifacts

DSM Platform 
Generation Framework

DSM Platform 
Configuration Package

DSM
Component 

Implementation

DSM
Editor

Runtime 
Environment

DSM
Composition 
Definitions

executes

DSM
Compos

Def.

invokes

Platform 
Designer Component 

Developer

uses

uses

DSM 
Compos 

Lang 
Schema

DSM 
Compon

Lang
Schema

Configu
ration

takes as input

generates

uses

takes as input

Language & 
Platform 
Design & 

Generation 
Tool

uses

Domain
Expert

uses

complies with

DSM
Compon
Descr.

develops

DSM
Component 
Descriptors stores 

complies with

generates

reads

Domain
Concept
Model
(DCM)

Process 
Model
(PM)

Domain
Syntax

Mashup
Meta-
model
(MM)

DSM 
Components
Registration

Tool

uses

takes as input

Fig. 2. Functional system architecture.

In addition, the framework provides a runtime environment and a DSM editor that
are able to adapt their functionalities and behavior based on the information included
in a configuration package they take as input.

The DSM editor is used by the domain experts to graphically design the mashups.
To show the available DSM components to domain experts, the editor reads the DSM
component descriptors from the component descriptors repository. The editor also uses
the domain syntax artifact (referenced in the same document), which is a document
listing the language constructs having an own domain-specific graphical syntax and
providing a reference to the associated image files to be injected in the editor replacing
the editors’ generic graphical syntax. Finally, the editor generates representations of
designed mashups compliant with the DSM composition language defined within the
configuration package taken as input, and stores them in the compositions repository.

The runtime environment executes the DSM composition definitions stored in the
composition repository. Composition definitions include a reference to the DSM plat-
form configuration package associated to the definition, so that the engine can retrieve
it and set up its behavior according to the information included in the configuration
package. During mashups execution the runtime environment interacts with the DSM
components invoking their operations.

DSM components must be previously implemented by a component developer, which
implements them based on the process model and the domain concept model de-
fined during the domain analysis. The latter formally defines the schema the possible
domain-specific data types that DSM components can consume, produce and exchange.
Having such a shared formal data model is very important to make a DSM platform
where components can effectively work together and can be composed more easily (e.g.,

224



A:14 S. Soi et al.

this allows for automating data mappings between components out and input param-
eters based on their types). As already mentioned, components are accompanied by
a descriptor defining the component’s main properties and interface. This descriptor
must comply with the DSM component language schema. Developers can integrate the
DSM components in a given DSM platform using the DSM Components Registration
Tool, which must be provided with the descriptors of the components to be integrated.

Indeed, our DSM platform generation framework generates “logical platforms”. In
fact, it only generates DSM platform configuration packages and not the runtime en-
gine and mashup editor program code. Passing a configuration package as input to
the runtime engine and to DSM editor (which are physically deployed on our server)
instructs them to work with the languages, features, components and compositions
associated to the specific DSM logical platform described by the given configuration
package. This approach allows us to provide hosted DSM platforms as a service, which
are already deployed and ready to work.

Alternatively, the generation framework could generate a package containing the
whole “physical platform” to be deployed on a different machine (including the gener-
ated languages and also a copy of the editor and of the runtime engine). This solution
could be useful in case a developer wants to modify the tools’ code to extend them. Al-
though it would not be technically difficult to realize, currently we do not support this
solution. In general, we consider more convenient to provide the platforms in a hosted
fashion, relieving developers of software installation and deployment problems. We
instead plan to address the above mentioned needs making the whole project open
source.

The conceptual aspects of the main modules of this architecture are discussed in
Section 4, 5.1 and 5.2, while implementation details are presented in Section 6.

4. CONCEPTUAL DESIGN OF CUSTOM MASHUP LANGUAGES
Starting from the requirements and features identified in Section 3.1, in the follow-
ing sections, we describe how the unified mashup meta-model we designed is able to
support these features and how it is used to produce DSM composition and component
descriptor languages. The set of features we identify comes without the claim of com-
pleteness and is meant to grow over time; however, we are already able to express a
fairly complex set of mashup languages.

4.1. The meta-model
The meta-model must support all the features identified in Section 3.1. Next we
overview how these features are mapped onto the constructs of the unified mashup
meta-model (shown in Figure 3) and how these constructs relate to each other. The
gray boxes in Figure 3 group the meta-model constructs based on the feature category
they relate to.

4.2. Mashup language features
Component features. They specify which kinds of components — in terms of technolo-
gies and communication patterns — the target domain-specific language should sup-
port. For instance, a Web service may come with message-based operations of four
different types (request-response, solicit-response, one-way, notification), custom data
formats for each input and output message, a service endpoint, and a protocol binding
(e.g., SOAP). We represent such a service in the meta-model as a component that has
a set of operations with different input/output parameter patterns (implementing the
four different operation types), only single input/output parameters per operation to
represent input/output messages, an own data type for each parameter, and respective
binding and endpoint attribute values. Similarly, a W3C UI widget [W3C 2011] can

225



Domain-specific mashup platforms as a service A:15

Control flow

       Component Presentation

Collaboration

Data passing     

Id
Name
Type
Reference

Operation
Id
Name
ManualInput
Optional

Input 
Parameter

Id
Name

Output 
Parameter

Id
Name

Configuration 
Parameter

1..N

Name
Mashup

Id
Name

Viewport

Id
Name
URL

Page

Id
Name

User Role

Id
DfConnector

Expression
Language

Condition

Id
Name
Type
DefaultValue

Global Variable

Id
Name
Type
Binding
Endpoint
Class
SupportRefere
ncePassing
Syntax

Component

Id
Join

Id
Split

Id
CfConnector

source

0..1 feeds

          1..N

belongsTo

displays

0..1

1

0..1
1

Id
Name
Value

Constant

0..Ntarget

0..N

Id
Name
Definition

Data Type

has

0..1

feeds

0..N

0..N

0..N

0..1

0..N

0..N

0..N

0..N0..N 0..N

has

0..N

1

0..N

0..N

          0..N

0..N

source

source

target

target

1

1

1

1..N

1..N

1

0..N

target

source0..1 0..N

0..1

0..1
0..N

0..N

0..N
0..1

0..1

0..1

0..N

target

source

0..N

0..N

0..N

0..N

0..N

0..N

has 0..N

1

has

1

0..N

0..N

0..N

1

has

Fig. 3. The unified mashup meta-model. Gray boxes group entities into feature types. The Component group
is also used to derive component descriptor languages

be seen as a component with some configuration parameters but without operations,
which can be displayed in a viewport of a page of the mashup.

Analogously, the meta-model conciliates the three component types already intro-
duced (data, service and UI), which can be implemented through the following tech-
nologies, which are the basis of many types of mashups and, as such, widely used and
accepted (component types are tracked by the type attribute of the component entity
while implementation technologies by the binding one. The valid co-occurrences of the
type and binding values are defined as OCL constraints expressing the following rules:

— Data source components: RSS feeds, Atom feeds, RESTful data components, SOAP
data components, JavaScript data components.

— Web service components: Atom services, RESTful services, SOAP services,
JavaScript components.

— UI components: W3C UI widgets [W3C 2011], JavaScript UI components [Daniel
et al. 2009] (i.e., our own technology to implement intercommunication-enabled UI
widgets, since there are no standard widget technologies supporting inter-widget
communication).

For each of these component technologies, it is then important to specify which ex-
act communication patterns the language should support. For instance, the language
could support only synchronous communications (operations with input and output pa-

226



A:16 S. Soi et al.

rameters), only asynchronous communications (operations with either input or output
parameters), or both. The communication paradigm that each operation implements
is encoded in the type property of the operation entity. Components can be grouped
in logical categories based on the content of the process model (PM) described in Sec-
tion 2.3. The category of component is defined by the class property of the component
entity. Similarly, the syntax property associates a domain-specific graphical syntax to
components.

The many components’ properties discussed above are represented by a number of
features in our framework. The data component, service comonent and UI com-
ponent features state whether related components are supported or not. For each
of them, a set of features defining the characteristics of these component types are
present, i.e., to define the allowed component’s implementation technologies (e.g., RSS
for data components or SOAP for service components), to define the allowed op-
eration types (e.g., notification for UI components or request-response for service
components) and to define whether components may have configuration parameters
(configuration parameters).

It might also be necessary to limit the number of operations per component (e.g.,
in Yahoo! Pipes each component corresponds to one operation) or the number of
parameters per operation (like for SOAP services as described above). All these
options can be represented via patterns that suitably set the relationship cardinalities
in the meta-model. Also in this case suitable features represent these options, e.g.,
maximum 1 operation per component or no maximum number of output
parameters per operation.

Control flow features. They specify whether the language is control-flow-based (e.g.,
BPMN) or data-flow-based (control flow and data flow features) and which control
flow constructs to support. In the former case, sequential execution can be expressed by
connecting operations using control flow connectors (CfConnetors). Parallel executions
are supported via split and join constructs (represented by the split and join features).
In the latter case, instead, the flow of control corresponds to the flow of data that, as
described below, is defined through data flow connectors (DfConnector). In this case,
no split or join constructs can be used.

Each of the mentioned constructs can have one or more conditions, which constrain
the control flow along connectors (conditions feature) and, for instance, allow the
implementation of conditional control flow constructs like conditional connectors,
conditional splits, and conditional joins. Loops can be implemented by means of
conditions and joins.

Data passing features. They specify how data is propagated among components. In
data-flow-based languages (e.g., Yahoo! Pipes) the data passing logic is defined map-
ping output parameters to input parameters, a feature that can be achieved by spec-
ifying data flow connectors (DfConnector) between parameters instead of between op-
erations.

Control-flow-based languages require specific constructs to specify how data are
passed among components. The most common technique is to write/read global vari-
ables (blackboard feature), which are accessible during the execution of a composition
(e.g., as in BPEL). The meta-model represents the writing/reading operations with a
data flow connector between the variable and its target/source parameter.

UI-based mashups, such as widget portals, typically run all widgets in parallel, and
data is passed via global variables or events (operation with only outputs). Configura-
tion parameters are instead typically set once at the startup of a component (e.g., the
background color of a UI widget); we support this by means of constants.

227



Domain-specific mashup platforms as a service A:17

An additional feature (reference passing mode) related to data passing allows
enabling the data passing by reference in the runtime engine that, as discussed in
Section 3.1, can be used for domains characterized by data-intensive processes. This
feature requires component definitions stating whether a given mashup component
supports the data passing by reference. This information is encoded in the supportRe-
ferencePassing attribute of the component construct.

Presentation features. They specify whether UI components and related constructs
(e.g., page and viewport) are supported or not (user interface feature). Unlike service
compositions, mashups typically also come with an own user interface that renders
UI components and data from UI-less components. The minimum support required
to express this capability in the meta-model is represented by the page and viewport
entities, which allow the ordering of UI components into pages (HTML web pages) and
their rendering in selected areas inside these pages (typically div or iframe HTML
elements). The HTML pages hosting the UI components can be given and already
linked to each other as necessary or can also be generated automatically. Mashups
can include maximum one page (single page feature) or multiple pages (multi page
feature).

Collaboration features. They specify whether collaboration among different users of a
mashup is supported (collaboration feature) and how users collaborate. Single-user
mashups do not require any user management. Multi-user mashups, instead, may
restrict the visibility of individual pages to selected user roles only. Users may have
different views on a mashup, e.g., via different pages, (role-based access feature) or
they may have the same view, e.g., via the concurrent use of a same page (any user
feature). For the time being, we only support the former type of collaboration.

The above features and examples show that developing a good unified mashup meta-
model is a trade-off between the simplicity and usability of the final language (the
fewer individual constructs the better) and the ease of mapping features onto the meta-
model (the more constructs the better; in the extreme case, each feature could have its
own construct). The challenge we faced is exactly that of identifying the right balance
between the two, so as to be able to map all relevant features and to do so in an as
elegant as possible fashion from the resulting language point of view.

4.3. Feature-driven design of mashup languages
The model discussed in the previous section cannot be directly used to create exe-
cutable mashup definitions. This is due to the fact that the model includes construct
supporting features potentially incompatible. For example, the model includes the con-
structs to support both the data flow and the blackboard paradigms. These two fea-
tures, though, cannot coexist in the same executable model since there could be con-
flicts in the data passing logic. For this reason we need to extract consistent, concrete
models from the unified meta-model.

Therefore, we need to process the unified mashup meta-model to extract consistent,
concrete mashup models including all and only the model constructs needed to support
a valid set of required features specified by the DSM platform designer. A set of fea-
tures to be valid must respect incompatibility constraints among features (e.g., data
flow and blackboard features, as described above, are incompatible ) and dependency
constraints among features (e.g., collaboration features, as described in the previous
section, depend on UI-related features).

To process the unified mashup meta-model, we first translate it into a uni-
fied mashup language, i.e., a representation of the meta-model into a more sim-

228



A:18 S. Soi et al.

ply processable format. Then, we formally represent each composition feature as
f = �name, label, description, specification, constraints�, where

— name is a text label that uniquely identifies the feature (e.g., data flow);
— label briefly describes the feature and expresses its semantics;
— description is a natural language verbose description of the feature for human con-

sumption;
— specification is the reference specification of the feature and lists a set of associated

unified mashup language fragments;
— constraints is a set of feature compatibility and dependency constraints expressed

as logical formulas.

All features definitions are stored in the feature base, i.e., a document containing fea-
tures definitions following the just described format.

At this point, assuming a set of selected features is provided, we can generate the
DSM composition language supporting these features as follows.

First, we check the set validity using an algorithm that associates a boolean variable
to each feature present in the feature base and then sets to true all the variables asso-
ciated to the selected features and to false all the remaining. Based on these values it
computes the validity response as the result of the logical formula constituted by the
logical conjunction of all the constraints associated to the selected features (described
in the features definitions).

Once the set validity is assessed, we generate the target DSM composition language
including all the unified mashup language constructs needed to support the selected
features. Operatively, the DSM composition language is generated including all the
unified mashup language fragments referenced in the specification field of the selected
features. This algorithm guarantees that the generated languages, by design, support
all the selected features (since they include all the construct needed to support them)
and that the languages are consistent (thanks to the feature set validity check per-
formed before the generation).

The DSM component descriptor language is generated following the very same algo-
rithm. The only difference is that instead of using the full unified mashup language it
is used a subset of this language only including the constructs needed to describe the
mashup components (i.e., the ones within “component gray-box” in Figure 3).

5. CUSTOM RUNTIME AND DESIGN TIME MASHUP ENVIRONMENTS
5.1. Operational semantics: the runtime environment
The runtime environment (or engine) is in charge of executing the mashup composi-
tions. Compositions can be expressed in any language that the framework can produce.
The frameworks provides a single implementation of the engine that is able to adapt to
the specific language and features associated to the composition being executed which
are specified within a configuration package taken as input (referenced in the compo-
sition definition itself). The overall picture of the runtime environment architecture is
shown in Figure 4.

The engine is split into two parts: the server-side engine (SS-Engine) and the client-
side engine (CS-Engine). The core of the engine’s business logic is located at the server
side. A DSM composition definition is executed issuing a request to the server, contain-
ing a reference to the composition definition itself (which is stored in the internal DSM
composition definition repository).

When an execution request is issued, the server instantiates an SS-Engine to man-
age the execution of the given composition.

229



Domain-specific mashup platforms as a service A:19

Server

Googlehttp://mashupTool.com

Web

Browser

Client-side Engine

REST
RSS
Atom

Adapter

JS
Adapter

W3C 
Widget
Adapter

SOAP
Adapter

DSM
Composition
Definitions

S M T W T F S

1 2 3 4 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31

March 2009

5

Keyboar Bluetooth Shortcuts

Slow Fast

Delay Until Repeat

OKCancel

Use all F1, F2,etc. Keys as standard 
function keys
When this option is selected, press the Fn key to use the special 
features printed on each key.

Mashup 
InstanceServer-side Engine

Fig. 4. Runtime environment overall architecture

The main responsibility of the SS-Engine is the management the flow of control and
the data passing. This means that the SS-Engine is in charge of invoking components’
operations following the order defined by the given DSM composition definition, taking
into account, e.g., whether the definition is based on the control or data flow paradigm,
whether there are branching or merging flows in the composition, whether components
expect actual data or data references (in case of data passing by value or by reference,
respectively) and where to retrieve these data from (operations’ output parameters
or global variables), and so on. In other words, the engine must be able to correctly
interpret and manage all the constructs defined in the unified mashup meta-model.

On the client side we have a lighter client-side engine, which mainly instantiates
the client-side mashup components (e.g., JavaScript components) and allows the SS-
Engine to interact with them, through the adapters.

The engine delegates the communications with the mashup components to a set
of external adapter modules that act as mediation gateways among the engine and
the external services, which may be arbitrarily distributed on the Web. Each module
is responsible for managing the interaction with components implemented through a
specific technology, requiring specific communication protocols. We provide adapters
for the main standard technologies identified in Section 4.1, that is REST, RSS, Atom,
SOAP, W3C Widgets8 and JavaScript components. Having the mashup components
interaction managed by independent adapter modules allows one to simply extend
the engine to support new component implementation technologies by adding a new
suitable adapter.

8The integration of W3C Widgets, although conceptually supported by the meta-models, is not implemented
yet.

230



A:20 S. Soi et al.

The implementation of the architectural modules described above must encode all
the operational semantics of the possible languages we can derive from the unified
mashup meta-model, so as the engine to be able to execute mashup compositions ex-
pressed in any language generated by our framework. The operational semantics driv-
ing the execution of a mashup heavily depend on the features supported by the DSM
composition language a given composition definition is expressed with. For instance,
the correct management of parallel flows during the execution of a mashup depends
first on the adopted paradigm, i.e., control or data flow. Then, in case of control flow
paradigm, it also depends on whether specific control flow-related features are sup-
ported or not (i.e., flow synchronization and branching, which are available only when
adopting the control flow paradigm).

For this reason it is difficult to provide a complete report of all the possible seman-
tics deriving from different combinations of features. Following we give the general
semantics ruling over compositions execution:

(1) The execution of the mashup compositions is initiated by the user. In case of UI
compositions the UI components themselves can be used as starting trigger, other-
wise, in case of service compositions or hybrid compositions including both UI and
non-UI components, a suitable interface will be available for starting the composi-
tions and providing possible initial inputs.

(2) (a) In case of control flow-based compositions, the first operation of each flow (i.e.,
a sequence of operations connected either through control flow or data flow connec-
tors) of the mashup is triggered.
(b) In case of data flow-based compositions, all the request-response or one-way
operations which are ready to be triggered (i.e., which are provided with all the
needed input parameters) are invoked in parallel.

(3) Once an operation is triggered, it is executed, possibly processing some input. Pos-
sible outputs produced are used to feed the next operations in the flow that are
connected to the current one.

(4) Step 3 is repeated until all the operations in all the flows of the composition are
triggered.

(5) The execution is stopped either right after step 4 (automatically), in case no asyn-
chronous notification operations are present in any flow, or with an explicit com-
mand by the user, in the opposite case.

The important point to be remarked is that the runtime environment is able to un-
derstand the syntax and implement the operational semantics of any mashup lan-
guage our system can produce deriving it from the unified mashup meta-model based
on the selection of a valid set of feature, as described above.

5.2. The mashup editor
The platform we proposed in this article also include a mashup development envi-
ronment (in short, editor) to be used by domain experts to graphically design their
mashup compositions through simple, visual interaction paradigms9. The editor sup-
ports any DSM language generated by our framework. This means, first, that for each
construct of the unified mashup language it provides an associated graphical construct
visually representing the language construct in the editor. Second, it means that the
editor is able to translate the mashups graphically designed by the domain experts
into representations compliant with the DSM composition languages generated by our
framework.

9The mashup editor is currently under development. Some features are already supported while others are
not. We plan to complete the editor’s development in the next months

231



Domain-specific mashup platforms as a service A:21

Conceptual Design of Sound, Custom Composition Languages 17

We define a composition feature as f = �name, label,desc,spec,Constr�, where
name is a text label that uniquely identifies the feature (e.g., data flow); label
briefly describes the feature and expresses its semantics; desc is a natural language
verbose description of the feature for human consumption; spec is the reference
specification of the feature; and Constr = constri is a set of feature constraints.

<domainSyntax>

<construct id="component" syntax="http://.../genericComponent.png" />
<construct id="globalVariable" syntax="http://.../globalVar.png" />
<construct id="split" syntax="http://.../split.png" />
<construct id="join" syntax="http://.../join.png" />

</domainSyntax>

<feature name="condition" label="Conditions">

<description> Conditions can be set for each connector to define the
possible flows of the composition. Conditions are supported both for
control flow and data flow composition paradigms.

</description>

<specification>

<include fragments="conditionForCf" if="control_flow"/>
<include fragments="conditionForDf" if="data_flow"/>
<include fragments="conditionForSplit" if="split"/>
<include fragments="conditionForJoin" if="join"/>

</specification>

<constraints>
(control_flow AND blackboard) OR data_flow

</constraints>

</feature>

Listing 1 XML reference specification of the condition composition feature

The XML code in Listing 1 shows an example of how we serialize, for instance,
the condition feature in our feature knowledge base of the form F = f j. The
example shows the two core ingredients that allow us to collapse the assembling of
features into a simple selection of feature names: First, the reference specification
of the feature expresses which specific language constructs - out of all those repre-
sented in the generic meta-model - are needed to implement the feature. From the
XSD representation of the generic meta-model (see Section 6.3), we identify given
subsets of the schema definition representing semantically meaningful parts of it.
An ID uniquely identifies each of these fragments in the XSD. Second, the fea-
ture constraints state feature compatibilities or incompatibilities. They are simple
Boolean conditions. We detail these two aspects in the following.

7.1 Feature specification language

In order for feature specifications to be composable, we adopt a constructive ap-
proach that starts with an empty language specification (we call it the base lan-

Fig. 5. An example of domain syntax descriptor

To be used, the editor must be provided with a DSM platform configuration package
(or, more precisely, with a URL referencing it) that the editor uses to adapt its func-
tionalities and user interface based on the set of features to be supported listed in the
configuration document included in the package. For example, only if the blackboard
paradigm feature is selected the editor exposes the functionalities to create new global
variables and use them to define the data passing logic of the mashups.

In addition, the configuration package also includes the reference to the domain
syntax definition document, i.e., a document listing the language constructs (e.g., the
global variable or join constructs) having an own domain-specific graphical syntax and
providing a reference to the associated image files to be injected in the editor replacing
the editors generic graphical syntax (Figure 5 shows a domain syntax descriptor ex-
ample). Each mashup component can have an own domain-specific, graphical syntax,
replacing the general component syntax specified in the domain syntax descriptor or
editor’s generic one; in this case the reference to the image file to be used to graphically
represent the component is defined in the component descriptor.

Figure 6 shows the editor when configured to support different features. Figure 6(a)
presents the editor when configured to support, e.g., the data flow paradigm (wires
are defined among parameters), and mashup components possibly having multiple
operations and configuration parameters (draggable from the left toolbar of the editor
to the design canvas). The editor shown in Figure 6(b), instead, supports the control
flow paradigm (wires are defined among operations) and related constructs, e.g., global
variables, join and split, which are shown in the left toolbar of the editor. In addition,
in this case components can have only one operation and cannot include configuration
parameters. In both cases, all the components are represented by an own, domain-
specific graphical syntax.

What we provide is a basic editor able to support all the DSM languages and features
provided by our DSM platform generation framework and able to adapt its function-
alities and interface based on a configuration package given as input. The tool can be
used off-the-shelf to allow domain experts to design their compositions. However, if
platform developers have specific requirements in terms of user interface or advanced
tool’s functionalities, they can develop their own mashup editor building upon the one
we provide, which represent a solid base for the development and already provides
most of the needed functionalities.

6. IMPLEMENTATION
While in Section 4, 5.1 and 5.2 we described the main system modules from a concep-
tual and functional point of view, in this section we provide some details about their
implementation aspects. In particular, first we shortly describe the tool allowing the
developers to design their target platform and generating it for them, then we pro-
vide the details related to the main modules constituting the generated platforms, i.e.,
languages, mashup editor, runtime engine and mashup components.

232



A:22 S. Soi et al.

(a)

(b)

(b)

Fig. 6. The customizable mashup development environment. Different screenshots represent how the envi-
ronment changes depending on the features it is configured to support

6.1. The platform design and generation tool
One of the most powerful aspects characterizing the work proposed in this article is
that platform designers can simply reason staying at the feature level and forget low-
level implementation issues. The platform design tool is basically constituted of a list
of checkboxes, along with related labels and descriptions, each one representing a con-
ceptual feature and allowing designers to select a set of features to be supported in
their DSM platform. The only additional field that can be filled in by the designer
is used to upload a domain syntax descriptor file, that is an XML descriptor which
associates a given domain-specific graphical syntax (i.e., an image) to the mashup lan-
guage constructs to be used inside the mashup editor. Figure 5 presents an example of
domain syntax descriptor while Figure 7 shows the prototype interface of the tool.

The designers, clearly, must first pass through the domain analysis and formaliza-
tion steps, as described in the methodology in Section 2.3, but after this effort they
only have to select the required features according to the analysis outcomes.

The tool interface allows the developers to read all the available features and shows
them a short description for each feature on the mouse-over. Once the designer has
selected the required features he/she must check the feature set validity clicking on the
check constraints button, which invokes the already introduced associated algorithm
(detailed in the next section).

If the validity check is successful, the last action the designer has to do is clicking on
the generate button, which triggers the platform generation algorithm (implemented

233



Domain-specific mashup platforms as a service A:23

Fig. 7. Features selection user interface used by the platform designer

as a Java servlet), providing it with the list of selected features. This algorithm first
invokes the language generation algorithm (detailed in next section), which generates
the DSM composition and component descriptor languages, then it creates and stores
a suitable DSM platform configuration package (described in Section 3.3) on our server
and returns the package URL identifier to the designer.

The mashup editor and the runtime environment will then retrieve the configuration
package based on its URL and will use it to adapt their behavior and functionalities
based on the information contained in it.

For the complete features definitions, for the unified mashup language XSD and for
more examples of DSM languages we refer the reader to an online resource (http:
//goo.gl/hfkLO).

6.2. The DSM languages creation
For creating the DSM languages through the generation process described in Sec-
tion 4.3, we first need to select a machine-processable format allowing us to represent
and process the mashup models and languages described in that section. We selected
for this purpose the XML family of specifications. Therefore, we use XML schema defi-
nitions (XSDs) to formally define the unified mashup language and the DSM languages
we generate.

Also the features are defined as XML documents, following the same structure pre-
sented in Section 4.3. Figure 8 shows an example of feature definition.

As shown in Figure 8 the features’ specification element contains a list of identi-
fiers. These identifiers refer to well-defined fragments of the unified mashup language
XSD. The generation algorithm includes in the final DSM language XSD all the uni-
fied mashup language XSD fragments specified in the definitions of the set of selected
features and excludes all those associated to non-selected features, which would be
incompatible or unnecessary. A feature specification element may also include a set-
cardinality definition; these are used to set the XSD elements’ occurrence bounds. Be-
fore the language generation to be performed, the set of selected features is validated

234



A:24 S. Soi et al.

Conceptual Design of Sound, Custom Composition Languages 17

We define a composition feature as f = �name, label,desc,spec,Constr�, where
name is a text label that uniquely identifies the feature (e.g., data flow); label
briefly describes the feature and expresses its semantics; desc is a natural language
verbose description of the feature for human consumption; spec is the reference
specification of the feature; and Constr = constri is a set of feature constraints.

<feature name="condition" label="Conditions">

<description> Conditions can be set for each connector to define the
possible flows of the composition. Conditions are supported both for
control flow and data flow composition paradigms.

</description>

<specification>

<include fragments="conditionForCf" if="control_flow"/>
<include fragments="conditionForDf" if="data_flow"/>
<include fragments="conditionForSplit" if="split"/>
<include fragments="conditionForJoin" if="join"/>

</specification>

<constraints>
(control_flow AND blackboard) OR data_flow

</constraints>

</feature>

Listing 1 XML reference specification of the condition composition feature

The XML code in Listing 1 shows an example of how we serialize, for instance,
the condition feature in our feature knowledge base of the form F = f j. The
example shows the two core ingredients that allow us to collapse the assembling of
features into a simple selection of feature names: First, the reference specification
of the feature expresses which specific language constructs - out of all those repre-
sented in the generic meta-model - are needed to implement the feature. From the
XSD representation of the generic meta-model (see Section 6.3), we identify given
subsets of the schema definition representing semantically meaningful parts of it.
An ID uniquely identifies each of these fragments in the XSD. Second, the fea-
ture constraints state feature compatibilities or incompatibilities. They are simple
Boolean conditions. We detail these two aspects in the following.

7.1 Feature specification language

In order for feature specifications to be composable, we adopt a constructive ap-
proach that starts with an empty language specification (we call it the base lan-
guage), which contains only the basic XSD structure (e.g., name space definitions
and types) for the language to be generated, and then incrementally adds new con-
structs based on the specifications the of selected features. Since a given feature may
span multiple constructs of the meta-model, a feature reference specification gen-
erally requires multiple language fragments (identified through manually assigned
IDs) to be included in the final custom language definition. For instance, the specifi-

Fig. 8. An example of composition feature definition representing the condition feature

Conceptual Design of Sound, Custom Composition Languages 17

We define a composition feature as f = �name, label,desc,spec,Constr�, where
name is a text label that uniquely identifies the feature (e.g., data flow); label
briefly describes the feature and expresses its semantics; desc is a natural language
verbose description of the feature for human consumption; spec is the reference
specification of the feature; and Constr = constri is a set of feature constraints.

<feature name="data_flow" label="Data flow">

<description> The composition paradigm is data flow, that is, it is possible
to explicitly define the flow of the data among components opearations.
In this case the data passing and the control flow overlap since
operations triggering depends on the data flow.

</description>

<specification>

<include fragments="dfConnectorDef, dfConnectorType,
dfSourceOutputParameter, dfTargetInputParameter" />

</specification>

<constraints></constraints>
</feature>

<feature name="condition" label="Conditions">

<description> Conditions can be set for each connector to define the
possible flows of the composition. Conditions are supported both for
control flow and data flow composition paradigms.

</description>

<specification>

<include fragments="conditionForCf" if="control_flow"/>
<include fragments="conditionForDf" if="data_flow"/>
<include fragments="conditionForSplit" if="split"/>
<include fragments="conditionForJoin" if="join"/>

</specification>

<constraints>
(control_flow AND blackboard) OR data_flow

</constraints>

</feature>

Listing 1 XML reference specification of the condition composition feature

The XML code in Listing 1 shows an example of how we serialize, for instance,
the condition feature in our feature knowledge base of the form F = f j. The
example shows the two core ingredients that allow us to collapse the assembling of
features into a simple selection of feature names: First, the reference specification
of the feature expresses which specific language constructs - out of all those repre-
sented in the generic meta-model - are needed to implement the feature. From the
XSD representation of the generic meta-model (see Section 6.3), we identify given
subsets of the schema definition representing semantically meaningful parts of it.
An ID uniquely identifies each of these fragments in the XSD. Second, the fea-
ture constraints state feature compatibilities or incompatibilities. They are simple
Boolean conditions. We detail these two aspects in the following.

Fig. 9. The data flow composition feature definition

by the constraint verification algorithm, which checks that the constraints specified in
the selected features’ definitions are respected.

For example, let us assume that in the set of selected features are present the data
flow and condition features. The definitions of these two features are presented in
Figure 9 and 8, respectively.

These two features are compatible since the data flow one does not specify any con-
straint while the condition feature’s constraints are satisfied by the presence of the
data flow feature.

Therefore, the language generation algorithm can be executed. The algorithm will
include in the output DSM language the fragments of the unified mashup language
XSD whose fragmentID is listed in the specification element of the two features def-
initions. The unified mashup language XSD fragments associated to the data flow
and condition features are shown in Figure 10(a). An example of XML mashup def-
inition excerpt compliant with the defined part of DSM language XSD is shown in
Figure 10(b).

The constraint verification algorithm is implemented as a client-side JavaScript
script, since it is integrated in the platform design tool described in Section 6.1, while
the language generation one is implemented in Java within the platform generation
servlet. Both the algorithms take as input the list of identifiers of the selected features
and use the feature base (containing the definition of all the features) and the unified
mashup language XSD. The constraint verification and the generation algorithms are

235



Domain-specific mashup platforms as a service A:25

Conceptual Design of Sound, Custom Composition Languages 17

We define a composition feature as f = �name, label,desc,spec,Constr�, where
name is a text label that uniquely identifies the feature (e.g., data flow); label
briefly describes the feature and expresses its semantics; desc is a natural language
verbose description of the feature for human consumption; spec is the reference
specification of the feature; and Constr = constri is a set of feature constraints.

<xs:complexType name="dfConnectorType" fragmentId="dfConnectorType">
<xs:sequence>

<xs:element name="condition" minOccurs="0" maxOccurs="1" fragmentId="
conditionForDf">

<xs:complexType mixed="true">
<xs:attribute name="language" type="xs:string" use="optional" />

</xs:complexType>
</xs:element>

<xs:element name="source_outputParameter" minOccurs="0" maxOccurs="1"
fragmentId="dfSourceOutputParameter">

<xs:complexType>
<xs:attribute name="ref" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

<xs:element name="target_inputParameter" minOccurs="0" maxOccurs="1"
fragmentId="dfTargetInputParameter">

<xs:complexType>
<xs:attribute name="ref" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

<xs:element name="source_globalVariable" minOccurs="0" maxOccurs="1"
fragmentId="dfSourceGlobalVariable">

<xs:complexType>
<xs:attribute name="ref" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

<xs:element name="target_globalVariable" minOccurs="0" maxOccurs="1"
fragmentId="dfTargetGlobalVariable">

<xs:complexType>
<xs:attribute name="ref" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

</xs:sequence>

<xs:attribute name="id" type="xs:string" use="required" />

</xs:complexType>

<feature name="condition" label="Conditions">

<description> Conditions can be set for each connector to define the
possible flows of the composition. Conditions are supported both for
control flow and data flow composition paradigms.

</description>

<specification>

<include fragments="conditionForCf" if="control_flow"/>
<include fragments="conditionForDf" if="data_flow"/>
<include fragments="conditionForSplit" if="split"/>
<include fragments="conditionForJoin" if="join"/>

</specification>

<constraints>
(control_flow AND blackboard) OR data_flow

Conceptual Design of Sound, Custom Composition Languages 17

We define a composition feature as f = �name, label,desc,spec,Constr�, where
name is a text label that uniquely identifies the feature (e.g., data flow); label
briefly describes the feature and expresses its semantics; desc is a natural language
verbose description of the feature for human consumption; spec is the reference
specification of the feature; and Constr = constri is a set of feature constraints.

<dfConnector id="DF5">
<source_outputParameter ref="O1-4" />
<target_inputParameter ref="I2-10" />

</dfConnector>

<dfConnector id="DF6">
<source_outputParameter ref="O2-4" />
<target_inputParameter ref="I1-9" />

<condition language="javascript">
text!= 35

</condition>
</dfConnector>

<feature name="condition" label="Conditions">

<description> Conditions can be set for each connector to define the
possible flows of the composition. Conditions are supported both for
control flow and data flow composition paradigms.

</description>

<specification>

<include fragments="conditionForCf" if="control_flow"/>
<include fragments="conditionForDf" if="data_flow"/>
<include fragments="conditionForSplit" if="split"/>
<include fragments="conditionForJoin" if="join"/>

</specification>

<constraints>
(control_flow AND blackboard) OR data_flow

</constraints>

</feature>

Listing 1 XML reference specification of the condition composition feature

The XML code in Listing 1 shows an example of how we serialize, for instance,
the condition feature in our feature knowledge base of the form F = f j. The
example shows the two core ingredients that allow us to collapse the assembling of
features into a simple selection of feature names: First, the reference specification
of the feature expresses which specific language constructs - out of all those repre-
sented in the generic meta-model - are needed to implement the feature. From the
XSD representation of the generic meta-model (see Section 6.3), we identify given
subsets of the schema definition representing semantically meaningful parts of it.
An ID uniquely identifies each of these fragments in the XSD. Second, the fea-
ture constraints state feature compatibilities or incompatibilities. They are simple
Boolean conditions. We detail these two aspects in the following.

ConceptualDesignofSound,CustomCompositionLanguages17

Wedefineacompositionfeatureasf=�name,label,desc,spec,Constr�,where
nameisatextlabelthatuniquelyidentifiesthefeature(e.g.,dataflow);label
brieflydescribesthefeatureandexpressesitssemantics;descisanaturallanguage
verbosedescriptionofthefeatureforhumanconsumption;specisthereference
specificationofthefeature;andConstr=constriisasetoffeatureconstraints.

<dfConnectorid="DF5">
<source_outputParameterref="O1-4"/>
<target_inputParameterref="I2-10"/>

</dfConnector>

<dfConnectorid="DF6">
<source_outputParameterref="O2-4"/>
<target_inputParameterref="I1-9"/>

<conditionlanguage="javascript">
text!=35

</condition>
</dfConnector>

<featurename="condition"label="Conditions">

<description>Conditionscanbesetforeachconnectortodefinethe
possibleflowsofthecomposition.Conditionsaresupportedbothfor
controlflowanddataflowcompositionparadigms.

</description>

<specification>

<includefragments="conditionForCf"if="control_flow"/>
<includefragments="conditionForDf"if="data_flow"/>
<includefragments="conditionForSplit"if="split"/>
<includefragments="conditionForJoin"if="join"/>

</specification>

<constraints>
(control_flowANDblackboard)ORdata_flow

</constraints>

</feature>

Listing1XMLreferencespecificationoftheconditioncompositionfeature

TheXMLcodeinListing1showsanexampleofhowweserialize,forinstance,
theconditionfeatureinourfeatureknowledgebaseoftheformF=fj.The
exampleshowsthetwocoreingredientsthatallowustocollapsetheassemblingof
featuresintoasimpleselectionoffeaturenames:First,thereferencespecification
ofthefeatureexpresseswhichspecificlanguageconstructs-outofallthoserepre-
sentedinthegenericmeta-model-areneededtoimplementthefeature.Fromthe
XSDrepresentationofthegenericmeta-model(seeSection6.3),weidentifygiven
subsetsoftheschemadefinitionrepresentingsemanticallymeaningfulpartsofit.
AnIDuniquelyidentifieseachofthesefragmentsintheXSD.Second,thefea-
tureconstraintsstatefeaturecompatibilitiesorincompatibilities.Theyaresimple
Booleanconditions.Wedetailthesetwoaspectsinthefollowing.

(a)

(b)

Fig. 10. The unified mashup language XSD fragments associated to the data flow and condition features
(a) and a compliant XML mashup definition excerpt (b)

triggered by the platform designers by pressing the “Check constraints” and “Gener-
ate” buttons, respectively.

6.3. The runtime environment
As introduced in Section 5.1, the runtime environment is distributed among the client
and the server.

Due to the event-driven nature of mashups (which often include UI components
or asynchronous services) and to the high performance associated to this technical
choice, we implemented the server as a Node.js10 server and the SS-engine as a set
of Node.js modules, therefore, implemented in JavaScript. Thanks to the architecture
modularity, the adapter modules on the server-side (i.e., those in charge of interacting
with RSS, Atom, REST and SOAP services) can be implemented using any technology,
also different from NodeJs. Indeed, we decided to implement them as RESTful services
implemented in Java and running on an, Apache Tomcat server ((installed on the same
machine of the server hosting the SS-Engine, to avoid any network latency or issue).

Both the CS-Engine and the client-side adapters (i.e., for JavaScript components and
W3C Widgets) are completely implemented in JavaScript. In addition, the CS-Engine
also acts as interface through which the mashup end user can start the mashup execu-
tion. Concretely, the end user will always be provided with an HTML page to interact
with the mashup process. The page, beside showing the possible UI components in-
cluded in the compositions (which may react to users action or show process results),

10Node.js is a framework for writing scalable JavaScript web applications and servers on the server-side.
More information at: http://nodejs.org/

236



A:26 S. Soi et al.

provides end users with a starting interface, that is, a UI allowing the user to possibly
feed non-UI components with some manual input (if any) and to launch the compo-
sition execution, that will continue following the operational semantics introduced in
Section 5.1.

To run a mashup composition, first, the CS-Engine connects to the server through
an HTTP GET message, passing some parameters and, in particular, the DSM com-
position definition to be executed, which also includes a reference to the configuration
package needed by the engine to retrieve the list of features to be supported. When the
server receives this message it creates a new SS-Engine instance that will manage this
mashup execution and associates to it a WebSocket [W3C 2013] server, whose address
is sent back to the CS-Engine. All the following communications among the CS-Engine
and the SS-Engine will be direct messages over the WebSocket protocol. This allows
the engine to easily and very efficiently support long-running processes, asynchronous
interactions and real-time applications.

6.4. The mashup editor
For the implementation of the mashup editor we build upon the WireIt library11. It
is a JavaScript library providing a basic Web tool and a visual language for the de-
velopment of mashup-like compositions. It comes with a readily available basic editor
already including generic compositional elements like components, input and output
ports, component configuration forms, wires and the like.

We extended this editor to support all the language constructs of the unified mashup
language. For example, we extended it adding a new construct to represent global vari-
ables and adding different types of wires, e.g., one to be used to define the compositions’
control flow and another for designing the data passing logic.

When the editor is loaded it retrieves a configuration package using the URL passed
as HTTP parameter. From this configuration package extracts the list of features to be
supported and adapts its interface and functionalities accordingly. In addition, it also
extracts the URL of the component descriptors repository that is used to retrieve the
descriptors of all the mashup components available for the DSM platform described by
the given configuration package and represent them in the component toolbar within
the editor. Similarly, the composition definitions repository is accessed to load previ-
ously stored compositions and to save the new ones created in the editor.

6.5. The mashup components
The mashup components implementation cannot be significantly automatized and
must still be mainly developed by programmers. Components should comply with (i)
the guidelines encoded in the analysis outcome artifacts and (ii) the DSM component
description language produced by the platform generator. In particular, components
should belong to one of the classes defined in the PM and should consume and produce
parameters complying to the data types defined in the DCM (i.e., to their XSD defini-
tion). In addition, to improve the domain specificity and usability of the mashup editor,
a component can be accompanied by an own specific graphical syntax, which overrides
the basic editor’s generic syntax.

An important aspect to be noticed is that we want to allow a simple integration of
already existing services and components. For this reason, as already introduced, we
support by design the usage of widely spread standard technologies. The integration
of components developed through these technologies is typically very straightforward
since only requires the description of the component following the component descrip-
tion language format. This descriptor includes all the needed information to connect

11WireIt library homepage: http://neyric.github.com/wireit/docs/

237



Domain-specific mashup platforms as a service A:27

to and interact with the actual service/component, which will be then used by the me-
diator adapters described in Section 6.3. For example, to “componentize” an existing
SOAP service, it is sufficient to create an XML descriptor similar to the one shown in
Figure 11, which describes the H-index component needed for the realization of the
scenario presented in Figure 1.

Conceptual Design of Sound, Custom Composition Languages 17

We define a composition feature as f = �name, label,desc,spec,Constr�, where
name is a text label that uniquely identifies the feature (e.g., data flow); label
briefly describes the feature and expresses its semantics; desc is a natural language
verbose description of the feature for human consumption; spec is the reference
specification of the feature; and Constr = constri is a set of feature constraints.

<component id="C1" name="H-Index" type="service" binding="SOAP"
endpoint="http://.../hIndex" class="metrics" supportReferencePassing="yes"
syntax="http://.../hIndex.png">

<operation id="OP1-1" name="Get Impact" type="request-response"
reference="getImpact">

<inputParameter id="I1-1" name="venueWeights" manualInput="no"
optional="no">

<has_dataType ref="venueWeights" />
</inputParameter>
<inputParameter id="I2-7" name="publications" manualInput="no"

optional="no">
<has_dataType ref="publications" />

</inputParameter>

<outputParameter id="O1-1" name="hIndex" >
<has_dataType ref="metricValues" />

</outputParameter>
</operation>

</component>

<feature name="condition" label="Conditions">

<description> Conditions can be set for each connector to define the
possible flows of the composition. Conditions are supported both for
control flow and data flow composition paradigms.

</description>

<specification>

<include fragments="conditionForCf" if="control_flow"/>
<include fragments="conditionForDf" if="data_flow"/>
<include fragments="conditionForSplit" if="split"/>
<include fragments="conditionForJoin" if="join"/>

</specification>

<constraints>
(control_flow AND blackboard) OR data_flow

</constraints>

</feature>

Listing 1 XML reference specification of the condition composition feature

The XML code in Listing 1 shows an example of how we serialize, for instance,
the condition feature in our feature knowledge base of the form F = f j. The
example shows the two core ingredients that allow us to collapse the assembling of
features into a simple selection of feature names: First, the reference specification
of the feature expresses which specific language constructs - out of all those repre-
sented in the generic meta-model - are needed to implement the feature. From the
XSD representation of the generic meta-model (see Section 6.3), we identify given
subsets of the schema definition representing semantically meaningful parts of it.
An ID uniquely identifies each of these fragments in the XSD. Second, the fea-

Fig. 11. An example of composition feature definition

This example descriptor specifies the main properties and interface of a SOAP ser-
vice for the computation of an H-index value based on a list of publications and a set
of venue weights passed as input. The definition of a similar descriptor is all we need
for making the runtime engine able to use and interact with the service.

Once the components are implemented and according descriptors are defined, they
must be registered to be used within a given DSM platform. Component registration
is done through a simple web interface. This interface requires to upload the compo-
nent descriptor and the DSM platform configuration package of the DSM platform the
component must be associated to. The registration interface simply stores the compo-
nent descriptor in the specific DSM components repository of the given DSM platform,
using the repository’s URL specified within the configuration package.

Summarizing, the component development approach we propose has two main ben-
efits: (i) allows developers to implement new components exploiting well known tech-
niques and tools they are used to and (ii) allows the integration of already existing
services available within a specific target domain at a negligible cost.

7. USE CASE: RESEVAL MASH
To let the reader better understand how our framework works and the steps and ef-
forts that platform designers should go through during the development of a DSM
platform using it, in this section we provide a concrete use case. We show how a DSM
platform similar to ResEval Mash can be implemented using our framework. We se-
lect ResEval Mash as reference platform since we already introduced it in Section 2.2
and, furthermore, to take the research evaluation as target domain, which readers are
already acquainted with and can find easier to understand.

7.1. Scenario and requirements
For the selected scenario we want to build a mashup platform for the development of
processes for the evaluation of researchers and research production. This tool is useful
in various situations, e.g., researchers hiring or research production evaluation for

238



A:28 S. Soi et al.

funds distribution, and has to be directly used by (typically university) administrative
employees (i.e., our domain experts).

The research evaluation processes are data-driven processes which are character-
ized by the need for managing and processing large amounts of data, coming from
different bibliographic web sources and processed by specific services. These data-
processing compositions typically also include some user interface, used only to present
the process result to the domain experts.

The description given above represents only the main requirements for the target
domain language and platform and is meant to let the reader understand the context
and the core needs of the target domain. The complete requirements definition must be
done following the methodology summarized in Section 2.3, which guides the platform
designer through the domain analysis and formalization phase. Here we do not further
expand on this phase, since it is not the main focus of this paper. For the details about
this phase and its resulting output artifacts in the context of the research evaluation
domain, we refer to [Daniel et al. 2012]. The next section shows how our system can be
used to generate our target platform, assuming the domain analysis has already been
done and its output artifact are available.

7.2. Building ResEval Mash, simply
Once the domain analysis phase has been completed following our methodology, the
platform designers have a clear idea about the specific requirements of their target
platform and have produced the set of domain formalization artifacts described earlier
in the paper (e.g., DCM, MM, PM, domain syntax).

At this point the platform designers can start the platform generation procedure. As
discussed in Section 6.1, the only action required to them is to configure the DSM lan-
guage and the platform through the simple interface shown in Figure 7. Considering
the requirements of our research evaluation scenario, the designer should select a set
of features like the one shown in Figure 12.

The figure shows the whole list of required features for our use case. In particular for
the components configuration we have specified that both data, service and UI compo-
nents are needed, and for each type the supported communication patterns (e.g., UIs
are used only to show processing results, therefore, only the one-way pattern is se-
lected) and implementation technologies (e.g., service components can be implemented
either as SAOP or REST services).

Then, since our processes are mainly data-driven, we define as base composition
paradigm the data flow and we also state that compositions will have their UI coun-
terpart rendered on a single page.

Finally, we require the enabling of the reference passing mode in the runtime en-
vironment (significantly limiting the processing time due to latency and network
bottlenecks in data-intensive processing scenarios) and the automatic data-mapping
functionality in the mashup editor (allowing the wiring definition at operations level
and, therefore, relieving the domain expert of the setting of low-level, parameter-to-
parameter data-mappings, which are automatically defined based on parameters types
matching).

Once the features have been selected the last step is the upload of the domain syntax
descriptor, which has been produced during the domain formalization phase. After
checking features selection validity pressing the related button (which in this case
confirms its validity as shown in the figure), the last step is press the generate button,
which will trigger the platform generation procedure, as described above in Section
6.1.

The generation process will first produce the DSM platform configuration package
including the generated DSM languages. In Figure 13 shows some excerpts of an ex-

239



Domain-specific mashup platforms as a service A:29

Fig. 12. The set of features selected for the generation of the research evaluation DSM platform. Note: here
non-selected features of the Component category have been removed from the UI for visualization purposes.

ample composition XML definition (implementing the scenario presented in Figure 1),
which is compliant with the generate DSM composition language.

Using this configuration package the framework provides a hosted mashup editor
customized to fit the generated DSM language, along with its constructs, to support -
all and only - the selected features and to show the domain specific syntax provided
during the platform design and generation steps. Figure 14 shows the DSM editor
customized based on the features discussed above. The figure includes, as composition
example, the mashup implementing the scenario presented in Figure 1. The editor
provides only the functionalities supporting the selected features and, for instance,
control flow constructs (e.g., split or join) or global variables are not present at all. In
addition, each component has an own domain-specific graphical syntax.

Some more tuning could be needed in case of particular user interface or functional
requirements. For example, the actual ResEval editor provides some functionalities we
still do not provide, like the “live development environment”, where mashup execution
is performed live during its development. The provided editor, thus, can be used as it
is or can be used as solid and valuable base for building a - even more customized -
DSM editor.

The provided runtime environment, instead, is provided “off-the-shelf”: it does not
need any modification (unless new language constructs are introduced) and is ready to
run any mashup defined through the generated DSM language.

Clearly, developers must also develop the domain-specific components. However, as
already discussed in Section 6.5, already existing services can be integrated in the
platform very easily, typically just providing an XML descriptor defining their main
attributes and interface.

This section shows how simple is for a platform designer to get an almost-complete
(still components must be implemented by developers) DSM platform with a negligible

240



A:30 S. Soi et al.22 Stefano Soi, Florian Daniel, Fabio Casati

<mashup name="DepartmentProductivity">
<component id="C1" name="Italian Researchers" type="data" binding="REST"

endpoint="http://...">

<configurationParameter id="CP1-1" name="Sector" manualInput="yes">
<has_dataType ref="string" />

</configurationParameter>
[...]

<operation id="OP1-1" name="Get Researchers" type="request-response"
reference="getResearchers">

<input id="I1-1" name="sector" dataType="string" optional="no"
manualInput="yes" />

<output id="O1-1" name="researchers" dataType="researchers"/>
</operation>

</component>

[...]

<component id="C9" name="bar Chart" type="ui" binding="javascript"
endpoint="http>//...">

<operation id="OP1-9" name="Plot" type="one-way"
reference="plot">

<input id="I1-9" name="data" dataType="dataSeries" optional="no"
manualInput="no" />

</operation>

</component>

[...]
<constant id="CNST1" name="Sector" dataType="string" value="ComputerScience"

feeds_configurationParameter="CP1-1"/>
[...]

<dfConnector id="DF1" source_output="O1-1" target_input="I1-2" />
[...]
<dfConnector id="DF9" source_output="O1-8" target_input="I1-9" />

</mashup>

Listing 2 XML definition of the example mashup application presented in Section 2

<mashup name="GeoLocalSearchWithTraffic">
<component id="C1" name="Yahoo Local Search" type="ui" binding="javascript"

endpoint="http://...">
[...]
<operation id="OP2-1" name="Item Selected" type="notification"

reference="itemSelected">
<output id="O2-1" name="Latitute" dataType="double"/>
<output id="O3-1" name="Longitue" dataType="double"/>
<output id="O4-1" name="Zoom Level" dataType="int"/>
<output id="O5-1" name="Label" dataType="string"/>

</operation>
</component>

<component id="C2" name="Google Map" type="ui" binding="javascript"
endpoint="http://...">

[...]
<configurationParameter id="CP1-2" name="latitude" dataType="double"

manualInput="yes"/>
<configurationParameter id="CP2-2" name="longitude" dataType="double"

manualInput="yes"/>
<configurationParameter id="CP3-2" name="zoomLevel" dataType="int"

manualInput="yes"/>
[...]
<operation id="OP1-2" name="Show Point" type="one-way" reference="

showPoint">
<input id="I1-2" name="longitude" dataType="double" optional="no" />
<input id="I2-2" name="latitude" dataType="double" optional="no" />

</operation>
</component>

Fig. 13. Partial mashup XML definition implementing the scenario presented in Figure 1

Fig. 14. The mashup implementing the scenario presented in Figure 1, designed within our the DSM plat-
form

effort, clearly, excluding the domain analysis phase, that must be manually performed
in any case. In other words, most of the actual development effort and cost is absorbed
by the DSM platform generation framework we provide.

241



Domain-specific mashup platforms as a service A:31

8. EVALUATING THE SYSTEM
In the previous sections we described the concepts, approaches and tools underlying
the DSM platform generation framework. In this section, we describe their limitations
and how we validated them to provide a clearer picture of the value of this work.

8.1. Validation
The main goal of this work is to enable EUD. We propose to address this goal providing
users (domain experts) with domain-specific mashup solutions, as we describe in this
paper.

We validated the domain-specific mashup approach through the user studies ran on
ResEval Mash [Daniel et al. 2012], which have shown that domain experts are able to
manage composition tasks when provided with domain-specific mashup tools recalling
concepts and semantics of the domain they work in, therefore, validating the DSM
approach as effective EUD enabler.

Moreover, in [Soi et al. 2013] we have shown that the set of features we support al-
low the generation of DSM languages supporting the requirements of different types
of mashup tools, thus, providing a validation for our conceptual language generation
approach and for its coverage in terms of requirements it can support. For example,
we generated mashup languages having the same expressive power of the languages
underlying the YahooPipes, mashArt and ResEval Mash tools, which present very dif-
ferent requirements, all supported by the languages we generated.

Validating the DSM platform generation framework itself is extremely complex. To
do it, we should find a number of developers able to use our framework (i.e., fully aware
of mashup technologies and able to design a mashup platform), which are also experts
in a given application domain and that are willing to work with us for a relatively
long period (in the order of several weeks), since they should go through the method-
ology steps (to analyze the domain and produce the relative artifacts) and through the
platform generation process using our framework. In addition, a test group develop-
ing similar platforms through the standard, manual development approach would be
also needed. Being able to perform a similar study would be clearly useful to evaluate
and collect feedbacks about the usability and the effectiveness of our DSM platform
generation framework, but it is evident that this would be extremely costly in terms of
resources (i.e., the mashup platform developers) and, thus, almost impossible to real-
ize.

However, in this paper, we describe how the generation framework is able to create
DSM platforms including languages and tools supporting the set of identified features.
Since, as we have shown, supporting these features allows us to cover a wide range of
mashup platform requirements, this let us state that the DSM platforms we generate
are able to address the same wide range of requirements. This means that our genera-
tion framework can be used to produce DSM platforms for many applications domains
having different requirements.

8.2. Limitations
The DSM platform generation framework already provides a fairly wide set of features
allowing us to build languages and tools supporting many different domain require-
ments. Nonetheless, the list of identified features comes without the claim of com-
pleteness and it is meant to grow over time to increase the spectrum of requirements
the framework can effectively support. The framework will be available as open-source
project to let the community further expand it, e.g., including the support for new fea-
tures or improving the current runtime or development environments.

242



A:32 S. Soi et al.

Regarding the mashup editor, we still provide a basic editor whose implementation
has still to be completed to better support all the identified features. In addition, de-
pending on the specific needs developers may have, the editor may benefit from some
extension related to the user interfaces or user experience. The runtime environment,
instead, is fully working and supports the conceptual features we identified.

The framework do not provide any user management system. A similar system is
needed, e.g., to associate the users (i.e., domain experts) to the different DSM plat-
forms hosted on our server (so that they can access the mashup editor without provid-
ing the required DSM configuration packages reference) or to set up access restrictions
to the mashup compositions developed by domain experts. User management systems,
if needed, must be implemented as external modules that than suitably invoke or redi-
rect to our tools.

Finally, in general we do not argue we can build effective platforms for any domain,
but we argue that our methodology and system can be applied to many domains allow-
ing a faster and more affordable development of DSM platforms for them.

9. RELATED WORK
The main goal of this work is to bring development to end users. Mashups are com-
monly seen as a viable solution to enable end user development (EUD), as described in
[Grammel and Storey 2010]. Despite this, current mashup tools still fail in achieving
this goal since they present concepts and compositional elements that end users cannot
understand and compose [Namoun et al. 2010b; 2010a]. The solution we propose to ad-
dress this problem is to provide end users with domain-specific mashup (DSM) tools.
To foster and facilitate the adoption of this DSM solutions, we also propose a DSM
platform generation framework making the DSM platform development simpler and
faster. To the best of our knowledge, no other research works are focussing on domain-
specific solution within the mashup context. Next, thus, we provide an overview of the
state of the art of the two research areas most closely related to our approach, i.e.,
domain-specific development and mashups.

Domain-specific development. The idea of exploiting domain specificities to create
more effective and simpler development environments is supported by a large number
of research works [Lédeczi et al. 2001; Costabile et al. 2004; Mernik et al. 2005; France
and Rumpe 2005]. As mentioned, none of them is directly related to the mashup re-
search field and, instead, most of them are related to the Domain Specific Languages
(DSL) and Domain Specific Modeling (DM) research areas.

In DM, domain concepts, rules, and semantics are represented by one or more mod-
els, which are then translated into executable code. DM tools provide domain-specific
programming instruments, allowing developers to abstract from low-level program-
ming details, and powerful code generators that implement the application code on
behalf of the developers. Studies performed using different DM tools (e.g., the commer-
cial MetaEdit+ tool and the academic solution MIC [Lédeczi et al. 2001]) have shown
that developers’ productivity can be increased up to an order of magnitude. Managing
these models, though, can be a complex task suited only to programmers. In the DSL
context, although we can find solutions targeting end users (e.g., Excel macros) and
medium skilled users (e.g., MatLab), most of the current DSLs target expert devel-
opers (e.g., Swashup [Maximilien et al. 2007] a DSL for mashup development). Also
here the introduction of the “domain” raises the abstraction level, but the typical tex-
tual nature of these languages makes them less intuitive, harder to manage and, thus,
not suitable for end users. Benefits and limits of the DSM and DSL approaches are
summarized in [France and Rumpe 2005] and [Mernik et al. 2005].

243



Domain-specific mashup platforms as a service A:33

Mashups. Web mashups [Yu et al. 2008] emerged as an approach to provide easier
ways to connect together services and data sources available on the Web [Hartmann
et al. 2006]. Most mashup tools also claim to enable EUD targeting non-programmers.
Fischer et al. [2009] analyzed a large set of mashup tools and categorized them based
on the development paradigm (from manual to automatic development paradigms)
and on the required skills to the user (from expert programmer to casual user). The
outcomes of this survey state that none of the available tools is actually able to enable
EUD and proposes a new automatic tool targeting this goal [Fischer et al. 2008]. The
tool focuses on automatic service composition only.

In general, mashup tools can focus on data, service or user interface (UI) integration,
or on a combination of them. Yahoo! Pipes (http://pipes.yahoo.com) is an example of
mashup tool focussing on data integration. It provides an intuitive visual editor that
allows the design of data processing logics. Support for UI integration is missing, and
support for service integration is still poor. Pipes operators provide only generic pro-
gramming features (e.g., feed manipulation, looping) and require some basic program-
ming knowledge.

The ServFace project (http://www.servface.eu), instead, aims to support web users
in composing semantically annotated web services. Annotations are used to automati-
cally gener- ate form-like interfaces for the involved services, which can be placed onto
one or more web pages that can be graphically linked to specify the data flow in the
composition. The result is a simple, user-driven web service orchestration tool [Nestler
et al. 2010], but UI integration and process logic definitions are rather limited and,
yet, basic programming knowledge may still be required.

An example of mashup tool focussing on UI integration is Intel Mash Maker. It pro-
vides a completely different mashup approach: rather than taking inputs from struc-
tured data sources (e.g., RSS/Atom feeds), Mash Maker allows users to reuse entire
web pages and, if suitably annotated, to extract data from them. Mash Maker focusses
on data extraction and UI presentation, but the concept of service composition is com-
pletely missing. Its use, especially for advanced features, requires programming skills.

Our mashup tool, mashArt [Daniel et al. 2009], supports the integration both data,
services and UIs in one single language and tool. This is what we called universal
integration. Also this tool, although designed to target end users, failed in enabling
EUD.

We developed also another mashup-like tool implementing the universal integration
idea, MarcoFlow [Daniel et al. 2011]. This tool extends the standard service integration
layer provided by BPEL with a presentation layer allowing to include UI components
within standard service compositions, so that to integrate users in the compositions
themselves. This tool, however, explicitly target programmers with advanced service
composition skills.

The variability in the mashup tools’ characteristics, functionalities and approaches
is very high, as described in several works [Aghaee et al. 2012], [Koschmider et al.
2009], [Hoyer and Fischer 2008]. Aghaee et al. [2012] define a mashup design space
based on different dimensions, represented by design issues. The article provides a
clear idea of the mashup tools’ variability and of the complexity of designing a mashup
platform.

These reasons motivated us to the development of solutions proposed in this article,
i.e., (i) the DSM approach (to address the lack of usability identified by Fischer et al.
[2009] hampering EUD), (ii) the conceptual design approach (facilitating the complex
mashup platform design phase) and (iii) the platform generation framework (which
allows to automatically translate the design choices into a concrete mashup platform,
fostering the adoption of our solutions).

244



A:34 S. Soi et al.

10. LESSONS LEARNED
Our research activities were driven by the inspiring idea that mashup technologies
can enable the radical paradigm shift making non-programmers the real designers
and developers of their own applications, that is, enable end user development (EUD).
Clearly, the development of, e.g., complex and/or large software systems will still re-
quire the work and expertise of software architects and professional developers. For
the development of simpler applications (realizable through the lightweight compo-
sition of the huge variety of available data, services, APIs and UI widgets), though,
this paradigm shift would have a huge impact, moving their development from IT de-
partments directly to the final consumer (or prosumer, at this point) and enabling the
development of situational applications that today cannot just be implemented, since
they typically require too many resources to be developed following the standard soft-
ware development lifecycle.

During our work we have learned that to make mashup tools more usable (to go to-
wards EUD) should be the tools to adapt to users and to their mindset and habits, and
not the opposite. This is the difference between DSM solutions and general-purpose
ones. The former provide users with compositional elements resembling the concepts
they face and manage in their everyday life, which, thus, they are able to understand
and manage. The latter, instead, require users to map the concepts they know to lower-
level compositional elements, which, suitably composed, can be able to represent those
concepts. This abstraction and mapping exercise, though, is far from the possibilities
of the non-IT skilled end users, since it typically require programming knowledge (to
understand the low-level composition elements) and abstraction skills (to map them to
the concepts familiar to the user) that end users do not have. These lessons motivated
us to design and follow the DSM approach proposed in this work, which allows the cre-
ation of simpler mashup tools that are domain-specific and closer to domain experts’
mindset and, finally, more usable for them.

We are convinced that the DSM approach is an important starting point to achieve
our main goal, i.e., bring application development to end users, but it must be fur-
ther developed and merged with other approaches and technologies. In our experience
we have been involved in the design of other approaches going towards EUD and we
realized that they can complement each other, leading to really effective solutions to
enable a wider and wider range of users to develop their own applications. Our ap-
proach goes in the direction of simplifying to the possible extent the mashup tools.
Other approaches follow different ways to enable EUD; for example, a promising re-
search track focusses on the development of technologies to assist end users during the
mashup development phase, e.g., recommending possible needed components or how
to compose them. An example of this kind of tools is Baya [Chowdhury et al. 2012],
which has been developed by our research group and is being applied in the context of
the OMELETTE project. The convergence of the DSM approach with other technolo-
gies like the one just described is, in our vision, the right way to follow to enable EUD
in real-life scenarios.

Another important lessons we learned, and that we try to apply to our solutions, is
that to achieve EUD, the tools we provide to end users must comply with the definition
of gentle slope systems [Myers et al. 1992]. This means that the tools must allow users
to learn how to effectively use the tool step-by-step without steep learning curve. We
have experienced this also during the user studies we did during our research, under-
standing that this is particularly true for end users. This class of users is not prepared
to and is not even interested in learning a large amount of conceptual and technology-
related notions to use a tool. Users must be able to learn by attempts and constantly
perceive the results of their learning efforts. This is very important also in the mashup

245



Domain-specific mashup platforms as a service A:35

context. The inherent complexity of modeling a composition, establishing the compo-
nents’ execution sequence and dealing with the data passing require an algorithmic
and technical mindset that end users do not have, but that, as we have seen, they
can “gently learn” when provided with DSM mashup tools [Daniel et al. 2012] (which
are simpler to understand and work with) and, e.g., assisted during the composition
development (making the learning slope even more gentle) [De Angeli et al. 2011].

As we have directly experienced during the development of several mashup tools
(i.e., mashArt, MarcoFlow, OMELETTE Live mashup Environment, ResEval Mash)
developing mashup platforms, in particular DSM ones, is definitely non-trivial and
expensive. To foster and push the adoption of the DSM approach, which we consider a
key ingredient towards the EUD goal, we designed supporting methodologies and tools
for making their development simpler, faster and more affordable.

Finally, although the approaches and tools proposed in this paper focus on the devel-
opment of DSM solutions targeting EUD, we recognize that the generation framework
we provide can also be applied to other contexts. In general, through its conceptual
design approach and platform generation algorithms, it can simplify the development
of many types of mashup tools. For example, it can be used to rapidly build mashup
platforms easing the work of developers (thus, not targeting EUD, for the develop-
ment of scientific workflow systems (like myExperiments12) requiring to deal with
data-intensive process or, in general, in any case a custom mashup platform may be
useful.

In the next future we will work to expand the set of features supported by our gen-
eration framework and to make the tools it provides more stable and complete (in
particular the editor). Then, we will make the whole generation framework available
as open-source project, letting the community use it and participate to its evolution.
In addition, we will also work on the integration of complementary technologies into
the development environment to improve its usability level. In particular, we plan to
integrate the above mentioned Baya system, which assists the end users during the
composition tasks.

REFERENCES
AGHAEE, S., NOWAK, M., AND PAUTASSO, C. 2012. Reusable decision space for mashup tool design. In

Proceedings of the 4th ACM SIGCHI symposium on Engineering interactive computing systems. ACM,
211–220.

CHOWDHURY, S. R., RODRÍGUEZ, C., DANIEL, F., AND CASATI, F. 2012. Baya: Assisted mashup develop-
ment as a service. In Proceedings of WWW 2012 Companion. 409–412.

COSTABILE, M. F., FOGLI, D., FRESTA, G., MUSSIO, P., AND PICCINNO, A. 2004. Software environments
for end-user development and tailoring. PsychNology Journal 2, 1, 99–122.

DANIEL, F., CASATI, F., BENATALLAH, B., AND SHAN, M. 2009. Hosted universal composition: Models,
languages and infrastructure in mashart. In Proceedings of ER’09.

DANIEL, F., IMRAN, M., SOI, S., ANGELI, A. D., WILKINSON, C. R., CASATI, F., AND MARCHESE, M. 2012.
Developing mashup tools for end-users: On the importance of the application domain. International
Journal of Next-Generation Computing (IJNGC) 3, 2.

DANIEL, F., SOI, S., TRANQUILLINI, S., CASATI, F., HENG, C., AND YAN, L. 2011. Distributed orchestration
of user interfaces. Information Systems, Elsevier 37, 6, 539–556.

DE ANGELI, A., BATTOCCHI, A., CHOWDHURY, S. R., RODRIGUEZ, C., DANIEL, F., AND CASATI, F. 2011.
End-User Requirements for Wisdom-Aware EUD. In Proceedings of IS-EUD. 245–250.

FISCHER, T., BAKALOV, F., AND NAUERZ, A. 2008. Towards an automatic service composition for generation
of user-sensitive mashups. In Proceedings of the 16th Workshop on Adaptivity and User Modeling in
Interactive Systems.

FISCHER, T., BAKALOV, F., AND NAUERZ, A. 2009. An overview of current approaches to mashup genera-
tion. In Proceedings of the International Workshop on Knowledge Services and Mashups (KSM).

12myExperiments homepage: http://www.myexperiment.org/

246



A:36 S. Soi et al.

FRANCE, R. AND RUMPE, B. 2005. Domain specific modeling. Software and Systems Modeling 4, 1–3.
GRAMMEL, L. AND STOREY, M. A. 2010. The Smart Internet. LNCS Series, vol. 6400. Springer, Chapter A

Survey of Mashup Development Environments, 137–151.
HARTMANN, B., DOORLEY, S., AND KLEMMER, S. 2006. Hacking, Mashing, Gluing: A Study of Opportunis-

tic Design and Development. Pervasive Computing 7, 3, 46–54.
HOYER, V. AND FISCHER, M. 2008. Market overview of enterprise mashup tools. In ICSOC. 708–721.
KOSCHMIDER, A., TORRES, V., AND PELECHANO, V. 2009. Elucidating the mashup hype: Definitions, chal-

lenges, methodical guide and tools for mashups. In Proceedings of Workshop on Mashups, Enterprise
Mashups and Lightweight Composition on the Web.

LÉDECZI, Á., BAKAY, A., MAROTI, M., VÖLGYESI, P., NORDSTROM, G., SPRINKLE, J., AND KARSAI, G.
2001. Composing domain-specific design environments. IEEE Computer 34, 11, 44–51.

MAXIMILIEN, E. M., WILKINSON, H., DESAI, N., AND TAI, S. 2007. A domain-specific language for web
apis and services mashups. In Proceedings of ICSOC. 13–26.

MERNIK, M., HEERING, J., AND SLOANE, A. M. 2005. When and how to develop domain-specific languages.
ACM Computing Surveys 37, 4, 316–344.

MYERS, B., SMITH, D. C., AND HORN, B. 1992. Languages for Developing User Interfaces. Jones and
Bartlett, Boston, Chapter Report of the ‘End-User Programming’ Working Group, 343–366.

NAMOUN, A., NESTLER, T., AND DE ANGELI, A. 2010a. Conceptual and Usability Issues in the Composable
Web of Software Services. In Current Trends in Web Engineering - 10th International Conference on Web
Engineering ICWE 2010 Workshops. Springer, 396–407.

NAMOUN, A., NESTLER, T., AND DE ANGELI, A. 2010b. Service Composition for Non Programmers:
Prospects, Problems, and Design Recommendations. In Proceedings of the 8th IEEE European Con-
ference on Web Services (ECOWS). IEEE, 123 – 130.

NESTLER, T., FELDMANN, M., HÜBSCH, G., PREUSSNER, A., AND JUGEL, U. 2010. The servface builder -
a wysiwyg approach for building service-based applications. In ICWE. 498–501.

SOI, S., DANIEL, F., AND CASATI, F. (in press) 2013. Web Services Foundations. Springer, Chapter Concep-
tual Design of Sound, Custom Composition Languages.

W3C. 2011. Widget Packaging and Configuration. W3C Working Draft.
W3C. 2013. The WebSocket API.
WILSON, S., DANIEL, F., JUGEL, U., AND SOI, S. 2011. Orchestrated user interface mashups using w3c

widgets. In Proceedings of ICWE Workshops. Springer, 49–61.
YU, J., BENATALLAH, B., CASATI, C., AND F., D. 2008. Understanding mashup development. IEEE Internet

Computing 12, 5, 44–52.

247


