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Chapter 1Introdu
tion
Disorder is ubiquitous in nature and a�e
ts the properties of many physi
al systems.A deep understanding of its e�e
ts is therefore of fundamental importan
e. Thisis parti
ularly true for quantum systems, where disorder 
an in�uen
e dramati
allythe transport properties of ele
trons leading to a phenomenon that today is knownas Anderson lo
alization [1℄. This type of lo
alization is a subtle e�e
t that arisesfrom an interferen
e pro
ess due to 
oherent multiple s
attering from the disorder.It leads to a 
omplete absen
e of di�usion and to exponentially lo
alized single-parti
le wavefun
tions [2℄. Anderson's dis
overy represented a breakthrough in thestudy of transport properties of quantum parti
les, sin
e it introdu
ed a 
ompletelynew approa
h to the problem. Previous theories of transport 
onsidered disorderjust as a weak perturbation, predi
ting a di�usive motion determined by in
oherents
attering [3℄.Shortly after the dis
overy of Anderson lo
alization it has been shown that, inone dimensional systems, lo
alization takes pla
e for all quantum states [4, 5℄. Thisis 
ounterintuitive espe
ially when the energy of a given state is mu
h larger thanthe typi
al energy �u
tuations asso
iated to the disorder. A proper understandingof lo
alization in higher dimensions required more time, but nowadays it is �nallya

epted that also in two dimensional systems all states are lo
alized, while in threedimensions a metal-insulator transition 
an o

ur, as already suggested by Andersonin his original paper [6, 7℄.The phenomenon of Anderson lo
alization has been originally introdu
ed in the
ontext of ele
trons propagating in disordered solid state materials. Only later it hasbeen realized that the same type of lo
alization also o

urs with 
lassi
al waves, su
has light or sound [8, 9℄. This led to the �rst observations of Anderson lo
alizationin opti
s [10, 11℄ and a
ousti
s [12℄.Nowadays the study of Anderson lo
alization is still a very a
tive resear
h �eld.Sin
e its dis
overy many issues have been dis
ussed and understood, but there arealso several important questions that are still open. Few years ago a new boost tothe study of Anderson lo
alization and the related open problems have been givenby experiments with ultra
old atoms. Sin
e the realization of the �rst Bose-Einstein
ondensate with dilute and 
old gases [13, 14, 15℄, the experimental te
hniques aimedto manipulating and observing these quantum gases in di�erent geometries have beenenormously improved; at present, ultra
old atoms 
an be 
onsidered as a ben
hmarkfor the study of many phenomena in the realm of quantum physi
s. Among the�rst examples of remarkable results obtained in this �eld are the observation ofinterferen
e fringes in the expansion of two overlapping Bose-Einstein 
ondensates



2 Chapter 1. Introdu
tion[16℄ and the formation of quantized vorti
es [17℄. More re
ently a great interestis fo
used on properties of many-body systems, where new quantum phases 
anemerge. Examples are the observation of a Tonks-Girardeau gas in one dimension[18, 19℄ or the transition from super�uid to Mott insulator [20℄.The great su

ess of ultra
old atoms is mostly due to the high degree of 
ontrolthat 
an be rea
hed in experiments [21℄. Both bosoni
 and fermioni
 atoms 
anbe 
ooled down to degenera
y and external trapping potentials 
an be used to
ontrol the dimensionality of the system. Feshba
h resonan
es are used to tune theintera
tion between atoms and many di�erent observables 
an be dete
ted rangingfrom the atomi
 density to the momentum distribution. Laser light 
an be usedto design di�erent kind of potentials for the atoms, su
h as perfe
t periodi
 opti
allatti
es in di�erent dimensionalities [22℄.Re
ently opti
al potentials have been used also for the generation of 
ontrolledrandom potentials [23℄ and a new �eld of study started with the �rst dire
t ob-servation of Anderson lo
alization of matter waves in two di�erent resear
h groups[24, 25℄. This observation represented a remarkable result and showed that ultra-
old atoms 
an represent a powerful experimental tool for exploring a number ofproblems related to the theory of lo
alization [26, 27, 28℄.In this thesis we will 
on
entrate on two main issues, namely the interplay be-tween lo
alization and intera
tion in disordered systems and the problem of lo
al-ization in 
orrelated random potentials. The former is a long standing problemthat has been raised shortly after the dis
overy of Anderson lo
alization [29℄, be-
ause of its fundamental importan
e in ele
tron transport in disordered solids, whereCoulomb intera
tion between ele
trons 
an not be negle
ted. One naively expe
tsthat intera
tion a
ts against lo
alization, but a detailed study of this interplay ishighly nontrivial. The study of the role played by 
orrelations in the lo
alizationpro
ess is also of great interest, sin
e, stri
tly speaking, in real world un
orrelatedpotentials do not exist. It is known that 
orrelations 
an lead to delo
alization ef-fe
ts, however, a full understanding is still missing and one of the most 
hallengingquestions is whether or not they 
an introdu
e a metal-insulator transition alreadyin one dimension, where the e�e
t of disorder is known to be the strongest [30℄. Thepossibility to design di�erent kind of disordered potentials and to 
ontrol the inter-atomi
 intera
tions are the two key features that makes ultra
old atoms parti
ularlysuitable to ta
kle these two problems.1.1 Outline of the thesisThe main obje
tive of this thesis is to give a 
ontribution to the understandingof the physi
s of disordered systems studying, from a theoreti
al and numeri
alpoint of view, problems and models that 
an be dire
tly investigated in feasibleexperiments with ultra
old atoms. As we have previously anti
ipated the main twotopi
s that we will investigate are the role played by intera
tions and 
orrelationsin the determination of the lo
alization properties of disordered quantum systems.



1.1. Outline of the thesis 3The outline of the thesis is the following :
◦ In 
hapter 2 we present the basi
 
on
epts of the theory of lo
alization ofquantum parti
les in disordered systems. We introdu
e the phenomenon ofAnderson lo
alization and the 
on
ept of mobility edge in three dimensionalsystems. We dis
uss the role played by the dimensionality in relation to theproblem of lo
alization with spe
ial fo
us to the one dimensional 
ase, that isthe most relevant for this thesis. We introdu
e di�erent models of disorder anddis
uss their implementations with ultra
old atomi
 gases. Finally we reviewthe experimental observations of Anderson lo
alization.
◦ In 
hapter 3 the problem of lo
alization in quasiperiodi
 systems is dis
ussed.After introdu
ing the Aubry-André model and explaining in detail its
onne
tion with ultra
old atoms in bi
hromati
 opti
al latti
es, we reviewits lo
alization properties. We then 
onsider the spreading of an initiallylo
alized wavepaket, both in real and momentum spa
e, as a possible tool tostudy the lo
alization properties of the Aubry-André model. Spe
ial attentionis given to properties whi
h are observable in experiments. Part of the resultspresented in this 
hapter are published in:M. Lar
her, F. Dalfovo, and M. Modugno, �E�e
ts of intera
tion onthe di�usion of atomi
 matter waves in one-dimensional quasiperiodi
 poten-tials�, Physi
al Review A, 80, 053606 (2009) [31℄.M. Lar
her, M. Modugno, and F. Dalfovo, �Lo
alization in momentum spa
eof ultra
old atoms in in
ommensurate latti
es�, Physi
al Review A, 83, 013624(2011) [32℄
◦ Chapters 4 is devoted to the study of the e�e
ts of intera
tion on thespreading of an ultra
old atomi
 gas in a bi
hromati
 opti
al latti
e. This isdone by 
onsidering a dis
retized mean-�eld equation, whi
h generalizes theAubry-André model by adding a nonlinear term that in
ludes the intera
tionbetween atoms. This model is also known as dis
rete nonlinear S
hrödingerequation (DNLS). We solve this equation numeri
ally and analyze theinterplay between two 
ompeting e�e
ts of the intera
tion, namely, self-trapping and destru
tion of Anderson lo
alization. Finally we 
ompare thenumeri
al results that 
an be extra
ted from this model with experimentalmeasurements performed in Floren
e. The results of this 
hapter have beenpublished in the �rst paper mentioned above as well as in:E. Lu
ioni, B. Deissler, L. Tanzi, G. Roati, M. Za

anti, M. Modugno,M. Lar
her, F. Dalfovo, M. Ingus
io, and G. Modugno, �Observation ofsubdi�usion in a disordered intera
ting system�, Physi
al Review Letters,106, 230403 (2011) [33℄.
◦ The fo
us of 
hapter 5 is still on the interplay between lo
alization andintera
tion. We use again the DNLS model to ta
kle this problem, but here



4 Chapter 1. Introdu
tionmore attention is devoted to the investigation of the spreading behaviour ofwavepa
kets, that were lo
alized in the nonintera
ting 
ase. We 
hara
terizein detail the phenomenon of destru
tion of Anderson lo
alization and theresulting subdi�usive expansion indu
ed by the intera
tion, identifyingdi�erent spreading regimes and predi
ting the asso
iated spreading laws.Finally an extensive numeri
al analysis is performed and the results are
ompared with the theoreti
al expe
tations. The 
ontent of this 
hapter hasbeen published in:M Lar
her, T. Laptyeva, J. Bodyfelt, F. Dalfovo, M. Modugno and S.Fla
h, �Subdi�usion of nonlinear waves in quasiperiodi
 potentials�, NewJournal of Physi
s, 14, 103036 (2012) [34℄.
◦ In 
hapter 6 we propose a model of disorder that 
an be realized ex-perimentally using dipolar ultra
old gases and that presents 
orrelationproperties that leads to interesting delo
alization e�e
ts. The model is �rstintrodu
ed and its statisti
al properties are 
hara
terized. In parti
ularwe show that both short and long 
orrelations are naturally present in thedisordered system that we propose. We then study its lo
alization properties
al
ulating the lo
alization length of the eigenstates by means of an exa
trenormalization-de
imation te
hnique. Using these results, we dis
uss therole of short and long range 
orrelations and their interplay. The material inthis 
hapter is the basis for a paper whi
h will be soon submitted:M. Lar
her, C. Menotti, B. Tanatar and P. Vignolo, �A metal-insulatortransition indu
ed by random dipoles�, in preparation [35℄.



Chapter 2Lo
alization properties indisordered quantum systems
It was �rst realized by Anderson that disorder 
an have a dramati
 impa
t on thetransport properties of a quantum parti
le. More pre
isely, by studying the 
on-du
tan
e of ele
trons in solids, he dis
overed that disorder 
an lead to a 
ompleteabsen
e of di�usion and a 
onsequent metal-insulator transition. This phenomenonis known as Anderson lo
alization [1℄. Sin
e the revolutionary dis
overy by An-derson a huge a
tivity on the physi
s of quantum disordered system has startedand nowadays it is still an a
tive resear
h �eld that involves many areas of physi
s[36, 26℄.This 
hapter is devoted to the introdu
tion of the lo
alization problem in dis-ordered quantum systems. We will review some basi
 
on
epts that will form theba
kground for the understanding of the results presented in the others 
haptersof this thesis. In se
tion 2.1 we outline the main a
hievements of the theory oflo
alization for nonintera
ting quantum parti
les and 
lassi
al waves. In se
tion 2.2we spe
ialize to the lo
alization properties of one dimensional systems, whi
h is thedimensionality that we will 
onsider for the rest of this thesis. In se
tion 2.3 wereview the experimental observations of Anderson lo
alization with a spe
ial fo
uson the lo
alization of matter waves and ultra
old atomi
 systems.2.1 Disorder indu
ed lo
alizationIn this se
tion we present some of the key results of the quantum theory of lo
aliza-tion. There are a number of interesting introdu
tions to this �eld that 
an be foundin the s
ienti�
 literature (see for instan
e [37, 3, 38, 36, 39℄).In parti
ular we �rst introdu
e the problem of quantum transport in disorderedsystems from a 
omparison with the 
lassi
al 
ase. We then present the 
on
eptsof Anderson lo
alization and of mobility edge and dis
uss the role played by thedimensionality of the system starting from the results of the s
aling theory oflo
alization. Finally we introdu
e some models of disorder in 
onne
tion with the�eld of ultra
old atomi
 gases.Classi
al vs. QuantumWe start to deal with the problem of the behaviour of a quantum parti
le in adisordered potential 
onsidering a 
omparison with the 
lassi
al 
ase. This 
an
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alization properties in disordered quantum systems

Figure 2.1: Lo
alization properties of a 
lassi
al parti
le in a disordered potentialdepending on the value of its energy. If the energy of the parti
le is smaller thanthe highest barriers of the potential (E1 < E) the motion of the parti
le is restri
tedto a �nite region of spa
e. Conversely if the energy of the parti
le is larger than thehighest barriers of the potential (E2 > E0) the motion of the parti
le is unboundedand it will propagate through the disordered potential. Figure taken from Ref. [2℄.give an intuition of why the study of Anderson lo
alization is highly nontrivial andintrodu
es the two main e�e
ts that play a key role for the determination of thetransport behaviour of a quantum parti
le.Let us 
onsider a 
lassi
al parti
le in a disordered potential V (x) (we 
onsideredthe one dimensional 
ase for simpli
ity) like the one that is depi
ted in Fig. 2.1and let us 
onsider the situation where the potential is upper bounded by a max-imum value that we 
all E0. The behaviour of the 
lassi
al parti
le 
an be easilydetermined by a simple 
omparison of the energy of the parti
le with the maximumvalue assumed by the potential. In parti
ular if the energy of the parti
le is smallerthan E0 the motion will be bounded in a �nite region of spa
e between two barriersof the potential, transport over long distan
es is suppressed and lo
alization takespla
e. On the 
ontrary if the energy is larger than E0 the parti
le will �y above thebarriers of the disordered potential and on average the motion will be ballisti
.For a quantum parti
le, where the wave nature of matter 
omes into play, thissimple pi
ture is 
ompletely modi�ed. On the one hand a quantum parti
le 
antunnel through potential barriers and therefore we do not expe
t that a disorderedpotential 
an bound and freeze its motion. This delo
alization due to tunnelingis what happens, for instan
e, in periodi
 potentials, where, no matter how highare the potential barriers, but the parti
le will always propagate ballisti
ally [40℄.On the other hand, even if a quantum parti
le has an energy mu
h larger than thetypi
al potential barriers, we know that there will always be a �nite re�e
tion andtransmission probability. This 
an lead to nontrivial interferen
e e�e
ts that tendto lo
alize parti
les. We will see that an example of lo
alization due to interferen
e



2.1. Disorder indu
ed lo
alization 7is Anderson lo
alization [1, 2℄.Anderson lo
alizationThe e�e
ts of disorder on the propagation of quantum parti
les has been ini-tially studied in the 
ontext of 
ondensed matter physi
s for the des
ription of thepropagation of ele
trons in solids. The natural starting point for the analysis ofthis problem is a perfe
t 
rystal, whose properties are well known and are governedby the Blo
h theorem. In parti
ular the eigenstates of the system are extendedBlo
h waves that 
an propagate through the 
rystal [40℄.The traditional view, before the dis
overy of Anderson lo
alization, 
onsideredas a starting point for the study of the e�e
ts of disorder the extended waves of aperfe
t 
rystal [36℄. As a 
onsequen
e in the semi
lassi
al theory of ele
troni
 trans-port, ele
trons are still 
onsidered as waves whose wavefun
tion remains extendedthroughout the sample but the propagation is modi�ed by in
oherent s
atteringdue to the presen
e of disorder in the system. The result of these 
ollisions 
ausesa loss of the phase 
oheren
e of the waves on the length of the mean free path ℓ.This leads to a di�usive motion of ele
trons through the disordered potential, whi
hallows ele
trons to propagate to in�nity and results in a �nite 
ondu
tan
e of thesample. An in
rease of the strength of the disorder leads to a de
rease of the meanfree path ℓ and to a 
onsequent de
rease of the di�usion 
onstant and of the 
on-du
tan
e of the sample. This turns out to be true when interferen
e e�e
ts 
an benegle
ted.The �rst to understand that interferen
e e�e
ts play a key role for the deter-mination of the transport behaviour of a quantum parti
le was Philip Anderson in1958. He showed that the 
onsequen
e of these destru
tive interferen
e pro
essesbetween di�erent s
attered waves is not a simple redu
tion of the 
ondu
tivity buta 
omplete absen
e of di�usion [1℄.In his seminal paper he 
onsidered the transport of a parti
le (spin) in a dis-
retized latti
e that 
an tunnel via quantum jumps between di�erent sites and disor-der is introdu
ed by requiring that the on-site energies asso
iated with the di�erentlatti
e sites varies randomly. More pre
isely Anderson introdu
ed the followingmodel for the des
ription of the propagation of the parti
le (spin)
i
∂ψj

∂t
= εjψj −

∑

k 6=j

Jj,kψk (2.1)where ψj is the probability amplitude that a parti
le is on site j, Jj,k des
ribes thehopping amplitude between di�erent sites and εj are the random on-site energies
hara
terized by a probability distribution P (ε).He 
onsidered the transport problem of an initially lo
alized probability distri-bution |ψj(0)| that o

upies just a �nite region of spa
e and he tried to answer thefollowing question: �how fast, if at all, does the probability distribution di�use awayfrom its initial position?� He found that if the hopping amplitude Jj,k falls o� faster
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alization properties in disordered quantum systemsthan 1/|j−k|3 and if the disorder W is strong enough if 
ompared with the averagevalue of the hopping amplitude J then there will be a 
omplete absen
e of di�usion.The initial amplitude |ψj(0)| stays lo
alized around the initially o

upied sites andfalls o� exponentially with the distan
e.This absen
e of di�usion is asso
iated with the fa
t that the single-parti
le eigen-states of a disordered system are exponentially lo
alized if disorder is strong enough[3℄. More pre
isely, this means that, on the average, the envelopes of their ampli-tudes are exponentially de
aying in spa
e at in�nity
|φ(~r)| ∼ e−|~r−~ro|/Lloc (2.2)where ~r0 is the lo
alization 
enter and Lloc is the lo
alization length. Parti
ledes
ribed by these kind of states 
annot 
ontribute to transport sin
e they o

upya �nite region of spa
e in opposition to parti
les in extended states that 
an es
apeto in�nity. Therefore the main two manifestations of Anderson lo
alization, whi
hare 
losely 
onne
ted, are the absen
e of di�usion and the fa
t that the singleparti
le eigenstates are exponentially lo
alized.Mobility edgeAnderson already understood that 
omplete lo
alization takes pla
e only if the dis-order is strong enough [1℄. In this situation all the single parti
le eigenstates arelo
alized. Below a 
ertain disorder strength, instead, lo
alization takes pla
e onlyfor a fra
tion of states while the remaining states are extended.Ten years after the publi
ation of the paper by Anderson, Mott introdu
ed the
on
ept of mobility edge [6℄ whi
h represents an energy whi
h separates lo
alizedand extended states. He understood that no lo
alized states 
an exist in an energyregion of extended states with the following argument. Assume that it is possible to

Figure 2.2: S
hemati
 representation of the 
on
ept of mobility edge. The statesare lo
alized in energy regions where the density of states is small E < Ec and
E > E′

c. Conversely they are extended in energy regions where the density of statesis large. The two energies Ec and E′
c represent the mobility edges of the system.
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ed lo
alization 9

Figure 2.3: Phase diagram for the three dimensional Anderson model as a fun
tionof the disorder stength W and of the energy of the states E. The states in thespe
trum of the system are divided in two regions and 
an be extended or lo
alized.The points and the thi
k solid line represents the mobility edge, i.e. the 
riti
al energythat separates these two regions of the spe
trum. More pre
isely the points are theresult of an exa
t numeri
al 
al
ulation, while the thi
k solid line is the out
ome ofthe self 
onsistent theory of lo
alization. The thin line indi
ates the position of theupper edge of the spe
trum, only the region on the left of this line belongs to thespe
trum. Figure taken from Ref. [41℄.�nd a lo
alized state and an extended state with in�nitely 
lose energies for a given
on�guration of disorder, then an in�nitesimal 
hange of the 
on�guration wouldhybridize them, forming two extended states. Hen
e, for a given energy, almost allstates should be either lo
alized or extended.In Fig. 2.2 we show a pi
torial view of the 
on
ept of mobility edge for a tightbinding model similar to Eq. (2.1). The verti
al dashed lines represent the positionof the two mobility edges Ec and E′
c while the solid line represents the density ofstates of the system. The regions with the lo
alized states are those where thedensity of states is small. As the disorder strength is in
reased the mobility edgesmove towards the band 
enter and eventually, for a 
riti
al value of the disorderstrength, they meet at the 
enter of the band. Above this 
riti
al value of disorderthere are no more extended states in the system.In Fig. 2.3 we instead show a quantitative 
al
ulation of the mobility edgefor the model 
onsidered by Anderson in its original paper. The phase diagramreported in Fig. 2.3 shows the lo
alized or extended nature of the states de-pending on their energy E and on the strength of the disorder W . The pointsare extra
ted from an exa
t numeri
al 
al
ulation and represent the mobilityedge, i.e. the energy that divide extended and lo
alized states. The thi
k line isthe result for the mobility edge given by an approximate theory. The thin line
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alization properties in disordered quantum systemsindi
ates instead the upper bound of the spe
trum. This quantitative 
al
ulation
on�rms the qualitative pi
ture that we have just des
ribed. One 
an see thatas the disorder strength is in
reased the lo
alized states appear at the edge ofthe spe
trum and then move gradually towards the 
enter of the band. Above
W/J ≈ 16, whi
h represents the 
riti
al disorder strength for the three dimensionalAnderson model under 
onsideration, there are only lo
alized states in the spe
trum.Role of dimensionality: s
aling theoryThe dimensionality of the system, d, plays a rather important role for thedetermination of the lo
alization properties of a quantum disordered system. Inparti
ular one of the main results of the theory of lo
alization is that in one dimen-sional (1D) and two dimensional (2D) systems all the single parti
le eigenstates areexponentially lo
alized while in three dimensions (3D) both extended and lo
alizedstates 
an exist.This result has been �rst suggested by Abrahams, Anderson, Li

iardello andRamakrishnan who gave a �rst formulation of the so 
alled one-parameter s
alingtheory of lo
alization [7℄. A s
aling theory des
ribes the relevant properties of aphysi
al system under a 
hange of size L → bL (b > 1).In parti
ular Abrahams et al. introdu
ed a dimensionless 
ondu
tan
e g =

G~/e2 by noting that the 
ondu
tan
e G of a sample is dimensionless on
e is ex-pressed in units of e2/~. They des
ribed the behaviour of the dimensionless 
on-

Figure 2.4: The s
aling fun
tion β(g) in dimensions d = 1, 2, 3. The dimension-less 
ondu
tan
e g grows with the size of the system L if β > 0 but de
reases for
β < 0. For d = 3 a 
riti
al point exists where β = 0; this 
orrespond to the presen
eof a transition from a lo
alized regime to an extended regime.
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ed lo
alization 11du
tan
e of a hyper
ube of size Ld as a fun
tion of the system size L by de�ning itslogarithmi
 derivative
β =

d ln g

d lnL
. (2.3)and assuming that it depends only on the dimensionless 
ondu
tan
e itself and noton the other mi
ros
opi
 properties of the sample. This is the main assumption atthe basis of the theory and it is known as the one parameter s
aling hypothesis.The behaviour of β(g) is qualitatively obtained by Abrahams et al. starting fromthe two limiting behaviours for strong and weak disorder. In parti
ular for weakdisorder the 
lassi
al (i.e. without interferen
e) behaviour of the 
ondu
tan
e g isassumed. This 
orresponds to the Ohm's law namely the 
ondu
tan
e depends onthe surfa
e A = Ld−1 of the sample and on its length L a

ording to

g ∼ σ
A

L
= σLd−2 (2.4)where σ is the 
ondu
tivity of the sample, whi
h is an intensive quantity independenton the system size. In the opposite limit of strong disorder, exponential lo
alizationis assumed in all dimensions and therefore 
ondu
tivity is also expe
ted to de
ayexponentially with the system size

g ∼ e−L/Lloc . (2.5)From Eqs. (2.4) and (2.5) one obtains
β(g) ∼

{

d− 2 weak disorder
ln g + const. strong disorder (2.6)Interpolating between the two limiting behaviours and assuming that β(g) is a
ontinuous and monotoni
ally in
reasing fun
tion one obtains the result depi
ted inFig. (2.4). If β(g) > 0 the value of the dimensionless 
ondu
tan
e in
reases withthe system size, one is therefore in the extended/
ondu
ting regime. Converselyfor β(g) < 0 the 
ondu
tan
e de
reases with the system size and one ends up inthe lo
alized/insulating regime where g → 0. The presen
e of a �xed point gcwhere β(gc) = 0 signals the presen
e of a transition from an extended to a lo
alizedregime. One 
an see from Fig. (2.4) that su
h a transition exits in the 3D 
ase.This is 
onsistent with the results on the presen
e of a mobility edge in the generalthree dimensional 
ase that we have previously dis
ussed earlier in this 
hapter. Inthe 1D and 2D 
ase the theory does not predi
t the presen
e of �xed points and

β(g) is always smaller than zero. This means that no extended regime 
an existfor d = 1, 2 and one has always Anderson lo
alization, no matter how small is thedisorder strength.The qualitative shape of the diagram �rst proposed by Abrahams et al. andthat we presented in Fig. (2.4) was 
on�rmed quantitatively few years later by anextrapolation from the weak disordered limit [42℄.



12 Chapter 2. Lo
alization properties in disordered quantum systemsModels of disorderDisorder 
an be introdu
ed in a variety of di�erent ways in a physi
al sys-tem. Here we just mention few models of disorder that are 
losely related with theHamiltonians that 
an be experimentally realized using ultra
old atoms.In the most general 
ase, let us assume that a single parti
le is governed by theHamiltonian
H = − ~

2

2m
∇2 + V (~r) (2.7)where V (~r) is a quen
hed disordered potential, i.e. a stati
 disordered potentialthat does not evolve in time. The random potential is de�ned by a probabilitydistribution P (V ) and by a set of 
orrelation fun
tions 〈V (~r1)V (~r2) . . . V (~rn)〉. Herewe indi
ated with 〈. . . 〉 an average over many di�erent disorder realizations. Adisorder realization is a parti
ular out
ome of the pro
ess of 
hoosing the potentialvalue V (~r) for all the values of ~r. The disordered potential is usually assumed tobe spatially homogeneous in the sense that its statisti
al properties do not dependon the spe
i�
 position in the system. As a 
onsequen
e the average value of thepotential 〈V 〉 does not depend on ~r and in general the n-point 
orrelation fun
tiondepends only on n− 1 relative 
oordinates only Cn(~r1, ~r2, . . . , ~rn). In parti
ular thetwo point 
orrelation fun
tion, whi
h we simply indi
ate with C(~r), depends onlyon one variable:

C(~r) = 〈V (~r0 + ~r)V (~r0)〉. (2.8)In atomi
 gases Hamiltonian (2.7) 
an be realized using an opti
al spe
kle poten-tial [43, 44, 45, 24℄. Opti
al potentials 
an be 
reated using laser light that indu
esan atomi
 dipole moment and a 
onsequent dipolar for
e on the atoms whi
h isproportional to the intensity of the laser �eld [21, 22℄. The spe
kle pattern, in par-ti
ular, is produ
ed by shining a 
oherent laser beam through a ground-glass platewhi
h is then fo
used on the atoms using a 
onverging lens. The ground-glass platetransmits the laser light without altering the intensity, but imprints a random phasepro�le on the emerging light. Then, the ele
tri
 �eld E(~r) on the fo
al plane resultsfrom the 
oherent superposition of many independent waves with equally distributedrandom phases. This result is a random pattern of the transmitted light that di-re
tly translates in a disordered potential V (~r) for the atoms. Both the modulusand sign of V (~r) 
an be 
ontrolled experimentally by 
hanging the light intensityand the detuning of the laser frequen
y with respe
t to the atomi
 transition. Adetailed analysis of the statisti
al properties of a typi
al spe
kle potentials used forultra
old gases experiments 
an be found in [46, 47℄Disorder 
an be also introdu
ed in a natural way by using a perfe
t latti
e asa starting point. A typi
al example of a latti
e Hamiltonian with 
ompositionaldisorder is provided by
H =

∑

j

εj | j〉〈j | +
∑

j,k

Jj,k | j〉〈k | (2.9)
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alization 13where εj are the on-site energies while Jj,k des
ribe the hopping between di�erentsites of the latti
e. The diagonal part of the Hamiltonian 
orresponds to the po-tential energy and the non-diagonal part to the kineti
 energy in the 
ontinuousspa
e des
ription (2.7). Let us note that the time dependent S
hrödinger equationasso
iated to Hamiltonian (2.9) 
orresponds to the model 
onsidered by Andersonin his original paper (2.1) [1℄. Disorder 
an be introdu
ed by taking the site energiesor the hopping terms at random. Also in this 
ase one 
hara
terizes the disorderby means of a probability distribution and a set of 
orrelation fun
tions. A typi
al
hoi
e in the study of disordered system is
P (ε) =

{

1/W if |ε| < W/2

0 otherwise (2.10)and 
onstant hopping J restri
ted just to nearest neighbouring sites. In this 
aseHamiltonian (2.9) is indi
ated as the Anderson model.A dis
retized spa
e for ultra
old atoms 
an be produ
ed again using an opti
al�eld [21, 22℄. In this 
ase, two 
ounterpropagating laser beams are used. Due tothe interferen
e between the two laser beams, an opti
al standing wave is formed, inwhi
h atoms 
an be trapped. In this way the atoms feel the presen
e of a perfe
t onedimensional opti
al latti
e. Adding a pair of lasers also in the other dire
tions givesthe possibility to 
reate opti
al latti
es in 2D and 3D. If the laser �eld is strongenough one 
reates a deep opti
al latti
e and enters the so 
alled tight bindingregime. In this regime the spa
e 
an be dis
retized and the atoms are governed byan Hamiltonian whi
h is very similar to (2.9) but with 
ontant on site energies εj = εand typi
ally the hopping term is approximated to be 
onstant and di�erent fromzero only on nearest neighbouring sites Jj,k = J 1 [21, 48℄. At this point disorder
an be introdu
ed by randomly shifting the on-site energies. This might be doneby superimposing a spe
kle potential to the opti
al latti
e. Another possibility isto introdu
e another opti
al latti
e with a di�erent latti
e spa
ing with respe
t tothe �rst one [49, 25℄. This realizes a bi
hromati
 opti
al latti
e and introdu
es ashift of the on-site energy whi
h is not fully random but still very interesting fromthe point of view of the lo
alization properties. We will dis
uss more in detail thesekind of systems, whi
h are 
alled quasiperiodi
, in 
hapter 3.Another interesting proposal for the 
reation of a disordered potential for ul-tra
old atoms is to use a mixture of two di�erent atomi
 spe
ies (or two di�erentinternal states of the same atom) [50, 51℄. The atoms of one of the two spe
iesare trapped at random positions in the wells of a very deep opti
al latti
e. As a
onsequen
e their dynami
 is frozen and they 
annot tunnel between di�erent sites.These trapped atoms play the role of �impurities�. The other spe
ies instead feelsthe presen
e of a weaker opti
al latti
e or it does not feel the latti
e at all and itis therefore free to move. This atomi
 spe
ies play the role of �test parti
le�. Dueto the intera
tion between the two atomi
 spe
ies, the test parti
les feel a random1A detailed derivation of a tight binding Hamiltonian similar to (2.9) starting from a deepperiodi
 potential will be given in se
tion 3.1.
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alization properties in disordered quantum systemspotential formed by the impurities whi
h are trapped in the opti
al latti
e. Thismodel 
an be des
ribed with a free spa
e Hamiltonian similar to (2.7) if the testparti
les do not feel the opti
al latti
e. Conversely if also the test parti
le feel thepresen
e of the latti
e (although mu
h shallower that the latti
e felt by the impuri-ties) a tight binding Hamiltonian (2.9) is used for the des
ription of the system. Adetailed analysis of an impurity model will be given in 
hapter 6.2.2 One dimensional disordered systemsOne dimensional systems play a key role in the understanding of the physi
s of dis-order [52, 53, 2℄. First of all, it is the dimensionality where disorder have strongere�e
ts, moreover many properties of the eigenstates and related to transport 
an bedis
ussed rigorously. Finally numeri
al 
al
ulations are faster and easier to imple-ment.In 1D lo
alization is always expe
ted no matter how strong the random poten-tial is. Mott and Twose [54℄ were the �rst who suggested that all the single parti
leeigenstates might be exponentially lo
alized in 1D but they just provided a qualita-tive argument to support their statement. The �rst rigorous proof of this result hasbeen given by Borland [5℄ few years later. Nowadays the 
on
lusion that all singleparti
le states are lo
alized in a 1D random potentials is well established as it hasbeen obtained with a variety of di�erent methods.A standard way to prove lo
alization in 1D is to use random matrix te
hniquesdeveloped by Oselede
 and Furstenberg in the sixties for the 
al
ulation of theLyapunov exponent, whi
h is the inverse of the lo
alization length
Λ =

1

Lloc
(2.11)Consider the eigenvalue problem asso
iated to the one dimensional Anderson model(2.9)

− J(ψj+1 + ψj−1) + εjψj = Eψj (2.12)with ψj = 〈j | ψ〉. Equation (2.12) is equivalent to
Ψj =MjΨj−1, (2.13)where Ψj represents a two 
omponent ve
tor and Mj a 2×2 matrix

Ψj =

(

ψj

ψj+1

)

Mj =

(

0 1

−1 (εj − E)/J

)

. (2.14)By using this relation re
ursively, one 
an show that the ve
tor Ψj , for large valuesof j, is determined by a produ
t of a series of random matri
es Mj similar to theone that we have de�ned in (2.14), that is Ψj = Mj . . .M2M1Ψ0. Two theoremsby Furstenberg [55℄ and Oselede
 [56℄ are used to determine the behaviour of theprodu
t of the random matri
es. They state that, for almost all realizations of the
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Figure 2.5: Lo
alized eigenstates of the one dimensional Anderson model obtainedby dire
t numeri
al diagonalization. In the left panel we show an example of statewith energy 
lose to the 
enter of the band E ≈ 0 for W = 4. The state has atypi
al exponentially de
aying pro�le. The lo
alization length obtained numeri
allyis in agreement with the one obtained with the approximate expression (2.16) (bla
kdashed line). In the right panel we show the ground state of the system for in
reasingdisorder strength W .random potential, an initial ve
tor Ψj grows or de
ays asymptoti
ally as e±Λ(E)j ,where Λ(E) is a positive, non-random quantity that is known as the Lyapunovexponent. The solution at energy E is an exponentially lo
alized solution of thespe
trum only when there are two ve
tors Ψ±
0 that de
ay respe
tively for j → +∞and j → −∞ and that 
oin
ide at some site. This assures the existen
e of a solutionof energy E that de
ays exponentially on both sides of the system with lo
alizationlength Lloc(E) = 1/Λ(E). If these two ve
tors do not exist for a given energy E,this energy does not belongs to the spe
trum of the system.The eigenvalue problem de�ned by Eq. (2.14) 
an also be solved numeri
ally bydire
t diagonalization. The result of a numeri
al diagonalization of Eq. (2.12) withon-site energies given by (2.10) is shown in Fig. 2.5. In parti
ular in the left panelof the �gure we show the shape of a typi
al lo
alized eigenstate 
lose to the 
enterof the band for a disorder strength W = 4. The linear de
ay of the envelope of thewavefun
tion in semi-log s
ale is a 
lear signature of the exponential lo
alization.In the right panel one 
an see how the ground state of the system 
hanges as thedisorder strength is in
reased. With a 
olor density plot we show that already forvery small values of the disorder strength the ground state has a lo
alized pro�lethat de
ays exponentially on both sides of the system. As the disorder strengthW isin
reased the lo
alization be
omes stronger, the lo
alization length be
omes smallerand 
onsequently the regions of spa
e o

upied by the ground state is redu
ed.A very useful relation that 
onne
ts the spe
tral properties of a 1D system to



16 Chapter 2. Lo
alization properties in disordered quantum systemsthe lo
alization properties of the eigenstates was �rst derived by Herbert and Jones[57℄ in the 
ase of the Anderson model and subsequently it has been generalized byThouless [58℄. This relation is
Λ(E) =

∫ ∞

−∞
ln(E − E′)ρ(E′) dE′ (2.15)where Λ(E) is the Lyapunov exponent and ρ(E) the density of states. When appliedto Eq. (2.12) with εl uniformly distributed in [−W/2,W/2] and in se
ond orderperturbation theory, Eq. (2.15) gives [59℄

Λ(E) =
(W/J)2

24[4 − (E/J)2]
. (2.16)This relation is valid for small W and results in a lo
alization length at the 
enterof the band equal to Lloc(E = 0) = 96J2/W 2. States situated at the 
enter of theband, i.e. with energy E = 0, are thus lo
alized on longer length s
ales.The result of the perturbation theory 
an be 
ompared with the dire
t numeri
aldiagonalization. This is done in Fig. 2.5 where the two bla
k dashed lines representan exponential de
ay with lo
alization length given by (2.16). The result that thelo
alization length diverges asW−2 for smallW is a general result in one dimensionalsystem and does not apply only to the 
ase of the Anderson model.2.3 Experimental observations of Anderson lo
alizationAnderson lo
alization was initially introdu
ed for nonintera
ting quantum parti
les[1℄, but its observation remained elusive for many years. It was lately realized thatAnderson lo
alization is a
tually ubiquitous in wave physi
s, and therefore it 
an beapplied also to 
lassi
al waves su
h as light or sound [9, 36℄. This paved the way forthe �rst observations of Anderson lo
alization. Lo
alization of 
lassi
al waves hasbeen reported so far for ultrasounds [12, 60℄, for ele
tromagneti
 waves propagatingin �free spa
e� in the mi
rowaves regime [10, 61℄ as well as in the opti
al regime[11, 62, 63℄ and for light in photoni
 
rystals [64, 65, 66℄.The �rst dire
t observation of Anderson lo
alization of matter waves in realspa
e has been reported in experiments with ultra
old gases [24, 25℄. These systemshave some important advantages. In most of the experiments with 
lassi
al waves,for instan
e, absorption me
hanisms are almost unavoidable, produ
ing de
ay pro-
esses whose e�e
ts are hardly separable form the e�e
ts of Anderson lo
alization.Moreover the propagation of 
lassi
al waves usually takes pla
e in solid materialswhi
h have to be engineered in order to 
ontain a 
ontrolled amount of disorder. Inpra
ti
e, this is often 
ompli
ate and signi�
antly redu
es the possibility to 
hangethe relevant parameters, su
h as the strength of the disorder, at will. Conversely, ul-tra
old atoms o�er the advantage that light 
an be used to 
reate opti
al disorderedpotentials for the atoms, with almost negligible absorption e�e
ts. In addition thedisorder strength 
an be easily 
hanged on a wide range of values simply varying
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Figure 2.6: (a) S
hemati
 representation of the expansion of an ultra
old atomi
gas in a bi
hromati
 opti
al latti
e, as realized in Ref. [25℄. The 
ondensate isinitially 
on�ned in a �nite region of spa
e (left) and then its released along thequasiperiodi
 potential. As the strength of the se
ondary latti
e (whi
h plays the roleof disorder strength) is in
reased the size of the 
ondensate after a �xed expansiontime is redu
ed (right). (b) Axial size of the 
ondensate after 700 ms of expansion asa fun
tion of the strength of the se
ondary latti
e for di�erent values of the tunnelingenergy J . Inset: typi
al exponentially de
aying pro�le of the atomi
 
loud in theregime of lo
alization. Figure taken from Ref. [27℄.the intensity of the laser �eld whi
h produ
es the external potential for the atoms.The use of Feshba
h resonan
es allows one to 
ontrol the interatomi
 intera
tionby applying an external magneti
 �eld. Another advantage is that one 
an dire
tlymeasures di�erent observables: in situ absorption imaging gives the possibility todire
tly dete
t the square modulus of the wavefun
tion, 
orrelations measurements
an be performed and the momentum distribution of the atoms 
an be observedthanks to time of �ight measurements. Finally the dimensionality of the system 
anbe 
ontrolled using strong 
on�nements in one or two dire
tions.As said before, ultra
old atoms lead to the �rst observation of Anderson lo
al-
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Figure 2.7: (a), (b) Cartoon of the typi
al experimental pro
edure of Ref. [24℄. Theatomi
 
loud is initially 
on�ned by an harmoni
 
on�nement and then it is sud-denly released into the spe
kle potential. (
) Density pro�les of the lo
alized atomi

loud one se
ond after its release, the exponential nature of the lo
alization is 
learlyobserved. (d) Lo
alization length Lloc �tted from the measured pro�les as a fun
tionof the disorder strength. The shaded area represents the theoreti
al predi
tion withthe relative un
ertainty deriving from the estimation of the experimental parameters.Figure taken from Ref. [24℄ization of matter waves. In parti
ular the �rst experiments 
onsidered a one dimen-sional setup and introdu
ed disorder using a bi
hromati
 latti
e [25℄ or a spe
klepotential [24℄. In both experiments, one of the key elements was the study of theexpansion of an initially lo
alized 
loud. The 
ondensate is initially 
reated intoan harmoni
 trap that 
on�nes the atoms in a limited region of spa
e. Then theharmoni
 
on�nement is suddenly swit
hed o� and the atoms are let free to expandin the disordered potential. These two stages of the experimental pro
edure ares
hemati
ally represented in Fig. 2.6 (a) for a bi
hromati
 opti
al latti
es and inFig. 2.7 (a), (b) for a spe
kle potential. The expansion of the atomi
 
loud alonga given dire
tion 
an be monitored by in situ absorption imaging. In Fig. 2.6 (b)
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alization 19we show a typi
al experimental measure of the width of the expanding 
ondensateafter a �xed expansion time as a fun
tion of the disorder strength. One 
an seethat for large values of the disorder strength the expansion is 
ompletely frozen andthe absen
e of di�usion predi
ted by Anderson is observed. Another key feature ofAnderson lo
alization is the exponential shape of single parti
le eigenstates. Thisre�e
ts in an exponential shape of the atomi
 
loud that 
an also be observed with insitu absorption imaging. In the inset of Fig 2.6 (b) and in Fig. 2.7 (
) two examplesof measured exponentially lo
alized pro�les are shown. Fitting the exponentiallylo
alized pro�les one 
an also obtain a measure of the lo
alization length as shownin Fig. 2.7 (d).In 
hapters 3, 4 and 5 of this thesis we will extensively fo
us on the experimentalsetup realized in Ref. [25℄, namely a one dimensional bi
hromati
 opti
al latti
e.This 
hoi
e is motivated by the fa
t that in this experiment, not only the disorderstrength 
an be 
ontrolled at will, but also the interatomi
 intera
tion 
an be tuned,making this 
on�guration parti
ularly suitable for the study of the interplay betweenintera
tion and disorder indu
ed lo
alization [67, 68, 33, 69℄.More re
ently Anderson lo
alization of matter waves has been reported also in3D with both fermions [70℄ and bosons [71℄ using a similar pro
edure with respe
tto the one that has been used in 1D.Let us �nally mention that using 
old atoms it has been possible to realizethe ki
ked rotor and observe dynami
al lo
alization, whi
h 
an be 
onsidered as amapping of Anderson lo
alization in momentum spa
e. In parti
ular both the 1D[72, 73℄ and the 3D 
ase [74, 75, 76℄ have been 
onsidered.





Chapter 3Nonintera
ting parti
les inquasiperiodi
 potentials
Quasiperiodi
 systems are a spe
ial 
lass of non-periodi
 systems. They possess twoor more periodi
ities whose periods are in
ommensurate with ea
h other. Althoughthese systems are not random in the usual sense, they la
k of translational symmetrysin
e there exist no translations whi
h will leave the periods of all the periodi
stru
tures invariant. Nevertheless, there exist translations that leave the system�almost invariant�. This leads to quite unusual behaviours in quasiperiodi
 systems.It is well known that in a perfe
tly periodi
 system all the eigenfun
tions areextended Blo
h waves [40℄ while for a one dimensional random potential all theeigenfun
tions are exponentially lo
alized [53, 2℄. These properties are stri
tly 
on-ne
ted with the spreading behaviour of an initially lo
alized wavepa
ket, in theformer 
ase it expands ballisti
ally while in the latter it remains lo
alized.In between these two extreme 
ases we �nd quasiperiodi
 systems that showan intermediate behaviour between the two [77, 78℄. In parti
ular it is known thatquasiperiodi
 systems 
an have both extended and lo
alized states already in onedimension. Furthermore �
riti
al� states whi
h may be regarded as being intermedi-ate between lo
alized and extended 
an appear. As a 
onsequen
e the dynami
s ofa wavepa
ket 
an range from lo
alization to ballisti
 expansion and also anomalousdi�usion 
an be observed [79, 80℄. These quantum properties are often related tothe quite anomalous transport properties of quasi
rystals [81, 82, 83℄.The lo
alization properties in quasiperiodi
 systems are often studied 
onsider-ing tight binding Hamiltonians similar to (2.9), where the on site energies are 
hosenin order to introdu
e one or more additional periodi
ities to the system, whi
h arein
ommensurate with respe
t to the underlying periodi
ity of the model, given bythe dis
retization of the spa
e [78℄. In this 
ontext the most studied model is prob-ably the Aubry-André or Harper model, [84, 85℄ where one 
an observe extended,
riti
al or lo
alized states, as the strength of the on-site quasiperiodi
 modulationis in
reased. Another well-studied example is the Fibona

i model [86, 87℄ wherethe states are always 
riti
al, leading to anomalous transport properties [80℄. Aspe
i�
 feature of these two models is that they have a �pure� spe
trum, namelyall the states of the system are of the same nature: extended, lo
alized and 
riti
alstates do not 
oexist in the spe
trum. Notably, there are also models where thespe
trum is not pure and one 
an have one or more mobility edges separating statesof di�erent nature. An example is provided by the Generalized Harper model [88℄.Other examples of quasiperiodi
 system with non-pure spe
trum 
an be found also
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ting parti
les in quasiperiodi
 potentials
onsidering models in 
ontinuous spa
e [89℄.Due to their pe
uliarity, the lo
alization properties of quasiperiodi
 systems havealways re
eived a lot of attentions, espe
ially after the dis
overy of quasi
rystals[81, 82℄ and the observation of their anomalous transport properties [83℄. However,few years ago, a new boost has been given to the study of this topi
 after that twoexperiments with ultra
old atoms have reported the �rst observation of Andersonlo
alization of matter waves. In fa
t one of the two experiment have been performedusing a 1D quasiperiodi
 potential and realized an experimental implementation ofthe Aubry-André model [25℄. One year later another experimental implementationof the Aubry-André model has been realized using photoni
 
rystals [65℄. For thisreason in this 
hapter we will fo
us on the lo
alization properties of the Aubry-Andrémodel and on its 
onne
tion with atomi
 gases experiments.This 
hapter is organized as follows. In se
tion 3.1 we explain how the Aubry-André model 
an be realized experimentally using ultra
old atoms in bi
hromati
opti
al latti
es. In se
tions 3.2 and 3.3 we dis
uss the lo
alization properties of themodel, �rst 
onsidering the nature of the eigenstates, as originally done by Aubryand André, and then studying the dynami
s of an initially lo
alized wavepa
ket.This se
ond method reprodu
es the typi
al expansion experiment that is performedwith ultra
old atoms. For this reason we fo
us on two questions whi
h 
an berelevant from the experimental point of view, namely the role played by the initialshape of the wavepa
ket and the di�eren
e between the in
ommensurate and the
ommensurate 
ase. Finally in se
tion 3.4 we dis
uss the lo
alization propertiesof the Aubry-André model in momentum spa
e and we propose a possible way todete
t the transition from extended to lo
alized regime in a feasible experiment withultra
old atoms by measuring the momentum distribution of the atoms.3.1 From bi
hromati
 opti
al latti
es to the Aubry-André modelOne-dimensional bi
hromati
 latti
es are realized in experiments with Bose-Einstein 
ondensates by superimposing two opti
al latti
es of di�erent wavelengths
[89, 90, 49, 25], produ
ing an external potential a
ting on the atoms in this form:

Vb(x) = V1(x) + V2(x)

= s1ER1 sin
2(k1x) + s2ER2 sin

2(k2x+ ϕ) , (3.1)where kj = 2π/λj (j = 1, 2) is the wavenumber of the laser light that 
reates theopti
al latti
e, ERj
= ~

2k2j/(2m) is the re
oil energy, sj is the dimensionless latti
estrength and ϕ is an arbitrary phase shift between the two latti
es. One of thetwo latti
es is typi
ally used as the main periodi
 potential (primary latti
e) anddetermines the main separation of the single-parti
le states in di�erent Blo
h bands.It is 
hosen to be strong enough (s1 ≫ 1) to apply the tight-binding approximation.This means that the primary latti
e indu
es a dis
retization of the system withperiod d = λ1/2, i.e., the atoms o

upy only the wells of the primary latti
e and
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Vb(x)=s1ER1
sin2(k1x1)+s2ER2

sin2(k2x2)

V1(x)=s1ER1
sin2(k1x1)                        Primary lattice

V2(x)=s2ER2
sin2(k2x2)                        Secondary lattice

dd/α~Figure 3.1: Representation of a bi
hromati
 opti
al latti
e. The superposition ofa deep primary latti
e (blue line) and of a shallower se
ondary latti
e (green line)produ
es the quasiperiodi
 potential represented by the red line. The bla
k dots in-di
ate the on-site energies within a dis
retized des
ription of the system. The bla
kline shows that the modulation introdu
ed by the se
ondary latti
e has a 
osinusoidalform. The two bla
k arrows represent the two key length s
ales of the system: thelatti
e spa
ing introdu
ed by the primary latti
e, d, and the periodi
ity of the modu-lation introdu
ed by the se
ondary latti
e, d/α̃.
an tunnel from one site to the other with a given tunneling rate J [91℄. The se
ondlatti
e is signi�
antly shallower (s2 ≪ s1) and perturbs weakly the stru
ture formedby the primary latti
e; in pra
tise, the presen
e of the se
ondary latti
e does notmodify signi�
antly the position of the minima of the potential but produ
es only ashift of the on site energies, introdu
ing a �deterministi
" disorder, or quasi-disorder[25, 90, 49℄.Nonintera
ting atoms in the presen
e of a one-dimensional bi
hromati
 opti
allatti
e are des
ribed by the Hamiltonian
H = − ~

2

2m

∂2

∂x2
+ Vb(x) (3.2)In �rst approximation, let us 
onsider the situation in whi
h s2 = 0 and we are
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ting parti
les in quasiperiodi
 potentialsleft with a simple periodi
 system, where the spe
trum is 
hara
terized by bands ofallowed energies and energy gaps and the eigenstates are Blo
h fun
tions delo
alizedover the whole latti
e [40℄. In the tight binding regime the energy gap betweenthe lowest band and the �rst exited band, EG, is so large that the physi
s of thesystem 
an be well des
ribed by 
onsidering only the lowest energy band. This is agood approximation as long as all the energy s
ales involved in the problem under
onsideration are mu
h smaller than EG. Let us introdu
e a set of Wannier states
| wj〉 labelled by the site index j (see appendix A for an introdu
tion on Wannierfun
tions). Ea
h of them, 
onsidered in real spa
e, 〈x | wj〉 = wj(x) = w(x − xj)represents a fun
tion 
entered around the latti
e site j, at position xj = jd. Inparti
ular, as previously mentioned one 
an 
onsider as a basis of the system justthe Wannier fun
tions asso
iated to the lowest energy band. One 
an thereforeexpress wavefun
tions and operators proje
ting on the basis of Wannier states

| ψ〉 =
∑

j

ψj | wj〉,

H =
∑

i,j

| wi〉Hi,j〈wj |, (3.3)where Hi,j = 〈wi | H | wj〉, ψj = 〈wj | ψ〉 and nj = |ψj |2 represents the probabilityof �nding a parti
le in the latti
e site j. Let us evaluate expli
itly the matrixelements Hi,j:
Hi,j =

∫

w∗
i (x)Hwj(x) dx

=

∫

w∗
i (x)H

(0)wj(x) dx +

∫

w∗
i (x)H

(1)wj(x) dx, (3.4)where H(0) = − ~2

2m
∂2

∂x2 + s1ER1 sin
2(k1x) is the part of the Hamiltonian formed bythe kineti
 term and by the primary latti
e, while H(1) = s2ER2 sin

2(k2x+ϕ) is justformed by the se
ondary latti
e. Negle
ting the overlap between Wannier fun
tionsbeyond nearest neighbours for H(0) and retaining only the on-site 
ontribution for
H(1) one �nds that the only non-zero matrix elements are

Hi,j = E0δi,j − Jδi,j±1 + δi,j

∫

|wi(x)|2H(1) dx (3.5)where
E0 =

∫

w∗
i (x)H

(0)wi(x) dx ; J = −
∫

w∗
i (x)H

(0)wi+1(x) dx. (3.6)The �rst term in equation (3.5) represents a 
onstant on-site term that plays the onlyrole of shifting the energies of the system by a 
onstant value E0, therefore in thefollowing we will drop it. The se
ond term is the one that 
onne
ts neighbouring sitesand its proportional to the tunneling energy J . Finally the last term des
ribes thequasiperiodi
 shift of the on-site energies indu
ed by the se
ondary latti
e. This term
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an be written in a mu
h simpler form using the trigonometri
 relation sin2(k2x+

ϕ) = [1− cos(2k2x+2ϕ)]/2. Using the symmetry of the Wannier fun
tions one 
anshow that
∫
[

−s2ER2

2
cos(2k2x+ 2ϕ)

]

|wi(x)|2 dx = ∆cos(2παi + ϕ′) (3.7)where we have used the fa
t that xi = id = iπ/k1, we have rede�ned the phase ϕand introdu
ed α = k2/k1 = λ1/λ2 and
∆ =

s2ER2

2

∫

cos(2k2y)|w(y)|2 dy. (3.8)Finally negle
ting all 
onstant terms one ends up with the following simple expres-sion for the matrix elements
Hi,j = −Jδi,j±1 + δi,j∆cos(2παi + ϕ). (3.9)Substituting this expression in (3.3) and expressing all the energies in units of J one�nds the Aubry-André Hamiltonian

H = −
∑

j

(| wj〉〈wj+1 | + | wj+1〉〈wj |) + λ
∑

j

cos(2παj + ϕ) | wj〉〈wj | (3.10)where λ = ∆/J . In this last expression we expli
itly see that the modulationintrodu
ed by the se
ondary latti
e has a 
osinusoidal form and it 
an be seen as apotential in the dis
rete spa
e:
Vj = λ cos(2παj + ϕ). (3.11)Let us noti
e that the dis
rete potential is quasiperiodi
 as long as the parameter

α, whi
h is the ratio between the wavelengths of the two latti
es, is an irrationalnumber. In fa
t, only when α is irrational the potential Vj adds a se
ond periodi
itywhi
h is in
ommensurate with respe
t to the underlying periodi
ity given by thedis
reteness of the system. Let us noti
e that Vj is invariant under a shift of αby an integer number and therefore, without any loss of generality, one 
an 
hoose
α < 1.In �gure 3.1 we show an example of a bi
hromati
 opti
al latti
e and we s
hemat-i
ally illustrate the dis
retization pro
edure. We 
onsidered α = (

√
5 − 1)/2 and aprimary latti
e mu
h deeper than the se
ondary one. One 
an noti
e that the posi-tion of the wells of the bi
hromati
 potential are determined by the primary latti
ewhile the se
ondary latti
e introdu
es just a modulation of the on-site energy. Thebla
k dots shows the value of the on-site energies within a dis
retized des
riptionof our system while the bla
k line stresses the fa
t that this modulation has anos
illating form. The period of the modulation is given by d/|α̃| (or 1/α̃ in units oflatti
e sites) where α̃ is obtained by shifting the value of α by an integer numberso that it lies in the interval [−0.5, 0.5]. In the spe
i�
 
ase shown in �gure 3.1,
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α̃ = (

√
5 − 3)/2 and therefore we en
ounter a minimum in the latti
e modulationapproximately every 2.62 latti
e sites.Writing down the time independent S
hrödinger H | ψ〉 = E | ψ〉 equation forthe tight binding Hamiltonian (3.10) one obtains

− ψj+1 − ψj−1 + λ cos(2παj + ϕ)ψj = Eψj . (3.12)This equation is the one whi
h is usually 
alled Aubry-André or Harper model [85℄.This model is of parti
ular importan
e be
ause, despite its simpli
ity, is very ri
hfrom the point of view of the lo
alization properties and those are known exa
tly.The key parameter that determines the lo
alization properties, when α is irrational,is λ whi
h quanti�es how strong is the quasi-disorder 
ompared to the tunnelingenergy. In the following with a slight abuse of notation we will sometimes 
all λ thedisorder strength.3.2 Lo
alization properties of the Aubry-André modelThe lo
alization properties of model (3.12) have been dis
ussed for the �rst time byAubry and André [85℄. Later a number of numeri
al and analyti
al studies 
on�rmedtheir results [77, 86, 92, 79, 88, 93℄. Here, following the original 
al
ulation of Aubry-André, we show how one 
an derive the lo
alization properties of the model usingthe self-duality of Eq. (3.12) and the Thouless formula for the Lyapunov exponent(2.15).The self-duality property of equation (3.12) 
an be found by introdu
ing thefollowing transformations
ψj = eiθj

∞
∑

l=−∞
dle

il(2παj+ϕ)

dl = e−iϕl
∞
∑

j=−∞
ψje

−ij(2παl+θ). (3.13)Using these transformations in equation (3.12) one 
an show that the new variable
dl satis�es the dual equation

− dl+1 − dl−1 +
4

λ
cos(2παl + θ)dl =

2E

λ
dl , (3.14)whi
h has exa
tly the same form as equation (3.12) if we set

4

λ
→ λ , dl → ψj ,

2E

λ
→ E , θ → ϕ . (3.15)The symmetry of Eqs (3.12) and (3.14) has an important 
onsequen
e. One 
annote that, if ψn is a lo
alized solution of (3.12), that is

∞
∑

j=−∞
|ψj |2 <∞,
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alization properties of the Aubry-André model 27then dl will be an extended solution solution of (3.14), that is
∞
∑

l=−∞
|dl|2 = ∞,and vi
e versa. This tell us that the dual transformations (3.13) ex
hanges thelo
alization properties of the eigenfun
tions. However, a priori we ignore whi
heigenfun
tions are lo
alized and whi
h are extended. To go further we need touse the Thouless formula (2.15) whi
h relates the Lyapunov exponent Λ(E) to thedensity of states ρ(E) [58℄. This formula was originally introdu
ed for randomsystems but it 
an be used without any 
hange also for non-random models su
h as(3.12). Whenever α is an irrational number, making use of the dual property, one
an relate the integrated density of states of the Aubry-André model Nλ,α(E) tothe one of its dual 
ounterpart N 4

λ
,α(E) [85℄. The same 
an be done for the densityof states ρ(E) = ∂

∂EN (E) and one �nds
Nλ,α(E) = N 4

λ
,α

(

2E

λ

)

; ρλ,α(E) = ρ 4
λ
,α

(

2E

λ

)

2

λ
. (3.16)Using these expressions and the Thouless formula one obtains the dual transform ofthe Lyapunov exponent

Λλ,α(E) = Λ 4
λ
,α

(

2E

λ

)

+ ln

(

λ

2

)

. (3.17)Starting from this expression it is now possible to infer the lo
alization propertiesof the Aubry-André model with few simple 
onsiderations. First of all, we notethat the Lyapunov exponent Λ(E) asso
iated to a given eigenstate is ne
essarily apositive number and that Λ(E) vanishes only whenever this state is extended. Letus also re
all the result that we have derived earlier in this se
tion that the dualtransformation inverts the lo
alization properties; therefore whenever Λλ,α(E) isnon-zero it follows that Λ 4
λ
,α

(

2E
λ

) is zero and vi
e-versa. Therefore assuming that
Λ 4

λ
,α

(

2E
λ

)

= 0 it follows that
Λλ,α(E) = ln

(

λ

2

)and the positivity of the Lyapunov exponent implies that λ > 2. Conversely, when
Λλ,α(E) = 0

Λ 4
λ
,α

(

2E

λ

)

= ln

(

2

λ

)and λ < 2.We 
an therefore 
on
lude that the Aubry-André model (3.12) undergoes a tran-sition from extended to lo
alized eigenstates at λ = 2. All eigenstates are extendedfor λ < 2 and exponentially lo
alized for λ > 2. Moreover all the eigenstates havethe same lo
alization length
Lloc = 1/Λ =

1

ln(λ/2)
. (3.18)
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Figure 3.2: Numeri
al study of of the lo
alization properties of the Aubry-Andrémodel. In the left panel we show that the ground state of the system is extendedfor λ = 1 (green line) and λ = 1.9 (blue line) while it is exponentially lo
alized for
λ = 2.1 (magenta line) and λ = 2.5 (red line). In the lo
alized regime we also showthe lo
alization length predi
ted by the analyti
al formula (3.18) (bla
k dashed lines).In the right panel a 
olor density plot shows the ground state as a fun
tion of thedisorder strength. The transition from the extended to the lo
alized regime at λ = 2is 
learly visible.The opposite properties holds for the dual model (3.14). The simple derivation thatwe presented here does not give any information about the nature of the eigenstatesfor λ = 2. It is known that they are neither plane waves nor exponentially lo
alized.It is 
onje
tured that they are de
reasing fun
tions with a power law [85℄.The exponential lo
alization that takes pla
e for λ > 2 has been identi�ed byAubry and André [85℄ as Anderson lo
alization in a quasiperiodi
 potential, analogto Anderson lo
alization in a purely random potential. A di�erent interpretation,based on a semi
lassi
al analysis, has been re
ently proposed in Ref. [94℄.In �gure 3.2 we present a numeri
al 
al
ulation that 
on�rms the results thatwe have already obtained on the lo
alization properties of the Aubry-André model.We show the behaviour of the ground state of the system for di�erent values of thepotential strength, λ. In the right panel it is 
learly observed that for λ = 1 and
λ = 1.9 the ground state is an extended plane wave whi
h follows the quasiperiodi
modulations of the potential. Conversely for λ = 2.1 and λ = 2.5 the ground stateis exponentially lo
alized with a lo
alization length whi
h is in agreement with thetheoreti
al expression (3.18), whi
h in the �gure is represented by the bla
k dashedlines. In the left panel, a 
olor density plot shows the ground state of the systema
ross the transition point. The transition at λ = 2 is 
learly visible. Here weshowed our results for the ground state of the system but similar density pro�lesare obtained also for the exited states.
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Figure 3.3: Expansion of a nonintera
ting 
loud of atoms in the Aubry-Andrémodel with α = (
√
5− 1)/2. The time evolution of the width of the wavepa
ket w(t)is shown for di�erent values of the disorder strength, λ = 1.5, 1.7, 1.9, 2, 2.1, 3. Inthe left panel, the starting wavepa
ket is a δ-fun
tion lo
alized in a single site. Inthe right panel we use an initial Gaussian wavepa
ket of width σ = 5. In both 
ases,one 
learly observes the transition from extended to lo
alized states that o

urs at

λ = 2.3.3 Spreading of wavepa
kets in the Aubry-André modelIn this se
tion we dis
uss the problem of quantum di�usion of an initially lo
alizedwavepa
ket in the Aubry-André model. This is of parti
ular relevan
e for exper-iments with ultra
old atoms where the expansion of an atomi
 
loud is the maintool used for the dete
tion of Anderson lo
alization [24, 25℄. Both the width of theexpanding 
loud and its shape are of great interests.The expansion of a nonintera
ting wavepa
ket is des
ribed by the time dependentS
hrödinger equation i~ ∂
∂t | ψ〉 = H | ψ〉 that in the 
ase of Hamiltonian (3.10) takesthe following form

i
∂ψj

∂t
= −ψj+1 − ψj−1 + λ cos(2παj + ϕ)ψj , (3.19)where we have absorbed the Plan
k 
onstant ~ in the time variable so that t be
omesa dimensionless quantity. The a
tual time in se
onds 
an be obtained by multiplyingthe dimensionless parameter t by ~/J .We investigate the evolution starting from two di�erent 
lasses of initial 
ondi-tions, namely a δ-fun
tion lo
alized in a single latti
e site,

ψj(0) = δj,0 , (3.20)
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ting parti
les in quasiperiodi
 potentialsand a Gaussian wavepa
ket of width σ,
ψj(0) = Ce−

j2

2σ2 , (3.21)where C is a normalization fa
tor that has to be determined in order to have a normof the wavepa
ket equal to one ∑j |ψj |2 = 1. The 
hoi
e of Gaussian wavepa
ketsis 
onvenient if one wants to simulate realisti
 experimental 
on�gurations; it alsoallows one to explore the behavior of sharp to broad wavepa
kets in a 
ontinuousmanner. Owing to arbitrariness of the phase ϕ, here we have 
hosen, without anyloss of generality, to pla
e the initial wavepa
ket around the latti
e site j = 0.As a measure of the lo
alization we 
onsider two quantities: the width of thewavepa
ket measured as the square root of the se
ond moment of the spatial distri-bution |ψj(t)|2,
w(t) =

√

m2(t) =

√

∑

j

(j −X)2|ψj(t)|2 , (3.22)and the parti
ipation number
P (t) =

1
∑

j |ψj(t)|4
, (3.23)whi
h measures the number of signi�
antly o

upied latti
e sites [95℄. The quantity

X represents the average position of the wavepa
ket, de�ned as X =
∑

j|ψj |2.The lo
alization transition of the Aubry-André model at λ = 2, whi
h hasbeen introdu
ed in the previous se
tion, 
an be dete
ted in the dynami
s (quantumdi�usion), by looking for example at the width of the wavepa
ket as a fun
tion oftime [79℄. In parti
ular the asymptoti
 spreading of the wavepa
ket width w(t) 
anbe parametrized as w(t) ∼ tγ , and one �nds three di�erent regimes as the value of
λ is varied:(i) λ < 2: ballisti
 regime, γ = 1(ii) λ = 2: subdi�usive regime, γ ∼ 0.5(iii) λ > 2: lo
alized regime, γ = 0 .We solve Eq. (3.19) by using a standard fourth order Runge-Kutta (RK4) algo-rithm for the numeri
al integration. The a

ura
y of the integration is 
he
ked bymonitoring the 
onservation of the norm of the wavepa
ket and of the energy ofthe system. A standard 
hoi
e for the value of α 
onsists of 
hoosing the inversegolden mean α = (

√
5 − 1)/2 [95℄. Our results for this value of α are shown inFig. 3.3. In the 
ase of an initial δ-fun
tion wavepa
ket (left panel), we �nd perfe
tagreement with previous 
al
ulations [79℄. The right panel shows our results for the
ase of an initial Gaussian wavepa
ket. By 
omparing the two 
ases, one 
an seethat the asymptoti
 behaviour is not a�e
ted by the 
hoi
e of the initial shape ofthe wavepa
ket. Similar results are obtained for the parti
ipation number P (t).
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λFigure 3.4: Lo
alization length of the wavepa
ket Lloc as a fun
tion of the disorderstrength λ in the lo
alized regime. We measure the lo
alization length by �tting thetails of the lo
alized wavepa
ket after the expansion. We 
ompare the values of thelo
alization length extra
ted from the �tting (red points) with the analyti
 predi
tion
Lloc =

1
ln(λ/2) (bla
k line).As regards the shape of the wavepa
ket we fo
us on the lo
alized regime λ > 2where spreading stops after a transient time. Sin
e, for a given disorder strength λ,all eigenstates are exponentially lo
alized with the same lo
alization length we ex-pe
t that also the wavepa
ket, whi
h is formed by a linear superposition of di�erenteigenstates, has exponentially de
aying tails with the same 
hara
teristi
 lo
aliza-tion length. By �tting the density pro�les of the wavepa
ket after the expansionwe extra
t a value of the lo
alization length. In Fig. 3.4 we show the result of our�ts as a fun
tion of the disorder strength λ (red points) and we 
ompare them withthe theoreti
ally expe
ted value Lloc = 1/ log (λ/2) (bla
k line) showing a perfe
tagreement.3.3.1 In
ommensurate vs. 
ommensurate 
aseIt is worth stressing that a truly quasiperiodi
 potential 
an not be realized in anyrealisti
 experiment, sin
e the wavelengths of the lasers are always known with a�nite number of digits and therefore their ratio will always be a rational number.Moreover real experiments have always a �nite size. It is thus important to 
larifyto whi
h extent the predi
tions of the Aubry-André model are relevant for thedes
ription of experiments with ultra
old atoms in bi
hromati
 opti
al latti
es.To this purpose it is useful to 
ompare the 
ase of a quasiperiodi
 potential withan irrational value of α with the 
ase of a periodi
 potential obtained by using a
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Figure 3.5: Time evolution of the width of the wavepa
ket w(t) of nonintera
tingparti
les, starting from a single-site δ-fun
tion, for λ = 2 and for di�erent orders,
n, of the approximants in the Fibona

i sequen
e. The bla
k arrows represent thevalues of t at whi
h we observe the transition from the behaviour predi
ted for aquasiperiodi
 potential (in
ommensurate latti
e) to the di�usion expe
ted in a peri-odi
 potential.rational approximation αn of order n of the irrational number. In parti
ular we
onsider a sequen
e of rational numbers αn, that 
onverges to the irrational value
α as n→ ∞ [96, 78℄. The sequen
e of approximants αn 
an be found by su

essivetrun
ations of the 
ontinued-fra
tion expansion of α. For the 
ase of the goldenmean α = (

√
5 − 1)/2 [95℄ the approximants are given by αn = pn/qn, where pnand qn = pn+1 are two 
onse
utive terms of the Fibona

i sequen
e (p1 = p2 = 1,

pn = pn−1 + pn−2 for n > 2).It turns out that the in
ommensurate 
ase 
an thus be 
onsidered as the limitof a sequen
e of 
ommensurate Hamiltonians, whose eigenvalues Eξ,m and eigen-fun
tions φξ,mj 
an be labelled by the quasi-momentum ξ and the band index m,sin
e the spatial periodi
ity of the system, with period qn, permits to use the Blo
hwave de
omposition. One �nds that, for su�
iently large n and for λ > 2, theeigenfun
tions are indeed 
hara
terized by periodi
 repli
a of exponentially lo
al-ized fun
tions within ea
h period of the potential, that in the limit n→ ∞ tend toa single lo
alized fun
tion [91℄.Let us now 
onsider the same problem from the point of view of the dynami
alproperties. The time evolution for α = (
√
5 − 1)/2 has to be 
ompared to theone obtained using the approximant of order n in the Fibona

i sequen
e. For any�nite value of n the system is periodi
, with wavelength qn, and the di�usion of aninitially lo
alized wavepa
ket is expe
ted to be ballisti
 (w(t) ∼ t). However, in the
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Figure 3.6: Modulus square of the wavefun
tion |ψj |2 for di�erent values of n,plotted at a �xed evolution time t = 1000, for λ = 7 and β = 0. The initialwavepa
ket at t = 0 is a δ-fun
tion lo
alized at j = 0. The verti
al arrows are drawnat the positions qn/2.limit n→ ∞ one must re
over the results of the Aubry-André model, with a 
riti
albehaviour for λ = 2 and lo
alized states for λ > 2. The approa
h to this limit innontrivial and involves the 
hara
teristi
 time and length s
ales of the system.In Fig. 3.5 we �rst show our results for the di�usion of a δ-like wavepa
ket ina latti
e with the 
riti
al value λ = 2. For any �nite n the wavepa
ket exhibits asubdi�usive spreading (w(t) ∼ tγ with γ ≈ 0.5), as in the in
ommensurate 
ase,within an initial time interval. Then, at time τ , the width starts growing as in aballisti
 expansion in a periodi
 latti
e. The transition between the two regimesturns out to o

ur when the width of the wavepa
ket be
omes of the same order ofthe spatial periodi
ity of the latti
e. The transition time, τ , indi
ated by the arrowsin Fig. 3.5, in
reases with the order n of the approximants and the 
orrespondingwidth, w(τ) exhibits a linear dependen
e on the periodi
ity of the system, qn1.The role of the spatial periodi
ity is even more evident if one plots the densitydistribution in the regime of lo
alization, as shown in Fig. 3.6 for λ = 7 and t = 1000.In this �gure the arrows are drawn at the positions qn/2. As one 
an see, the1A linear �t of the width w(τ ) at the transition time τ , as a fun
tion of the spatial periodi
ity,gives [w(τ )](qn) = aqn+ b, with a = 0.547(4) and b = 0.8(2). The times τ 's and the relative widths
w(τ )'s have been determined by �tting the subdi�usive behaviour of the in
ommensurate 
ase andthe linear behaviours of the 
ommensurate 
ases and �nding the interse
tion points between thesetwo �ts.
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Figure 3.7: Time evolution of the width of the wavepa
ket w(t) of nonintera
tingparti
les, starting from a single-site δ-fun
tion, for λ = 3 and for di�erent values of
n.deviations from the density distribution of the in
ommensurate 
ase (n → ∞) are
aused by the spreading of the lateral 
omponents of the distribution, i.e., those ata distan
e of the order of, or larger than qn/2. The asymptoti
 behaviour (t→ ∞)is always ballisti
. However, for a �nite t and for λ > 2 the 
entral part of thedensity distribution (within a width of order qn) exhibits an exponential lo
alization,independent of n, and is almost indistinguishable from the one predi
ted for thein
ommensurate latti
e. The spreading of the low density tails a�e
ts the behaviourof the width de�ned in Eq. (3.22). An example is shown in Fig. 3.7. For short timesthe 
ontribution of the expanding tails is negligible, while for later times the widthin
reases as in a ballisti
 expansion. It is worth stressing, however, that these e�e
tsof the low density tails are expe
ted to be hardly dete
table in a
tual experiments,due to the �nite resolution in the measurement of the density distribution.Given the typi
al times
ale and opti
al resolution of the experiments with ultra-
old gases in opti
al latti
es, our analysis 
on�rms that the transition from di�usionto lo
alization observed in Ref. [25℄ 
an 
orre
tly be interpreted in terms of thepredi
tions of the Aubry-André model.3.4 Lo
alization of ultra
old atoms in momentum spa
eIn the literature the evolution of wavepa
kets in the Aubry-André model has been in-vestigated mainly in real spa
e, looking for signatures of the transition from ballisti
spreading to subdi�usion and lo
alization, both in theory [79, 31℄ and experiments[25, 66℄. Here we fo
us on the dynami
s of the momentum distribution and iden-
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ts of the transition from di�usion to lo
alization in momentumspa
e. This is relevant for 
urrent experiments with ultra
old atoms, where themomentum distribution is a

essible via time of �ight measurements and, typi
ally,with an higher a

ura
y than in real spa
e. In addition, our results provide 
omple-mentary information for a better understanding of the key role played by duality ofthe Aubry-André model.In the following we �rst introdu
e the Aubry-André model in momentum spa
e,show its 
onne
tion with the dual spa
e and dis
uss its lo
alization properties. Wethen dis
uss the presen
e of periodi
 os
illations in the dynami
s of wavepa
ketsin the Aubry-André model, both in momentum and in real spa
e and we interpretthese os
illations in terms of a simple theoreti
al model. Finally we identify anobservable quantity that 
ould be used in a feasible experiment for the observationof the Aubry-André transition in momentum spa
e.In this se
tion we will fo
us on the 
ase of a rational value of α whi
h 
an bewritten as the ratio of two integer numbers α = p/q. In this situation the solutionof Eq. (3.19) 
an be restri
ted to a region of size N = q, whi
h 
oin
ides with thespatial periodi
ity of the system. As we have des
ribed in Se
tion 3.3.1 the 
ase ofirrational α 
an be obtained as a limit of a 
ontinued fra
tion approximation.3.4.1 Aubry-André model in momentum spa
eLet us �rst explain how one 
an introdu
e the momentum distribution starting froma dis
rete des
ription as the one given by Eq. (3.19). The 
ontinuous wavefun
tionasso
iated to our dis
rete system is given by
ψ(x) =

∑

j

ψjwj(x) (3.24)where wj(x) = w(x − j) are the Wannier fun
tions of the primary latti
e and wehave expressed the distan
es in units of latti
e spa
ing. The momentum distribution
|ψ̃(k)|2 
an be 
al
ulated by taking the Fourier Transform of wavefun
tion (3.24)and one �nds

ψ̃(k) =
√
Nfkw̃(k) (3.25)where w̃(k) is the Fourier transform of the Wannier fun
tion 
entered on the latti
esite j = 0 and we have introdu
ed fξ whi
h is the dis
rete Fourier Transform (DFT)of ψj

fξ =
1√
N

∑

j

ψje
−iξj. (3.26)Here we use ξ to indi
ate the quasi-momentum. From a physi
al point of view per-forming the DFT 
orresponds to a proje
tion of the dis
rete wavefun
tion on thebasis of quasi-momentum eigenstates. The allowed values of ξ in our system aregiven by ξ = (2π/N)k and are restri
ted to the �rst Brillouin zone, ξ ∈ [−π, π]. Inthe following we will perform our analysis 
onsidering the quasi-momentum distri-bution |fξ|2, then its easy to extend our results to the momentum spa
e using this
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les in quasiperiodi
 potentialssimple relation that relates the momentum distribution with the quasi-momentumdistribution
|ψ̃(k, t)|2 = N |fk(t)|2|w̃(k)|2. (3.27)By applying the transformation (3.26) to the Aubry-André model one �nds [91℄

i
∂

∂t
fξ = −2 cos(ξ)fξ +

λ

2

(

e−iϕfξ+2πα + eiϕfξ−2πα

) (3.28)whi
h is the equation des
ribing the evolution in quasi-momentum spa
e. Let usnote that the DFT ex
hanged the potential and the tunneling term with respe
t toEq. (3.19) and that the tunneling no longer takes pla
e between nearest neighbouringsites but between momentum 
omponents di�ering by |∆ξ| = 2πα.In order to have an insight on the lo
alization properties in the quasi-momentumspa
e let us re
all that Aubry-André showed that the following transformation
dl =

1√
N

∑

j

ψje
ij[2παl+θ]e−iϕl (3.29)maps Eq. (3.19) into an equation for the new variable dl exa
tly of the same form asEq. (3.19) but with disorder strength 4/λ. This is 
alled the duality of the Aubry-André model (
fr. se
tion 3.2). Let us note that transformation (3.29) 
orrespondsto a proje
tion on a basis of quasi-momentum eigenstates with eigenvalues ξ =

2παl + θ. As a 
onsequen
e one 
an see that there is a stri
t 
onne
tion betweenthe quasi-momentum spa
e and the dual spa
e introdu
ed by (3.29). More pre
iselythe quasi-momentum ξ 
an be 
al
ulated by multiplying the index l by 2πα andintrodu
ing a phase shift θ. Therefore the amplitudes fξ in quasi-momentum spa
e
an be obtained from the amplitudes dl in dual spa
e simply with a re-labellingpro
edure. We 
an say that (3.26) is related to the dual transformation (3.29) byan arbitrary shift θ and a permutation [97℄. This suggests that the lo
alizationproperties in quasi-momentum spa
e are the same of the lo
alization propertiesof the dual Aubry-André model, ex
ept for the fa
t that disorder 
ouples modesdi�ering by |∆ξ| = 2πα instead of neighboring ones.In order to verify our predi
tion on the lo
alization properties in quasi-momentum spa
e we will study numeri
ally the evolution of the quasi-momentumdistribution |fξ|2 by �rst solving Eq. (3.19) in real spa
e using a RK4 algorithmand then mapping the result in quasi-momentum spa
e by performing the DFT.As initial 
ondition we 
hoose a Gaussian wavepa
ket, ψj(0) = C exp{−j2/2σ2}.The limiting 
ase of vanishing width σ = 0 will 
orrespond to a δ-fun
tion initial
ondition.A

ording to the previous dis
ussion, the lo
alization properties in momentumspa
e are opposite with respe
t to the one of the Aubry-André model in real spa
e,namely lo
alization o

urs for λ < 2, where the wavepa
ket instead spreads inreal spa
e. In this regime one thus expe
ts to see only one or few momentum
omponents signi�
antly populated. Conversely, for λ > 2 the regime is di�usivein momentum spa
e and lo
alized in real spa
e, and one should see a momentum
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Figure 3.8: Quasi-momentum distribution |fξ(t)|2 obtained from the DFT of thesolution of Eq (3.19). Here we use α = 0.2282... and ϕ = 0. The initial wavepa
ketin real spa
e is a Gaussian of width σ = 10. Time is given in dimensionless units.Top panel: λ = 1, only few modes are involved and a periodi
 os
illation of the
entral and side peaks is observed. The side peaks are at a distan
e ±2πα from the
entral peak. Bottom panel: λ = 5, the evolution is a�e
ted by the 
oupling of manymodes and the periodi
 os
illations are no more visible.distribution with many modes 
oupled together during the evolution of the system.This is indeed 
on�rmed by our numeri
al simulations, as shown in Fig. 3.8 for
α = 1064.4/866.6−1 = 0.2282... . This value of the ratio between the wavelength ofthe two latti
es α has been 
hosen in order to model the bi
hromati
 latti
e of theexperiment of Ref. [67℄. For λ < 2, as expe
ted, we observe lo
alization in the sensethat just few momentum 
omponents are populated during the evolution. A strikingfeature is that the quasi-momentum 
omponents |fξ|2 exhibit periodi
 os
illations,o

urring among the 
entral peak at ξ = 0 and two side peaks at ξ = ±2πα. For
λ > 2 instead many modes are populated and no periodi
 os
illations are observed.3.4.2 Periodi
 os
illations in the Aubry-André modelLet us now 
hara
terize and interpret the periodi
 os
illations that we have observedin the time evolution of the quasi-momentum distribution.We �rst perform a systemati
 study of these os
illations from a numeri
al pointof view as the disorder strength λ is 
hanged (always remaining in the regime λ < 2where it is possible to observe the periodi
 behaviour). We extra
t the os
illation
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illation frequen
y of the 
entral peak of quasi-momentum (λ < 2,red) and spatial (λ > 2, blue) distributions, for σ = 10, ϕ = 0. The full solutionof the Aubry-André model (dots) is 
ompared with the predi
tions of an analyti
three-mode approximation (full lines) and a semi-analyti
 �ve-mode approximation(dashed line).frequen
y from the time evolution of the 
entral peak of the quasi-momentum distri-bution. The signal is Fourier transformed, and the os
illation frequen
y is identi�edas the dominant 
omponent of the frequen
y spe
trum. The obtained result is plot-ted in Fig. 3.9 as a fun
tion of λ (red points for λ < 2).These os
illations 
an be interpreted by means of a simple analyti
al model thatleads to an analyti
al expression for the os
illation frequen
y. Let us 
onsider thetime evolution in the quasi-momentum spa
e as des
ribed by Eq. (3.28). We assumethat the width 1/σ of the initial quasi-momentum distribution is small enough, sothat only the ξ = 0 momentum 
omponent 
an be 
onsidered populated at t = 0(fξ(0) = δξ,0). This assumption is valid when 1/σ . 2πα. We also assume thatthe time evolution 
ouples the momentum 
omponent at ξ = 0 with only two othermomentum 
omponents at ξ = ±2πα. In this way, the Aubry-André equation inquasi-momentum spa
e is mapped into an eigenvalue problem of a 3 × 3 matrix,whose eigenve
tors and eigenvalues 
an be written as gξ,j and Ej , respe
tively, with
j = 1, 2, 3. The initial 
ondition is fξ(0) =∑3

j=1 γjgξ,j , where the 
oe�
ients γj aregiven by the standard rules of quantum me
hani
s. Under these assumptions onehas γj=3 ≡ 0, and the time evolution takes the form
|fξ(t)|2 = (γ1gξ,1)

2 + (γ2gξ,2)
2 + γ1γ2gξ,1gξ,2 cos [(E2 − E1)t] . (3.30)This expression des
ribes a time-periodi
 os
illation of the relative intensity of the
entral and side peaks, with frequen
y ν(λ < 2) = |E2 − E1|/2π, given by

ν(λ < 2) = π−1
√

[1− cos(2πα)]2 + λ2/2 . (3.31)
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Figure 3.10: Spatial distribution |ψn|2 obtained from the solution of Eq (3.19)using a single site initial 
ondition ψj = δj,0. As in Fig. 3.8, we use α = 0.2282...and ϕ = 0. Time is given in dimensionless units. Top panel: λ = 1, the initiallylo
alized wavepa
ket spreads ballisti
ally and there are no visible periodi
 os
illations.Bottom panel: λ = 5, the wavepa
ket is lo
alized and a periodi
 os
illation of the
entral peak and its nearest neighbors is 
learly visible.It is worth stressing that, on
e α is �xed, this frequen
y depends only on the dis-order strength λ, but not on the phase ϕ or on the width of the initial wavepa
ket
σ. This three-mode approximation provides a reasonable des
ription of the nu-meri
al results, as shown by the solid line for λ < 2 in Fig. 3.9. The three-modeapproximation be
omes ina

urate when approa
hing λ = 2, where more modesare 
oupled during the evolutions. In order to 
he
k this e�e
t, one 
an go onestep further and 
onsider a �ve-mode approximation in whi
h the time evolution
ouples the quasi-momentum 
omponents at ξ = 0, ξ = ±2πα, and ξ = ±4πα.This is a straightforward generalization of the three-mode approximation, ex
eptfor the fa
t that the di�erential equations for the 
oe�
ients γj(t) do not yield sim-ple analyti
al expressions and, moreover, the solutions 
ontain several os
illationfrequen
ies. The red dashed line in the λ < 2 part of Fig. 3.9 is our numeri
al resultfor the dominant 
omponent of the frequen
y spe
trum, solution of the �ve-modeapproximation, whi
h mostly determines the time evolution of the 
entral peak. Asexpe
ted we get a better agreement with the full integration of Eq (3.19) 
omparedto the three-mode approximation, espe
ially in the region 
lose to the transitionpoint λ = 2.In the region λ > 2 the few-mode approximation is expe
ted to fail in the
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Figure 3.11: Visibility of the os
illations in real and quasi-momentum spa
e as afun
tion λ, for ϕ = 0. The numeri
al points are 
ompared with the three-mode ap-proximation (full lines). Bottom panel: only few modes have been initially populatedby using a δ-fun
tion initial wavepa
ket in real spa
e and a Gaussian with σ = 10 inmomentum spa
e. Top panel: many modes have been initially populated by invertingthe initial 
onditions with respe
t to the bottom panel.quasi-momentum spa
e, where the wavepa
ket is no more lo
alized. Indeed, in thisregime, we do not see any signi�
ant eviden
e of periodi
 behaviors in the quasi-momentum distribution (see the bottom panel of Fig. 3.8). Conversely, owing tothe duality of the Aubry-André model, one expe
ts periodi
 os
illations to takepla
e in real spa
e, where the wavepa
ket is lo
alized. This is 
on�rmed by ournumeri
al integration of Eq. (3.19), as shown in Fig. 3.10. In the top panel the wavepa
ked spreads ballisti
ally and one 
annot dete
t any signi�
ant periodi
 behaviour;
onversely in the bottom panel the wavepa
ket is lo
alized, while the 
entral peakand its nearest neighbours os
illate periodi
ally. By assuming that the initial densitydistribution is lo
alized in a single latti
e site, j = 0, whi
h is 
oupled with thenearest neighboring sites, j = ±1, we obtain a three-mode approximation analogousto the one used before in quasi-momentum spa
e, but des
ribing os
illations inthe spatial distribution. The s
enario in real spa
e is more 
ompli
ated be
auseone generally observes os
illations with several frequen
y 
omponents, whi
h alsodepend on the phase ϕ. However, in the spe
ial 
ase ϕ = 0, one �nds just a singlefrequen
y, given by
ν(λ > 2) = (2π)−1

√

λ2[1− cos(2πα)]2 + 8 , (3.32)whi
h is shown as the solid line for λ > 2 in Fig. 3.9. In the same �gure we also plotthe frequen
y obtained from the full numeri
al integration of Eq. (3.19) (blue dots
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e 41in the λ > 2 region); in this 
al
ulation we have used a Gaussian of width σ = 10as initial shape of the wavepa
ket, but we have also 
he
ked that the frequen
y νdoes not depend on σ, ex
ept 
lose to λ = 2. The dashed line is the result of astraightforward semi-analyti
 extension to �ve modes, as in the λ < 2 region. It isworth stressing that the 
ondition for the validity of the few-mode approximationfor the os
illations in real spa
e (ψj = δj,0 or, equivalently, σ . 1) is mu
h more
onstraining than the one in momentum spa
e (1/σ . 2πα) from the point of viewof experimental realization.The amplitude of the os
illations in both real and momentum spa
e also 
hangeswith λ, a�e
ting its visibility. The latter 
an be 
al
ulated from the frequen
yspe
trum of the numeri
al solution of Eq. (3.19), as the ratio between the modulusof the Fourier 
omponent of frequen
y ν(λ) and the modulus of the 
omponent atzero frequen
y. In a 
onsistent way, one 
an de�ne the visibility in the three-modeapproximation; for the os
illations in momentum spa
e for λ < 2, the visibility 
anbe written as
V =

1

2

γ1γ2g0,1g0,2
(γ1g0,1)2 + (γ2g0,2)2

. (3.33)A similar de�nition 
an be given in real spa
e for λ > 2. In Fig. 3.11 we showthe visibility of the os
illations as a fun
tion of λ. The points are the numeri
alresults, while the lines represent the three-mode approximation. We have used twovalues for the width of the initial Gaussian wavepa
ket, namely σ = 0 (i.e., a δ-fun
tion) and σ = 10. In the upper panel, the two values of σ are used for λ < 2and λ > 2, respe
tively. They 
orrespond to a broad initial wavepa
ket both inmomentum spa
e for λ < 2 and real spa
e for λ > 2. In the bottom panel we useagain the same values of σ, but in the opposite regions, so to have a narrow initialwavepa
ket in both spa
es 2. One 
an see that the visibility depends signi�
antlyon both σ and λ. Again, the three-mode approximation is qualitatively 
orre
t,ex
ept near λ = 2. We observe that the three-mode approximation gives a betteragreement for a narrow initial distribution (lower panel), as in the opposite 
ase ofa broad distribution many modes are initially ex
ited and this approximation is notexpe
ted to be a

urate. Another interesting feature is the e�e
t of the duality ofthe Aubry-André model. Indeed, in both panels, the results in the region λ < 2almost 
oin
ide with those in the region λ > 2 under the 
hange of variable λ→ 4/λ,provided the initial distributions are broad (upper panel) or narrow (lower panel) inboth momentum and real spa
es; this duality also implies the 
ontinuity at λ = 2.3.4.3 Dete
ting the Aubry-André transition in momentum spa
eSo far we have seen that the time evolution of a wavepa
ket in the Aubry-Andrémodel exhibits interesting periodi
 behaviors both in momentum spa
e, for λ < 2,and in real spa
e, for λ > 2. Let us stress few di�eren
es between our analysisin momentum and real spa
e. First, in momentum spa
e the frequen
y of the2For σ = 10, the momentum width 1/σ is mu
h smaller than the distan
e between 
oupledmodes, ∆ξ = 2πα.
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Figure 3.12: Phase-averaged intensity of the 
entral peak in momentum spa
e,
|f0(t)|2, as a fun
tion of time and disorder strength λ for a wavepa
ket with σ = 10.The intensity is given in arbitrary units.os
illations does not depend on the relative phase ϕ of the two latti
es or, in otherterms, on the initial position of the wavepa
ket, while this is not the 
ase for realspa
e. Getting rid of the phase dependen
e is positive sin
e it is a parameter whi
hwould be hardly 
ontrollable in typi
al experiments. Se
ond, the 
ondition for theappli
ability of the few-mode approximation is less restri
tive in momentum spa
e,sin
e the width of the initial wavepa
ket 
an be easily made smaller than the 
ouplingdistan
e between modes.This observations suggest that the os
illations of the 
entral and side peaks inthe momentum distribution 
an be e�
iently used to probe the transition fromdi�usion to lo
alization in the Aubry-André model. A possible strategy 
onsists ofmeasuring the intensity of the 
entral peak as a fun
tion of time for di�erent valuesof λ, exploiting the fa
t that for λ > 2 the os
illations are phase dependent, while for
λ < 2 they are not. A
tually, in typi
al experiments with ultra
old atoms, the phase
ϕ varies at random at ea
h realization, so that performing an average over manyrealizations at �xed λ is equivalent to an average over numeri
al simulations withdi�erent ϕ. Thus one expe
ts that the os
illations vanish for λ > 2 (phase sensitiveregime), but remain 
learly visible for λ < 2 (phase independent regime). This isshown in Fig. 3.12, where the average has been done over 50 di�erent values of thephase ϕ for ea
h value of λ. Indeed the behavior of |f0(t)|2 exhibits a transition at
λ = 2. From the same �gure one 
an also extra
t the frequen
y ν(λ < 2). By usingthe experimental parameters of Ref. [67℄, with α = 1064.4/866.6 and λ = 1, theos
illation period turns out to be of the order of 5 ms. This is a time of the orderof the duration of typi
al experiments with ultra
old atoms and that 
an therefore
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Chapter 4Weakly intera
ting bosons inquasiperiodi
 potentials
In the previous 
hapter we have dis
ussed the di�usion and the lo
alization prop-erties of nonintera
ting parti
les in a 1D quasiperiodi
 potential. Now we want topro
eed further by 
onsidering the more general 
ase of intera
ting parti
les, havingin mind the appli
ation to ultra
old gases. Whether and in whi
h way intera
tionbetween parti
les 
an a�e
t the lo
alization and di�usion properties of the system isa longstanding issue, whi
h was raised at the very beginning of the story of Andersonlo
alization [29℄. This is, for instan
e, a natural question if one wants to study the
ondu
tan
e of ele
trons in a disorder material where intera
tions are intrinsi
allypresent and 
annot be removed.Ultra
old gases represent a powerful tool for the study of this interplay. Infa
t both the strength of the intera
tion and of the disorder 
an be easily tunedin experiments. The former using Feshba
h resonan
es, the latter a
ting on theintensity of the laser light that produ
es the opti
al disorder [27, 28, 98, 67, 68, 33℄.From the theoreti
al point of view, various approa
hes 
an be used to study aweakly intera
ting Bose gas in a 1D disordered system. For instan
e, a possiblemethod 
onsists of 
onsidering the transmission of a Bose-Einstein 
ondensate ina disorder region of �nite extent [99, 100, 101℄. Another possibility 
orresponds to
onsider the properties of a Bose gas at equilibrium whi
h is 
on�ned in a box of�nite size [102, 103, 104, 105, 106℄. In this 
hapter, instead, we will study this inter-play by 
onsidering the expansion of a Bose-Einstein 
ondensate into a disorderedpotential. The experimental 
on�guration that we have in mind is similar to theone that has been used for the observation of Anderson lo
alization [24, 25℄ but thistime 
ontrolling also the intera
tion between atoms. More pre
isely we treat theintera
tion within a mean �eld approa
h, whi
h is known to be very e�e
tive for thedes
ription of weakly intera
ting Bose gases [107℄, and we 
onsider a bi
hromati
opti
al latti
e that introdu
es the exponential lo
alization in absen
e of intera
tionamong parti
les. This problem 
an be e�
iently modelled using the dis
rete nonlin-ear S
hrödinger equation as we will show in se
tion 4.1. Our 
hoi
e of this model of(quasi-)disorder is motivated by its 
lose relation with the experimental setup usedin Ref. [25℄ for the observation of Anderson lo
alization, whi
h is parti
ularly suit-able for the in
lusion of intera
tions [67, 68, 33℄. Notably, this approa
h is relevantalso for experiments with light propagation in photoni
 latti
es, where a nonlinearintera
tion term 
an be introdu
ed using a Kerr media [65, 66℄.The main result that we obtain is that the spreading behaviour is determined
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ting bosons in quasiperiodi
 potentialsby the 
ompetition between two di�erent e�e
ts introdu
ed by the intera
tion: onthe one hand it favours lo
alization through the self-trapping me
hanism, on theother hand it destroys the lo
alization indu
ed by disorder leading to a subdi�usiveexpansion of wavepa
kets. These two e�e
ts will be dis
ussed in se
tions 4.2.1 and4.2.2 respe
tively. We also investigate the role played by the initial shape of the
ondensate in the dynami
s of the system. Our 
al
ulations show that, if the 
on-densate initially o

upies a single latti
e site, the dynami
s of the gas in the latti
e isdominated by self-trapping in a wide range of parameters, even for weak intera
tion.Conversely, if the di�usion starts from a 
ondensate with Gaussian shape, extendedover several latti
e sites, self-trapping is signi�
antly suppressed and the destru
tionof lo
alization by intera
tion is more easily observable. Finally in se
tion 4.3, we
ompare the results of our numeri
al simulations with an experimental study of thespreading of a weakly intera
ting Bose-Einstein 
ondensate in a bi
hromati
 opti
allatti
e [33℄.4.1 Dis
rete nonlinear S
hrödinger equationIn this se
tion we show that a gas of weakly intera
ting ultra
old bosons, in thepresen
e of a one dimensional bi
hromati
 opti
al latti
e and a tight harmoni
 
on-�nement in the radial dire
tion, 
an be des
ribed by means of a dis
rete nonlinearS
hrödinger equation (DNLS).It is known that a Bose-Einstein 
ondensate of weakly intera
ting bosons at zerotemperature 
an be 
onveniently des
ribed by the Gross-Pitaevskii (GP) equation[107, 108, 109, 110, 111℄
i~
∂Ψ(~r, t)

∂t
= − ~

2

2m
∇2Ψ(~r, t) + V (~r)Ψ(~r, t) + g|Ψ(~r, t)|2Ψ(~r, t), (4.1)where Ψ(~r, t) is a 
omplex fun
tion that represents the 
ondensate wavefun
tion.Its modulus square is the density of parti
les and the total number of parti
les isgiven by
∫

|Ψ(~r, t)|2 d~r = N. (4.2)The quantity g is a 
oupling 
onstant whi
h a

ounts for the intera
tion betweenatoms and is determined by the s-wave s
attering length as by
g =

4π~2as
m

. (4.3)For the external potential V (~r) let us 
onsider a tight harmoni
 
on�nementin the transverse plane and a one dimensional bi
hromati
 opti
al latti
e in theaxial dire
tion. If the radial 
on�nement is strong enough one 
an assume that theradial motion is 
ompletely frozen and that all the dynami
s takes pla
e in the axialdire
tion. In this 
ase the 
ondensate wavefun
tion 
an be written as Ψ(~r, t) =√
Nψ(x, t)Φ⊥(~r⊥) where the wavefun
tions ψ(x, t) and Φ⊥(~r⊥) are normalized tounity. This fa
torization is a good approximation as long as the separation between



4.1. Dis
rete nonlinear S
hrödinger equation 47the ground state and the �rst exited state of the radial harmoni
 
on�nement ~ω⊥ islarge 
ompared to the other energy s
ales of the system su
h as the thermal energyor the mean �eld intera
tion energy.Integrating out the radial dire
tion and dropping some 
onstant terms Eq. (4.1)
an be redu
ed to a one dimensional Gross-Pitaevskii equation with a renormalized
oupling 
onstant [112, 113℄
i~
∂ψ(x, t)

∂t
= − ~

2

2m

∂2

∂x2
ψ(x, t) + Vb(x)ψ(x, t) +Ng1D|ψ(x, t)|2ψ(x, t), (4.4)where Vb(x) is the one-dimensional bi
hromati
 opti
al latti
e de�ned by Eq (3.1)and g1D is an e�e
tive one-dimensional 
oupling 
onstant given by
g1D = g

∫

|Φ(~r⊥)|4 d~r⊥. (4.5)At this point one 
an follow a dis
retization pro
edure similar to the one thatwe have des
ribed in se
tion 3.1. By de
omposing the wavefun
tion on the basis ofWannier states of the primary latti
e, ψ(x) =∑j ψjwj(x), one �nds that Eq. (4.4)transforms into an equation for the evolution of the 
oe�
ients ψj , that is
i~
∂ψj

∂t
= −J(ψj+1 + ψj−1) + ∆cos(2παj + ϕ)ψj +NG|ψj |2ψj (4.6)where the tunneling energy J and the strength of the potential ∆ are given byEq. (3.6) and Eq. (3.8) respe
tively while G is related to g1D through

G = g1D

∫

|wj(x)|4 dx. (4.7)Finally, by expressing energy in units of J and time in units of ~/(JER1), we obtainthe dis
rete nonlinear S
hrödinger equation
i
∂ψj

∂t
= −ψj+1 − ψj−1 + Vjψj + β|ψj |2ψj (4.8)with Vj = λ cos(2παj + ϕ), λ = ∆/J and

β = NG/J. (4.9)This equation is a dis
retized version of the usual GP equation and is of great impor-tan
e for what follows sin
e it will be studied in detail in this and in the next 
hapterof this thesis. Similar versions of a dis
retized Gross-Pitaevskii equation have beenalready used to investigate the dynami
s of 
ondensates in di�erent situations (seefor instan
e Ref. [114℄). Within this mean-�eld des
ription the interatomi
 intera
-tion is in
luded just by adding a nonlinear term in the equation of motion, thereforein the following we will use the terms intera
tion and nonlinearity inter
hangeably.Let us stress that the dimensionless parameters λ and β whi
h represent thestrength of the quasi-disorder and of the mean-�eld intera
tion, respe
tively, are



48 Chapter 4. Weakly intera
ting bosons in quasiperiodi
 potentialsthe two key parameters that determine the properties of Eq. (4.8). We note thatthere are two 
onserved quantities asso
iated to Eq. (4.8), the �rst is the norm Nof the one dimensional 
ondensate wavefun
tion ψj

N =
∑

j

|ψj |2, (4.10)that in our 
ase is always equal to 1, and the se
ond is the energy of the system
H =

∑

j

−(ψj+1ψ
∗
j + ψ∗

j+1ψj) + Vj|ψj |2 +
1

2
β|ψj |4. (4.11)The �rst two terms in this expression represent the linear part of the energy, inparti
ular the �rst is the kineti
 energy while the se
ond is the potential energy.The third term represents the nonlinear part and it is often 
alled the mean-�eldintera
tion energy [107℄.4.2 E�e
ts of the intera
tionWe study the e�e
ts introdu
ed by the intera
tion mainly by studying the timeevolution of an initially lo
alized wavepa
ket as done for the nonintera
ting 
ase inse
tion 3.3. We solve Eq. (4.8) using a RK4 algorithm and as initial 
ondition we useboth single site δ-fun
tion wavepa
kets and Gaussian wavepa
kets of initial width σ(
fr. se
tion 3.3). Let us re
all that in the 
ase of nonintera
ting parti
les (β = 0)the evolution is governed by the Aubry-André Hamiltonian and a transition o

ursat λ = 2 from an extended regime (λ < 2), where wavepa
kets expand ballisti
ally,to a lo
alized regime (λ > 2), where wavepa
kets remain lo
alized after a transientinitial expansion.In the following we dis
uss two e�e
ts introdu
ed by the intera
tion, namely self-trapping, whi
h tends to lo
ally trap part of the wavepa
ket, and the destru
tion ofAnderson lo
alization, whi
h indu
es spreading. These two 
ompeting e�e
ts haveto be 
arefully analysed in order to 
orre
tly interpret the expansion of a wavepa
ket.4.2.1 Self-TrappingSelf-trapping is a lo
alization phenomenon, di�erent from Anderson lo
alization,that o

urs when the intera
tion is stronger than a 
riti
al value βc. It is a quitegeneral phenomenon that takes pla
e also for a purely periodi
 system withoutdisorder [114, 115, 116, 117℄ and double-well potentials [118, 119, 120, 121, 122℄.An intuitive understanding of the origin of the self-trapping in a latti
e is based onenergy 
onservation arguments [123℄. Let us 
onsider separately the 
ontributionto the energy that 
omes from the kineti
 and potential terms together and the
ontribution that 
omes from the intera
ting term, H = H0(t) +Hint(t) where

H0(t) =
∑

j

−(ψj+1ψ
∗
j + ψ∗

j+1ψj) + Vj|ψj |2 and Hint(t) =
∑

j

1

2
β|ψj |4. (4.12)
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Figure 4.1: Width w(t), parti
ipation number P (t), and density distribution
|ψj(t = 1000)|2 for two values of the intera
tion strength β, below (β = 1.4, redlines) and above (β = 1.6, bla
k lines) the transition from di�usion to self-trapping.Here the initial state is a single-site δ-fun
tion with ϕ = 0 and λ = 0.8.If the gas is subje
t to a periodi
 potential in the tight-binding approximation and itsdynami
s is restri
ted to the lowest Blo
h band, as supposed in deriving Eq. (4.11),the term H0 in the Hamiltonian is upper bounded. Let us 
all this upper bound
Emax

0
1. Whenever the energy of the intera
ting system is larger than this upperbound, H > Emax

0 , one 
an prove that the system 
annot rea
h a situation where
Hint(t) = 0, at any t > 0, without violating energy 
onservation. This meansthat, under these 
onditions, part of the intera
tion energy must be trapped inthe system in the form of a lo
alized peak that does not spread. In other words,whenever H > Emax

0 an initially lo
alized wavepa
ket 
annot spread to zero in thewhole spa
e. This argument, in general, does not provide a pre
ise quantitativeestimate of the 
riti
al value βc, but it gives a reasonable upper bound.Self-trapping of parti
les in the 
ontext of the dis
rete nonlinear S
hrödingerequation has been studied for di�erent types of external potentials su
h as periodi
potentials [116℄, quasiperiodi
 [116, 124, 125℄ potentials and random potentials [123,126℄. In parti
ular a 1D quasiperiodi
 potential of the same type as (3.11) for λ ≤ 2has been already dis
ussed in Ref. [116, 124℄. Here we provide a more systemati

al
ulation of βc and we 
ompare the di�usion from a single-site to the one from aGaussian wavepa
ket.A signature of the presen
e of self-trapping is a saturation of the parti
ipation1Due to the symmetry of the problem the upper bound of the spe
trum is given by the widthof the full spe
trum, ∆, divided by two, Emax
0 = ∆/2,
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ting bosons in quasiperiodi
 potentialsnumber P (t) that, for β > βc, rea
hes an asymptoti
 �nite value, due to the trappingme
hanism o

urring at the 
enter of the wavepa
ket, while the width w(t) keepsin
reasing owing to the expanding tails [116, 123℄. An example of self-trapping tran-sition is shown in Fig. 4.1, where we show the results obtained by solving Eq. (4.8)for di�usion from a single-site in a quasiperiodi
 potential with α = (
√
5− 1)/2 and

λ = 0.8. In the �gure one 
an see the typi
al 
hange of behaviour that o

urs when
β 
rosses the 
riti
al value βc that for the example shown in �gure is approximatelyequal to 1.5. The same �gure shows also the di�eren
e in the density distributionsat t = 1000. For β = 1.4 (red lines), below the 
riti
al value βc both the widthand the parti
ipation number grows ballisti
ally and no signatures of self-trapping
an be dete
ted in the shape of the pa
ket. Instead for β = 1.6 (bla
k lines), abovethe 
riti
al value βc, the presen
e of a strongly lo
alized self-trapped peak is 
learlyobservable in the 
entral part of the wavepa
ket. This leads to a strong di�eren
e inthe behaviour of the parti
ipation number that saturates to a 
onstant value after atransient time. The lateral, low density tails of the wavepa
ket are instead similarin the two 
ases resulting in a similar behaviour of the width.Let us stress here that self-trapping, even if it is a phenomenon that leads tolo
alization, is 
ompletely di�erent from Anderson lo
alization. First of all the
ru
ial point for the o

urren
e of self-trapping is the presen
e of intera
tions andof an upper bounded spe
trum. Therefore, it 
an be observed in a variety of di�erentsystems, regardless of the presen
e of disorder. Conversely, Anderson lo
alizationtakes pla
e in presen
e of disorder and for nonintera
ting parti
les. Se
ondly self-trapping leads only to a partial lo
alization sin
e the 
entral part of the wavepa
ketremains lo
alized while its tails keep expanding. Again this is 
ompletely di�erentfrom Anderson lo
alization where a 
omplete stop of the expansion takes pla
e andthe tails de
rease exponentially to zero.We now study in detail the self-trapping transition within the quasiperiodi
model de�ned by Eq. (4.8) when the disorder strength is varied a
ross the transitionpoint at λ = 2 
onsidering a single site-initial 
ondition and di�erent values of thephase of the potential ϕ. By systemati
ally looking at the numeri
al results for w(t),
P (t), |ψj(t)|2 in the β vs. λ plane, we 
an identify the set of parameters for whi
hself-trapping takes pla
e and obtain the diagram shown in Fig. 4.2. The values of
βc are represented by red 
ir
les and blue squares for ϕ = π and 0, respe
tively.We have identi�ed three di�erent regions 
orresponding to three di�erent be-haviours in the diagram. In region I, above the red 
ir
les, all points 
orrespond toself-trapped states. For λ < 2 we �nd that the value of βc is pra
ti
ally independentof the phase ϕ and de
reases as λ is in
reased. In region II, we observe di�usion,often a

ompanied by solitoni
 stru
tures and dis
rete breathers eventually spread-ing. Similar stru
tures in the numeri
al solutions of Eq. (4.8), for di�usion from asingle-site and for λ = 0, have been already found in Ref. [116℄. For λ > 2 we �ndthat βc is strongly ϕ-dependent. In the �gure we show the results for the two lim-iting values ϕ = 0 and ϕ = π; in parti
ular, in region III, we �nd that all states areself-trapped for ϕ = 0 while they are di�usive for ϕ = π. The semi-axis λ > 2 and
β = 0 
orresponds to the regime of disorder indu
ed lo
alization for nonintera
ting
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Figure 4.2: Criti
al value of the intera
tion strength for the transition to self-trapping, βc, as a fun
tion of the disorder strength, λ, for di�usion from a singlelatti
e site and for ϕ = π (red 
ir
les) and ϕ = 0 (blue squares). The red and bluedashed lines are the 
orresponding upper bounds for βc obtained by 
al
ulating thebandwidth of the single-parti
le spe
trum and using energy 
onservation arguments.The diagram is s
hemati
ally divided in three regions I, II and III. All states in Iare self-trapped; in II, one �nds di�usion, with soliton-like stru
tures and dis
retebreathers; in III, the transition from di�usive states to self-trapping strongly dependson the value of the phase ϕ (i.e., the position of the initial wavepa
ket). The semi-axis λ > 2 and β = 0 
orresponds to the regime of disorder indu
ed lo
alization fornonintera
ting parti
les.parti
les.The phase dependen
e of βc for λ > 2 
an be qualitatively explained by the en-ergy 
onservation arguments already mentioned above. In parti
ular, we numeri
ally
al
ulate the maximum energy, Emax
0 , in the lowest Blo
h band of the nonintera
t-ing single-parti
le spe
trum and we 
ompare this value to the initial energy of theintera
ting system, whi
h is given by H = λ cos(ϕ)+β/2. The upper bound for thetransition to self-trapping is then given by the 
ondition H = Emax

0 , whi
h implies
β = 2(Emax

0 ± λ)where the plus and the minus signs holds for ϕ = π and ϕ = 0, respe
tively. Thesetwo upper bounds are represented by the blue and red dashed lines in Fig. 4.2.Fig. 4.2 shows that, in the 
ase of di�usion from a single-site, the self-trappingme
hanism plays a rather important and nontrivial role, leaving almost no spa
e
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Figure 4.3: Time evolution of the width of the wavepa
ket w(t) (a) and of theparti
ipation number (b) for λ = 2.5 and for an initial Gaussian wavepa
ket with
σ = 5. We 
ompare the nonintera
ting 
ase, β = 0, with three intera
ting 
ases:
β = 1, 10, 50. The bla
k dashed lines represent a guide to the eye. Their slope is
0.2, 0.3 and 0.34 and is the same in (a) and (b).to the observability of the interplay between disorder and intera
tion. The regionwere this interplay might be observed, namely for λ > 2 and small β, where oneexpe
ts to see the destru
tion of lo
alization due to intera
tion, it is also the regionwhere the dependen
e on the phase ϕ is the largest. Unfortunately, in typi
al exper-imental situations with Bose-Einstein 
ondensates, the phase ϕ is not 
ontrollable.Moreover, in the experiments the initial distribution of atoms in the latti
e sites ismore similar to a Gaussian than a δ-fun
tion. This suggests that, while the single-site di�usion is 
on
eptually important and widely investigated from the theoreti
alviewpoint, the di�usion from a Gaussian is also interesting and worth exploring.4.2.2 Destru
tion of Anderson lo
alizationLet us now 
onsider the e�e
ts of the intera
tion on the expansion of a wavepa
ket,in a regime where all the single parti
le eigenstates are lo
alized (λ > 2). We
hoose the system parameters in order to rule out self-trapping so that the interplaybetween intera
tion and disorder indu
ed lo
alization 
an be investigated. As initialwavepa
ket we use a Gaussian distribution with a size that is larger than the typi
alsize of the eigenstates of the linear system. This 
hoi
e is 
onvenient sin
e it stronglysuppresses the dependen
e of the dynami
s of the system on the latti
e phase ϕ.This leads to a simpler analysis of the interplay between the two key parameters λand β.



4.2. E�e
ts of the intera
tion 53The main result of our observations is that, as the intera
tion is turned on, awavepa
ket that was lo
alized for β = 0 starts to expand subdi�usively. We observean asymptoti
 growth of both the width w(t) and the parti
ipation number P (t),a

ording to the following laws:
w(t) ∼ tγ1 P (t) ∼ tγ2 (4.13)with γ1 and γ2 in the range 0 − 0.5. Let us re
all that ballisti
 expansion would
orrespond to γ = 1 and normal di�usion to γ = 0.5. In the absen
e of self-trappingwe �nd that the 
oe�
ients γ1 and γ2 are nearly equal, therefore in the followingwe will use γ ≈ γ1 ≈ γ2. A typi
al example of the observed delo
alization pro
ess isshown in Fig. 4.3. The e�e
t of the intera
tion is studied 
onsidering the di�usionof an initial Gaussian wavepa
ket with σ = 5 and a disorder strength just above thelo
alization transition λ = 2.5. The nonintera
ting 
ase, whi
h remains lo
alized,is 
ompared with three di�erent values of the intera
tion parameter, β = 1, β = 10and β = 50. Already for β = 1 there is an evident delo
alization and this e�e
tin
reases as β is in
reased in the sense that γ be
omes larger and the delo
alizationtakes pla
e earlier. The three bla
k dashed lines represent a guide for the eyes. Theyrepresent an asymptoti
 spreading law of the type des
ribed by (4.13) with spreadingexponents γ equal to 0.2 (β = 1), 0.3 (β = 10) and 0.34 (β = 50) and they are thesame in panel (a) and in panel (b). The presen
e of these lines stresses the fa
tthat the exponent 
hanges as the value of the intera
tion strength is in
reased andsuggests the equality between the spreading exponents for w(t) and P (t). A verysimilar behaviour is obtained also for the di�usion from a single-site, provided thephase ϕ and the intera
tion β are 
hosen in su
h a way to avoid self trapping (e.g.,in region III of Fig. 4.2 with ϕ = π). When the disorder strength λ is in
reased thelo
alization gets more robust, in the sense that the onset of subdi�usive spreadingtakes pla
e for later times and γ be
omes smaller. For large λ we rea
h a situationwhere the delo
alization pro
ess is no longer observable within our simulation time.This is shown in Fig. 4.4, where we 
ompare the time evolution of a Gaussianwavepa
ket for �xed β and for in
reasing values of the disorder strength λ.Similar results on the dynami
s of wavepa
kets in presen
e of Anderson lo
al-ization have been re
ently reported for purely random systems [127, 128, 126, 129℄.In these studies they 
onsidered the dis
rete nonlinear S
hrödinger equation withon site energies that are given by an un
orrelated random sequen
e distributed a
-
ording to a square distribution Vj ∈ [−W/2,W/2]. They numeri
ally observed asubdi�usive expansion similar to the one that we have des
ribed in this se
tion andsuggested that the asymptoti
 value of the spreading exponent, in the 
ase of arandom potential, is universal and approximately equal to 1/6. A theoreti
al modelthat interpret the origin of the subdi�usive spreading as due to the presen
e ofresonant modes inside the pa
ket has been developed in [126, 129℄ and provides avalue of the spreading exponent that agrees very well with the numeri
al one. Morere
ently it has been shown that for large values of the nonlinear parameter a fastertransient expansion 
an be observed where γ = 1/4 [130, 131, 132℄.
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Figure 4.4: Time evolution of the width of a Gaussian wavepa
ket with σ = 5, for
β = 10 and di�erent values of the disorder strength λ.As we have seen in this se
tion, the results that we extra
t from Fig. 4.3 forthe spreading exponents γ in a quasiperiodi
 potential are signi�
antly larger thanthose found for purely random systems. In parti
ular for the highest values of βhere 
onsidered, the values of γ are larger than both 1/6 and 1/4. This suggeststhat the 
omparison of our results with those obtained for random systems is notso trivial and deserves a more detailed study. This issue will be addressed in thenext se
tion, as well as in the next 
hapter. In parti
ular, in the next se
tionwe dis
uss the 
omparison between our theoreti
al predi
tions for the spreadingexponent and the experimental results, while in the next 
hapter we will fo
us onthe long-time asymptoti
 behaviour, making a bridge between the numeri
al resultsand the models of Refs. [126, 129, 130℄ applied to quasiperiodi
 systems.4.3 Experimental observation of subdi�usionIn this se
tion we introdu
e the experiment realized in Floren
e on the expansionof a 
loud of intera
ting ultra
old atoms in a bi
hromati
 opti
al latti
e [33℄ and
ompare the experimental results with the numeri
al ones obtained with the one-dimensional dis
rete nonlinear S
hrödinger equation.4.3.1 Experimental setupThanks to the great 
ontrollability of the relevant parameters in experiments withultra
old atomi
 systems, it has been possible to observe the expansion of a 
loud ofatoms in a 
ontrolled disorder and with a tunable interatomi
 intera
tion. The setup



4.3. Experimental observation of subdi�usion 55is the same of previous experiments [24, 25℄: the 
ondensate is �rst produ
ed andkept 
on�ned within a three dimensional harmoni
 trap; it is then loaded into an ad-ditional one-dimensional disordered potential; �nally, by swit
hing o� the harmoni

on�nement along the axial dire
tion, it is let free to expand into the disorderedpotential. The strength of the disorder 
an be 
ontrolled by a
ting on the intensityof the lasers that produ
e the potential, while the strength of the interatomi
 inter-a
tion is 
ontrolled by means of an external magneti
 �eld, thanks to a Feshba
hresonan
e. Using these two experimental �knobs�, it is possible to 
hange the twokey parameters of the problem, thus allowing a detailed investigation of the interplaybetween intera
tion and disorder indu
ed lo
alization.Let us now dis
uss more in detail the experimental pro
edure. A Bose-Einstein
ondensate of 39K atoms is produ
ed in an opti
al trap whi
h gives a radial 
on-�nement of 2π × 50 Hz and an axial 
on�nement of 2π × 70 Hz and 
ontains about
N = 5× 104 atoms. The disordered potential is experimentally realized using a onedimensional bi
hromati
 opti
al latti
e that 
an be des
ribed by Eq. (3.1)

V (x) = s1ER1 sin
2(k1x) + s2ER2 sin

2(k2x+ ϕ) . (4.14)It is formed by superimposing two simple opti
al latti
es of di�erent wavelengths(λ1 = 1064.4 and λ2 = 859.6), ea
h of them 
reated by a laser �eld in the standingwave 
on�guration. This potential is 
hara
terized by a latti
e spa
ing d = λ1/2,a tunneling energy J and a disorder strength ∆. The latti
e beams provide anadditional radial 
on�nement of ω⊥ = 2π × 50 Hz.The 
ondensate is �rst loaded into a quasiperiodi
 latti
e with a 
onstant ∆ = 3Jand the s
attering length is �xed at as = 280a0. At a given time t = 0 the opti
altrap is suddenly swit
hed o� letting the intera
ting atomi
 
loud free to expandalong the bi
hromati
 opti
al latti
e. At the same time, the disorder strength, ∆and the s
attering length as are suddenly 
hanged and tuned to their �nal valuesthat will stay �xed for the rest of the expansion. The time evolution of the radially-integrated spatial distribution n(x) of the atomi
 
loud is then monitored by insitu absorption imaging up to t = 10 s. The spreading is quanti�ed by measuringthe width of the atomi
 
loud whi
h is 
al
ulated as the square root of the se
ondmoment of the spatial distribution
σ(t) =

√

∫

x2n(x) dx, (4.15)where the spatial distribution n(x) has been normalized to one. The strength of theintera
tion is experimentally quanti�ed by an estimation of the intera
tion energyper parti
le Eint of the 
loud at t = 0, whi
h is given by
Eint = g

Ns

2

∫

|φ(~r)|4 d~r (4.16)where g = 4π~2as/m is the 
oupling 
onstant, Ns is the mean atom number per siteand φ(~r) is a Gaussian approximation of the single site wavefun
tion.
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 potentials

Figure 4.5: Time evolution of the width σ of the expanding 
loud for di�erent initialintera
tion energies: Eint = 0 (squares), Eint = 1.8J (triangles), and Eint = 2.3J(
ir
les). The 
ontinuous lines are the �t with Eq.(1). The dashed lines show the�tted asymptoti
 behavior, while the dash-dotted line shows the expe
ted behavior fornormal di�usion. The latti
e parameters are s1 = 5, ∆/J = 5.The initial wavepa
ket is always 
reated in the same experimental 
onditions,sin
e it is independent from the �nal parameters of the expansion and it has beenestimated to o

upy on average Ns = 20 ± 7 latti
e sites. The typi
al disorderstrength that is used in the experiment is λ = ∆/J ≈ 5. Let us note that weare in a regime where the size of the initial wavepa
ket is mu
h larger than thelo
alization length of the single-parti
le eigenstates Lloc. As a 
onsequen
e we knowthat the behaviour of the wavepa
ket will be determined just by the disorder andthe intera
tion strength and we 
an forget about the value of the phase ϕ betweenthe two latti
es.In Fig. 4.5 we show a typi
al example of a set of experimental runs that mea-sure the time evolution of the width of the expanding atomi
 
loud for λ = 5. We
ompare the nonintera
ting 
ase Eint = 0 (blue squares) with two 
ases where theintera
tion is di�erent from zero, Eint = 1.8 (green triangles) and Eint = 2.3J (red
ir
les). In absen
e of intera
tion the system is lo
alized and the width essentiallydoes not 
hange in time. Only an extremely slow expansion 
an be dete
ted, pre-sumably due to te
hni
al noise. The noise is mostly provided by the vibrations ofthe retrore�e
ting mirrors used to 
reate the two latti
es that re�e
ts in a disorderpotential that 
hanges with time. The introdu
tion of a repulsive intera
tion allowsthe wavepa
ket to expand signi�
antly: the expansion is however not ballisti
 sin
e
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Figure 4.6: Spreading exponent γ vs the initial intera
tion energy Eint in theexperiment (triangles and squares) and simulations (grey 
ir
les). The experimentaldata are for ∆/J ≈ 5 and two di�erent values of the depth of the main latti
e:
s1 = 7 (red triangles) and s1 = 5 (blue squares). The verti
al bars are the �ttingerror of Eq.(1) to the data, while the horizontal bars indi
ate the statisti
al error.its velo
ity de
reases during the time evolution, as the width of the 
loud in
reases.In order to 
hara
terize the spreading more in detail and 
lassify the type ofspreading behaviour, the experimental 
urves for the width σ are �tted with thefollowing fun
tion

σ(t) = σ0

(

1 +
t

t0

)γ (4.17)with three �tting parameters σ0, to and γ. Here σ0 represents the initial width ofthe atomi
 
loud, t0 is an �a
tivation time� and γ is the exponent that 
hara
terizethe type of spreading behaviour. We note that Eq. (4.17) reprodu
es the asymptoti
behaviour σ ∼ tγ that we have introdu
ed with Eq. (4.13) and it has the additionaladvantage to extra
t information also from the measurements at short times. Thisallows to de
rease the un
ertainty on the parameters extra
ted from the �ttingpro
edure. Notably Eq. (4.17) gives a good des
ription of the behaviour of theatomi
 
loud also for short times.The values of γ extra
ted from the �tting pro
edure are always smaller than
0.5 and are larger for in
reasing intera
tion strength. This indi
ates a subdi�usiveexpansion and 
on�rms qualitatively the results presented in se
tion 4.2.2. Morepre
isely the values of the spreading exponent for Eint 6= 0 are in the range γ ≈
0.2 − 0.4. The results of a systemati
 investigation of the value of the spreadingexponent are shown in Fig. 4.6 as a fun
tion of the intera
tion energy Eint and for
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ting bosons in quasiperiodi
 potentialsa �xed value of the disorder strength λ = 5. One 
an see a 
lear in
rease of γ with
Eint up to γ ≈ 0.4. The two set of points 
orrespond to di�erent values of thedepth of the primary latti
e s1 = 5 (blue squares) and s1 = 7 (red triangles). Thefa
t that the two datasets lie approximately on the same 
urve indi
ates that thebehavior of the system does not depend on the spe
i�
 value of s1 but just on theratio between the two tight binding parameters ∆ and J . This 
on�rms that a tightbinding formalism provides a good des
ription of the experiment.4.3.2 Comparison with the dis
rete nonlinear S
hrödinger equa-tionLet us now 
ompare the values of γ extra
ted from the experiment and those that
an be obtained from the dis
rete nonlinear S
hrödinger equation. In se
tions 3.1and 4.1 we dis
ussed how it is possible to 
onne
t a 
loud of expanding atoms ina one dimensional bi
hromati
 opti
al latti
e to the dis
rete nonlinear S
hrödingerequation and we gave a set of expressions (3.6), (3.8), (4.9) that allows to 
onne
tthe experimental parameters to the one of the theoreti
al model.We now write down the expli
it expressions that we have used to 
onne
t thetheoreti
al parameters with those of the experiment. Let us start 
onsidering thetunneling energy J . At present we know that J 
an be 
al
ulated using expression(3.6) and an estimation of the Wannier fun
tion w(x). Anyway there is also anotherway to obtain the value of the tunneling energy using the fa
t that, in absen
e ofan external potential, J is proportional to the bandwidth of the lowest band ofthe system. In parti
ular an exa
t formula for the bandwidth, whi
h is valid when
s1 ≫ 1, yields J = (4/

√
π)ER1s

3/4
1 exp(−2

√
s1) [133℄. An even more pre
ise formula
an be obtained by numeri
ally solving the band stru
ture and performing a �t tothe 
al
ulated 
urves [134℄

J = 1.43ER1s
0.98
1 e−2.07

√
s1 (4.18)An estimation of the intensity of the quasiperiodi
 modulation ∆ 
an be 
al
ulatedby solving the integral in Eq. (3.8) using a Gaussian approximation for the Wannierfun
tions, |w(x)|2 = (k1/

√
π)s

1/4
1 exp(−√

s1k
2
1x

2) (see appendix A for more details);following this pro
edure one obtains ∆ = (s2ER2/2)e
−α2/

√
s1 . Also in this 
ase amore a

urate result 
an be obtained from a numeri
al 
al
ulation. More pre
isely,by repla
ing the Gaussian approximation of w(x) with the numeri
ally 
al
ulatedWannier fun
tions one �nds [91℄

∆ =
s2ER2

2
e−2.18/s0.61 . (4.19)Finally the intera
tion parameter β is 
al
ulated starting from the experimental esti-mation of Eint. Within the dis
rete nonlinear S
hrödinger equation, the intera
tionenergy per parti
le in units of J is given by Eint/J = (β/2)

∑

j |ψj |4. Re
alling thatthe parti
ipation number gives an estimation of the latti
e sites whi
h are signi�-
antly o

upied, nsite ≈ P = 1/
∑

j |ψj |4 we obtain an expression of β as a fun
tion
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Figure 4.7: Time evolution of the width of the expanding atomi
 
loud obtainedsolving the dis
rete nonlinear S
hrödinger equation for λ = 5 and Eint ≈ 1.8 (greypoints). We also show the result of two di�erent �tting pro
edures. The �rst isperformed using Eq. (4.17) as a �tting fun
tion (red solid line). The se
ond isthe result of a linear �t in log-log s
ale done 
onsidering only the last part of thesimulation.of Eint

β = 2nsite
Eint

J
. (4.20)Expressions (4.18), (4.19) and (4.20) 
reate a dire
t and expli
it 
onne
tion betweenthe experimental parameters and the theoreti
al ones and represent the equationsthat we use for the mapping from theory to experiment.The initial wavefun
tion for the expansion is 
al
ulated solving a stationaryversion of the DNLS equation

− ψj+1 − ψj−1 + Vjψj + β|ψj |2ψj = µψj (4.21)where Vj 
ontains a 
ontribution from the one dimensional bi
hromati
 opti
al lat-ti
e and a 
ontribution from the harmoni
 
on�nement along the axial dire
tion.In Fig. 4.6 we show the values of γ extra
ted from the numeri
al simulations (grey
ir
les). The spreading exponent in
reases for in
reasing value of the intera
tionenergy Eint and approa
hes a saturation value around 0.35. The 
al
ulation of γhas been done following the same pro
edure that has been used for the experimentaldata. First we 
ompute the width of the wavepa
ket using Eq. (3.22) and then we �tthe 
urve of the width as a fun
tion of time using Eq. (4.17) as a �tting fun
tion. Atypi
al example of a numeri
al simulation for the width of the expanding wavepa
ketexpressed in µm is shown in Fig. 4.7. The result of the �t is also shown (red solidline) in the �gure. Typi
ally the numeri
al simulations for w(t) have been averagedover 40 di�erent realizations (
orresponding to di�erent values of the phase shift ϕ)
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ting bosons in quasiperiodi
 potentialsbefore performing the �t. We also extra
ted the spreading exponents γlin by �ttingthe data points only for large times with the asymptoti
 expression (4.13) and weveri�ed that the two �tting pro
edures give a good agreement. In Fig. 4.7 the bla
kdashed line shows the result of the �tting with the asymptoti
 expression and thevalues of the two exponents are reported.The numeri
al exponents shown in Fig. 4.6 are in qualitative agreement withthe experimental ones. Note that the experimental measurements give a nonzerovalue of the spreading exponent γ ≈ 0.06 even for Eint ≈ 0. This is probably theresult of a weak te
hni
al noise on the quasiperiodi
 potential, due to variationsin the laser wavelengths and to vibrations of the retrore�e
ting mirror that 
reatesthe standing waves. If we would assume that this value represents a 
onstant biasfor all measurements with intera
tion then we would �nd an improved quantitativeagreement between theory and experiment. A detailed analysis of quantum di�usionin presen
e of disorder, noise and intera
tion has been re
ently performed in [69℄and seems to support the assumptions of an in
rease of γ due to the presen
e of theexperimental noise.There is however a disagreement on the typi
al intera
tion energy at whi
h thesaturation regime for the exponents γ is rea
hed in the experiment and in the theory.Furthermore we observe that the a
tivation time is mu
h longer in the numeri
alsimulations than in the experiment and this implies the need of a longer simulatedexpansions in order to get a numeri
al spreading 
omparable with the experimentalone. These di�eren
es are mainly due to �nite temperature e�e
ts and to a featureof the experimental setup whi
h is not in
luded in the dis
rete nonlinear S
hrödingerequation that is the radial degrees of freedom. The use of the DNLS model impliesthat the radial degrees of freedom has to be 
ompletely frozen during the dynami
sof the system. This is not the 
ase for the experiment where many radial statesare populated and play a role during the expansion. The situation is di�erent fornonintera
ting samples where the di�erent degrees of freedom 
an be 
ompletelyde
oupled and the radial dynami
s does not in�uen
e the axial one. In presen
e ofintera
tion the �nite temperature and the presen
e of the radial degrees of freedomin�uen
es the dynami
s and in parti
ular leads to a faster expansion and to a smallera
tivation time [33℄.Finally as regards a 
omparison of the spreading exponents obtained for thequasiperiodi
 
ase with those obtained for un
orrelated random potentials we 
on-�rm the observation of se
tion 4.2.2. The exponents γ for the quasiperiodi
 
ase,extra
ted both from the simulations and from the experiment, are larger than themaximum value of the exponent that have been observed and theoreti
ally pre-di
ted for random systems, that is 1/4. In the next 
hapter we will 
ontinue and
on
lude this dis
ussion on the 
omparison with the random 
ase and we will studythe spreading exponent γ for asymptoti
 times, orders of magnitudes larger thanthe times that 
an be rea
hed in present experiments with ultra
old atoms.



Chapter 5Subdi�usion of nonlinear wavesin quasiperiodi
 potentials
The topi
 of this 
hapter is again the interplay between intera
tion and Anderson lo-
alization in quasiperiodi
 systems. We still 
onsider the dynami
s of a wavepa
ket,but now our fo
us will be on the 
hara
terization of the subdi�usive spreading in-trodu
ed by the intera
tion.We have already seen in the previous 
hapters that exponential lo
alization ofnonintera
ting quantum parti
les (or linear waves) 
an o

ur in quasiperiodi
 sys-tems and that the in
lusion of intera
tion between parti
les 
hanges lo
alization intosubdi�usive spreading. Theoreti
ally, the interplay between intera
tion and Ander-son lo
alization, has been more often studied by 
onsidering wavepa
kets propagat-ing in purely random potentials [123, 127, 128, 126, 129, 135, 130, 136, 137, 131, 132℄.Also in this 
ase, numeri
al simulations showed that the presen
e of nonlinearity in-deed destroys lo
alization and leads to a subdi�usive growth of the width of thewavepa
ket in time as w(t) ∼ tγ [127, 128, 126, 129, 135, 136, 131, 132℄. In parti
-ular it was predi
ted that at large t, the 
oe�
ient γ should 
onverge to 1/6 in aregime of so-
alled �weak 
haos�, as opposed to normal di�usion where γ = 0.5. Atransient regime of �strong 
haos� was also identi�ed, where γ = 1/4 [130, 131, 132℄.A 
omparison between the values of γ for the random 
ase with those dis
ussedin se
tions 4.2.2 and 4.3.2 for the quasiperiodi
 
ase 
learly indi
ates that in thequasiperiodi
 
ase the typi
al spreading exponents are signi�
antly larger, at leastat �nite spreading times.The purpose of this 
hapter is to 
larify the details of the spreading me
ha-nism and address the di�eren
es and similarities between quasiperiodi
 and purelyrandom potentials. We extend and re�ne our previous numeri
al investigations bypushing the simulations to mu
h longer times, thus allowing for the identi�
ationof the strong and weak 
haos regimes in quasiperiodi
 systems and 
ompare thesituation with known properties of purely random systems. For this purpose, weuse two di�erent models, namely the dis
rete nonlinear S
hrödinger equation, thatwe have already introdu
ed in se
tion 4.1, and a quasiperiodi
 version of the quarti
Klein-Gordon latti
e model.We anti
ipate here that a regime of weak 
haos is indeed observed in the longtime spreading of nonlinear wavepa
kets propagating in quasiperiodi
 systems; inparti
ular we �nd that the asymptoti
 value of the spreading 
oe�
ient γ is 1/6as in purely random systems, thus showing that this behaviour is rather generaland model independent. Another similarity with purely random systems is the
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potentialso

urren
e of self-trapping (
fr. se
tion 4.2.1): when the nonlinear intera
tion islarge enough to shift the mode frequen
ies so strongly that they are tuned out ofresonan
e with all non-ex
ited neighbouring modes, a part of the wavepa
ket remainsspatially lo
alized [123, 126, 31℄. However as opposed to the random system, in thequasiperiodi
 
ase partial self-trapping is also possible for weaker nonlinearities.This is due to the 
omplexity of the linear wave spe
trum whi
h exhibits a fra
talgap stru
ture of sub-bands. Self-trapping gives rise to transient spreading regimes
hara
terized by an intermediate large exponent γ; we 
all this e�e
t �overshooting�.Finally, we have also observed signatures of strong 
haos, but dete
tion of this regimeis di�
ult in quasiperiodi
 systems, sin
e it is often masked by overshooting andpartial self-trapping, whi
h o

ur on the same temporal s
ales.In se
tion 5.1 we formulate the DNLS model in normal mode spa
e. In se
tion5.2 we dis
uss the relevant energy s
ales for the predi
tion of the spreading behaviourof a wavepa
ket. In se
tion 5.3 we summarize the di�erent spreading regimes anddis
uss the spreading laws asso
iated to ea
h regime. In se
tions 5.4 and 5.5 wepresent and dis
uss the results of long time numeri
al simulations within the DNLSmodel. Finally in 5.6 we introdu
e the Klein-Gordon model and we show that theobserved numeri
al results 
an be interpreted on the basis of the same theoreti
almodel that it has been developed for the DNLS model.5.1 DNLS in normal mode spa
eLet us start from the DNLS model with a quasiperiodi
 potential. The key equation,already introdu
ed in se
tion 4.1, is
i
∂ψj

∂t
= −(ψj+1 + ψj−1) + Vlψj + β|ψj |2ψj , (5.1)where Vj = λ cos(2παj + ϕ). From now on we 
hoose α = (

√
5 − 1)/2 and λ > 2,sin
e we fo
us on the interplay between lo
alization and nonlinearity.The normal modes asso
iated to Eq. (5.1) are de�ned by negle
ting the nonlinearterm and solving the following eigenvalue problem

−Aν,j+1 −Aν,j−1 + λ cos(2παj + ϕ)Aν,j = EνAν,j . (5.2)where the index ν labels the di�erent normal modes Aν,j and the 
orrespondingeigenvalues Eν . Equation (5.2) is the Aubry-André model [85℄ that we introdu
edin se
tions 3.1 and 3.2. We have already dis
ussed extensively the lo
alizationproperties of this model. Here we just remind that in the lo
alized regime (λ > 2)all the eigenstates are exponentially lo
alized in the form Aν,j ∼ e−|j−jν |/Lloc, where
jν is the lo
alization 
enter and Lloc = 1/ ln(λ/2) is the lo
alization length.In order to quantify the spatial extent of a given eigenstate, we 
an 
onvenientlyde�ne a lo
alization volume Vν = 1+

√

12m
(ν)
2 , where m(ν)

2 =
∑

j(Xν − j)2|Aν,j|2 isthe se
ond moment of |Aν,j|2 and Xν =
∑

j j|Aν,j |2 is its 
enter of norm [138℄. Thelo
alization volume Vν is an important quantity sin
e we will use it as an estimate of
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Figure 5.1: a) Pi
torial interpretation of lo
alization volume. A given eigenstate
ν (bla
k line in the 
enter of the box) is assumed to intera
t only with those eigen-states (blue lines) that lie in a region of size Vν around his mean position. The redlines represent the 
orresponding on-site energies. b) Average lo
alization volume ofeigenstates V as a fun
tion of the potential strength λ. 
) Eigenenergies Eν of thelinear system obtained from numeri
al diagonalization of Eq. (5.2), as a fun
tion of
λ.the number of modes whi
h intera
t with a given mode ν. Its meaning is s
hemat-i
ally shown in Fig. 5.1a. The modes that intera
t with a given referen
e mode νare those whose 
enter of norm lies in an area Vν around it. The quantity that willbe relevant for our analysis is an average value of the lo
alization volume at a givenvalue of the disorder strength λ that we indi
ate with V . The average is performedover the di�erent eigenstates of the spe
trum and over di�erent realizations of thequasiperiodi
 potential. Di�erent realizations of the potential 
orrespond in our
ase to di�erent values of the phase shift ϕ. The average lo
alization volume V 
anbe found numeri
ally by dire
t diagonalizing of the linear system. A plot of thisquantity as a fun
tion of the potential strength λ is shown in Fig. 5.1b.We 
an 
onveniently use the normal modes of the linear Aubry-André modelas a de
omposition basis of the wave fun
tion ψj , ψj =

∑

ν φνAν,j . In this way,
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potentialsEq. (4.8) 
an be rewritten for the evolution of the normal mode amplitudes φν :
i
∂φν
∂t

= Eνφν + β
∑

ν1,ν2,ν3

Iν,ν1,ν2,ν3φ
∗
ν1φν2φν3 (5.3)where Iν,ν1,ν2,ν3 is an overlap integral involving four normal modes:

Iν,ν1,ν2,ν3 =
∑

j

Aν,jAν1,jAν2,jAν3,j . (5.4)In the previous 
hapter we 
hara
terized the spreading of wavepa
kets mainly by
onsidering the time evolution of the parti
le density nj = |ψj |2, whi
h is des
ribedby Eq. (5.1). We basi
ally follow the same approa
h also in this 
hapter. However, itis worth stressing that the evolution of wavepa
kets 
an be equivalently des
ribed inthe spa
e of normal modes. This 
an be done by assigning a position to ea
h normalmode through its 
enter of normXν , and following the evolution of the normal modesamplitudes φν given by Eq. (5.3); we 
an therefore introdu
e a density also in normalmode spa
e nν = |φν |2.By performing a numeri
al study of the time evolution of nν and nj , one 
anshow that, after a short transient time and after averaging over many realizations,the two densities are very similar, leading to a time evolution in the two spa
es thatis almost identi
al. In the rest of our analysis, we will mainly 
onsider the evolutionof the density of parti
les nj , but we will also use the normal mode spa
e for sometheoreti
al 
onsiderations.5.2 Relevant energy s
alesInteresting information on the spreading of initially lo
alized wavepa
kets 
an beobtained from a 
omparison of two energy s
ales of the nonintera
ting spe
trumasso
iated to Eq. (5.1) and of an energy s
ale asso
iated to the nonlinear term. Inthis se
tion we will introdu
e these three energy s
ales (d, ∆, δ) and explain theirmeanings.The spe
trum for λ > 2 is purely dense-point, 
hara
terized by the presen
e ofan in�nite number of gaps and bands. A plot of the Aubry-André model's spe
trumas a fun
tion of λ is shown in Fig. 5.1c. In this �gure, one 
learly sees the presen
eof two major gaps dividing the spe
trum in three parts, ea
h of them divided in turnin three smaller parts, and so on. An intuitive understanding of this band stru
ture
an be given, following an heuristi
 argument. The wavelength asso
iated to thepotential Vj is 1/|α̃| = (
√
5 + 3)/2 ≈ 2.62 (see se
tion 3.1 for more details). Ane�e
tive wavelength equal to an integer number q would 
orrespond to a separationin exa
tly q bands. Our value of 1/|α̃| lies between two and three, so that the bandstru
ture has neither two nor three bands, but three main bands with an internalstru
ture of sub-bands. In the following we will 
all these portions of spe
trumseparated by the largest gaps �mini-bands�. For our purposes, it is enough to 
onsider
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ales 65a division of the spe
trum inM = 3 or at most inM = 9 mini-bands. Smaller mini-bands have vanishingly small e�e
ts on the time evolution of wavepa
kets.Let us introdu
e two energy s
ales asso
iated with the linear system [126, 138℄.The �rst one, ∆, is the full width of the spe
trum, de�ned as the di�eren
e betweenthe largest and the smallest eigenvalues: ∆ = max{Eν} − min{Eν}. The se
ondone, d, is the mean spa
ing of eigenvalues within a single mini-band and within therange of a lo
alization volume. Let us explain how we 
al
ulate this quantity. We
onsider a given mini-band and all the eigenstates that lie in it. For ea
h eigenstate
ν, we 
al
ulate its lo
alization volume Vν and then we form the subset of the othereigenstates, {µ}, belonging to the same mini-band and intera
ting with it, namely,those ful�lling the 
ondition |Xν − Xµ| < Vν/2. The average number of states inthe subset 
an be estimated as V/M . Then we 
al
ulate the energy spa
ings withinthis subset. This pro
edure is repeated for ea
h eigenstate in the band and thenaveraging over all the eigenstates and di�erent disorder realizations gives the meanspa
ing d.The number of mini-bands M to be used in the 
al
ulations of d depends on λ.For a given λ we 
hooseM in su
h a way that the lo
alization volume V satis�es the
ondition V/M > 2. This implies that, on average, there are at least two eigenstateswithin the subset {µ} that we 
an use to 
al
ulate the average energy spa
ings. Wealways 
onsider λ > 2.1; therefore it is enough to divide the spe
trum at most in ninemini-bands. As λ is in
reased the average lo
alization volume of the eigenstates Vde
reases � therefore at some point we have to 
onsider the spe
tral separation intosmaller mini-bands. In pra
ti
e we 
onsider M = 9 mini-bands for 2.1 . λ . 2.2,
M = 3 mini-bands for 2.2 . λ . 2.75 and just one band (i.e., the full spe
trum)for λ & 2.75. A plot of the energy s
ales ∆ and d as a fun
tion of λ is shownin Fig. 5.2. These two quantities have been 
al
ulated numeri
ally diagonalizingEq. (5.2). The dashed verti
al lines represent the values of λ where the number ofmini-bands 
hanges in the 
al
ulation of d.We note that in the present setting, where we have set ~ = 1 and we are dealingwith spreading of nonlinear wavepa
kets, all the energies 
an also be interpreted asfrequen
ies. For instan
e the eigenenergies of the system Eν 
an also be interpretedas the os
illation frequen
ies of the normal modes. In the following we will thereforeuse the terms energy and frequen
y inter
hangeably.Let us now introdu
e the energy s
ale asso
iated to the nonlinearity, δ, we will
all it nonlinear frequen
y shift following the notation introdu
ed in [126℄. In orderto explain the 
on
ept of nonlinear frequen
y shift let us �rst 
onsider a single siteproblem with an on-site potential V . The time evolution of this system is des
ribedby the following equation of motion iψ̇ = V ψ + β|ψ|2ψ and 
an be viewed as theevolution of an os
illator that experien
es a nonlinear frequen
y shift δ = β|ψ|2away from its linear frequen
y V . The evolution des
ribed by Eq. (5.1), whi
hinvolves many latti
e sites, 
an be viewed as a set of 
oupled os
illators and it ismore 
onvenient to approa
h the problem in normal mode spa
e. From Eq. (5.3)one 
an see that the frequen
y shift 
an be estimated as δ ∼ βn, where n is a
hara
teristi
 average density n = n̄ν ≈ n̄j whi
h is approximately equal in real and
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potentialsmode spa
e, as we have dis
ussed in the previous se
tion.5.3 Expe
ted spreading regimesEquation (5.3) indi
ates that the presen
e of nonlinearity in the DNLS model in-trodu
es a 
oupling between eigenstates of the underlying linear spe
trum. Wealready dis
ussed in the previous 
hapter that this leads to a subdi�usive spread-ing of wavepa
kets, i.e. its width grows asymptoti
ally as w ∼ tγ with γ < 0.5.This behaviour has been observed both numeri
ally and experimentally. However,a systemati
 investigation of the behaviour of the exponent γ in di�erent regimes ofstrong and weak 
haos, and self-trapping, have not been done so far. In this se
tion,we approa
h this issue by �rst 
omparing the nonlinear frequen
y shift δ = βn withthe energy s
ales ∆ and d, in su
h a way as to introdu
e the di�erent spreadingregimes expe
ted to be observed in the subsequent numeri
al simulations.Let us 
onsider an initial wavepa
ket with density n and lo
alization volume Llarger than the average lo
alization volume of the eigenstates of the linear spe
trum,
L ≥ V . If δ > ∆, nonlinearity is so strong that all the parti
ipating normal modeswithin the wavepa
ket are shifted out of resonan
e with respe
t to the non-ex
itedneighbourhood; therefore spreading is largely suppressed and a signi�
ant part of thewavepa
ket remains self-trapped. In se
tion 4.2.1 we introdu
ed this phenomenonfollowing an energy 
onservation argument while here we presented it from a di�erentperspe
tive, as an exited mode whi
h is o�-resonant with the other neighbouringmodes. We note that both analysis lead to the same 
on
lusion that the relevantenergy s
ale for the determination of the self-trapping transition is the width of thelinear spe
trum ∆.If instead δ < ∆, we are no longer in the self-trapping regime and two sub-
ases
an be distinguished: on one hand, when δ > d, strong 
haos is realized, the modefrequen
ies are strongly shifted and all the modes in the pa
ket are resonantly inter-a
ting with ea
h other, thus produ
ing an e�
ient spreading. On the other hand,when δ < d, the mode frequen
ies in the wavepa
ket are only weakly shifted andweak 
haos is obtained: only a fra
tion of modes intera
t resonantly, the lo
alizationis still destroyed, but spreading is slower.If L < V the estimate of the self-trapping transition is done as before, that is by
omparing δ = βn with the spe
trum width ∆. If self-trapping is avoided, however,the wavepa
ket initially spreads also in absen
e of nonlinearity, eventually �lling thelo
alization volume V . Consequently the initial density n is redu
ed to ñ ≈ nL/V ,due to linear time evolution, the relevant nonlinear frequen
y shift must now be
al
ulated by using this redu
ed density ñ. Apart from this detail, whi
h originatesfrom the initial dynami
s at short times, the asymptoti
 spreading regimes are thesame as before. Note that the strong 
haos regime 
an only exist as a transientregime: as the wavepa
ket spreads, its norm density n(t) de
reases, and eventuallywill rea
h a situation where βn(t) < d. At this point, a 
rossover from strong to
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Figure 5.2: Energy s
ales ∆ (top blue line) and d (bottom red line) plotted asa fun
tion of the potential strength λ. The empty (downward) and full (upward)triangles 
orrespond to the values of δ that we have used for the simulations with theDNLS model and with the KG model respe
tively. Comparing the nonlinear frequen
yshift δ with the energy s
ales ∆ and d one 
an predi
t the di�erent spreading regimesof weak 
haos (δ < d), strong 
haos (d < δ < ∆) and self-trapping (δ > ∆). Theseparation between the three regimes should not be interpreted as a sharp boundary,but as a smooth 
rossover.weak 
haos is expe
ted to o

ur during the time evolution [131℄. To summarize
βn > ∆ self-trapping (5.5)

d < βñ < ∆ strong 
haos (5.6)
βñ < d weak 
haos (5.7)where ñ = n if L ≥ V and ñ = nL/V if L < V .Let us �nally stress that the �transition lines� that we have introdu
ed by 
om-paring the nonlinear frequen
y shift with the typi
al energy s
ales of the linearspe
trum do not de�ne sharp phase transitions between di�erent spreading regimes.Instead, we may expe
t to see a relatively smooth 
rossover, su
h that the regimesof self-trapping, strong 
haos and weak 
haos should be 
learly identi�ed only farfrom the transition lines.
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potentials5.3.1 Spreading lawsIn the previous se
tion we dis
ussed how to predi
t the di�erent spreading regimesstarting from energy s
ale arguments, but this method does not provide informationon the spreading laws asso
iated to the di�erent regimes. Here we dis
uss this issueby making a link with the 
on
epts of strong and weak 
haos.We follow the theory whi
h has been �rst introdu
ed by Fla
h, Skokos, Krimerand Komineas in Refs. [126, 129℄ and then developed further in Ref. [130℄. Morere
ently Mi
haely and Fishman [139℄ dis
ussed more in detail some assumptionson whi
h the theory is based. So far, the theory has been applied to a purelydisordered system where the potential Vj is a random variable uniformly distributedin the interval [−W/2,W/2]. However, it 
an be applied also to the quasiperiodi

ase des
ribed by Eq. (5.1). In fa
t the theory 
an be used when (i) the equationasso
iated to the linear system yields Anderson lo
alization, (ii) the lo
alizationlength Lloc is upper bounded, (iii) the nonlinearity is 
ompa
t in real spa
e anddoes not indu
e long range intera
tions between normal modes of the linear system.The starting point is the equation of motion in normal mode spa
e (5.3). Let usrewrite this equation by removing the trivial time evolution whi
h is given by thelinear term. This 
an be done by substituting
φν(t) = χν(t)e

−iEν t (5.8)into Eq. (5.3). One obtains
i
∂χν

∂t
= β

∑

ν1,ν2,ν3

Iν,ν1,ν2,ν3 χ
∗
ν1χν2χν3 e

i(Eν+Eν1−Eν2−Eν3 ). (5.9)Let us de�ne the right hand side of this equation as a generi
 fun
tion F (t). Thetheory now 
onsiders the spreading from the region o

upied by the wavepa
ket,where the modes ν1, ν2, ν3 lie, to the exterior non-exited region, where the mode νis lo
alized. Moreover it is assumed that all the modes inside the pa
ket are exitedto the same density n [126, 129℄, in parti
ular
|χν1 |2 ≈ |χν2 |2 ≈ |χν3 |2 ≈ n |χν |2 ≪ n. (5.10)The key assumption of the theory, whi
h is sometimes referred to as the �randomphase ansatz� [140℄, is that F (t) behaves as a random noise. This ansatz 
ombinedwith (5.10) suggests that the right hand side of Eq. (5.9) 
an be written in thefollowing form [130, 139℄

F (t) ≈ Cβn3/2P(βn)f(t) (5.11)where P(βn) is the number of resonant modes in the pa
ket, i.e. those who stronglya�e
ts the dynami
s of ν, f(t) is a random noise su
h that 〈f(t)f(t′)〉 = δ(t−t′)1 and
C is a 
onstant that does not depend on β and n. For purely random systems the1here 〈. . . 〉 indi
ates an average over the disordered potential.
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ted spreading regimes 69resonan
e probability has been estimated to be P(βn) = (1−e−C0βn) [126, 129, 138℄while for the quasiperiodi
 model under 
onsiderations we will present a 
al
ulationof this quantity in the next se
tion. The validity of the random phase ansatz andof the relation 〈f(t)f(t′)〉 = δ(t− t′) has been re
ently veri�ed numeri
ally in [139℄.Combining Eqs. (5.9) and (5.11) one �nds
i
∂

∂t
χν ≈ Cβn3/2P(βn)f(t), (5.12)and therefore

χν ≈ −iCβn3/2P(βn)

∫ t

0
f(t′) dt′. (5.13)Taking the modulus square and averaging over the disorder yields

〈|χν |2〉 ≈ Cβ2n3[P(βn)]2t. (5.14)From this equation it is possible to estimate a momentary di�usion rate, D,whi
h is proportional to the inverse of the equilibration time T , i.e. the time neededto ex
ite the exterior mode ν to the pa
ket level n
T =

1

Cβ2n2[P(βn)]2
and D ∼ 1

T
(5.15)The equilibrium time T varies slowly with t, this 
an be veri�ed by 
he
king that

∂T
∂t → 0 for t→ ∞. In other words, there is a separation of times
ales: on the s
alegiven by T the system seems to equilibrate by a di�usion pro
ess and the pa
ketpopulates the region o

upied by ν; on a longer times
ale there is an even longerequilibration pro
ess asso
iated to a slower di�usion. We will 
omment more on thispoint at the end of the se
tion. Thus, for times mu
h larger than T the spreadingis governed by a di�usion equation and in parti
ular

w(t) ∼
√
Dt1/2. (5.16)Sin
e the width of the wavepa
ket is of the order of the inverse of the density w ∼ 1/nwe 
an rewrite Eq. (5.16) as follows

1

n
∼ β1/2[P(βn)]1/2t1/4. (5.17)What we have dis
ussed so far is general and applies both to the random and thequasiperiodi
 
ase. For the remaining part of this se
tion we 
ontinue the dis
ussionfo
using on random systems and we will use P(βn) = (1 − e−C0βn). In the nextse
tion we will 
al
ulate P(βn) and dis
uss the spreading laws for the quasiperiodi

ase.For large values of the nonlinear frequen
y shift, δ = βn, it is easy to verifythat P(βn) = (1 − e−C0βn) → 1. In this situation strong 
haos is realized andall the modes are resonantly intera
ting. From Eq. (5.17) one obtains that the
orresponding spreading law is

w(t) ∼ t1/4. (5.18)
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Figure 5.3: Comparison between the probability density fun
tion W(Rν, ~ν0) of thequasiperiodi
 DNLS model and of the random DNLS model. For the quasiperiodi

ase, λ = 2.5, while for the random 
ase, we 
hoose a disorder strength that gives asimilar lo
alization length.Conversely, for small values of the nonlinear frequen
y shift P(βn) → βn, thepa
ket is in the weak 
haos regime and only a fra
tion of the modes is resonant. Asa 
onsequen
e a slower spreading is obtained
w(t) ∼ t1/6. (5.19)Eqs. (5.18) and (5.19) de�nes the expe
ted spreading laws for the weak 
haos andstrong 
haos regimes for the random 
ase. Numeri
al simulations are in very goodagreement with these theoreti
al expe
tations [126, 129, 131, 132℄.Starting from the spreading laws (5.18) and (5.19) one 
an derive the asymptoti
time evolution also for n(t) and T (t) [139℄. One 
an therefore observe that ∂T

∂t and
∂n
∂t tends both to zero for large times. This justi�es the separation of times
ales thatwe mentioned previously. Moreover ∂n

∂t ≪ ∂T
∂t for t→ ∞, therefore the fa
t that we
onsidered a 
onstant density n in the derivation of the equilibration time T and ofthe di�usion rate D is justi�ed in the long time limit [139℄.5.3.2 Resonan
e probabilityLet us estimate the number of resonant modes in the pa
ket P(βn) for the quasiperi-odi
 model under 
onsideration (5.1). As we have seen in the previous se
tion thisis a key quantity for the determination of the spreading behaviour. A

ording to



5.3. Expe
ted spreading regimes 71Eq. (5.9), due to nonlinearity, the evolution of a given normal mode is a�e
ted byany three (triplet) modes. The 
oupling is the largest if the triplet modes havelarge amplitudes and if the overlap integrals are large, i.e., if the triplet modes are
lose enough in spa
e to the given normal mode. Some of these triplet modes maya�e
t the dynami
s of the 
hosen mode ν strongly, some weakly. To distinguishthese triplet groups, we apply perturbation theory to Eq. (5.9) [126, 141℄. We use aperturbation expansion of the 
oe�
ients χν in powers of β
χν = χ(0)

ν + χ(1)
ν + χ(2)

ν + ... = c(0)ν + βc(1)ν + β2c(2)ν + ... (5.20)At �rst order and assuming (5.10) one �nds
χ(1)
ν = −βn3/2

∑

ν1,ν2,ν3

Iν,ν1,ν2,ν3
Eν + Eν1 − Eν2 −Eν3

ei(Eν+Eν1−Eν2−Eν3)t (5.21)It follows that the amplitude of a normal mode ν is 
hanged by a given triplet ofother wavepa
ket modes ~ν = {ν1, ν2, ν3} (we 
onsider just the 
ontribution of asingle triplet to the sum of Eq. (5.21)) as
|χ(1)

ν | = β
n3/2

Rν,~ν
(5.22)where

Rν,~ν =

∣

∣

∣

∣

Eν + Eν1 − Eν2 − Eν3

Iν,ν1,ν2,ν3

∣

∣

∣

∣

. (5.23)The perturbation approa
h breaks down and resonan
es set in when √
n < |χ(1)

ν |[126, 138℄. Substituting
Rν,~ν < βn. (5.24)This expression tells us that the resonan
e 
ondition, for a given normal mode ν, isful�lled if there is at least one triplet of modes ~ν that satis�es inequality (5.24).The probability for the onset of a resonan
e 
an therefore be 
al
ulated with thefollowing statisti
al numeri
al analysis [126, 138℄. For a given normal mode ν, wede�ne Rν,~ν0 = min~ν{Rν,~ν}. Colle
ting Rν,~ν0 for many modes and many values of thephase ϕ, we �nd the probability density distribution W(Rν, ~ν0). From this quantitywe 
an 
al
ulate the probability P for a mode, whi
h is exited to a norm density

n, to be resonant with at least one triplet of other modes at a given value of theintera
tion parameter β. This is obtained by integrating W(Rν, ~ν0) from zero to βn
P =

∫ βn

0
W(R) dR. (5.25)An example of probability density W(Rν, ~ν0) for λ = 2.5 is shown in Fig. 5.3 (redline). For 
omparison we also show the same quantity for the random DNLSmodel (bla
k line), as dis
ussed in [126, 138℄, whi
h is approximately given by

W(R) ≈ C0e
−C0R. Ex
ept for �ne stru
tures, like small sharp peaks appearing
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potentialsin the quasiperiodi
 
ase, the overall behaviour is qualitatively very similar in thetwo 
ases. In parti
ular, in both 
ases, the probability density W(R) tends to a�nite 
onstant value C0 when R→ 0 and then tends rapidly to zero for large valuesof R.As a 
onsequen
e we expe
t the same spreading behaviour in the quasiperiodi
and in the random 
ase. More pre
isely, for small values of the nonlinear frequen
yshift δ = βn, a non-zero fra
tion of modes in the pa
ket is resonant. The probabilityto be resonant is given by P(βn) ∼ βn, thus we are in the weak 
haos regime. Forlarge values of βn, instead all the modes intera
t resonantly and P = 1; we arethen in the strong 
haos regime. Following the reasoning presented in the previousse
tion, this implies that also in the quasiperiodi
 
ase, as in disordered systems,we may expe
t to �nd w(t) ∼ t1/6 in the weak 
haos regime and w(t) ∼ t1/4 in thestrong 
haos regime.5.4 Numeri
al observationsWe perform extensive numeri
al simulations solving Eq. (4.8) for di�erent sets ofparameters {λ, β}. For ea
h 
hoi
e of parameters we average over N di�erent re-alizations of the quasiperiodi
 potential obtained by randomly 
hanging the phaseshift ϕ. As initial 
onditions, we use 
ompa
t wavepa
kets that lie in the 
enter ofour 
omputational box, taking 
are that during the time evolution the wavepa
ketnever rea
hes the box boundaries. The number of realizations 
onsidered varies be-tween 100 and 500 and the number of latti
e sites between 200 and 2000. To solvethe equations of motion, we use symple
ti
 integration s
hemes of the SABA family[142, 129℄ that allow us to rea
h large integration times with good a

ura
y2.In order to quantify the type of subdi�usive behaviour, we 
al
ulate the exponent
γ by 
onsidering the logarithm of the width log10w for di�erent realizations of thepotential. We 
ompute the average value 〈log10 w〉 and its statisti
al error, givenby the standard deviation divided by the square root of the number of realizations
N . Then the value of γ at a given time t is 
al
ulated by applying a linear �ttingpro
edure to the 
urve 〈log10w〉 within a �xed time interval around log10 t. Byrepeating this pro
edure at di�erent t, we extra
t the behaviour of γ as a fun
tionof time and its relative statisti
al error. In order to dete
t the self-trapping transition(as we have done in se
tion 4.2.1) we also 
al
ulate the average parti
ipation number,
〈log10 P 〉. Finally we also quantify the sparsity of the wavepa
ket by 
al
ulating the
ompa
tness index [129℄

ξ =
P 2

w2
=
P 2

m2
. (5.26)This de�nition follows from the fa
t that the width w (and also the se
ond moment

m2) is sensitive to the spreading of the tails of the distribution while the parti
ipation2The numeri
al a

ura
y of our 
al
ulation is 
ontrolled by 
he
king the 
onservation of theenergy H and the norm N of the expanding wavepa
ket (
he
k Eqs. (4.11) and (4.10)). The erroris always kept smaller than 10−2.5. For the integration we used time steps between 0.1 and 0.05.
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al observations 73number P is a measure of the inhomogeneity of the distribution, being insensitiveto any spatial 
orrelation. For this reason a 
ombination of these two quantitiesgives a measure of the sparsity of a distribution. In parti
ular smaller values of ξ
orrespond to more sparse wavepa
kets.5.4.1 Results for square wavepa
ketsLet us �rst show our results for initial wavepa
kets that has a square shaped distri-bution whi
h populates L latti
e sites with equal density nj = |ψj |2 = 1/L. In thisparti
ular 
ase the 
al
ulation of the nonlinear frequen
y shift is straightforwardsin
e the average density is simply given by n = 1/L and δ = β/L. In Fig. 5.4 wepresent a representative set of simulations for λ = 2.5. We 
hoose L = 13, whi
hgives an initial lo
alization volume larger than V . The di�erent panels show the timeevolution of the width 〈log10 w〉, the spreading exponent γ, the parti
ipation ratio
〈log10 P 〉, and the 
ompa
tness index 〈ξ〉. The width of the 
urves for 〈log10 w〉,
〈log10 P 〉 and γ 
orresponds to the statisti
al error. The values of the nonlinearfrequen
y shift δ indu
ed by the initial wavepa
kets used in these simulations areshown in Fig. 5.2 (empty downward triangles) in order to 
ompare them to therelevant energy s
ales ∆ and d.In all simulations we observe that nonlinearity 
auses the wavepa
ket to spread.The spreading starts earlier when β is larger. We �nd that the spreading is alwayssubdi�usive (γ < 0.5), 
on�rming the result of previous se
tions 4.2.2 and 4.3.2.Subdi�usion is seen both in the width w and in the parti
ipation number P , ex
eptfor the largest value of β (yellow 
urves in Fig. 5.4). In the latter 
ase, P saturatesto a 
onstant value after a transient time, a 
lear signature of self-trapping. Thisobservation of self-trapping only for β = 100 is 
onsistent with the energy s
alearguments s
hemati
ally represented in Fig. 5.2. In the absen
e of self-trapping, the
ompa
tness index ξ saturates to a 
onstant value, indi
ating that the wavepa
ketspreads but does not be
ome more sparse. Conversely, in the presen
e of self-trapping the 
entral part of the wavepa
ket remains spatially trapped while its tailskeep expanding, thus resulting in a wavepa
ket that be
omes more sparse during theevolution, ni
ely quanti�ed by the 
ompa
tness index whi
h de
reases to zero. Wenoti
e that the portion of pa
ket that is expanding is 
hara
terized by a value of γlarger than 1/4. After an initial in
rease, γ rea
hes a maximum and then de
reasesto smaller values. In this regime, the evolution is rather 
omplex and the theorypresented in se
tion 5.3.1 does not apply sin
e 
ondition (5.10) is not satis�ed. Asimilar behaviour was previously obtained also in random systems [131, 132℄. Thetransient large values of γ may be due to a nontrivial intera
ting me
hanism thattakes pla
e between the expanding part and the self-trapped portion, resulting infaster spreading, an e�e
t that we 
all �overshooting�.For the lowest values of β the energy s
ale arguments suggest the o

urren
e ofweak 
haos. Indeed for β = 0.5 and 1 the exponent saturates asymptoti
ally aroundthe theoreti
al value γ = 1/6 (red and green 
urves in Fig. 5.4), as expe
ted. Itis worth mentioning that this asymptoti
 exponent is the same as in random sys-
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Figure 5.4: Numeri
al results obtained by integrating the DNLS equations of motion(4.8). The time evolution of 〈log10 w〉 (left panel, top), γ (right panel, top), 〈log10 P 〉(left panel, bottom), and 〈ξ〉 (right panel, bottom) is shown versus log10 t for di�erentvalues of the nonlinear parameter β = 0.5, 1, 5, 10, 100. The initial wavepa
ket inall simulations is a square distribution with L = 13 and the potential strength is
λ = 2.5. In the top right panel the two dashed lines 
orrespond to theoreti
allypredi
ted power laws γ = 1/6 and γ = 1/4. The width of the lines for the quantities
〈log10 w〉, 〈log10 P 〉 and γ represents the statisti
al error, whi
h depends on time andon the number of realizations. In most 
ases the statisti
al error is smaller than theresolution of the �gure.tems [130, 131℄; meaning that the me
hanism leading to destru
tion of exponentiallo
alization is rather universal.In di�eren
e to the random 
ase, here during the time evolution, the value of γtemporarily in
reases above 1/6, eventually rea
hing its asymptote only at longertimes. This is an overshooting similar to the one that we have dis
ussed above forthe self-trapping regime, but o

urring also for weaker nonlinearities. This e�e
t isunique to the quasiperiodi
 system and is likely due to the presen
e of an in�nitenumber of mini-bands and gaps in the linear spe
trum of the Hamiltonian, whi
h
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Figure 5.5: Average logarithm of the width of the expanding wavepa
ket, 〈log10 w〉and spreading exponent, γ for λ = 2.2 (left plots) and λ = 3.5 (right plots).For
λ = 2.2, the initial wavepa
ket has width L = 31 and we 
onsider β = 0.18 (lowerred 
urves),1 (mid green 
urves) and 6.5 (upper blue 
urves). For λ = 3.5, the initialwavepa
ket has width L = 5 and we 
onsider β = 5.5 (lower red 
urves), 15 (midgreen 
urves), and 50 (upper blue 
urves). The width of the lines represents thestatisti
al error as in Fig. 5.4. Insets: average 
ompa
tness index of the expandingwavepa
ket 〈ξ〉 for the same sets of simulations.
auses a temporary self-trapping of portions of the expanding wavepa
ket in oneor more energy gaps between mini-bands. This partial self-trapping is di�erentfrom the self-trapping that o

urs when δ > ∆, where all the pa
ket modes aresimultaneously shifted out of resonan
e. For this reason partial self-trapping is notdete
table as a saturation of the parti
ipation number P and 
an only be seenindire
tly as an overshooting in the exponent γ.The two simulations for β = 5 and 10 lie in a range of energy were we expe
tto see strong 
haos (blue and magenta 
urves in Fig. 5.4). As already said in the
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potentialsprevious se
tion, the strong 
haos regime is transient: one should �nd a value of
γ around 1/4 for a few de
ades of time, eventually de
reasing towards the asymp-toti
 value 1/6. The two 
orresponding 
urves in Fig. 5.4 indeed exhibit a behaviourwhi
h qualitatively agrees with this expe
tation. The value of γ �rst rises up to 1/4,os
illates around this value and then starts to de
rease as predi
ted. However, espe-
ially for large β, we also observe values of γ larger than 1/4. As in the weak 
haosregime, this overshooting again is eviden
e of partial self-trapping. Its me
hanism isalso transient and o

urs in the same time intervals where strong 
haos is expe
ted.For this reason, while weak 
haos is 
learly observed in our simulations, strong 
haosand partial self-trapping tend to overlap, thus produ
ing a more 
omplex evolutionof the wavepa
ket in quasiperiodi
 systems than in random systems.In Fig. 5.5 we show the results of simulations for λ = 2.2 and λ = 3.5; the
orresponding values of nonlinear frequen
y shift are reported as triangles in Fig. 5.2.The values of L are L = 31 for λ = 2.2 and L = 5 for λ = 3.5, both larger than
V . For {λ, β} = {2.2, 0.18} and {λ, β} = {3.5, 5.5} energy s
ale arguments predi
tweak 
haos. We indeed �nd a spreading exponent whi
h approa
hes asymptoti
allythe value 1/6. For {λ, β} = {2.2, 1}, {λ, β} = {2.2, 6.5} and {λ, β} = {3.5, 15} thepredi
ted behaviour is either strong 
haos or a regime in between strong and weak
haos. What we observe numeri
ally is a growth of the spreading exponent γ up to
1/4 and even to larger values, followed by a de
rease towards 1/6. In most 
ases, oursimulations show a signi�
ant overshooting due to partial self-trapping. It is worthmentioning that this e�e
t is larger for weaker disorder strength λ, 
onsistent withthe fa
t the linear spe
trum exhibits larger mini-gaps in this regime (see Fig. 5.1).Finally for {λ, β} = {3.5, 50}, we observe self-trapping, as expe
ted.In 
on
lusion, from the analysis of the results of the DNLS model for di�erentvalues of λ we �nd that the energy s
ale arguments and the model dis
ussed inse
tion 5.2 
orre
tly explain the overall trend of the numeri
al simulations and theseparation between di�erent spreading regimes in the parameter spa
e.5.4.2 Role of the shape of the initial wavepa
ketIn this se
tion we show that the results dis
ussed so far do not depend on the shapeof the initial wavepa
ket. Besides its theoreti
al interest, this issue is also relevantfrom the point of view of experiments, where it is not always possible to design thewavepa
kets at will.In the previous se
tion, we have used a square distribution as initial wavepa
ket.Now, inspired by the experiments with ultra
old atoms, we 
onsider initial wavepa
k-ets with the shape of a Gaussian distribution (as we have done in se
tion 4.2.2) or aThomas-Fermi (TF) distribution. In this 
ase of inhomogeneous initial wavepa
ketsthe average value of the density is estimated as the inverse parti
ipation number at
t = 0, n =

∑

j |ψj |4. Therefore the nonlinear frequen
y shift is given by β∑j |ψj |4,whi
h is also identi
al (up to a prefa
tor) with the mean-�eld intera
tion energy.Let us re
all the de�nition of Gaussian wavepa
ket (
fr. se
tion 3.3) whi
h is
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Figure 5.6: Average logarithm of the width of the expanding wavepa
ket, 〈log10 w〉and spreading exponent, γ as a fun
tion of time for di�erent nonlinearities β =

0.5, 1, 5, 10, 100. The disorder strength is λ = 2.5 in all simulations. As an initial
ondition, we have used a Gaussian wavepa
ket with σ = 5 (left plots) and a TF dis-tribution with R = 7.50 (right plots). The width of the lines represents the statisti
alerror as in Fig. 5.4. Insets: average 
ompa
tness index of the expanding wavepa
ket
〈ξ〉 for the same sets of simulations.given by

ψj(0) = C1e
− j2

2σ2 , (5.27)where σ is a parameter 
ontrolling the width of the pa
ket while C1 is a 
onstantfa
tor that 
an be determined by using the normalization 
ondition ∑j |ψj |2 = 1.A Thomas-Fermi wavepa
ket is instead de�ned by
ψj(0) = C2

√

1− j2

R2
(5.28)
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potentialsin the region where |j| < R and ψj = 0 otherwise. The parameter R is the Thomas-Fermi radius 
hara
terizing the width of the distribution, while the 
onstant C2 isa normalization fa
tor. These two distributions are of interest when 
onsideringultra
old bosons initially released from an harmoni
 trap in the Gross-Pitaevskiiregime [107℄.In Fig. 5.6 we show the time evolution of the width of the expanding wavepa
ket,
〈log10 w〉 (top row) and of the spreading exponent, γ (bottom row), using initiallya Gaussian (left 
olumn) and a TF (right 
olumn) wavepa
ket distribution. In theinsets we also show the 
ompa
tness index 〈ξ〉, in order to identify the self-trappingregime. We 
hoose the width of the initial distributions (σ and R) so that thenonlinear frequen
y shift is similar to the one already used for the simulations inFig. 5.4. In parti
ular we use σ = 5 and R = 7.5, yielding a nonlinear frequen
yshift δ ≈ β/13. The values of β used in Fig. 5.6 are the same as those previously
onsidered.From the 
omparison between the results of Fig. 5.6 and Fig. 5.4, we 
an 
on
ludethat the shape of the initial wavepa
ket does not a�e
t the overall behaviour of thetime evolution, nor its interpretation in terms of regimes of weak and strong 
haos,self-trapping, and overshooting. This suggests the results that we have obtained arerather general and that the nonlinear frequen
y shift δ is the only key parameter
ontrolling the dynami
s of the wavepa
ket.5.5 Appli
ation to 
old atomsLet us now dis
uss the relation of the analysis performed in this 
hapter with theresults presented in se
tion 4.3.2 where we measured the spreading exponent γ fortimes of the order of the duration of typi
al experiments with ultra
old atoms.We 
an say that the results presented here are 
onsistent with the observationsof 4.3.2 where we observed spreading exponents larger than 1/6 already for weaknonlinearities and even larger than 1/4 for larger nonlinearities. In fa
t in ourdimensionless units, the experimental expansion is of the order of 104 and the widthof the atomi
 
loud in
reases up to 50 − 100 latti
e sites. Considering Figs. 5.4and 5.5 we 
an see that the typi
al experimental times
ale is of the same order ofmagnitude of the times
ale for o

urren
e of partial self-trapping. In 
on
lusion ourwork suggests that su
h large values of γ 
an be explained in terms of a transientovershooting 
aused by partial self-trapping in mini-bands.We would like also to 
omment on the validity of the DNLS equation for thedes
ription of experiments with ultra
old atomi
 gases. Let us re
all that the DNLSequation 
orresponds to a dis
retized version of the Gross-Pitaevskii equation forthe dynami
s of a Bose-Einstein 
ondensate in the single-band approximation. Thevalidity of this mean-�eld theory is not ensured for those dynami
al regimes whereGross-Pitaevskii equation predi
ts 
haos, whi
h 
an be viewed as a signature of alarge depletion of the 
ondensate [143, 144, 145, 146, 147, 148, 149℄. For this rea-son, in the presen
e of disorder the theory fails to predi
t the long time evolution
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tly related to small s
ale �u
tuations and long-range 
oheren
e.However, for 
oarse-grained observables, like the width of the wavepa
ket in realand momentum spa
e, or the parti
ipation number, the predi
tions of the theoryremain very good even in regimes where the depletion is expe
ted to be large, longafter the random �u
tuations prevent the predi
tion of �ne s
ale stru
tures. Thishas been re
ently shown in Ref. [149℄ by 
omparing the predi
tions of the Gross-Pitaevskii equation with one beyond mean-�eld theory in numeri
al simulationswithin times
ales of the order of typi
al experiments with 
old atoms and longenough to observe the e�e
ts of depletion and 
haoti
 dynami
s. Indeed our anal-ysis is essentially based on 
oarse-grained observables. In addition, for ea
h set ofparameters we also average over many realizations and this extends the validity ofthe present approa
h even for longer times, as any residual dependen
e on smalls
ale �u
tuations is further suppressed by the averaging pro
edure.5.6 Klein-Gordon modelIn order to show the generality of our results we 
onsider a di�erent quasiperiodi
model where one 
an observe the interplay between Anderson lo
alization and non-linearity; this model is a quasiperiodi
 version of the quarti
 Klein-Gordon (KG)latti
e.The Hamiltonian of this model is given by
HKG =

1

2

∑

j

[

p2j + Ṽju
2
j +

1

2
u4j +

1

2λ
(uj+1 − uj)

2

]

, (5.29)where uj and pj are the generalized 
oordinates and momenta on the site j and
Ṽj = 1 + (1/2) cos(2παj + ϕ). This Hamiltonian des
ribes a set of 
lassi
al 
ou-pled os
illators. Ea
h os
illator has a linear part with a frequen
y that 
hangesquasiperiodi
ally along the latti
e and a nonlinear part. The 
oupling between thedi�erent os
illators is restri
ted to neighbouring sites. The energy asso
iated withlatti
e site j is

Ej =
p2j
2

+
Ṽju

2
j

2
+
u4j
4

+
(uj+1 − uj)

2

8λ
+

(uj−1 − uj)
2

8λ
. (5.30)The equations of motion are generated by ∂2uj/∂t2 = −∂H/∂uj , yielding

∂2uj
∂t2

= −Ṽjuj − u3j +
1

2λ
(uj+1 + uj−1 − 2uj) . (5.31)This set of equations 
onserve the total energy of the system H =

∑

j Ej whi
his a quantity that is stri
tly positive H > 0. Note that in the DNLS model the
onserved quantities are two, the norm of the wavepa
ket and the energy of thesystem; this represents a signi�
ant di�eren
e between the two models. The Klein-Gordon model has been extensively studied, sin
e it 
an give a simple des
ription ofthe non-dissipative dynami
s of anharmoni
 opti
al latti
e vibrations in mole
ular
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rystals [150℄. The total energy of the system H serves as a 
ontrol parameter ofnonlinearity, analogous to β for the DNLS model.The 
oe�
ient 1/(2λ) in Eq. (5.29) is 
hosen so that the linear parts of theHamiltonians of the KG and of the DNLS model 
orrespond to the same eigenvalueproblem. In fa
t, negle
ting the nonlinear term and using uj = Aj,νe
iων t redu
esEq. (5.31) to the Aubry-André model (5.2) with Eν = 2λ(ω2

ν − 1/λ − 1). As a
onsequen
e the lo
alization properties asso
iated to the linear part of the KG modelare again those of the Aubry-André model, the parameter λ represents the disorderstrength also in this 
ase and the two energy s
ales asso
iated to the linear spe
trum
d and ∆ are 
al
ulated in the same way.For the Klein-Gordon model we measure the spreading of wavepa
kets by tra
k-ing the normalized energy density εj = Ej/H whi
h plays the same role of nj in theDNLS 
ase. All the quantities that we have used for the study of the spreading ofwavepa
kets within the DNLS model (w, γ, P , x) 
an be de�ned also for the KGmodel simply by repla
ing nj with εJ .For small amplitudes the equation of the KG 
hain 
an be approximately mappedonto a DNLS model [151, 152, 153℄ using βN ≈ 6λH where N is the norm of thewavepa
ket within the DNLS model and in our 
ase is set equal to one. Thereforethe nonlinear frequen
y shift within the KG model 
an be 
al
ulated from the smallamplitude mapping and is given by δ ∼ 6λE where E is an average 
hara
teristi
energy asso
iated to the initial wavepa
ket. Moreover, following this small amplitudemapping, all the analyti
s that we have dis
ussed in the previous se
tions 
an beapplied applied also to the KG model.5.6.1 Numeri
al observations for the Klein Gordon modelDue to the existen
e of a mapping between KG and DNLS, we expe
t to observethe same spreading regimes in the two models. This has been already proven inpurely random systems where the two models reveal similar qualitative results ina wide range of parameters [126, 129, 130, 131, 132℄. Despite this similarity, thestudy of the KG model remains interesting for at least two reasons. On one hand,it allows for testing the generality of the results in a 
ase where there is just one
onserved quantity. This is highly nontrivial, espe
ially for self-trapping, for whi
hthe argument based on norm and energy 
onservation 
annot be applied in the KGmodel [123℄. On the other hand, the KG model is advantageous from a numeri
alpoint of view. The fa
t that there is just one 
onserved quantity results in twoorders of magnitude faster integration speed within the same integration error. Forthe numeri
al integration we use again a symple
ti
 integration s
heme of the SABAfamily [142, 129℄.Similarly to what was done for the DNLS model, we initially set the 
ompa
twavepa
kets to span a width L = 13 (unless otherwise stated) 
entered in the latti
e,su
h that ea
h site has equal energy Ej = E = H/L. This is implemented by settinginitial momenta of p = ±

√
2E with randomly assigned signs and zero 
oordinates.The values of initial energy densities E are 
hosen to give expe
ted spreading regimes
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Figure 5.7: Numeri
al results obtained by integrating the KG equa-tions of motion (5.31). The time evolution of 〈log10 w〉 (left panel,top), γ (right panel, top), 〈log10 P 〉 (left panel, bottom), and 〈ξ〉 (rightpanel, bottom) is shown versus log10 t. The parameters are {λ, E} =

{2.5, 0.005} , {2.5, 0.01} , {2.5, 0.055} , {2.5, 0.075} , {2.5, 1.0}. We used an initialwavepa
ket with width L = 13 for E = 0.005, 0.01, 0.075, 1 and L = 11 for
E = 0.075. The width of the lines for the quantities 〈log10 w〉, 〈log10 P 〉 and γrepresents the statisti
al error as in Fig. 5.4. In the top right panel the two dashedlines 
orrespond to theoreti
ally predi
ted power laws γ = 1/6 and γ = 1/4.of asymptoti
 weak 
haos, intermediate strong 
haos, and dynami
al 
rossover fromstrong 
haos to the slower weak 
haos subdi�usive spreading [130℄.The results of the time simulations are shown in Fig. 5.7, while the expe
tedspreading regimes are given in Fig. 5.2 (full upward triangles). As one 
an see by
omparing Fig. 5.7 with Fig. 5.4, the qualitative behaviour of the two models israther similar. After initial transients, whi
h in
rease with de
reasing nonlinearity,all KG simulations reveal subdi�usive growth of the width w a

ording to power law
w ∼ tγ with γ < 0.5. If self-trapping is avoided, all simulations show a similar sub-di�usive behaviour for the parti
ipation number; moreover, the wavepa
kets remain
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ompa
t as they spread, sin
e the 
ompa
tness index at the largest 
omputationaltimes saturates around a 
onstant value. For the two smallest values of initial en-ergy density E = 0.05 and E = 0.01, the 
hara
teristi
s of the weak 
haos regimeare observed, namely, the exponent γ saturates around 1/6 (red and green 
urves inFig. 5.7) after a transient time. We stress that the only di�eren
e from the purelyrandom systems is the overshooting phenomenon at transient times. This e�e
t isan inherent property of quasiperiodi
 systems whi
h inevitably manifests itself inall spreading regimes, while in the disordered 
ase it was shown to o

ur only in theregime of self-trapping [131, 132℄.For the two energy densities E = 0.055 and 0.075 we suggest strong 
haos,with 
hara
teristi
s similar to the DNLS 
ase. The simulation with E = 0.055(blue 
urves in Fig. 5.7) indeed exhibits the typi
al behaviour of the strong 
haoss
enario: the 
hara
teristi
 exponent γ in
reases up to predi
ted value 1/4 andremains so for about two time de
ades, followed by a 
rossover with γ de
reasingto the weak 
haos dynami
s. There is also another possibility for larger E = 0.075,when intermediate strong 
haos is masked due to partial self-trapping (magenta
urves in Fig. 5.7). Thus, γ shows values larger then 1/4 but still with subsequentde
ay to slower subdi�usion. Here, we would like to strongly emphasize that none ofthe simulations exhibit pronoun
ed deviations from strong or weak 
haos regimes ofspreading, i.e. long-lasting overshooting with γ > 1/4, or signi�
ant slowing downto values γ < 1/6.Finally, for E = 1.0 the dynami
s enters the self-trapping regime, as our theorypredi
ts. There, a major part of the initial wavepa
ket stays lo
alized, while theremainder spreads (yellow 
urves in Fig. 5.7). The parti
ipation number, therefore,does not grow signi�
antly and 〈log10 P 〉 starts to level o� at large times (Fig. 5.7,left panel, bottom, yellow 
urve). In 
ontrast, the small spreading portion yields a
ontinuous in
rease of the width w (Fig. 5.7, left panel, top, yellow 
urve), whi
hinitially is 
hara
terized by large values of γ > 1/4 (howbeit, for larger time γde
reases). Consequently, the 
ompa
tness index 〈ξ〉 (Fig. 5.7, right panel, bottom,yellow 
urve) drops down to small values indi
ating deep self-trapping regime. Notethat a similar behaviour has been observed before in purely random systems [131,132℄. Unusually large values of γ 
an be explained by lo
al trapping-detrappingpro
esses in the evolving wavepa
ket. The 
orresponding dynami
s is in strongnon-equilibrium and its theoreti
al des
ription has yet to be developed.The results dis
ussed in this se
tion reveal that the evolution of wavepa
kets inthe KG model 
an be interpreted in terms of the spreading regimes dis
ussed inse
tion 5.3 and show the generality of our theoreti
al interpretation.



Chapter 6Delo
alization phenomena in 1Dmodels with 
orrelated disorder
Interferen
e e�e
ts indu
ed by random potentials deeply modify the transport prop-erties of quantum parti
les and 
an lead to a very surprising e�e
t: a 
ompleteabsen
e of di�usion [1℄. As we have seen in 
hapter 2, the onset of lo
alization
ru
ially depends on the dimensionality of the system [7℄. In parti
ular it is knownthat Anderson lo
alization always o

urs in one and two dimensions, no matter howweak is the disorder, while in three dimensions lo
alization takes pla
e dependingon the disorder strength and on the energy of the parti
le. In parti
ular in 1D thee�e
t of disorder is known to be the strongest and several proofs of lo
alization havebeen given [4, 5, 53℄.These statements are true as long as the disordered is un
orrelated. A naturalquestion is to what extent these results still holds if the un
orrelation 
ondition isrelaxed. This is the main topi
 of this 
hapter.In nature, stri
tly speaking, un
orrelated disorder does not exist, and this iswhy this topi
 attra
ted a lot of attention in the last de
ades [30℄. Very often thepotential is assumed to be un
orrelated be
ause mathemati
al proofs are mu
h easierin this 
ase. In some 
ontexts, like 
ondensed matter physi
s, the repla
ement ofthe real potential with an un
orrelated one is not the strongest approximation andtherefore is somehow justi�ed. In some other 
ases this repla
ement represents agood approximation sin
e one is interested only in waves with a typi
al wavelengthlarger than the 
orrelation length of the potential [39℄. However there are alsosituations where the role of 
orrelations 
an be relevant. For instan
e experimentaleviden
es of delo
alization e�e
ts produ
ed by 
orrelations have been dete
ted insemi
ondu
tor superlatti
es [154℄ or using mi
rowaves propagating in disorderedwaveguides [155℄.E�e
ts of 
orrelations are also observable with ultra
old atoms. On the onehand bi
hromati
 opti
al latti
es provide a realization of a quasiperiodi
 systemwhi
h exhibits a transition from extended to lo
alized states already in 1D; thissystems represent a limiting 
ase where the potential is not random and 
orrelationsdo not de
ay in spa
e [25℄. On the other hand, remaining in the 
ontext of non-deterministi
 random systems, experiments in spe
kle potentials show the existen
eof states whose lo
alization length is signi�
antly enhan
ed by 
orrelations [156, 24℄.From the theoreti
al side great attention has been given to the role played by
orrelations in the determination of the lo
alization properties of 1D systems. It iswell established that quasiperiodi
 systems 
an exhibit lo
alized or extended states



84 Chapter 6. Delo
alization phenomena in 1D models with 
orrelateddisorderdepending on the parameters of the potential (
fr. 
hapter 3). As regards trulyrandom one dimensional systems, instead, the fa
t that 
orrelations have a delo
al-ization e�e
t is widely a

epted, though the presen
e of a band of metalli
 statesand of a mobility edge introdu
ed by 
orrelations is still an open problem.The �rst eviden
es of extended states in 1D systems were found in modi�edversions of the Anderson model [157, 158℄. These papers 
onsidered on-site energiessu
h to form dimeri
 stru
tures whi
h present no ba
ks
attering for 
ertain resonantmodes. This leads to a dis
rete set of extended/metalli
 states but not to a truemobility edge, sin
e an entire band of extended states is missing. Nevertheless
orrelations have a strong e�e
t on the transport properties of the system and indu
ea superdi�usive spreading of initially 
on�ned wavepa
kets. Among these modelsthe most well known examples are the random dimer model and its dual 
ounterpart[158, 159℄. They are 
hara
terized by random potentials with short-range spatial
orrelations: the two point 
orrelation fun
tion, C(ℓ), de
ays exponentially on atypi
al length ℓ̄ with π/kmax < ℓ̄≪ L, L being the system size and kmax the largestwaveve
tor allowed by the system.The role played by 
orrelations has been extensively studied also for disorderedpotentials that present a spe
tral fun
tion S(k), whi
h is the Fourier transform of
C(ℓ), that vanishes in a �nite k-region. It was initially 
laimed that these kind ofpotentials might give rise to bands of extended states in 1D [160℄, but later it hasbeen re
ognized that those states are not really extended; they exhibit an abruptin
rease of the lo
alization length mimi
king the presen
e of a mobility edge in�nite-size systems [161℄. This is, for instan
e, the 
ase of spe
kle potentials [162, 47℄that we mentioned before.Another interesting 
lass of disordered potentials are those whi
h exhibit longrange 
orrelations. In this 
ase both C(ℓ) and S(k) are nonzero over the whole realand k spa
e. There are no length s
ales 
hara
terizing the disorder and typi
allythe 
orrelation fun
tion is assumed to de
ay as a power law C(ℓ) ∝ ℓ−β. In this
ase, it has been observed that 
orrelations 
an have di�erent e�e
ts depending onthe region of the spe
trum under 
onsideration. In parti
ular, for dis
rete models,a redu
tion of the lo
alization length has been observed at the band edges whilean enhan
ement has been reported at the band 
enter [163℄. In this 
ontext alsothe presen
e of mobility edges has been 
laimed [164℄, although these results stirredsome 
ontroversy [165, 166℄.Finally, let us mention that the presen
e of a mobility edge in 1D has beenre
ently reported for deterministi
 non-quasiperiodi
 potentials [167℄.Very often, espe
ially in the 
ase of long range 
orrelations, these studies re-lies on toy models 
hara
terized by ad-ho
 
orrelation fun
tions, 
reating almost no
onne
tion with possible experimental implementations. In this 
hapter we proposea physi
al model for a random potential where long-range and short-range 
orrela-tions arise naturally from the system itself and whi
h is also realizable using dipolarultra
old gases.The model 
onsiders a series of dipoles pinned at random positions in the min-ima of a deep opti
al latti
e. Due to the repulsive intera
tions among these dipoles
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Figure 6.1: S
hemati
 representation of the physi
al model. A set of dipoles (greenspheres) are trapped at random positions in the minima of a deep opti
al latti
e andplay the role of impurities. One test dipole (red sphere) is ex
ited to another internallevel and feels a shallower external potential. The test dipole 
an tunnel through thelatti
e subje
t to the random potential originating from the dipolar intera
tion withthe impurities.there will be a 
orrelation in the way in whi
h they are positioned in the latti
e andin parti
ular they will have the tenden
y to sit far away from ea
h other. This set oftrapped dipoles, referred as impurities, is assumed to 
reate a disordered potentialfor another dipole, the test dipole, whi
h is ex
ited to another internal level and isassumed to be free to move through the latti
e (see Fig. 6.1). Short range 
orrela-tions arises from the distribution of the impurities, while long range 
orrelations aredue to the dipolar intera
tion between the test dipole and the impurities.In the following we study the lo
alization properties of the test dipole in the
orrelated potential realized by the impurities, highlighting the role played by shortand range 
orrelations. In parti
ular, as the parameters of the model are 
hanged,we observe that short range 
orrelations 
an introdu
e a dis
rete set of extendedstates in the system, while long range 
orrelations tend to restore lo
alization andlead to 
ounterintuitive e�e
ts on the lo
alization length of the system.The 
hapter is organized as follows. First of all in se
tion 6.1 we give a brief intro-du
tion on the dipole-dipole intera
tion. The model is presented in detail in se
tion6.2 and the Hamiltonian des
ribing the properties of the test dipole is derived. Inse
tion 6.3 we 
hara
terize the statisti
al properties of the random potential formedby the impurities. Then, in se
tion 6.4 we study the lo
alization properties of themodel by using a renormalization-de
imation s
heme for the 
al
ulation of the lo-
alization length. Finally a detailed dis
ussion of the role played by short and long
orrelations is presented in se
tion 6.5.6.1 Dipolar intera
tionLet us 
onsider two parti
les with dipole moments pointing in the dire
tions identi-�ed by the two unit ve
tors ~e1 and ~e2 and whose relative position is ~r. The potentialenergy asso
iated to the dipole-dipole intera
tion between the two parti
les is givenby

Udd(~r) =
Add

4π

(~e1 · ~e2)|~r|2 − 3(~e1 · ~r)(~e2 · ~r)
|~r|5 , (6.1)
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Figure 6.2: Intera
tion between polarized dipoles (a). Two polarized dipoles pla
edside by side repel ea
h other (b) while dipoles in a �head to tail� 
on�guration attra
tea
h other (
). Figure taken from ref. [168℄.where the 
oupling 
onstant Add quanti�es the strength of the dipolar intera
tionand is given by di�erent expressions depending on the physi
al origin of the dipolefor
e. For parti
les having a permanent magneti
 moment, µ, the 
oupling 
onstant
Add is µ0µ2, where µ0 is the permeability of va
uum; for parti
les having a perma-nent ele
tri
 dipole moment, p, Add is given by p2/ε0, where ε0 is the permittivityof va
uum. For a polarized sample, where all dipoles point in the same dire
tion,the dipolar intera
tion takes a simpler form [168℄:

Udd(~r) =
Add

4π

1− 3 cos2(Θ)

|~r|3 . (6.2)where Θ is the angle between the relative position ~r and the dipole orientation(Fig. 6.2). The main property of the dipole-dipole intera
tion is yo be long rangeand anisotropi
. The long range 
hara
ter of the intera
tion is due to the fa
tthat it de
reases with the 
ube of the distan
e Udd ∼ 1/|~r|3. The anisotropy isinstead given by its angular dependen
e. As Θ is varied from 0 to π/2 the fun
tion
(

1− 3 cos2(Θ)
) 
hanges sign and the dipole-dipole intera
tion 
hanges from positiveto repulsive. In Fig. 6.2 we show the two limiting situations of parti
les sitting sideby side where the intera
tion is maximally repulsive (b) and of dipoles in a �head-to-tail� 
on�guration where the intera
tion is maximally attra
tive (
). For the spe
ialvalue ΘM = arccos(1/

√
3) ≈ 54.7◦, the so-
alled �magi
-angle�, the dipole-dipoleintera
tion vanishes.There are several 
andidates to experimentally realize a dipolar quantum gas:mole
ules having a permanent ele
tri
 dipole moment p, Rydberg atoms, whi
h
an have very large indu
ed ele
tri
 dipole moments, or ground state atoms havinga large magneti
 moment µ [169℄. So far quantum degenera
y has been rea
hedonly in the last 
ase with three di�erent atomi
 spe
ies: Chromium (µ = 6µB ,where µB is the Bohr magneton), Dysprosium (µ = 10µB) and Erbium (µ = 7µB).Chromium was 
ondensed in 2005 [170℄ and, sin
e then, it allowed for the �rstexperimental investigations of the unique properties of dipolar quantum gases [171,169℄. More re
ently a Bose-Einstein 
ondensate [172℄ and a degenerate Fermi gas
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al model 87[173℄ of Dysprosium have been produ
ed. The last spe
ies that has been 
ondensedis Erbium [174℄.6.2 The physi
al modelLet us 
onsider a very dilute ultra
old dipolar gas in a deep one dimensional opti
allatti
e, whi
h forbids tunneling between sites. The gas feels also the presen
e of astrong harmoni
 
on�nement pla
ed in the dire
tions perpendi
ular to the latti
ethat redu
es the e�e
tive dimensionality of the system to 1D.We assume that the dipoles are trapped at random positions at the minima ofthe latti
e and that they are polarized perpendi
ularly with respe
t to the latti
eaxis, so that dipole-dipole intera
tion is repulsive. In this way, for small densitiesand large dipole-dipole intera
tion, there are no double o

upan
ies, and moreoverwe 
an assume that the dipoles will o

upy sites far away from ea
h other. Inparti
ular the intera
tion is taken to be strong enough so that ea
h dipole has to bepre
eded and followed by at least two empty sites. In the following we refer to thisset of trapped dipoles as impurities.One dipole, that we refer to as the test dipole, is ex
ited to another internal state,so that, unlike the impurities [50, 51℄, it feels a shallower opti
al latti
e and it is freeto hop between di�erent sites. In this situation we 
an des
ribe the test dipole as asingle parti
le that feels the presen
e of a random potential that originates from thedipolar intera
tion with the impurities pinned in the latti
e. This random potentialis 
hara
terized by the presen
e of both short range and long range 
orrelations andits statisti
al properties will be 
hara
terized in detail in se
tion 6.3. The physi
almodel that we have just des
ribed is s
hemati
ally represented in Fig. 6.1.Assuming that the motion of the dipolar impurities is frozen and that the radial
on�nement is so strong that all the atoms lie in the lowest level of the radialharmoni
 trap, the motion of the test parti
le of mass m along the latti
e axis z 
anbe des
ribed using the following Hamiltonian
H = − ~

2

2m

∂2

∂z2
+ s(T )ER sin2(kz) + Vd(z), (6.3)where k = 2π/λ is the wavenumber of the laser generating the opti
al latti
e ofspa
ing d = λ/2, ER = ~

2k2/2m is the re
oil energy and s(T ) is the dimensionlesslatti
e strength felt by the test parti
le. The potential Vd(z) represents the ran-dom potential resulting from the dipolar intera
tion of the test parti
le with theimpurities trapped in the latti
e and it 
an be written as follows
Vd(z) =

∫

dz′ρ(z′)U1D
dd (z − z′). (6.4)Here we have introdu
ed the fun
tion ρ(z) whi
h des
ribes the density distributionof the impurities along the z dire
tion. The potential U1D

dd (z) is the e�e
tive onedimensional dipolar intera
tion obtained after integration of the dipolar intera
tionin the radial dire
tion. In our model we do not in
lude 
onta
t intera
tions, with
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alization phenomena in 1D models with 
orrelateddisorderthe underlying idea that they 
an be swit
hed o� by exploiting Feshba
h resonan
es[168, 175, 169℄. The density fun
tion ρ(z) 
an be 
al
ulated assuming that in the
z dire
tion ea
h impurity o

upies a Wannier state w(I)(z) and therefore the fulldensity is given by a sum of Wannier fun
tions lo
alized around the sites o

upiedby the impurities, that we label with l̄:

ρ(z) =
∑

l̄

|w(I)(z − l̄d)|2. (6.5)The Wannier states of the impurities are 
al
ulated imposing that they feel an opti
allatti
e whi
h is mu
h deeper than the one felt by the test parti
le s(I) >> s(T ).The e�e
tive one dimensional potential U1D
dd (z) is obtained assuming that boththe test parti
le and the impurities o

upy the lowest radial state of the harmoni

on�nement

φω(~r⊥) =
1√
πσω

e−r2
⊥
/2σ2

ω with σω =

√

~

mω
(6.6)and is given by the following expression

U1D
dd (z) =

∫

d~r′⊥d~r⊥|φω(I)(~r′⊥)|2|φω(T )(~r⊥)|2Udd(~r − ~r′). (6.7)where ω(I) and ω(T ) are the frequen
ies of the radial harmoni
 trapping felt by theimpurities and by the test dipole respe
tively. Solving the integral in Eq. (6.7) oneobtains [176℄
U1D
dd (z) =

Add

4πσ3⊥
(1− 3 cos2 α)×

×
{

−2

3
δ

(

z

σ⊥

)

+
1

2

√

π

2
e

1
2

z2

σ2
⊥

[(

z2

σ2⊥

)

+ 1

]

Erfc

( |z|√
2σ⊥

)

− |z|
2σ⊥

}

.

(6.8)where σ⊥ =
√

(σ2
ω(I) + σ2

ω(T ))/2, α is the angle between the dire
tion of the dipoleand the z axis, that in our 
ase is equal to π/2, and Erfc(z) is the 
omplementaryerror fun
tion
Erfc(z) =

2√
π

∫ ∞

z
e−t2 dt. (6.9)Note that U1D

dd (z) is 
omposed by two parts: a Dira
 delta term that is stronglypeaked around z = 0 and a slowly de
aying part formed by the se
ond and thethird term. One 
an show that at large distan
es |z| ≫ σ⊥ the slowly de
aying partreprodu
es the typi
al behaviour of a dipolar intera
tion, namely it de
reases withthe 
ube of distan
e U1D
dd (z) ∼ Add(1− 3 cos2 α)/|z|3.A tight binding form of Hamiltonian (6.3) is obtained by using a set of Wan-nier states wn(z) as a basis for the states of the test parti
le (see appendix A foran introdu
tion on Wannier fun
tions) and by following a dis
retization pro
edure



6.2. The physi
al model 89similar to the one illustrated in se
tion 3.1. For the 
ase of a single dipolar impuritypinned at site l the Hamiltonian of the test parti
le is
H(1) =− J

∑

n

(| wn〉〈wn+1 | + | wn+1〉〈wn |)

− Jd (| wl〉〈wl±1 | + | wl±1〉〈wl |) +
∑

n

uddn−l | wn〉〈wn | . (6.10)In Eq. (6.10) we have in
luded the standard nearest neighbour tunneling term J(
fr. Eq (3.6) of se
tion 3.1) and two 
ontributions due to the dipolar intera
tion;the �rst represents a nearest neighbour dipolar assisted hopping Jd, the se
ond isthe on-site energy uddn−l at site n. They 
an be 
al
ulated as follows
J = −

∫

w∗
n(z)

[

− ~
2

2m

d2

dz2
+ sER sin2(kz)

]

wn+1(z) dz,

Jd = −
∫

wl(z)wl+1(z)|w(I)
l (z′)|2U1D

dd (z − z′) dz dz′, (6.11)
uddn−l =

∫

|wn(z)|2|w(I)
l (z′)|2U1D

dd (z − z′) dz dz′.Note that the fun
tion uddn 
an be interpreted as the dipolar intera
tion between asingle impurity and the test parti
le in the dis
retized formalism. In fa
t the on-siteenergy simply depends on the distan
e |n − l| between the test parti
le and theimpurity.In Fig. 6.3 we show the behaviour of the quantities θ = (J + Jd)/J and λn−l =

uddn−l/J for |n − l| = 0, 1, 2 as a fun
tion of σ⊥ for the 
ase of Add = 0.49~2λ/m,
s(T ) = 6 and s(I) = 30. This value of Add 
orresponds to the dipolar moment ofDysprosium atoms trapped in an opti
al latti
e generated by a laser of wavelength
λ = 570 nm.We note that, for this 
hoi
e of parameters, we 
an reasonably set θ = 1 (Jd = 0)and the on site energies for |n − l| ≥ 2 
an be approximated with the asymptoti
expression λn−l = λ/|n − l|3 with λ = (Add/Jd

3). They are therefore independenton the value of σ⊥. Also λ1 does not depend signi�
antly on the radial 
on�nement.Conversely the value of λ0 strongly depends on σ⊥ and it 
an even vanish andbe
ome negative. This is due to the fa
t that the dipolar intera
tion 
hanges signdepending on the relative position of the two dipoles and therefore the integral forthe 
al
ulation of udd0 has both positive and negative 
ontributions.In presen
e of several, randomly pla
ed impurities the on-site energies have tobe 
al
ulated summing over all the di�erent 
ontributions. The on-site energies aretherefore given by
εn =

∑

l̄

uddn−l̄ =
∑

l

ρlu
dd
n−l (6.12)where the index in the �rst summation, l̄, runs only over the sites o

upied by animpurity. This summation 
an be 
onveniently rewritten by summing over all sites
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Figure 6.3: Site energies λ0, λ1 and λ2, and hopping energy θ as fun
tion of σ⊥in units of λ/(2π), for the dipolar 
oupling of Dysprosium atoms 
orresponding to
Add = 0.49 × ~

2λ/m, λ = 570, s(T ) = 6, s(I) = 30 and α = π/2. The 
oloredverti
al lines labelled by di�erent letters represent the set of values that we used forthe 
al
ulation of the lo
alization properties of the system.and introdu
ing a dis
retized impurity density ρl, whi
h is equal to 1 for o

upiedsites and 0 otherwise. The �nal Hamiltonian takes the following form
H = −J

∑

n

(| wn〉〈wn+1 | + | wn+1〉〈wn |) +
∑

n

εn | wn〉〈wn | . (6.13)6.3 Statisti
al properties of the random potentialWe 
hara
terize the random potential generated by the dipolar impurities by 
al
u-lating its average value 〈εn〉 and the two point 
orrelation fun
tion Cε(ℓ) = 〈εnεn+ℓ〉.To start with, let us study separately the properties of the density ρn and of thedipolar intera
tion uddn .The density ρn is a sto
hasti
 variable and we 
an introdu
e its average valueand the two point 
orrelation fun
tion:
〈ρn〉 = C (6.14)

〈ρnρn+ℓ〉 = Cρ(ℓ) (6.15)where C de�nes the impurity 
on
entration. Note that, if we impose that the mini-mum distan
e between impurities is two sites, then the maximum value allowed for
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al properties of the random potential 91the 
on
entration is C = 1/3. We 
an also introdu
e two quantities asso
iated tothe shape of the intera
tion potential between the test dipole and a single impurity,
uddn :

udd =
∑

n

uddn (6.16)
Cu(ℓ) =

∑

n

uddn u
dd
n+ℓ (6.17)whi
h 
an be thought as an average value and a two point 
orrelation fun
tion.The statisti
al properties of the full potential 
an be derived from those of ρnand from the shape of uddn . In parti
ular one 
an prove that

〈εl〉 = Cudd (6.18)
Cε(ℓ) =

∑

j

Cρ(ℓ− j)Cu(j). (6.19)Therefore the average value of the full potential is simply given by the produ
t ofthe impurity 
on
entration and the average value of the intera
tion potential udd,while the two point 
orrelation fun
tion is given by the 
onvolution of Cu(ℓ) and
Cρ(ℓ). For the full potential let us also introdu
e the redu
ed 
orrelation fun
tion,de�ned as

cε(ℓ) =
〈εlεl+ℓ〉 − 〈εl〉2
〈ε2l 〉 − 〈εl〉2

(6.20)and the asso
iated spe
tral density
S(k) =

∑

ℓ

cε(ℓ)e
ikℓ. (6.21)In the following we will use the square root of the varian
e of the full potential toquantify the potential strength W =

√

〈ε2n〉 − 〈εn〉2.For our spe
i�
 
ase, where the random impurities have a minimum distan
ewhi
h is equal to two sites, the quantity Cρ(ℓ) satis�es the following re
ursive rela-tion:
Cρ(ℓ) =

1

1− 2C [CCρ(ℓ− 3) + (1− 3C)Cρ(ℓ− 1)] . (6.22)Solving this equation with the assumption that Cρ(0) = C, Cρ(1) = 0, Cρ(2) = 0one obtains
Cρ(ℓ) = C2 +

( C
1− 2C

)ℓ/2

[A cos(κℓ) +B sin(κℓ)] , (6.23)with
κ = π − atan

(

√

(4− 9C)/C
)

A = C − C2 (6.24)
B = −[

√

C3(1− 2C) + (C − C2) cos(κ)]/ sin(κ).
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alization phenomena in 1D models with 
orrelateddisorderEq. (6.23) represents an os
illating fun
tion whose envelope de
ays exponentially.For large values of ℓ it tends to the value whi
h is expe
ted for un
orrelated sites,i.e., C2.As regards Cu(ℓ), its form depends on the spe
i�
 parameters of the system.However, as a general result, by approximating the sum in (6.17) with an integral,one 
an show that at large distan
es its behaviour is determined by the typi
alshape of the dipolar intera
tion, i.e., Cu(ℓ) de
ays with the 
ube of the distan
e,
limℓ→∞Cu(ℓ) ∝ 1/ℓ3.Thus we 
an 
on
lude that the impurity distribution introdu
es short-range 
or-relations, while the shape of the intera
tion uddn is responsible for long-range 
orre-lations. The role and the 
ompetition between these two e�e
ts will be extensivelydis
ussed in the next se
tions.6.4 Nature of the spe
trumWe study the nature of the test dipole spe
trum by evaluating the Lyapunov ex-ponent Λ(E), whi
h is equal to the inverse of the lo
alization length Lloc(E), bymeans of a renormalization-de
imation s
heme (see appendix B for an introdu
tionon the method). The method allows us to redu
e the original system 
omposedby N latti
e sites to an e�e
tive dimer 
omposed by just two sites. This is donewith a renormalization pro
edure that removes one site of the 
hain and des
ribesthe remaining sites with an e�e
tive Hamiltonian. A re
ursive appli
ation of thisrenormalization pro
edure permits to remove all the internal sites of the 
hain andto des
ribe the whole system with a single dimer formed by the �rst and the lastsite of the 
hain, with on-site energies that we indi
ate with ε̃1 and ε̃N , and therelative e�e
tive hopping between those two sites J̃1,N .The Lyapunov exponent 
an be 
al
ulated as

Λ(E) = [Lloc(E)]−1 = lim
N→∞

1

N
ln

∣

∣

∣

∣

GN,N (E)

G1,N (E)

∣

∣

∣

∣

(6.25)
= − lim

N→∞
1

N
ln
∣

∣

∣
J̃1,N (E)

∣

∣

∣
, (6.26)where G(E) = (E −H)−1 is the Green's fun
tion asso
iated to H at energy E, and

Gi,j(E) = 〈i|G(E)|j〉 are the 
orresponding matrix elements. The �rst expressionfor Λ(E) is a general expression [58℄, while the se
ond one, whi
h gives a dire
t 
on-ne
tion between the e�e
tive hopping amplitude J̃1,N and the Lyapunov exponent,applies within the renormalization-de
imation approa
h [177℄.The results for the lo
alization length Lloc(E) of our model, obtained with anumeri
al implementation of the renormalization-de
imation approa
h, are shownin the top row of Fig. 6.4. We 
onsider in
reasing values of σ⊥, 
orresponding tothe verti
al lines in Fig. 6.3 (we use a 
olor 
ode among �gures and moreover 
orre-sponding simulations are labelled by the same letters (a), (b), (c) and (d)). Here andin the following we �x C = 1/4, average over 100 
on�gurations and 
onsider system
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Figure 6.4: Top panel: lo
alization length Lloc in units of the latti
e spa
ing d asa fun
tion of the energy in units of J for Hamiltonian (6.13). The bla
k dotted lines
orrespond to the lo
alization length 
al
ulated in Born approximation L(2)
loc. Bottompanel: re�e
tion 
oe�
ient R of the single impurity as fun
tions of the energy inunits of J . The verti
al dashed lines indi
ates the energies for whi
h the re�e
tion
oe�
ient vanishes R(E) = 0. From left to right, di�erent plots refers to in
reasingvalues of σ⊥, 
orresponding to the verti
al lines in Fig. 6.3.sizes up to 107. As the value of σ⊥ is in
reased we observe very di�erent lo
alizationregimes. Notably for 
ertain values of σ⊥ we observe divergen
es of the lo
alizationlength, 
orresponding to the appearan
e of metalli
 states in the spe
trum. Thissuggests the presen
e of delo
alization e�e
ts indu
ed by the 
orrelations of thephysi
al model under 
onsideration.More pre
isely, for large positive values of λ0 all states are 
learly lo
alizedsin
e the lo
alization length is always �nite (�rst panel, (a)). By in
reasing σ⊥, forvanishing values of λ0 the lo
alization length exhibits two well de�ned peaks in tworegions of the spe
trum (se
ond panel, (b)). In
reasing σ⊥ further, 
orresponding tonegative values of λ0, we observe the disappearan
e �rst of one of the two divergen
es(third panel, (c)), and then of both of them (fourth panel, (d)). In this last panelno divergen
es of the lo
alization length are observed but there are still peaks atthe band edges, that re
all the diverging behaviour previously observed.The dotted bla
k lines 
orrespond to the lo
alization length L

(2)
loc evaluated in



94 Chapter 6. Delo
alization phenomena in 1D models with 
orrelateddisorderBorn approximation, whi
h 
orresponds to a se
ond order perturbative 
al
ulationin the disorder strength [178, 160, 30℄. This 
al
ulation gives a dire
t 
onne
tionbetween the spe
tral fun
tion S(k) and the Lyapunov exponent
Λ(2)(E) = [L

(2)
loc(E)]−1 =

W 2

J2

S (2k(E))

8 sin2 (k(E))
(6.27)where the 
onne
tion between k(E) and the energy is given by the following re-lation E = 〈εn〉 + 2J cos(k). Let us note that the Born approximation gives, by
onstru
tion, a symmetri
 lo
alization length around the average value of the disor-der 〈εn〉. In fa
t the spe
tral density S(k) asso
iated to c(ℓ) is always a symmetri
fun
tion of k. Despite this fa
t, there is a noti
eable agreement between the Bornapproximation and the exa
t numeri
al results.6.5 Role of 
orrelationsWith the aim to understand why we are observing the appearan
e and the disap-pearan
e of metalli
 states in the spe
trum by varying the radial 
on�nement (andthus the 1D dipolar intera
tion) we analyse separately the e�e
ts due to short-range
orrelations and long-range 
orrelations.6.5.1 Short range 
orrelationsIn order to isolate the role of short range 
orrelations in our model, we 
al
ulate there�e
tion 
oe�
ient for the 
ase of a single impurity as in Eq. (6.10) and moreoverwe negle
t the on-site 
ontributions beyond nearest neighbour. Therefore we assumethat a single dipolar impurity modi�es just a trimer of on-site energies {λ1, λ0, λ1}and moreover we generally assume that it 
an modify also the hopping with nearestneighbouring sites θ.In general, the transport properties of a system of N sites des
ribed by anHamiltonian H are obtained by embedding it in an in�nite perfe
t latti
e with on-site energies ε and hopping energies J (see appendix B for details). This leads to anew extended Hamiltonian that we 
all Hext. The s
attering of an in
oming wave

|q〉 with energy E = ε + 2J cos(q) results in a re�e
tion amplitude r that 
an beexpressed as
r = G0

1,1T1,1 +G0
N,1T1,N +G0

1,NT1,N +G0
1,1T1,1e

+2iq(N−1), (6.28)
T being the s
attering matrix de�ned by

T = HI
(

1−G0HI
)−1

, (6.29)with HI = Hext −H0, H0 =
∑

n−J(| wn〉〈wn+1 | + | wn+1〉〈wn |) and G0 is theGreen's fun
tion asso
iated to H0. From an operational point of view, sin
e we needto know the matrix elements of the s
attering matrix T in the subspa
e ξ = {1, N},we use again the renormalization pro
edure to evaluate them. One has to apply the
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orrelations 95renormalization-de
imation approa
h separately on Hext and H0 and then 
al
ulatethe renormalized HI subtra
ting the two. Therefore one redu
es to the 
al
ulationof the re�e
tion and transmission properties of an e�e
tive dimer.In our spe
i�
 
ase we are 
onsidering a single dipolar impurity and we assume itmodi�es just the on-site energy, the nearest neighbouring energies and the tunnelingwith the nearest neighbours. We have therefore a system of size N = 3 and we 
anredu
e to an e�e
tive dimer with just one iteration of the renormalization pro
edureand this 
an be done analyti
ally.Applying the renormalization-de
imation s
heme and using Eq. (6.28) one ob-tains the following analyti
al formula for the re�e
tion 
oe�
ient R = |r|2 of thesingle dipolar impurity
R =

{λ1
(

E
J

)2 − E
J [1− θ2 + λ21 + λ1λ0]− 2θ2λ1 + λ0 + λ21λ0}2

{λ1
(

E
J

)2 − E
J [1− θ2 + λ21 + λ1λ0]− 2θ2λ1 + λ0 + λ21λ0}2 + θ4

[

4−
(

E
J

)2
] .(6.30)In the bottom row of Fig. 6.4 we plot R = |r|2 for the same parameters usedfor the 
al
ulation of the lo
alization length, i.e. θ = 1 and λ0 and λ1 taken fromthe 
urves in Fig. 6.3. We observe that the 
al
ulation of the re�e
tion 
oe�
ientof the single impurity provides a very good understanding of the behaviour of thelo
alization length: the energies where R tends to zero are exa
tly those wherethe lo
alization length exhibits very large anomalous values. There is therefore adire
t 
onne
tion between the appearan
e of metalli
 states in the spe
trum andthe s
attering properties of the single impurity. It has been previously shown byDunlap et al. [158℄ that this kind of single impurity analysis 
an be used to interpretthe transport properties of a system of size N where there are several randomlypla
ed impurities. More pre
isely they proved that in su
h systems the numberof single-parti
le states that show a metalli
 behaviour, being extended over thefull system, is of the order of √N . Notably this number of delo
alized states islarge enough to indu
e transport in the system and initially lo
alized wavepa
ketsshow a superdi�usive spreading in the disordered potential. This means that thistype of extended states are dete
table in typi
al expansion experiments that 
an beperformed with ultra
old atomi
 gases [24, 25℄.It is remarkable that making use of the simple analyti
al expression (6.30) we 
anpredi
t the lo
alization properties of a rather 
omplex system and the o

urren
e ofmetalli
 states in the spe
trum. Studying the solutions of the equation

R(E) = 0 (6.31)as a fun
tion of λ0 and λ1, one 
an extra
t the �phase� diagram in Fig. 6.5. Weidentify four di�erent regions in the diagram depending on the number of solutions ofEq. (6.31) and on their values. More pre
isely, if the solutions are both imaginary, nodivergen
es are expe
ted and all the states are exponentially lo
alized (red region).If the solutions are real divergen
es are expe
ted, but we need to 
he
k whether theyare inside or outside the single impurity spe
trum E = 2J cos(q). In other words,
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Figure 6.5: �Phase� diagram indu
ed by short range 
orrelations extra
ted fromthe re�e
tion 
oe�
ient, Eq. (6.30), for the single impurity 
ase. Di�erent 
olours
orrespond to di�erent lo
alization regimes obtained from the solution of Eq. (6.31).No real solutions of Eq. (6.31) 
orrespond to the red region. If Eq. (6.31) has realsolutions we 
an distinguish three 
ases: no solutions are in the single parti
le spe
-trum (yellow region), one solution is in the spe
trum (green region), two solutionsare in the spe
trum (blue region). The four points in the diagram 
orrespond to thesimulations presented in Fig. 6.4 and to the values of σ⊥ indi
ated by verti
al linesin Fig. 6.3.one observes real divergen
es only when the roots satisfy the additional 
ondition
|E| < 2J . Therefore, when the solutions are real, we 
an identify three additionals
enarios: both solutions lie outside the spe
trum (yellow region), one lies inside andone outside the spe
trum (green region), both lie inside the spe
trum (blue region).In the diagram we also identify with points the values of λ0 and λ1 
orrespondingto the di�erent plots of Fig. 6.4. In Fig. 6.4 the dashed verti
al lines mark theenergies whi
h verify the 
ondition R(E) = 0. In parti
ular the square in the redregion (a) of Fig. 6.5 
orresponds to the �rst plot of Fig. 6.4 where all states arelo
alized; the 
ir
le in the blue region 
orresponds to the se
ond plot (b) where weobserve two resonan
es; the triangle in the green region (c) 
orresponds to the thirdplot where we observe one resonan
e; and the diamond in the yellow region (d)
orresponds to the last plot where there are no resonan
es but the peak on the rightshows a tenden
y to diverge due to the fa
t that the resonan
e lies just outside thesingle impurity spe
trum.



6.5. Role of 
orrelations 97Let us re
all that, in our single impurity analysis, we 
onsidered the 
ase whereone isolated dipole indu
es just a trimer of site energies {λ1, λ0, λ1} and we negle
tedbeyond nearest neighbour 
ontributions. In other words, we negle
ted the e�e
t oflong range 
orrelations. Nonetheless the single impurity analysis des
ribes very wellthe position of the resonan
es 
al
ulated with numeri
al simulations that a

ountfor the full dipolar intera
tion.In the next se
tion we study in detail the role played by the dipolar tails thatwe negle
ted in this simpli�ed 
al
ulation and we highlight the role played by longrange 
orrelations.6.5.2 Long range 
orrelationsIn order to understand the role played by long range 
orrelations and pla
e thedipolar 
ase in a wider 
ontext, we investigate the lo
alization properties of a setof disordered potentials generated by impurities that intera
t with the test parti
lewith an e�e
tive intera
tion with tails de
aying as uβn ∼ 1/|n|β where β ≥ 1.This is done pla
ing the impurities exa
tly as done in the dipolar 
ase, keeping�xed the values of λ0 and λ1 and 
hoosing λn = uβn/J = λ/|n|β for n ≥ 2. The 
ase
β = 3 (u3n = uddn ) re
overs our physi
al model with dipolar intera
tions. Moreover,on
e we 
reated the potential with this pro
edure, we shift and normalize the on-siteenergies in order to obtain the same average value 〈εn〉 and disorder strength Wthat we had in the dipolar 
ase. Following this pro
edure we 
an really analyze thee�e
t of long range 
orrelations keeping �xed the disorder strength W . In parti
ularwe 
onsidered values of β ranging from 1 up to 5 and we also 
onsidered the 
ase of
β = ∞ that 
orresponds to λn = 0 for n ≥ 2.The potential generated with this pro
edure has Cρ(ℓ) whi
h is un
hanged andde
ays exponentially as previously dis
ussed. This is due to the fa
t that the im-purities are pla
ed exa
tly in the same way as before. The 
orrelation fun
tion as-so
iated to the intera
tion potential Cu(ℓ) is instead modi�ed and using Eq. (6.17)one 
an show that it de
ays at large distan
es as Cu(ℓ) ∼ 1/ℓβ for β > 1 and as
Cu(ℓ) ∼ log(ℓ)/ℓ for β = 1. This asymptoti
 expression determines also the shapeof the tails of the redu
ed 
orrelation fun
tion asso
iated to the full potential cε(ℓ).The e�e
ts played by long range 
orrelations are again studied by 
al
ulatingnumeri
ally the lo
alization length with the renormalization-de
imation approa
h.In Fig. 6.6 we show the lo
alization length Lloc 
al
ulated for di�erent values of β.In parti
ular we show a 
omparison between the two limiting 
ases of β = ∞ and
β = 1 and the physi
al 
ase under 
onsideration, i.e. the dipolar 
ase β = 3. We
onsidered also other values of β but we do not show the results here sin
e they arenot parti
ularly instru
tive. They just show an intermediate behaviour between thetwo limiting 
ases reported here.The two panels in Fig. 6.6 
orrespond to two di�erent set of parameters takenfrom Fig. 6.3, in the left panel we 
onsidered the 
ase where the lo
alization lengthis always �nite while in the right panel the 
ase where there are two resonan
es inthe spe
trum. Therefore the two 
urves for β = 3 are exa
tly the same 
urves whi
h
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Figure 6.6: Lo
alization length Lloc in units of latti
e spa
ing as a fun
tion of theenergy in units of J for di�erent type of long range 
orrelations identi�ed by theasymptoti
 de
ay of the tails of the two point 
orrelation fun
tion C(ℓ) ∼ 1/ℓβ . Thetwo di�erent panels 
orrespond to two di�erent lo
alization regimes indu
ed by shortrange 
orrelations (see text for more details).are shown in the upper row of Fig. 6.4 and those are 
ompared with the 
ase of
omplete absen
e of long range 
orrelations (β = ∞) and the 
ase of very slowlyde
aying 
orrelations (β = 1).There are two main features of Fig. 6.6 that we would like to dis
uss here. The�rst is the e�e
t introdu
ed by long range 
orrelations on the divergen
es that wehave dis
ussed in the previous se
tion. We observe that they tend to be beveled.In fa
t in the β = ∞ 
ase the lo
alization length takes values of the order of thesystem size N = 107 signalling the presen
e of real metalli
 states in the systemwhi
h extend over the full latti
e. As the value of β is de
reased the peaks in thelo
alization length are still there but their height is de
reased and they are shiftedtowards the band edges. This behaviour is somehow expe
ted, sin
e the perfe
tresonan
e 
ondition, obtained with the single impurity 
al
ulation presented in theprevious se
tion, was negle
ting the slowly de
aying tails. When those tails aretaken into a

ount they tend to restore interferen
e e�e
ts in the s
attering pro
essand reintrodu
e lo
alization in the system. However, let us stress that the e�e
tof the short range 
orrelations remain 
learly visible also in presen
e of long range
orrelations.
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orrelations 99The se
ond feature that we would like to highlight is the 
ounterintuitive be-haviour of Lloc introdu
ed by long range 
orrelations at the 
enter of the band. Infa
t depending on the set of parameters under 
onsideration long range 
orrelationshave an opposite e�e
t on the lo
alization length. In the left panel they introdu
e ade
rease of the lo
alization length while in the right panel they have the tenden
y toenhan
e it. This observation shows the highly nontrivial role played by long range
orrelations in determining the lo
alization properties of a disordered system andindi
ates a ri
her behaviour with respe
t to what has been observed so far in theliterature [163℄.These features that we extra
ted from the numeri
al simulations reported inFig. 6.6 are also 
aptured within the Born approximation. We do not report the
urves for L(2)
loc 
al
ulated in Born approximation, we just 
omment that the agree-ment between those 
urves and the exa
t numeri
al results is good, similar to whatobserved in Fig. 6.4.Finally we would like to 
omment that we do not �nd the presen
e of mobilityedges indu
ed by long range 
orrelations as suggested in [164, 167℄.





Chapter 7Con
lusions
The observation of Anderson lo
alization in ultra
old atomi
 gases [24, 25℄ repre-sented a turning point for the study of disordered quantum systems and providedthe route for ta
kling a number of open questions of the theory of lo
alization.Stimulated by this remarkable result, in this thesis we have investigated theproperties of a Bose gas in presen
e of quasiperiodi
 and random potentials. Spe
ialfo
us has been given to the interplay between lo
alization and intera
tion and to thedelo
alization e�e
ts indu
ed by the 
orrelations of the disorder. The main resultsof this work are the following.In 
hapter 3 we introdu
ed quasiperiodi
 potentials and their implementationwith bi
homati
 opti
al latti
es a
ting on a gas of nonintera
ting parti
les. We 
lar-i�ed the 
onne
tion of this physi
al problem with the dis
rete Aubry-André modeland reviewed its lo
alization properties showing that a transition from extendedto lo
alized states o

urs already in one dimension at a 
riti
al disorder strength.One of the main goals was to �ll the gap between the well known properties of theAubry-André model and what 
an be a
tually observed in realisti
 experiments withultra
old gases. As a �rst step in this dire
tion, we studied the di�usion of noninter-a
ting wavepa
kets in a 
ommensurate (periodi
) latti
e and we 
ompared it withthe 
ase of an in
ommensurate (quasiperiodi
) latti
e. We showed that the spatialperiodi
ity of the 
ommensurate latti
e plays a key role in determining the type ofapproa
h to the quasiperiodi
 limit in a sequen
e of 
ommensurate approximants.This part of our analysis 
on�rmed that the transition from di�usion to lo
alizationobserved in Ref. [25℄ 
an 
orre
tly be interpreted in terms of the predi
tions of theAubry-André model. As a se
ond step we 
onsidered the properties of the samemodel but in momentum spa
e. We showed the o

urren
e of interesting periodi
os
illations in the time evolution of the momentum distribution of an expandingwavepa
ket. We numeri
ally 
al
ulated the frequen
y and visibility of these os
illa-tions and we introdu
ed a simple few-mode approximation that gives a 
onsistentinterpretations of this behavior. Our analysis suggests that the os
illations of the
entral and side peaks in the momentum distribution 
an be used e�
iently to probethe transition from di�usion to lo
alization in the Aubry-André model. Our resultsare relevant for feasible experiments with ultra
old atoms, where the momentumdistribution 
an be dete
ted with good resolution by performing time-of-�ight mea-surements.In 
hapters 4 and 5 we 
onsidered a weakly intera
ting Bose gas in a bi
hromati
opti
al latti
e and dealt with the problem of the interplay between disorder indu
edlo
alization and delo
alization 
aused by repulsive intera
tions. In 
hapter 4 we
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lusionsintrodu
ed the method whi
h is used to study the expansion of an initially lo
alizedwavepa
ket, namely a dis
rete nonlinear S
hrödinger equation whi
h generalizesthe Aubry-André model by introdu
ing the intera
tion at the mean-�eld level. Wenumeri
ally simulated the dynami
s of matter waves starting from either a δ-fun
tionlo
alized in a single latti
e site or a Gaussian wavepa
ket. In the former 
ase, wefound that the dynami
s is dominated by self-trapping pro
esses in a wide range ofparameters even for weak intera
tion. Conversely, in the latter 
ase, self-trappingis signi�
antly suppressed and the destru
tion of lo
alization by intera
tion is moreeasily observable. In parti
ular, we found that Gaussian wavepa
kets, whi
h remainlo
alized for nonintera
ting parti
les, start to spread subdi�usively (i.e., the width ofthe wavepa
ket grows as w(t) ∼ tγ with γ < 0.5) in the presen
e of intera
tion. Wealso 
ompared the results extra
ted from our theoreti
al model with an experimentalstudy performed in Floren
e [33℄ that 
onsiders the expansion of a Bose-Einstein
ondensate with tunable intera
tions in a bi
hromati
 opti
al latti
e. Notably, adestru
tive e�e
ts of intera
tions on lo
alization is observed also experimentally.The measured values of the spreading exponent γ indi
ate a subdi�usive expansionof the 
loud, 
onsistently with our numeri
al observations. The values of γ observedboth in the numeri
al and experimental data show a 
lear deviation from thoseobtained for random systems and, in parti
ular, larger values of γ are dete
ted inthe quasiperiodi
 
ase, indi
ating a nontrivial role played by the 
orrelations of thepotential.In 
hapter 5 we fo
used on the phenomenon of destru
tion of lo
alization inquasiperiodi
 systems and we 
hara
terized in detail the subdi�usive spreading forlarge asymptoti
 times. We gave parti
ular attention to the 
omparison with therandom 
ase. We interpreted the spreading pro
ess in terms of resonan
es in themode-mode 
oupling. In parti
ular, by 
omparing the frequen
y shift indu
ed bythe intera
tion (nonlinearity) with the energy s
ales extra
ted from the spe
trum ofthe underlying nonintera
ting (linear) system, we predi
ted the o

urren
e of threedi�erent spreading regimes. In addition to the regime of self-trapping, we identi-�ed the regimes of strong 
haos and weak 
haos. We also predi
ted the spreadingexponents γ = 1/6, for weak 
haos, and γ = 1/4, for strong 
haos. We performednumeri
al simulations whi
h last for mu
h longer times than the simulations pre-sented in the previous 
hapter 4, and we averaged our results over many realizations.This gave us the possibility to a

urately 
al
ulate the spreading exponent γ andobserve the weak 
haos regime. A key di�eren
e with respe
t to random systems isthe o

urren
e of transient overshooting regimes that we interpreted as due to thepe
uliar stru
ture of the linear spe
trum of the quasiperiodi
 system, whi
h is sep-arated into mini-bands. These mini-bands are responsible for pe
uliar me
hanismsof partial self-trapping. Signatures of strong 
haos have also been observed, butthe temporal overlap of strong 
haos and partial self-trapping makes the analysisof the spreading more 
omplex than for random systems. We also veri�ed that ourmain results do not depend on the details of the shape of the initial wavepa
ket.This suggests that the nonlinear frequen
y shift is the only parameter that 
ontrolsthe dynami
s. Finally we 
ompared the results obtained with the dis
rete nonlinear
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hrödinger equation with those obtained with a quasiperiodi
 version of the quarti
Klein-Gordon latti
e model. The results of the two models are quite similar andthis supports the generality of our predi
tions.In 
hapter 6 we 
onsidered the problem of lo
alization of nonintera
tion parti
lesin a 
orrelated random disorder. To fa
e this issue we proposed a novel model whi
his relevant both from a theoreti
al and an experimental point of view. From thetheoreti
al side it presents a nontrivial interplay between the role played by shortand long range 
orrelations. From the experimental side it 
an be realized using a gasof ultra
old dipolar atoms. We 
onsidered a set of dipolar impurities pinned in thewells of a deep opti
al latti
e that a
ts as a random potential for another atom (testparti
le) in another internal state that feels a weaker opti
al latti
e. An analysis ofthe statisti
al properties of the model showed that short-range 
orrelations are dueto the fa
t that the o

upation of neighboring sites are forbidden be
ause of repulsivedipolar intera
tions between impurities, while long-range 
orrelations are due to thedipolar intera
tion between the test dipole and the impurities. The lo
alizationproperties of the model were 
al
ulated by means of a renormalization-de
imationte
hnique whi
h allowed us to 
al
ulate properties of very large systems and studythe extended or lo
alized nature of the states. We found that the presen
e of shortrange 
orrelations 
an give rise to di�erent regimes of lo
alization. In parti
ular,as the parameter of the system are 
hanged, we observed regimes where all thestates are exponentially lo
alized and regimes where one or more dis
rete sets ofextended states appear in the spe
trum. The o

urren
e of the di�erent regimes
an be predi
ted starting from an analyti
al expression obtained from the s
atteringof a single impurity. Notably, the di�erent lo
alization regimes 
ould be exploredexperimentally simply by 
hanging the strength of the radial harmoni
 
on�nement.Long range 
orrelations were studied not only for the dipolar 
ase but also for amore general two point 
orrelation fun
tion de
aying as C(ℓ) ∼ 1/ℓβ (the 
ase
β = 3 
orrespond to the dipolar 
ase). We saw that long range 
orrelations tend torestore lo
alization in the spe
trum and lead to 
ounterintuitive behaviours of thelo
alization length. More pre
isely, depending on the lo
alization regime that are
onsidered, they 
an enhan
e or redu
e the lo
alization length at the 
enter of theband.OutlooksAfter the �rst observations of 1D Anderson lo
alization of matter waves, the ex-perimental a
tivity in ultra
old atoms aimed to better understand the physi
s ofdisordered systems has grown signi�
antly. Part of the 
ommunity fo
used on theproblem of the 
ombined e�e
ts of disorder and intera
tion. Some experiments 
on-sidered the equilibrium properties of a Bose gas, looking for the transition fromsuper�uid to Bose glass [67, 98, 67℄. Others 
onsidered the dynami
al propertiesfo
using on the expansion of an initially lo
alized wavepa
ket [33, 69℄. Other groupsinvestigated the role of dimensionality 
onsidering two dimensional and three dimen-
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lusionssional disorder. In the two dimensional 
ase, the regime of Anderson lo
alizationhas not yet been rea
hed [179℄, but re
ently the observation of 
oherent ba
ks
atter-ing of ultra
old atoms has been reported [180℄. This phenomenon is responsible forthe so 
alled weak lo
alization, whi
h 
an be 
onsidered as a pre
ursor of Andersonlo
alization. In the three dimensional 
ase two di�erent experiments managed toobserve Anderson lo
alization of matter waves with nonintera
ting bosons [71℄ andfermions [70℄.As suggested by this stimulating s
enario there are several dire
tions that 
anbe investigated from the theoreti
al point of view. A dire
t extension of the in-vestigation of the interplay between intera
tion and lo
alization would 
onsists of
omparing our results for the expansion of an initially lo
alized wavepa
ket withthose that 
an be found by using di�erent approa
hes like, for instan
e, the inves-tigation of the properties of a Bose gas at equilibrium in a box of �nite size in thepresen
e of a quasiperiodi
 potential and of intera
tion between atoms. Alterna-tively one may look for signatures of the destru
tive e�e
t of the intera
tions onlo
alization by 
onsidering the time evolution in momentum spa
e. Another impor-tant task would be the development of beyond-mean-�eld theories, allowing for theinvestigation not only of weakly intera
ting, but also strongly intera
ting gases.As regards the role of the 
orrelations, there are several extensions that 
anbe 
onsidered. Remaining in the one dimensional 
ase, the study of the dynami
sof wavepa
kets would provide another possible way to dete
t the delo
alizationindu
ed by the 
orrelations. We expe
t that the di�erent lo
alization regimes thatwe have predi
ted 
an lead to lo
alization of wavepa
kets but also to di�usive andsuperdi�usive expansions. A detailed 
hara
terization of these dynami
al regimeswould 
omplement our analysis and provide another input on how to dete
t thedi�erent regimes in feasible experiments. Another possibility is the extension of ouranalysis to higher dimensions. The model that we proposed 
an indeed be extendedto 2D and 3D and, in this sense, it may serve as a powerful tool to shed light on therole played by 
orrelations in these systems.



Appendix AWannier fun
tions
In this appendix we give a brief introdu
tion to the 
on
ept of Wannier fun
tionsand we explain some of their properties.Let us 
onsider a single parti
le in a one dimensional periodi
 potential V (x) ofperiod d, V (x) = V (x+jd). This problem is des
ribed by the following Hamiltonian

H = − ~
2

2m

∂2

∂x2
+ V (x).The Blo
h theorem [40℄ states that the eigenstates asso
iated toH have the followingform

ψn,k(x) = eikxun,k(x) (A.1)where k is the quasi-momentum, n is the band index and un,k(x) is a fun
tion withthe same periodi
ity of the potential, un,k(x+ jd) = un,k(x). The quasi-momentumis restri
ted to the �rst Brillouin zone k ∈ [−π/d, π/d] and, in a �nite system, it
an assume N di�erent values, where N is the number of periodi
 repetitions of thepotential. One 
an easily verify that
ψn,k(x+ jd) = eijndψn,k(x). (A.2)Any Blo
h fun
tion, ψn,k(x), 
onsidered as a fun
tion of k and for a �xed value of

x, represents a periodi
 fun
tion with period 2π/d. It therefore has a Fourier seriesexpansion in plane waves with waveve
tors in real spa
e. For a �xed value of x we
an write:
ψn,k(x) =

1√
N

∑

j

wn,j(x)e
ikjd. (A.3)The 
oe�
ients wn,j(x), depend on x, on the latti
e site j and on the band index nand are 
alled Wannier fun
tions. They 
an be 
al
ulated by the inversion formula

wn,j(x) =
1√
N

∑

k

ψn,k(x)e
−ijkd (A.4)where the sum in
ludes all the values of k in the Brillouin zone. When N is largeone 
an substitute the sum in equation (A.4) with an integral over k.The Wannier fun
tions obey the following properties:1. Their shape does not depend separately on j and x separately but only on thedi�eren
e x− jd. This 
an be expressed as

wn,j+l(x+ ld) = wn,j(x) (A.5)
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Figure A.1: Wannier fun
tion of the lowest band w(x) for a periodi
 potential ofthe form V (x) = sER sin2(kx) for di�erent values of s. The exa
t numeri
al result(red lines) is 
ompared with the Gaussian approximation (bla
k lines) des
ribed byEq. (A.10)and it is a dire
t 
onsequen
e of Eq. (A.4) and of the Blo
h theorem. Thereforewe 
an introdu
e the following notation
wn,j(x) = wn(x− ja). (A.6)2. They form a 
omplete orthonormal set. The 
ompleteness follows from thefa
t that we expressed the basis of the Blo
h fun
tions as a linear 
ombinationof the Wannier fun
tions. The orthogonality is given by

∫

w∗
j,n(x)wj′,n′(x) dx = δn,n′δj,j′ . (A.7)This relation 
an be veri�ed using Eq. (A.4) and the orthogonality of the Blo
hfun
tions.3. The Wannier fun
tions of the lowest band are 
entered around the latti
e site

jd. Moreover 
hoosing appropriate phases for the Blo
h fun
tions they arereal, symmetri
 around jd and they rapidly go to zero away from jd [181℄.Let us now 
onsider the spe
i�
 
ase where the potential is an opti
al latti
e de-s
ribed by
V (x) = sER sin2(kx) (A.8)where k = π/d, ER = ~

2k2/2m is the re
oil energy and s is the dimensionlesslatti
e strength. Moreover we fo
us on the Wannier fun
tions of the lowest bandthat we indi
ate removing the band index wn=0,j(x) = wj(x). In Fig. A.1 we show anumeri
al 
al
ulation of the Wannier fun
tion of the lowest band w(x) for di�erentvalues of the strength of the opti
al latti
e s (red solid lines). We note that w(x)is symmetri
 and lo
alized around the latti
e site j = 0. As the latti
e strength sis in
reased the Wannier fun
tion be
omes more and more lo
alized. An analyti
al



107estimation of w(x) 
an be obtained approximating the wells of the opti
al latti
ewith an harmoni
 potential
V (x) ≈ 1

2
mω2x2 (A.9)of frequen
y w =

√
s~k2/m. The ground state of the harmoni
 
on�nement providesA Gaussian approximation of w(x) and has the following form

w(x) ≈
(√

sk2

π

)1/4

exp

(−√
sk2

2
x2
)

. (A.10)In Fig. A.1 we 
ompare this analyti
al expression (bla
k dashed lines) with the exa
tnumeri
al result. We observe a general good agreement between the two 
urves thatimproves for large values of s. It is important to note, anyway, that the tails of theGaussian approximation gives always a poor des
ription of the tails of the Wannierfun
tions. In fa
t w(x) de
ays exponentially rather than in a Gaussian manner andalways has nodes in order to satisfy the orthogonality 
ondition (A.7) [21℄.





Appendix BRenormalization-de
imationapproa
h
This appendix is devoted to an introdu
tion to the renormalization-de
imationmethod. This method represents a powerful tool for the 
al
ulation of the Green'sfun
tion operator based on the 
entral idea of lowering the number of degrees offreedom of a physi
al system, redu
ing to a smaller renormalized subspa
e. This isdone in an exa
t way eliminating the part of the system we are not interested in.This renormalization approa
h has been applied in di�erent �elds of physi
s as forinstan
e the 
al
ulation of the band stru
ture of 
rystals and mi
rostru
tures (e.g.[182, 183℄) or to the problem of lo
alization of quantum parti
les in disordered orquasiperiodi
 systems (e.g. [184, 177℄). Exhaustive introdu
tions on this topi
 
anbe found in the literature (see for instan
e [185℄ and referen
es therein).This appendix is organized as follows: �rst we introdu
e the theoreti
al for-malism of the renormalization-de
imation approa
h. We then apply it to a spe
i�
problem whi
h is the analysis of the lo
alization properties of a one-dimensionaltight binding Hamiltonian, fo
using on the 
al
ulation of the density of states, ofthe Lyapunov exponent and of the transmission and re�e
tion 
oe�
ients.B.1 Renormalization s
heme: the theoreti
al frameworkLet us dis
uss the renormalization s
heme in the 
ase of a generi
 Hamiltonian Hwith N degrees of freedom. We indi
ate with | φi〉 an orthonormal basis asso
iatedto this Hamiltonian

H =
∑

i,j

Hi,j | φi〉〈φj |, (B.1)where Hi,j = 〈φi | H | φj〉, and with G(E) the Green's fun
tion, or resolvent,asso
iated with H
G(E) =

1

E −H
. (B.2)Suppose now, without any loss of generality, that H 
an be written as the sum oftwo operators

H = H ′ +W (B.3)and indi
ate with G the Green's fun
tion of the full system and with G′ the Green'sfun
tion of H ′. Then one 
an apply the Dyson equation
G = G′ +G′WG (B.4)
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imation approa
hwhi
h is an exa
t relation 
onne
ting G, G′ and W .We partition now the spa
e where H is de�ned into two arbitrary 
omplementaryparts that we indi
ate with A and B and we introdu
e the proje
tion operatorsasso
iated to these subspa
es
PA =

∑

i∈A
| φi〉〈φi | (B.5)

PB =
∑

i∈B
| φi〉〈φi |= 1− PA (B.6)Using the proje
tor operators one 
an rewrite the Hamiltonian as follows

H = HAA +HBB +HAB +HBA (B.7)where HI,J = PIHPJ . Let us now 
hoose expli
itly the operators H ′ and W asfollows
H ′ = HAA +HBB and W = HAB +HBA. (B.8)The proje
tion pro
edure (B.7) 
an be applied also to the Green's fun
tion G and

G′. Note that in the G′ 
ase the 
ross terms (AB and BA) are zero be
ause theHamiltonian H ′ does not in
lude any mixing between the two subspa
es A and B.Starting from the Dyson equation and using the expression for W one 
an showthat
GAA = G′

AA +G′
AAHABGBA (B.9)

GBA = G′
BBHBAGAA. (B.10)Combining these two equations one obtains

[

(G′
AA)

−1 −HABG
′
BBHBA

]

GAA = 1. (B.11)At this point writing the expli
it expressions for G′
AA and G′

BB we �nd
GAA(E) =

1

E − H̃AA

(B.12)where we have introdu
ed H̃AA whi
h 
an be interpreted as a renormalized Hamil-tonian and has the following form
H̃AA = HAA +HAB

1

E −HBB
HBA. (B.13)Eqs. (B.12) and (B.13) represent an exa
t result whi
h is the heart of the renor-malization approa
h. The physi
al meaning is that we have eliminated one of thetwo subspa
es of the system (B) and this allow us to des
ribe the physi
s of theremaining subspa
e (A, whi
h is the subspa
e whi
h we are interested in) with anew renormalized Hamiltonian. The pri
e to pay is that this new Hamiltonian isenergy dependent.
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imationte
hnique 111B.2 Appli
ation to tight binding Hamiltonians: the de
-imation te
hniqueLet us now apply the renormalization method to a tight binding Hamiltonian of form(2.9). In parti
ular we 
onsider the one dimensional 
ase and we restri
t hoppingjust to nearest neighbouring sites
H =

∑

j

εj | j〉〈j | +J
∑

j

| j〉〈j + 1 | + | j + 1〉〈j | (B.14)with j = 0, 1, . . . , N . Here, for simpli
ity, we have 
hosen, a site independenthopping energy, J , but the formalism 
an be easily generalized to the 
ase where
J is site dependent. The on-site energies εn 
an be 
hosen at will, usually themethod is applied when εn are randomly or quasiperiodi
ally distributed so thatthe lo
alization properties be
omes interesting.The renormalization method that we introdu
ed in the previous se
tion 
an bee�
iently applied if one 
hooses the system B in su
h a way that G′

BB is expli
itlyknown so that the 
al
ulation of the renormalized Hamiltonian be
omes straightfor-ward. In our spe
i�
 
ase we 
hoose a single site of the 
hain. Doing this we redu
ethe dimensionality of the problem by one degree of freedom. Let us start removingthe se
ond site of the 
hain j = 1. In this 
ase the renormalized Hamiltonian de-s
ribing the system A is un
hanged a part from three terms: the on-site energies ofthe sites j = 0 and j = 2 and the hopping energy 
onne
ting those two sites. Usingthe fa
t that G′
BB = 1

E−ε1
| 1〉〈1 | and Eq. (B.13) we obtain

ε
(1)
0 = ε0 + J

1

E − ε1
J

ε
(1)
2 = ε2 + J

1

E − ε1
J (B.15)

J
(1)
0,2 = J

(1)
2,0 = J

1

E − ε1
Jwhere the supers
ript (1) indi
ates that we are in the �rst iteration of therenormalization-de
imation pro
edure. The idea is now to repeat this pro
edureremoving sites 2, 3, . . . and redu
ing to an e�e
ting dimer after N − 1 iterations.The re
ursive equations that 
onne
t the renormalized quantities at the step (i− 1)of the pro
edure with those at step (i) are given by

ε
(i)
0 = ε

(i−1)
0 + J

(i−1)
0,i

1

E − ε
(i−1)
i

J
(i−1)
0,i

ε
(i)
i+1 = εi + J

1

E − ε
(i−1)
i

J (B.16)
J
(i)
0,i+1 = J

(i)
i+1,0 = J

(i−1)
0,i

1

E − ε
(i−1)
i

J,
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imation approa
hwhile the Hamiltonian of the e�e
tive dimer obtained after N − 1 iterations 
an bewritten as
H̃(E) =

(

ε
(N−1)
0 (E) J

(N−1)
0,N (E)

J
(N−1)
0,N (E) ε

(N−1)
N (E)

)

. (B.17)Using this e�e
tive Hamiltonian, whi
h is very easy to handle sin
e it is a simple
2 × 2 matrix, it is now possible to extra
t many interesting physi
al quantitiesrelated to the lo
alization properties of the system. In the following we brie�yexplain how to 
al
ulate the density of states, the Lyapunov exponent and thetransmission properties.Density of statesThe density of states of a system ρ(E) for a non-degenerate Hamiltonian 
an be
al
ulated as

ρ(E) =
∑

n

δ(E − En). (B.18)where En is an energy that belongs to the spe
trum of the system. It 
an be relatedto the Green's fun
tion of the system by the following relation
ρ(E) = − 1

π
lim
ε→0+

Im {Tr [G (E + iε)]} , (B.19)The 
onne
tion between Eqs. (B.18) and (B.19) 
an be established starting fromEq. (B.19) and writing the tra
e on the basis of the eigenstates of the system, where
H is diagonal. One gets

ρ(E) =
∑

n

lim
ε→0+

1

π

ε

(E − En)2 + ε2
. (B.20)This expression represents a sum of many Lorentzian fun
tions L(E−En; ε). Usingthat L(x; ε) → δ(x) for ε → 0 one has shown the equivalen
e of Eqs. (B.18) and(B.19). In the 
ase of a tridiagonal Hamiltonian one 
an also show that

∂

∂E
ln [G0,N (E + iε)] = −Tr [G(E + iε)] . (B.21)Combining this equation with (B.20) we obtain an expression for the density ofstates whi
h is extremely useful for our purposes [186℄:

ρ(E) =
1

π
lim
ε→0+

Im{ ∂

∂E
ln [G0,N (E + iε)]

}

. (B.22)This relation requires the knowledge of just one matrix element of the Green'sfun
tion G0,N and this 
an be easily 
al
ulated form a dire
t inversion of therenormalized Hamiltonian (B.17).
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imationte
hnique 113Lyapunov exponentFor a 1D disordered disordered system as (B.14), a general expression of the Lya-punov exponent in terms of the Green's fun
tion matrix elements is given by[58, 177℄:
Λ(E) = lim

N→+∞
1

N
ln

∣

∣

∣

∣

GN,N (E)

G0,N (E)

∣

∣

∣

∣

, (B.23)whi
h is valid as long as the limit is well de�ned. This equation 
an be rewritten ina mu
h more e�e
tive form substituting the expli
it expressions for GN,N and G0,N ,obtained inverting H̃
Λ(E) = lim

N→+∞
1

N
ln

∣

∣

∣

∣

∣

∣

E − ε
(N−1)
0 (E)

J
(N−1)
0,N (E)

∣

∣

∣

∣

∣

∣

. (B.24)In an energy region where lo
alized states are present, this expression 
an befurther simpli�ed by noting that the numerator is �nite, while the denominator
J
(N−1)
0,N (E) → 0

Λ(E) = − lim
N→+∞

1

N
ln
∣

∣

∣
J
(N−1)
0,N (E)

∣

∣

∣
, (B.25)this relation 
reates a dire
t and intuitive relation between the Lyapunov exponentand the e�e
tive tunneling asso
iated to the e�e
tive dimer that represents oursystem.Re�e
tion and Transmission 
oe�
ientsIn order to dis
uss the transmission properties of a �nite size system as (B.14) weneed to des
ribe, not only the system itself, but also the in
oming and the outgoingwaves that are involved in the s
attering pro
ess.In our 
ase this 
an be done by extending the system under 
onsideration (formedby N+1 sites, form 0 to N) on the left and on the right with two semi-in�nite perfe
tlatti
es. Let us therefore add at the edges of the system des
ribed by the Hamilto-nian (B.14), H, two in�nite series of sites with on-site energies ε and tunneling J , asillustrated in Fig. B.1 a). The new extended Hamiltonian, Hext, is then de
omposedin two parts: i) an in�nite perfe
t latti
e, that we indi
ate with H0 ii) the remainingpart of the Hamiltonian, that we indi
ate with HI and is given by the di�eren
e of

Hext and the perfe
t latti
e H0

Hext = H0 +HI (B.26)This pro
edure is s
hemati
ally illustrated in Fig. B.1.The transmission and re�e
tion 
oe�
ients are then 
al
ulated using standards
attering theory. If one 
onsiders an in
oming Blo
h wave | k〉, eigenstate of H0,of the form
〈n | k〉 = eikn, (B.27)
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Figure B.1: S
hemati
 representation of the pro
edure used for the 
omputationof the transmission 
oe�
ient. (a) The system under study, whi
h extends fromsite 0 to site N , is 
onne
ted to two semi-in�nite perfe
t latti
es on both sides. (b)This new system is formally de
omposed into a perfe
t latti
e and a perturbationresponsible for the s
attering of the in
oming wave.labelled by k and with energy E = ε + 2J cos(k), then the s
attering of this stateprodu
ed by HI yields the wavefun
tion
| ϕ〉 =

(

1 +G0T
)

| k〉, (B.28)where G0 is the Green's fun
tion operator asso
iated to the perfe
t latti
e H0 andits matrix elements are given by [187℄
G0

n,m(E) =

(

1

2|J |

)|n−m|
[

−(E − ε) +
√

(E − ε)2 − 4J2
]|n−m|

√

(E − ε)2 − 4J2
(B.29)and T is the s
attering matrix, whi
h is given by

T = HI
(

1−G0HI
)−1

. (B.30)We 
an now 
ombine this formalism with the renormalization-de
imation ap-proa
h, whi
h allows to redu
e an arbitrary Hamiltonian to an e�e
tive dimer. Thee�e
tive dimer asso
iated to HI 
an be 
al
ulated by applying the renormalization-de
imation pro
edure separately on Hext and H0 and then subtra
ting the tworesults.At this point we are left with the 
al
ulation of the transmission and re�e
tion
oe�
ients of a single dimer, we 
an restri
t our analysis to the subspa
e formedby the sites [0, N ] and HI and T are simple 2× 2 matri
es. Combining expressions(B.28), (B.29) and (B.30) one 
an show that the s
attered wavefun
tion takes theform 〈n | ϕ〉 = τe+ikn in the forward dire
tion (n ≥ N), where τ is the transmissionamplitude
τ = 1 +G0

0,0T0,0 +G0
0,NT0,N +G0

N,0TN,0e
−2iNk +G0

N,NTN,N . (B.31)
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Figure B.2: Density of states (left panel) and lo
alization length (right panel) forthe one dimensional Anderson model for di�erent values of the disorder strength W .The solid lines are the numeri
al results obtained with the renormalization-trun
ationapproa
h, while the dashed lines in the right panel represent a perturbative 
al
ulationfor the lo
alization length given by (2.16).Similarly, in the ba
kward dire
tion (n ≤ 0), 〈n | ϕ〉 = e+ikn + re−ikn, r being there�e
tion amplitude
r = G0

0,0T0,0 +G0
N,0T0,N +G0

0,NTN,0 +G0
N,NTN,Ne

+2iNk. (B.32)The transmission and the re�e
tion 
oe�
ients are then given by T = |τ |2 and
R = |r|2.An example of appli
ation of the renormalization-de
imation approa
h to theone dimensional Anderson model is shown in Fig. B.2. In this 
ase εn are randomvariables uniformly distributed in the interval [−W/2,W/2], whereW represents thedisorder strength. We show the results of numeri
al 
al
ulations where we appliedre
ursively Eqs. (B.16) and then we used expressions (B.18) and (B.23) for the
al
ulation of the density of states ρ(E) and of the lo
alization length Lloc(E) =

1/Λ(E) respe
tively. We also 
ompare the numeri
al results for the lo
alizationlength with the analyti
al expression (2.16) obtained in se
ond order perturbationtheory. The agreement between the two 
urves is very good espe
ially where theperturbation theory is expe
ted to give a

urate results, i.e. for small values of Wand 
lose to the 
enter of the band.
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