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CHAPTER 1

Introduction

Disorder is ubiquitous in nature and affects the properties of many physical systems.
A deep understanding of its effects is therefore of fundamental importance. This
is particularly true for quantum systems, where disorder can influence dramatically
the transport properties of electrons leading to a phenomenon that today is known
as Anderson localization [1]. This type of localization is a subtle effect that arises
from an interference process due to coherent multiple scattering from the disorder.
It leads to a complete absence of diffusion and to exponentially localized single-
particle wavefunctions [2]. Anderson’s discovery represented a breakthrough in the
study of transport properties of quantum particles, since it introduced a completely
new approach to the problem. Previous theories of transport considered disorder
just as a weak perturbation, predicting a diffusive motion determined by incoherent
scattering [3].

Shortly after the discovery of Anderson localization it has been shown that, in
one dimensional systems, localization takes place for all quantum states [4, 5]. This
is counterintuitive especially when the energy of a given state is much larger than
the typical energy fluctuations associated to the disorder. A proper understanding
of localization in higher dimensions required more time, but nowadays it is finally
accepted that also in two dimensional systems all states are localized, while in three
dimensions a metal-insulator transition can occur, as already suggested by Anderson
in his original paper [6, 7].

The phenomenon of Anderson localization has been originally introduced in the
context of electrons propagating in disordered solid state materials. Only later it has
been realized that the same type of localization also occurs with classical waves, such
as light or sound [8, 9]. This led to the first observations of Anderson localization
in optics [10, 11] and acoustics [12].

Nowadays the study of Anderson localization is still a very active research field.
Since its discovery many issues have been discussed and understood, but there are
also several important questions that are still open. Few years ago a new boost to
the study of Anderson localization and the related open problems have been given
by experiments with ultracold atoms. Since the realization of the first Bose-Einstein
condensate with dilute and cold gases [13, 14, 15], the experimental techniques aimed
to manipulating and observing these quantum gases in different geometries have been
enormously improved; at present, ultracold atoms can be considered as a benchmark
for the study of many phenomena in the realm of quantum physics. Among the
first examples of remarkable results obtained in this field are the observation of
interference fringes in the expansion of two overlapping Bose-Einstein condensates
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[16] and the formation of quantized vortices [17]. More recently a great interest
is focused on properties of many-body systems, where new quantum phases can
emerge. Examples are the observation of a Tonks-Girardeau gas in one dimension
[18, 19] or the transition from superfluid to Mott insulator [20].

The great success of ultracold atoms is mostly due to the high degree of control
that can be reached in experiments [21]. Both bosonic and fermionic atoms can
be cooled down to degeneracy and external trapping potentials can be used to
control the dimensionality of the system. Feshbach resonances are used to tune the
interaction between atoms and many different observables can be detected ranging
from the atomic density to the momentum distribution. Laser light can be used
to design different kind of potentials for the atoms, such as perfect periodic optical
lattices in different dimensionalities [22].

Recently optical potentials have been used also for the generation of controlled
random potentials [23] and a new field of study started with the first direct ob-
servation of Anderson localization of matter waves in two different research groups
[24, 25]. This observation represented a remarkable result and showed that ultra-
cold atoms can represent a powerful experimental tool for exploring a number of
problems related to the theory of localization [26, 27, 28].

In this thesis we will concentrate on two main issues, namely the interplay be-
tween localization and interaction in disordered systems and the problem of local-
ization in correlated random potentials. The former is a long standing problem
that has been raised shortly after the discovery of Anderson localization [29], be-
cause of its fundamental importance in electron transport in disordered solids, where
Coulomb interaction between electrons can not be neglected. One naively expects
that interaction acts against localization, but a detailed study of this interplay is
highly nontrivial. The study of the role played by correlations in the localization
process is also of great interest, since, strictly speaking, in real world uncorrelated
potentials do not exist. It is known that correlations can lead to delocalization ef-
fects, however, a full understanding is still missing and one of the most challenging
questions is whether or not they can introduce a metal-insulator transition already
in one dimension, where the effect of disorder is known to be the strongest [30]. The
possibility to design different kind of disordered potentials and to control the inter-
atomic interactions are the two key features that makes ultracold atoms particularly
suitable to tackle these two problems.

1.1 Outline of the thesis

The main objective of this thesis is to give a contribution to the understanding
of the physics of disordered systems studying, from a theoretical and numerical
point of view, problems and models that can be directly investigated in feasible
experiments with ultracold atoms. As we have previously anticipated the main two
topics that we will investigate are the role played by interactions and correlations
in the determination of the localization properties of disordered quantum systems.
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The outline of the thesis is the following :

In chapter 2 we present the basic concepts of the theory of localization of
quantum particles in disordered systems. We introduce the phenomenon of
Anderson localization and the concept of mobility edge in three dimensional
systems. We discuss the role played by the dimensionality in relation to the
problem of localization with special focus to the one dimensional case, that is
the most relevant for this thesis. We introduce different models of disorder and
discuss their implementations with ultracold atomic gases. Finally we review
the experimental observations of Anderson localization.

In chapter 3 the problem of localization in quasiperiodic systems is discussed.
After introducing the Aubry-André model and explaining in detail its
connection with ultracold atoms in bichromatic optical lattices, we review
its localization properties. We then consider the spreading of an initially
localized wavepaket, both in real and momentum space, as a possible tool to
study the localization properties of the Aubry-André model. Special attention
is given to properties which are observable in experiments. Part of the results
presented in this chapter are published in:

M. Larcher, F. Dalfovo, and M. Modugno, “Effects of interaction on
the diffusion of atomic matter waves in one-dimensional quasiperiodic poten-
tials”, Physical Review A, 80, 053606 (2009) [31].

M. Larcher, M. Modugno, and F. Dalfovo, “Localization in momentum space
of ultracold atoms in incommensurate lattices”, Physical Review A, 83, 013624

(2011) [32]

Chapters 4 is devoted to the study of the effects of interaction on the
spreading of an ultracold atomic gas in a bichromatic optical lattice. This is
done by considering a discretized mean-field equation, which generalizes the
Aubry-André model by adding a nonlinear term that includes the interaction
between atoms. This model is also known as discrete nonlinear Schrédinger
equation (DNLS). We solve this equation numerically and analyze the
interplay between two competing effects of the interaction, namely, self-
trapping and destruction of Anderson localization. Finally we compare the
numerical results that can be extracted from this model with experimental
measurements performed in Florence. The results of this chapter have been
published in the first paper mentioned above as well as in:

E. Lucioni, B. Deissler, L. Tanzi, G. Roati, M. Zaccanti, M. Modugno,
M. Larcher, F. Dalfovo, M. Inguscio, and G. Modugno, “Observation of
subdiffusion in a disordered interacting system”, Physical Review Letters,
106, 230403 (2011) [33].

The focus of chapter 5 is still on the interplay between localization and
interaction. We use again the DNLS model to tackle this problem, but here
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more attention is devoted to the investigation of the spreading behaviour of
wavepackets, that were localized in the noninteracting case. We characterize
in detail the phenomenon of destruction of Anderson localization and the
resulting subdiffusive expansion induced by the interaction, identifying
different spreading regimes and predicting the associated spreading laws.
Finally an extensive numerical analysis is performed and the results are
compared with the theoretical expectations. The content of this chapter has
been published in:

M Larcher, T. Laptyeva, J. Bodyfelt, F. Dalfovo, M. Modugno and S.
Flach, “Subdiffusion of nonlinear waves in quasiperiodic potentials”, New
Journal of Physics, 14, 103036 (2012) [34].

In chapter 6 we propose a model of disorder that can be realized ex-
perimentally using dipolar ultracold gases and that presents correlation
properties that leads to interesting delocalization effects. The model is first
introduced and its statistical properties are characterized. In particular
we show that both short and long correlations are naturally present in the
disordered system that we propose. We then study its localization properties
calculating the localization length of the eigenstates by means of an exact
renormalization-decimation technique. Using these results, we discuss the
role of short and long range correlations and their interplay. The material in
this chapter is the basis for a paper which will be soon submitted:

M. Larcher, C. Menotti, B. Tanatar and P. Vignolo, “A metal-insulator
transition induced by random dipoles”, in preparation [35].



CHAPTER 2
Localization properties in
disordered quantum systems

It was first realized by Anderson that disorder can have a dramatic impact on the
transport properties of a quantum particle. More precisely, by studying the con-
ductance of electrons in solids, he discovered that disorder can lead to a complete
absence of diffusion and a consequent metal-insulator transition. This phenomenon
is known as Anderson localization [1|. Since the revolutionary discovery by An-
derson a huge activity on the physics of quantum disordered system has started
and nowadays it is still an active research field that involves many areas of physics
[36, 26].

This chapter is devoted to the introduction of the localization problem in dis-
ordered quantum systems. We will review some basic concepts that will form the
background for the understanding of the results presented in the others chapters
of this thesis. In section 2.1 we outline the main achievements of the theory of
localization for noninteracting quantum particles and classical waves. In section 2.2
we specialize to the localization properties of one dimensional systems, which is the
dimensionality that we will consider for the rest of this thesis. In section 2.3 we
review the experimental observations of Anderson localization with a special focus
on the localization of matter waves and ultracold atomic systems.

2.1 Disorder induced localization

In this section we present some of the key results of the quantum theory of localiza-
tion. There are a number of interesting introductions to this field that can be found
in the scientific literature (see for instance [37, 3, 38, 36, 39]).

In particular we first introduce the problem of quantum transport in disordered
systems from a comparison with the classical case. We then present the concepts
of Anderson localization and of mobility edge and discuss the role played by the
dimensionality of the system starting from the results of the scaling theory of
localization. Finally we introduce some models of disorder in connection with the
field of ultracold atomic gases.

Classical vs. Quantum

We start to deal with the problem of the behaviour of a quantum particle in a
disordered potential considering a comparison with the classical case. This can



6 Chapter 2. Localization properties in disordered quantum systems

Energy

Position

Figure 2.1: Localization properties of a classical particle in a disordered potential
depending on the value of its energy. If the energy of the particle is smaller than
the highest barriers of the potential (Ey < E) the motion of the particle is restricted
to a finite region of space. Conversely if the energy of the particle is larger than the
highest barriers of the potential (Eo > Ey) the motion of the particle is unbounded
and it will propagate through the disordered potential. Figure taken from Ref. [2].

give an intuition of why the study of Anderson localization is highly nontrivial and
introduces the two main effects that play a key role for the determination of the
transport behaviour of a quantum particle.

Let us consider a classical particle in a disordered potential V(x) (we considered
the one dimensional case for simplicity) like the one that is depicted in Fig. 2.1
and let us consider the situation where the potential is upper bounded by a max-
imum value that we call Ey. The behaviour of the classical particle can be easily
determined by a simple comparison of the energy of the particle with the maximum
value assumed by the potential. In particular if the energy of the particle is smaller
than Fjy the motion will be bounded in a finite region of space between two barriers
of the potential, transport over long distances is suppressed and localization takes
place. On the contrary if the energy is larger than Ej the particle will fly above the
barriers of the disordered potential and on average the motion will be ballistic.

For a quantum particle, where the wave nature of matter comes into play, this
simple picture is completely modified. On the one hand a quantum particle can
tunnel through potential barriers and therefore we do not expect that a disordered
potential can bound and freeze its motion. This delocalization due to tunneling
is what happens, for instance, in periodic potentials, where, no matter how high
are the potential barriers, but the particle will always propagate ballistically [40].
On the other hand, even if a quantum particle has an energy much larger than the
typical potential barriers, we know that there will always be a finite reflection and
transmission probability. This can lead to nontrivial interference effects that tend
to localize particles. We will see that an example of localization due to interference
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is Anderson localization [1, 2].
Anderson localization

The effects of disorder on the propagation of quantum particles has been ini-
tially studied in the context of condensed matter physics for the description of the
propagation of electrons in solids. The natural starting point for the analysis of
this problem is a perfect crystal, whose properties are well known and are governed
by the Bloch theorem. In particular the eigenstates of the system are extended
Bloch waves that can propagate through the crystal [40].

The traditional view, before the discovery of Anderson localization, considered
as a starting point for the study of the effects of disorder the extended waves of a
perfect crystal [36]. As a consequence in the semiclassical theory of electronic trans-
port, electrons are still considered as waves whose wavefunction remains extended
throughout the sample but the propagation is modified by incoherent scattering
due to the presence of disorder in the system. The result of these collisions causes
a loss of the phase coherence of the waves on the length of the mean free path £.
This leads to a diffusive motion of electrons through the disordered potential, which
allows electrons to propagate to infinity and results in a finite conductance of the
sample. An increase of the strength of the disorder leads to a decrease of the mean
free path ¢ and to a consequent decrease of the diffusion constant and of the con-
ductance of the sample. This turns out to be true when interference effects can be
neglected.

The first to understand that interference effects play a key role for the deter-
mination of the transport behaviour of a quantum particle was Philip Anderson in
1958. He showed that the consequence of these destructive interference processes
between different scattered waves is not a simple reduction of the conductivity but
a complete absence of diffusion [1].

In his seminal paper he considered the transport of a particle (spin) in a dis-
cretized lattice that can tunnel via quantum jumps between different sites and disor-
der is introduced by requiring that the on-site energies associated with the different
lattice sites varies randomly. More precisely Anderson introduced the following
model for the description of the propagation of the particle (spin)

Z% = 8]'1/1]' — Z Jj,kwk (2.1)

ot
k]

where 1); is the probability amplitude that a particle is on site j, J;, describes the
hopping amplitude between different sites and ¢; are the random on-site energies
characterized by a probability distribution P(g).

He considered the transport problem of an initially localized probability distri-
bution [1;(0)| that occupies just a finite region of space and he tried to answer the
following question: “how fast, if at all, does the probability distribution diffuse away
from its initial position?” He found that if the hopping amplitude .J;  falls off faster
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than 1/|j — k|® and if the disorder W is strong enough if compared with the average
value of the hopping amplitude J then there will be a complete absence of diffusion.
The initial amplitude |¢);(0)| stays localized around the initially occupied sites and
falls off exponentially with the distance.

This absence of diffusion is associated with the fact that the single-particle eigen-
states of a disordered system are exponentially localized if disorder is strong enough
[3]. More precisely, this means that, on the average, the envelopes of their ampli-
tudes are exponentially decaying in space at infinity

|6 (F)| ~ e 17 Tel Fee (2.2)

where 7 is the localization center and L. is the localization length. Particle
described by these kind of states cannot contribute to transport since they occupy
a finite region of space in opposition to particles in extended states that can escape
to infinity. Therefore the main two manifestations of Anderson localization, which
are closely connected, are the absence of diffusion and the fact that the single
particle eigenstates are exponentially localized.

Mobility edge

Anderson already understood that complete localization takes place only if the dis-
order is strong enough [1]. In this situation all the single particle eigenstates are
localized. Below a certain disorder strength, instead, localization takes place only
for a fraction of states while the remaining states are extended.

Ten years after the publication of the paper by Anderson, Mott introduced the
concept of mobility edge [6] which represents an energy which separates localized
and extended states. He understood that no localized states can exist in an energy
region of extended states with the following argument. Assume that it is possible to

Localized Extended Localized

Density of states

Ec Ec’
Energy

Figure 2.2: Schematic representation of the concept of mobility edge. The states
are localized in energy regions where the density of states is small E < E. and
E > E!. Conversely they are extended in energy regions where the density of states
is large. The two energies E. and E! represent the mobility edges of the system.
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20 T

Extended

Figure 2.3: Phase diagram for the three dimensional Anderson model as a function
of the disorder stength W and of the energy of the states E. The states in the
spectrum of the system are divided in two regions and can be extended or localized.
The points and the thick solid line represents the mobility edge, i.e. the critical energy
that separates these two regions of the spectrum. More precisely the points are the
result of an exact numerical calculation, while the thick solid line is the outcome of
the self consistent theory of localization. The thin line indicates the position of the
upper edge of the spectrum, only the region on the left of this line belongs to the
spectrum. Figure taken from Ref. [/1].

find a localized state and an extended state with infinitely close energies for a given
configuration of disorder, then an infinitesimal change of the configuration would
hybridize them, forming two extended states. Hence, for a given energy, almost all
states should be either localized or extended.

In Fig. 2.2 we show a pictorial view of the concept of mobility edge for a tight
binding model similar to Eq. (2.1). The vertical dashed lines represent the position
of the two mobility edges E. and E! while the solid line represents the density of
states of the system. The regions with the localized states are those where the
density of states is small. As the disorder strength is increased the mobility edges
move towards the band center and eventually, for a critical value of the disorder
strength, they meet at the center of the band. Above this critical value of disorder
there are no more extended states in the system.

In Fig. 2.3 we instead show a quantitative calculation of the mobility edge
for the model considered by Anderson in its original paper. The phase diagram
reported in Fig. 2.3 shows the localized or extended nature of the states de-
pending on their energy F and on the strength of the disorder W. The points
are extracted from an exact numerical calculation and represent the mobility
edge, i.e. the energy that divide extended and localized states. The thick line is
the result for the mobility edge given by an approximate theory. The thin line
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indicates instead the upper bound of the spectrum. This quantitative calculation
confirms the qualitative picture that we have just described. One can see that
as the disorder strength is increased the localized states appear at the edge of
the spectrum and then move gradually towards the center of the band. Above
W/J = 16, which represents the critical disorder strength for the three dimensional
Anderson model under consideration, there are only localized states in the spectrum.

Role of dimensionality: scaling theory

The dimensionality of the system, d, plays a rather important role for the
determination of the localization properties of a quantum disordered system. In
particular one of the main results of the theory of localization is that in one dimen-
sional (1D) and two dimensional (2D) systems all the single particle eigenstates are
exponentially localized while in three dimensions (3D) both extended and localized
states can exist.

This result has been first suggested by Abrahams, Anderson, Licciardello and
Ramakrishnan who gave a first formulation of the so called one-parameter scaling
theory of localization |7]. A scaling theory describes the relevant properties of a
physical system under a change of size L — bL (b > 1).

In particular Abrahams et al. introduced a dimensionless conductance g =
Gh/e? by noting that the conductance G of a sample is dimensionless once is ex-
pressed in units of €2/h. They described the behaviour of the dimensionless con-

Figure 2.4: The scaling function B(g) in dimensions d = 1, 2, 3. The dimension-
less conductance g grows with the size of the system L if 8 > 0 but decreases for
B8 < 0. Ford =3 a critical point exists where 3 = 0; this correspond to the presence
of a transition from a localized regime to an extended regime.
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ductance of a hypercube of size L? as a function of the system size L by defining its

logarithmic derivative
dlng

P = dmr
and assuming that it depends only on the dimensionless conductance itself and not
on the other microscopic properties of the sample. This is the main assumption at

(2.3)

the basis of the theory and it is known as the one parameter scaling hypothesis.
The behaviour of 8(g) is qualitatively obtained by Abrahams et al. starting from
the two limiting behaviours for strong and weak disorder. In particular for weak
disorder the classical (i.e. without interference) behaviour of the conductance g is
assumed. This corresponds to the Ohm’s law namely the conductance depends on
the surface A = L% of the sample and on its length L according to

A
g~og = oLd2 (2.4)

where o is the conductivity of the sample, which is an intensive quantity independent
on the system size. In the opposite limit of strong disorder, exponential localization
is assumed in all dimensions and therefore conductivity is also expected to decay
exponentially with the system size

g~ e L/l (2.5)

From Egs. (2.4) and (2.5) one obtains

d—2 weak disorder
B N{ (2.6)

In g + const. strong disorder

Interpolating between the two limiting behaviours and assuming that B(g) is a
continuous and monotonically increasing function one obtains the result depicted in
Fig. (2.4). If B(g) > 0 the value of the dimensionless conductance increases with
the system size, one is therefore in the extended/conducting regime. Conversely
for 5(g) < 0 the conductance decreases with the system size and one ends up in
the localized /insulating regime where g — 0. The presence of a fixed point g,
where 3(g.) = 0 signals the presence of a transition from an extended to a localized
regime. One can see from Fig. (2.4) that such a transition exits in the 3D case.
This is consistent with the results on the presence of a mobility edge in the general
three dimensional case that we have previously discussed earlier in this chapter. In
the 1D and 2D case the theory does not predict the presence of fixed points and
B(g) is always smaller than zero. This means that no extended regime can exist
for d = 1,2 and one has always Anderson localization, no matter how small is the
disorder strength.

The qualitative shape of the diagram first proposed by Abrahams et al. and
that we presented in Fig. (2.4) was confirmed quantitatively few years later by an
extrapolation from the weak disordered limit [42].



12 Chapter 2. Localization properties in disordered quantum systems

Models of disorder

Disorder can be introduced in a variety of different ways in a physical sys-
tem. Here we just mention few models of disorder that are closely related with the
Hamiltonians that can be experimentally realized using ultracold atoms.

In the most general case, let us assume that a single particle is governed by the
Hamiltonian

2
H—h

= —%v2 + V() (2.7)

where V() is a quenched disordered potential, i.e. a static disordered potential
that does not evolve in time. The random potential is defined by a probability
distribution P(V') and by a set of correlation functions (V (71)V (%) ... V(#,)). Here
we indicated with (...) an average over many different disorder realizations. A
disorder realization is a particular outcome of the process of choosing the potential
value V(7) for all the values of 7. The disordered potential is usually assumed to
be spatially homogeneous in the sense that its statistical properties do not depend
on the specific position in the system. As a consequence the average value of the
potential (V') does not depend on 7 and in general the n-point correlation function
depends only on n — 1 relative coordinates only C,, (71,73, ...,7y,). In particular the
two point correlation function, which we simply indicate with C'(7), depends only
on one variable:

C(r) = (V(ro + 1)V (70))- (2.8)

In atomic gases Hamiltonian (2.7) can be realized using an optical speckle poten-
tial [43, 44, 45, 24]. Optical potentials can be created using laser light that induces
an atomic dipole moment and a consequent dipolar force on the atoms which is
proportional to the intensity of the laser field [21, 22]. The speckle pattern, in par-
ticular, is produced by shining a coherent laser beam through a ground-glass plate
which is then focused on the atoms using a converging lens. The ground-glass plate
transmits the laser light without altering the intensity, but imprints a random phase
profile on the emerging light. Then, the electric field E(7) on the focal plane results
from the coherent superposition of many independent waves with equally distributed
random phases. This result is a random pattern of the transmitted light that di-
rectly translates in a disordered potential V'(7) for the atoms. Both the modulus
and sign of V(7) can be controlled experimentally by changing the light intensity
and the detuning of the laser frequency with respect to the atomic transition. A
detailed analysis of the statistical properties of a typical speckle potentials used for
ultracold gases experiments can be found in [46, 47|

Disorder can be also introduced in a natural way by using a perfect lattice as
a starting point. A typical example of a lattice Hamiltonian with compositional
disorder is provided by

=2 e |01+ i )0 (2.9)
J 7
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where ¢; are the on-site energies while J; ;. describe the hopping between different
sites of the lattice. The diagonal part of the Hamiltonian corresponds to the po-
tential energy and the non-diagonal part to the kinetic energy in the continuous
space description (2.7). Let us note that the time dependent Schrédinger equation
associated to Hamiltonian (2.9) corresponds to the model considered by Anderson
in his original paper (2.1) [1]. Disorder can be introduced by taking the site energies
or the hopping terms at random. Also in this case one characterizes the disorder
by means of a probability distribution and a set of correlation functions. A typical
choice in the study of disordered system is

1/W if < W/2
Py =Y it el <w/ (2.10)
0 otherwise

and constant hopping J restricted just to nearest neighbouring sites. In this case
Hamiltonian (2.9) is indicated as the Anderson model.

A discretized space for ultracold atoms can be produced again using an optical
field |21, 22|. In this case, two counterpropagating laser beams are used. Due to
the interference between the two laser beams, an optical standing wave is formed, in
which atoms can be trapped. In this way the atoms feel the presence of a perfect one
dimensional optical lattice. Adding a pair of lasers also in the other directions gives
the possibility to create optical lattices in 2D and 3D. If the laser field is strong
enough one creates a deep optical lattice and enters the so called tight binding
regime. In this regime the space can be discretized and the atoms are governed by
an Hamiltonian which is very similar to (2.9) but with contant on site energies €; = ¢
and typically the hopping term is approximated to be constant and different from
zero only on nearest neighbouring sites J;, = J 1[21, 48]. At this point disorder
can be introduced by randomly shifting the on-site energies. This might be done
by superimposing a speckle potential to the optical lattice. Another possibility is
to introduce another optical lattice with a different lattice spacing with respect to
the first one [49, 25]. This realizes a bichromatic optical lattice and introduces a
shift of the on-site energy which is not fully random but still very interesting from
the point of view of the localization properties. We will discuss more in detail these
kind of systems, which are called quasiperiodic, in chapter 3.

Another interesting proposal for the creation of a disordered potential for ul-
tracold atoms is to use a mixture of two different atomic species (or two different
internal states of the same atom) [50, 51]. The atoms of one of the two species
are trapped at random positions in the wells of a very deep optical lattice. As a
consequence their dynamic is frozen and they cannot tunnel between different sites.
These trapped atoms play the role of “impurities”. The other species instead feels
the presence of a weaker optical lattice or it does not feel the lattice at all and it
is therefore free to move. This atomic species play the role of “test particle”. Due
to the interaction between the two atomic species, the test particles feel a random

YA detailed derivation of a tight binding Hamiltonian similar to (2.9) starting from a deep
periodic potential will be given in section 3.1.
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potential formed by the impurities which are trapped in the optical lattice. This
model can be described with a free space Hamiltonian similar to (2.7) if the test
particles do not feel the optical lattice. Conversely if also the test particle feel the
presence of the lattice (although much shallower that the lattice felt by the impuri-
ties) a tight binding Hamiltonian (2.9) is used for the description of the system. A
detailed analysis of an impurity model will be given in chapter 6.

2.2 One dimensional disordered systems

One dimensional systems play a key role in the understanding of the physics of dis-
order [52, 53, 2|. First of all, it is the dimensionality where disorder have stronger
effects, moreover many properties of the eigenstates and related to transport can be
discussed rigorously. Finally numerical calculations are faster and easier to imple-
ment.

In 1D localization is always expected no matter how strong the random poten-
tial is. Mott and Twose [54| were the first who suggested that all the single particle
eigenstates might be exponentially localized in 1D but they just provided a qualita-
tive argument to support their statement. The first rigorous proof of this result has
been given by Borland [5] few years later. Nowadays the conclusion that all single
particle states are localized in a 1D random potentials is well established as it has
been obtained with a variety of different methods.

A standard way to prove localization in 1D is to use random matrix techniques
developed by Oseledec and Furstenberg in the sixties for the calculation of the
Lyapunov exponent, which is the inverse of the localization length

1

A pu—
Lloc

(2.11)

Consider the eigenvalue problem associated to the one dimensional Anderson model
(2.9)
= JWir1 + 1) + et = EY; (2.12)

with ; = (j | ¥). Equation (2.12) is equivalent to
\I/j = Mj\I/j—17 (213)

where W; represents a two component vector and M; a 2x2 matrix

ve(al ) m=(0 e e ) .

By using this relation recursively, one can show that the vector ¥;, for large values
of j, is determined by a product of a series of random matrices M; similar to the
one that we have defined in (2.14), that is ¥; = M; ... MoM;W¥y. Two theorems
by Furstenberg [55] and Oseledec [56] are used to determine the behaviour of the
product of the random matrices. They state that, for almost all realizations of the
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Figure 2.5: Localized eigenstates of the one dimensional Anderson model obtained
by direct numerical diagonalization. In the left panel we show an example of state
with energy close to the center of the band E ~ 0 for W = 4. The state has a
typical exponentially decaying profile. The localization length obtained numerically
is in agreement with the one obtained with the approzimate expression (2.16) (black
dashed line). In the right panel we show the ground state of the system for increasing
disorder strength W.

random potential, an initial vector ¥; grows or decays asymptotically as eFAE)T

where A(FE) is a positive, non-random quantity that is known as the Lyapunov
exponent. The solution at energy E is an exponentially localized solution of the
spectrum only when there are two vectors \IISE that decay respectively for j — +oo
and 7 — —oo and that coincide at some site. This assures the existence of a solution
of energy F that decays exponentially on both sides of the system with localization
length Lj,.(E) = 1/A(E). If these two vectors do not exist for a given energy F,
this energy does not belongs to the spectrum of the system.

The eigenvalue problem defined by Eq. (2.14) can also be solved numerically by
direct diagonalization. The result of a numerical diagonalization of Eq. (2.12) with
on-site energies given by (2.10) is shown in Fig. 2.5. In particular in the left panel
of the figure we show the shape of a typical localized eigenstate close to the center
of the band for a disorder strength W = 4. The linear decay of the envelope of the
wavefunction in semi-log scale is a clear signature of the exponential localization.
In the right panel one can see how the ground state of the system changes as the
disorder strength is increased. With a color density plot we show that already for
very small values of the disorder strength the ground state has a localized profile
that decays exponentially on both sides of the system. As the disorder strength W is
increased the localization becomes stronger, the localization length becomes smaller
and consequently the regions of space occupied by the ground state is reduced.

A very useful relation that connects the spectral properties of a 1D system to
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the localization properties of the eigenstates was first derived by Herbert and Jones
[57] in the case of the Anderson model and subsequently it has been generalized by
Thouless [58]. This relation is

o0
AE) = / In(E — E')o(E') dE' (2.15)
—00

where A(E) is the Lyapunov exponent and p(E) the density of states. When applied
to Eq. (2.12) with ¢; uniformly distributed in [—W/2,W/2] and in second order
perturbation theory, Eq. (2.15) gives [59]

AE) - WP

= S35 = (B (2.16)

This relation is valid for small W and results in a localization length at the center
of the band equal to Lj,.(E = 0) = 96.J2/W?. States situated at the center of the
band, i.e. with energy E' = 0, are thus localized on longer length scales.

The result of the perturbation theory can be compared with the direct numerical
diagonalization. This is done in Fig. 2.5 where the two black dashed lines represent
an exponential decay with localization length given by (2.16). The result that the
localization length diverges as W 2 for small W is a general result in one dimensional
system and does not apply only to the case of the Anderson model.

2.3 Experimental observations of Anderson localization

Anderson localization was initially introduced for noninteracting quantum particles
[1], but its observation remained elusive for many years. It was lately realized that
Anderson localization is actually ubiquitous in wave physics, and therefore it can be
applied also to classical waves such as light or sound [9, 36]. This paved the way for
the first observations of Anderson localization. Localization of classical waves has
been reported so far for ultrasounds [12, 60], for electromagnetic waves propagating
in “free space” in the microwaves regime [10, 61] as well as in the optical regime
[11, 62, 63] and for light in photonic crystals [64, 65, 66].

The first direct observation of Anderson localization of matter waves in real
space has been reported in experiments with ultracold gases [24, 25]. These systems
have some important advantages. In most of the experiments with classical waves,
for instance, absorption mechanisms are almost unavoidable, producing decay pro-
cesses whose effects are hardly separable form the effects of Anderson localization.
Moreover the propagation of classical waves usually takes place in solid materials
which have to be engineered in order to contain a controlled amount of disorder. In
practice, this is often complicate and significantly reduces the possibility to change
the relevant parameters, such as the strength of the disorder, at will. Conversely, ul-
tracold atoms offer the advantage that light can be used to create optical disordered
potentials for the atoms, with almost negligible absorption effects. In addition the
disorder strength can be easily changed on a wide range of values simply varying
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Figure 2.6: (a) Schematic representation of the expansion of an ultracold atomic
gas in a bichromatic optical lattice, as realized in Ref. [25]. The condensate is
initially confined in a finite region of space (left) and then its released along the
quasiperiodic potential. As the strength of the secondary lattice (which plays the role
of disorder strength) is increased the size of the condensate after a fized expansion
time 1s reduced (right). (b) Axial size of the condensate after 700 ms of expansion as
a function of the strength of the secondary lattice for different values of the tunneling
energy J. Inset: typical exponentially decaying profile of the atomic cloud in the
regime of localization. Figure taken from Ref. [27].

the intensity of the laser field which produces the external potential for the atoms.
The use of Feshbach resonances allows one to control the interatomic interaction
by applying an external magnetic field. Another advantage is that one can directly
measures different observables: in situ absorption imaging gives the possibility to
directly detect the square modulus of the wavefunction, correlations measurements
can be performed and the momentum distribution of the atoms can be observed
thanks to time of flight measurements. Finally the dimensionality of the system can
be controlled using strong confinements in one or two directions.

As said before, ultracold atoms lead to the first observation of Anderson local-
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Figure 2.7: (a), (b) Cartoon of the typical experimental procedure of Ref. [24]. The
atomic cloud is initially confined by an harmonic confinement and then it is sud-
denly released into the speckle potential. (c) Density profiles of the localized atomic
cloud one second after its release, the exponential nature of the localization is clearly
observed. (d) Localization length L. fitted from the measured profiles as a function
of the disorder strength. The shaded area represents the theoretical prediction with
the relative uncertainty deriving from the estimation of the experimental parameters.

Figure taken from Ref. [2]]

ization of matter waves. In particular the first experiments considered a one dimen-
sional setup and introduced disorder using a bichromatic lattice [25] or a speckle
potential [24]. In both experiments, one of the key elements was the study of the
expansion of an initially localized cloud. The condensate is initially created into
an harmonic trap that confines the atoms in a limited region of space. Then the
harmonic confinement is suddenly switched off and the atoms are let free to expand
in the disordered potential. These two stages of the experimental procedure are
schematically represented in Fig. 2.6 (a) for a bichromatic optical lattices and in
Fig. 2.7 (a), (b) for a speckle potential. The expansion of the atomic cloud along
a given direction can be monitored by in situ absorption imaging. In Fig. 2.6 (b)
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we show a typical experimental measure of the width of the expanding condensate
after a fixed expansion time as a function of the disorder strength. One can see
that for large values of the disorder strength the expansion is completely frozen and
the absence of diffusion predicted by Anderson is observed. Another key feature of
Anderson localization is the exponential shape of single particle eigenstates. This
reflects in an exponential shape of the atomic cloud that can also be observed with in
situ absorption imaging. In the inset of Fig 2.6 (b) and in Fig. 2.7 (¢) two examples
of measured exponentially localized profiles are shown. Fitting the exponentially
localized profiles one can also obtain a measure of the localization length as shown
in Fig. 2.7 (d).

In chapters 3, 4 and 5 of this thesis we will extensively focus on the experimental
setup realized in Ref. [25], namely a one dimensional bichromatic optical lattice.
This choice is motivated by the fact that in this experiment, not only the disorder
strength can be controlled at will, but also the interatomic interaction can be tuned,
making this configuration particularly suitable for the study of the interplay between
interaction and disorder induced localization [67, 68, 33, 69].

More recently Anderson localization of matter waves has been reported also in
3D with both fermions [70] and bosons [71] using a similar procedure with respect
to the one that has been used in 1D.

Let us finally mention that using cold atoms it has been possible to realize
the kicked rotor and observe dynamical localization, which can be considered as a
mapping of Anderson localization in momentum space. In particular both the 1D
[72, 73] and the 3D case [74, 75, 76] have been considered.






CHAPTER 3
Noninteracting particles in
quasiperiodic potentials

Quasiperiodic systems are a special class of non-periodic systems. They possess two
or more periodicities whose periods are incommensurate with each other. Although
these systems are not random in the usual sense, they lack of translational symmetry
since there exist no translations which will leave the periods of all the periodic
structures invariant. Nevertheless, there exist translations that leave the system
“almost invariant”. This leads to quite unusual behaviours in quasiperiodic systems.

It is well known that in a perfectly periodic system all the eigenfunctions are
extended Bloch waves [40] while for a one dimensional random potential all the
eigenfunctions are exponentially localized [53, 2]. These properties are strictly con-
nected with the spreading behaviour of an initially localized wavepacket, in the
former case it expands ballistically while in the latter it remains localized.

In between these two extreme cases we find quasiperiodic systems that show
an intermediate behaviour between the two [77, 78]. In particular it is known that
quasiperiodic systems can have both extended and localized states already in one
dimension. Furthermore “critical” states which may be regarded as being intermedi-
ate between localized and extended can appear. As a consequence the dynamics of
a wavepacket can range from localization to ballistic expansion and also anomalous
diffusion can be observed [79, 80]. These quantum properties are often related to
the quite anomalous transport properties of quasicrystals [81, 82, 83].

The localization properties in quasiperiodic systems are often studied consider-
ing tight binding Hamiltonians similar to (2.9), where the on site energies are chosen
in order to introduce one or more additional periodicities to the system, which are
incommensurate with respect to the underlying periodicity of the model, given by
the discretization of the space [78]. In this context the most studied model is prob-
ably the Aubry-André or Harper model, [84, 85| where one can observe extended,
critical or localized states, as the strength of the on-site quasiperiodic modulation
is increased. Another well-studied example is the Fibonacci model [86, 87] where
the states are always critical, leading to anomalous transport properties [80]. A
specific feature of these two models is that they have a “pure” spectrum, namely
all the states of the system are of the same nature: extended, localized and critical
states do not coexist in the spectrum. Notably, there are also models where the
spectrum is not pure and one can have one or more mobility edges separating states
of different nature. An example is provided by the Generalized Harper model [88].
Other examples of quasiperiodic system with non-pure spectrum can be found also
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considering models in continuous space [89].

Due to their peculiarity, the localization properties of quasiperiodic systems have
always received a lot of attentions, especially after the discovery of quasicrystals
[81, 82] and the observation of their anomalous transport properties [83]. However,
few years ago, a new boost has been given to the study of this topic after that two
experiments with ultracold atoms have reported the first observation of Anderson
localization of matter waves. In fact one of the two experiment have been performed
using a 1D quasiperiodic potential and realized an experimental implementation of
the Aubry-André model [25]. One year later another experimental implementation
of the Aubry-André model has been realized using photonic crystals [65]. For this
reason in this chapter we will focus on the localization properties of the Aubry-André
model and on its connection with atomic gases experiments.

This chapter is organized as follows. In section 3.1 we explain how the Aubry-
André model can be realized experimentally using ultracold atoms in bichromatic
optical lattices. In sections 3.2 and 3.3 we discuss the localization properties of the
model, first considering the nature of the eigenstates, as originally done by Aubry
and André, and then studying the dynamics of an initially localized wavepacket.
This second method reproduces the typical expansion experiment that is performed
with ultracold atoms. For this reason we focus on two questions which can be
relevant from the experimental point of view, namely the role played by the initial
shape of the wavepacket and the difference between the incommensurate and the
commensurate case. Finally in section 3.4 we discuss the localization properties
of the Aubry-André model in momentum space and we propose a possible way to
detect the transition from extended to localized regime in a feasible experiment with
ultracold atoms by measuring the momentum distribution of the atoms.

3.1 From bichromatic optical lattices to the Aubry-
André model

One-dimensional bichromatic lattices are realized in experiments with Bose-
Einstein condensates by superimposing two optical lattices of different wavelengths
[89, 90, 49, 25], producing an external potential acting on the atoms in this form:

Vo(x) = Vi(x) + Va(z)
= 51FR, sin®(k1x) 4 soEg, sin®(kox + @), (3.1)

where k; = 27/X; (j = 1,2) is the wavenumber of the laser light that creates the
optical lattice, Er, = h2k]2~ /(2m) is the recoil energy, s; is the dimensionless lattice
strength and ¢ is an arbitrary phase shift between the two lattices. One of the
two lattices is typically used as the main periodic potential (primary lattice) and
determines the main separation of the single-particle states in different Bloch bands.
It is chosen to be strong enough (s; > 1) to apply the tight-binding approximation.
This means that the primary lattice induces a discretization of the system with
period d = A1/2, i.e., the atoms occupy only the wells of the primary lattice and
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Figure 3.1: Representation of a bichromatic optical lattice. The superposition of
a deep primary lattice (blue line) and of a shallower secondary lattice (green line)
produces the quasiperiodic potential represented by the red line. The black dots in-
dicate the on-site energies within a discretized description of the system. The black
line shows that the modulation introduced by the secondary lattice has a cosinusoidal
form. The two black arrows represent the two key length scales of the system: the
lattice spacing introduced by the primary lattice, d, and the periodicity of the modu-
lation introduced by the secondary lattice, d/a.

can tunnel from one site to the other with a given tunneling rate J [91]. The second
lattice is significantly shallower (s3 < s1) and perturbs weakly the structure formed
by the primary lattice; in practise, the presence of the secondary lattice does not
modify significantly the position of the minima of the potential but produces only a
shift of the on site energies, introducing a “deterministic" disorder, or quasi-disorder
[25, 90, 49].

Noninteracting atoms in the presence of a one-dimensional bichromatic optical
lattice are described by the Hamiltonian

n? 92

In first approximation, let us consider the situation in which s = 0 and we are



24 Chapter 3. Noninteracting particles in quasiperiodic potentials

left with a simple periodic system, where the spectrum is characterized by bands of
allowed energies and energy gaps and the eigenstates are Bloch functions delocalized
over the whole lattice [40]. In the tight binding regime the energy gap between
the lowest band and the first exited band, Eq, is so large that the physics of the
system can be well described by considering only the lowest energy band. This is a
good approximation as long as all the energy scales involved in the problem under
consideration are much smaller than Eg. Let us introduce a set of Wannier states
| w;) labelled by the site index j (see appendix A for an introduction on Wannier
functions). Each of them, considered in real space, (x | w;) = wj(x) = w(x — x;)
represents a function centered around the lattice site j, at position z; = jd. In
particular, as previously mentioned one can consider as a basis of the system just
the Wannier functions associated to the lowest energy band. One can therefore
express wavefunctions and operators projecting on the basis of Wannier states

| ) ZZ% | wy),

H = Z | wi)Hi j(wj |, (3.3)
,J

where H; ; = (w; | H | w;), ¥; = (w; | ¥) and n; = |1);|* represents the probability
of finding a particle in the lattice site j. Let us evaluate explicitly the matrix
elements H; ;:

Hy = [ i) i

= /wf(x)H(O)wj(x) dx—i—/w;‘(x)H(l)wj(x) dx, (3.4)

where H(O) = —%g—; + 51 Eg, sin?(kyz) is the part of the Hamiltonian formed by
the kinetic term and by the primary lattice, while H) = sy Eg, sin® (ko + ) is just
formed by the secondary lattice. Neglecting the overlap between Wannier functions
beyond nearest neighbours for H®) and retaining only the on-site contribution for

H® one finds that the only non-zero matrix elements are
Hyj = Bobij— Jb: a1 + 61 / i () PHO) da (3.5)
where
Ey = /w;k(x)H(O)wi(x) dx; J=— /w;k(w)H(O)le(x) dx. (3.6)

The first term in equation (3.5) represents a constant on-site term that plays the only
role of shifting the energies of the system by a constant value Fjy, therefore in the
following we will drop it. The second term is the one that connects neighbouring sites
and its proportional to the tunneling energy J. Finally the last term describes the
quasiperiodic shift of the on-site energies induced by the secondary lattice. This term
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can be written in a much simpler form using the trigonometric relation sin?(kgx +
¢) = [1 — cos(2kax 4 2¢)] /2. Using the symmetry of the Wannier functions one can
show that

/ [_ 52§R2 cos(2kox + 280)} lw;(2)]* dz = A cos(2mai + ¢) (3.7)

where we have used the fact that z; = id = im/k;, we have redefined the phase ¢
and introduced « = ko /k1 = A\1/A2 and

A — SZERQ

/COS(Qka)|U}(y)|2 dy. (3.8)

Finally neglecting all constant terms one ends up with the following simple expres-
sion for the matrix elements

H;j = —Jb; j+1+ 0i ;A cos(2mai + ). (3.9)

Substituting this expression in (3.3) and expressing all the energies in units of J one
finds the Aubry-André Hamiltonian

H==>"(lw)(wjsr |+ [ wipa)(w; [) + XD cos(2raj + @) | wy)(w; | (3.10)
J J
where A = A/J. In this last expression we explicitly see that the modulation

introduced by the secondary lattice has a cosinusoidal form and it can be seen as a
potential in the discrete space:

Vi = Acos(2mayg + ). (3.11)

Let us notice that the discrete potential is quasiperiodic as long as the parameter
«, which is the ratio between the wavelengths of the two lattices, is an irrational
number. In fact, only when « is irrational the potential V; adds a second periodicity
which is incommensurate with respect to the underlying periodicity given by the
discreteness of the system. Let us notice that Vj; is invariant under a shift of «
by an integer number and therefore, without any loss of generality, one can choose
a <1

In figure 3.1 we show an example of a bichromatic optical lattice and we schemat-
ically illustrate the discretization procedure. We considered o = (v/5 —1)/2 and a
primary lattice much deeper than the secondary one. One can notice that the posi-
tion of the wells of the bichromatic potential are determined by the primary lattice
while the secondary lattice introduces just a modulation of the on-site energy. The
black dots shows the value of the on-site energies within a discretized description
of our system while the black line stresses the fact that this modulation has an
oscillating form. The period of the modulation is given by d/|&| (or 1/& in units of
lattice sites) where & is obtained by shifting the value of o by an integer number
so that it lies in the interval [—0.5,0.5]. In the specific case shown in figure 3.1,
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& = (v/5 — 3)/2 and therefore we encounter a minimum in the lattice modulation
approximately every 2.62 lattice sites.

Writing down the time independent Schrédinger H | ¢) = E | ¢) equation for
the tight binding Hamiltonian (3.10) one obtains

— Y41 — i1 + Acos(2maj + p)v; = Ev;. (3.12)

This equation is the one which is usually called Aubry-André or Harper model [85].
This model is of particular importance because, despite its simplicity, is very rich
from the point of view of the localization properties and those are known exactly.
The key parameter that determines the localization properties, when « is irrational,
is A which quantifies how strong is the quasi-disorder compared to the tunneling
energy. In the following with a slight abuse of notation we will sometimes call A the
disorder strength.

3.2 Localization properties of the Aubry-André model

The localization properties of model (3.12) have been discussed for the first time by
Aubry and André [85]. Later a number of numerical and analytical studies confirmed
their results [77, 86, 92, 79, 88, 93]. Here, following the original calculation of Aubry-
André, we show how one can derive the localization properties of the model using
the self-duality of Eq. (3.12) and the Thouless formula for the Lyapunov exponent
(2.15).

The self-duality property of equation (3.12) can be found by introducing the
following transformations

00
wj _ ei@j Z dleil(Zwaj—l—go)

l=—00
dl :e—icpl Z wje—ij(Qﬂal-f-G)‘ (313)
j=—00

Using these transformations in equation (3.12) one can show that the new variable
d; satisfies the dual equation

4 2F
—dip1 —dj—1 + X COS(QT('OCZ + H)dl = le , (3.14)
which has exactly the same form as equation (3.12) if we set
4 2F
X—>)\’ dp — j, T—>E, 00— . (3.15)

The symmetry of Eqs (3.12) and (3.14) has an important consequence. One can
note that, if 1, is a localized solution of (3.12), that is

o0
> il < oo,

j=—o00
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then d; will be an extended solution solution of (3.14), that is

[ee]

Z ’dl’2 = 00,

l=—o0
and vice versa. This tell us that the dual transformations (3.13) exchanges the
localization properties of the eigenfunctions. However, a priori we ignore which
eigenfunctions are localized and which are extended. To go further we need to
use the Thouless formula (2.15) which relates the Lyapunov exponent A(E) to the
density of states p(E) [58]. This formula was originally introduced for random
systems but it can be used without any change also for non-random models such as
(3.12). Whenever « is an irrational number, making use of the dual property, one
can relate the integrated density of states of the Aubry-André model N} o(E) to
the one of its dual counterpart N 1 +(E) [85]. The same can be done for the density

of states p(E) = ZN(E) and one finds

2K 2E\ 2
Nyal(E) = Na , <7> o alB) =pa g <T> Y (3.16)

Using these expressions and the Thouless formula one obtains the dual transform of
the Lyapunov exponent

b= () o (3). o

Starting from this expression it is now possible to infer the localization properties
of the Aubry-André model with few simple considerations. First of all, we note
that the Lyapunov exponent A(F) associated to a given eigenstate is necessarily a
positive number and that A(F) vanishes only whenever this state is extended. Let
us also recall the result that we have derived earlier in this section that the dual
transformation inverts the localization properties; therefore whenever A ,(E) is

non-zero it follows that A 10 (%) is zero and vice-versa. Therefore assuming that

A o (%) = 0 it follows that
A)\,Q(E) =In (%)

and the positivity of the Lyapunov exponent implies that A > 2. Conversely, when

Ayo(E) =0
2K 2
4 (5) = ()
and A < 2.

We can therefore conclude that the Aubry-André model (3.12) undergoes a tran-
sition from extended to localized eigenstates at A = 2. All eigenstates are extended
for A < 2 and exponentially localized for A > 2. Moreover all the eigenstates have

4
A

the same localization length
1
In(\/2)°

Lipe = 1/A = (3.18)
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Figure 3.2: Numerical study of of the localization properties of the Aubry-André
model. In the left panel we show that the ground state of the system is extended
for X =1 (green line) and \ = 1.9 (blue line) while it is exponentially localized for
A = 2.1 (magenta line) and X\ = 2.5 (red line). In the localized regime we also show
the localization length predicted by the analytical formula (3.18) (black dashed lines).
In the right panel a color density plot shows the ground state as a function of the
disorder strength. The transition from the extended to the localized regime at A = 2
15 clearly wvisible.

The opposite properties holds for the dual model (3.14). The simple derivation that
we presented here does not give any information about the nature of the eigenstates
for A = 2. It is known that they are neither plane waves nor exponentially localized.
It is conjectured that they are decreasing functions with a power law [85].

The exponential localization that takes place for A > 2 has been identified by
Aubry and André [85] as Anderson localization in a quasiperiodic potential, analog
to Anderson localization in a purely random potential. A different interpretation,
based on a semiclassical analysis, has been recently proposed in Ref. [94].

In figure 3.2 we present a numerical calculation that confirms the results that
we have already obtained on the localization properties of the Aubry-André model.
We show the behaviour of the ground state of the system for different values of the
potential strength, A. In the right panel it is clearly observed that for A = 1 and
A = 1.9 the ground state is an extended plane wave which follows the quasiperiodic
modulations of the potential. Conversely for A = 2.1 and A\ = 2.5 the ground state
is exponentially localized with a localization length which is in agreement with the
theoretical expression (3.18), which in the figure is represented by the black dashed
lines. In the left panel, a color density plot shows the ground state of the system
across the transition point. The transition at A\ = 2 is clearly visible. Here we
showed our results for the ground state of the system but similar density profiles
are obtained also for the exited states.
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Figure 3.3: FEzpansion of a noninteracting cloud of atoms in the Aubry-André
model with o = (v/5—1)/2. The time evolution of the width of the wavepacket w(t)
s shown for different values of the disorder strength, A = 1.5,1.7,1.9,2,2.1,3. In
the left panel, the starting wavepacket is a 6-function localized in a single site. In
the right panel we use an initial Gaussian wavepacket of width o = 5. In both cases,
one clearly observes the transition from extended to localized states that occurs at
A=2.

3.3 Spreading of wavepackets in the Aubry-André model

In this section we discuss the problem of quantum diffusion of an initially localized
wavepacket in the Aubry-André model. This is of particular relevance for exper-
iments with ultracold atoms where the expansion of an atomic cloud is the main
tool used for the detection of Anderson localization [24, 25]. Both the width of the
expanding cloud and its shape are of great interests.

The expansion of a noninteracting wavepacket is described by the time dependent
Schridinger equation ih% | ) = H | ¢) that in the case of Hamiltonian (3.10) takes
the following form

5 = Vil Y-t Acos(2maj + )y, (3.19)

where we have absorbed the Planck constant A in the time variable so that ¢ becomes
a dimensionless quantity. The actual time in seconds can be obtained by multiplying
the dimensionless parameter ¢ by h/.J.

We investigate the evolution starting from two different classes of initial condi-
tions, namely a d-function localized in a single lattice site,

’L/Jj(O) = 5j70 s (3.20)
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and a Gaussian wavepacket of width o,

2

$;(0) = Ce 307 | (3.21)

where C' is a normalization factor that has to be determined in order to have a norm
of the wavepacket equal to one } . ;|2
is convenient if one wants to simulate realistic experimental configurations; it also

= 1. The choice of Gaussian wavepackets

allows one to explore the behavior of sharp to broad wavepackets in a continuous
manner. Owing to arbitrariness of the phase ¢, here we have chosen, without any
loss of generality, to place the initial wavepacket around the lattice site j = 0.

As a measure of the localization we consider two quantities: the width of the
wavepacket measured as the square root of the second moment of the spatial distri-
bution [ (H)[2,

wlt) = /ma(0) = \/Z(j — X2l ()1, 3.2

and the participation number

1
P(t) = W ; (3.23)

which measures the number of significantly occupied lattice sites [95]. The quantity
X represents the average position of the wavepacket, defined as X = Y~ j[t;]?.
The localization transition of the Aubry-André model at A = 2, which has
been introduced in the previous section, can be detected in the dynamics (quantum
diffusion), by looking for example at the width of the wavepacket as a function of
time [79]. In particular the asymptotic spreading of the wavepacket width w(¢) can
be parametrized as w(t) ~ t7, and one finds three different regimes as the value of

A is varied:
(i) A < 2: ballistic regime, v =1
(ii) A = 2: subdiffusive regime, v ~ 0.5
(iii) A > 2: localized regime, v =0

We solve Eq. (3.19) by using a standard fourth order Runge-Kutta (RK4) algo-
rithm for the numerical integration. The accuracy of the integration is checked by
monitoring the conservation of the norm of the wavepacket and of the energy of
the system. A standard choice for the value of a consists of choosing the inverse
golden mean o = (/5 — 1)/2 [95]. Our results for this value of a are shown in
Fig. 3.3. In the case of an initial §-function wavepacket (left panel), we find perfect
agreement with previous calculations [79]. The right panel shows our results for the
case of an initial Gaussian wavepacket. By comparing the two cases, one can see
that the asymptotic behaviour is not affected by the choice of the initial shape of
the wavepacket. Similar results are obtained for the participation number P(t).



3.3. Spreading of wavepackets in the Aubry-André model 31

I—Ioc

7 8 9 10

2 3 45

6
A

Figure 3.4: Localization length of the wavepacket Lj,. as a function of the disorder
strength X\ in the localized regime. We measure the localization length by fitting the
tails of the localized wavepacket after the expansion. We compare the values of the
localization length extracted from the fitting (red points) with the analytic prediction
Lipe = m (black line).

As regards the shape of the wavepacket we focus on the localized regime \ > 2
where spreading stops after a transient time. Since, for a given disorder strength A,
all eigenstates are exponentially localized with the same localization length we ex-
pect that also the wavepacket, which is formed by a linear superposition of different
eigenstates, has exponentially decaying tails with the same characteristic localiza-
tion length. By fitting the density profiles of the wavepacket after the expansion
we extract a value of the localization length. In Fig. 3.4 we show the result of our
fits as a function of the disorder strength A (red points) and we compare them with
the theoretically expected value Lj,. = 1/log (A\/2) (black line) showing a perfect
agreement.

3.3.1 Incommensurate vs. commensurate case

It is worth stressing that a truly quasiperiodic potential can not be realized in any
realistic experiment, since the wavelengths of the lasers are always known with a
finite number of digits and therefore their ratio will always be a rational number.
Moreover real experiments have always a finite size. It is thus important to clarify
to which extent the predictions of the Aubry-André model are relevant for the
description of experiments with ultracold atoms in bichromatic optical lattices.

To this purpose it is useful to compare the case of a quasiperiodic potential with
an irrational value of « with the case of a periodic potential obtained by using a
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Figure 3.5: Time evolution of the width of the wavepacket w(t) of noninteracting
particles, starting from a single-site §-function, for A = 2 and for different orders,
n, of the approrimants in the Fibonacci sequence. The black arrows represent the
values of t at which we observe the transition from the behaviour predicted for a
quasiperiodic potential (incommensurate lattice) to the diffusion expected in a peri-
odic potential.

rational approximation «, of order n of the irrational number. In particular we
consider a sequence of rational numbers «,,, that converges to the irrational value
a as n — oo [96, 78]. The sequence of approximants «;, can be found by successive
truncations of the continued-fraction expansion of «. For the case of the golden
mean o = (v/5 — 1)/2 [95] the approximants are given by «,, = pn/qn, where p,
and ¢, = ppt1 are two consecutive terms of the Fibonacci sequence (p1 = p2 = 1,
DPn = Pn—1 + Pn—2 for n > 2).

It turns out that the incommensurate case can thus be considered as the limit
of a sequence of commensurate Hamiltonians, whose eigenvalues E¢™ and eigen-
functions ¢§’m can be labelled by the quasi-momentum ¢ and the band index m,
since the spatial periodicity of the system, with period ¢, permits to use the Bloch
wave decomposition. One finds that, for sufficiently large n and for A > 2, the
eigenfunctions are indeed characterized by periodic replica of exponentially local-
ized functions within each period of the potential, that in the limit n — oo tend to
a single localized function [91].

Let us now consider the same problem from the point of view of the dynamical
properties. The time evolution for o = (v/5 — 1)/2 has to be compared to the
one obtained using the approximant of order n in the Fibonacci sequence. For any
finite value of n the system is periodic, with wavelength ¢,,, and the diffusion of an
initially localized wavepacket is expected to be ballistic (w(t) ~ t). However, in the
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Figure 3.6: Modulus square of the wavefunction |1;|> for different values of n,
plotted at a fized evolution time t = 1000, for A\ = 7 and § = 0. The initial
wavepacket at t = 0 is a d-function localized at 7 = 0. The vertical arrows are drawn
at the positions q, /2.

limit n» — oo one must recover the results of the Aubry-André model, with a critical
behaviour for A = 2 and localized states for A > 2. The approach to this limit in
nontrivial and involves the characteristic time and length scales of the system.

In Fig. 3.5 we first show our results for the diffusion of a d-like wavepacket in
a lattice with the critical value A = 2. For any finite n the wavepacket exhibits a
subdiffusive spreading (w(t) ~ t7 with v ~ 0.5), as in the incommensurate case,
within an initial time interval. Then, at time 7, the width starts growing as in a
ballistic expansion in a periodic lattice. The transition between the two regimes
turns out to occur when the width of the wavepacket becomes of the same order of
the spatial periodicity of the lattice. The transition time, 7, indicated by the arrows
in Fig. 3.5, increases with the order n of the approximants and the corresponding
width, w(7) exhibits a linear dependence on the periodicity of the system, g,'.
The role of the spatial periodicity is even more evident if one plots the density
distribution in the regime of localization, as shown in Fig. 3.6 for A = 7 and ¢t = 1000.
In this figure the arrows are drawn at the positions ¢,/2. As one can see, the

' A linear fit of the width w(7) at the transition time 7, as a function of the spatial periodicity,
gives [w(7)](gn) = agn +0b, with a = 0.547(4) and b = 0.8(2). The times 7’s and the relative widths
w(7)’s have been determined by fitting the subdiffusive behaviour of the incommensurate case and
the linear behaviours of the commensurate cases and finding the intersection points between these
two fits.
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Figure 3.7: Time evolution of the width of the wavepacket w(t) of noninteracting
particles, starting from a single-site 0-function, for A\ = 3 and for different values of
n.

deviations from the density distribution of the incommensurate case (n — o) are
caused by the spreading of the lateral components of the distribution, i.e., those at
a distance of the order of, or larger than ¢, /2. The asymptotic behaviour (¢ — o)
is always ballistic. However, for a finite ¢ and for A\ > 2 the central part of the
density distribution (within a width of order ¢, ) exhibits an exponential localization,
independent of n, and is almost indistinguishable from the one predicted for the
incommensurate lattice. The spreading of the low density tails affects the behaviour
of the width defined in Eq. (3.22). An example is shown in Fig. 3.7. For short times
the contribution of the expanding tails is negligible, while for later times the width
increases as in a ballistic expansion. It is worth stressing, however, that these effects
of the low density tails are expected to be hardly detectable in actual experiments,
due to the finite resolution in the measurement of the density distribution.

Given the typical timescale and optical resolution of the experiments with ultra-
cold gases in optical lattices, our analysis confirms that the transition from diffusion
to localization observed in Ref. [25] can correctly be interpreted in terms of the
predictions of the Aubry-André model.

3.4 Localization of ultracold atoms in momentum space

In the literature the evolution of wavepackets in the Aubry-André model has been in-
vestigated mainly in real space, looking for signatures of the transition from ballistic
spreading to subdiffusion and localization, both in theory [79, 31| and experiments
[25, 66]. Here we focus on the dynamics of the momentum distribution and iden-
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tify measurable effects of the transition from diffusion to localization in momentum
space. This is relevant for current experiments with ultracold atoms, where the
momentum distribution is accessible via time of flight measurements and, typically,
with an higher accuracy than in real space. In addition, our results provide comple-
mentary information for a better understanding of the key role played by duality of
the Aubry-André model.

In the following we first introduce the Aubry-André model in momentum space,
show its connection with the dual space and discuss its localization properties. We
then discuss the presence of periodic oscillations in the dynamics of wavepackets
in the Aubry-André model, both in momentum and in real space and we interpret
these oscillations in terms of a simple theoretical model. Finally we identify an
observable quantity that could be used in a feasible experiment for the observation
of the Aubry-André transition in momentum space.

In this section we will focus on the case of a rational value of o which can be
written as the ratio of two integer numbers o« = p/q. In this situation the solution
of Eq. (3.19) can be restricted to a region of size N = ¢, which coincides with the
spatial periodicity of the system. As we have described in Section 3.3.1 the case of
irrational « can be obtained as a limit of a continued fraction approximation.

3.4.1 Aubry-André model in momentum space

Let us first explain how one can introduce the momentum distribution starting from
a discrete description as the one given by Eq. (3.19). The continuous wavefunction
associated to our discrete system is given by

P(z) = Z bjw;(x) (3.24)

where w;(x) = w(x — j) are the Wannier functions of the primary lattice and we
have expressed the distances in units of lattice spacing. The momentum distribution
[ (K)|?> can be calculated by taking the Fourier Transform of wavefunction (3.24)
and one finds

b(k) = VN fri(k) (3.25)

where w(k) is the Fourier transform of the Wannier function centered on the lattice
site j = 0 and we have introduced f¢ which is the discrete Fourier Transform (DFT)

of ¢j )
fe=—=> e . (3.26)
VN % !

Here we use £ to indicate the quasi-momentum. From a physical point of view per-
forming the DFT corresponds to a projection of the discrete wavefunction on the
basis of quasi-momentum eigenstates. The allowed values of £ in our system are
given by & = (2r/N )k and are restricted to the first Brillouin zone, £ € [—m,7]. In
the following we will perform our analysis considering the quasi-momentum distri-
bution | f§]2, then its easy to extend our results to the momentum space using this
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simple relation that relates the momentum distribution with the quasi-momentum
distribution
[k, )P = N{fi.()]?|@(k)]*. (3.27)

By applying the transformation (3.26) to the Aubry-André model one finds [91]

i%fﬁ = —2cos(§) fe + % (67 feroma + €% fe_ora) (3.28)

which is the equation describing the evolution in quasi-momentum space. Let us
note that the DFT exchanged the potential and the tunneling term with respect to
Eq. (3.19) and that the tunneling no longer takes place between nearest neighbouring
sites but between momentum components differing by |A{| = 27a.

In order to have an insight on the localization properties in the quasi-momentum
space let us recall that Aubry-André showed that the following transformation

1 iy .
dy = Z ¢j62][27ral+9]e—upl (329)
N J

maps Eq. (3.19) into an equation for the new variable d; exactly of the same form as
Eq. (3.19) but with disorder strength 4/A. This is called the duality of the Aubry-
André model (cfr. section 3.2). Let us note that transformation (3.29) corresponds
to a projection on a basis of quasi-momentum eigenstates with eigenvalues £ =
2mal + 0. As a consequence one can see that there is a strict connection between
the quasi-momentum space and the dual space introduced by (3.29). More precisely
the quasi-momentum ¢ can be calculated by multiplying the index [ by 27ma and
introducing a phase shift 6. Therefore the amplitudes f¢ in quasi-momentum space
can be obtained from the amplitudes d; in dual space simply with a re-labelling
procedure. We can say that (3.26) is related to the dual transformation (3.29) by
an arbitrary shift 6 and a permutation [97]. This suggests that the localization
properties in quasi-momentum space are the same of the localization properties
of the dual Aubry-André model, except for the fact that disorder couples modes
differing by |A¢| = 2ma instead of neighboring ones.

In order to verify our prediction on the localization properties in quasi-
momentum space we will study numerically the evolution of the quasi-momentum
distribution |f¢|* by first solving Eq. (3.19) in real space using a RK4 algorithm
and then mapping the result in quasi-momentum space by performing the DFT.
As initial condition we choose a Gaussian wavepacket, ¢;(0) = Cexp{—j?/20?}.
The limiting case of vanishing width ¢ = 0 will correspond to a J-function initial
condition.

According to the previous discussion, the localization properties in momentum
space are opposite with respect to the one of the Aubry-André model in real space,
namely localization occurs for A < 2, where the wavepacket instead spreads in
real space. In this regime one thus expects to see only one or few momentum
components significantly populated. Conversely, for A > 2 the regime is diffusive
in momentum space and localized in real space, and one should see a momentum
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Figure 3.8: Quasi-momentum distribution |f¢(t)|*> obtained from the DFT of the
solution of Eq (3.19). Here we use o = 0.2282... and p = 0. The initial wavepacket
in real space is a Gaussian of width o = 10. Time is given in dimensionless units.
Top panel: X = 1, only few modes are involved and a periodic oscillation of the
central and side peaks is observed. The side peaks are at a distance +2ma from the
central peak. Bottom panel: X =5, the evolution is affected by the coupling of many
modes and the periodic oscillations are no more visible.

distribution with many modes coupled together during the evolution of the system.
This is indeed confirmed by our numerical simulations, as shown in Fig. 3.8 for
a =1064.4/866.6 — 1 = 0.2282... . This value of the ratio between the wavelength of
the two lattices o has been chosen in order to model the bichromatic lattice of the
experiment of Ref. [67]. For A\ < 2, as expected, we observe localization in the sense
that just few momentum components are populated during the evolution. A striking
feature is that the quasi-momentum components | f§\2 exhibit periodic oscillations,
occurring among the central peak at & = 0 and two side peaks at £ = +2n«. For
A > 2 instead many modes are populated and no periodic oscillations are observed.

3.4.2 Periodic oscillations in the Aubry-André model

Let us now characterize and interpret the periodic oscillations that we have observed
in the time evolution of the quasi-momentum distribution.

We first perform a systematic study of these oscillations from a numerical point
of view as the disorder strength A is changed (always remaining in the regime \ < 2
where it is possible to observe the periodic behaviour). We extract the oscillation
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Figure 3.9: Oscillation frequency of the central peak of quasi-momentum (A < 2,
red) and spatial (N > 2, blue) distributions, for o = 10, ¢ = 0. The full solution
of the Aubry-André model (dots) is compared with the predictions of an analytic
three-mode approzimation (full lines) and a semi-analytic five-mode approzimation
(dashed line).

frequency from the time evolution of the central peak of the quasi-momentum distri-
bution. The signal is Fourier transformed, and the oscillation frequency is identified
as the dominant component of the frequency spectrum. The obtained result is plot-
ted in Fig. 3.9 as a function of A (red points for A < 2).

These oscillations can be interpreted by means of a simple analytical model that
leads to an analytical expression for the oscillation frequency. Let us consider the
time evolution in the quasi-momentum space as described by Eq. (3.28). We assume
that the width 1/0 of the initial quasi-momentum distribution is small enough, so
that only the £ = 0 momentum component can be considered populated at ¢ = 0
(fe(0) = 0¢0). This assumption is valid when 1/0 < 2ma. We also assume that
the time evolution couples the momentum component at £ = 0 with only two other
momentum components at & = £2w«. In this way, the Aubry-André equation in
quasi-momentum space is mapped into an eigenvalue problem of a 3 x 3 matrix,
whose eigenvectors and eigenvalues can be written as g¢ ; and Ej, respectively, with
j =1,2,3. The initial condition is f¢(0) = 22:1 7;9¢.j, where the coefficients ~y; are
given by the standard rules of quantum mechanics. Under these assumptions one
has ;=3 = 0, and the time evolution takes the form

1Fe @) = (7196.1)* + (729¢.2)* + 1729¢,19¢ 2 cos [(Ba — By)t] . (3.30)

This expression describes a time-periodic oscillation of the relative intensity of the
central and side peaks, with frequency v(\ < 2) = |Ey — E1|/27, given by

v\ <2) =7 /[l - cos(2ma)]? + A2/2. (3.31)
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Figure 3.10: Spatial distribution |1,|> obtained from the solution of Eq (3.19)
using a single site initial condition 1; = 6;0. As in Fig. 3.8, we use a = 0.2282...
and o = 0. Time is given in dimensionless units. Top panel: X = 1, the initially
localized wavepacket spreads ballistically and there are no visible periodic oscillations.
Bottom panel: X\ = 5, the wavepacket is localized and a periodic oscillation of the
central peak and its nearest neighbors is clearly visible.

It is worth stressing that, once « is fixed, this frequency depends only on the dis-
order strength A, but not on the phase ¢ or on the width of the initial wavepacket
0. This three-mode approximation provides a reasonable description of the nu-
merical results, as shown by the solid line for A < 2 in Fig. 3.9. The three-mode
approximation becomes inaccurate when approaching A = 2, where more modes
are coupled during the evolutions. In order to check this effect, one can go one
step further and consider a five-mode approximation in which the time evolution
couples the quasi-momentum components at & = 0, £ = +2nq, and £ = +4dna.
This is a straightforward generalization of the three-mode approximation, except
for the fact that the differential equations for the coefficients v;(t) do not yield sim-
ple analytical expressions and, moreover, the solutions contain several oscillation
frequencies. The red dashed line in the A < 2 part of Fig. 3.9 is our numerical result
for the dominant component of the frequency spectrum, solution of the five-mode
approximation, which mostly determines the time evolution of the central peak. As
expected we get a better agreement with the full integration of Eq (3.19) compared
to the three-mode approximation, especially in the region close to the transition
point A = 2.

In the region A\ > 2 the few-mode approximation is expected to fail in the
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Figure 3.11: Visibility of the oscillations in real and quasi-momentum space as a
function X\, for ¢ = 0. The numerical points are compared with the three-mode ap-
prozimation (full lines). Bottom panel: only few modes have been initially populated
by using a 0-function initial wavepacket in real space and a Gaussian with o = 10 in
momentum space. Top panel: many modes have been initially populated by inverting
the initial conditions with respect to the bottom panel.

quasi-momentum space, where the wavepacket is no more localized. Indeed, in this
regime, we do not see any significant evidence of periodic behaviors in the quasi-
momentum distribution (see the bottom panel of Fig. 3.8). Conversely, owing to
the duality of the Aubry-André model, one expects periodic oscillations to take
place in real space, where the wavepacket is localized. This is confirmed by our
numerical integration of Eq. (3.19), as shown in Fig. 3.10. In the top panel the wave
packed spreads ballistically and one cannot detect any significant periodic behaviour;
conversely in the bottom panel the wavepacket is localized, while the central peak
and its nearest neighbours oscillate periodically. By assuming that the initial density
distribution is localized in a single lattice site, j = 0, which is coupled with the
nearest neighboring sites, j = 41, we obtain a three-mode approximation analogous
to the one used before in quasi-momentum space, but describing oscillations in
the spatial distribution. The scenario in real space is more complicated because
one generally observes oscillations with several frequency components, which also
depend on the phase ¢. However, in the special case p = 0, one finds just a single
frequency, given by

v(\ > 2) = (2n) 1/ A2[1 — cos(2ma)]? + 8, (3.32)

which is shown as the solid line for A > 2 in Fig. 3.9. In the same figure we also plot
the frequency obtained from the full numerical integration of Eq. (3.19) (blue dots
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in the A > 2 region); in this calculation we have used a Gaussian of width o = 10
as initial shape of the wavepacket, but we have also checked that the frequency v
does not depend on o, except close to A = 2. The dashed line is the result of a
straightforward semi-analytic extension to five modes, as in the A < 2 region. It is
worth stressing that the condition for the validity of the few-mode approximation
for the oscillations in real space (¢; = ;0 or, equivalently, o < 1) is much more
constraining than the one in momentum space (1/0 < 27a) from the point of view
of experimental realization.

The amplitude of the oscillations in both real and momentum space also changes
with A, affecting its visibility. The latter can be calculated from the frequency
spectrum of the numerical solution of Eq. (3.19), as the ratio between the modulus
of the Fourier component of frequency v(\) and the modulus of the component at
zero frequency. In a consistent way, one can define the visibility in the three-mode
approximation; for the oscillations in momentum space for A < 2, the visibility can

be written as
717290,190,2

1
© 2(1901)% + (12902)°
A similar definition can be given in real space for A > 2. In Fig. 3.11 we show
the visibility of the oscillations as a function of A. The points are the numerical
results, while the lines represent the three-mode approximation. We have used two

(3.33)

values for the width of the initial Gaussian wavepacket, namely o = 0 (i.e., a o-
function) and o = 10. In the upper panel, the two values of o are used for A < 2
and A\ > 2, respectively. They correspond to a broad initial wavepacket both in
momentum space for A < 2 and real space for A > 2. In the bottom panel we use
again the same values of o, but in the opposite regions, so to have a narrow initial
wavepacket in both spaces 2. One can see that the visibility depends significantly
on both o and A. Again, the three-mode approximation is qualitatively correct,
except near A = 2. We observe that the three-mode approximation gives a better
agreement for a narrow initial distribution (lower panel), as in the opposite case of
a broad distribution many modes are initially excited and this approximation is not
expected to be accurate. Another interesting feature is the effect of the duality of
the Aubry-André model. Indeed, in both panels, the results in the region A < 2
almost coincide with those in the region A > 2 under the change of variable A — 4/,
provided the initial distributions are broad (upper panel) or narrow (lower panel) in
both momentum and real spaces; this duality also implies the continuity at A = 2.

3.4.3 Detecting the Aubry-André transition in momentum space

So far we have seen that the time evolution of a wavepacket in the Aubry-André
model exhibits interesting periodic behaviors both in momentum space, for A < 2,
and in real space, for A > 2. Let us stress few differences between our analysis
in momentum and real space. First, in momentum space the frequency of the

*For ¢ = 10, the momentum width 1/0 is much smaller than the distance between coupled
modes, A{ = 27a.
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Figure 3.12: Phase-averaged intensity of the central peak in momentum space,
|fo(t)|?, as a function of time and disorder strength X\ for a wavepacket with o = 10.
The intensity 1s given in arbitrary units.

oscillations does not depend on the relative phase ¢ of the two lattices or, in other
terms, on the initial position of the wavepacket, while this is not the case for real
space. Getting rid of the phase dependence is positive since it is a parameter which
would be hardly controllable in typical experiments. Second, the condition for the
applicability of the few-mode approximation is less restrictive in momentum space,
since the width of the initial wavepacket can be easily made smaller than the coupling
distance between modes.

This observations suggest that the oscillations of the central and side peaks in
the momentum distribution can be efficiently used to probe the transition from
diffusion to localization in the Aubry-André model. A possible strategy consists of
measuring the intensity of the central peak as a function of time for different values
of A, exploiting the fact that for A > 2 the oscillations are phase dependent, while for
A < 2 they are not. Actually, in typical experiments with ultracold atoms, the phase
o varies at random at each realization, so that performing an average over many
realizations at fixed A is equivalent to an average over numerical simulations with
different . Thus one expects that the oscillations vanish for A > 2 (phase sensitive
regime), but remain clearly visible for A < 2 (phase independent regime). This is
shown in Fig. 3.12, where the average has been done over 50 different values of the
phase ¢ for each value of \. Indeed the behavior of |fy(¢)|? exhibits a transition at
A = 2. From the same figure one can also extract the frequency v(\ < 2). By using
the experimental parameters of Ref. [67], with o = 1064.4/866.6 and A = 1, the
oscillation period turns out to be of the order of 5 ms. This is a time of the order

of the duration of typical experiments with ultracold atoms and that can therefore
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be easily measured.






CHAPTER 4
Weakly interacting bosons in
quasiperiodic potentials

In the previous chapter we have discussed the diffusion and the localization prop-
erties of noninteracting particles in a 1D quasiperiodic potential. Now we want to
proceed further by considering the more general case of interacting particles, having
in mind the application to ultracold gases. Whether and in which way interaction
between particles can affect the localization and diffusion properties of the system is
a longstanding issue, which was raised at the very beginning of the story of Anderson
localization [29]. This is, for instance, a natural question if one wants to study the
conductance of electrons in a disorder material where interactions are intrinsically
present and cannot be removed.

Ultracold gases represent a powerful tool for the study of this interplay. In
fact both the strength of the interaction and of the disorder can be easily tuned
in experiments. The former using Feshbach resonances, the latter acting on the
intensity of the laser light that produces the optical disorder [27, 28, 98, 67, 68, 33].

From the theoretical point of view, various approaches can be used to study a
weakly interacting Bose gas in a 1D disordered system. For instance, a possible
method consists of considering the transmission of a Bose-Einstein condensate in
a disorder region of finite extent [99, 100, 101]. Another possibility corresponds to
consider the properties of a Bose gas at equilibrium which is confined in a box of
finite size [102, 103, 104, 105, 106]. In this chapter, instead, we will study this inter-
play by considering the expansion of a Bose-Einstein condensate into a disordered
potential. The experimental configuration that we have in mind is similar to the
one that has been used for the observation of Anderson localization [24, 25| but this
time controlling also the interaction between atoms. More precisely we treat the
interaction within a mean field approach, which is known to be very effective for the
description of weakly interacting Bose gases [107], and we consider a bichromatic
optical lattice that introduces the exponential localization in absence of interaction
among particles. This problem can be efficiently modelled using the discrete nonlin-
ear Schrodinger equation as we will show in section 4.1. Our choice of this model of
(quasi-)disorder is motivated by its close relation with the experimental setup used
in Ref. [25] for the observation of Anderson localization, which is particularly suit-
able for the inclusion of interactions [67, 68, 33]. Notably, this approach is relevant
also for experiments with light propagation in photonic lattices, where a nonlinear
interaction term can be introduced using a Kerr media [65, 66].

The main result that we obtain is that the spreading behaviour is determined
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by the competition between two different effects introduced by the interaction: on
the one hand it favours localization through the self-trapping mechanism, on the
other hand it destroys the localization induced by disorder leading to a subdiffusive
expansion of wavepackets. These two effects will be discussed in sections 4.2.1 and
4.2.2 respectively. We also investigate the role played by the initial shape of the
condensate in the dynamics of the system. Our calculations show that, if the con-
densate initially occupies a single lattice site, the dynamics of the gas in the lattice is
dominated by self-trapping in a wide range of parameters, even for weak interaction.
Conversely, if the diffusion starts from a condensate with Gaussian shape, extended
over several lattice sites, self-trapping is significantly suppressed and the destruction
of localization by interaction is more easily observable. Finally in section 4.3, we
compare the results of our numerical simulations with an experimental study of the
spreading of a weakly interacting Bose-Einstein condensate in a bichromatic optical
lattice [33].

4.1 Discrete nonlinear Schrodinger equation

In this section we show that a gas of weakly interacting ultracold bosons, in the
presence of a one dimensional bichromatic optical lattice and a tight harmonic con-
finement in the radial direction, can be described by means of a discrete nonlinear
Schrodinger equation (DNLS).

It is known that a Bose-Einstein condensate of weakly interacting bosons at zero
temperature can be conveniently described by the Gross-Pitaevskii (GP) equation
[107, 108, 109, 110, 111]

G —h—2v2\11(ﬁ t) + V(F)U(F,t) + g|O(7, )2V (7, 1), (4.1)
ot 2m
where W(7,t) is a complex function that represents the condensate wavefunction.
Its modulus square is the density of particles and the total number of particles is
given by

/|\IJ(F,t)|2dF: N. (4.2)

The quantity ¢ is a coupling constant which accounts for the interaction between
atoms and is determined by the s-wave scattering length as by

B Arh2a,

g=— " (4.3)

For the external potential V(7) let us consider a tight harmonic confinement
in the transverse plane and a one dimensional bichromatic optical lattice in the
axial direction. If the radial confinement is strong enough one can assume that the
radial motion is completely frozen and that all the dynamics takes place in the axial
direction. In this case the condensate wavefunction can be written as V(7 t) =
VN (x,t)® | (7)) where the wavefunctions 1(z,t) and ®, (¥, ) are normalized to
unity. This factorization is a good approximation as long as the separation between
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the ground state and the first exited state of the radial harmonic confinement Aw | is
large compared to the other energy scales of the system such as the thermal energy
or the mean field interaction energy.

Integrating out the radial direction and dropping some constant terms Eq. (4.1)
can be reduced to a one dimensional Gross-Pitaevskii equation with a renormalized
coupling constant [112, 113]

0 2 09?
B0 O e t) Vil 1) + Noup (e, 00w 1), (44)

where V() is the one-dimensional bichromatic optical lattice defined by Eq (3.1)
and ¢1p is an effective one-dimensional coupling constant given by

g1p = g/ |D(7L)|* di. (4.5)

At this point one can follow a discretization procedure similar to the one that
we have described in section 3.1. By decomposing the wavefunction on the basis of
Wannier states of the primary lattice, ¢(x) = Zj Yjw;(z), one finds that Eq. (4.4)
transforms into an equation for the evolution of the coefficients 1);, that is

5% —J(thj41 +j—1) + Acos(2maj + @)v; + NGl |*; (4.6)

where the tunneling energy J and the strength of the potential A are given by
Eq. (3.6) and Eq. (3.8) respectively while G is related to g;p through

G= glp/\wj(x)]4 dx. (4.7)

Finally, by expressing energy in units of J and time in units of 1/(JER, ), we obtain
the discrete nonlinear Schrodinger equation

ot
with V; = Acos(2maj + ), A = A/J and

= —thj1 — Y1+ Vi + Bl P (4.8)

g =NG/J. (4.9)

This equation is a discretized version of the usual GP equation and is of great impor-
tance for what follows since it will be studied in detail in this and in the next chapter
of this thesis. Similar versions of a discretized Gross-Pitaevskii equation have been
already used to investigate the dynamics of condensates in different situations (see
for instance Ref. [114]). Within this mean-field description the interatomic interac-
tion is included just by adding a nonlinear term in the equation of motion, therefore
in the following we will use the terms interaction and nonlinearity interchangeably.

Let us stress that the dimensionless parameters A and  which represent the
strength of the quasi-disorder and of the mean-field interaction, respectively, are
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the two key parameters that determine the properties of Eq. (4.8). We note that
there are two conserved quantities associated to Eq. (4.8), the first is the norm N
of the one dimensional condensate wavefunction 1);

N =D Il (4.10)
J
that in our case is always equal to 1, and the second is the energy of the system

1
H =37 =(Wgs10] + ¥jaty) + Vil + 581l (.11)
J

The first two terms in this expression represent the linear part of the energy, in
particular the first is the kinetic energy while the second is the potential energy.
The third term represents the nonlinear part and it is often called the mean-field
interaction energy [107].

4.2 Effects of the interaction

We study the effects introduced by the interaction mainly by studying the time
evolution of an initially localized wavepacket as done for the noninteracting case in
section 3.3. We solve Eq. (4.8) using a RK4 algorithm and as initial condition we use
both single site J-function wavepackets and Gaussian wavepackets of initial width o
(cfr. section 3.3). Let us recall that in the case of noninteracting particles (5 = 0)
the evolution is governed by the Aubry-André Hamiltonian and a transition occurs
at A = 2 from an extended regime (A < 2), where wavepackets expand ballistically,
to a localized regime (A > 2), where wavepackets remain localized after a transient
initial expansion.

In the following we discuss two effects introduced by the interaction, namely self-
trapping, which tends to locally trap part of the wavepacket, and the destruction of
Anderson localization, which induces spreading. These two competing effects have
to be carefully analysed in order to correctly interpret the expansion of a wavepacket.

4.2.1 Self-Trapping

Self-trapping is a localization phenomenon, different from Anderson localization,
that occurs when the interaction is stronger than a critical value S.. It is a quite
general phenomenon that takes place also for a purely periodic system without
disorder [114, 115, 116, 117] and double-well potentials [118, 119, 120, 121, 122].
An intuitive understanding of the origin of the self-trapping in a lattice is based on
energy conservation arguments [123]. Let us consider separately the contribution
to the energy that comes from the kinetic and potential terms together and the
contribution that comes from the interacting term, H = Hy(t) + H;n:(t) where

Ho(t) =Y —(ind + ¢5aty) + Vil > and  Hine(t) = > %ﬁ\%‘!‘l- (4.12)

J J
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Figure 4.1: Width w(t), participation number P(t), and density distribution
[v;(t = 1000)|? for two values of the interaction strength (3, below (B = 1.4, red
lines) and above (B = 1.6, black lines) the transition from diffusion to self-trapping.
Here the initial state is a single-site -function with ¢ =0 and A = 0.8.

If the gas is subject to a periodic potential in the tight-binding approximation and its
dynamics is restricted to the lowest Bloch band, as supposed in deriving Eq. (4.11),
the term Hy in the Hamiltonian is upper bounded. Let us call this upper bound
Egrer !, Whenever the energy of the interacting system is larger than this upper
bound, H > Ej***, one can prove that the system cannot reach a situation where
Hin(t) = 0, at any ¢ > 0, without violating energy conservation. This means
that, under these conditions, part of the interaction energy must be trapped in
the system in the form of a localized peak that does not spread. In other words,
whenever H > EJ'* an initially localized wavepacket cannot spread to zero in the
whole space. This argument, in general, does not provide a precise quantitative
estimate of the critical value ., but it gives a reasonable upper bound.

Self-trapping of particles in the context of the discrete nonlinear Schrédinger
equation has been studied for different types of external potentials such as periodic
potentials [116], quasiperiodic [116, 124, 125] potentials and random potentials [123,
126]. In particular a 1D quasiperiodic potential of the same type as (3.11) for A < 2
has been already discussed in Ref. [116, 124]. Here we provide a more systematic
calculation of 5. and we compare the diffusion from a single-site to the one from a
Gaussian wavepacket.

A signature of the presence of self-trapping is a saturation of the participation

'"Due to the symmetry of the problem the upper bound of the spectrum is given by the width
of the full spectrum, A, divided by two, E5*** = A/2,
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number P(t) that, for § > f., reaches an asymptotic finite value, due to the trapping
mechanism occurring at the center of the wavepacket, while the width w(t) keeps
increasing owing to the expanding tails [116, 123]. An example of self-trapping tran-
sition is shown in Fig. 4.1, where we show the results obtained by solving Eq. (4.8)
for diffusion from a single-site in a quasiperiodic potential with a = (/5 —1)/2 and
A = 0.8. In the figure one can see the typical change of behaviour that occurs when
[ crosses the critical value . that for the example shown in figure is approximately
equal to 1.5. The same figure shows also the difference in the density distributions
at t = 1000. For 8 = 1.4 (red lines), below the critical value 8. both the width
and the participation number grows ballistically and no signatures of self-trapping
can be detected in the shape of the packet. Instead for § = 1.6 (black lines), above
the critical value (., the presence of a strongly localized self-trapped peak is clearly
observable in the central part of the wavepacket. This leads to a strong difference in
the behaviour of the participation number that saturates to a constant value after a
transient time. The lateral, low density tails of the wavepacket are instead similar
in the two cases resulting in a similar behaviour of the width.

Let us stress here that self-trapping, even if it is a phenomenon that leads to
localization, is completely different from Anderson localization. First of all the
crucial point for the occurrence of self-trapping is the presence of interactions and
of an upper bounded spectrum. Therefore, it can be observed in a variety of different
systems, regardless of the presence of disorder. Conversely, Anderson localization
takes place in presence of disorder and for noninteracting particles. Secondly self-
trapping leads only to a partial localization since the central part of the wavepacket
remains localized while its tails keep expanding. Again this is completely different
from Anderson localization where a complete stop of the expansion takes place and
the tails decrease exponentially to zero.

We now study in detail the self-trapping transition within the quasiperiodic
model defined by Eq. (4.8) when the disorder strength is varied across the transition
point at A = 2 considering a single site-initial condition and different values of the
phase of the potential ¢. By systematically looking at the numerical results for w(t),
P(t), |1;(t)|? in the 8 vs. X plane, we can identify the set of parameters for which
self-trapping takes place and obtain the diagram shown in Fig. 4.2. The values of
(. are represented by red circles and blue squares for ¢ = 7 and 0, respectively.

We have identified three different regions corresponding to three different be-
haviours in the diagram. In region I, above the red circles, all points correspond to
self-trapped states. For A < 2 we find that the value of . is practically independent
of the phase ¢ and decreases as A is increased. In region II, we observe diffusion,
often accompanied by solitonic structures and discrete breathers eventually spread-
ing. Similar structures in the numerical solutions of Eq. (4.8), for diffusion from a
single-site and for A\ = 0, have been already found in Ref. [116]. For A > 2 we find
that . is strongly ¢-dependent. In the figure we show the results for the two lim-
iting values ¢ = 0 and ¢ = m; in particular, in region III, we find that all states are
self-trapped for ¢ = 0 while they are diffusive for ¢ = w. The semi-axis A > 2 and
B = 0 corresponds to the regime of disorder induced localization for noninteracting
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Figure 4.2: Critical value of the interaction strength for the transition to self-
trapping, Be, as a function of the disorder strength, X\, for diffusion from a single
lattice site and for ¢ = w (red circles) and ¢ = 0 (blue squares). The red and blue
dashed lines are the corresponding upper bounds for B. obtained by calculating the
bandwidth of the single-particle spectrum and using energy conservation arquments.
The diagram is schematically divided in three regions I, II and III. All states in I
are self-trapped; in II, one finds diffusion, with soliton-like structures and discrete
breathers; in III, the transition from diffusive states to self-trapping strongly depends
on the value of the phase ¢ (i.e., the position of the initial wavepacket). The semi-
aris A > 2 and = 0 corresponds to the regime of disorder induced localization for
noninteracting particles.

particles.

The phase dependence of 3. for A > 2 can be qualitatively explained by the en-
ergy conservation arguments already mentioned above. In particular, we numerically
calculate the maximum energy, EJ***, in the lowest Bloch band of the noninteract-
ing single-particle spectrum and we compare this value to the initial energy of the
interacting system, which is given by H = A cos(p) + /2. The upper bound for the
transition to self-trapping is then given by the condition H = E§***, which implies

B =2(Eg""" £ X)

where the plus and the minus signs holds for ¢ = m and ¢ = 0, respectively. These

two upper bounds are represented by the blue and red dashed lines in Fig. 4.2.
Fig. 4.2 shows that, in the case of diffusion from a single-site, the self-trapping

mechanism plays a rather important and nontrivial role, leaving almost no space
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Figure 4.3: Time evolution of the width of the wavepacket w(t) (a) and of the
participation number (b) for X = 2.5 and for an initial Gaussian wavepacket with
o = 5. We compare the noninteracting case, 8 = 0, with three interacting cases:
6 = 1,10,50. The black dashed lines represent a guide to the eye. Their slope is
0.2, 0.3 and 0.34 and is the same in (a) and (b).

to the observability of the interplay between disorder and interaction. The region
were this interplay might be observed, namely for A > 2 and small 3, where one
expects to see the destruction of localization due to interaction, it is also the region
where the dependence on the phase ¢ is the largest. Unfortunately, in typical exper-
imental situations with Bose-Einstein condensates, the phase ¢ is not controllable.
Moreover, in the experiments the initial distribution of atoms in the lattice sites is
more similar to a Gaussian than a d-function. This suggests that, while the single-
site diffusion is conceptually important and widely investigated from the theoretical
viewpoint, the diffusion from a Gaussian is also interesting and worth exploring.

4.2.2 Destruction of Anderson localization

Let us now consider the effects of the interaction on the expansion of a wavepacket,
in a regime where all the single particle eigenstates are localized (A > 2). We
choose the system parameters in order to rule out self-trapping so that the interplay
between interaction and disorder induced localization can be investigated. As initial
wavepacket we use a Gaussian distribution with a size that is larger than the typical
size of the eigenstates of the linear system. This choice is convenient since it strongly
suppresses the dependence of the dynamics of the system on the lattice phase ¢.
This leads to a simpler analysis of the interplay between the two key parameters A
and 3.
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The main result of our observations is that, as the interaction is turned on, a
wavepacket that was localized for 8 = 0 starts to expand subdiffusively. We observe
an asymptotic growth of both the width w(¢) and the participation number P(t),
according to the following laws:

w(t) ~ N P(t) ~ 172 (4.13)

with 1 and 72 in the range 0 — 0.5. Let us recall that ballistic expansion would
correspond to v = 1 and normal diffusion to v = 0.5. In the absence of self-trapping
we find that the coefficients v; and 9 are nearly equal, therefore in the following
we will use v & 1 & 5. A typical example of the observed delocalization process is
shown in Fig. 4.3. The effect of the interaction is studied considering the diffusion
of an initial Gaussian wavepacket with ¢ = 5 and a disorder strength just above the
localization transition A = 2.5. The noninteracting case, which remains localized,
is compared with three different values of the interaction parameter, 5 =1, 8 = 10
and 8 = 50. Already for S = 1 there is an evident delocalization and this effect
increases as (3 is increased in the sense that v becomes larger and the delocalization
takes place earlier. The three black dashed lines represent a guide for the eyes. They
represent an asymptotic spreading law of the type described by (4.13) with spreading
exponents vy equal to 0.2 (5 = 1), 0.3 (8 = 10) and 0.34 (§ = 50) and they are the
same in panel (a) and in panel (b). The presence of these lines stresses the fact
that the exponent changes as the value of the interaction strength is increased and
suggests the equality between the spreading exponents for w(t) and P(t). A very
similar behaviour is obtained also for the diffusion from a single-site, provided the
phase ¢ and the interaction [ are chosen in such a way to avoid self trapping (e.g.,
in region IIT of Fig. 4.2 with ¢ = 7). When the disorder strength A is increased the
localization gets more robust, in the sense that the onset of subdiffusive spreading
takes place for later times and v becomes smaller. For large A we reach a situation
where the delocalization process is no longer observable within our simulation time.
This is shown in Fig. 4.4, where we compare the time evolution of a Gaussian
wavepacket for fixed 8 and for increasing values of the disorder strength .

Similar results on the dynamics of wavepackets in presence of Anderson local-
ization have been recently reported for purely random systems [127, 128, 126, 129].
In these studies they considered the discrete nonlinear Schrédinger equation with
on site energies that are given by an uncorrelated random sequence distributed ac-
cording to a square distribution V; € [-W/2,W/2]. They numerically observed a
subdiffusive expansion similar to the one that we have described in this section and
suggested that the asymptotic value of the spreading exponent, in the case of a
random potential, is universal and approximately equal to 1/6. A theoretical model
that interpret the origin of the subdiffusive spreading as due to the presence of
resonant modes inside the packet has been developed in [126, 129] and provides a
value of the spreading exponent that agrees very well with the numerical one. More
recently it has been shown that for large values of the nonlinear parameter a faster
transient expansion can be observed where v = 1/4 [130, 131, 132].
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Figure 4.4: Time evolution of the width of a Gaussian wavepacket with o =5, for
B =10 and different values of the disorder strength .

As we have seen in this section, the results that we extract from Fig. 4.3 for
the spreading exponents « in a quasiperiodic potential are significantly larger than
those found for purely random systems. In particular for the highest values of 3
here considered, the values of « are larger than both 1/6 and 1/4. This suggests
that the comparison of our results with those obtained for random systems is not
so trivial and deserves a more detailed study. This issue will be addressed in the
next section, as well as in the next chapter. In particular, in the next section
we discuss the comparison between our theoretical predictions for the spreading
exponent and the experimental results, while in the next chapter we will focus on
the long-time asymptotic behaviour, making a bridge between the numerical results
and the models of Refs. [126, 129, 130] applied to quasiperiodic systems.

4.3 Experimental observation of subdiffusion

In this section we introduce the experiment realized in Florence on the expansion
of a cloud of interacting ultracold atoms in a bichromatic optical lattice [33] and
compare the experimental results with the numerical ones obtained with the one-
dimensional discrete nonlinear Schrodinger equation.

4.3.1 Experimental setup

Thanks to the great controllability of the relevant parameters in experiments with
ultracold atomic systems, it has been possible to observe the expansion of a cloud of
atoms in a controlled disorder and with a tunable interatomic interaction. The setup
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is the same of previous experiments |24, 25|: the condensate is first produced and
kept confined within a three dimensional harmonic trap; it is then loaded into an ad-
ditional one-dimensional disordered potential; finally, by switching off the harmonic
confinement along the axial direction, it is let free to expand into the disordered
potential. The strength of the disorder can be controlled by acting on the intensity
of the lasers that produce the potential, while the strength of the interatomic inter-
action is controlled by means of an external magnetic field, thanks to a Feshbach
resonance. Using these two experimental “knobs”; it is possible to change the two
key parameters of the problem, thus allowing a detailed investigation of the interplay
between interaction and disorder induced localization.

Let us now discuss more in detail the experimental procedure. A Bose-Einstein
condensate of 3K atoms is produced in an optical trap which gives a radial con-
finement of 27 x 50 Hz and an axial confinement of 27 x 70 Hz and contains about
N = 5x 10* atoms. The disordered potential is experimentally realized using a one
dimensional bichromatic optical lattice that can be described by Eq. (3.1)

V(z) = s1ER, sin2(/<:1x) + s9FER, sin2(/<:2x + ). (4.14)

It is formed by superimposing two simple optical lattices of different wavelengths
(A1 = 1064.4 and \y = 859.6), each of them created by a laser field in the standing
wave configuration. This potential is characterized by a lattice spacing d = \;/2,
a tunneling energy J and a disorder strength A. The lattice beams provide an
additional radial confinement of w; = 27w x 50 Hz.

The condensate is first loaded into a quasiperiodic lattice with a constant A = 3.J
and the scattering length is fixed at as = 280ap. At a given time ¢ = 0 the optical
trap is suddenly switched off letting the interacting atomic cloud free to expand
along the bichromatic optical lattice. At the same time, the disorder strength, A
and the scattering length as are suddenly changed and tuned to their final values
that will stay fixed for the rest of the expansion. The time evolution of the radially-
integrated spatial distribution n(z) of the atomic cloud is then monitored by in
situ absorption imaging up to ¢ = 10 s. The spreading is quantified by measuring
the width of the atomic cloud which is calculated as the square root of the second
moment of the spatial distribution

o(t) = /xQn(x) dz, (4.15)

where the spatial distribution n(z) has been normalized to one. The strength of the
interaction is experimentally quantified by an estimation of the interaction energy
per particle Fj,; of the cloud at ¢ = 0, which is given by

N Nid
Bt = 9% [ 100! dr (4.16)

where g = 47h?as/m is the coupling constant, Ny is the mean atom number per site
and ¢(7) is a Gaussian approximation of the single site wavefunction.
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Figure 4.5: Time evolution of the width o of the expanding cloud for different initial
interaction energies: Ei = 0 (squares), Eiyy = 1.8J (triangles), and Ey, = 2.3J
(circles). The continuous lines are the fit with Eq.(1). The dashed lines show the
fitted asymptotic behavior, while the dash-dotted line shows the expected behavior for
normal diffusion. The lattice parameters are sy =5, A/J = 5.

The initial wavepacket is always created in the same experimental conditions,
since it is independent from the final parameters of the expansion and it has been
estimated to occupy on average Ny, = 20 + 7 lattice sites. The typical disorder
strength that is used in the experiment is A = A/J ~ 5. Let us note that we
are in a regime where the size of the initial wavepacket is much larger than the
localization length of the single-particle eigenstates Lj,.. As a consequence we know
that the behaviour of the wavepacket will be determined just by the disorder and
the interaction strength and we can forget about the value of the phase ¢ between
the two lattices.

In Fig. 4.5 we show a typical example of a set of experimental runs that mea-
sure the time evolution of the width of the expanding atomic cloud for A = 5. We
compare the noninteracting case E;,; = 0 (blue squares) with two cases where the
interaction is different from zero, E;,; = 1.8 (green triangles) and FE;,; = 2.3J (red
circles). In absence of interaction the system is localized and the width essentially
does not change in time. Only an extremely slow expansion can be detected, pre-
sumably due to technical noise. The noise is mostly provided by the vibrations of
the retroreflecting mirrors used to create the two lattices that reflects in a disorder
potential that changes with time. The introduction of a repulsive interaction allows
the wavepacket to expand significantly: the expansion is however not ballistic since
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Figure 4.6: Spreading exponent ~ ws the initial interaction energy FEin: in the
experiment (triangles and squares) and simulations (grey circles). The experimental
data are for AJJ ~ 5 and two different values of the depth of the main lattice:
s1 = 7 (red triangles) and s; = 5 (blue squares). The vertical bars are the fitting
error of Eq.(1) to the data, while the horizontal bars indicate the statistical error.

its velocity decreases during the time evolution, as the width of the cloud increases.

In order to characterize the spreading more in detail and classify the type of
spreading behaviour, the experimental curves for the width o are fitted with the
following function

to

o(t) = o <1 + i>7 (4.17)

with three fitting parameters og, t, and . Here oy represents the initial width of
the atomic cloud, ¢y is an “activation time” and ~ is the exponent that characterize
the type of spreading behaviour. We note that Eq. (4.17) reproduces the asymptotic
behaviour o ~ ¢7 that we have introduced with Eq. (4.13) and it has the additional
advantage to extract information also from the measurements at short times. This
allows to decrease the uncertainty on the parameters extracted from the fitting
procedure. Notably Eq. (4.17) gives a good description of the behaviour of the
atomic cloud also for short times.

The values of v extracted from the fitting procedure are always smaller than
0.5 and are larger for increasing interaction strength. This indicates a subdiffusive
expansion and confirms qualitatively the results presented in section 4.2.2. More
precisely the values of the spreading exponent for Ej;,; # 0 are in the range v =~
0.2 — 0.4. The results of a systematic investigation of the value of the spreading
exponent are shown in Fig. 4.6 as a function of the interaction energy F;,; and for
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a fixed value of the disorder strength A = 5. One can see a clear increase of v with
FEiny up to v =~ 0.4. The two set of points correspond to different values of the
depth of the primary lattice s; = 5 (blue squares) and s; = 7 (red triangles). The
fact that the two datasets lie approximately on the same curve indicates that the
behavior of the system does not depend on the specific value of s; but just on the
ratio between the two tight binding parameters A and J. This confirms that a tight
binding formalism provides a good description of the experiment.

4.3.2 Comparison with the discrete nonlinear Schrédinger equa-
tion

Let us now compare the values of v extracted from the experiment and those that
can be obtained from the discrete nonlinear Schrodinger equation. In sections 3.1
and 4.1 we discussed how it is possible to connect a cloud of expanding atoms in
a one dimensional bichromatic optical lattice to the discrete nonlinear Schréodinger
equation and we gave a set of expressions (3.6), (3.8), (4.9) that allows to connect
the experimental parameters to the one of the theoretical model.

We now write down the explicit expressions that we have used to connect the
theoretical parameters with those of the experiment. Let us start considering the
tunneling energy J. At present we know that J can be calculated using expression
(3.6) and an estimation of the Wannier function w(x). Anyway there is also another
way to obtain the value of the tunneling energy using the fact that, in absence of
an external potential, J is proportional to the bandwidth of the lowest band of
the system. In particular an exact formula for the bandwidth, which is valid when
s1> 1, yields J = (4/\/?)ERIS?/4 exp(—2,/51) [133]. An even more precise formula
can be obtained by numerically solving the band structure and performing a fit to
the calculated curves [134]

J = 1.43Ep, s{%8e~20TV51 (4.18)

An estimation of the intensity of the quasiperiodic modulation A can be calculated
by solving the integral in Eq. (3.8) using a Gaussian approximation for the Wannier
functions, |w(z)? = (k:l/\/7_r)s}/4 exp(—/s1k?2?) (see appendix A for more details);
following this procedure one obtains A = (s9Ep,/2)e~*"/v51. Also in this case a
more accurate result can be obtained from a numerical calculation. More precisely,
by replacing the Gaussian approximation of w(z) with the numerically calculated
Wannier functions one finds [91]

SQER2 —92.18/59-6
A== /51, (4.19)
Finally the interaction parameter ( is calculated starting from the experimental esti-
mation of E;,;. Within the discrete nonlinear Schrédinger equation, the interaction
energy per particle in units of J is given by Eint/J = (8/2) 3_; 1;]%. Recalling that
the participation number gives an estimation of the lattice sites which are signifi-
cantly occupied, ngje ® P =1/>" ; \%]4 we obtain an expression of 3 as a function
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Figure 4.7: Time evolution of the width of the expanding atomic cloud obtained
solving the discrete nonlinear Schrodinger equation for X =5 and E, ~ 1.8 (grey
points). We also show the result of two different fitting procedures. The first is
performed using Eq. (4.17) as a fitting function (red solid line). The second is
the result of a linear fit in log-log scale done considering only the last part of the
simulation.

of E@'nt
Eint
/8 = 2”8%6% . (420)
Expressions (4.18), (4.19) and (4.20) create a direct and explicit connection between
the experimental parameters and the theoretical ones and represent the equations
that we use for the mapping from theory to experiment.
The initial wavefunction for the expansion is calculated solving a stationary

version of the DNLS equation
= i1 — Vi1 + Vi + Bl P05 = w (4.21)

where V; contains a contribution from the one dimensional bichromatic optical lat-
tice and a contribution from the harmonic confinement along the axial direction.

In Fig. 4.6 we show the values of 7y extracted from the numerical simulations (grey
circles). The spreading exponent increases for increasing value of the interaction
energy Fj,; and approaches a saturation value around 0.35. The calculation of ~
has been done following the same procedure that has been used for the experimental
data. First we compute the width of the wavepacket using Eq. (3.22) and then we fit
the curve of the width as a function of time using Eq. (4.17) as a fitting function. A
typical example of a numerical simulation for the width of the expanding wavepacket
expressed in pm is shown in Fig. 4.7. The result of the fit is also shown (red solid
line) in the figure. Typically the numerical simulations for w(¢) have been averaged
over 40 different realizations (corresponding to different values of the phase shift ¢)
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before performing the fit. We also extracted the spreading exponents v;;, by fitting
the data points only for large times with the asymptotic expression (4.13) and we
verified that the two fitting procedures give a good agreement. In Fig. 4.7 the black
dashed line shows the result of the fitting with the asymptotic expression and the
values of the two exponents are reported.

The numerical exponents shown in Fig. 4.6 are in qualitative agreement with
the experimental ones. Note that the experimental measurements give a nonzero
value of the spreading exponent v = 0.06 even for E;,; ~ 0. This is probably the
result of a weak technical noise on the quasiperiodic potential, due to variations
in the laser wavelengths and to vibrations of the retroreflecting mirror that creates
the standing waves. If we would assume that this value represents a constant bias
for all measurements with interaction then we would find an improved quantitative
agreement between theory and experiment. A detailed analysis of quantum diffusion
in presence of disorder, noise and interaction has been recently performed in [69]
and seems to support the assumptions of an increase of v due to the presence of the
experimental noise.

There is however a disagreement on the typical interaction energy at which the
saturation regime for the exponents + is reached in the experiment and in the theory.
Furthermore we observe that the activation time is much longer in the numerical
simulations than in the experiment and this implies the need of a longer simulated
expansions in order to get a numerical spreading comparable with the experimental
one. These differences are mainly due to finite temperature effects and to a feature
of the experimental setup which is not included in the discrete nonlinear Schrédinger
equation that is the radial degrees of freedom. The use of the DNLS model implies
that the radial degrees of freedom has to be completely frozen during the dynamics
of the system. This is not the case for the experiment where many radial states
are populated and play a role during the expansion. The situation is different for
noninteracting samples where the different degrees of freedom can be completely
decoupled and the radial dynamics does not influence the axial one. In presence of
interaction the finite temperature and the presence of the radial degrees of freedom
influences the dynamics and in particular leads to a faster expansion and to a smaller
activation time [33].

Finally as regards a comparison of the spreading exponents obtained for the
quasiperiodic case with those obtained for uncorrelated random potentials we con-
firm the observation of section 4.2.2. The exponents « for the quasiperiodic case,
extracted both from the simulations and from the experiment, are larger than the
maximum value of the exponent that have been observed and theoretically pre-
dicted for random systems, that is 1/4. In the next chapter we will continue and
conclude this discussion on the comparison with the random case and we will study
the spreading exponent ~ for asymptotic times, orders of magnitudes larger than
the times that can be reached in present experiments with ultracold atoms.



CHAPTER b
Subdiffusion of nonlinear waves
in quasiperiodic potentials

The topic of this chapter is again the interplay between interaction and Anderson lo-
calization in quasiperiodic systems. We still consider the dynamics of a wavepacket,
but now our focus will be on the characterization of the subdiffusive spreading in-
troduced by the interaction.

We have already seen in the previous chapters that exponential localization of
noninteracting quantum particles (or linear waves) can occur in quasiperiodic sys-
tems and that the inclusion of interaction between particles changes localization into
subdiffusive spreading. Theoretically, the interplay between interaction and Ander-
son localization, has been more often studied by considering wavepackets propagat-
ing in purely random potentials [123, 127, 128, 126, 129, 135, 130, 136, 137, 131, 132].
Also in this case, numerical simulations showed that the presence of nonlinearity in-
deed destroys localization and leads to a subdiffusive growth of the width of the
wavepacket in time as w(t) ~ ¢7 [127, 128, 126, 129, 135, 136, 131, 132]. In partic-
ular it was predicted that at large ¢, the coefficient ~ should converge to 1/6 in a
regime of so-called “weak chaos”, as opposed to normal diffusion where v = 0.5. A
transient regime of “strong chaos” was also identified, where v = 1/4 [130, 131, 132].
A comparison between the values of + for the random case with those discussed
in sections 4.2.2 and 4.3.2 for the quasiperiodic case clearly indicates that in the
quasiperiodic case the typical spreading exponents are significantly larger, at least
at finite spreading times.

The purpose of this chapter is to clarify the details of the spreading mecha-
nism and address the differences and similarities between quasiperiodic and purely
random potentials. We extend and refine our previous numerical investigations by
pushing the simulations to much longer times, thus allowing for the identification
of the strong and weak chaos regimes in quasiperiodic systems and compare the
situation with known properties of purely random systems. For this purpose, we
use two different models, namely the discrete nonlinear Schrédinger equation, that
we have already introduced in section 4.1, and a quasiperiodic version of the quartic
Klein-Gordon lattice model.

We anticipate here that a regime of weak chaos is indeed observed in the long
time spreading of nonlinear wavepackets propagating in quasiperiodic systems; in
particular we find that the asymptotic value of the spreading coefficient v is 1/6
as in purely random systems, thus showing that this behaviour is rather general
and model independent. Another similarity with purely random systems is the
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occurrence of self-trapping (cfr. section 4.2.1): when the nonlinear interaction is
large enough to shift the mode frequencies so strongly that they are tuned out of
resonance with all non-excited neighbouring modes, a part of the wavepacket remains
spatially localized [123, 126, 31]. However as opposed to the random system, in the
quasiperiodic case partial self-trapping is also possible for weaker nonlinearities.
This is due to the complexity of the linear wave spectrum which exhibits a fractal
gap structure of sub-bands. Self-trapping gives rise to transient spreading regimes
characterized by an intermediate large exponent ; we call this effect “overshooting”.
Finally, we have also observed signatures of strong chaos, but detection of this regime
is difficult in quasiperiodic systems, since it is often masked by overshooting and
partial self-trapping, which occur on the same temporal scales.

In section 5.1 we formulate the DNLS model in normal mode space. In section
5.2 we discuss the relevant energy scales for the prediction of the spreading behaviour
of a wavepacket. In section 5.3 we summarize the different spreading regimes and
discuss the spreading laws associated to each regime. In sections 5.4 and 5.5 we
present and discuss the results of long time numerical simulations within the DNLS
model. Finally in 5.6 we introduce the Klein-Gordon model and we show that the
observed numerical results can be interpreted on the basis of the same theoretical
model that it has been developed for the DNLS model.

5.1 DNLS in normal mode space

Let us start from the DNLS model with a quasiperiodic potential. The key equation,
already introduced in section 4.1, is

% — (W11 + Yj—1) + Vivoj + Bl [Py, (5.1)

where V; = Acos(2maj + ). From now on we choose a = (v/5 —1)/2 and A > 2,
since we focus on the interplay between localization and nonlinearity.

The normal modes associated to Eq. (5.1) are defined by neglecting the nonlinear
term and solving the following eigenvalue problem

— AV7]'+1 — Au,jfl + )\COS(27TO£j + QD)A,/J' = E,/A,/J' . (52)

where the index v labels the different normal modes A, ; and the corresponding
eigenvalues E,. Equation (5.2) is the Aubry-André model [85] that we introduced
in sections 3.1 and 3.2. We have already discussed extensively the localization
properties of this model. Here we just remind that in the localized regime (A > 2)
all the eigenstates are exponentially localized in the form A, ; ~ e~ l7=dvl/Lioe wwhere
Ju is the localization center and Lj,. = 1/1In(\/2) is the localization length.

In order to quantify the spatial extent of a given eigenstate, we can conveniently

define a localization volume V,, = 141/ 12mg'), where mg/) => (X — )24, ;% is
the second moment of |4, ;|? and X, = > jlA, j|? is its center of norm [138]. The
localization volume V,, is an important quantity since we will use it as an estimate of
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Figure 5.1: a) Pictorial interpretation of localization volume. A given eigenstate
v (black line in the center of the box) is assumed to interact only with those eigen-
states (blue lines) that lie in a region of size V,, around his mean position. The red
lines represent the corresponding on-site energies. b) Average localization volume of
eigenstates V' as a function of the potential strength \. ¢) Eigenenergies E, of the
linear system obtained from numerical diagonalization of Eq. (5.2), as a function of

A

the number of modes which interact with a given mode v. Its meaning is schemat-
ically shown in Fig. 5.1a. The modes that interact with a given reference mode v
are those whose center of norm lies in an area V,, around it. The quantity that will
be relevant for our analysis is an average value of the localization volume at a given
value of the disorder strength A that we indicate with V. The average is performed
over the different eigenstates of the spectrum and over different realizations of the
quasiperiodic potential. Different realizations of the potential correspond in our
case to different values of the phase shift ¢. The average localization volume V can
be found numerically by direct diagonalizing of the linear system. A plot of this
quantity as a function of the potential strength A is shown in Fig. 5.1b.

We can conveniently use the normal modes of the linear Aubry-André model
as a decomposition basis of the wave function v;, ¥; = > ¢, A, ;. In this way,
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Eq. (4.8) can be rewritten for the evolution of the normal mode amplitudes ¢,:

0P,
“or T

Evby+8 Y Loy wavs®iy busbus (5.3)

v1,V2,V3

where I, ,, 1,5 18 an overlap integral involving four normal modes:

Ly nws = Z AV,jAVl,jAW,jAVSJ' (5.4)
J

In the previous chapter we characterized the spreading of wavepackets mainly by
considering the time evolution of the particle density n; = \wj]2, which is described
by Eq. (5.1). We basically follow the same approach also in this chapter. However, it
is worth stressing that the evolution of wavepackets can be equivalently described in
the space of normal modes. This can be done by assigning a position to each normal
mode through its center of norm X,,, and following the evolution of the normal modes
amplitudes ¢, given by Eq. (5.3); we can therefore introduce a density also in normal
mode space n, = |¢,|%.

By performing a numerical study of the time evolution of n, and n;, one can
show that, after a short transient time and after averaging over many realizations,
the two densities are very similar, leading to a time evolution in the two spaces that
is almost identical. In the rest of our analysis, we will mainly consider the evolution
of the density of particles n;, but we will also use the normal mode space for some
theoretical considerations.

5.2 Relevant energy scales

Interesting information on the spreading of initially localized wavepackets can be
obtained from a comparison of two energy scales of the noninteracting spectrum
associated to Eq. (5.1) and of an energy scale associated to the nonlinear term. In
this section we will introduce these three energy scales (d, A, §) and explain their
meanings.

The spectrum for A > 2 is purely dense-point, characterized by the presence of
an infinite number of gaps and bands. A plot of the Aubry-André model’s spectrum
as a function of A is shown in Fig. 5.1c. In this figure, one clearly sees the presence
of two major gaps dividing the spectrum in three parts, each of them divided in turn
in three smaller parts, and so on. An intuitive understanding of this band structure
can be given, following an heuristic argument. The wavelength associated to the
potential V; is 1/|a| = (V5 + 3)/2 ~ 2.62 (see section 3.1 for more details). An
effective wavelength equal to an integer number ¢ would correspond to a separation
in exactly ¢ bands. Our value of 1/|@| lies between two and three, so that the band
structure has neither two nor three bands, but three main bands with an internal
structure of sub-bands. In the following we will call these portions of spectrum
separated by the largest gaps “mini-bands”. For our purposes, it is enough to consider
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a division of the spectrum in M = 3 or at most in M = 9 mini-bands. Smaller mini-
bands have vanishingly small effects on the time evolution of wavepackets.

Let us introduce two energy scales associated with the linear system [126, 138|.
The first one, A, is the full width of the spectrum, defined as the difference between
the largest and the smallest eigenvalues: A = max{FE,} — min{E,}. The second
one, d, is the mean spacing of eigenvalues within a single mini-band and within the
range of a localization volume. Let us explain how we calculate this quantity. We
consider a given mini-band and all the eigenstates that lie in it. For each eigenstate
v, we calculate its localization volume V,, and then we form the subset of the other
eigenstates, {u}, belonging to the same mini-band and interacting with it, namely,
those fulfilling the condition |X, — X,| < V,,/2. The average number of states in
the subset can be estimated as V/M. Then we calculate the energy spacings within
this subset. This procedure is repeated for each eigenstate in the band and then
averaging over all the eigenstates and different disorder realizations gives the mean
spacing d.

The number of mini-bands M to be used in the calculations of d depends on \.
For a given A we choose M in such a way that the localization volume V satisfies the
condition V//M > 2. This implies that, on average, there are at least two eigenstates
within the subset {u} that we can use to calculate the average energy spacings. We
always consider A > 2.1; therefore it is enough to divide the spectrum at most in nine
mini-bands. As A is increased the average localization volume of the eigenstates V'
decreases — therefore at some point we have to consider the spectral separation into
smaller mini-bands. In practice we consider M = 9 mini-bands for 2.1 < A < 2.2,
M = 3 mini-bands for 2.2 < A < 2.75 and just one band (i.e., the full spectrum)
for A 2 2.75. A plot of the energy scales A and d as a function of A is shown
in Fig. 5.2. These two quantities have been calculated numerically diagonalizing
Eq. (5.2). The dashed vertical lines represent the values of A\ where the number of
mini-bands changes in the calculation of d.

We note that in the present setting, where we have set 7 = 1 and we are dealing
with spreading of nonlinear wavepackets, all the energies can also be interpreted as
frequencies. For instance the eigenenergies of the system FE), can also be interpreted
as the oscillation frequencies of the normal modes. In the following we will therefore
use the terms energy and frequency interchangeably.

Let us now introduce the energy scale associated to the nonlinearity, §, we will
call it nonlinear frequency shift following the notation introduced in [126]. In order
to explain the concept of nonlinear frequency shift let us first consider a single site
problem with an on-site potential V. The time evolution of this system is described
by the following equation of motion i) = Vi) + Blw|?1 and can be viewed as the
evolution of an oscillator that experiences a nonlinear frequency shift § = B|y|?
away from its linear frequency V. The evolution described by Eq. (5.1), which
involves many lattice sites, can be viewed as a set of coupled oscillators and it is
more convenient to approach the problem in normal mode space. From Eq. (5.3)
one can see that the frequency shift can be estimated as § ~ (n, where n is a
characteristic average density n = n, ~ n; which is approximately equal in real and
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mode space, as we have discussed in the previous section.

5.3 Expected spreading regimes

Equation (5.3) indicates that the presence of nonlinearity in the DNLS model in-
troduces a coupling between eigenstates of the underlying linear spectrum. We
already discussed in the previous chapter that this leads to a subdiffusive spread-
ing of wavepackets, i.e. its width grows asymptotically as w ~ t7 with v < 0.5.
This behaviour has been observed both numerically and experimentally. However,
a systematic investigation of the behaviour of the exponent ~ in different regimes of
strong and weak chaos, and self-trapping, have not been done so far. In this section,
we approach this issue by first comparing the nonlinear frequency shift § = fn with
the energy scales A and d, in such a way as to introduce the different spreading
regimes expected to be observed in the subsequent numerical simulations.

Let us consider an initial wavepacket with density n and localization volume L
larger than the average localization volume of the eigenstates of the linear spectrum,
L>V.If § > A, nonlinearity is so strong that all the participating normal modes
within the wavepacket are shifted out of resonance with respect to the non-excited
neighbourhood; therefore spreading is largely suppressed and a significant part of the
wavepacket remains self-trapped. In section 4.2.1 we introduced this phenomenon
following an energy conservation argument while here we presented it from a different
perspective, as an exited mode which is off-resonant with the other neighbouring
modes. We note that both analysis lead to the same conclusion that the relevant
energy scale for the determination of the self-trapping transition is the width of the
linear spectrum A.

If instead 0 < A, we are no longer in the self-trapping regime and two sub-cases
can be distinguished: on one hand, when § > d, strong chaos is realized, the mode
frequencies are strongly shifted and all the modes in the packet are resonantly inter-
acting with each other, thus producing an efficient spreading. On the other hand,
when § < d, the mode frequencies in the wavepacket are only weakly shifted and
weak chaos is obtained: only a fraction of modes interact resonantly, the localization
is still destroyed, but spreading is slower.

If L <V the estimate of the self-trapping transition is done as before, that is by
comparing § = fn with the spectrum width A. If self-trapping is avoided, however,
the wavepacket initially spreads also in absence of nonlinearity, eventually filling the
localization volume V. Consequently the initial density n is reduced to n ~ nL/V,
due to linear time evolution, the relevant nonlinear frequency shift must now be
calculated by using this reduced density n. Apart from this detail, which originates
from the initial dynamics at short times, the asymptotic spreading regimes are the
same as before. Note that the strong chaos regime can only exist as a transient
regime: as the wavepacket spreads, its norm density n(t) decreases, and eventually
will reach a situation where fn(t) < d. At this point, a crossover from strong to
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Figure 5.2: Energy scales A (top blue line) and d (bottom red line) plotted as
a function of the potential strength X\. The empty (downward) and full (upward)
triangles correspond to the values of § that we have used for the simulations with the
DNLS model and with the KG model respectively. Comparing the nonlinear frequency
shift & with the energy scales A and d one can predict the different spreading regimes
of weak chaos (6 < d), strong chaos (d < 6 < A) and self-trapping (6 > A). The
separation between the three regimes should not be interpreted as a sharp boundary,
but as a smooth crossover.

weak chaos is expected to occur during the time evolution [131]. To summarize

pfn > A self-trapping (5.5)
d < pn <A strong chaos
bn < d weak chaos

where n=nif L>V andn=nL/Vif L <V.

Let us finally stress that the “transition lines” that we have introduced by com-
paring the nonlinear frequency shift with the typical energy scales of the linear
spectrum do not define sharp phase transitions between different spreading regimes.
Instead, we may expect to see a relatively smooth crossover, such that the regimes
of self-trapping, strong chaos and weak chaos should be clearly identified only far
from the transition lines.
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5.3.1 Spreading laws

In the previous section we discussed how to predict the different spreading regimes
starting from energy scale arguments, but this method does not provide information
on the spreading laws associated to the different regimes. Here we discuss this issue
by making a link with the concepts of strong and weak chaos.

We follow the theory which has been first introduced by Flach, Skokos, Krimer
and Komineas in Refs. [126, 129] and then developed further in Ref. [130]. More
recently Michaely and Fishman [139] discussed more in detail some assumptions
on which the theory is based. So far, the theory has been applied to a purely
disordered system where the potential V; is a random variable uniformly distributed
in the interval [—W/2,W/2]. However, it can be applied also to the quasiperiodic
case described by Eq. (5.1). In fact the theory can be used when (i) the equation
associated to the linear system yields Anderson localization, (ii) the localization
length Lj,. is upper bounded, (iii) the nonlinearity is compact in real space and
does not induce long range interactions between normal modes of the linear system.

The starting point is the equation of motion in normal mode space (5.3). Let us
rewrite this equation by removing the trivial time evolution which is given by the
linear term. This can be done by substituting

¢ (t) = X (t)e P! (5.8)
into Eq. (5.3). One obtains
Oxw % i —E, —
'LW = /8 Z Il/,l/1,u2,u3 XV1XV2XV3 € (EV+EVI EVQ EV?’)' (59)

v1,V2,V3

Let us define the right hand side of this equation as a generic function F(¢). The
theory now considers the spreading from the region occupied by the wavepacket,
where the modes v1, vs, v3 lie, to the exterior non-exited region, where the mode v
is localized. Moreover it is assumed that all the modes inside the packet are exited
to the same density n [126, 129], in particular

1> & [ |* = s = 0 ol? < n. (5.10)

The key assumption of the theory, which is sometimes referred to as the “random
phase ansatz” [140], is that F(¢) behaves as a random noise. This ansatz combined
with (5.10) suggests that the right hand side of Eq. (5.9) can be written in the
following form [130, 139]

F(t) ~ CBn3*P(Bn) f(t) (5.11)

where P(n) is the number of resonant modes in the packet, i.e. those who strongly
affects the dynamics of v, f(t) is a random noise such that (f(¢)f(#)) = §(t—t')! and
C' is a constant that does not depend on 8 and n. For purely random systems the

'here (...) indicates an average over the disordered potential.
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resonance probability has been estimated to be P(8n) = (1—e~%05") [126, 129, 138]
while for the quasiperiodic model under considerations we will present a calculation
of this quantity in the next section. The validity of the random phase ansatz and
of the relation (f(¢)f(t')) = 6(t —t’) has been recently verified numerically in [139].
Combining Egs. (5.9) and (5.11) one finds

i x0 ~ ConP () (1), (5.12)

and therefore .
o ~ —iC /2P (Bn) / £t (5.13)

0

Taking the modulus square and averaging over the disorder yields
(o) = C8*n°[P(Bn))t. (5.14)

From this equation it is possible to estimate a momentary diffusion rate, D,
which is proportional to the inverse of the equilibration time 7', i.e. the time needed
to excite the exterior mode v to the packet level n

1 1
= P and D ~ T (5.15)

T

The equilibrium time 7' varies slowly with ¢, this can be verified by checking that
%—{ — 0 for t — oo. In other words, there is a separation of timescales: on the scale
given by T the system seems to equilibrate by a diffusion process and the packet
populates the region occupied by v; on a longer timescale there is an even longer
equilibration process associated to a slower diffusion. We will comment more on this
point at the end of the section. Thus, for times much larger than T the spreading

is governed by a diffusion equation and in particular
w(t) ~ VDt'/?, (5.16)

Since the width of the wavepacket is of the order of the inverse of the density w ~ 1/n
we can rewrite Eq. (5.16) as follows

s BV P (B e (517)

What we have discussed so far is general and applies both to the random and the
quasiperiodic case. For the remaining part of this section we continue the discussion
focusing on random systems and we will use P(fn) = (1 — e~ ™). In the next
section we will calculate P(fn) and discuss the spreading laws for the quasiperiodic
case.

For large values of the nonlinear frequency shift, 6 = fn, it is easy to verify
that P(fn) = (1 — e~ “0P") — 1. In this situation strong chaos is realized and
all the modes are resonantly interacting. From Eq. (5.17) one obtains that the
corresponding spreading law is

w(t) ~ tY4, (5.18)
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Figure 5.3: Comparison between the probability density function W(R, z) of the
quasiperiodic DNLS model and of the random DNLS model. For the quasiperiodic
case, A = 2.5, while for the random case, we choose a disorder strength that gives a
similar localization length.

Conversely, for small values of the nonlinear frequency shift P(Sn) — fn, the
packet is in the weak chaos regime and only a fraction of the modes is resonant. As
a consequence a slower spreading is obtained

w(t) ~ /5. (5.19)

Egs. (5.18) and (5.19) defines the expected spreading laws for the weak chaos and
strong chaos regimes for the random case. Numerical simulations are in very good
agreement with these theoretical expectations [126, 129, 131, 132].

Starting from the spreading laws (5.18) and (5.19) one can derive the asymptotic
time evolution also for n(¢) and 7'(t) [139]. One can therefore observe that %—{ and
%—’t‘ tends both to zero for large times. This justifies the separation of timescales that
we mentioned previously. Moreover % < %—:tp for t — oo, therefore the fact that we
considered a constant density n in the derivation of the equilibration time T and of

the diffusion rate D is justified in the long time limit [139].

5.3.2 Resonance probability

Let us estimate the number of resonant modes in the packet P(/n) for the quasiperi-
odic model under consideration (5.1). As we have seen in the previous section this
is a key quantity for the determination of the spreading behaviour. According to



5.3. Expected spreading regimes 71

Eq. (5.9), due to nonlinearity, the evolution of a given normal mode is affected by
any three (triplet) modes. The coupling is the largest if the triplet modes have
large amplitudes and if the overlap integrals are large, i.e., if the triplet modes are
close enough in space to the given normal mode. Some of these triplet modes may
affect the dynamics of the chosen mode v strongly, some weakly. To distinguish
these triplet groups, we apply perturbation theory to Eq. (5.9) [126, 141]. We use a
perturbation expansion of the coefficients y, in powers of 3

Xo =X + X+ x4 =D + Bl + B + (5.20)

At first order and assuming (5.10) one finds

I .
1) — _ p,,3/2 v,V1,V2,V3 {(Ev+Ey, —Evy—Euq)t
Xy’ =—Bn e 1~ By By (5.21)
’ V1§V3 By + Eyy — By, — By
It follows that the amplitude of a normal mode v is changed by a given triplet of
other wavepacket modes 7 = {vy,v9,v3} (we consider just the contribution of a

single triplet to the sum of Eq. (5.21)) as

3/2
L) _ gl 5.22
Ixy’'| =8 Ry (5.22)
where . o o o
R,; = v 5 = P = B (5.23)

IV,VLVQ,VS

The perturbation approach breaks down and resonances set in when /n < ]Xl(,l)]
[126, 138]. Substituting

Ryﬁ < fBn. (5.24)

This expression tells us that the resonance condition, for a given normal mode v, is
fulfilled if there is at least one triplet of modes ¥/ that satisfies inequality (5.24).
The probability for the onset of a resonance can therefore be calculated with the
following statistical numerical analysis [126, 138]. For a given normal mode v, we
define R, 5, = ming{R, 5}. Collecting R, ;, for many modes and many values of the
phase ¢, we find the probability density distribution W(R,, ). From this quantity
we can calculate the probability P for a mode, which is exited to a norm density
n, to be resonant with at least one triplet of other modes at a given value of the
interaction parameter . This is obtained by integrating W(R,, 3 ) from zero to fn
Bn
P = W(R) dR. (5.25)
0
An example of probability density W(R,, ;) for A = 2.5 is shown in Fig. 5.3 (red
line). For comparison we also show the same quantity for the random DNLS
model (black line), as discussed in [126, 138], which is approximately given by
W(R) ~ Coe~“E. Except for fine structures, like small sharp peaks appearing
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in the quasiperiodic case, the overall behaviour is qualitatively very similar in the
two cases. In particular, in both cases, the probability density W(R) tends to a
finite constant value Cy when R — 0 and then tends rapidly to zero for large values
of R.

As a consequence we expect the same spreading behaviour in the quasiperiodic
and in the random case. More precisely, for small values of the nonlinear frequency
shift § = Bn, a non-zero fraction of modes in the packet is resonant. The probability
to be resonant is given by P(f8n) ~ fn, thus we are in the weak chaos regime. For
large values of fn, instead all the modes interact resonantly and P = 1; we are
then in the strong chaos regime. Following the reasoning presented in the previous
section, this implies that also in the quasiperiodic case, as in disordered systems,
we may expect to find w(t) ~ t'/% in the weak chaos regime and w(t) ~ t'/* in the
strong chaos regime.

5.4 Numerical observations

We perform extensive numerical simulations solving Eq. (4.8) for different sets of
parameters {\, 3}. For each choice of parameters we average over N different re-
alizations of the quasiperiodic potential obtained by randomly changing the phase
shift ¢. As initial conditions, we use compact wavepackets that lie in the center of
our computational box, taking care that during the time evolution the wavepacket
never reaches the box boundaries. The number of realizations considered varies be-
tween 100 and 500 and the number of lattice sites between 200 and 2000. To solve
the equations of motion, we use symplectic integration schemes of the SABA family
[142, 129] that allow us to reach large integration times with good accuracy?.

In order to quantify the type of subdiffusive behaviour, we calculate the exponent
v by considering the logarithm of the width log;qw for different realizations of the
potential. We compute the average value (log,,w) and its statistical error, given
by the standard deviation divided by the square root of the number of realizations
N. Then the value of v at a given time ¢ is calculated by applying a linear fitting
procedure to the curve (log;,w) within a fixed time interval around log;,t. By
repeating this procedure at different ¢, we extract the behaviour of v as a function
of time and its relative statistical error. In order to detect the self-trapping transition
(as we have done in section 4.2.1) we also calculate the average participation number,
(log, P). Finally we also quantify the sparsity of the wavepacket by calculating the
compactness index [129]

P2

P2
¢ = z

w2 ma

(5.26)

This definition follows from the fact that the width w (and also the second moment
msg) is sensitive to the spreading of the tails of the distribution while the participation

2The numerical accuracy of our calculation is controlled by checking the conservation of the
energy H and the norm A of the expanding wavepacket (check Eqs. (4.11) and (4.10)). The error
is always kept smaller than 10™2-5. For the integration we used time steps between 0.1 and 0.05.
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number P is a measure of the inhomogeneity of the distribution, being insensitive
to any spatial correlation. For this reason a combination of these two quantities
gives a measure of the sparsity of a distribution. In particular smaller values of &
correspond to more sparse wavepackets.

5.4.1 Results for square wavepackets

Let us first show our results for initial wavepackets that has a square shaped distri-
bution which populates L lattice sites with equal density n; = |¢;|* = 1/L. In this
particular case the calculation of the nonlinear frequency shift is straightforward
since the average density is simply given by n = 1/L and 6 = /L. In Fig. 5.4 we
present a representative set of simulations for A = 2.5. We choose L = 13, which
gives an initial localization volume larger than V. The different panels show the time
evolution of the width (log;, w), the spreading exponent -, the participation ratio
(logyg P), and the compactness index (£). The width of the curves for (log;ow),
(log,o P) and 7 corresponds to the statistical error. The values of the nonlinear
frequency shift ¢ induced by the initial wavepackets used in these simulations are
shown in Fig. 5.2 (empty downward triangles) in order to compare them to the
relevant energy scales A and d.

In all simulations we observe that nonlinearity causes the wavepacket to spread.
The spreading starts earlier when [ is larger. We find that the spreading is always
subdiffusive (v < 0.5), confirming the result of previous sections 4.2.2 and 4.3.2.
Subdiffusion is seen both in the width w and in the participation number P, except
for the largest value of 3 (yellow curves in Fig. 5.4). In the latter case, P saturates
to a constant value after a transient time, a clear signature of self-trapping. This
observation of self-trapping only for 5 = 100 is consistent with the energy scale
arguments schematically represented in Fig. 5.2. In the absence of self-trapping, the
compactness index £ saturates to a constant value, indicating that the wavepacket
spreads but does not become more sparse. Conversely, in the presence of self-
trapping the central part of the wavepacket remains spatially trapped while its tails
keep expanding, thus resulting in a wavepacket that becomes more sparse during the
evolution, nicely quantified by the compactness index which decreases to zero. We
notice that the portion of packet that is expanding is characterized by a value of
larger than 1/4. After an initial increase, v reaches a maximum and then decreases
to smaller values. In this regime, the evolution is rather complex and the theory
presented in section 5.3.1 does not apply since condition (5.10) is not satisfied. A
similar behaviour was previously obtained also in random systems [131, 132]. The
transient large values of v may be due to a nontrivial interacting mechanism that
takes place between the expanding part and the self-trapped portion, resulting in
faster spreading, an effect that we call “overshooting”.

For the lowest values of 5 the energy scale arguments suggest the occurrence of
weak chaos. Indeed for g = 0.5 and 1 the exponent saturates asymptotically around
the theoretical value v = 1/6 (red and green curves in Fig. 5.4), as expected. It
is worth mentioning that this asymptotic exponent is the same as in random sys-
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Figure 5.4: Numerical results obtained by integrating the DNLS equations of motion
(4.8). The time evolution of (log,qw) (left panel, top), v (right panel, top), (log,y, P)
(left panel, bottom), and (§) (right panel, bottom) is shown versus log,qt for different
values of the nonlinear parameter § = 0.5,1,5,10,100. The initial wavepacket in
all stmulations is a square distribution with L = 13 and the potential strength is
A = 2.5. In the top right panel the two dashed lines correspond to theoretically
predicted power laws v = 1/6 and v = 1/4. The width of the lines for the quantities
(loggw), (log;o P) and -y represents the statistical error, which depends on time and
on the number of realizations. In most cases the statistical error is smaller than the
resolution of the figure.

tems [130, 131]; meaning that the mechanism leading to destruction of exponential
localization is rather universal.

In difference to the random case, here during the time evolution, the value of
temporarily increases above 1/6, eventually reaching its asymptote only at longer
times. This is an overshooting similar to the one that we have discussed above for
the self-trapping regime, but occurring also for weaker nonlinearities. This effect is
unique to the quasiperiodic system and is likely due to the presence of an infinite
number of mini-bands and gaps in the linear spectrum of the Hamiltonian, which



5.4. Numerical observations 75

>
)

\S)

<log;o w>
|9}

0.5

-

3 5 7 3 5
log (1) logo(t)

Figure 5.5: Average logarithm of the width of the expanding wavepacket, (log;,w)
and spreading exponent, v for X = 2.2 (left plots) and X\ = 3.5 (right plots).For
A = 2.2, the initial wavepacket has width L = 31 and we consider 8 = 0.18 (lower
red curves),1 (mid green curves) and 6.5 (upper blue curves). For A = 3.5, the initial
wavepacket has width L = 5 and we consider = 5.5 (lower red curves), 15 (mid
green curves), and 50 (upper blue curves). The width of the lines represents the
statistical error as in Fig. 5.4. Insets: average compactness index of the expanding
wavepacket () for the same sets of simulations.

causes a temporary self-trapping of portions of the expanding wavepacket in one
or more energy gaps between mini-bands. This partial self-trapping is different
from the self-trapping that occurs when 6 > A, where all the packet modes are
simultaneously shifted out of resonance. For this reason partial self-trapping is not
detectable as a saturation of the participation number P and can only be seen
indirectly as an overshooting in the exponent 7.

The two simulations for f = 5 and 10 lie in a range of energy were we expect
to see strong chaos (blue and magenta curves in Fig. 5.4). As already said in the
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previous section, the strong chaos regime is transient: one should find a value of
v around 1/4 for a few decades of time, eventually decreasing towards the asymp-
totic value 1/6. The two corresponding curves in Fig. 5.4 indeed exhibit a behaviour
which qualitatively agrees with this expectation. The value of ~ first rises up to 1/4,
oscillates around this value and then starts to decrease as predicted. However, espe-
cially for large 3, we also observe values of y larger than 1/4. As in the weak chaos
regime, this overshooting again is evidence of partial self-trapping. Its mechanism is
also transient and occurs in the same time intervals where strong chaos is expected.
For this reason, while weak chaos is clearly observed in our simulations, strong chaos
and partial self-trapping tend to overlap, thus producing a more complex evolution
of the wavepacket in quasiperiodic systems than in random systems.

In Fig. 5.5 we show the results of simulations for A = 2.2 and A = 3.5; the
corresponding values of nonlinear frequency shift are reported as triangles in Fig. 5.2.
The values of L are L = 31 for A = 2.2 and L = 5 for A\ = 3.5, both larger than
V. For {\, 8} = {2.2,0.18} and {\, 5} = {3.5,5.5} energy scale arguments predict
weak chaos. We indeed find a spreading exponent which approaches asymptotically
the value 1/6. For {\, 8} = {2.2,1}, {\, 8} = {2.2,6.5} and {\, 8} = {3.5,15} the
predicted behaviour is either strong chaos or a regime in between strong and weak
chaos. What we observe numerically is a growth of the spreading exponent v up to
1/4 and even to larger values, followed by a decrease towards 1/6. In most cases, our
simulations show a significant overshooting due to partial self-trapping. It is worth
mentioning that this effect is larger for weaker disorder strength A, consistent with
the fact the linear spectrum exhibits larger mini-gaps in this regime (see Fig. 5.1).
Finally for {\, 5} = {3.5,50}, we observe self-trapping, as expected.

In conclusion, from the analysis of the results of the DNLS model for different
values of A we find that the energy scale arguments and the model discussed in
section 5.2 correctly explain the overall trend of the numerical simulations and the
separation between different spreading regimes in the parameter space.

5.4.2 Role of the shape of the initial wavepacket

In this section we show that the results discussed so far do not depend on the shape
of the initial wavepacket. Besides its theoretical interest, this issue is also relevant
from the point of view of experiments, where it is not always possible to design the
wavepackets at will.

In the previous section, we have used a square distribution as initial wavepacket.
Now, inspired by the experiments with ultracold atoms, we consider initial wavepack-
ets with the shape of a Gaussian distribution (as we have done in section 4.2.2) or a
Thomas-Fermi (TF) distribution. In this case of inhomogeneous initial wavepackets
the average value of the density is estimated as the inverse participation number at
t=0,n=3; ;|2 Therefore the nonlinear frequency shift is given by 33 ; ;)4
which is also identical (up to a prefactor) with the mean-field interaction energy.

Let us recall the definition of Gaussian wavepacket (cfr. section 3.3) which is
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Figure 5.6: Average logarithm of the width of the expanding wavepacket, (log;,w)
and spreading exponent, v as a function of time for different nonlinearities § =
0.5,1,5,10,100. The disorder strength is A = 2.5 in all simulations. As an initial
condition, we have used a Gaussian wavepacket with o =5 (left plots) and a TF dis-
tribution with R = 7.50 (right plots). The width of the lines represents the statistical
error as in Fig. 5.4. Insets: average compactness index of the expanding wavepacket

(&) for the same sets of simulations.

given by

2

$;(0) = Cre ™57, (5.27)

where o is a parameter controlling the width of the packet while Cy is a constant
factor that can be determined by using the normalization condition _; ;)2 = 1.
A Thomas-Fermi wavepacket is instead defined by

1;(0) = Coy /1 — %22 (5.28)



Chapter 5. Subdiffusion of nonlinear waves in quasiperiodic
78 potentials

in the region where |j| < R and 1; = 0 otherwise. The parameter R is the Thomas-
Fermi radius characterizing the width of the distribution, while the constant Cs is
a normalization factor. These two distributions are of interest when considering
ultracold bosons initially released from an harmonic trap in the Gross-Pitaevskii
regime [107].

In Fig. 5.6 we show the time evolution of the width of the expanding wavepacket,
(logigw) (top row) and of the spreading exponent, v (bottom row), using initially
a Gaussian (left column) and a TF (right column) wavepacket distribution. In the
insets we also show the compactness index (£), in order to identify the self-trapping
regime. We choose the width of the initial distributions (o and R) so that the
nonlinear frequency shift is similar to the one already used for the simulations in
Fig. 5.4. In particular we use ¢ = 5 and R = 7.5, yielding a nonlinear frequency
shift § &~ $/13. The values of 5 used in Fig. 5.6 are the same as those previously
considered.

From the comparison between the results of Fig. 5.6 and Fig. 5.4, we can conclude
that the shape of the initial wavepacket does not affect the overall behaviour of the
time evolution, nor its interpretation in terms of regimes of weak and strong chaos,
self-trapping, and overshooting. This suggests the results that we have obtained are
rather general and that the nonlinear frequency shift ¢ is the only key parameter
controlling the dynamics of the wavepacket.

5.5 Application to cold atoms

Let us now discuss the relation of the analysis performed in this chapter with the
results presented in section 4.3.2 where we measured the spreading exponent  for
times of the order of the duration of typical experiments with ultracold atoms.
We can say that the results presented here are consistent with the observations
of 4.3.2 where we observed spreading exponents larger than 1/6 already for weak
nonlinearities and even larger than 1/4 for larger nonlinearities. In fact in our
dimensionless units, the experimental expansion is of the order of 10* and the width
of the atomic cloud increases up to 50 — 100 lattice sites. Considering Figs. 5.4
and 5.5 we can see that the typical experimental timescale is of the same order of
magnitude of the timescale for occurrence of partial self-trapping. In conclusion our
work suggests that such large values of v can be explained in terms of a transient
overshooting caused by partial self-trapping in mini-bands.

We would like also to comment on the validity of the DNLS equation for the
description of experiments with ultracold atomic gases. Let us recall that the DNLS
equation corresponds to a discretized version of the Gross-Pitaevskii equation for
the dynamics of a Bose-Finstein condensate in the single-band approximation. The
validity of this mean-field theory is not ensured for those dynamical regimes where
Gross-Pitaevskii equation predicts chaos, which can be viewed as a signature of a
large depletion of the condensate [143, 144, 145, 146, 147, 148, 149]. For this rea-
son, in the presence of disorder the theory fails to predict the long time evolution



5.6. Klein-Gordon model 79

of observables directly related to small scale fluctuations and long-range coherence.
However, for coarse-grained observables, like the width of the wavepacket in real
and momentum space, or the participation number, the predictions of the theory
remain very good even in regimes where the depletion is expected to be large, long
after the random fluctuations prevent the prediction of fine scale structures. This
has been recently shown in Ref. [149] by comparing the predictions of the Gross-
Pitaevskii equation with one beyond mean-field theory in numerical simulations
within timescales of the order of typical experiments with cold atoms and long
enough to observe the effects of depletion and chaotic dynamics. Indeed our anal-
ysis is essentially based on coarse-grained observables. In addition, for each set of
parameters we also average over many realizations and this extends the validity of
the present approach even for longer times, as any residual dependence on small
scale fluctuations is further suppressed by the averaging procedure.

5.6 Klein-Gordon model

In order to show the generality of our results we consider a different quasiperiodic
model where one can observe the interplay between Anderson localization and non-
linearity; this model is a quasiperiodic version of the quartic Klein-Gordon (KG)
lattice.

The Hamiltonian of this model is given by

Hyg = % > [Iﬁ + Viuj + %U? + %(Ujﬂ —uy)?|, (5.29)
J

where u; and p; are the generalized coordinates and momenta on the site j and
V; = 1+ (1/2) cos(2maj + ¢). This Hamiltonian describes a set of classical cou-
pled oscillators. Each oscillator has a linear part with a frequency that changes
quasiperiodically along the lattice and a nonlinear part. The coupling between the
different oscillators is restricted to neighbouring sites. The energy associated with
lattice site j is

2 2 4 2 2
p;  Viui Ujr] — Uj Uj_1 — Uy
5j:5]+%+1]+(]+1w . +(]18>\ 2 (5.30)

The equations of motion are generated by 9%u;/0t> = —0H/du;, yielding

W = —Vjuj — uj + ﬁ(uj+1 + Uj—1 — 2u]-) . (531)

This set of equations conserve the total energy of the system H = Zj &; which
is a quantity that is strictly positive H > 0. Note that in the DNLS model the
conserved quantities are two, the norm of the wavepacket and the energy of the
system; this represents a significant difference between the two models. The Klein-
Gordon model has been extensively studied, since it can give a simple description of
the non-dissipative dynamics of anharmonic optical lattice vibrations in molecular
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crystals [150]. The total energy of the system H serves as a control parameter of
nonlinearity, analogous to /3 for the DNLS model.

The coefficient 1/(2A) in Eq. (5.29) is chosen so that the linear parts of the
Hamiltonians of the KG and of the DNLS model correspond to the same eigenvalue
problem. In fact, neglecting the nonlinear term and using u; = Ajweiw”t reduces
Eq. (5.31) to the Aubry-André model (5.2) with E, = 2A\(w?2 —1/A —1). As a
consequence the localization properties associated to the linear part of the KG model
are again those of the Aubry-André model, the parameter A represents the disorder
strength also in this case and the two energy scales associated to the linear spectrum
d and A are calculated in the same way.

For the Klein-Gordon model we measure the spreading of wavepackets by track-
ing the normalized energy density €; = £;/H which plays the same role of n; in the
DNLS case. All the quantities that we have used for the study of the spreading of
wavepackets within the DNLS model (w, 7, P, z) can be defined also for the KG
model simply by replacing n; with €.

For small amplitudes the equation of the KG chain can be approximately mapped
onto a DNLS model [151, 152, 153] using SN ~ 6AH where A is the norm of the
wavepacket within the DNLS model and in our case is set equal to one. Therefore
the nonlinear frequency shift within the KG model can be calculated from the small
amplitude mapping and is given by § ~ 6\E where £ is an average characteristic
energy associated to the initial wavepacket. Moreover, following this small amplitude
mapping, all the analytics that we have discussed in the previous sections can be
applied applied also to the KG model.

5.6.1 Numerical observations for the Klein Gordon model

Due to the existence of a mapping between KG and DNLS, we expect to observe
the same spreading regimes in the two models. This has been already proven in
purely random systems where the two models reveal similar qualitative results in
a wide range of parameters [126, 129, 130, 131, 132]. Despite this similarity, the
study of the KG model remains interesting for at least two reasons. On one hand,
it allows for testing the generality of the results in a case where there is just one
conserved quantity. This is highly nontrivial, especially for self-trapping, for which
the argument based on norm and energy conservation cannot be applied in the KG
model [123]. On the other hand, the KG model is advantageous from a numerical
point of view. The fact that there is just one conserved quantity results in two
orders of magnitude faster integration speed within the same integration error. For
the numerical integration we use again a symplectic integration scheme of the SABA
family [142, 129].

Similarly to what was done for the DNLS model, we initially set the compact
wavepackets to span a width L = 13 (unless otherwise stated) centered in the lattice,
such that each site has equal energy £ = £ = H/L. This is implemented by setting
initial momenta of p = +v/2€ with randomly assigned signs and zero coordinates.
The values of initial energy densities £ are chosen to give expected spreading regimes
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Figure 5.7: Numerical results obtained by integrating the KG equa-

tions of motion (5.31). The time evolution of (log;ow) (left panel,
top), ~ (right panel, top), (log,qP) (left panel, bottom), and (&) (right
panel, bottom) is shown wversus log,t. The parameters are {\,E} =

{2.5,0.005} ,{2.5,0.01},{2.5,0.055} ,{2.5,0.075} ,{2.5,1.0}. We wused an initial
wavepacket with width L = 13 for £ = 0.005, 0.01, 0.075, 1 and L = 11 for
E = 0.075. The width of the lines for the quantities (log;ow), (log,n P) and ~
represents the statistical error as in Fig. 5.4. In the top right panel the two dashed
lines correspond to theoretically predicted power laws v = 1/6 and v =1/4.

of asymptotic weak chaos, intermediate strong chaos, and dynamical crossover from
strong chaos to the slower weak chaos subdiffusive spreading [130].

The results of the time simulations are shown in Fig. 5.7, while the expected
spreading regimes are given in Fig. 5.2 (full upward triangles). As one can see by
comparing Fig. 5.7 with Fig. 5.4, the qualitative behaviour of the two models is
rather similar. After initial transients, which increase with decreasing nonlinearity,
all KG simulations reveal subdiffusive growth of the width w according to power law
w ~ t7 with v < 0.5. If self-trapping is avoided, all simulations show a similar sub-
diffusive behaviour for the participation number; moreover, the wavepackets remain
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compact as they spread, since the compactness index at the largest computational
times saturates around a constant value. For the two smallest values of initial en-
ergy density £ = 0.05 and £ = 0.01, the characteristics of the weak chaos regime
are observed, namely, the exponent ~ saturates around 1/6 (red and green curves in
Fig. 5.7) after a transient time. We stress that the only difference from the purely
random systems is the overshooting phenomenon at transient times. This effect is
an inherent property of quasiperiodic systems which inevitably manifests itself in
all spreading regimes, while in the disordered case it was shown to occur only in the
regime of self-trapping [131, 132].

For the two energy densities £ = 0.055 and 0.075 we suggest strong chaos,
with characteristics similar to the DNLS case. The simulation with £ = 0.055
(blue curves in Fig. 5.7) indeed exhibits the typical behaviour of the strong chaos
scenario: the characteristic exponent 7 increases up to predicted value 1/4 and
remains so for about two time decades, followed by a crossover with ~ decreasing
to the weak chaos dynamics. There is also another possibility for larger £ = 0.075,
when intermediate strong chaos is masked due to partial self-trapping (magenta
curves in Fig. 5.7). Thus, v shows values larger then 1/4 but still with subsequent
decay to slower subdiffusion. Here, we would like to strongly emphasize that none of
the simulations exhibit pronounced deviations from strong or weak chaos regimes of
spreading, i.e. long-lasting overshooting with v > 1/4, or significant slowing down
to values v < 1/6.

Finally, for £ = 1.0 the dynamics enters the self-trapping regime, as our theory
predicts. There, a major part of the initial wavepacket stays localized, while the
remainder spreads (yellow curves in Fig. 5.7). The participation number, therefore,
does not grow significantly and (log,, P) starts to level off at large times (Fig. 5.7,
left panel, bottom, yellow curve). In contrast, the small spreading portion yields a
continuous increase of the width w (Fig. 5.7, left panel, top, yellow curve), which
initially is characterized by large values of v > 1/4 (howbeit, for larger time =y
decreases). Consequently, the compactness index (£) (Fig. 5.7, right panel, bottom,
yellow curve) drops down to small values indicating deep self-trapping regime. Note
that a similar behaviour has been observed before in purely random systems [131,
132]. Unusually large values of v can be explained by local trapping-detrapping
processes in the evolving wavepacket. The corresponding dynamics is in strong
non-equilibrium and its theoretical description has yet to be developed.

The results discussed in this section reveal that the evolution of wavepackets in
the KG model can be interpreted in terms of the spreading regimes discussed in
section 5.3 and show the generality of our theoretical interpretation.



CHAPTER 6
Delocalization phenomena in 1D
models with correlated disorder

Interference effects induced by random potentials deeply modify the transport prop-
erties of quantum particles and can lead to a very surprising effect: a complete
absence of diffusion [1]. As we have seen in chapter 2, the onset of localization
crucially depends on the dimensionality of the system [7]. In particular it is known
that Anderson localization always occurs in one and two dimensions, no matter how
weak is the disorder, while in three dimensions localization takes place depending
on the disorder strength and on the energy of the particle. In particular in 1D the
effect of disorder is known to be the strongest and several proofs of localization have
been given [4, 5, 53].

These statements are true as long as the disordered is uncorrelated. A natural
question is to what extent these results still holds if the uncorrelation condition is
relaxed. This is the main topic of this chapter.

In nature, strictly speaking, uncorrelated disorder does not exist, and this is
why this topic attracted a lot of attention in the last decades [30]. Very often the
potential is assumed to be uncorrelated because mathematical proofs are much easier
in this case. In some contexts, like condensed matter physics, the replacement of
the real potential with an uncorrelated one is not the strongest approximation and
therefore is somehow justified. In some other cases this replacement represents a
good approximation since one is interested only in waves with a typical wavelength
larger than the correlation length of the potential [39]. However there are also
situations where the role of correlations can be relevant. For instance experimental
evidences of delocalization effects produced by correlations have been detected in
semiconductor superlattices [154] or using microwaves propagating in disordered
waveguides [155].

Effects of correlations are also observable with ultracold atoms. On the one
hand bichromatic optical lattices provide a realization of a quasiperiodic system
which exhibits a transition from extended to localized states already in 1D; this
systems represent a limiting case where the potential is not random and correlations
do not decay in space [25]. On the other hand, remaining in the context of non-
deterministic random systems, experiments in speckle potentials show the existence
of states whose localization length is significantly enhanced by correlations [156, 24].

From the theoretical side great attention has been given to the role played by
correlations in the determination of the localization properties of 1D systems. It is
well established that quasiperiodic systems can exhibit localized or extended states
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depending on the parameters of the potential (cfr. chapter 3). As regards truly
random one dimensional systems, instead, the fact that correlations have a delocal-
ization effect is widely accepted, though the presence of a band of metallic states
and of a mobility edge introduced by correlations is still an open problem.

The first evidences of extended states in 1D systems were found in modified
versions of the Anderson model [157, 158]. These papers considered on-site energies
such to form dimeric structures which present no backscattering for certain resonant
modes. This leads to a discrete set of extended/metallic states but not to a true
mobility edge, since an entire band of extended states is missing. Nevertheless
correlations have a strong effect on the transport properties of the system and induce
a superdiffusive spreading of initially confined wavepackets. Among these models
the most well known examples are the random dimer model and its dual counterpart
[158, 159]. They are characterized by random potentials with short-range spatial
correlations: the two point correlation function, C(¢), decays exponentially on a
typical length ¢ with 7/ kmaz < (< L, L being the system size and k4, the largest
wavevector allowed by the system.

The role played by correlations has been extensively studied also for disordered
potentials that present a spectral function S(k), which is the Fourier transform of
C(¢), that vanishes in a finite k-region. It was initially claimed that these kind of
potentials might give rise to bands of extended states in 1D [160], but later it has
been recognized that those states are not really extended; they exhibit an abrupt
increase of the localization length mimicking the presence of a mobility edge in
finite-size systems [161]. This is, for instance, the case of speckle potentials [162, 47]
that we mentioned before.

Another interesting class of disordered potentials are those which exhibit long
range correlations. In this case both C'(¢) and S(k) are nonzero over the whole real
and k space. There are no length scales characterizing the disorder and typically
the correlation function is assumed to decay as a power law C(¢) o« £, In this
case, it has been observed that correlations can have different effects depending on
the region of the spectrum under consideration. In particular, for discrete models,
a reduction of the localization length has been observed at the band edges while
an enhancement has been reported at the band center [163]. In this context also
the presence of mobility edges has been claimed [164], although these results stirred
some controversy [165, 166].

Finally, let us mention that the presence of a mobility edge in 1D has been
recently reported for deterministic non-quasiperiodic potentials [167].

Very often, especially in the case of long range correlations, these studies re-
lies on toy models characterized by ad-hoc correlation functions, creating almost no
connection with possible experimental implementations. In this chapter we propose
a physical model for a random potential where long-range and short-range correla-
tions arise naturally from the system itself and which is also realizable using dipolar
ultracold gases.

The model considers a series of dipoles pinned at random positions in the min-
ima of a deep optical lattice. Due to the repulsive interactions among these dipoles
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Figure 6.1: Schematic representation of the physical model. A set of dipoles (green
spheres) are trapped at random positions in the minima of a deep optical lattice and
play the role of impurities. One test dipole (red sphere) is excited to another internal
level and feels a shallower external potential. The test dipole can tunnel through the
lattice subject to the random potential originating from the dipolar interaction with
the impurities.

there will be a correlation in the way in which they are positioned in the lattice and
in particular they will have the tendency to sit far away from each other. This set of
trapped dipoles, referred as impurities, is assumed to create a disordered potential
for another dipole, the test dipole, which is excited to another internal level and is
assumed to be free to move through the lattice (see Fig. 6.1). Short range correla-
tions arises from the distribution of the impurities, while long range correlations are
due to the dipolar interaction between the test dipole and the impurities.

In the following we study the localization properties of the test dipole in the
correlated potential realized by the impurities, highlighting the role played by short
and range correlations. In particular, as the parameters of the model are changed,
we observe that short range correlations can introduce a discrete set of extended
states in the system, while long range correlations tend to restore localization and
lead to counterintuitive effects on the localization length of the system.

The chapter is organized as follows. First of all in section 6.1 we give a brief intro-
duction on the dipole-dipole interaction. The model is presented in detail in section
6.2 and the Hamiltonian describing the properties of the test dipole is derived. In
section 6.3 we characterize the statistical properties of the random potential formed
by the impurities. Then, in section 6.4 we study the localization properties of the
model by using a renormalization-decimation scheme for the calculation of the lo-
calization length. Finally a detailed discussion of the role played by short and long
correlations is presented in section 6.5.

6.1 Dipolar interaction

Let us consider two particles with dipole moments pointing in the directions identi-
fied by the two unit vectors €; and é; and whose relative position is . The potential
energy associated to the dipole-dipole interaction between the two particles is given
by

Aqa (€1 - &)|F]> = 3(é1 - 7)(& - 7)
4m |75 ’

Uaa(F) = (6.1)
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Figure 6.2: Interaction between polarized dipoles (a). Two polarized dipoles placed
side by side repel each other (b) while dipoles in a “head to tail” configuration attract
each other (c). Figure taken from ref. [168].

where the coupling constant Ay, quantifies the strength of the dipolar interaction
and is given by different expressions depending on the physical origin of the dipole
force. For particles having a permanent magnetic moment, pu, the coupling constant
Agq is pop?, where g is the permeability of vacuum; for particles having a perma-
nent electric dipole moment, p, Agq is given by p?/eg, where €q is the permittivity
of vacuum. For a polarized sample, where all dipoles point in the same direction,
the dipolar interaction takes a simpler form [168]:
_ Aga 1 — 30082(@)

Uaa(r) = EER (6.2)

where © is the angle between the relative position ¥ and the dipole orientation
(Fig. 6.2). The main property of the dipole-dipole interaction is yo be long range
and anisotropic. The long range character of the interaction is due to the fact
that it decreases with the cube of the distance Ugq ~ 1/|7]>. The anisotropy is
instead given by its angular dependence. As © is varied from 0 to 7/2 the function
(1 - 30082(6)) changes sign and the dipole-dipole interaction changes from positive
to repulsive. In Fig. 6.2 we show the two limiting situations of particles sitting side
by side where the interaction is maximally repulsive (b) and of dipoles in a “head-to-
tail” configuration where the interaction is maximally attractive (c). For the special
value ©); = arccos(1/y/3) ~ 54.7°, the so-called “magic-angle”, the dipole-dipole
interaction vanishes.

There are several candidates to experimentally realize a dipolar quantum gas:
molecules having a permanent electric dipole moment p, Rydberg atoms, which
can have very large induced electric dipole moments, or ground state atoms having
a large magnetic moment p [169]. So far quantum degeneracy has been reached
only in the last case with three different atomic species: Chromium (u = 6up,
where pp is the Bohr magneton), Dysprosium (u = 10ug) and Erbium (g = 7ug).
Chromium was condensed in 2005 [170] and, since then, it allowed for the first
experimental investigations of the unique properties of dipolar quantum gases [171,
169]. More recently a Bose-Einstein condensate [172] and a degenerate Fermi gas
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[173] of Dysprosium have been produced. The last species that has been condensed
is Erbium [174].

6.2 The physical model

Let us consider a very dilute ultracold dipolar gas in a deep one dimensional optical
lattice, which forbids tunneling between sites. The gas feels also the presence of a
strong harmonic confinement placed in the directions perpendicular to the lattice
that reduces the effective dimensionality of the system to 1D.

We assume that the dipoles are trapped at random positions at the minima of
the lattice and that they are polarized perpendicularly with respect to the lattice
axis, so that dipole-dipole interaction is repulsive. In this way, for small densities
and large dipole-dipole interaction, there are no double occupancies, and moreover
we can assume that the dipoles will occupy sites far away from each other. In
particular the interaction is taken to be strong enough so that each dipole has to be
preceded and followed by at least two empty sites. In the following we refer to this
set of trapped dipoles as impurities.

One dipole, that we refer to as the test dipole, is excited to another internal state,
so that, unlike the impurities [50, 51], it feels a shallower optical lattice and it is free
to hop between different sites. In this situation we can describe the test dipole as a
single particle that feels the presence of a random potential that originates from the
dipolar interaction with the impurities pinned in the lattice. This random potential
is characterized by the presence of both short range and long range correlations and
its statistical properties will be characterized in detail in section 6.3. The physical
model that we have just described is schematically represented in Fig. 6.1.

Assuming that the motion of the dipolar impurities is frozen and that the radial
confinement is so strong that all the atoms lie in the lowest level of the radial
harmonic trap, the motion of the test particle of mass m along the lattice axis z can
be described using the following Hamiltonian

h? 09?2 . 9
H = 9 9.2 + s(ryErsin®(kz) + Va(2), (6.3)
where k = 27/) is the wavenumber of the laser generating the optical lattice of
spacing d = \/2, Ep = h?k?/2m is the recoil energy and (1) 1s the dimensionless
lattice strength felt by the test particle. The potential Vj(z) represents the ran-
dom potential resulting from the dipolar interaction of the test particle with the
impurities trapped in the lattice and it can be written as follows

Vi(z) = /dz’p(z')Ujé)(z - 2. (6.4)

Here we have introduced the function p(z) which describes the density distribution
of the impurities along the z direction. The potential U}P(2) is the effective one
dimensional dipolar interaction obtained after integration of the dipolar interaction
in the radial direction. In our model we do not include contact interactions, with
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the underlying idea that they can be switched off by exploiting Feshbach resonances
[168, 175, 169]. The density function p(z) can be calculated assuming that in the
z direction each impurity occupies a Wannier state w'/)(z) and therefore the full
density is given by a sum of Wannier functions localized around the sites occupied
by the impurities, that we label with :

p(z) = Jw(z—ld)P. (6.5)
U

The Wannier states of the impurities are calculated imposing that they feel an optical
lattice which is much deeper than the one felt by the test particle sy >> s(7).
The effective one dimensional potential U, C%Cll) (z) is obtained assuming that both
the test particle and the impurities occupy the lowest radial state of the harmonic
confinement

1 h
¢w(7:l) = \/E—O_e_ri/zo-‘% Wlth Oy = m (66)
w

and is given by the following expression
Ugi (2) = /dﬁidﬂl%m (7 1) Pl yery (L) Uga(F = 17). (6.7)

where w) and w(™) are the frequencies of the radial harmonic trapping felt by the
impurities and by the test dipole respectively. Solving the integral in Eq. (6.7) one
obtains [176]

122 z z z ( ' )
{2t

where 0| = \/(02(1) + O'Z(T))/Q, a is the angle between the direction of the dipole

and the z axis, that in our case is equal to w/2, and Erfc(z) is the complementary
error function

Erfe(z) = % /OO e dt. (6.9)

Note that Ujé)(z) is composed by two parts: a Dirac delta term that is strongly
peaked around z = 0 and a slowly decaying part formed by the second and the
third term. One can show that at large distances |z| > o the slowly decaying part
reproduces the typical behaviour of a dipolar interaction, namely it decreases with
the cube of distance U}P(2) ~ Agq(1 — 3cos® a)/|z[3.

A tight binding form of Hamiltonian (6.3) is obtained by using a set of Wan-
nier states wy,(z) as a basis for the states of the test particle (see appendix A for
an introduction on Wannier functions) and by following a discretization procedure
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similar to the one illustrated in section 3.1. For the case of a single dipolar impurity
pinned at site [ the Hamiltonian of the test particle is

Hqy=- JZ(‘ Wy ) (W1 | + | Wng1)(wy, |)

— JU(Lw)(wpe |+ [ wie) (wy )+ ul®y [ ws) (wy, |- (6.10)

In Eq. (6.10) we have included the standard nearest neighbour tunneling term .J
(cfr. Eq (3.6) of section 3.1) and two contributions due to the dipolar interaction;
the first represents a nearest neighbour dipolar assisted hopping J¢, the second is
the on-site energy ufi ; at site n. They can be calculated as follows

n? d?
J=- /w,’;(z) [—%@ + sEpsin®(kz) | wpi1(2) dz,

Jl= —/ wl(z)wlﬂ(z)]wl(l)(z')]QUéf(z -2 dzd?, (6.11)

Note that the function ud? can be interpreted as the dipolar interaction between a
single impurity and the test particle in the discretized formalism. In fact the on-site
energy simply depends on the distance |n — I| between the test particle and the
impurity.

In Fig. 6.3 we show the behaviour of the quantities & = (J +J%)/J and \,_; =
uld,/J for n — 1| = 0,1,2 as a function of o for the case of Agy = 0.497%)\/m,
s(ry = 6 and s(;) = 30. This value of Agq corresponds to the dipolar moment of
Dysprosium atoms trapped in an optical lattice generated by a laser of wavelength
A =570 nm.

We note that, for this choice of parameters, we can reasonably set # = 1 (J¢ = 0)
and the on site energies for |n — [| > 2 can be approximated with the asymptotic
expression A\, ; = A/|n — 1|3 with A = (Agq/Jd?). They are therefore independent
on the value of 0. Also A1 does not depend significantly on the radial confinement.
Conversely the value of Ay strongly depends on ¢, and it can even vanish and
become negative. This is due to the fact that the dipolar interaction changes sign
depending on the relative position of the two dipoles and therefore the integral for
the calculation of ugd has both positive and negative contributions.

In presence of several, randomly placed impurities the on-site energies have to
be calculated summing over all the different contributions. The on-site energies are

en = ul =" pui, (6.12)
I !

where the index in the first summation, [, runs only over the sites occupied by an

therefore given by

impurity. This summation can be conveniently rewritten by summing over all sites



Chapter 6. Delocalization phenomena in 1D models with correlated

90 disorder
2 @ | iIE) ' O ]
15}t -
£
5 1k 8. -
12]
'c
S 05 ]
c M
~ N
8 | \ )\2 |
o
o -05F .
D
1t )‘0 ]
'1.5 [ 1 L L L L ]
0.5 0.6 0.7 0.8 0.9 1
20/A

Figure 6.3: Site energies Ao, A1 and Ao, and hopping energy 0 as function of o
in units of A/ (2m), for the dipolar coupling of Dysprosium atoms corresponding to
Agqg = 0.49 x R2\/m, A = 570, siry = 6, sy = 30 and o = /2. The colored
vertical lines labelled by different letters represent the set of values that we used for
the calculation of the localization properties of the system.

and introducing a discretized impurity density p;, which is equal to 1 for occupied
sites and 0 otherwise. The final Hamiltonian takes the following form

H = _JZ (| wn)(wnt1 | + | wps1)(wn |) +Z€n | wy) (wn | - (6.13)

6.3 Statistical properties of the random potential

We characterize the random potential generated by the dipolar impurities by calcu-
lating its average value (g,,) and the two point correlation function C¢(¢) = (enepnte).
To start with, let us study separately the properties of the density p, and of the
dipolar interaction ud?.

The density p, is a stochastic variable and we can introduce its average value
and the two point correlation function:

(pn) =C (6.14)
<pnpn+€> - Cp(g) (6'15)

where C defines the impurity concentration. Note that, if we impose that the mini-
mum distance between impurities is two sites, then the maximum value allowed for
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the concentration is C = 1/3. We can also introduce two quantities associated to
the shape of the interaction potential between the test dipole and a single impurity,

udd,

uld = "l (6.16)
n

Cu(l) = 3wttt (6.17)

which can be thought as an average value and a two point correlation function.
The statistical properties of the full potential can be derived from those of p,
and from the shape of ugd. In particular one can prove that

(g)) = Cud (6.18)
Call) = 3 Coll = HCuly). (6.19)

Therefore the average value of the full potential is simply given by the product of
the impurity concentration and the average value of the interaction potential 7gg,
while the two point correlation function is given by the convolution of C,(¢) and
C,(€). For the full potential let us also introduce the reduced correlation function,
defined as < ) (e?
El€1+¢) — \&I
ce(0) &) — () (6.20)

and the associated spectral density

S(k) = c()e™. (6.21)

14

In the following we will use the square root of the variance of the full potential to
quantify the potential strength W = /(e2) — (g,,)2.

For our specific case, where the random impurities have a minimum distance
which is equal to two sites, the quantity C,(¢) satisfies the following recursive rela-

tion:
1

=1l
Solving this equation with the assumption that C,(0) = C, C,(1) = 0, Cp(2) =0
one obtains

C,( CCL(0—3) + (1 —3C)CH(L — 1)]. (6.22)

C
1-2C

02
C,(l) =C*+ < > [Acos(kl) + Bsin(kl)], (6.23)
with
Kk = m — atan ( (4-— 9C)/C)
A=C-C? (6.24)
B = —[\/C3(1 —2C) + (C — C?) cos(k)]/ sin(k).
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Eq. (6.23) represents an oscillating function whose envelope decays exponentially.
For large values of £ it tends to the value which is expected for uncorrelated sites,
ie., C2.

As regards C(¢), its form depends on the specific parameters of the system.
However, as a general result, by approximating the sum in (6.17) with an integral,
one can show that at large distances its behaviour is determined by the typical
shape of the dipolar interaction, i.e., C,(¢) decays with the cube of the distance,
limy oo Cyu(€) oc 1/63.

Thus we can conclude that the impurity distribution introduces short-range cor-
relations, while the shape of the interaction ul is responsible for long-range corre-

lations. The role and the competition between these two effects will be extensively
discussed in the next sections.

6.4 Nature of the spectrum

We study the nature of the test dipole spectrum by evaluating the Lyapunov ex-
ponent A(FE), which is equal to the inverse of the localization length Lj,.(F), by
means of a renormalization-decimation scheme (see appendix B for an introduction
on the method). The method allows us to reduce the original system composed
by N lattice sites to an effective dimer composed by just two sites. This is done
with a renormalization procedure that removes one site of the chain and describes
the remaining sites with an effective Hamiltonian. A recursive application of this
renormalization procedure permits to remove all the internal sites of the chain and
to describe the whole system with a single dimer formed by the first and the last
site of the chain, with on-site energies that we indicate with &; and &y, and the
relative effective hopping between those two sites jl, N-
The Lyapunov exponent can be calculated as

ME) = e ) = Jim 5o | G2 (6.25)
— — lim iln‘jLN(E)‘, (6.26)

N—oco N

where G(E) = (E — H)~! is the Green’s function associated to H at energy E, and
Gi;(E) = (i|G(E)|j) are the corresponding matrix elements. The first expression
for A(E) is a general expression [58], while the second one, which gives a direct con-
nection between the effective hopping amplitude jl, ~ and the Lyapunov exponent,
applies within the renormalization-decimation approach [177].

The results for the localization length Lj,.(E) of our model, obtained with a
numerical implementation of the renormalization-decimation approach, are shown
in the top row of Fig. 6.4. We consider increasing values of o, corresponding to
the vertical lines in Fig. 6.3 (we use a color code among figures and moreover corre-
sponding simulations are labelled by the same letters (a), (b), (¢) and (d)). Here and
in the following we fix C = 1/4, average over 100 configurations and consider system
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Reflection coefficient

Figure 6.4: Top panel: localization length L. in units of the lattice spacing d as

a function of the energy in units of J for Hamiltonian (6.13). The black dotted lines
correspond to the localization length calculated in Born approximation Ll(zz Bottom
panel: reflection coefficient R of the single impurity as functions of the energy in
units of J. The vertical dashed lines indicates the energies for which the reflection
coefficient vanishes R(E) = 0. From left to right, different plots refers to increasing

values of o, corresponding to the vertical lines in Fig. 6.5.

sizes up to 107. As the value of ¢ is increased we observe very different localization
regimes. Notably for certain values of o we observe divergences of the localization
length, corresponding to the appearance of metallic states in the spectrum. This
suggests the presence of delocalization effects induced by the correlations of the
physical model under consideration.

More precisely, for large positive values of \g all states are clearly localized
since the localization length is always finite (first panel, (a)). By increasing o , for
vanishing values of )y the localization length exhibits two well defined peaks in two
regions of the spectrum (second panel, (b)). Increasing o, further, corresponding to
negative values of \g, we observe the disappearance first of one of the two divergences
(third panel, (c)), and then of both of them (fourth panel, (d)). In this last panel
no divergences of the localization length are observed but there are still peaks at

the band edges, that recall the diverging behaviour previously observed.
(2)

o €valuated in

The dotted black lines correspond to the localization length L



Chapter 6. Delocalization phenomena in 1D models with correlated
94 disorder

Born approximation, which corresponds to a second order perturbative calculation
in the disorder strength [178, 160, 30]. This calculation gives a direct connection
between the spectral function S(k) and the Lyapunov exponent

@), W2 S (2K(E))
ACN(E) = [L;,)(E)] l—ﬁm

loc

(6.27)

where the connection between k(E) and the energy is given by the following re-
lation E = (g,) + 2J cos(k). Let us note that the Born approximation gives, by
construction, a symmetric localization length around the average value of the disor-
der (e,,). In fact the spectral density S(k) associated to c(¢) is always a symmetric
function of k. Despite this fact, there is a noticeable agreement between the Born
approximation and the exact numerical results.

6.5 Role of correlations

With the aim to understand why we are observing the appearance and the disap-
pearance of metallic states in the spectrum by varying the radial confinement (and
thus the 1D dipolar interaction) we analyse separately the effects due to short-range
correlations and long-range correlations.

6.5.1 Short range correlations

In order to isolate the role of short range correlations in our model, we calculate the
reflection coefficient for the case of a single impurity as in Eq. (6.10) and moreover
we neglect the on-site contributions beyond nearest neighbour. Therefore we assume
that a single dipolar impurity modifies just a trimer of on-site energies {A1, Ao, A1}
and moreover we generally assume that it can modify also the hopping with nearest
neighbouring sites 6.

In general, the transport properties of a system of N sites described by an
Hamiltonian H are obtained by embedding it in an infinite perfect lattice with on-
site energies € and hopping energies J (see appendix B for details). This leads to a
new extended Hamiltonian that we call H.y;. The scattering of an incoming wave
|g) with energy E = ¢ + 2.J cos(q) results in a reflection amplitude r that can be
expressed as

r=GY Tii+ G Ty + Gy NTiy + GY T et 201, (6.28)
T being the scattering matrix defined by
T-H (1-6"H)", (6.29)

with H! = Heyy — HY, HY = 3" —J(| wp){wpi1 | + | wns1)(wy |) and GO is the
Green’s function associated to H°. From an operational point of view, since we need
to know the matrix elements of the scattering matrix 7" in the subspace £ = {1, N},
we use again the renormalization procedure to evaluate them. One has to apply the
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renormalization-decimation approach separately on H,y; and H? and then calculate
the renormalized H'! subtracting the two. Therefore one reduces to the calculation
of the reflection and transmission properties of an effective dimer.

In our specific case we are considering a single dipolar impurity and we assume it
modifies just the on-site energy, the nearest neighbouring energies and the tunneling
with the nearest neighbours. We have therefore a system of size N = 3 and we can
reduce to an effective dimer with just one iteration of the renormalization procedure
and this can be done analytically.

Applying the renormalization-decimation scheme and using Eq. (6.28) one ob-
tains the following analytical formula for the reflection coefficient R = |r|? of the
single dipolar impurity

R = 5T
(6.30)
In the bottom row of Fig. 6.4 we plot R = |r|? for the same parameters used
for the calculation of the localization length, i.e. 8 = 1 and Ay and A taken from
the curves in Fig. 6.3. We observe that the calculation of the reflection coefficient
of the single impurity provides a very good understanding of the behaviour of the
localization length: the energies where R tends to zero are exactly those where
the localization length exhibits very large anomalous values. There is therefore a
direct connection between the appearance of metallic states in the spectrum and
the scattering properties of the single impurity. It has been previously shown by
Dunlap et al. [158] that this kind of single impurity analysis can be used to interpret
the transport properties of a system of size N where there are several randomly
placed impurities. More precisely they proved that in such systems the number
of single-particle states that show a metallic behaviour, being extended over the
full system, is of the order of v/N. Notably this number of delocalized states is
large enough to induce transport in the system and initially localized wavepackets
show a superdiffusive spreading in the disordered potential. This means that this
type of extended states are detectable in typical expansion experiments that can be
performed with ultracold atomic gases [24, 25].
It is remarkable that making use of the simple analytical expression (6.30) we can
predict the localization properties of a rather complex system and the occurrence of
metallic states in the spectrum. Studying the solutions of the equation

R(E) =0 (6.31)

as a function of A\g and Aj, one can extract the “phase” diagram in Fig. 6.5. We
identify four different regions in the diagram depending on the number of solutions of
Eq. (6.31) and on their values. More precisely, if the solutions are both imaginary, no
divergences are expected and all the states are exponentially localized (red region).
If the solutions are real divergences are expected, but we need to check whether they
are inside or outside the single impurity spectrum E = 2.J cos(q). In other words,
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Figure 6.5: “Phase” diagram induced by short range correlations extracted from
the reflection coefficient, Eq. (6.30), for the single impurity case. Different colours
correspond to different localization regimes obtained from the solution of Eq. (6.31).
No real solutions of Eq. (6.31) correspond to the red region. If Eq. (6.31) has real
solutions we can distinguish three cases: no solutions are in the single particle spec-
trum (yellow region), one solution is in the spectrum (green region), two solutions
are in the spectrum (blue region). The four points in the diagram correspond to the
simulations presented in Fig. 6.4 and to the values of o indicated by vertical lines
mn Fig. 6.3.

one observes real divergences only when the roots satisfy the additional condition
|E| < 2J. Therefore, when the solutions are real, we can identify three additional
scenarios: both solutions lie outside the spectrum (yellow region), one lies inside and
one outside the spectrum (green region), both lie inside the spectrum (blue region).

In the diagram we also identify with points the values of A\g and A; corresponding
to the different plots of Fig. 6.4. In Fig. 6.4 the dashed vertical lines mark the
energies which verify the condition R(E) = 0. In particular the square in the red
region (a) of Fig. 6.5 corresponds to the first plot of Fig. 6.4 where all states are
localized; the circle in the blue region corresponds to the second plot (b) where we
observe two resonances; the triangle in the green region (c) corresponds to the third
plot where we observe one resonance; and the diamond in the yellow region (d)
corresponds to the last plot where there are no resonances but the peak on the right
shows a tendency to diverge due to the fact that the resonance lies just outside the
single impurity spectrum.
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Let us recall that, in our single impurity analysis, we considered the case where
one isolated dipole induces just a trimer of site energies { A1, Ao, A1 } and we neglected
beyond nearest neighbour contributions. In other words, we neglected the effect of
long range correlations. Nonetheless the single impurity analysis describes very well
the position of the resonances calculated with numerical simulations that account
for the full dipolar interaction.

In the next section we study in detail the role played by the dipolar tails that
we neglected in this simplified calculation and we highlight the role played by long
range correlations.

6.5.2 Long range correlations

In order to understand the role played by long range correlations and place the
dipolar case in a wider context, we investigate the localization properties of a set
of disordered potentials generated by impurities that interact with the test particle
with an effective interaction with tails decaying as ub ~ 1 /In|? where 8 > 1.

This is done placing the impurities exactly as done in the dipolar case, keeping
fixed the values of Ag and A; and choosing A, = ub /J = A/|n|? for n > 2. The case
B=3(ul = uﬁd) recovers our physical model with dipolar interactions. Moreover,
once we created the potential with this procedure, we shift and normalize the on-site
energies in order to obtain the same average value (g,) and disorder strength W
that we had in the dipolar case. Following this procedure we can really analyze the
effect of long range correlations keeping fixed the disorder strength W. In particular
we considered values of 3 ranging from 1 up to 5 and we also considered the case of
(8 = oo that corresponds to A\, = 0 for n > 2.

The potential generated with this procedure has C,(¢) which is unchanged and
decays exponentially as previously discussed. This is due to the fact that the im-
purities are placed exactly in the same way as before. The correlation function as-
sociated to the interaction potential C\,(¢) is instead modified and using Eq. (6.17)
one can show that it decays at large distances as C,(£) ~ 1/¢5 for 3 > 1 and as
Cyu(0) ~log(f)/l for B = 1. This asymptotic expression determines also the shape
of the tails of the reduced correlation function associated to the full potential ¢ (¢).

The effects played by long range correlations are again studied by calculating
numerically the localization length with the renormalization-decimation approach.
In Fig. 6.6 we show the localization length L;,. calculated for different values of 3.
In particular we show a comparison between the two limiting cases of § = oo and
B =1 and the physical case under consideration, i.e. the dipolar case § = 3. We
considered also other values of 8 but we do not show the results here since they are
not particularly instructive. They just show an intermediate behaviour between the
two limiting cases reported here.

The two panels in Fig. 6.6 correspond to two different set of parameters taken
from Fig. 6.3, in the left panel we considered the case where the localization length
is always finite while in the right panel the case where there are two resonances in
the spectrum. Therefore the two curves for 8 = 3 are exactly the same curves which
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Figure 6.6: Localization length L. in units of lattice spacing as a function of the
energy in units of J for different type of long range correlations identified by the
asymptotic decay of the tails of the two point correlation function C(£) ~ 1/05. The
two different panels correspond to two different localization regimes induced by short
range correlations (see text for more details).

are shown in the upper row of Fig. 6.4 and those are compared with the case of
complete absence of long range correlations (f = oo) and the case of very slowly
decaying correlations (8 = 1).

There are two main features of Fig. 6.6 that we would like to discuss here. The
first is the effect introduced by long range correlations on the divergences that we
have discussed in the previous section. We observe that they tend to be beveled.
In fact in the 8 = oo case the localization length takes values of the order of the
system size N = 107 signalling the presence of real metallic states in the system
which extend over the full lattice. As the value of 3 is decreased the peaks in the
localization length are still there but their height is decreased and they are shifted
towards the band edges. This behaviour is somehow expected, since the perfect
resonance condition, obtained with the single impurity calculation presented in the
previous section, was neglecting the slowly decaying tails. When those tails are
taken into account they tend to restore interference effects in the scattering process
and reintroduce localization in the system. However, let us stress that the effect
of the short range correlations remain clearly visible also in presence of long range
correlations.
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The second feature that we would like to highlight is the counterintuitive be-
haviour of L;,. introduced by long range correlations at the center of the band. In
fact depending on the set of parameters under consideration long range correlations
have an opposite effect on the localization length. In the left panel they introduce a
decrease of the localization length while in the right panel they have the tendency to
enhance it. This observation shows the highly nontrivial role played by long range
correlations in determining the localization properties of a disordered system and
indicates a richer behaviour with respect to what has been observed so far in the
literature [163].

These features that we extracted from the numerical simulations reported in
Fig. 6.6 are also captured within the Born approximation. We do not report the
curves for Ll(ig calculated in Born approximation, we just comment that the agree-
ment between those curves and the exact numerical results is good, similar to what
observed in Fig. 6.4.

Finally we would like to comment that we do not find the presence of mobility
edges induced by long range correlations as suggested in [164, 167].






CHAPTER 7

Conclusions

The observation of Anderson localization in ultracold atomic gases [24, 25| repre-
sented a turning point for the study of disordered quantum systems and provided
the route for tackling a number of open questions of the theory of localization.

Stimulated by this remarkable result, in this thesis we have investigated the
properties of a Bose gas in presence of quasiperiodic and random potentials. Special
focus has been given to the interplay between localization and interaction and to the
delocalization effects induced by the correlations of the disorder. The main results
of this work are the following.

In chapter 3 we introduced quasiperiodic potentials and their implementation
with bichomatic optical lattices acting on a gas of noninteracting particles. We clar-
ified the connection of this physical problem with the discrete Aubry-André model
and reviewed its localization properties showing that a transition from extended
to localized states occurs already in one dimension at a critical disorder strength.
One of the main goals was to fill the gap between the well known properties of the
Aubry-André model and what can be actually observed in realistic experiments with
ultracold gases. As a first step in this direction, we studied the diffusion of noninter-
acting wavepackets in a commensurate (periodic) lattice and we compared it with
the case of an incommensurate (quasiperiodic) lattice. We showed that the spatial
periodicity of the commensurate lattice plays a key role in determining the type of
approach to the quasiperiodic limit in a sequence of commensurate approximants.
This part of our analysis confirmed that the transition from diffusion to localization
observed in Ref. [25] can correctly be interpreted in terms of the predictions of the
Aubry-André model. As a second step we considered the properties of the same
model but in momentum space. We showed the occurrence of interesting periodic
oscillations in the time evolution of the momentum distribution of an expanding
wavepacket. We numerically calculated the frequency and visibility of these oscilla-
tions and we introduced a simple few-mode approximation that gives a consistent
interpretations of this behavior. Our analysis suggests that the oscillations of the
central and side peaks in the momentum distribution can be used efficiently to probe
the transition from diffusion to localization in the Aubry-André model. Our results
are relevant for feasible experiments with ultracold atoms, where the momentum
distribution can be detected with good resolution by performing time-of-flight mea-
surements.

In chapters 4 and 5 we considered a weakly interacting Bose gas in a bichromatic
optical lattice and dealt with the problem of the interplay between disorder induced
localization and delocalization caused by repulsive interactions. In chapter 4 we
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introduced the method which is used to study the expansion of an initially localized
wavepacket, namely a discrete nonlinear Schrodinger equation which generalizes
the Aubry-André model by introducing the interaction at the mean-field level. We
numerically simulated the dynamics of matter waves starting from either a d-function
localized in a single lattice site or a Gaussian wavepacket. In the former case, we
found that the dynamics is dominated by self-trapping processes in a wide range of
parameters even for weak interaction. Conversely, in the latter case, self-trapping
is significantly suppressed and the destruction of localization by interaction is more
easily observable. In particular, we found that Gaussian wavepackets, which remain
localized for noninteracting particles, start to spread subdiffusively (i.e., the width of
the wavepacket grows as w(t) ~ t7 with v < 0.5) in the presence of interaction. We
also compared the results extracted from our theoretical model with an experimental
study performed in Florence [33] that considers the expansion of a Bose-Einstein
condensate with tunable interactions in a bichromatic optical lattice. Notably, a
destructive effects of interactions on localization is observed also experimentally.
The measured values of the spreading exponent v indicate a subdiffusive expansion
of the cloud, consistently with our numerical observations. The values of v observed
both in the numerical and experimental data show a clear deviation from those
obtained for random systems and, in particular, larger values of v are detected in
the quasiperiodic case, indicating a nontrivial role played by the correlations of the
potential.

In chapter 5 we focused on the phenomenon of destruction of localization in
quasiperiodic systems and we characterized in detail the subdiffusive spreading for
large asymptotic times. We gave particular attention to the comparison with the
random case. We interpreted the spreading process in terms of resonances in the
mode-mode coupling. In particular, by comparing the frequency shift induced by
the interaction (nonlinearity) with the energy scales extracted from the spectrum of
the underlying noninteracting (linear) system, we predicted the occurrence of three
different spreading regimes. In addition to the regime of self-trapping, we identi-
fied the regimes of strong chaos and weak chaos. We also predicted the spreading
exponents v = 1/6, for weak chaos, and v = 1/4, for strong chaos. We performed
numerical simulations which last for much longer times than the simulations pre-
sented in the previous chapter 4, and we averaged our results over many realizations.
This gave us the possibility to accurately calculate the spreading exponent v and
observe the weak chaos regime. A key difference with respect to random systems is
the occurrence of transient overshooting regimes that we interpreted as due to the
peculiar structure of the linear spectrum of the quasiperiodic system, which is sep-
arated into mini-bands. These mini-bands are responsible for peculiar mechanisms
of partial self-trapping. Signatures of strong chaos have also been observed, but
the temporal overlap of strong chaos and partial self-trapping makes the analysis
of the spreading more complex than for random systems. We also verified that our
main results do not depend on the details of the shape of the initial wavepacket.
This suggests that the nonlinear frequency shift is the only parameter that controls
the dynamics. Finally we compared the results obtained with the discrete nonlinear
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Schrodinger equation with those obtained with a quasiperiodic version of the quartic
Klein-Gordon lattice model. The results of the two models are quite similar and
this supports the generality of our predictions.

In chapter 6 we considered the problem of localization of noninteraction particles
in a correlated random disorder. To face this issue we proposed a novel model which
is relevant both from a theoretical and an experimental point of view. From the
theoretical side it presents a nontrivial interplay between the role played by short
and long range correlations. From the experimental side it can be realized using a gas
of ultracold dipolar atoms. We considered a set of dipolar impurities pinned in the
wells of a deep optical lattice that acts as a random potential for another atom (test
particle) in another internal state that feels a weaker optical lattice. An analysis of
the statistical properties of the model showed that short-range correlations are due
to the fact that the occupation of neighboring sites are forbidden because of repulsive
dipolar interactions between impurities, while long-range correlations are due to the
dipolar interaction between the test dipole and the impurities. The localization
properties of the model were calculated by means of a renormalization-decimation
technique which allowed us to calculate properties of very large systems and study
the extended or localized nature of the states. We found that the presence of short
range correlations can give rise to different regimes of localization. In particular,
as the parameter of the system are changed, we observed regimes where all the
states are exponentially localized and regimes where one or more discrete sets of
extended states appear in the spectrum. The occurrence of the different regimes
can be predicted starting from an analytical expression obtained from the scattering
of a single impurity. Notably, the different localization regimes could be explored
experimentally simply by changing the strength of the radial harmonic confinement.
Long range correlations were studied not only for the dipolar case but also for a
more general two point correlation function decaying as C(£) ~ 1/£° (the case
B = 3 correspond to the dipolar case). We saw that long range correlations tend to
restore localization in the spectrum and lead to counterintuitive behaviours of the
localization length. More precisely, depending on the localization regime that are
considered, they can enhance or reduce the localization length at the center of the
band.

Outlooks

After the first observations of 1D Anderson localization of matter waves, the ex-
perimental activity in ultracold atoms aimed to better understand the physics of
disordered systems has grown significantly. Part of the community focused on the
problem of the combined effects of disorder and interaction. Some experiments con-
sidered the equilibrium properties of a Bose gas, looking for the transition from
superfluid to Bose glass [67, 98, 67]. Others considered the dynamical properties
focusing on the expansion of an initially localized wavepacket [33, 69]. Other groups
investigated the role of dimensionality considering two dimensional and three dimen-
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sional disorder. In the two dimensional case, the regime of Anderson localization
has not yet been reached [179], but recently the observation of coherent backscatter-
ing of ultracold atoms has been reported [180]. This phenomenon is responsible for
the so called weak localization, which can be considered as a precursor of Anderson
localization. In the three dimensional case two different experiments managed to
observe Anderson localization of matter waves with noninteracting bosons [71] and
fermions [70].

As suggested by this stimulating scenario there are several directions that can
be investigated from the theoretical point of view. A direct extension of the in-
vestigation of the interplay between interaction and localization would consists of
comparing our results for the expansion of an initially localized wavepacket with
those that can be found by using different approaches like, for instance, the inves-
tigation of the properties of a Bose gas at equilibrium in a box of finite size in the
presence of a quasiperiodic potential and of interaction between atoms. Alterna-
tively one may look for signatures of the destructive effect of the interactions on
localization by considering the time evolution in momentum space. Another impor-
tant task would be the development of beyond-mean-field theories, allowing for the
investigation not only of weakly interacting, but also strongly interacting gases.

As regards the role of the correlations, there are several extensions that can
be considered. Remaining in the one dimensional case, the study of the dynamics
of wavepackets would provide another possible way to detect the delocalization
induced by the correlations. We expect that the different localization regimes that
we have predicted can lead to localization of wavepackets but also to diffusive and
superdiffusive expansions. A detailed characterization of these dynamical regimes
would complement our analysis and provide another input on how to detect the
different regimes in feasible experiments. Another possibility is the extension of our
analysis to higher dimensions. The model that we proposed can indeed be extended
to 2D and 3D and, in this sense, it may serve as a powerful tool to shed light on the
role played by correlations in these systems.



APPENDIX A

Wannier functions

In this appendix we give a brief introduction to the concept of Wannier functions
and we explain some of their properties.
Let us consider a single particle in a one dimensional periodic potential V' (z) of
period d, V(z) = V(z+jd). This problem is described by the following Hamiltonian

n? 0?2

H=——+V(x).

2m Ox? +V(z)
The Bloch theorem [40] states that the eigenstates associated to H have the following
form

wn,k(x) = eikxun,k(x) (Al)

where k is the quasi-momentum, n is the band index and w,, ;() is a function with
the same periodicity of the potential, uy, i (z + jd) = uy, k(x). The quasi-momentum
is restricted to the first Brillouin zone k € [—7/d,n/d] and, in a finite system, it
can assume N different values, where IV is the number of periodic repetitions of the
potential. One can easily verify that

wn,k(x + ]d) = eijnd¢n,k(x)' (AQ)

Any Bloch function, 1, 1 (z), considered as a function of £ and for a fixed value of
x, represents a periodic function with period 27/d. It therefore has a Fourier series
expansion in plane waves with wavevectors in real space. For a fixed value of x we
can write:

Una@) = = 3w (a)e (A3

The coefficients wy, ;(x), depend on z, on the lattice site j and on the band index n
and are called Wannier functions. They can be calculated by the inversion formula

wn (@) = %N S )~k (A1)
k

where the sum includes all the values of k£ in the Brillouin zone. When N is large
one can substitute the sum in equation (A.4) with an integral over k.
The Wannier functions obey the following properties:

1. Their shape does not depend separately on j and x separately but only on the
difference x — jd. This can be expressed as

W gaile +1d) = wy () (A5)
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Figure A.1: Wannier function of the lowest band w(x) for a periodic potential of
the form V(z) = sEgsin®(kx) for different values of s. The eract numerical result
(red lines) is compared with the Gaussian approzimation (black lines) described by

Eq. (A.10)

and it is a direct consequence of Eq. (A.4) and of the Bloch theorem. Therefore
we can introduce the following notation

W j(x) = wn(z — ja). (A.6)

2. They form a complete orthonormal set. The completeness follows from the
fact that we expressed the basis of the Bloch functions as a linear combination
of the Wannier functions. The orthogonality is given by

/w;77l(x)wj'7n' (1’) dx = 5n,n’5j,j’- (A?)

This relation can be verified using Eq. (A.4) and the orthogonality of the Bloch
functions.

3. The Wannier functions of the lowest band are centered around the lattice site
jd. Moreover choosing appropriate phases for the Bloch functions they are
real, symmetric around jd and they rapidly go to zero away from jd [181].

Let us now consider the specific case where the potential is an optical lattice de-
scribed by
V(z) = sEgsin®(kx) (A.8)

where k = 7/d, Ep = h?k?/2m is the recoil energy and s is the dimensionless
lattice strength. Moreover we focus on the Wannier functions of the lowest band
that we indicate removing the band index wy,—¢ j(z) = w;(x). In Fig. A.1 we show a
numerical calculation of the Wannier function of the lowest band w(z) for different
values of the strength of the optical lattice s (red solid lines). We note that w(z)
is symmetric and localized around the lattice site j = 0. As the lattice strength s
is increased the Wannier function becomes more and more localized. An analytical
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estimation of w(z) can be obtained approximating the wells of the optical lattice
with an harmonic potential

1
V(x) =~ §mw2x2 (A.9)

of frequency w = \/shk?/m. The ground state of the harmonic confinement provides
A Gaussian approximation of w(z) and has the following form

w(z) ~ (ﬁk2>1/4 exp (‘ Sk2x2>. (A.10)

™ 2

In Fig. A.1 we compare this analytical expression (black dashed lines) with the exact
numerical result. We observe a general good agreement between the two curves that
improves for large values of s. It is important to note, anyway, that the tails of the
Gaussian approximation gives always a poor description of the tails of the Wannier
functions. In fact w(z) decays exponentially rather than in a Gaussian manner and
always has nodes in order to satisfy the orthogonality condition (A.7) [21].






APPENDIX B
Renormalization-decimation
approach

This appendix is devoted to an introduction to the renormalization-decimation
method. This method represents a powerful tool for the calculation of the Green’s
function operator based on the central idea of lowering the number of degrees of
freedom of a physical system, reducing to a smaller renormalized subspace. This is
done in an exact way eliminating the part of the system we are not interested in.
This renormalization approach has been applied in different fields of physics as for
instance the calculation of the band structure of crystals and microstructures (e.g.
[182, 183]) or to the problem of localization of quantum particles in disordered or
quasiperiodic systems (e.g. [184, 177]). Exhaustive introductions on this topic can
be found in the literature (see for instance [185] and references therein).

This appendix is organized as follows: first we introduce the theoretical for-
malism of the renormalization-decimation approach. We then apply it to a specific
problem which is the analysis of the localization properties of a one-dimensional
tight binding Hamiltonian, focusing on the calculation of the density of states, of
the Lyapunov exponent and of the transmission and reflection coefficients.

B.1 Renormalization scheme: the theoretical framework

Let us discuss the renormalization scheme in the case of a generic Hamiltonian H
with N degrees of freedom. We indicate with | ¢;) an orthonormal basis associated
to this Hamiltonian
H=Y Hy|)o;l, (B.1)
0]
where H;; = (¢; | H | ¢;), and with G(E) the Green’s function, or resolvent,

associated with H 1

T E-H
Suppose now, without any loss of generality, that H can be written as the sum of
two operators

G(E)

(B.2)

H=H +W (B.3)

and indicate with G the Green’s function of the full system and with G’ the Green’s
function of H'. Then one can apply the Dyson equation

G=G +GWG (B.4)



110 Appendix B. Renormalization-decimation approach

which is an exact relation connecting G, G’ and W.

We partition now the space where H is defined into two arbitrary complementary
parts that we indicate with A and B and we introduce the projection operators
associated to these subspaces

Pa=> | ) (el (B.5)

€A
Pg=>"|¢:i){¢i|=1-Pa (B.6)
i€B
Using the projector operators one can rewrite the Hamiltonian as follows

H=Haa+Hpp+ Hap+ Hpa (B.7)

where Hy ; = PrHPj. Let us now choose explicitly the operators H' and W as
follows
H' = Hpq + Hpp and W = Huap + Hpa. (B.8)

The projection procedure (B.7) can be applied also to the Green’s function G and
G’. Note that in the G’ case the cross terms (AB and BA) are zero because the
Hamiltonian H’ does not include any mixing between the two subspaces A and B.

Starting from the Dyson equation and using the expression for W one can show
that

GAA:G;\A"FG%AHABGBA (B.Q)
GBA:GIBBHBAGAA. (B.10)

Combining these two equations one obtains
[(G'ya) " — HapG'gpHpa] Gaa = 1. (B.11)

At this point writing the explicit expressions for G’; , and G’z we find

1
Gpa(F) = ——— B.12
Aa(E) = —— fin (B.12)
where we have introduced H 44 which can be interpreted as a renormalized Hamil-
tonian and has the following form

]:IAA:HAA—FHABE%}IBBHBA. (B.13)
Egs. (B.12) and (B.13) represent an exact result which is the heart of the renor-
malization approach. The physical meaning is that we have eliminated one of the
two subspaces of the system (B) and this allow us to describe the physics of the
remaining subspace (A, which is the subspace which we are interested in) with a
new renormalized Hamiltonian. The price to pay is that this new Hamiltonian is
energy dependent.
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B.2 Application to tight binding Hamiltonians: the dec-
imation technique

Let us now apply the renormalization method to a tight binding Hamiltonian of form
(2.9). In particular we consider the one dimensional case and we restrict hopping
just to nearest neighbouring sites

H=Y e | )G +IY_ ING+1+]i+1( | (B.14)
J J
with j = 0,1, ..., N. Here, for simplicity, we have chosen, a site independent

hopping energy, J, but the formalism can be easily generalized to the case where
J is site dependent. The on-site energies ¢, can be chosen at will, usually the
method is applied when ¢, are randomly or quasiperiodically distributed so that
the localization properties becomes interesting.

The renormalization method that we introduced in the previous section can be
efficiently applied if one chooses the system B in such a way that G5 is explicitly
known so that the calculation of the renormalized Hamiltonian becomes straightfor-
ward. In our specific case we choose a single site of the chain. Doing this we reduce
the dimensionality of the problem by one degree of freedom. Let us start removing
the second site of the chain j = 1. In this case the renormalized Hamiltonian de-
scribing the system A is unchanged a part from three terms: the on-site energies of
the sites 7 = 0 and j = 2 and the hopping energy connecting those two sites. Using
the fact that G35 = 21— | 1)(1 | and Eq. (B.13) we obtain

€1

1
661):€0+J J

E — €1
(1 _ J J B.15
1 1 1
O

where the superscript (1) indicates that we are in the first iteration of the
renormalization-decimation procedure. The idea is now to repeat this procedure
removing sites 2,3, ... and reducing to an effecting dimer after N — 1 iterations.
The recursive equations that connect the renormalized quantities at the step (i — 1)
of the procedure with those at step (i) are given by

@ _ -1, L6-1_ 1 (i-1)
0 0 0, 5 sl(-l_l) 0,
i 1
i i i—1 1
J(§7z?+1 = Ji(+)1,o = JO(,i )7%
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while the Hamiltonian of the effective dimer obtained after N — 1 iterations can be

written as (N—1) (N—1)
- NE CNE
() = ( b B Thar >). B.17)
Jon (E) ey (E)

Using this effective Hamiltonian, which is very easy to handle since it is a simple
2 x 2 matrix, it is now possible to extract many interesting physical quantities
related to the localization properties of the system. In the following we briefly
explain how to calculate the density of states, the Lyapunov exponent and the
transmission properties.

Density of states

The density of states of a system p(FE) for a non-degenerate Hamiltonian can be
calculated as

p(E)=> 6(E -~ E,). (B.18)

where F, is an energy that belongs to the spectrum of the system. It can be related
to the Green’s function of the system by the following relation

1
p(E) =—— lim Im{Tr [G (E +i¢)]}, (B.19)
T e—0t
The connection between Eqs. (B.18) and (B.19) can be established starting from
Eq. (B.19) and writing the trace on the basis of the eigenstates of the system, where
H is diagonal. One gets

p(E) = lim — (B.20)

This expression represents a sum of many Lorentzian functions L(E — E,;¢). Using
that L(x;e) — d(x) for £ — 0 one has shown the equivalence of Eqs. (B.18) and
(B.19). In the case of a tridiagonal Hamiltonian one can also show that

0
Combining this equation with (B.20) we obtain an expression for the density of
states which is extremely useful for our purposes [186]:

1 0
E)=— lim Im{ —1In[Gon(FE +1 . B.22
pl8) =+ tim T { G (B + i) (.22
This relation requires the knowledge of just one matrix element of the Green’s
function Gp n and this can be easily calculated form a direct inversion of the
renormalized Hamiltonian (B.17).
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Lyapunov exponent

For a 1D disordered disordered system as (B.14), a general expression of the Lya-
punov exponent in terms of the Green’s function matrix elements is given by
[58, 177]:

1

A(E) = lim —ln‘

Gn.N(E)
N—+4oo N

GonN(E)
which is valid as long as the limit is well defined. This equation can be rewritten in
a much more effective form substituting the explicit expressions for G,y and Go n,
obtained inverting H

(B.23)

__(N=1)
AE) = lim 1 |- (B)
N—4o0o N J(EJXZ U(E)

(B.24)

In an energy region where localized states are present, this expression can be
further simplified by noting that the numerator is finite, while the denominator

JO(fJV{”(E) =0

AE) == lim L ‘J(N )( , (B.25)

this relation creates a direct and intuitive relation between the Lyapunov exponent
and the effective tunneling associated to the effective dimer that represents our
system.

Reflection and Transmission coefficients

In order to discuss the transmission properties of a finite size system as (B.14) we
need to describe, not only the system itself, but also the incoming and the outgoing
waves that are involved in the scattering process.

In our case this can be done by extending the system under consideration (formed
by N+1 sites, form 0 to N) on the left and on the right with two semi-infinite perfect
lattices. Let us therefore add at the edges of the system described by the Hamilto-
nian (B.14), H, two infinite series of sites with on-site energies £ and tunneling J, as
illustrated in Fig. B.1 a). The new extended Hamiltonian, H.,, is then decomposed
in two parts: i) an infinite perfect lattice, that we indicate with H? ii) the remaining
part of the Hamiltonian, that we indicate with H'! and is given by the difference of
H.,; and the perfect lattice H°

H,. = H° + H! (B.26)

This procedure is schematically illustrated in Fig. B.1.

The transmission and reflection coefficients are then calculated using standard
scattering theory. If one considers an incoming Bloch wave | k), eigenstate of H?,
of the form

(n| k) = e*n, (B.27)
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MM'._ from 0 to N
E € g ¢, C{\ -—H
& ¢

N

Figure B.1: Schematic representation of the procedure used for the computation
of the transmission coefficient. (a) The system under study, which extends from
site 0 to site N, is connected to two semi-infinite perfect lattices on both sides. (b)
This new system is formally decomposed into a perfect lattice and a perturbation
responsible for the scattering of the incoming wave.

labelled by k and with energy E = € + 2.J cos(k), then the scattering of this state
produced by H! yields the wavefunction

| o) = (1+G°T) | k), (B.28)

where G is the Green’s function operator associated to the perfect lattice H° and
its matrix elements are given by [187]

( ):< 1 >|"—m| [—(E—s)+ (E_€)2_4J2:|‘7L—m‘

0
— B.29
m,m 21J| (E —¢)?—4J? (529)
and T is the scattering matrix, which is given by
T=H (1-c"H)". (B.30)

We can now combine this formalism with the renormalization-decimation ap-
proach, which allows to reduce an arbitrary Hamiltonian to an effective dimer. The
effective dimer associated to H! can be calculated by applying the renormalization-
decimation procedure separately on H.,; and H® and then subtracting the two
results.

At this point we are left with the calculation of the transmission and reflection
coefficients of a single dimer, we can restrict our analysis to the subspace formed
by the sites [0, N] and H! and T are simple 2 x 2 matrices. Combining expressions
(B.28), (B.29) and (B.30) one can show that the scattered wavefunction takes the
form (n | p) = 7e**™ in the forward direction (n > N), where 7 is the transmission
amplitude

T=1+ G870T070 + G8,NT0,N + G9V7OTN70€_2iNk + G?\QNTN,N- (B.?)l)
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Figure B.2: Density of states (left panel) and localization length (right panel) for
the one dimensional Anderson model for different values of the disorder strength W .
The solid lines are the numerical results obtained with the renormalization-truncation
approach, while the dashed lines in the right panel represent a perturbative calculation
for the localization length given by (2.16).

Similarly, in the backward direction (n < 0), (n | ) = eT*" 4 re=*" 1 being the
reflection amplitude

r = G870T070 + G(])V,OTQN + G8,NTN,0 + G9V7NTN7N€+2iNk. (B32)

The transmission and the reflection coefficients are then given by 7 = |7|> and
R = |r|*.

An example of application of the renormalization-decimation approach to the
one dimensional Anderson model is shown in Fig. B.2. In this case ¢, are random
variables uniformly distributed in the interval [—-W/2, W/2], where W represents the
disorder strength. We show the results of numerical calculations where we applied
recursively Eqgs. (B.16) and then we used expressions (B.18) and (B.23) for the
calculation of the density of states p(F) and of the localization length Lj,.(E) =
1/A(E) respectively. We also compare the numerical results for the localization
length with the analytical expression (2.16) obtained in second order perturbation
theory. The agreement between the two curves is very good especially where the
perturbation theory is expected to give accurate results, i.e. for small values of W
and close to the center of the band.
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