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Abstract

People perceive any kind of information with different level of attention and

involvement. It is due to the way how our brain functions, redundancy and

importance of the perceived data. This work deals with visual information,

in particular with images. Image analysis and processing is often requires

running computationally expensive algorithms. The knowledge of which

part of an image is important over other parts allows for reduction of data

to be processed. Besides computational cost a broad variety of applications,

including image compression, quality assessment, adaptive content display

and rendering, can benefit from this kind of information. The development

of an accurate visual importance estimation method may bring a useful tool

for image processing domain and that is the main goal for this work. In

the following two novel approaches to saliency detection are presented. In

comparison to previous works in this field the proposed approaches tack-

les saliency estimation on the object-wise level. In addition, one of the

proposed approach solves saliency detection problem through modelling 3-D

spatial relationships between objects in a scene. Moreover, a novel idea of

the application of saliency to diversification of image retrieval results is

presented.
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Chapter 1

Introduction

While analysing the content of images and videos one can notice that im-

portance of the content within the frame is not equal. We are living in

the age of information revolution. Information is everywhere in our lives.

Television, radio, newspapers, social networks. This work deals with very

particular part of information - images, mainly photographs. Images may

represent different aspects of our live: everyday routine, events, holiday

trips and arts. Like in any means of information exchange only some parts

of an image contain the desired information. Indeed, due to the way im-

ages are created there is no way of full control over their content. Consider

for example you want to make a picture of some monument in a city. This

monument may be surround by some building, in between the monument’s

face surface and camera plane there could be people passing over, depend-

ing on the orientation of the camera with respect to the monument sky or

ground plane may also appear in the frame. Although it is possible to avoid

these objects by zooming very close to the monument, this is rarely done,

because then the visualization of the monument will be less informative.

Thereby inclusion of two types of content (foreground and background) in

images is inevitable. For instance, in the aforesaid toy example the mon-

ument is the foreground and the rest of the frame can be considered as
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CHAPTER 1. INTRODUCTION

background. It is natural to think that the foreground part of an image is

to be perceived as an important peace of information.

The same problem can be viewed from observer’s point of view. Starting

from our eyes the visual information is perceived unequally. The resolu-

tion of retina depend on location of objects in the visual field. Rays falling

onto the center of the retina are perceived with higher resolution. Recep-

tive fields in the cortex span for over 30 degrees, however their placement is

not uniform at the mass of the fields are located at the center of the gaze.

Each higher perception level of neural network performs a more complex

information and capacity of each level decreases while ascending from bot-

tom to the top. This peculiarities leads to the competition of information

streams. Thus the way how our brain is functioning orders incoming vi-

sual information by its importance. The saccade search and selectivity

process are guided by bottom-up and top-down stimulus. Top-down stim-

ulus usually represent selection based on knowledge, for example, a subject

is looking for a picture of an animal. Bottom-up stimulus are driven by

properties of perceived visual information, such as high contrast, difference

in orientation, etc.

Ability of automatic detection of important regions can be a priceless

tool for a broad variety of multimedia applications. A wide spectrum of

application may benefit from separative processing of important and less

important regions of an image. Thus development of a robust method for

automatic detection of important regions in image may lead to significant

progress in multimedia processing. As it will be shown later there already

exist a number of approaches to automatically determine important re-

gions, or as it is often called saliency. However, as it is will be shown in

Chapter 2 there is still room for improvements in this direction and in this

work two novel approaches to saliency detection are presented.

Although it has passed over 15 years since first works on saliency de-
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CHAPTER 1. INTRODUCTION

tection were presented, still a few number of works were dedicated to the

application of saliency information for improving multimedia processing al-

gorithms and addressing new challenging problems. Current applications

include gentle advertising in images [37], where a saliency map is used to

insert advertisement above unimportant region of an image, thus prevent-

ing advertisement block from occlusion of foreground object. An approach

to use of saliency detection in image retrieval was presented in [23]. The

authors proposed to use saliency value as a weighting parameter for SIFT

key-points. Thus similarity of two images is defined by number of matched

SIFT key-points only from their salient areas. A similar approach was pre-

sented in [39]. Though instead of using key-points for similarity measure,

features employed in saliency detection are used. A quite similar idea can

be found in [61], where saliency and color features are used for measuring

similarity of images. Another way of using saliency for image retrieval was

presented in [19]. Here, the authors apply saliency to interactive retrieval.

At each iteration feedback from a user is used to construct affinity matrix

that is formed by salient regions of positive images that is further used as

query. Alternative way for the same problem was proposed in [62]. The

authors proposed using saliency information to drive a semantics model of

an image that is further used for retrieval.

Another common application of saliency is adaptive content display.

For instance, in [40] a saliency based image re-targeting approach was

presented. The authors proposed using unimportant regions of images

as areas for continuous seam carving. Thereby, scale compression and

corresponding spatial distortion does not affect important regions of an

image and thus perceptional content of an image is not destroyed. In [42]

the authors proposed using saliency maps for thumbnail generation. A

thumbnail is generated in a way such that a corresponding bounding box

is generated around salient areas. A similar approach was presented in [32].

3



CHAPTER 1. INTRODUCTION

Saliency detection has also found its application in object recognition. For

instance, in [22] saliency is employed for image classification. Here, the

authors targeted categorization of objects in images to classes like bicycles,

bus, cars, etc. Saliency is used to emphasize features in important areas.

As a features several key-points extractors were used. In [48] a survey on

using saliency for object categorization was presented. Here, the authors

proposed to use saliency as one of the feature together with key-points

both during training and classification steps.

Image compression can also benefit from using saliency detection. For

example, in [16] the authors proposed to use saliency as a parameter defin-

ing compression ration of different parts of a frame for MPEG compression.

A similar idea was proposed in [28], where saliency define compression ra-

tio for JPEG2000 compression. Another interesting application of saliency

is rendering. For instance, in [13, 34] the detail level of rendering is guided

by saliency value. Another work applying saliency to arts can be found in

[43]. Here, the authors showed how automated photo-manipulation tech-

niques can benefit from saliency information. The manipulation techniques

include rendering, cropping and mosaic. The common approach is that

saliency information guides the level of details for each manipulation tech-

nique. For instance, in mosaic application the accuracy of blob color repre-

sentation for salient regions is kept higher with respect to other regions by

means of using tiles of smaller size. Finally application of visual saliency

to image forensics can be found in [45]. Here, the main idea is that ma-

nipulation is detected by computing JPEG-ghost effect and comparing its

value in salient and non-salient areas. The assumption is that if manipu-

lation is done it most probably effects the main object of an image. Thus

the difference in output of JPEG-ghost for salient and non-salient areas

indicates that the presence of manipulation.

For the purpose of expanding this list and contributing to saliency detec-
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CHAPTER 1. INTRODUCTION

tion in Chapter 3 diversity of image retrieval results is addressed through

the use of saliency. A single word may have several semantic meaning, e.g.

the word jaguar most often refers to a mammal and car manufacturer. In

the same way a single concept may have different representation, e.g. a

car can have different body color, body type, etc. The inclusion of these

variations by retrieval is what is here understood as diversity. Another

contribution of this work is two novel saliency detection methods. While

most of the works propose detection of salient regions in pixel-wise domain,

in this work the detection is done in object-wise domain. The intuition is

that separate pixels, even compared globally, cannot represent object prop-

erties. Classification of data in object-wise domain allows capturing and

comparison of objects properties and thus detection of higher-level infor-

mation. Moreover, the method described in Section 2.5 defines saliency by

modelling probability of an object through its spatial relationship in 3D

space with respect to other objects.

The rest of the work is structured as follows: Chapter 2 is devoted to

the problem of saliency detection, the state of the art in saliency detection

is described in Section 2.2, then Sections 2.4 and 2.5 present segment-based

and depth-based approaches respectfully, then in Section 2.7 the evaluation

of the two proposed approach on the database described in Section 2.6 is

done. Chapter 3 is devoted to the problem of using saliency detection in

diversification of content-based image retrieval. The state of the art on

diversification is given in Section 3.2. The description of the proposed

approach is presented in Section 3.3. Its evaluation is then done in Section

3.4. Finally, the conclusion of this work is done in Chapter 4.
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Chapter 2

Visual saliency detection

2.1 Introduction

There exist different approaches to saliency detection. Before describing

state-of-art methods it is good to introduce main approaches to saliency de-

tection. Figure 2.1 presents ontology of possible saliency detection schemes.

Saliency detection methods can be grouped according to the model inspira-

tion source. For instance, Itti’s approach is referred as a biological inspired

method. Such methods explore percularities of human vision and attention

operation and try to mimic the processes taking place while a human ob-

serves a scene. Another group of methods explore natural statistics found

in images. For instance, in Hou et al proposed spectral residual approach

[31] that exploits spectral histogram singularities to detect salient regions

in images. Another common approach of saliency is computational. These

methods exploit information domain properties to detect salient regions.

Another grouping can be made considering what type of task the authors

addressed in their works. Here, two groups are possible: human fixations

and region of interest. Although these two tasks may sound similarly, there

is a noticeable difference in output maps. Human vision system works with

very sparse data and fixations are usually found only on a small portion

of object’s area. Thus a method trying to predict human fixations would

7



2.1. INTRODUCTION CHAPTER 2. SALIENCY

highlight edges and contrast spots of an object. Methods aimed at detec-

tion of salient regions should provide a map highlighting the whole object

of interest. Often, in region-based methods human fixations map is an

interim product that is further developed into region-based map by means

of region growing or segmentation. Output map can also differ in their

representation. Here two options are possible: binary and grayscale. The

former draws salient pixels/regions in white and non-salient in black. The

later usually represents probability of a region to be salient by different

tones of gray. For region of interest detection methods output maps can

also differ in how the salient region is highlighted. Some authors prefer to

use rectangular windows, others use segmentation mask and paint different

segments according to their value of saliency and lastly region masks can

be represented by raw pixels.

Another important grouping considers what features are used to detect

saliency. Bottom-up approaches use low-level features such as color con-

trast, orientation and luminosity to detect saliency. Top-down approaches

instead use high-level features such as faces and objects. Fusion of bottom-

up and top-down features is also exploited by some works. Most of meth-

ods extract more than one feature from an image. There are different

approaches on how these features are fused. The most simple approach

is when values of feature for a pixel or a region are combined linearly

with some weighting. Another possible option is to take value of a feature

with the maximum output. Some methods use fusion technique known

as ”winner take all”, where a feature with maximum value farthest from

the mean value is selected. Other options include probabilistic inference,

support vector machine (SVM) classification, etc. In addition, models can

be grouped according to how their parameters are selected. Most models

require supervised parameter tuning either by means of learning on train-

ing database or by setting parameters manually. In rare cases, there is no

8
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need for parameter tuning.

In next section recent advances in saliency detection are presented.

Then Section 2.3 highlights main contributions proposed segments-based

and depth-based approaches presented in Section 2.4 and Section 2.5 re-

spectfully. Section 2.6 describes a dataset created for the training and

evaluation. Finally, in Section 2.7 the evaluation of these two methods and

their comparison to state of the art methods is given.

2.2 State of the art on visual saliency detection

The saliency detection model proposed by Itti et al [33] resulted in an

avalanche of different saliency detection algorithm. One of the most recent

and well-excepted extensions of Itti’s saliency detection approach was pre-

sented by Judd et al in [34]. Although Itti’s approach was taken as a basis

the authors have combined a much broader set of features. The authors

proposed to use three levels of features: low level, mid-level and high-level.

Low level is formed by intensity, orientation and color contrast features

as they were defined in the Itti’s work. In addition, the authors included

distance to center, local energy pyramids, and probability of color channels

computed from 3D color histograms with median filter at 6 scales. The

mid-level is formed by horizon line detector. Finally high level features

are formed by Viola-Jones face and person detectors. The classification

is done using SVM with linear kernel. Before features are extracted from

an image it is resized to 200 × 200 px, thus original aspect ratio of the

image is loosen. For the training and evaluation of their model the authors

collected a database of 1003 images from photosharing services and col-

lected human fixations from 15 users. It is worth mentioning the training

settings the authors used. Instead of direct parsing training images data

and ground truth labels to SVM, the authors performed selection of data

9
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Figure 2.1: Saliency detection methods ontology
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for training. Due to relatively high number of observers and time variation

of fixation points it was possible to rank fixation locations by time sub-

jects gazed at it. From each test image 10 pixels ranked from the top 20%

salient locations were picked as positive examples and 10 non-salient pixels

from bottom 70% salient regions as negative examples. In their evaluation

the authors did provide how each feature contributes to the final result.

It is of interest to point-out that use of distance to center feature allows

higher performance as using all features except it. It is not clear why this

feature alone resulted in such high performance. Possible answer could be

high bias in the test images or weak filtering of eye-tracker data. Another

interesting observation is that object detectors perform just a bit higher

than chance baseline, that can be explained by difference in region-based

and fixation-based maps. That result leaves unclear why object detectors

are used in an eye fixation prediction method. Nevertheless, their evalua-

tion has shown a noticeable increase in accuracy compared to Itti’s model,

however, there is no comparison to any other saliency detection method.

Biological motivated feature integration theory proposed in [35] is ex-

ploited in many works. For instance, in [36] a coherent detection method

was presented. The features employed are similar to many other biologi-

cally inspired methods and include intensity, colors, orientations and con-

trast. The color value of an input image are converted into Krauskopf’s

color space. Then decomposition of three image channels in spectrum do-

main is done, that corresponds to activity of visual cells during perception

of signals with specific 2D frequency and orientation. Contrast sensitivity

function is then used to perform filtering, with anisotropic filter applied

to the chroma component of an image and two low pass filters performing

sinusoidal color grating applied to color components of an image. This

step is also motivated by how human eyes perceive light signals. The next

step is adaptive thresholding of feature outputs that mimics masking ef-

11
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fects within inter-feature and intra-feature spaces. This step is followed

by color enhancement that is increase of saliency for an achromatic region

surrounded by high-contrast area. Then difference of Gaussians is used

to mimic center-surround property of visual cells. Next butterfly filter is

employed to perform contour grouping with motivation that if structures

within center and surround stimuli are iso-oriented and co-aligned then

perceptional grouping mechanism is launched. Then final map is obtained

by linear combination of feature outputs.

Another work attracted much attention in saliency detection commu-

nity was presented by Liu et al [38]. Here the authors based their model on

center-surround processing, like it is done in many other computational-

based approaches. Saliency of a pixel is modelled via CRF modelling. The

pairwise term represents penalty as: |ax − ax′| • exp(−βdx,x′), where the

primer term denotes difference in saliency value of two pixels, β is normal-

ization term and dx,x′ denotes L2 norm of the color difference. The pairwise

term allows for spatial smoothness of saliency labels. Singleton term in-

cludes a number of low-level features. Among them is multi-scale local

contrast measured in 9 × 9 neighbourhood. Center-surround histogram is

another feature employed for singleton saliency detection. This feature is

based on observation that a histogram of a window drawn around an object

has higher extend compared to that of a window of the same area drawn

around that window. In addition, color spatial distribution is counted to

consider global context of an image. For this purpose spatial distribution

and variance of each color is modelled via Gaussian mixture models. For

training and evaluation the authors collected two databased overall con-

sisting of over 20000 images. The ground-truth data in this dataset is

represented by bounding boxes. The final labelling is computed through

MAP assignment of the CRF network. The output map is then obtained

by thresholding saliency values.

12
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An approach based on information maximization was proposed by Bruce

et al [9]. The authors proposed saliency measure based on self-information

of each local image patch. This is done by calculating Shannon’s self-

information measure applied to joint likelihood statistics over the image.

For this purpose, a basis function matrix was learned by running indepen-

dent component analysis on a large sample of patches drawn from natural

images. Given an image distribution of basis coefficients is calculated.

Probability of each image patch is then calculated as probability of basis

coefficients over the image it described with. Image patches are drawn at

a very pixel location, the final map is calculated by accumulating saliency

value a pixel received. Output maps are to large extend region-based.

A relatively large number of works are devoted to modelling saliency

through color distribution and color cues. For instances, in [57] the authors

proposed to detect saliency by means of isocentric curvedness and color.

For this purposes the input image is converted into isophotes coordinate

space - such that a line connects points of equal intensity. The main idea

is that the bend of the isophotes indicate where an object these isophotes

belong to is located. Thus by clustering and accumulating the votes for

coordinates of the center of the circle estimated from bends of isophotes it is

possible to determine location of objects present on an image. In addition,

a parameter related to the slope of gradients around edges that is called

curvedness. Another feature included performs saliency estimation via

color boosting that is a transformation of image derivatives into spheres.

These features are computed at multiple scales and then combined linearly.

For generation of region-based maps graph-cut segmentation is used.

Another work exploiting color distribution over an image for saliency

detection was proposed by Gopalakrishnan et al in [26]. The authors pro-

posed to search saliency through color compactness and distinctiveness in

hue saturation domain. The assumption here is that if a color cluster is

13
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distinct with respect to the other colors in the image then it is probably

a salient color. For this purpose colors a modelled via Gaussian mixture

models. Through iterative expectation-maximization (EM) process colors

are assigned to the corresponding Gaussian cluster. A cluster with higher

mean and smaller variations is an indicator of saliency. Numerically it is

done by multiplying isolation by compactness of a cluster. In addition,

orientations are included into the model. Unlike many other works here,

orientations are computed not through filters, but by analysis of complex

Fourier transform coefficients. The output map is obtained through selec-

tion process. For this purpose for each map its saliency index is computed,

that treats connectivity of saliency regions and spatial variance. Only the

map with highest saliency index is used as a final map. Even though no

segmentation is used due to the clustering maps a region-based.

Similar idea of color-based saliency was proposed by Cheng et al in their

global contrast based salient region detection approach [10]. Specifically,

the authors defined pixel’s saliency as a sum of its color contrast to all

other pixels. This contrast is measured as a color distance in L*a*b*

colorspace. In addition to global contrast, the authors include region-

based contrast. Given two regions their contrast is defined as a sum of

product over probabilities of each of their colors times distance between

colors. Then saliency map is obtained by linear combination with further

thresholding of global and region contrast maps. This saliency map is

further used for initialization of GrabCut segmentation. Segmentation is

done in iterative way with results of each iteration used for reinitialization

after dilation and erosion. Thus output maps are region-based.

Another work exploiting global contrast was proposed by Vikram et al

[60]. They proposed a method based on random window sampling. Specif-

ically, from an input image a number of random sub-windows is generated

and saliency of each window is defined as the absolute difference of the pixel

14
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intensity value to the mean intensity value of this windows. Input image

is converted into L*a*b* colorspace with each color channel processed sep-

arately. The final map in obtained by linear combination of saliency value

of sub-windows with further median filtering and contrast enhancement

via histogram equalization. Due to sub-windows the output map is rather

region-based.

An interesting approach to saliency detection was proposed by March-

esotti et al [42]. They addressed the problem of saliency detection via

visual vocabulary. From a database with manually selected salient and

non-salient regions they created a visual vocabulary. Features used for

construction of visual vocabulary include SIFT-like gradient orientation

histograms and local RGB mean and variations. Each visual word is

parametrised as a Gaussian mixture model. Each image is then described

as a pair of Fisher vectors - one for salient and other for non-salient parts.

Once a new image is given for the classification k most similar images are

retrieved. Similarity of two images is computed as distance between their

Fisher vectors. From retrieved images a model of salient and non-salient

regions is constructed. The input image is divided into 50× 50 px patches

and for each patch its distance to salient and non-salient areas of retrieved

images is computed via Fisher vectors. A patch is considered as salient if

its distance to salient regions is lower that to non-salient regions. A gaus-

sian filter is applied to get smoothed saliency map from saliency values of

patches. This map is further used for initialization of Graph-cut segmen-

tation algorithm. For the evaluation the authors used PASCAL database,

however, they indicated their primary application as thumbnail generation.

Another alterative approach to saliency detection was presented by

Avraham et al [5]. Their extended saliency approach detects saliency

through modelling distribution of labels within an image. The authors

based their model on several observations, namely, that the number of
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salient objects is small, visually similar objects attract same amount of

attention and finally natural scenes consist of several clustered structural

objects. Thus the problem of classification is set as finding optimal joint

assignment of labels to objects considering their number and similarity.

The assumptions are exploited through soft clustering of the possible joint

assignment. For this purpose image feature space is clustered into 10 clus-

ters using Guassians mixtures using EM algorithm. For each cluster initial

probability of its saliency is set according to the assumption of small num-

ber of expected salient objects. For each candidate its visual similarity

and label correspondence to the rest of the candidates is measured. The

correspondence between two labels is defined as their covariance divided

by the product of their variances. This data is further used to represent

dependencies between candidate labels using a Bayesian network, which is

then inferences to find N most likely joint assignments. Final labels are

obtained by marginalization of each candidate. Although the method tar-

gets prediction of human fixation points due to clustering to some extend

maps can be considered as region-based.

Harel et al presented Graph-based saliency detection algorithm [29].

The authors proposed to represent an image as a fully-connected graph.

The weight of each node is defined as feature distance between two pix-

els. Hence, higher difference in pixels appearance results in larger weight

value. Then the equilibrium distribution over this graph reflecting time

spent by a random walker highlight nodes with high dissimilarities with

respect to other nodes. This activation measure reflects saliency of an im-

age. Features include orientation maps obtained using Gabor filter for four

orientations and luminance contrast map in a local neighborhood of size

80 × 80 px measured at two spatial scales. These twelve maps are then

downsampled to a 28 × 37 feature maps. The authors performed evalua-

tion of their method on Doves database [58] that contains natural grayscale
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images.

Among statistical approaches there is a group of methods exploring

properties of images in frequency domain for detection of salient regions. A

good example of such an approach is Spectral residual approach presented

by Hoe et al [31]. Here, the authors represent an image as a superposition

of two parts H(image) = H(innovation)+H(priorknowledge) and explain

the task of saliency detection as extraction of the innovation part. To do

that the authors explore log Fourier spectrum of an image. They show that

natural images share the same spectrum behaviour and deviations from this

spectrum may indicate presence of a distinctive content in a particular part

of an image. Through convolution the averaged spectrum of an image is

computed: A(f) = hn(f)∗L(f), where L(f) is a log spectrum and hn(f) is

a normalization matrix. Then spectral residual is obtained by subtracting

averaged spectrum from log spectrum. Inverse Fourier Transform applied

to the spectral residual returns a map, that is further smoothed with a

Gaussian filter. The final saliency map is obtained by thresholding. This

threshold is defined as average intensity of the interim saliency map, hence

this method is completely unsupervised. The spectrum is computed from

a down-sampled image with heigh or width equals 64 px, the final map has

similar dimensions.

An extension of spectral residual approach targeting salient object de-

tection was proposed by Fu et al in [21]. Here, the authors combined

saliency maps with graph-cut interactive segmentation tool by Boykov and

Jolly [8]. Instead of using human labels to perform segmentation, the au-

thors proposed to use saliency data to perform human-like region labelling.

Boykov’s algorithm requires a user to draw curves on near the boundary of

foreground and background regions. The authors point out that saliency

maps produced by spectral residual approach highlight mostly edges of

objects of interest thus there is need to perform estimation of where the
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center of object of interest is located before providing labels to the segmen-

tation tool. To overcome this problem the authors proposed to perform

iterative segmentation each time updating the location of seed labels. The

assumption here is that once the first seed locations are provided the seg-

mentation algorithm starts region growing in directions where an actual

object is located. Then the results of the segmentation are used to move

seed labels into the region of interest. The authors did not perform quan-

titative evaluation nor did they provide comparison to other methods.

Another work using segmentation can be also found in [44]. Here, the

graph-cut segmentation is used for refinement of the final saliency map.

The authors proposed to model saliency via joint-optimization of saliency

labels computed on superpixels. Thus the first step of their approach is

superpixel segmentation. From the input image color and texture infor-

mation is extracted. In addition, for each superpixel its size and location

are computed. Once features are computed saliency of each superpixel is

estimated using appearance model. Then graph-cut optimization is used

in order to refine the model. The smoothness term includes intensity dif-

ference. The evaluation is performed on Berkeley segmentation dataset.

Another method exploiting spectral domain properties of images for

saliency detection was presented by Achanta et al in their frequency-tuned

approach [2]. Instead of performing Fourier transform, the authors pro-

posed to use a stack of filters to catch spectral properties of an image.

Image color channels are passed though difference of gaussians (DoG) fil-

ters that are a bandpass type filters. Similarly to spectral residual approach

the authors detect saliency by subtracting some averaged data from fre-

quency response of an image. In this case, mean pixel value of pixels is used

as average data. Unlike spectral residual approach the authors included

color information into their approach. The input image is transformed into

L*a*b* colorspace and saliency map produced by each color channel is then
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combined using Euclidean distances. Parameters of filters are selected by

manual tuning. To obtain region-based map the authors use mean-shift

segmentation in L*a*b* colorspace.

Alternative approach to saliency detection in spectral domain was pre-

sented in quaternion saliency detection [51]. Here the authors propose

discrete cosine transform (DCT) representation to find singularity regions.

For the purpose of decreasing computational time the authors propose

to transform an RGB image into quaternion matrix: IQ = I4 + I1i +

(I2 + I3)j that allows faster DCT and inverse DCT (IDCT) computa-

tion. The key idea is that saliency can be computed from DCT signatures:

SDCT (I) = g ∗
∑
c

[T (Ic)◦ T (Ic)], where T (Ic) = IDCT (sgn(DCT (Ic))),

where Ic is c’th image channel, and sgn is signum function and g is a Gaus-

sian smoothing filter. The authors use quaternion ”direction” as a signum

function. In addition, the authors include Viola-Jones face detection. The

final map is constructed by linear combination of quaternion DCT saliency

and the face conspicuity map. The size of the output map is 64 × 48 px.

The main advantage of this work is very high computational speed. The

authors report raw map inference time about 0.4 ms excluding time nec-

essary for resizing and anisotropic filtering.

An approach based on DCT representation for saliency detection can be

found in discriminant saliency method by Gao et al described in [22]. This

approach is based on marginal diversity of Kullback-Leiber divergence. The

authors compute DCT with different basis functions including detectors of

corners, edges, t-junctions, etc. The coefficients of DCTs is then used as a

function. Saliency of each pixel is then defined as: S(x, y) =
2n∑
i

wiR
2
i (x, y),

where wi is a marginal diversity of a feature output Fi and Ri = max[I ∗
Fi(x, y), 0]. The saliency map generation process is iterative. After a map

is computed feature output near detected salient region is set to zero and
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the process is repeated again. The output maps of this method are region-

based. For the evaluation of the algorithm the authors used PASCAL

database [17].

There is a group of methods aimed at detection of saliency via depth

information. For instance, Ouerhani et al [46] presented a depth-based

method extending Itti’s salient detector by using depth information as one

of information cues. The authors proposed three different depth features,

namely depth, mean curvature and depth gradient. However, in their ex-

periment they utilize only depth and color features. A quite similar ap-

proach with some minor differences can be found in [20] with application

to robotics.

In [6] a method of saliency detection based on cloud point data has

been reported. The authors proposed an unsupervised hand-tuned model

for images acquired from a time-of-flight camera. The method relies on

multi-scale local surface properties feature that is linearly combined with

distance of pixels to the camera plane. The authors based their work on

the assumption the closest object to the camera is salient. The authors

performed evaluation of their approach on grayscale synthetic images ob-

tained by rendering.

Another work performing fusion of 3-D data with visual features for

saliency detection has been presented in [15]. This work was aimed at

proving a solution for guiding focus of blind people by using information

from wearable stereo cameras. They addressed this problem by utilizing

saliency as one of features helping to inform blind people about objects

around them. The authors proposed to use depth-information for weight-

ing saliency of objects. They define two-thresholds dmin and dmax within

which objects are more likely to be salient. Also the authors compute depth

gradient over time to estimate the motion information that is after being

processed using Difference of Gaussians to construct conspicuous map. For
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visual feature the authors utilize illumination intensity, red/green opposi-

tion and blue/yellow opposition being passed through multi-scale Gaussian

filters. The final saliency map is obtained by linearly summing feature out-

puts.

2.3 The proposed innovations

In the following sections two saliency detection methods are proposed.

Both proposed methods address the problem of finding salient regions,

since region-based maps have a broader set of possible applications. Al-

though both methods have the same task, the approaches are different. One

method addresses saliency detection via visual features, while the other

uses estimated depth information as a primary cue. The first method will

be referred as a segment-based and the later will be referred as a depth

based method.

The proposed segment-based approach addresses the problem of salient

region detection by estimating saliency at segment-wise level not at pixel-

wise level. Idea of using segmentation representation is not novel. How-

ever, normally segmentation is done after saliency is computed like it was

done in [1], [57], [21], [2] and [10]. The most related work to the proposed

segment-based approach can be found in [44]. However, in the proposed

approach the set of features is more broad and includes higher level rela-

tions. Another difference is that [44] used a superpixel segmentation, the

proposed approach uses a mean-shift based segmentation, that results in

larger segments size and thus closer approximation to objects.

The proposed depth-based approach models saliency through 3-D spa-

tial relationships of objects. In comparison with [46], [20] and [15] the

proposed approach aims at prediction salient regions rather than separate

pixels (or eye-fixations). In addition, a broader set of depth features is
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synthesized with respect to other models. The above mentioned meth-

ods obtain depth maps using special hardware, whereas in the proposed

method depth maps are estimated form a 2-D image. The proposed depth-

based approach models labels using CRMs thus allowing better treatment

of neighbourhood context thus spatial dependencies of objects are taken

into account.

2.4 Segment-based saliency detection

Examining the state of the art methods it is clear that the requirements

in terms of saliency in multimedia applications, like image retrieval, scene

detection and others, are not fully satisfied. The main problem is that as a

rule the output map produced by a saliency detector highlights only small

parts of objects of interest like edges and high-contrast points. This kind of

maps sufficiently matches with maps obtained from experiments with eye

trackers. The human vision system (HVS) has unattainable performance

thus is able to recognize objects having very sparse data. However, when

we deal with multimedia applications it is essential to extract the whole

object of interest instead of few parts of it.

The most feasible solution for the extraction of objects from images is

to perform image segmentation. In case of saliency detection there are two

possible ways of applying segmentation: i) by computing a saliency map

and deriving an average saliency value over a segment, and ii) by comput-

ing directly the saliency value of each segment. The advantage of the first

method is that we can use any available method of saliency detection and

simply apply segmentation to the output map. The advantage of the second

method is that a more accurate estimation of saliency could be achieved

due to the consideration of relationships of segments/objects rather than

pixels. For this reason we have employed EDISON segmentation tool [11].
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Figure 2.2: Segment-based saliency detection scheme
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This choice was due to publicly available source code and satisfactory per-

formance both from accuracy point of view and computational time. This

segmentation tool is based on mean-shift segmentation. To achieve better

object shape estimation the default parameters were tuned, their values

are reported in Table 2.1.

Table 2.1: Segmentation parameters

Minimum region area imheight × imwidth × 0.005

Spatial bandwidth 10

Range bandwidth 7.5

Gradient window radius 2

Mixture parameter 0.3

Edge strength threshold 0.7

In this model saliency is detected mostly due to visual features that are

described below. Some of the features used cannot be extracted directly

from segment data. Their values are computed first on the whole image,

and segment-wise level is then obtained by averaging value of a feature on

pixels of that segment.

Colors have a great impact on the perception of objects. Gelasca et al.

in [24] described an experiment they conducted to discover colors impact

on saliency. Their study proved that some colors are more likely to attract

attention than overs. Figure 2.3 shows dependency of saliency likelihood

on the color of an object. In the original work the authors proposed to

convert image color values into CIELab colorspace. However, I have found

out that better color conversion is achieved with HSV colorspace. In the

original work, the authors assigned a weight to each color equal to the

fraction of attraction caused by this color during the experiments. Unlike

that, in this work prior value of saliency for each color is defined by its

position in the table of saliency likelihood, such that dark green has prior

value of 0 and for red this value is 1.
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Figure 2.3: Saliency dependency on colors

In addition, a feature taking into account colors distribution over an

image is included. This feature is based on observation that the domi-

nant color is very likely to belong to background and thus is unlikely to

be salient. For each segment its average color is computed and that match

with our colorspace. For each color tone a corresponding weight is com-

puted as follows:

w′c =
1∑

i∈Sc
ai
,

wc =
w′c −min(w′i)

max(w′i)−min(w′i)
, (2.1)

where Sc is a set of all segments assigned to color c, ai is the area of segment

i, w′c and wc are the unnormalized and normalized weights correspondingly.

As it was mentioned above human attention is sensitive to contrast.

In order to exploit this property luminance contrast is included into the

proposed model. This feature is measured on a downscaled by factor 8

version of an image. The motivation is that maximum contrast value is

usually observed on edges and glare spots, while downscaling allows to

catch global contrast changes. The luminance contrast LC is computed as

follows:

LC(x, y) =
∑
m

∑
n

|L(x, y)− L(x+m, y + n)|√
m2 + n2

, (2.2)

where L(x, y) is the luminance value of the pixel with coordinates (x, y),

25



2.4. SEGMENT-BASED SALIENCY DETECTION CHAPTER 2. SALIENCY

Figure 2.4: Luminance contrast feature output. From left to right: input image, luminance

contrast without segmentation, luminance contrast after segmentation.

and m,n = {−2,−1, 1, 2} denote relative coordinates of neighbor pixels.

Example of luminance contrast output is shown in Figure 2.4.

The idea to measure the distance between foreground and background

for saliency detection was used in several previous works. The underlying

idea is that usually the histogram of the foreground object has a larger

extent than its surroundings. In our work we employ center-surround

histogram filter from [38] with slight modifications. The input image is

scanned by two rectangular windows Rf and Rs, both having a similar

area and Rs encloses Rf (thus Rf is a notch inside the window Rs). We

use the following size ratios of windows: [0.3, 0.7], which were defined

experimentally with respect to the minimum image dimension, as well as

the following three aspect ratios: [0.5 1 1.5]. Specifically the distance of

foreground and surrounding histograms is computed as follows:

dist(Rs, Rf) =
1

2

∑ (Ri
f −Ri

s)
2

Ri
f +Ri

s

, (2.3)

where Ri
s, R

i
f are surrounding and foreground histograms, respectively. In

addition, unlike the original work, windows are moved with overlap of 0.1

with respect to the corresponding size of the window to eliminate boundary

effects within the scanning windows. Histogram distances are computed at

each scale and aspect ratio. Then, they are normalized and summed into a

single map. Finally, after the computation of these features, we assign an
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Figure 2.5: Center-surround histogram filter. From left to right: input image, center-

surround histogram output before segmentation, center-surround histogram output after

segmentation.

average value of each global feature to each segment of the input image.

Figure 2.5 shows the principle of this feature.

In addition to visual feature, geometric features have been included.

The location feature has been included into the scheme due to the fact

that photographers generally place the object of interest to the center of

images. The location MS of the segment S is computed as follows:

MS = ((
∑
x

∑
y

f(x, y)p(x))2 + (
∑
x

∑
y

f(x, y)q(y))2)
1
2 , (2.4)

with

f(x, y) =

{
1 if x ∈ S and y ∈ S
0 otherwise,

(2.5)

p(x) =
mx

2
− x, (2.6)

q(y) =
my

2
− y, (2.7)

and mx,my are the corresponding dimensions of the image. Considering

size, the object of interest usually occupies a significant portion of the im-

age. Thus it is unlikely that a very small segment is salient. On the other

hand natural background like sky, ground, and forest usually occupy large

portion of area; thereby it is very unlikekly that a salient objects size ex-

ceeds some threshold. Therefore, the relative size of a segment could give
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relevant information about its saliency. Another feature exploiting geomet-

ric properties of a scene detects if a segment is occluded with others. The

intuition here is that normally, the main object of a scene is placed in front

of some background. Thus the background region becomes occluded by

the main object. There exist quite accurate methods for occlusion detec-

tion, however most of them require a lot of computation. Therefore, here I

propose a simple method of occlusion detection based on the segmentation

map. For computation of occlusion, firstly its necessary to compute spread

of each segment. Spread shows numerical extend of a segment relative to

its center of mass. One can think of spread as of a rectangle that is a

rough representation of an actual region occupied by a segment. Spread of

a segment is computed as follows:

mxs =

∑
y∈Ys

‖ x ∈ [X<y>
s < cxs] ‖

‖ Ys ‖
, (2.8)

pxs =

∑
y∈Ys

‖ x ∈ [X<y>
s > cxs] ‖

‖ Ys ‖
, (2.9)

mys =

∑
x∈Xs

‖ y ∈ [Y <x>
s < cys] ‖

‖ Xs ‖
, (2.10)

pys =

∑
x∈Xs

‖ y ∈ [Y <x>
s < cys] ‖

‖ Xs ‖
, (2.11)

where (cxs, cys) are coordinates of the center of mass of a segment s, Xs

and Ys are vectors holding all rows and colons of the segment s lies in,

(mxs,mys) and (pxs, pys) are coordinates of top left and bottom right

points of the rectangle representing the spread. Then, if two segments

have overlapping regions occlusion is detected by thresholding the area of

their intersection. Once occlusion is detected foreground and background

segments are detected by comparing their sizes. A segment with large

size becomes background, and the other segment is treated as foreground.
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Figure 2.6: Occlusion feature output example. From left to right: input image, its seg-

mentation map, occluded segments (drawn in black).

The background and foreground segments receive values of -1 and 1 re-

spectfully. Thus for each segment there is an (n − 1)-element vector of

occlusions, where n is the number of all segments. Final value of this fea-

ture is calculated by taking mean value of this vector. Example output

of this feature is shown in Figure 2.4. In addition to occlusion, a feature

counting number of neighbour segments is included into the model. The in-

tuition here, is that normally an object of interest is composed from several

segments. These segments become neighbours to each other. On opposite

background objects are represented by a few segments. Thus counting the

number of neighbour segments adds some knowledge on the structure of

the scene.

Moreover, another feature responsive for geometric properties of a scene

is geometric class detector. It is based on the method described in [30].

This method performs geometric classification of surfaces found in 2-D

images. As an output the method provides such classes as sky, ground,

vertices. This classification is quite relevant for the task of saliency predic-

tion - rarely one would make a picture to capture ground, or sky, with some

obvious exceptions like a picture of a sunset or sunrise. Also experiments

have shown there is slight correlation between class vertices and ground-

truth saliency data. The geometric classifier performs classification using
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Figure 2.7: Geometric class detector output. On the left the input image detector output

is on the right. Different geometric classes are shaded with different colors. It is evident

that vertices class (drawn in green) is related with the salient object of this image.

internal segmentation map. In the original work the authors used super-

pixel segmentation. Segmentation is quite expensive operation in terms of

time. Thereby, in order to avoid running two independent segmentation

operations, an interim segmentation map obtained while running initial

image segmentation is provided to the geometric classification method.

This interim segmentation map is oversegmented with respect to the final

segmentation map, thus to some extend its properties are close to that of

super-pixel segmentation. Since segments in interim and final segmenta-

tion maps are different matching is needed. Once geometric classes are

computed the 2-D map with pixel values equal to geometric class of corre-

sponding segments is constructed. This map is then used to compute the

geometric class of a segment in the final segmentation map by finding the

most frequent pixel value for the segment.

The shape of the object also can contribute to visual importance. For

instance, skewed objects are unlikely to be important parts of a scene. An-

other example is a rectangular objects that are likely to be a picture of

an information board or sign. There exist a number of chain-like methods
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to describe the shape of an object, however, most of them require large

computational resource, or results in a high-order vector of data. For the

case of saliency detection there is no need to have very precise shape infor-

mation, on opposite only some properties of object’s shape are necessary.

For this reason, here I propose a shape coding method that allows for very

compact description of shape properties. The visualization of feature com-

putation is shown in Figure 2.4. Each segment is fitted into 5x5 grid. If

a segment has line-like shape, then its shape is preserved and it occupies

only on row or column. The occupancy of grid cells is then used for three

descriptors: horizontal, vertical and center. Each of this descriptors counts

number of certain cells occupied by a segment according to the descriptor’s

map. The output of horizontal and vertical descriptors is then multiplied

element-by-element wise and summed up into one value that is later is

summed with the output of center descriptor. Once this feature computed

over the whole dataset the range of values of this feature is divided into six

regions. The index of this region is used as a final output of the feature.

Although this method seems to be naive the experiments have shown that

it is able to encode different types of shapes and moreover there is corre-

lation between output of this descriptor and ground-truth saliency data as

it is shown in Section 2.7.

Features described above represent each segment by a 12 element vec-

tor. For discrete features, namely for geometric context and occlusions

values are represented by multivariate indicator functions. Other features

are represented using gaussians. Modelling is done using probabilistic

framework. In this case it is Naive Bayesian classifier. Although some

of features used have correlation thus ruining the assumption of feature

independence, the performance of this classifier is satisfactory. Classifica-

tion is done per segment. Thus the output of the classifier holds saliency

estimation for each segment, that are further used to reconstruct the corre-

31



2.5. DEPTH-BASED SALIENCY DETECTION CHAPTER 2. SALIENCY

1 3 5 3 1
1
1
3
5
3

9

SD = 1•3 + 3•5 + 5•3 + 3•1 + 1•1 + 9 = 46

Figure 2.8: Shape descriptor

sponding saliency map using segmentation data. Learning was done using

expectation-maximization (EM) learning method. The overall scheme of

the method is shown in Figure 2.2. The evaluation results can be found in

Section 2.7.

2.5 Depth-based saliency detection

In this section a depth-based saliency detection method is presented. Here,

the main idea is that saliency to some extend can be estimated through

analysis of spacial layout of the scene. Unlike previous works in this topic,

depth information is not acquired using dedicated hardware, but instead is

estimated from input 2-D image. Recently, there have been achieved some

progress in the area of depth estimation that made this method possible.

One of the most important components in this method is depth estima-

tion that is done using the algorithm proposed by Saxena et al. in [50].

This method performs depth estimation modelling Markov Random Field

(MRF) using texton and gradient-based features. The image is divided
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Figure 2.9: Depth extraction [50]. Depth features are extracted at 3 scales. Relative and

absolute feature vectors are composed from texton feature filter output.

into patches and a single depth value is then estimated for each patch. For

each patch two types of features are calculated: absolute and relative (see

Figure 2.9). Absolute feature estimates how far a patch is from the camera

plane, while the relative feature estimates whether two adjacent patches

are physically connected to each other in 3-D space. Both absolute and rel-

ative features are calculated using texture variations, texture gradients and

color. Original work applied depth estimation to outdoor scenes, mainly

including rural-like pictures. However, the test have shown that even on

other scenes depth estimation is quite reasonable. In my implementation

the grid of MRF is set to 50x50. Since it uses probababilistic framework

there is need to train its parameters. That has been done by learning

parameters on the database the original work was using. In addition, 50

indoor images acquired using stereo cameras were added into the database

in order to improve performance for indoor scenes. Figure 2.10 shows an

example of depth estimation.

Similarly to the method described in Section 2.4 the detection is made

in object-wise domain with the same motivation. Likewise, this is done
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Figure 2.10: Depth estimation example. From left to right: input image, depth estimation

map, depth estimation after segmentation. As one can notice after the segmentation

procedure the estimation results in a quite realistic depth layout.

using Edison segmentation method [11]. Since the depth-estimation im-

plementation used works with MRF with the grid of 50x50 size, its output

is presented also as a grid. The depth of each segment then is defined as

the spatial average value of depth of the cells it is lying on.

Another common component with the visual-based method is geometric-

class detector [30]. However, here the motivation for its inclusion is differ-

ent. In the previous method this feature was responsible for layout detec-

tion, whereas here it adds some semantics to segments. Even though the

geometric-class detector provides classification over seven classes of surface

types, here these classes are merged into 3 final values: sky, ground and

others.

Although depth by itself provides some important information about

scene geometric properties, it is more of interest to exploit depth relation-

ship of different object in the scene. There are several features responsible

for that. One of them describes how far (in z-axis) an object is from the
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farthest object in the scene. This feature returns distance to rear-plane.

Another feature describes sum of absolute difference of an object to its

adjacent objects divided by the number of neighbours. This feature is re-

sponsible for depth contrast, with intuition that if an object is distant from

its neighbours than probably it can be an object of interest. Likewise, if

two objects are close to each other it is likely they are both two parts of a

foreground or background scene. Figure 2.11 illustrates this principle.

Figure 2.11: Spatial closeness. Objects of the same context are placed spatially close to

each other.

Analysing images of landscapes one can notice that they mostly consist

of flat surfaces. Such surfaces may have different orientation in z-y and z-x

axes with respect to the camera plane. For example consider shooting a

building in a city. It is obvious that the best view is achieved when the

elevation of the building is parallel to the camera plane. Thereby it is of

interest to measure the angle of an object with respect to the camera plane.

For this purpose a tangent-sensing feature is included. It is computed as

follows:

tany(r) =
1

‖ Xr ‖
•
∑
Xr

(dx − dx−1) (2.12)

tany(obj) =
1

‖ Robj ‖
•
∑
Robj

(tany(r)) (2.13)

where Xr is a set of all pixel coordinates of object obj in row r and Robj
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Figure 2.12: Tangent-like feature output example. From left to right: input image with

the red line denoting the test column, estimated depth within the column, ZY-angle

estimation per segment. It is clear visible how the rapid changes of angles in rows 200-300

corresponds to the body of the car. Although the tangent-like feature does not provide

accurate angle estimation due to limitations of the depth estimation, still relative variance

in plane orientation is detected.

is a set of all rows belonging to the object. As can be seen from (2.12)

tangent is computed in pixel-wise fashion. In the same way tangent in X

direction is computed by averaging column tangents.

To obtain more complete information about the scene the coordinates

of object’s geometric center of mass in X and Y axes are included into the

feature set. Here, the intuition is that normally a person would place an

object of interest close to the center of the frame rather on its boundary.

These features are computed in the same way as it was done in segment-

based method using Equations 2.6 and 2.7.

Portraits and group photos usually form a large portion of personal

albums. Our test have shown that depth estimation turns out to work

poor predicting z-coordinate for faces interfering with overall performance

of saliency estimation for such images. The same drawback is present when
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an image contains very flat objects, and depth estimation provides little

information. Thereby, to allow better performance two additional visual

features are employed. For each object its average color is measured and

matched to the closest representation from a fixed set of colors. This fixed

set consists of 9 tones, namely red, yellow, green, cyan, violet, pink, white,

grey and black. The colors are defined by splitting the HSV color space.

Color tones are obtained by dividing H component of HSV color space into

6 equal regions. Monotones are obtained by dividing V space into 3 equal

regions. Input color matched to grey tones if its S and V component satisfy

the following condition:

V < 0.1 ∨ S < (0.1 +
0.01

V 2
) (2.14)

Another visual feature is color contrast computed based on object’s domi-

nant color difference with respect to all other objects as it is described in

2.4. To sum up the feature vector for each segment consists of ten vari-

ables. In addition, it is of interest to exploit pairwise labelling information

between adjacent objects. This is done through measuring similarity of

adjacent segments. Similarity is computed based on difference in depth.

The intuition behind this is that if two segments have close depth estima-

tion then it is likely that they are two parts of one object composed from

several segments and thus their saliency estimation should be the same.

Besides depth difference similarity is also defined by whether two segments

have the same dominant color and geometric class.

sim(i, j) =

(di − dj)2 +
9∑

k=1

(c[k]i − c[k]j)
2, if gci = gcj

0, otherwise,

(2.15)

where di is the average depth of segment i, ci is its color histogram and

gci its geometric class. Here color histogram is obtained by counting the

number of pixels matched to the set of colors described above.
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INPUT IMAGE Depth 
estimation

Geometric 
classification

Segmentation 

Color 
contrast

Dominant 
color

Mean 
depth

Geometric 
class

Depth 
contrast

Distance 
to BG

tany

tanx 
(x,y)

CRF Saliency

Figure 2.13: Depth-based saliency detection scheme
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The modelling of saliency in this case is done using conditional random

field (CRM). Thus the optimization energy is described as follows:

E(sl,x,w) =
∑
i∈S

wsφ
s
i (sli,x) +

∑
(i,j)∈A

wpφ
p
ij(sli, slj,x) (2.16)

where the first term describes singleton energy and the later is pairwise en-

ergy; S is the set of all segments and A is the set of all adjacent segments.

The resulting graphical model is a loopy tree. Inference in this model is

done using graph-cut optimization for binary labelling [7]. Both singleton

and pairwise features are modelled using linear logistic regression. Single-

ton and pairwise parameters are jointly learnt using stochastic gradient

descent. The overall detection flow is shown in Figure 2.13.

2.6 Saliency evaluation dataset

Both for evaluation and training of the proposed models a ground-truth

database was created. Although there exists some datasets for evalua-

tion of saliency, there are not suitable for the proposed models. These

databases were collected using eye-trackers (for instance [34]1 and [58]2)

thereby ground truth data is represented by fixation points. However, the

methods proposed operate with segments rather than with separate pixels.

Thus there is need to perform matching of fixation points to segments.

Performing this task automatically is not possible due to limitations of

existing segmentation tools and sparse nature of fixation points. It is com-

mon with current segmentation tools that a real object is being represented

by several segments, and it often happens that fixation points can be ab-

sent in several object’s segments. In addition, tasks given to humans while

collecting these databases were different. For example, in [33] the authors

1http://people.csail.mit.edu/tjudd/WherePeopleLook/index.html
2http://live.ece.utexas.edu/research/doves
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Figure 2.14: Fixation points over time [49]. On the left fixations over first 2 seconds,

on the right fixations over next 5 seconds. At the first moment human eyes capture

main objects of the scene, then discovering some surrounding to gather complete scene

information.

investigated the order of objects causing attention in time. People tend to

expand the grasp over the image in time (see Figure 2.14). Thus due to

the long exposure of images to users almost the whole area of images were

covered by fixation points. Another problem is that the very first fixation

point usually lies in the center of an image, due to the prior people have

about saliency. These problems makes it necessary to perform some kind

of filtration of fixation points and supervision of matching results. Another

option is to use a database where objects were selected by users by hands,

rather than with eye trackers, like it was done in [38]3. However, in this

work saliency objects were selected via rectangles, that again leads to the

problem of matching.

Thereby to avoid these problems and have better control over ground-

truth data content I created new database. The first important task was to

select proper images. For example, there is no sense to use artistic images,

since the saliency will be to subjective for this kind of media. The database

should consist of images with unambiguous content to diminish the effect of

3http://research.microsoft.com/en-us/um/people/jiansun/SalientObject/salient-object.htm
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Figure 2.15: Example images from the dataset. From left to righ: input image, final

ground-truth map.
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Figure 2.16: Ground truth collection UI. Selected areas are outlined with yellow contour,

the view on the right highlight selected areas on the selection map.

subjectivity of the ground truth data. The decision here was simple. Since

the methods proposed here are aimed at dealing with media available in

the Internet and shared through social networks the best source is there.

Thereby the database consists of images one would capture during their

everyday life, travelling and attending some events. The dataset contains

images of categories like: landscapes, building, monuments, cars, airplanes,

trains, food, souvenirs, flowers, animals, pets, people and sports. Totally

the dataset consists of 800 images. Figure 2.15 shows example images from

the dataset with the corresponding ground-truth data.

The collection of ground-truth dataset was done by means of a simple

user interface shown in Figure 2.16. Users were asked to click onto parts

of an image they consider most important. Once a user clicks the image

a segment where this click falls into highlight on the selection map view

thus allowing users control over what has been selected. Once the user
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has finished selecting salient regions next image is shown to him. There is

no time limitation on the image exposure, due to the task driven selection

approach. The ground-truth dataset was collected from three users. Since

saliency is a subjective property ground-truth data from users are different.

Final decision on saliency of a particular segment was obtain by marks

agreement at least of two users. On average each image has 23 segments

with 5 of them marked as salient. The proposed methods require parameter

learning, thereby the dataset was divided into two parts: 600 images for

training and 200 images for evaluation.

2.7 Evaluation

In this section the evaluation of the of methods described in Sections 2.4

and 2.5 is presented. Besides numerical evaluation, qualitative comparison

to state-of-the-art methods is given.

The first part is the quantitative evaluation of the proposed methods

on the test dataset described in Section 2.6. This test allows for numeri-

cal evaluation of the proposed approaches due to the ground truth data.

Ground truth data is a list of segments selected by users as salient. Thus

the most straight-forward method to compute accuracy is to measure how

many segments in a predicted map match to the corresponding ground-

truth map. However, this approach neglects the size of the segments.

While in cases where segments of an image are of close size this problem

is not critical, often segment size varies greatly over the image interfering

with the perceptual estimation of saliency. Thereby, instead of matching

segment numbers, the area of intersection of estimated and ground-truth

maps is used for evaluation. Another advantage of this approach is that

when changing parameters of segmentation algorithm thus creating an-

other segmentation map still it is possible to compare results since only
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intersection area is needed. The performance is measured using two pa-

rameters: F-score and accuracy. Likewise to many other works F1 score is

used:

precision =

∑
i

pit • wi∑
i

pit • wi +
∑
i

pif • wi

recall =

∑
i

pit • wi∑
i

pit • wi +
∑
i

nif • wi

wi =
area(i)∑

j∈I
area(j)

F1 = 1.5 • precision • recall
precision+ recall

,

where pt and pf are true and false positive labels respectfully, nt and nf

are true and false negative labels respectfully, and wi is the weight of the

label i. Accuracy is computed as follows:

accuracy =
pt + nt

pt + pf + nt + nf

The evaluation results are reported in Table 2.2. As it can be seen from

the evaluation, both segmented-based and depth-based methods show high

performance on the test dataset. The higher performance of segment-based

method can be explained by failure of depth estimation on some images.

Table 2.2: Performance of the proposed methods

segment-based depth-based

F-score 0.69 0.59

Accuracy 0.85 0.71

It is of interest to see how each feature contributes to the final estima-

tion of saliency. Here the correlation of saliency data and feature values are
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shown. Figure 2.17 shows dependencies of color distribution, luminance

contrast, center-surround histogram filter and location feature values on

saliency. For color-distribution it is evident if a segment is assigned color

distribution value 5 and higher it is more likely that this segment is a part of

foreground scene. Thus less distributed color in a scene is (higher value cor-

responds to less segments have this color), more likely it belongs to salient

part. Likewise luminance contrast, center-surround histogram filter, loca-

tion and number of neighbours feature (Figure 2.18) after a certain value

indicate that it is more likely a segment to be salient. For geometric-class

feature it is evident that it is more likely that a segment with geometric

class 6, that corresponds to vertices class, is salient. Thus another geomet-

ric classes indicate opposite information. That is why in the depth-based

method geometric classes are merged into 3 classes. Shape descriptor like-

lihood is more close to Gaussian distribution with mean value between 3

and 4. Figure 2.19 shows dependencies of depth-features on saliency. If

to inspect mean depth value versus saliency dependency it is evident that

salient objects are more likely to be displaced in range of 8 to 40 estimated

units. Objects placed closer are more likely to be a part of ground surface,

and more distant objects usually belong to background. Interesting obser-

vation can be done considering tangent-like features. While in X-Z plane

it is more likely that the facet of an object of interest is orientated parallel

to the camera plane, in Y-Z plane the facet of an object of interest is on

average has some pitch.

Another part of the evaluation shows comparison of the proposed meth-

ods to 14 concurrent methods. Among concurrent methods there are both

pixel-based and segment-based methods. There is no comparison to con-

current depth-based methods since to the best of my knowledge all of them

require real depth data acquired by means of hardware, thus requiring con-

struction of a database combining saliency and depth data. Although it
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Figure 2.17: Features analysis. Here the dependencies of color distribution, luminance

contrast, center-surround histogram filter and location features on saliency are shown.
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Figure 2.18: Features analysis continue. Here the dependencies of geometric class, shape

descriptor, occlusions and neighbors features on saliency are shown.
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Figure 2.19: Features analysis depth-based method. Here the dependencies of depth mean

value, depth contrast, depth difference, tangent X and tangent Y features on saliency are

shown.
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is possible to substitute this data by estimated depth maps, sample tests

have shown dramatic decrease in performance. For this reason no depth

methods were included into the comparison. The comparison is shown in

Figure 2.20. This qualitative comparison shows that the proposed methods

outperform the majority of the concurrent methods. Close performance is

demonstrated only by methods [10] and [38] (E and F images in Figure

2.20). The former method is utilizing segmentation. The authors used

mean-shift-like segmentation approach that is similar to that used in the

methods proposed in this work. For this reason output maps are very close

in shape. Unlike the proposed segment-based method the authors of [10]

provide binary saliency map. Another method having close performance

is described in [38]. Unlike the above mention method it is a pixel-based

method. There is no numerical comparison to the concurrent methods due

to the problem of matching segment-wise data to pixel-wise data. More

comparison image can be found in Appendix A.
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Figure 2.20: Evaluation. A: original image, B: ground-truth map, C: depth-based method,

D: segment-based method, E: Cheng et al [10], F: Liu et al [38], G: Judd et al [34], H:

Achanta et al [3], I: Harel et al [29], J: Goferman et al [25], K: Margolin et al [43], L:

Schauerte et al [51], M: Vikram et al [60], N: Ma et al [41], O: Hou et al [31], P: Seo et al

[52], Q: Torralba et al [56], R: Fang et al [18]
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Chapter 3

Diversification of visual content

using saliency maps

3.1 Introduction

Diversity of contents is an important feature and an added value in the

Internet, and in general in all applications characterized by a large amount

of information coming from different sources. It is the result of the large

variety of situations, contexts, cultural backgrounds, religious and politi-

cal beliefs, ideologies and time. Thus, to fully exploit the huge and ever

increasing amount of information available on the Web, diversity has to be

appropriately taken into account as a key instrument to achieve deeper un-

derstanding and reliable interpretation of the information and knowledge

available.

In the specific domain of media search, diversity is usually associated to

a problem of visual diversification. Being based on textual tags associated

to images, search engines on the web typically could not offer this kind of

diversification, thus retrieving many near duplicates. Instead, users would

better appreciate a set of results able to show different aspects of that

query; this is especially important when the query is poorly specified or

ambiguous [53].
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Diversification of results in media search engines is a relatively new area

of research. In the last years, several techniques have been proposed to

achieve this goal, mainly using textual information or algorithms imported

from natural language processing domain. Although image annotation

could be an important source of information, quite often it turns out to

be quite unreliable. For instance, user generated contents are often unan-

notated or sparsely annotated, thus making text-based approaches hardly

applicable. Additionally, annotations may contain noisy or irrelevant data

that in turn could produce irrelevant outputs. In the same way, the degree

of results diversification depends on how annotations grasp the content of

the image both from visual and semantic points of view.

On the other hand, images contain much more information than their

textual descriptions and the use of visual features deserves special attention

in this context. In terms of image search, a simple yet effective way to

increase diversity is to ensure that duplicates or near-duplicates in the

retrieved set are hidden from the user [64]. This approach however works as

a posteriori filter on the result, while a mechanism to enforce diversification

in the retrieval process would be more impactful. An insight on the most

significant approaches so far proposed will be presented in Section 3.2.

When dealing with visual perception of a media object, the concept of

saliency is of paramount importance. Visual saliency provides information

about the areas of an image perceived as most important and instinc-

tively targeted by humans when shooting a photo or looking at a picture.

Intuitively, saliency can play an important role in the framework of diver-

sification, by providing information on what the user perceives as the key

subject of an image, thus making it possible to focus the diversification on

the most relevant contents. Stated another way, since visual saliency is as

an additional dimension of the data implicitly embedded in a picture by

its creator, it looks natural to use this information for defining a higher
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dimensional feature space that allows more accurate description of images,

emphasizing both semantic and visual diversity.

In this chapter the usefulness of visual saliency to increase diversity in

image retrieval is investigated. I propose a method to re-rank the results of

a query based on visual content, to achieve better diversity in top results.

Then, it is shown how the introduction of a saliency-based modification

of the re-ranking strategy can achieve significantly better performance as

compared to the baseline approach. In particular, I propose to use saliency

information to stress the importance of certain parts of an image. This will

be achieved by using different sets of features to describe important (fore-

ground) and less important (background) parts of an image, and applying

different weights in the similarity function. I will demonstrate that this

allows achieving better diversification of the main subject of the picture

(e.g., different viewpoints, different models of the same object, etc.), or

vice versa providing different views of similar objects in different contexts

(e.g., different backgrounds).

3.2 State of the art on diversification in image re-

trieval

The idea of diversification of image retrieval results has been studied re-

cently by many researchers [12]. A good comparison of different methods

can be found in [55]. The authors compare 8 diversification methods sub-

mitted to ImageCLEF retrieval contest1 including text-only, hybrid and

pure content-based methods. Their study shows that with current tech-

nologies hybrid methods outperform text-only and content-based meth-

ods. A notable example of a hybrid method was presented in [14]. In

their approach, unlike the many methods performing diversification as a

1http://www.imageclef.org/

53



3.2. SOA ON DIVERSITY CHAPTER 3. DIVERSIFICATION USING SALIENCY

post-processing step, the authors proposed a dynamic-programming-like

ranking that jointly optimizes relevance and diversity measures. To this

purpose, they use a broad variety of input features that include colour his-

tograms, texture descriptors, bag of visual words, and text data. Another

approach with similar characteristics can be found in [63]: here, unlike [14],

the authors used visual and textual features separately. Text features are

responsible for the relevance by estimating the distance of tags, while vi-

sual features are used for diversification by maximizing the distance among

candidate images. A pure text-based method is described in [65]. The au-

thors proposed probabilistic model of image tags, with respect to the query

that models both relevance and diversity. The main disadvantages of the

above methods is in that they rely on the semantic relationship of textual

annotation, thus making them hardly applicable in to unreliably annotated

data.

An interesting approach dealing with unannotated data has been pre-

sented in [54]. The authors addressed the problem of diversification through

automatic annotation of images based on their visual features. This text

information is then used for creation of a topic graph of the set. Finally,

the results are diversified using topic reachness score, so that images with

higher score appear at the top of the ranking. In addition, a topic coverage

score is proposed, which is a measure defining the diversity of the image

set and is based on the number of text-topics presented in the results. Al-

though this method is independent of image annotation, its performance

is highly dependent on the performance of annotation prediction method.

Use of clustering techniques as a post retrieval processing step for topic

coverage enhancement has been proposed in the work by Van Leuken et al.

[59]. The authors performed comparison of several clustering strategies and

analysed their effect on relevance and topic coverage. They also proposed a

dynamic feature weighting technique that allows better fusion of features.
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Clustering is performed using a visual similarity measure based on low-

level features and descriptors. Like in most content-based methods, all the

content is treated uniformly, without differentiating between important

areas and background.

Apart from pure content-based approaches there exist numerous hy-

brid and text-only approaches for diversification of image retrieval results.

A good comparison of different methods for results diversification can be

found in [55]. Among other methods they also compared the method they

proposed in(bimodel text and image retrieval with diversity enhancement),

that can serve both as text-only or content-based only method depending

on the availability of text annotation with an image. When working with

text annotations diversity is obtained by clustering location information

data.where they propose utilization of visual similarity for diversification

when no text information is available, using maxmin approach that is max-

imization of minimum distance of a candidate image with respect to the

selected images.

3.3 The proposed approach

In this section I provide a detailed description of the proposed method

for image search results diversification based on visual saliency. I start

with describing the visual features used for diversification and how they

are related to the relevant application. After that, the proposed re-ranking

approach is presented.

3.3.1 Visual Features

In order to quantitatively measure the visual dissimilarity among images, it

is necessary to define a set of features that efficiently encode the perceptual

appearance of visual data. In this work the model relies on low level fea-
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tures that are correlated with human vision system (HVS) characteristics.

In particular, each image is described by 6 features, namely: foreground

and background color histograms, foreground and background orientation

histograms, foreground size and foreground location. In the following de-

tails about this description are provided. Foreground and background parts

of images in this case are salient and non-salient areas detected by segment-

based saliency extraction method described in Section 2.4.

Colors are recognized to be one of the most important perceptual fea-

tures of images. In particular, color histograms provide a meaningful and

convenient representation, accounting for relatively fast processing and

easy comparison. Furthermore, the use of color histograms in previous

works has shown their good applicability for the task of diversification.

Color histograms can be applied to different color spaces and with different

chromatic resolutions. Some works propose the use of entire full-color RGB

color space, others use alternative color representations such as L*a*b* or

HSV, with different numbers of bins. In this work a 9-bin color space

based on HSV color representation is used. Three bins stand for different

monotone color luminosity values (black, white and grey), while other bins

count the occurrences of basic color tones (red, yellow, green, cyan, violet

and pink). Input colors are transformed into HSV color space, followed

by grey tone classification. This is done by analysing the S and V color

components. Pixel’s color is considered to be grey if:

V < 0.1 ∨ S < 0.1 +
0.01

V 2

Here, three levels of monotone illumination are defined: black (V ≤ 0.23),

grey (0.23 < V < 0.85) and white (V ≥ 0.85). After that, color classifi-

cation is performed on pixels that at previous step were not classified as

greyscale. The color tone is determined by splitting H color component

into 6 equally spaced regions with centers at [0.083 0.25 0.417 0.583 0.75
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Figure 3.1: Feature extraction scheme

0.917], and mapping pixel’s color to the closest color region. The use of a

limited color description of this type accounts for the fact that slight vari-

ations in half tones are hardly detectable by the HVS in the absence of a

reference image, and this information is useful only when visually very close

images (near duplicates) are compared. On the other hand, the absence or

presence of some basic color tone have a great impact on perception. In

addition, tests have shown that histograms with large number of bins suffer

from a drawback that causes small spectrum shifts to result in relatively

high distance values.

Another feature employed in the proposed method are orientation his-

tograms. There are several reasons for using such descriptors. Firstly, they
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allows a simple yet effective analysis of texture contents. Furthermore, they

allow to some extent estimating observation viewpoint for objects that have

dominant orientation of straight edges on their bodies. This is the typical

case for man-made objects like cars, building, etc. Orientations are de-

tected by applying directional filters at different scales. In this work, the

following directions are used for orientation filters: 0◦, 30◦, 60◦, 90◦, 120◦

and 150◦. These filters are applied at six scales, and responses at different

scales are summed up per each orientation.

Finally, saliency information allows for extraction of object-specific fea-

tures. For this reason, in addition to color and orientation histograms,

foreground size and location features are used. The size is computed by

normalizing the area of the foreground by the image size. Location is de-

fined by the vector of the coordinates of the foreground region centroid,

normalized over image dimensions. The overall feature extraction scheme

is shown in Figure 3.1.

3.3.2 Search Results Diversification

Ranking is the key component of the system. Given a query, in order

to find relevant and diversified results, it is necessary to find a suitable

trade-off between similarity and diversity of images, which are controversial

constrains. Since pure content-based search is still a tough problem [47],

and the set of features used is insufficient to achieve a sufficient accuracy of

visual search results, it is assumed to have in input a set of images returned

by text-based search, providing a set of relevant images (precision=1), thus

the task is limited to re-ranking of results in order to achieve a higher

diversity on top N results. In principle, the proposed system acts as a

post-retrieval filter that sorts the results to increase the diversity.

This given, the major contribution of the proposed work is in the use

of saliency to perform this task in a more effective way. There are several
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possibilities to make use of saliency information. For instance, one can force

foreground similarity while differentiating the background, thus resulting

in the same object appearing in different contexts. On the contrary, one

may differentiate the foreground independently of the background, thus

achieving a larger variety of subjects. This way of proceeding however

would neglect the strong correlation between foreground and background,

which appears evident when analysing the data (see Figure 3.2). Another

problem is that frequently occurring images should be promoted to the top

places as very rare images are likely to be irrelevant.

Figure 3.2: Foreground and background correlation example. Consider the left image to

be a picture of a mammal in its natural environment and the right one is a picture of

a man-made object in an industrial environment. Then P (F = F1|B = B1) � P (F =

F1|B = B2), likewise P (F = F2|B = B2)� P (F = F2|B = B1).

According to the above consideration, I propose a weighting method

that jointly considers background and foreground diversity, while at the

same time putting frequently occurring images at the top places. Given

the feature vectors associated to a pair of images im1 and im2, their dis-

similarity is computed according to the following Equation:

D(im1, im2) =
n∑

i=0

Dist(f i1, f
i
2)i • wi, (3.1)

where Dist(f i1, f
i
2)i represents the distance between image im1 and im2

with respect to feature f i, and wi is the corresponding weight. Dissimilarity

of histogram features is computed using cosine distance. As mentioned
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above, I assume that the input set consists of relevant images only, their

initial order is not used by the ranking. Candidate images are selected by

minimizing the score term CM . For the sake of simplicity a linear ranking

method was selected.

CM(im) = wres •D(im)res − wnran •D(im)nran, (3.2)

where D(im)nran is the overall normalized distance of image im to images

in unranked results list, while D(im)res is the overall normalized distance

of image im to images in results list. Relevant weights are wnran and wres.

As a result, the optimization is done by means of minimization of similarity

with images in results list and maximization of similarity with unranked

images. Thereby diversity is achieved through promotion of representative

images from the unranked list and penalty of similar images in the results

list. The re-ranking algorithm is shown in Listing 1.

Algorithm 1 Re-ranking algorithm

1: procedure re-ranking(RES,NRAN)

2: while ‖NRAN‖> 0 do

3: for all imcand ∈ NRAN do

4: DNRAN =
∑

imt ∈ NRAN 3 imcand

N∑
i=0

Dist(f i
t , f

i
cand) • wi

5: DRES =
∑

imt ∈ RES

N∑
i=0

Dist(f i
t , f

i
cand) • wi

6: CM(imcand) = wRES •DRES − wNRAN •DNRAN

7: end for

8: immax = imcand → max(CM(imcand))

9: ADD immax to RES

10: REMOV E immax from NRAN

11: end while

12: end procedure
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3.4 Evaluation

Assessment of image retrieval results diversity is an unsolved problem yet.

Recently several ways of measuring diversity have been proposed. However,

they mostly tackle only the concept aspect of diversity by analysing text-

annotations [59] or by counting number of clusters [4] in retrieval results.

This results in diversity towards variety of concepts leaving visual diversity

out of scope. Since saliency allows for discrimination between foreground

and background parts, it allows to achieve object representation diversifi-

cation. Thereby it is of interest to be able to measure both concept and

representation parts of diversity. Thus resulting in a most effective visual

diversification. Here, I propose a measure which to some extend allows for

evaluation of both semantic and visual diversity. Although recent works

proposed several plausible diversity measures for tagged images they are

not fully applicable in the scope of this work. For example, for the case

of commonly used approach of data clustering, the number of clusters for

a category consisting of 100 images can be as high as 70. As a results

number of clusters in first 20 ranked images for almost all cases is 20 that

makes comparison of different rankings intractable. Other measures that

require semantic understanding are possible but require a natural language

processing framework. The measure I propose is based on text-based repre-

sentation of visual content by annotations. Such an annotation consists of

list of properties, which are related both to visual and semantic variations

of the main object within a given set. Each property consists of a list of

tags that define its possible values. To each tag I assign its weight that is

computed as follows:

wt =
ti
i • p

, (3.3)

where ti is the number of images this tag was assigned to, p is the number

of properties for a set of images and i is the total number of images in
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Figure 3.3: Example of coverage measure computation for a category with two properties.

It can be noticed that coverage measure increases only when a new value for a property

is included to the ranking. For example, at step 4 an image with value black for color

property is added resulting in coverage increase. Also note, when at one step several new

values appear the increase is higher (e.g., steps 1-2 and 4-5 compare to 2-3 and 7-8).

the initial image set. Then diversity is measured as coverage over tags.

Coverage of a set is defined as the sum of weights of unique tags assigned

to images in this set. Thereby only weights of newly introduces tags are

counted, and the maximum possible value of coverage doesn’t exceed 1. In

Figure 3.3 I give an example of how coverage is computed. The measure

that I proposed allows capturing both of diversity and relevance. It is done

by giving higher weight to tags that are assigned to more images. Then

the overall score increases when an image, that represents a larger group

of images is added compared to an image with a very rare tag.

The method proposed is designed in such a way that it is a post process-

ing step of retrieval and it is applied for results re-ranking. Thereby, for

the evaluation of the approach it is necessary to set up a retrieval system
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in order to get an initial ranking. However, for the sake of simplicity this

step can be eliminated if we use a set of images grouped in a some way,

e.g. by categories. Indeed, these grouped images can serve as an output

of an image retrieval image. From section 3.3 it is clear that the proposed

approach does not depend on initial positions of images in the original

ranking, thereby from the point of view of the this method the order of

images does not play any role.

For the evaluation of the approach a dataset was created based on two

image datasets: Caltech 256 [27] and Pascal VOC 2008 [17]. Caltech 256

provides a category-based image sets. There is no any grouping in Pascal

VOC 2008 dataset, but all images are provided with text description con-

taining information about the type, bounding box and pose of objects of

interest presented on images. Image sets for several categories were created

by querying the type field. However, for some images annotated objects

were occupying very insignificant area of an image making these objects

less visual important and relevant with respect to other objects on the

same image. To eliminate this effect images with area of objects of interest

less than 10 percent of image’s area were excluded. The proposed measure

is aimed at capturing visual properties of an image. Since there were cre-

ated separate sets of annotations for each category, then the dataset should

capture variations of the main category object and its surroundings. After

analysis of the dataset I came up with an annotation guide that encodes

the following properties: colors of the main object, quantity of objects be-

longing to the main object class, location and size of the object, subtype

of the object, viewing angle, distance, etc. These annotations briefly cover

visual properties of an image. Although there is plenty of other possible

properties one can add, there is always a problem of subjectivity. Thereby

properties included were limited to these that are to less extend subjective.

In addition, applicable properties are very dependant on the content, thus
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only relevant properties to a category were included into annotations. It is

possible to come up with a fixed set of properties but it would result in few

properties that hardly grasp semantic and visual content of categories. It

turns out that omitting irrelevant properties is equal to using a large fixed

set of properties for all category with tag null for these properties that are

irrelevant for a specific category.

An example annotation for category bear is reported in Table 3.1.

Table 3.1: Example annotation for category bear

type spectacled bear

location zoo

pose sitting

quantity alone

viewpoint side

zoom tele

Firstly, for the purpose of testing the idea of using saliency for im-

proving diversity I decided to perform evaluation using ground-truth data.

Although there are no ground truth saliency data neither for Caltech 256

nor for Pascal VOC 2008 datasets, the later includes object segmentation

ground-truth data, that to some extend is close to maps that the saliency

detection method provides. So at this step there was made an assumption

that these labellings correspond to main object of an image that for most

images were true. During comparison only first 20 re-ranked images were

counted. Mostly this number was selected due to the fact that usually

a close number of images is shown to a user per page. In addition, this

number is perfect for illustrating difference in diversity - with more images

coverage difference tends to zero, while a fewer images are practically out of

interest. Finally, in many other research papers on diversity first 20 images

are used for evaluation. In Table 3.2 comparison of re-ranking method using

automatically extracted saliency maps, ground-truth data and entire image
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area is reported. As it can be seen, inclusion of saliency data (no matter if

it is extracted automatically or provided as a ground-truth data) improves

diversity. In addition, close performance of automatically extracted maps

with ground-truth data shows that detection tool gives reasonable maps

and its accuracy is sufficient for such a task.
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Figure 3.4: Coverage measure pace. As it can be seen ranking with saliency allows for

faster coverage of a dataset. Also one can notice that after 15 images coverage grows

much slower.

While the first test proves the approach to be working the amount of

numerical data is insufficient since it is based on comparison of only five

categories. In addition, due to the fact that ground-truth labelled data pro-

vided only for a limited number of images initial image sets for categories

consists of only few dozens images making it a more easy task to cover all

variations of initial set. For this purpose another test was performed. It is

different in that it covers more categories and gives more information about

generalization of our approach. At this time I compared performance of the
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Table 3.2: Experiment 1 results. Coverage measure considering first 20 images. As it

can be noticed ranking using labelled data out performs the one without using saliency.

This proves that the idea of using visual saliency information results in higher diversity.

Comparison of labelled data performance with saliency shows that their performance is

close to each other and slight difference can be explained by the fact that not always

labelling belongs to visually salient object, also saliency maps estimation may have some

errors due to accuracy is not 100%.

category without saliency labelled data saliency

bird 0.972 0.970 0.980

car 0.939 0.944 0.959

cow 0.970 0.985 0.983

boat 0.846 0.893 0.893

sheep 0.937 0.950 0.939

re-ranking method with saliency and without it. Results of this compari-

son are reported in Table 3.3. The comparison was performed on twenty

categories taken both from Caltech 256 and Pascal VOC 2008 datasets. As

it can be seen in Table 3.3 use of saliency information results in increase

in diversity of 11%. Figure 3.6 shows visual comparison of rankings for

category bear. Additional comparison images can be found in B.

The evaluation results of the first and seconds experiments depend on

human-labellings. To show the advantages of using saliency without allow-

ing for subjectivity of the results an objective way to create annotations was

found. Although there exist a number of methods for automatic estima-

tion of annotation informations for images, such methods does not provide

enough details for judging the diversity of a set of images. However, there

are special cases. For example, there are tools that are able to perform face

recognition and provide information such as sex, edge, mood, viewpoint,

etc. Although this is a very specific case, it allows for human-less annota-

tion of a set of images. The Caltech database includes face category which

was used for the evaluation. The annotation was done using public API to

66



CHAPTER 3. DIVERSIFICATION USING SALIENCY 3.4. EVALUATION

Table 3.3: Experiment 2 results. Coverage measure considering first 20 images. (P) and

(C) denotes categories taken from Pascal VOC 2008 and Caltech 256 datasets respectfully.

category saliency without saliency

bird (P) 0.912 0.823

car (P) 0.814 0.739

cow (P) 0.916 0.801

table (P) 0.840 0.753

bicycle (P) 0.861 0.842

boat (P) 0.683 0.635

sheep (P) 0.817 0.775

pyramid (C) 0.668 0.579

bridge (C) 0.712 0.521

bear (C) 0.707 0.663

blimp (C) 0.863 0.729

butterfly (C) 0.713 0.685

gas-pump (C) 0.477 0.454

teapot (C) 0.615 0.586

wolf (C) 0.924 0.798

sea animal (C) 0.943 0.869

fox (C) 0.915 0.832

military vehicle (C) 0.835 0.668

train (C) 0.995 0.942

airplane (C) 0.895 0.846
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Table 3.4: Example of face annotation

person Id 27

gender female

age 20

glasses false

smiling false

mood surprised

lips sealed

yaw -1

pitch -13

roll -2

face width 50

face height 44

face x position 51

face y position 56

face.com service2. An example of an annotation produced by this service

is reported in Table 3.4. Same as in the aforesaid experiments diversity is

determined via coverage measure. The obtained results are: 0.56, 0.39 for

ranking with and without saliency respectfully.

The proposed approach depends on 8 weights for the method with the

use of saliency (6 weights for features and 2 for ranking) and 4 weights

for the method without the use of saliency (2 weights for features and 2

for ranking). In the experiments these weights were obtained empirically

by running genetic algorithm optimization on the entire dataset. During

experiments the weights obtained were: [7.6 1.8 2.0 0.6 4.0 0.7] [1 1] for the

method with the use of saliency information and [3.7 5.7] and [1 0.7] for

the method without saliency.

2http://www.face.com/ public API is discontinued since August 2012
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a

b

Figure 3.5: Results of re-ranking for faces category from Caltech database. (a) – diver-

sification using saliency, (b) – diversification without saliency. Notice (a) contains only

one pair of pictures of the same person compared to two pairs for (b). Also (a) contains:

a portrait of a person wearing spectacles and drawing.
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a

b

Figure 3.6: Example of re-ranking for category bear using the method with saliency

information (a) compared to the method without saliency information (b). Ranking (a)

provides more instances of white bears, age variation is higher (notice images of offspring),

more locations are captured and there are pictures of a group of bears.
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Figure 3.7: Example of re-ranking for category bear: annotations. Here only annotation

values present in first 20 images are shown. Blue color denotes that a particular value of

property is present in both rankings. Green color shows values unique for a ranking.
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Chapter 4

Conclusion

In this work saliency detection and its use in multimedia applications were

studied. Two novel methods of salient region detection were proposed.

The initial idea of region-based processing has been proven to be working.

Another novel idea of exploiting depth-spatial relation of objects has also

shown to be a possible solution to saliency detection. The evaluation and

comparison to state-of-the-art methods has shown high performance of the

proposed approaches. In addition, an application-based evaluation has

been done through finding a new niche for saliency detection. A novel

approach to diversification of visual content based on saliency detection

has been presented. Its evaluation has shown the rightfulness of this idea

and became a good test-bench for proposed saliency detection algorithm.

Although the initial goals of the work were reached there is a room

for further development. The proposed models of saliency detection are

to large extend based on low-level properties of objects found in images.

However, studies on human visual attention has shown that there are two

stimulus driving our attention bottom-up and top-down. Addressing top-

down driven attention via exploiting semantic properties and relations of

objects in images may lead to much higher performance. Though this

research is possible only through solving tough tasks from natural language
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processing, semantics understanding and object categorization domains.

74



Bibliography

[1] R. Achanta, F. Estrada, P. Wils, and S. Süsstrunk, “Salient region
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Appendix A

Saliency detection evaluation

Here additional comparison images are presented. Each evaluation figure

consists of 18 images composed as: .

A: original image

B: ground-truth map

C: depth-based method (see Section 2.5)

D: segment-based method (see Section 2.4)

E: Cheng et al [10]

F: Liu et al [38]

G: Judd et al [34]

H: Achanta et al [3]

I: Harel et al [29]

J: Goferman et al [25]

K: Margolin et al [43]

L: Schauerte et al [51]
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M: Vikram et al [60]

N: Ma et al [41]

O: Hou et al [31]

P: Seo et al [52]

Q: Torralba et al [56]

R: Fang et al [18]
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Figure A.1: Test image: marriage
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Figure A.2: Test image: laboratory
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Figure A.3: Test image: church
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Figure A.4: Test image: astronaut
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Figure A.5: Test image: lady
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Figure A.6: Test image: fire-car
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Figure A.7: Test image: aerial
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Figure A.8: Test image: dog
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Figure A.9: Test image: dolphin
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Figure A.10: Test image: bears
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Appendix B

Diversity evaluation

On the following pages additional examples on image set diversification are

given. Namely, the examples include pyramid, bridge, blimp and gas pump

categories from Caltech 256 dataset. Below each image set comments on

main differences in concept representation are provided.
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a

b

Figure B.1: Example of re-ranking for category pyramid using the method with saliency

information (a) compared to the method without saliency information (b). Notice the

difference in number of pyramid instances in upper and lower images.
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a

b

Figure B.2: Example of re-ranking for category bridge using the method with saliency in-

formation (a) compared to the method without saliency information (b). Notice presence

of images with a person running, flag and stone in the upper image set.
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a

b

Figure B.3: Example of re-ranking for category blimp using the method with saliency in-

formation (a) compared to the method without saliency information (b). Notice presence

of a compute generation, fish-shaped and accompanied with a human blimps in the upper

set.
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a

b

Figure B.4: Example of re-ranking for category gas-pump using the method with saliency

information (a) compared to the method without saliency information (b). Notice broader

variety of locations and types of gas-pumps in the upper image set.
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