
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DIT - University of Trento

CROSS-LAYER ADAPTATION

OF SERVICE-BASED SYSTEMS

Asli Zengin

Advisor:

Prof. Marco Pistore

FBK-irst, Trento

November 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints PhD

https://core.ac.uk/display/35317088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




“Our greatest glory is not in never falling,
but in rising every time we fall.”

Confucius

To my family.





Acknowledgements

This dissertation would not have been possible without the support of many
people. First of all, I wish to express my gratitude to my advisor Marco Pistore
who offered me his valuable support with a lot of patience. His guidance helped
me understand how to conduct research and focus on getting solid results.

For having accepted to act as members of my doctoral examination commit-
tee, as well as for their constructive comments, I would like thank Maurizio
Marchese, Luciano Baresi, Vittorio Cortellessa, Claudio Bartolini and Pierluigi
Plebani.

I thank all my colleagues and collaborators from SOA team. In particular,
I am grateful to Raman Kazhamiakin and Annapaola Marconi for their enthu-
siasm and availability to discuss my research problems and to assist me with
fruitful ideas. Special thanks also go to my colleagues Heorhi Raik, Adina
Sirbu and Piergiorgio Bertoli. In these years they have become my real friends
beyond being colleagues and I have always felt their encouraging support. Not
only them, I sincerely thank all my friends that I got to know throughout my
PHD adventure in Trento and the older ones from Turkey.

My very speacial thanks go to Claudio, the beautiful surprise of my life. The
last year of my PHD work passed with a lot of joy and hope, thanks to his love
and care for me.

With my deepest gratitude I dedicate this work to my family: my beloved
parents and my dear sisters who always believed in me and gave me their affec-
tionate support and understanding.





Abstract

One of the key features of service-based systems (SBS) is the capability to

adapt in order to react to various changes in the business requirements and

the application context. Given the complex layered structure, and the heteroge-

neous and dynamic execution context of such systems, adaptation is not at all a

trivial task.

The importance of the problem of adaptation has been widely recognized in

the community of software services and systems. There exist several adapta-

tion approaches which aim at identifying and solving problems that occur in

one of the SBS layers. A fundamental problem with most of these works is their

fragmentation and isolation. While these solutions are quite effective when the

specific problem they try to solve is considered, they may be incompatible or

even harmful when the whole system is taken into account. Enacting an adap-

tation in the system might result in triggering new problems.

When building adaptive SBSs precautions must be taken to consider the im-

pacts of the adaptations on the entire system. This can be achieved by properly

coordinating adaptation actions provided by the different analysis and deci-

sion mechanisms through holistic and multi-layer adaptation strategies. In this

dissertation, we address this problem. We present a novel framework for Cross-

layer Adaptation Management (CLAM) that enables a comprehensive impact

analysis by coordinating the adaptation and analysis tools available in the SBS.

We define a new system modeling methodology for adaptation coordination.

The SBS model and the accompanying adaptation model that we propose in



this thesis overcome the limitations of the existing cross-layer adaptation ap-

proaches: (i) genericness for accommodating diverse SBS domains with differ-

ent system elements and layers (ii) flexibility for allowing new system artifacts

and adaptation tools (iii) capability for dealing with the complexity of the SBS

considering the possibility of a huge number of problems and adaptations that

might take place in the system.

Based on this model we present a tree-based coordination algorithm. On

the one hand it exploits the local adaptation and analysis facilities provided

by the system, and on the other hand it harmonizes the different layers and

system elements by properly coordinating the local solutions. The outcome of

the algorithm is a set of alternative cross-layer adaptation strategies which are

consistent with the overall system.

Moreover, we propose novel selection criteria to rank the alternative strate-

gies and select the best one. Differently from the traditional approaches, we

consider as selection criteria not only the overall quality of the SBS, but also

the total efforts required to enact an adaptation strategy. Based on these cri-

teria we present two possible ranking methods, one relying on simple additive

weighting - multiple criteria decision making, the other relying on fuzzy logic.

The framework is implemented and integrated in a toolkit that allows for

constructing and selecting the cross-layer adaptation strategies, and is evalu-

ated on a set of case studies.

Keywords
[Service-based Systems, Cross-layer Adaptation, System Modeling, Adaptation
Impact]

8



Contents

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Cross-layer Adaptation Approach . . . . . . . . . . . . 6

1.1.2 Addressing Specific Problems . . . . . . . . . . . . . . 9

1.1.3 Prototype Tool and Empirical Evaluation . . . . . . . . 13

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 State of the Art 17
2.1 Service-Based Systems . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Business Process Management . . . . . . . . . . . . . . 18

2.1.2 Services and Service Compositions . . . . . . . . . . . 19

2.1.3 Platforms and Infrastructures . . . . . . . . . . . . . . . 20

2.2 Monitoring, Analysis and Adaptation of Service-Based Systems 21

2.2.1 Monitoring and Analysis at Business Processes Level . . 24

2.2.2 Monitoring and Analysis at Services and Service Com-
positions Level . . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 Monitoring and Analysis at Platforms and Infrastruc-
tures Level . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.4 Adaptation at Business Processes Level . . . . . . . . . 27

2.2.5 Adaptation at Services and Service Compositions Level 27

2.2.6 Adaptation at Platforms and Infrastructures Level . . . . 29

2.3 Modeling Service-Based Systems . . . . . . . . . . . . . . . . 30

i



CONTENTS

2.3.1 Modeling for Application Deployment . . . . . . . . . . 31
2.3.2 Modeling for Monitoring and Analysis . . . . . . . . . 32
2.3.3 Modeling for Adaptation . . . . . . . . . . . . . . . . . 32

2.4 Cross-layer Approaches in Software Systems . . . . . . . . . . 33
2.5 Related Work on Cross-layer Adaptation . . . . . . . . . . . . . 35

2.5.1 Cross-layer Adaptation Approaches in Service-Based
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.2 Comparison of Cross-layer Adaptation Approaches . . . 38
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Cross-layer Adaptation Framework 43
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Reference Scenario . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Formal Model of Service-Based System . . . . . . . . . . . . . 48

3.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . 48
3.3.2 System Configuration . . . . . . . . . . . . . . . . . . 50
3.3.3 System Layers . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Formal Model of Adaptation . . . . . . . . . . . . . . . . . . . 54
3.4.1 Extended System Configuration . . . . . . . . . . . . . 56
3.4.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 The Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.1 The initial trigger . . . . . . . . . . . . . . . . . . . . . 61
3.5.2 Coordination and decision of the adaptation strategy . . 62
3.5.3 Deployment of the adaptation strategy . . . . . . . . . . 62

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Cross-layer Adaptation Manager 65
4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.1 Stable System Configuration . . . . . . . . . . . . . . . 65
4.1.2 Cross-layer Adaptation Problem . . . . . . . . . . . . . 66

ii



CONTENTS

4.2 Cross-layer Adaptation Approach . . . . . . . . . . . . . . . . 66

4.2.1 CLAM Algorithm . . . . . . . . . . . . . . . . . . . . 69

4.2.2 Correctness of the Approach . . . . . . . . . . . . . . . 77

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Selection and Deployment of a Cross-layer Adaptation 89
5.1 Ranking and Selection . . . . . . . . . . . . . . . . . . . . . . 90

5.1.1 Selection Criteria . . . . . . . . . . . . . . . . . . . . . 91

5.1.2 Multi Criteria Decision Analysis . . . . . . . . . . . . . 95

5.1.3 An Alternative Fuzzy Logic-based Method . . . . . . . 97

5.2 Adaptation Deployment . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Implementation and Design 107
6.1 CLAM Platform . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Methodology for Cross-layer System Modeling . . . . . . . . . 113

6.3 CLAM User Guide . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3.1 Initial Setup of CLAM . . . . . . . . . . . . . . . . . . 115

6.3.2 Updating CLAM with the New Tools . . . . . . . . . . 120

6.3.3 Changing the System Model . . . . . . . . . . . . . . . 121

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7 Evaluation 125
7.1 Experimental Set-up and a Sample Run . . . . . . . . . . . . . 126

7.2 Heuristic Methods for Search Optimization and Termination . . 131

7.2.1 Optimization Heuristics . . . . . . . . . . . . . . . . . 132

7.2.2 Termination Heuristics . . . . . . . . . . . . . . . . . . 136

7.3 Contribution of the Modeling Methodology . . . . . . . . . . . 145

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

iii



CONTENTS

8 Conclusions 155
8.1 Achieved Results . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . 158

Bibliography 161

iv



List of Tables

5.1 Mapping Changes in SC Nodes to Deployment Tasks . . . . . . 93

5.2 Required Efforts for Adaptation Deployment in terms of Time
and Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Preferable Solution Layers for a Given Problem Layer . . . . . 95

6.1 The Tools Available in “Call & Pay Taxi” SBS . . . . . . . . . . 117

7.1 Adaptation Spaces for the Solvers used in the “Call & Pay Taxi”
Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2 Cross-layer Adaptation Paths for a Sample Run . . . . . . . . . 130

7.3 Qualitative Analysis of Effects of Solvers on the System . . . . 133

7.4 Calculation of Optimistic and Pessimistic Bounds of a CLAM
Queue based on Solver Behaviors . . . . . . . . . . . . . . . . 133

7.5 Pruned solutions of Scenario 1 when 10%|SC0| threshold is ap-
plied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.6 Pruned solutions of Scenario 2 when 10%|SC0| threshold is ap-
plied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.7 Modeling Efforts: Scenario 1 - Case 0 . . . . . . . . . . . . . . 149

7.8 Modeling Efforts: Scenario 1 - Case 1 . . . . . . . . . . . . . . 149

7.9 Modeling Efforts: Scenario 2 - Case 0 . . . . . . . . . . . . . . 150

7.10 Modeling Efforts: Scenario 2 - Case 1 . . . . . . . . . . . . . . 150

7.11 Comparison of Analyzer Invocations at Different Modeling Ab-
stractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

v





List of Figures

1.1 Prototype Cross-layer Adaptation Tool . . . . . . . . . . . . . . 13

2.1 Conceptual A&M framework . . . . . . . . . . . . . . . . . . . 23

3.1 Feedback Control Systems . . . . . . . . . . . . . . . . . . . . 45

3.2 Adaptive Service-Based Systems - the Traditional Approach . . 45

3.3 Adaptive Service-Based Systems - the CLAM Approach . . . . 45

3.4 Adaptive Service-Based Systems - the CLAM Approach . . . . 47

3.5 Example of System Model . . . . . . . . . . . . . . . . . . . . 51

3.6 Example of System Configuration . . . . . . . . . . . . . . . . 51

3.7 Overall Approach to Modeling Adaptation . . . . . . . . . . . . 56

3.8 Conceptual Model of CLAM’s Reasoner . . . . . . . . . . . . . 58

3.9 Adaptation Tools of the Formal Framework . . . . . . . . . . . 60

3.10 The Overall Framework . . . . . . . . . . . . . . . . . . . . . . 61

4.1 A Sample Solution Tree . . . . . . . . . . . . . . . . . . . . . . 69

4.2 CLAM algorithm - main functions. . . . . . . . . . . . . . . . . 70

4.3 CLAM algorithm - functions to create node and edge pairs. . . . 71

4.4 A Sample Cross-layer Adaptation Tree Produced by CLAM . . 73

4.5 Non Termination: Analysis of Recursive expandTree Function 85

5.1 The Overall Ranking Approach . . . . . . . . . . . . . . . . . . 97

5.2 Hierarchy of Fuzzy Inference Engines . . . . . . . . . . . . . . 99

a Process Execution Time . . . . . . . . . . . . . . . . . 101

vii



LIST OF FIGURES

b Adaptation Deployment Time . . . . . . . . . . . . . . 101
c Adaptation Deployment Cost . . . . . . . . . . . . . . . 101

5.3 Membership functions for quality and adaptation deployment
parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4 Fuzzy rules to evaluate the aggregated QoS from quality criteria 102
5.5 Fuzzy rules to evaluate adaptation strategies in each path . . . . 102

6.1 The Functional Architecture of CLAM Platform . . . . . . . . . 108

7.1 The System and Adaptation Models for “Call & Pay Taxi” Sce-
nario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.2 Greedy Search Algorithm. . . . . . . . . . . . . . . . . . . . . 134
a Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . 137
b Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.3 Comparison of greedy search with BFS and DFS algorithms. . . 137
a Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . 140
b Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.4 Effect of variation of ∆SC weight on the number of solutions
found at varying termination thresholds. . . . . . . . . . . . . . 140
a Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . 142
b Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.5 Observation of pruned tree nodes and solutions at varying ter-
mination thresholds when only ∆SC weight is applied. . . . . . 142
a Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . 144
b Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.6 Variation of ∆SC throughout the tree expansion when ∆SC
driven search heuristic is applied. . . . . . . . . . . . . . . . . . 144

7.7 Two Different Levels of Abstraction for Scenario 1 and Sce-
nario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

viii



Chapter 1

Introduction

The rapid evolution of software technology in the virtual world has brought
paramount changes to every market sector and has created enormous opportu-
nities for innovation. One such opportunity is constructing service-based ap-
plications (SBA) which allow for cross-application integration, interoperability,
and the flexibility of implementation and reconfiguration when taking into ac-
count both the technological solution and the architectural style of the system.
Those services of the SBA, collaborating together with an aim of achieving a
set of business goals and providing certain business capabilities, have the power
to provide utility to users in a much more dynamic and flexible way than the
traditional software technology.

Every SBA has an overall execution context that is called a service-based
system (SBS). In order to run the application and in the meanwhile to guaran-
tee the conformance to the business metrics, SBSs comprise all the essential
constituents such as functional and quality requirements of the application, the
run-time application environment, underlying services, software and hardware
platforms, and the corresponding support mechanisms to enable reconfigura-
tions and modifications in case of changes in the application requirements as
well as in the execution context.

SBSs have a complex structure given the horizontal components correspond-

1



CHAPTER 1. INTRODUCTION

ing to the domain layers of the system and the vertical components, which cor-
respond to the cross-cutting issues such as engineering and design, adaptation
and monitoring, and quality assurance [102]. For what concerns domain layers,
obviously, they vary based on the application of interest. For instance, for a
typical SBS, one can think of the business process, service and infrastructure
layers. Moreover, depending on the system capabilities, layers can be more
fine-grained. E.g. instead of infrastructure layer, one can have the platform and
resource layers, similarly, instead of business process layer, one can have the
business model and service composition layers.

The complexity of service-based systems, the heterogeneity of the constituent
layers together with an intrinsic distributed structure, and on top of all this, the
dynamic run-time environment make the ability to adapt a key necessity that
goes far beyond being a desired capability.

Existing works in SBS adaptation mostly solve the problem in a narrow
scope, consider only a specific aspect of the system and do not take into ac-
count the impact of an adaptation on the overall SBS. Business process adapta-
tion [77, 42], dynamic service binding [59, 29], self adaptation and self healing
[70, 26], QoS-awareness [119, 12], mediator design for service interactions [67]
and context-awareness [20] are research directions that have been and still re-
main in the central stage of SBS adaptation. These research directions delimit
their specific areas of study; nevertheless, they are so interrelated that studying
them separately is an endeavor that seems little promising.

Consequently, there should be holistic approaches that make explicit the
knowledge of the horizontal layers that is relevant for the cross-cutting adapta-
tion concern, and that currently is mostly hidden in languages, standards, mech-
anisms, and so on that are defined and investigated in isolation at the different
layers. More precisely, the approach should be such that the domain layers offer
the capabilities that are relevant for the adaptation, and a higher level cross-layer
adaptation mechanism exploits these capabilities by properly coordinating the

2



adaptation actions and eventually achieving the overall SBS consistency. In this
way, one can ensure that the necessary precautions are taken to consider the
interactions and possible conflicts between the different adaptation functionali-
ties.

Few approaches consider cross-layer aspects of SBSs for the problem of
adaptation. However, most of them oversimplify the important characteristics
of the SBS that are fundamental to deal with such a non-trivial research prob-
lem. The research work presented in this dissertation was driven by the neces-
sity to provide a cross-layer adaptation approach overcoming the limitations of
the existing work. In particular, such approach should handle the following im-
portant features that are peculiar to service-based systems: (i) heterogeneity of
system elements and a wide variety of domain layers depending on a specific
SBS, (ii) dynamic changes in business goals, application constraints and the
underlying execution environment, (iii) independent design and development
of layer-specific monitoring and adaptation capabilities, (iv) possible contradic-
tory adaptations that might be triggered by different adaptation mechanisms,
and finally (v) the variety of adaptation actions one can take as solution to ad-
dress a specific problem.

Heterogeneity of SBSs. Depending on the domain, there might be various types
of SBS with different layers and building blocks. For instance, for one applica-
tion it might be reasonable to consider solely the software platform as a layer,
then for another application, resource consumption can be crucial, which in turn
necessitates the consideration of a resource layer. Furthermore, within the same
layer one can think of diverse elements. E.g. while for a security-critical ap-
plication, quality attributes such as reliability and safety gain importance, for
short-running processes response time can be much more of importance. Even-
tually, depending on the type of application, we might end up with different
system aspects of concern. As a consequence, the adaptation solution cannot
be grounded on a specific class of SBS which has a certain system represen-

3



CHAPTER 1. INTRODUCTION

tation with fixed system elements. In this regard, being generic enough to be
able to accommodate various domains becomes an essential requirement for
cross-layer adaptation.

Dynamicity of SBSs. There might be many and varied motives behind adap-
tation. The SBS owner might decide to update the business goals, for instance,
relaxing some key performance indicators or introducing some new metrics.
What’s more, the application itself might change and a re-design of the overall
process might be considered. On the other hand, various system layers that the
application relies on might trigger a need for adaptation. To illustrate, we might
have to cope with the unreliable network on which the application operate, and
also deal with the changes in the execution environment, i.e., the underlying
infrastructure, in the partner services with which the process interacts, and in
the users preferences and context. This means that the system needs to be able
to detect such potential problems and adapt its behavior respectively. On top
of all this, such motives for adaptation might evolve by the time passes in the
lifecycle of the SBS. Consequently, the cross-layer adaptation solution should
be flexible enough to accommodate the introduction of new system elements
and/or new capabilities for system maintenance.

Independence of SBS tools. Adaptation and monitoring tools are defined and
developed independent from each-other and specialized only on a restricted
part of the system being unaware of the rest of the SBS. Moreover, the com-
plexity and the multi-layer nature of SBS make it impossible that there exists
a centralized tool which knows all the cross-layer adaptation patterns, all the
possible problems, solutions and their consequences. Thus, the layer-specific,
fragmented knowledge of SBS should be exploited and properly coordinated
through corresponding system capabilities but cannot be totally centralized such
that there exists a single adaptation expert that takes control of all the possible
cross-layer adaptations. This is because a cross-layer adaptation pattern, which

4



can be represented as a sequence of adaptation actions, highly depends on the
current state of the application as well as the current possible actions that a
layer-specific adaptation mechanism can offer. With these regards, the solu-
tion approach should take into consideration this nature of SBS, which in turn
implies that the cross-layer adaptation framework should utilize the existing
adaptation and monitoring mechanisms as building blocks on the fly.

Contradictory adaptations. As a consequence of its layered structure, SBS
has different constraints such as application-specific business goals and key per-
formance indicators, functional and quality-related constraints on services, con-
figuration and performance-related requirements for underlying platforms and
infrastructures and so on. These constraints are monitored and analyzed contin-
uously by system capabilities and in case of deviations, appropriate adaptation
capabilities should be utilized to address the problems. However, the hetero-
geneity of such constraints and the reverse entailments that one expose to the
other might lead to contradictory adaptations. Therefore, the cross-layer adap-
tation approach should ensure the analysis and identification of the impact of an
adaptation on the entire SBS, and subsequently, in case of newly triggered prob-
lems, new actions should be taken to come up with a comprehensive solution
where all the conflicts among all the constraints are resolved.

Variety of solutions. Given the complexity of SBSs and the diversity of adapta-
tion capabilities available for such systems, there might exist several cross-layer
adaptation solutions which address the same initial problem. Then each alter-
native solution should be assessed based on some evaluation metrics. These
metrics, in other words, the selection criteria, should be carefully decided with
respect to two main principles: the overall quality of the final system configura-
tion proposed by the solution, and the efforts required to implement the neces-
sary changes in the running system. Both of these aspects should be essentially
taken into account to distinguish one solution from the other. Once some selec-

5



CHAPTER 1. INTRODUCTION

tion criteria are determined on the basis of these two principles, then the alter-
native cross-layer adaptation solutions can be scored against the criteria and in
this way a final ranking can be produced, which in turn enables the selection of
the best solution for deployment in the system.

1.1 Contributions

In this dissertation we develop a cross-layer adaptation approach for service-
based systems. The aim of this approach is, overcoming the limitations of
existing works, to propose a novel method that coordinates the layer-specific
adaptation and analysis capabilities.

Our approach furnishes the SBS with the following capabilities: (i) It allows
a novel way of system modeling that captures the cross-layer relations in the
SBS. (ii) It defines a methodology to create this model for a given SBS and its
adaptation capabilities. (iii) On top of the system model it proposes a holistic,
iterative algorithm that enables the coordination of the adaptation capabilities.
(iv) It gives the possibility to rank the cross-layer adaptation solutions and select
the best one with respect to the diverse criteria.

1.1.1 Cross-layer Adaptation Approach

We propose a cross-layer adaptation framework that relies on a system model
for the representation of service-based system, and an adaptation model for the
representation of external analysis and adaptation tools. Eventually, the coor-
dination algorithm, which exploits the system and adaptation models, realizes
this framework and derives the cross-layer adaptation solutions.

By our cross-layer adaptation framework we target to help the owner of
service-based application maintain the application such that its whole execu-
tion context, i.e., the service-based system, is taken into account. The proposed
cross-layer adaptation is performed off-line in the sense that the adaptation does

6



1.1. CONTRIBUTIONS

not modify an ongoing execution, instead it modifies the system model that will
be applicable to the future executions. On the other hand, the approach is au-
tomated in the sense that once the necessary SBS and adaptation models are
created by the system expert and fed to the algorithm, we identify the adapta-
tions without requiring a human in the loop. Finally, the approach allows for
derivation of cross-layer adaptations on the fly, which means that cross-layer
adaptation patterns are not known a priori, but they are rather generated as a
result of the coordination depending on the adaptation problem as well as the
available adaptation solutions to coordinate at that moment.

Formal framework. We model the service-based system as a graph of nodes
and edges. Nodes represent the different types of elements that are present in
the system, and edges represent the relations among these elements. By iden-
tifying specific types of relations among elements such as “has”, “constrains”
and “consumes”, we formally capture the layer concept and define layer as a
set of nodes connected through “has” and “constrains” relations: these rela-
tions, indeed, serve the purpose to connect elements in the same layer, while
“consumes” relations link elements belonging to different layers. The system
model corresponds to a class of service-based systems, whereas a system con-
figuration, corresponding to a specific service-based system, is an instantiation
of the system model which is deployed and running or ready to be deployed.
After having the definitions of system model and system configuration, we can
extend them with the adaptation capabilities. For this extension, we take ad-
vantage of the formal model of adaptation where we introduce the concepts of
adaptation need and adaptation action and subsequently related these concepts
to the system capabilities that we call “tools”. We distinguish three different
kinds of tools:

• analyzer is a system monitoring or analysis mechanism, which works on a
subset of nodes in the system configuration to validate a system property

7



CHAPTER 1. INTRODUCTION

and produces a set of alternative adaptation needs in case of a problem
identification.

• solver is a system adaptation capability, which is specialized on a need and,
similar to analyzers, works on a subset of nodes in the system configuration
to produce a set of alternative adaptation actions to address the need.

• enactor is a tool type internal to our solution approach, which is responsi-
ble for applying in the system configuration the required changes imposed
by an adaptation action.

Given the extended SBS representation which includes both system and
adaptation models and the associated tools with these models, we define the
cross-layer adaptation problem for a given initial system configuration as the
problem of identifying a sequence of tools that is able to transform the initial
system configuration into a stable system configuration where the stability im-
plies that none of the analyzers of the system do not produce any adaptation
needs.

CLAM algorithm. In order to solve the cross-layer adaptation problem, we
propose an iterative coordination algorithm, namely the CLAM algorithm. It
relies on the formal framework, and given the system tools, investigates the
possible stable system configurations that can be reached to solve the adaptation
problem of an initial system configuration.

The algorithm exploits a tree data structure such that at the tree nodes we
keep a state of the system configuration and a queue of tools, and at the tree
edges we keep the outputs of the tool invocations that we call “report”. Here,
the queue serves as a means for keeping and continuously updating an ordered
set of analyzers and solvers that we identify to be invoked, and states of the
system configuration correspond to the gradual transformation of the system
configuration to reach a stable point. Indeed, the path of a tree leaf that has an
empty queue implies a cross-layer adaptation solution.

8



1.1. CONTRIBUTIONS

CLAM algorithm performs three key steps in order to construct the tree,
which in the end can disclose the cross-layer adaptation solutions:

• Receiving the initial trigger. The algorithm takes as input the running sys-
tem configuration and the initial trigger, that is, a problem signaled by a
monitor. Then, it creates a new queue instance, adds the analyzer relevant
for the monitored data to the queue and instantiate a new tree with the root
node.

• Performing tool invocations. Starting from the root node, each time a new
node is created, we get the first tool of the queue in this node and invoke the
tool.The output of a tool invocation, which we call a report, is of one of the
following 4 types: (i) an analyzer validates a system configuration and does
not produce any needs, (ii) an analyzer identifies a problem and produces
a set of alternative needs, (iii) a solver produces a set of alternative actions
for a given need, (iv) a solver cannot address an adaptation need.

• Constructing the tree recursively. Based on the output type of the report
from a tool, we create new tree nodes and append them to the tree. We
repeat iterations for the new nodes until all the nodes are visited and no
new ones are created.

While the algorithm is proved to be correct and complete, and the proofs are
presented in this dissertation; given the infinite input space of possible system
configurations and adaptation actions, we remark that at theoretical level the
algorithm does not terminate.

1.1.2 Addressing Specific Problems

Related to our cross-layer adaptation approach, we identified and addressed
three specific problems: First one is the organization of the alternative cross-
layer adaptation solutions produced by the CLAM algorithm so that the user

9



CHAPTER 1. INTRODUCTION

can understand what a cross-layer adaptation solution implies and what are the
consequences to deploy it in the SBS. Second one is the identification of the
clear steps that one should follow to be able to use our approach. Since our
approach works based on the SBS model proposed in this thesis, in particular,
a modeling methodology to guide the users of our approach is essential. Third
one is the identification of heuristic methods to optimize the tree construction,
and to enforce the termination of the coordination algorithm so that in practical
cases, we can overcome the non-termination issue of the algorithm and at the
same time guarantee to find a reasonable set of cross-layer adaptation solutions.

Adaptation ranking and selection. Since cross-layer adaptation solutions are
complex paths that involve diverse SBS elements, it is necessary to organize the
produced results and present them based on some criteria so that the best one can
be selected for deployment in the running system. While traditional selection
approaches focus on only the quality dimension; conversely, understanding the
consequences and convenience of an adaptation deployment is as crucial as the
achieved SBS quality. In this regard, one can think of a short-running process
where the time dedicated to deploy an adaptation must be small, or another
situation can be where the SBS owner has to pay considerably big penalties to
deploy the new, adapted system configuration. Thus, in order to address the
selection problem in a holistic way, we propose novel criteria, which take into
account not only the quality aspects but also the required efforts to deploy a
cross-layer adaptation in terms of costs and time, and the adaptation locations
in the SBS in terms of the domain layers involved in the solution.

For what concerns the ranking method, which should ground on the selection
criteria, we propose two different approaches. The first one is the well known
simple additive weighting – multi criteria decision making [55], which we we
have implemented in the framework and present the achieved results in this dis-
sertation. The second is a selection approach based on fuzzy logic where the
selection is carried out by inferring the ranking criteria through a fuzzy infer-

10



1.1. CONTRIBUTIONS

ence system [130, 56]. While the first approach offers a mathematical model
which every criterion has a certain weight and the normalized evaluations of
the criteria are aggregated based on these weights, the second approach applies
fuzzy logic to understand the complex relations between the diverse criteria in a
more convenient way through using linguistic parameters, and performs if-then
fuzzy rules to express the criteria relations and to figure out the aggregation.

An opportunist methodology for modeling. We identified a methodology to
create system and adaptation models in a systematic way and with the right level
of abstraction before feeding them to the cross-layer adaptation framework. The
approach is opportunist in the sense that it benefits from a given set of tools to
derive the system elements to be considered in the model. We gain two main
advantages from this methodology. First, we identify the system elements more
easily by taking into account simply the inputs and outputs of available tools.
Second, we avoid creating unnecessary elements in the model, which do not
have a corresponding tool, i.e., which will never be used by CLAM. The main
steps of the methodology are as follows: (i) identify the analyzers and solvers
available in the system, (ii) identify the inputs and outputs of analyzers and
solvers, (iii) identify the system elements based on inputs and outputs of tools
clarified in the previous step, here, we are particularly interested in analyzer
inputs that are corresponding to the system parts which are subjected to be ana-
lyzed after adaptations, and in solver outputs that are corresponding to the sys-
tem parts which are open to adaptation, (iv) identify the relations among system
elements by the assistance of the SBS domain expert, (v) identify adaptation
need types by looking at the solver inputs, (vi) identify adaptation action types
by looking at the solver outputs, (vii) associate the analyzer outputs with the
identified needs.

Following these steps, we guarantee to construct in an efficient way the sys-
tem and adaptation models as well as integrating the tools with these models.
The proposed methodology considerably facilitates the usage of our approach.

11



CHAPTER 1. INTRODUCTION

Heuristic methods for optimization and algorithm termination. We devel-
oped two heuristic methods to be used in practical settings, which the first one
allows for guaranteeing the termination of our algorithm while finding a rea-
sonable set of cross-layer adaptation solutions, and the second one allows for
optimizing the tree construction.

Regarding termination, in a practical setting, we would like to avoid an ex-
plosion in the number of generated tree nodes due to the wide variety of tools,
adaptations and the consequent system configurations. The principle of our ter-
mination method leans on the fact that we do not want to bring the system to a
final configuration which is very different from the initial system configuration.
The main idea behind is that we want to adapt the system, not to convert it into a
totally new system as a result of a chain of adaptation actions because such cases
imply a huge amount of efforts for the adaptation deployment, which obviously
turns out to be comparable to the amount of efforts for a re-design. Thus, we
propose a heuristic method to measure and control the number and distribution
of changes imposed on the system due to a cross-layer adaptation. In this way,
when we visit a tree node, if we identify that we overpass the threshold, which
is defined on the basis of system configuration size and its maximum percentage
that we permit for adaptation, we stop the tree expansion for that node.

Second, we utilize a greedy search algorithm [125] to efficiently traverse the
CLAM tree under the termination conditions stated above. It is an informed
search algorithm which first investigates the routes that appear to be most likely
to lead towards the goal, in our case a cross-layer adaptation solution. In this
algorithm, the node selection for the expansion of the tree is based on the goal-
distance function that is an admissible “heuristic estimate” of the distance from
the current node to the goal, i.e., for the given tree node, how close we are to
the solution. It is not trivial at all to determine a promising function for the
heuristic estimate of the distance to reach the goal. In this work, we present
a novel optimization approach to search and find solutions faster compared to

12



1.1. CONTRIBUTIONS

SBS 

description

Adaptation 

actions and 

needs

Solvers and 

analyzers 

description

CLAM   

INSTANTIATOR

Creation of 

analyzer and 

solver 

wrappers

Creation of 

system and 

adaptation 

models

WRAPPED TOOLS

Solvers
Analyzers

COORDINATOR

Recursive 

tree 

constructor

Initialize 

coordinator

initial 

tree

initial trigger

final 

tree

RANKER

ranking results

TREE 

ANALYZER

analysis results

Figure 1.1: Prototype Cross-layer Adaptation Tool

the traditional approaches such as DFS and BFS. The main idea behind is the
utilization of the system and adaptation models to observe solver behaviors at
qualitative level, and thus to understand the best case and worst case consequent
effects of adaptation actions on the system.

1.1.3 Prototype Tool and Empirical Evaluation

The cross-layer adaptation framework investigated in the dissertation has been
implemented as a prototype toolkit, namely CLAM platform, and the imple-
mentation is evaluated on diverse case studies from an application scenario for
the smart management of taxi reservations.

CLAM platform. The techniques and approaches presented here are imple-
mented and incorporated into the CLAM Platform. The architecture of the plat-
form is represented in Figure 1.1. Initially, the service-based system descrip-
tion, the identified adaptation actions and needs are translated into the system
and adaptation models as described in the formal framework. Subsequently the
tools are associated with these models and for each tool a wrapper is created in
order to integrate the tool implementation with the platform and to be able to in-
voke it whenever it is required. Once tool wrappers are in place and models are
created; coordinator, the core part of the platform where the CLAM algorithm

13



CHAPTER 1. INTRODUCTION

is implemented, is ready to get an initial trigger from one of the wrapped tools,
initial trigger can be an adaptation need as well as an adaptation action depend-
ing on whether it is an analyzer or a solver. Next, the recursive tree constructor
iteratively expands the tree and continues to build it based on the heuristic termi-
nation method presented in the thesis. After the tree is constructed, it is passed
to the tree analyzer for the paths analysis. First the solution paths are extracted
from the tree, then each path is evaluated with respect to the selection criteria
proposed in our approach. At the final step, the evaluation results are both pub-
lished as output and fed to the tree ranker to get a final aggregate value, i.e.,
a rank for each path. For ranking, from the two proposed approaches, simple
additive weighting – multi criteria decision making approach is applied.

Experimental evaluation. In order to provide a definitive account of the pre-
sented approach and incorporated methods, we evaluated our implementation
with respect to various perspectives from the validation of the introduced tech-
niques to the contribution of the proposed formal model.

The purpose of the experimental evaluations is threefold. First, we used the
prototype tool to instantiate the cross-layer adaptation approach and the im-
plemented ranking method. The results of the experiments demonstrated the
viability of our approach, and its contribution with respect to the existing works
when we consider the variety of adaptation capabilities that can be available in
the SBS. Second, we validated the proposed heuristic methods, which enforces
the termination of the CLAM algorithm in practical context as well as a more
informed solution searching. The experiments revealed that the methods bring
forward a considerable optimization with regard to the tree construction and a
reasonable assurance of the termination. Third, we evaluated the contribution of
the proposed modeling approach by changing the abstraction level of the model
for the same SBS. The outcome of this empirical work showed that the op-
portunist modeling methodology minimizes the number of necessary analyzer
invocations, and indeed, the efforts to create a very high level system model

14



1.2. THESIS OUTLINE

with a single node is comparable to the efforts to create the model adhering to
the methodology which we propose.

1.2 Thesis Outline

The rest of the dissertation is organized as follows. In Chapter 2 we give an
overview of the state of the art in the area of service-based systems and their
monitoring and adaptation capabilities. This overview starts from the back-
ground information that provides a thorough insight into service-based systems
and their layered structure. The chapter proceeds with the discussion of the
current trends and technologies being applied for the adaptation and monitor-
ing of these systems in general, and concludes with the review of the related
works and research lines in the specific area of cross-layer adaptation. Chapter 3
provides a guided description of the formal framework for cross-layer adapta-
tion, upon which the the techniques and approaches presented here are based.
The chapter essentially motivates the need for such a framework and continues
with the formal model of SBS and adaptation which are required by the frame-
work. In Chapter 4 we present the cross-layer adaptation manager (CLAM)
which realizes the proposed framework. We start with the formal definition of
the cross-layer adaptation problem. In pursuit of this definition, we introduce
the tree-based coordination algorithm which solves the problem, and finally, we
provide the theoretical proofs demonstrating the correctness of the presented ap-
proach. Then, follows Chapter 5 which is dedicated to the selection and ranking
problem regarding the alternative cross-layer adaptation solutions that CLAM
produces. The chapter handles the problem in two phases; first we discuss the
selection criteria and how to define them, then we propose two ranking meth-
ods which base on their operation on these criteria. Next, Chapter 6 presents
the implementation of the CLAM platform in details and proceeds with the de-
scription of the proposed modeling methodology and an overall user guide in

15



CHAPTER 1. INTRODUCTION

order to utilize the platform. Immediately afterwards, Chapter 7 is dedicated to
present and discuss the empirical evaluation of the techniques and approaches
proposed in the dissertation as well as the explanation of the heuristic methods
that we use for optimization and termination. Eventually, concluding remarks
and the future research directions are discussed in Chapter 8.

16



Chapter 2

State of the Art

2.1 Service-Based Systems

An SBA is an application that cannot be implemented by a singular service, but
requires the aggregation of multiple services in a network to guarantee the ap-
plication goals [95]. Services are independent entities that can achieve a specific
task or a group of tasks and be re-utilized for different applications in different
contexts. They can be provided by either the SBA owner itself or mostly by a
third party.

An SBS is the overall environment of the SBA, which includes functional
and quality requirements of the application, the execution context, underlying
services, platforms and infrastructures, and the corresponding support mecha-
nisms available for the monitoring and adaptation of the application.

SBSs are multi-layered in nature. Particularly the recent advancements in
cloud computing introduce the service concept at different levels of abstraction
and enables us to build software as a service (SaaS) on top of various platforms
(PaaS) and infrastructures (IaaS) that are also provided as a service [115].

An SBS can have different layers depending on the application domain. For
instance, in a geographically distributed complex application, agile service net-
works and cross-organizational relations can be important and introduced as an
organizational layer. Whereas for an enterprise application this might not be the

17



CHAPTER 2. STATE OF THE ART

case since all the partner services might be provided by the same company.
An illustrative SBA can be presented by its three functional layers: appli-

cation layer, constituent services layer and the underlying infrastructure layer.
Application layer is the highest level functional layer where the business pro-
cess is described in terms of application activities, constraints and requirements.
At this layer, the entire business process can be constructed as a composition of
services and key performance indicators (KPI) can be introduced as metrics that
show quantitatively if the business performance meets the pre-defined business
goals of the SBA. Secondly, at services layer we can have software or human-
based partner services, which are composed for the business process. Compo-
sition can be achieved by service orchestration and services which are part of
an orchestration can be atomic services or again service orchestrations. Atomic
services are self-contained and do not use other services for implementing their
business logic. Finally at infrastructure layer we have the underlying resources
to build and run the SBAs and their constituent services. These resources in-
clude software platforms, operating systems as well as low level storage, com-
puting and memory facilities.

2.1.1 Business Process Management

A process is an ordered set of activities with a start point and an end; it has
inputs in terms of resources and the required information and an output, i.e., the
results it produces [94]. Therefore, we may define a process as any ordering of
steps that is initiated by an event and produces some output [32]. A business
process is a process that aims at achieving a well-defined business outcome
and is completed considering a set of procedures. The key points for business
processes are that they may span organizations and may typically involve both
people and systems.

Business process may reveal the entire SBA or in some cases part of it where
SBA is actually a combination of business processes in a large-scale, cross-

18



2.1. SERVICE-BASED SYSTEMS

organizational domain. While business activities constitute the process by per-
forming well-defined tasks, business rules together with business policies might
have an implicit or explicit effect on the specification of business processes and
activities.

Performance of business process is assessed by pre-defined business goals
that are measured by KPIs. KPIs are formed by assigning target values to the
business metrics that are relevant for the application. Business metrics can be fi-
nancial such as revenues, customer-related such as customer satisfaction index,
process-related such as order fulfillment cycle time or “learning and growth”
related such as innovation rate [124].

In some cases there might be cross-organizational interactions among com-
panies, which collaborate to construct geographically distributed complex SBAs.
To illustrate such interactions, agile service network (ASN) model is used. ASN
depicts the highest and most abstract business level where partners (constitutive
companies) are nodes and their offerings and revenues are edges on the model.
While ASN pictures overall relations of service providers without any details,
the refinement of this model for a specific SBA signifies forming the business
processes of the application [60].

2.1.2 Services and Service Compositions

There exist several definitions to define what a service is. One distinct definition
is as follows [78]:

A Service is a mechanism to enable access to one or more capabilities, where

the access is provided using a prescribed interface and is exercised consistent

with constraints and policies as specified by the service description. A service

is provided by an entity, namely the service provider, for use by others, but the

eventual consumers of the service may not be known to the service provider and

may demonstrate uses of the service beyond the scope originally conceived by

19



CHAPTER 2. STATE OF THE ART

the provider.

Services have functional and non-functional aspects. While the capabilities
that a service offers to its consumers correspond to the functional aspects, ser-
vice quality metrics (QoS) expose non-functional properties of a service build-
ing a base for the overall performance metrics of the SBA. QoS metrics talk
about several aspects of a service such as response time, cost, availability, reli-
ability or scalability.

We can compose services to create new services. Service composition is the
combination of a set of services for achieving a certain purpose [65]. When talk-
ing about service composition, the concepts of orchestration and choreography
come to one’s mind. Description of these terms differ especially considering the
interactions among services to be composed [98]. The main difference is that
for orchestration the interaction protocol is described from the point of view of
a specific service, on the other hand a choreography specification gives a global
view of the interactions among all the services.

A service orchestration composes a new service by orchestrating several
services in a process flow. Services which are part of an orchestration can
be atomic services or again service orchestrations. Atomic services are self-
contained and do not use other services for implementing their business logic.

There have been several efforts related to the creation of complex services
out of simpler ones using various languages, e.g. “WSFL” [72], “XLANG”
[112], “BPML” [8], “BPEL” [5].

2.1.3 Platforms and Infrastructures

Service platforms and infrastructures provision the necessary execution envi-
ronment for SBAs. This run-time environment includes the hardware resources
such as the cpu, memory and storage as well as operating systems, middleware,
application containers and other software. Moreover, services and SBAs can

20



2.2. MONITORING, ANALYSIS AND ADAPTATION OF SERVICE-BASED SYSTEMS

be deployed on top of grids and clouds where resources include protocols and
network infrastructure as well [84, 96].

In some cases infrastructures can be configurable and scalable based on the
changing SBA requirements. Especially, clouds provide a new level of flexibil-
ity for SBAs in this sense. While pre-configured machine images decrease the
deployment cost, several load-balancing mechanisms and easy resource alloca-
tion significantly decrease the run-time cost [115].

Like services, cloud providers as well offer a certain level of QoS for its
consumers. QoS parameters may refer to several aspects of the clouds such as
response time, cost, availability or reliability [39].

2.2 Monitoring, Analysis and Adaptation of Service-Based
Systems

Monitoring and Analysis. The term “monitoring” has been extensively used
in many disciplines and particularly in service-oriented applications. Depend-
ing on a particular purpose of the system and the kind of information being
collected, the definition of the monitoring has different interpretations. In a
broad sense, monitoring may be defined as a process of collecting and reporting
relevant information about the status, execution and evolution of service-based
applications. This general definition becomes more concrete when the monitor-
ing goals are taken into account. Monitoring may be used to discover problems
in the application configuration. In this case monitoring may be defined as an
“analysis” process, i.e., a problem of observing the behavior of a system and
determining if it is consistent with a given specification [33].

Especially for SOA, monitoring aspects may be both functional and non-
functional [44]. Functional properties characterize the function (or behavior)
that a given system is expected to provide. Typical examples of the functional
properties are failures, assertions or behavioral properties, invariants. Non-

21



CHAPTER 2. STATE OF THE ART

functional properties define quality characteristics that often can be measured
in a quantitative way. Typical non-functional properties refer to availability,
latency, reliability.

Monitoring capabilities are the mechanisms and technologies defined at dif-
ferent parts of the SBS for collecting information about the behavior, functional
and non-functional properties of the application and the changes in the environ-
ment. Indeed, monitoring capabilities at all layers are necessary to understand
whether the SBA is executed and evolves in a normal mode and whether there
are some deviations or violations of the desired functionality and performance.

At the Business Process Management level, monitoring capabilities include
real-time monitoring of business activities, the measurement of KPIs, as well as
mechanisms for a proactive identification and notification of deviations. Con-
sidering service compositions monitoring capabilities mainly address the prob-
lem of checking whether certain predefined properties are satisfied when the
service composition is executed. Finally, we have monitoring mechanisms that
report on quality aspects of services and the underlying infrastructures [60].

In [97] adaptation of services and processes is remarked as a research chal-
lenge in SBSs. Systems should be furnished with adaptation capabilities so that
they can continually update themselves to respond to the problems reported by
monitoring and analysis mechanisms.

Adaptation. We can define adaptation as a process of modifying SBS in
order to satisfy new requirements and to fit new situations dictated by the en-
vironment. An adaptable SBS is a system augmented with the corresponding
control loop that monitors and modifies itself on the basis of adaptation strate-
gies. Notice that adaptations can be performed either because monitoring has
caught a problem or because the application identifies possible optimizations
or because its execution context has changed. The context here may have a
broad meaning, that is the set of services available to compose SBAs, the com-
putational resources available, the parameters and protocols being in place, user

22



2.2. MONITORING, ANALYSIS AND ADAPTATION OF SERVICE-BASED SYSTEMS

Monitoring 
mechanisms

Adaptation 
mechanisms

Monitored 
events

Adaptation 
requirements

Adaptation 
strategies

detect

trigger

achieve

realize

Figure 2.1: Conceptual A&M framework

preferences, environment characteristics [51].

SBSs have diverse adaptation capabilities regarding different layers of the
system. Adaptation capabilities for the Business Process Management may
range from temporary modifications to specific components of the business pro-
cesses to permanent reconfigurations of the whole business model and business
network the latter case often requires human intervention and re-design activi-
ties. Adaptation capabilities for service compositions and services usually cor-
respond to the activation of pre-codified adaptation strategies. These strategies
can be defined in various ways, ranging from procedural approaches (concrete
actions to be performed are specified), over declarative approaches (the goals
and requirements to be achieve are specified), to hybrid approaches. Adapta-
tion capabilities for service infrastructures provide mechanisms related to re-
source brokering, load balancing and renegotiation of Quality of Service (QoS)
parameters [60].

A general framework for SBA monitoring and adaptation defined in [51] is
represented in Figure 3.5. In this framework monitoring mechanism refers to

23



CHAPTER 2. STATE OF THE ART

any analysis mechanism that can be used to check whether the actual situation
corresponds to the expected one. Thus, the meaning is very broad; it goes be-
yond traditional run-time monitoring and may include run-time verification and
testing, post-mortem analysis, data mining, etc. With these mechanisms one
may detect monitored events, i.e., the events that deliver the relevant informa-
tion about the application status and context. In turn, monitored events trigger
adaptation requirements (or adaptation needs), which represent the necessity to
update the SBS in order to remove the difference between the actual (or pre-
dicted) situation and the expected one. In order to satisfy those requirements it
is necessary to define adaptation strategies, which in turn are realized with the
appropriate adaptation mechanisms – the techniques and facilities provided by
the application or by the operation and management platform in different SBS
layers.

2.2.1 Monitoring and Analysis at Business Processes Level

Monitoring and analysis approaches at business process level constitute “Busi-
ness Activity Monitoring (BAM)” and KPI monitoring [36]. BAM enables near
real-time monitoring of business activities, measurement of KPIs, and auto-
matic and proactive notification in case of deviations and violations [17, 107,
57]. However, there are approaches other than BAM as well to detect KPI de-
viations and violations in business processes [23, 122].

Among approaches that focus on BAM [17] presents the BP-Mon language
and its underlying formal model. BP-Mon is a high-level intuitive graphical
query language that allows for easy description of the execution patterns to be
monitored. An important feature of the language’s implementation is that BP-
Mon queries are translated to BPEL processes that run on the same execution
engine as the monitored processes. Differently, [107] enables automatical ex-
tension of WS-BPEL processes with probe points in order to report interesting
business activities to an auditing web service. The resulting auditable process

24



2.2. MONITORING, ANALYSIS AND ADAPTATION OF SERVICE-BASED SYSTEMS

definition does not use proprietary elements but remains compliant with the
WS-BPEL standard. Another approach is [57] which proposes an agent-based
architecture with the aim of providing continuous analysis for business activi-
ties. The authors introduce a container-based method for the event processing
that enables a near realtime event data integration.

Both [23] and [122] address monitoring and analysis of KPIs, and prediction
of violations based on data mining. In [23], proposed by HP, abstract process
monitor is the basic component responsible for collecting data and interpreting
them at the level of abstract processes. Once process data is available, KPI val-
ues are computed by the metric computation engine and analyzed through deci-
sion tree-based prediction engine. Differently, in [122] also the QoS parameters
of lower system layers are considered as factors of influence. Moreover, the
authors provide a drill-down functionality to gain deeper knowledge about the
structure of dependencies.

2.2.2 Monitoring and Analysis at Services and Service Compositions Level

At the services and service compositions level the monitoring engines and frame-
works provide means to observe the execution of composed services (specified,
e.g., in BPEL), including functional and non-functional properties and metrics
of the compositions [13, 79, 137], or the constituent services [61, 75].

[13] focuses on the run-time checking of the assumptions under which the
component services are supposed to participate to the composition, and the con-
ditions that the composition is expected to satisfy. The authors propose the spec-
ification framework that relies on Run-Time Monitoring Language (RTML),
and runtime monitoring environment that extends the standard BPEL engine
with the monitoring and auditing capabilities. [79] allows expressing complex
properties over events, fluents, and timestamps in order to monitor the SLA
properties in the WS-Agreement notation. The monitoring process relies on au-
tomated extraction of the special templates that represent the formulas in event

25



CHAPTER 2. STATE OF THE ART

calculus. Differently, [137] proposes an analysis method to estimate the QoS
of a service composition, in which the probability distributions of the QoS of
component services can be in any shape.

Regarding service monitoring, [61] presents the WSLA framework that de-
fines a language for the specification of contract information that allows for de-
scribing the parties involved in the agreement, the relevant QoS characteristics,
as well as the ways to observe and measure them. Similarly, [75] proposes the
Cremona architecture for creation, management and monitoring service-level
agreements represented as WS-Agreement documents.

2.2.3 Monitoring and Analysis at Platforms and Infrastructures Level

Monitoring and analysis at platforms and infrastructures level may be realized
on top of Grid and cloud monitoring solutions [4, 63, 92], platform governance
[69, 120].

The authors in [4] propose the GridICE tool to monitor the status of grid
infrastructures in a centralized way. It is implemented on top of Globus MDS-2
grid information services [31]. As more recent work, [63] introduces a failure
propagation approach for the cloud-based applications in order to avoid costly
SLA violations. Differently, [92] proposes to monitor directly the cloud through
Q-Clouds, a QoS-aware control framework that tunes resource allocations to
mitigate performance interference effects. Q-Clouds uses online feedback to
build a multi-input multi-output (MIMO) model that captures performance in-
terference interactions.

Regarding the platforms, [69] presents an ecosystem-oriented model for de-
veloping and deploying enterprise applications in the cloud in order to support
the governance of cloud application platforms. Differently, [120] performs plat-
form monitoring from the service management point of view.

26



2.2. MONITORING, ANALYSIS AND ADAPTATION OF SERVICE-BASED SYSTEMS

2.2.4 Adaptation at Business Processes Level

Several approaches exist to adapt business processes [18, 77, 42, 59, 46]. [18]
presents a methodology for the automated generation of adapters for data flow
modifications in a workflow, but its applicability is confined to resolution of
mismatches, which occur as a result of a workflow modification. Differently,
[77] considers the semantic verification of business goals upon an adaptation
in the process, but the authors do not mention how an adaptation is triggered
and applied. [42] presents a technique for automatic error correction during the
design of process models. The approach is based on simulated annealing and
it identifies a number of process model alternatives that resolve one or more
errors in the original model. In [59] the authors propose to improve the flex-
ibility of processes where modification of the control flow is possible at run
time by adding or replacing services. The approach benefits from the analogy
between publish/subscribe systems and the AOP paradigm. Finally, the authors
of [46] bring a different perspective to the adaptation by introducing a variabil-
ity framework for BPM which utilizes temporal logic formalisms to represent
the essence of a process, leaving other choices open for later customization or
adaption. The goal is to solve two main issues of BPM: improving reusability
and flexibility.

2.2.5 Adaptation at Services and Service Compositions Level

Naturally, most of the adaptation approaches in SBSs focus on services and
their compositions. Dynamic service binding [117, 29], QoS awareness [93, 7,
28, 119, 12], data mediator design [68, 90, 67, 24, 50] and context awareness
[7, 81, 20, 19].

When unavailability or poor efficiency of some services are monitored dur-
ing the application run; in this case one possibility to adapt is dynamic service
binding and re-binding. This kind of adaptation is studied by [117, 29] where

27



CHAPTER 2. STATE OF THE ART

run-time execution and re-configuration of service composition are enabled. In
[117], the METEOR-S framework is proposed to give flexibility to the service
binding operation making use of semantic web languages. In [29], SCENE plat-
form is introduced where proxies for dynamic binding and re-binding cases are
generated and BPEL code is modified to include calls to these proxies. The
suitable services are selected among the candidates based on the specified rules.

When QoS violation of a service is detected by the monitoring system, re-
placement of the service or re-negotiation with the service provider are among
alternatives for adaptation. Usually Service Level Agreements (SLA) are uti-
lized to keep QoS awareness in SBSs [93]. An SLA is a contract between
the service provider and the service user and used to set the QoS values to be
ensured by the service provider. [93] proposes an approach called NSLA for
negotiation of SLAs. Both direct negotiation of the interested stakeholders and
automatic negotiation are enabled in NSLA framework. Similarly, [7] presents
a framework for service adaptation where QoS negotiation is enabled at design-
time. Instead, in [28] an execution policy that comprises of restrictions for QoS
attributes is specified and most suitable services are selected dynamically based
on this policy. Similarly, [119] proposes a QoS-based composition. The au-
thors present an approach that arranges functionally similar services in clusters
and computes the QoS of each cluster, and finally the planning tool composes
workflows consisting of these clusters. The authors of [12] modify processes
for QoS conformance as well, they present ProAdapt, a framework for proactive
adaptation of service composition due to changes in service operation response
times, or unavailability of operations.

In some cases, the monitoring system detects mismatches in service inter-
faces, protocols or the data formats. To tackle this problem, mediators are de-
signed to re-enable proper service interactions. In [68, 90, 67] adapter patterns
are defined for both interface and protocol level mismatches. In [67] it is possi-
ble to separate the adaptation logic from the business logic by aspect orientation.

28



2.2. MONITORING, ANALYSIS AND ADAPTATION OF SERVICE-BASED SYSTEMS

[24] proposes automatically generated adaptation scripts for protocol-level mis-
matches. Mismatch is defined as the difference in the order of operations offered
by the expected service and the real concrete service. In [50] mismatches are
categorized with respect to the necessity and possibility of an adaptation and
then an adaptation procedure is described through operators for the solvable
mismatches in the categorization.

The context refers to the dynamic environment in which an SBS is embedded
and executed. The environment can encompass various aspects such as a user,
a computing system and/or a physical environment. A context-aware monitor
can report the changes in the context, and depending on the affected part of the
application, various adaptation strategies can be used to adapt the application to
the dynamicity of the environment. Approaches in [7, 81, 20] are in relevance
to this kind of adaptation case. The approach proposed by [7], “PAWS”, en-
ables context-awareness as well as QoS awareness. In PAWS framework, the
run-time environment exploits the design-time mechanisms to preserve the ex-
ecution when a context change occurs. [81] introduces some basic constructs
and principles to enable built-in adaptation for pervasive flows. The authors of
[20, 19] provide an adaptation approach that can automatically adapt business
processes to run-time context changes which prevent achievement of a busi-
ness goal. They define a formal framework that adopts planning techniques to
automatically derive necessary adaptation activities on demand.

2.2.6 Adaptation at Platforms and Infrastructures Level

Various self-* techniques are proposed to adapt SBSs at infrastructure level.
While some adaptations may be service deployment/platform related [70, 99,
26, 86, 63], some other focuses on computing resources [2, 110, 74].

The work on self-adaptation and self-healing mostly addresses the moni-
tored failures and problems in services infrastructures and platforms. Vari-
ous repair mechanisms are applied to implement self-healing systems. In [70]

29



CHAPTER 2. STATE OF THE ART

WS-DIAMOND framework is presented to allow easy diagnosis and recovery
of services at run-time. The approach in [26] presents a plug-in architecture
where adaptation actions can be integrated as aspects by using dynamic aspect-
oriented workflow language (AO4BPEL). [99] proposes a methodology and a
tool to incrementally learn the repair strategies based on keeping the history
of previously performed repair actions for web services. Another self-healing
approach is presented in [86]. The authors define a QoS-aware infrastructure
for WS-based applications through auto-detection, diagnosis, and recovering of
hardware and software problems. Finally, [63] introduces an SLA-aware service
virtualization architecture that provides non-functional guarantees in the form
of Service Level Agreements and enables on demand application deployment
in the cloud.

Regarding resource management, [2] proposes an optimization model that
identifies the optimal resource allocation in service oriented applications by
maximizing a provider’s revenues while satisfying customers QoS constraints
and minimizing resource usage cost. [110] uses OpenNebula and Haizea to-
gether to provide a resource management solution that supports a variety of
lease types in the clouds. Eventually, the authors of [74] formalize a model of
a service-oriented computing environment and a workflow graph representation
for the environment. Then, they propose SCPOR, a scientific workflow schedul-
ing algorithm that is able to schedule workflows in need of elastically changing
compute resources.

2.3 Modeling Service-Based Systems

Modeling can serve service-based systems in various ways. Considering the
complexity of such systems, one clear advantage that modeling brings could be
at the deployment stage of such systems to conceptualize and construct them
better. Moreover, it helps throughout the whole SBS life-cycle, i.e., it facilitates

30



2.3. MODELING SERVICE-BASED SYSTEMS

maintaining the deployed systems as well in terms of both monitoring/analysis
and adaptation.

2.3.1 Modeling for Application Deployment

The works in [10, 9, 11, 71, 83] propose models for customizable development
and easy deployment of service-based applications.

The work in [10] presents SOAD, an approach proposed by IBM, which
aims to give SOA practitioners concrete, tangible service modeling and real-
ization advice by creating a reusable SOA decision model structured according
to Model-Driven Architecture (MDA) principles. The methodology relies on
the codification of existing knowledge in the form of architectural patterns and
decision models to identify the required decisions, give domain-specific pattern
selection recommendations, and provide a link from platform-independent pat-
terns to platform-specific decisions. SOMA is another method developed by
IBM [11] to guide in the modeling (design) of SOAs. It enables creation of
SBAs by creating continuity between the business intent and the specific tech-
nical implementation. Differently, the authors of [9] focus on the infrastructural
point of view and address the challenge of configuring the hosting infrastructure
for SOA service deployment by formally capturing service deployment best-
practices as model-based patterns. Yet, [71] presents another formal framework
to provide expert users with the ability of rapidly building service-based appli-
cations according to new requirements and needs. The underlying technique
integrates two visual and executable formalisms: live sequence charts, to de-
scribe control flow, and graph transformation systems, to describe data flow and
processing. Finally, [83] presents a generic approach for the modeling, pack-
aging, customization and on-demand provisioning of SBAs. They introduce a
variability metamodel to model customizable aspects of the application.

31



CHAPTER 2. STATE OF THE ART

2.3.2 Modeling for Monitoring and Analysis

There have been modeling approaches to facilitate monitoring and analysis of
SBSs. While some of these approaches concentrate on directly modeling the
monitoring properties [85, 14, 111], some other focus on modeling the SBS to
support system analysis [127, 58].

The authors of [85] present an MDA approach which formalizes the monitor-
ing requirements by focusing on supporting the specification and transformation
of KPIs to an executable implementation. [14] utilizes MDA approach as well
for Model-Driven Management of Services (MDMS). The approach supports
the explicit modeling of quality dimensions, management objectives, and key
performance indicators, and the transformations required to exploit these con-
cepts at runtime for monitoring. [111] proposes modeling for monitoring lower
levels for SOA compliance. Emitted events contain unique identifiers of models
that can be retrieved dynamically during runtime from a model-aware repository
and service environment. In [127], the authors model collaborative services to
enforce strong accountability, analyze incompliances and enhance the trustwor-
thiness of business processes. Finally, [58] presents an architectural approach
to model, enact and manage business processes and their changes based on ex-
plicitly represented service relationships of a service composition.

2.3.3 Modeling for Adaptation

Although SBS modeling approaches in literature mostly target system deploy-
ment and system analysis, yet there are modeling approaches proposed to sup-
port adaptation of SBSs [113, 21, 43, 46].

[113] presents a methodology and system for changing SOA-based business
process implementation. The authors distinguish two layers for change manage-
ment: At the design layer processes are modeled in the ontology-based semantic
markup language for web services OWL-S. At the execution layer the processes

32



2.4. CROSS-LAYER APPROACHES IN SOFTWARE SYSTEMS

are translated into BPEL. In [21] the authors present a model-based approach
that utilizes goal and variability models to define design-time and runtime ele-
ments of service-oriented systems. Variability models are built from the anal-
ysis of goal models that capture stakeholders needs. They define the allowed
system changes at the levels of stakeholder needs, architecture, and execution
environment. Similarly, [46] introduces a variability framework for BPM. The
framework utilizes temporal logic formalisms to represent the essence of a pro-
cess, leaving other choices open for later customization or adaptation where the
goal is to solve two major issues of BPM: enhancing reusability and flexibility.
Differently, [43] focuses on the influence of the environment on the application
and proposes a stochastic Petri net based method on modeling an environment-
aware self-adaptive strategy for SBAs. The method proposed builds separate
models for both service and environment.

2.4 Cross-layer Approaches in Software Systems

When we consider software systems, we always encounter interacting, interde-
pendent parts in them. This is due to the fact that we integrate various small
functionalities to create a bigger, more complex functionality that we call “the
system”. Usually, these parts group among each other with respect to their di-
verse levels of abstraction, which we call “layers” [16]. Various cross-layer
approaches emerged in literature due to this characteristic of software systems.

There have been approaches that focus on the development and deployment
of systems taking into account the cross-layer aspects of the system. In [9], the
authors propose a pattern-based method to address the challenge of configuring
the hosting infrastructure for SOA service deployment. Similarly, [83] consid-
ers the relation between the application and the underlying infrastructure and
proposes an approach to configure and automatically deploy applications in the
cloud. Instead, [25] deals with adaptable service development through identi-

33



CHAPTER 2. STATE OF THE ART

fication of a set of variability types, which consider also the service execution
platform.

There have been some cross-layer works that aims at addressing the monitor-
ing problem. The approach in [88] proposes a cross-layer monitoring approach
that considers service and infrastructure level events, which are produced by
services communicating via a distributed enterprise service bus. Similarly, [40]
proposes an extensible framework for monitoring business, software, and in-
frastructure services, yet the approach does not support the correlation of terms
monitored at different layers.

Diagnosis and analysis of systems is another notable research attempt con-
sidering state-of-the-art cross-layer approaches. [126] presents a framework,
proposed by SLA@SOI Project, which enables a process-centric business con-
tinuity analysis. In this approach, business impact of failed IT services are es-
timated and SLAs are validated through a top-down dependency analysis based
on simulation. [69] is a similar approach that performs cross-layer diagnosis to
report policy violations. Differently, [121] proposes an approach for business it
alignment where there exist a mapping between the BPMN and BPEL so that
they are synchronized in case of a change in the process at BPMN or BPEL
level.

Finally there have been attempts for coordinated adaptation taking into ac-
count the cross-layer nature of systems. [128] supports supports application
QoS under CPU and energy constraints via coordinated adaptation in the hard-
ware, OS, and application layers in multimedia systems. Similarly, [34] focuses
on operating systems and uses a common multi-level adaptation framework to
adapt both the OS and the application layers in a coordinated way. Differently,
[38] deals with the problem of management of resources shared by multiple ap-
plications interacting with each other in the same environment. While [128, 34]
cover cross-layer adaptation issues in operating systems, the authors of [38] tar-
get mobile applications domain. We introduce and discuss the cross-layer adap-

34



2.5. RELATED WORK ON CROSS-LAYER ADAPTATION

tation approaches for the area of SBSs separately in next section and in more
detail since they are the most relevant works regarding the results we present in
this thesis.

2.5 Related Work on Cross-layer Adaptation

A well-known method of managing SBSs is MAPE (monitoring, analysis, plan-
ning, execution) [62, 91]. Thus, the traditional way to adapt a service-based
application follows MAPE’s rules: (i) The running application is continuously
being monitored. (ii) Monitoring data are collected and analyzed to identify
anomalies in the system. (iii) For each anomaly there exists an adaptation plan
to get rid of the problem. (iv) Once the adaptation is decided, it is executed in
the system, so the running SBS is updated accordingly.

There is a significant problem with this habitual practice of MAPE. For com-
plex systems like SBSs, and given their multi-layer structure, it is probable that
an adaptation creates a new problem while it solves another problem, which
means that the traditional way of applying MAPE fails. That is to say, without
understanding the consequences of an adaptation action for the whole system,
it might be too costly, even harmful to update the system immediately after
an adaptation decision. Therefore, we should have coordination mechanisms
which take into account the cross-layer aspects of the system [80, 87] and derive
holistic adaptation strategies accordingly. Only once the adaptation strategies
are validated by these coordination mechanisms, then they should be applied to
the system.

In this section we overview related works on cross-layer adaptation, pre-
sented in the literature. We discuss the approaches and the results obtained with
respect to the goals and problems we presented in the introduction to this thesis,
namely the ability (i) to accommodate different SBS domains, different SBS
layers (heterogeneity of SBSs), (ii) to support new application goals, new adap-

35



CHAPTER 2. STATE OF THE ART

tations (dynamicity of SBSs), (iii) to take into account the fragmented nature of
SBS layers and layer-specific adaptation capabilities, (iv) to consider possible
contradictory adaptations, i.e., to analyze the impact of adaptations on the SBS,
(v) to propose alternative cross-layer solutions and a selection mechanism.

2.5.1 Cross-layer Adaptation Approaches in Service-Based Systems

Cross-layer adaptation of service-based systems has recently become a focus of
a number of research works. Among them, the most notable ones are [45, 41,
53, 132, 103, 123, 108] that we would like to discuss in detail in this section.

In [45] the authors propose a framework to support cross-layer self-adaption
in SBSs. They present a technologically agnostic middleware to facilitate co-
ordinated cross-layer adaptations by integrating interface and application layer
adaptation mechanisms. Service interface layer is the layer which constitute
loosely coupled services, it hides service implementation details and the tech-
nology platform. The application layer is the layer in which service logic is
developed and deployed on different technology platforms.

The framework developed in [41] addresses a different problem: How to
model cross-layer SLA contracts for monitoring and adaptation. The proposed
SLA contract model includes parameters of KPI, key goal indicators (KGI) and
IT infrastructure metrics. The authors present a methodology for creating, mon-
itoring, and adapting an SLA contract, in particular, leveraging aspects of Qual-
ity of Service (QoS) violations. “User”, “business” and “IT infrastructure” are
the layers referred in this work.

[53] provides an intelligent traceability-based framework for analyzing the
impact that changes in SOA-based systems can have on key performance in-
dicators. The impact analysis is accomplished through evaluating KPIs based
on the aggregated performance of lower level metrics. The framework targets
a specific type of SBS where the layers are service, business and infrastructure,
and exploits a dependency model among a set of fixed SOA artifacts.

36



2.5. RELATED WORK ON CROSS-LAYER ADAPTATION

The authors of [132] propose a framework, able to monitor and adapt SBAs
across business process, service composition and service infrastructure layers.
This is achieved by using techniques, such as event monitoring and logging,
event-pattern detection, and mapping between event patterns and appropriate
adaptation strategies. In addition, a taxonomy of adaptation-related events and a
meta-model describing the dependencies among the SBA layers are introduced
in order to ensure the cross-layer effects.

[103] presents a pattern-based approach for multilayer application adapta-
tion, with layer-specific adaptation solution templates bound to application mis-
matches that are organized into hierarchical taxonomies. A mismatch is any
kind of event that should be addressed by an adaptation template in the sys-
tem, and a template is any adaptation capability available in the system that is
exposed as a service with a WSDL interface.

In [123] the authors analyze the dependencies of KPIs on process quality fac-
tors from different functional levels of an SBS such as QoS parameters, and then
an adaptation strategy is decided to improve all the negatively affected quality
metrics in the system. To analyze KPI violations, machine learning techniques
are used. Instead, adaptation strategies are predefined for every negatively af-
fected metric.

The work presented in [108] proposes a solution to avoid SLA violations by
applying cross-layer adaptation techniques. The approach exploits SBS layers,
which are business, service composition and infrastructure, for the prevention
of Service Level Agreement (SLA) violations. The identification of adaptation
needs is based on QoS prediction, which uses assumptions on the characteristics
of the running execution context. Multiple adaptation mechanisms are available
to react on the adaptation need, acting on different layers of the SBS, the right
one is selected by the adaptation strategy engine, which is a multi-agent plat-
form.

37



CHAPTER 2. STATE OF THE ART

2.5.2 Comparison of Cross-layer Adaptation Approaches

In this section we compare the cross-layer adaptation approaches presented in
previous section as they are particularly relevant to the one we introduce in this
dissertation.

The comparison we present here, without any claim to be thorough, focuses
on the important aspects of SBSs that the cross-layer adaptation should take into
consideration as discussed in the introduction of this thesis, namely: (i) Hetero-

geneity of SBSs: There is a wide variety of SBSs with different domains and
layers. (ii) Dynamicity of SBSs: Business goals, application constraints, main-
tenance tools, even the application itself can change during the lifetime of an
SBS. (iii) Independent development and maintenance of SBS layers: The SBS
layers are designed, developed and maintained by different experts. Similarly,
analysis, monitoring and adaptation tools, available for the SBS, work on only
a restricted part of the system and are unaware of the rest. (iv) Incompatible

adaptations: An adaptation that is performed in one part of the system might
affect negatively another part of the system. (v) Variety of solutions: There
might be various solutions to address an adaptation problem.

Heterogeneity of SBSs. The system elements considered in a cross-layer
adaptation solution cannot be kept fixed. The solution should be generic enough
to accommodate various application domains. Most of the approaches presented
in previous section ([45, 41, 53, 132, 123, 108]) propose a specific SBS model
with fixed layers and system aspects. While [45] proposes a two-layer system
which consists of service interface and service application layers, [41] takes
into account the user aspect and introduces user, business and IT infrastructure
layers. The approaches [53, 132, 123, 108] follow the architecture proposed by
S-Cube project [1] with the layers business process, service composition and
service infrastructure. Differently, [103] has a general definition of multilayer
applications and support the diversity of SBS domains and their system layers.

38



2.5. RELATED WORK ON CROSS-LAYER ADAPTATION

Dynamicity of SBSs. The solution should be flexible enough to accom-
modate introduction of new system elements and/or analysis, monitoring and
adaptation tools during the lifetime of the SBS. Among the cross-layer adapta-
tion approaches, while [45, 41, 132, 103, 123] supports introducing new adap-
tation actions in the solution, adding new monitoring and analysis tools to the
overall analysis is supported only by [103, 123]. Moreover, only [103] has the
flexibility to introduce new system elements, new system layers to the existing
SBS.

Independent development and maintenance of SBS layers. While the
existing fragmented adaptation capabilities should be utilized properly by the
cross-layer coordination, the solution should keep in mind the fact that frag-
mented view of SBS should be coordinated but cannot be totally centralized in
a way that there is a single adaptation expert who takes control of the whole
system knowing all the probable problems and solutions that might occur in
the SBS. Except for [53], all the current approaches support re-use of existing
adaptation mechanisms used for the maintenance of the SBS. However, all of
these approaches are centralized in the sense that they expect that the adapta-
tion designer knows about the whole system to build the cross-layer adaptation
solutions.

Incompatible adaptations. There might be several conflicting adaptation
goals in the system, which means an adaptation can influence a system aspect
negatively while it is reinforcing another system aspect. Therefore the solution
should ensure that the proposed cross-layer adaptation strategy is compatible
with the overall system. Among the works presented in the previous section,
only [53] enables the impact analysis of the proposed adaptations on the whole
system. However, if an adaptation has a problem, i.e., negatively influences
some part of the system, no solution is provided to tackle this inconsistency.

Variety of solutions. There might be several cross-layer adaptation paths
to address a problem in the system, the solution should have a selection and

39



CHAPTER 2. STATE OF THE ART

ranking mechanism to organize the alternatives. This is the case only in the
works [103, 123]. In [123] the list of alternative adaptation strategies is filtered
and ranked based on a constraints and preferences model. Constraints allow
for defining conditions which should never be violated, while preferences are
specified as weights on different quality metrics of the SBS. In [103] an adap-
tation strategy may involve specific adaptation solutions or the general ones.
The authors propose a user-configurable ranking mechanism that employs the
following criteria for an adaptation strategy: number of specific adaptation ac-
tions, number of general adaptation actions, number of total adaptation actions,
and number of raised events for the strategy.

2.6 Discussion

One of the key features of service-based systems (SBS) is the capability to adapt
in order to react to various changes in the business requirements and the appli-
cation context. Holistic adaptation approaches are of primary importance to
efficiently cope with the complex layered structure, and the heterogeneous and
dynamic execution context of SBSs.

Several approaches have been proposed to tackle the adaptation problem.
However, a fundamental issue with most of these works is their fragmentation
and isolation. While these solutions are quite effective when the specific system
problem they try to solve is regarded, they may be incompatible when the whole
system is taken into account. This challenge should be handled by properly
coordinating adaptation actions provided by the different analysis and decision
mechanisms through cross-layer adaptation strategies.

Among the limited number of cross-layer adaptation approaches, most of
them suffer from the fact that they ignore or oversimplify the important features
of service-based systems. Some of them restrict the solution for a concrete,
layered architecture of the SBS getting far from being generic, most of them

40



2.6. DISCUSSION

ignore the effects of the adaptation on system layers, and finally, none of them
take into account that SBS adaptation coordination cannot be totally centralized
in a way that adaptation designer knows everything and predefines all the means
for cross-layer adaptation.

In our research work we were primarily motivated by the necessity to pro-
pose a cross-layer adaptation approach that overcomes the limitations of exist-
ing works and is capable of tackling the issues specific to the heterogeneity and
complexity of service-based systems. Among the most important characteris-
tics provided by our approach are (i) the genericness for accommodating diverse
SBS domains that can have different layers and system aspects, (ii) the flexibil-
ity for allowing new system artifacts and adaptation tools, (iii) the capability for
dealing with the complexity of the SBS considering the possibility of a huge
number of problems and adaptations that might interfere with each other in the
same system.

41



CHAPTER 2. STATE OF THE ART

42



Chapter 3

Cross-layer Adaptation Framework

In this chapter, we present a formal framework of our approach that allows for
the representation of the SBS and its adaptation capabilities. In the end, the
overall formal framework will enable the specification of cross-layer adaptation
problem and form a basis to solve it.

To begin with, we would like to discuss the main purpose of our approach
and motivate the need for the formal framework. Afterwards we will introduce
the formal models required by this framework.

3.1 Motivation

A system can be defined as a set of interacting or interdependent components
forming an integrated whole. Open dynamic systems extend the general defini-
tion of systems since they evolve by time and are subject to the environmental
changes [76]. A well known method to support such systems is to apply the
feedback control theory [35]. In control theory, the external input of a system is
called the reference which corresponds to the desired behavior or characteristic
of the system. The controller is responsible for ensuring the desired effect by
checking the system status and manipulating it if needed (Figure 3.1).

Classical adaptive systems follow this control paradigm to react to the changes
in the system context [82]. Most of the adaptive service-based systems, being

43



CHAPTER 3. CROSS-LAYER ADAPTATION FRAMEWORK

an open and dynamic system, base their adaptation logic on the control theory.
Figure 3.2 depicts such SBSs: (i) the monitors collect the data about the SBS
status, (ii) the monitored data are passed to the system analysis facilities, i.e.,
analyzers, (iii) analyzers check the collected data with respect to the system
constraints and signal problems in case they do not match the constraints, (iv)
solvers, being the adaptation capabilities of the SBS, address the problem by
proposing concrete actions, (v) and finally, executors update the SBS by de-
ploying the proposed actions in the system.

A fundamental limitation in such SBSs is that they work on adaptation loops,
demonstrated in Figure 3.2, which each loop operates totally in isolation from
the other loops. Thus, what those SBSs propose is a set of (problem, solution)
pairs and the effect of one pair on the others is ignored, and therefore unknown.
While such approaches can achieve an overall system adaptiveness under the
assumption that all the pairs are totally independent, i.e., do not imply any con-
sequences on other pairs, we know that this assumption contradicts with the
principal characteristic of systems: system components interact and are interde-
pendent.

In this thesis we propose a novel framework to tackle this limitation. We
break those closed loops of adaptation and propose a reasoner to coordinate
the main constituents of adaptation, namely, analyzers and solvers (Figure 3.3).
Note that in this case, the system constraints, on which the analyzers need to
operate, are internal to the reasoner.

The main idea behind the overall approach is that, our understanding of adap-
tive SBS takes into account the dependencies of system elements, and the rea-
soner bases its adaptation coordination on those dependencies before enacting
any adaptation decision in the system.

The remainder of this chapter focuses on the presentation of the main ingre-
dients of the reasoner through formal definitions. We describe the system de-

pendency model that the reasoner requires to operate on. Further, we introduce

44



3.1. MOTIVATION

reference +
Controller System

Sensor

_

measured output

measured 

error S' S

Figure 3.1: Feedback Control Systems

SBS 

constraints + Adaptive 

SBS

Monitor 

(sensor)

_

monitored data

SBS
Analyzer Solver Executor

SBS'

CONTROLLER

Figure 3.2: Adaptive Service-Based Systems - the Traditional Approach

Adaptive 

SBS

Monitor 

(sensor)

monitored data

SBSAnalyzers SBS'

CONTROLLER

Solvers

REASONER Executors

Figure 3.3: Adaptive Service-Based Systems - the CLAM Approach

45



CHAPTER 3. CROSS-LAYER ADAPTATION FRAMEWORK

the concepts concerning adaptiveness, namely, adaptation need and adaptation

action, and relate these concepts to the system capabilities, i.e., analyzers and
solvers.

3.2 Reference Scenario

Before moving forward with formal definitions, here, we present a reference
scenario, a service-based system, which will be used in this chapter to exemplify
the concepts and definitions. Moreover, we will benefit from the same scenario
throughout the whole thesis to demonstrate our solution approach as well as the
produced results.

Our scenario, “Call & Pay Taxi”, is an SBS composed of the following lay-
ers: application layer where the application is implemented as a business pro-
cess, run and monitored with respect to the key performance indicators (KPI)
of interest, service layer, which corresponds to the partner services of the pro-
cess catered by different service providers, and finally the underlying infras-

tructure layer for the composite service (application) and the partner services
Figure 3.4).

The layers of our scenario comprise the following elements:

• Application layer: (i) “Call & Pay Taxi” composite service (CPTS), im-
plemented as a BPEL process, (ii) application KPIs “process execution
time” and “application cost”.

• Service layer: (i) a short messaging service (SMS), a location service (LS)
and a payment service (PS) provided by the telecom company, and the taxi
service (TS) provided by the taxi company, (ii) service quality attributes
(QoS) “execution time” and “cost”.

• Infrastructure layer: (i) The underlying platforms on top of which CPTS,
SMS, LS, PS and TS run. E.g., workflow engines, the application servers,

46



3.2. REFERENCE SCENARIO

hardware resources, (ii) infrastructure quality attributes “response time”
and “cost”.

taxi 
request 
from user

receive user 
loc

reserve taxi

send user 
taxi 

information

send taxi 
driver user 
information

receive 
user at 

destination 
ACK

process 
payment

is payment OK?

send user 
payment 

ACK

send taxi 
driver 

payment 
ACK

yes

send user 
payment 
NACK

send taxi 
driver 

payment 
NACK

no receive 
payment 
in cash 
ACK

TS SMS

CPTS

LS PS

Process

Services

Figure 3.4: Adaptive Service-Based Systems - the CLAM Approach

In CPTS, the client requests a taxi by sending a text message (SMS) to the
application. Then, her location is identified and the taxi company is contacted to
organize the pick-up service. After transportation to the destination, the process
terminates upon a successful payment.

The application is maintained by various system capabilities to identify prob-
lems in the system and to provide the solutions, adaptations to those identified
problems: To identify KPI violations we have the time and cost analyzers. To
check the data flow constraints of the process we have the data flow analyzer.
All these analyzers utilize some system data to check the relevant constraints
and report violations. Second, we have a set of adaptation capabilities, i.e.,
solvers, to tackle the problems produced by analyzers. At application level we
have the KPI relaxer enabling the modification of the target values of process
execution time and application cost KPIs, process optimizer to perform possi-
ble parallelizations in the process, and the data mismatch solver to address the
data incompatibilities of new partner services. At service level we have the QoS

47



CHAPTER 3. CROSS-LAYER ADAPTATION FRAMEWORK

negotiator to negotiate the execution time and cost of services and the QoS-
based service replacer. At infrastructure level we have the resource allocator

to optimize the infrastructure provision.

We remark that we will explain analyzers and solvers in more detail later in
Section 3.4.2.

3.3 Formal Model of Service-Based System

The formal model we use as a basis for defining the service-based system con-
sists of three concepts, namely the system model, the system configuration and
the system layers. While the system model provides a formalization of the main
system elements and the interdependencies of those elements for a family of
service-based systems sharing similar aspects, the system configuration repre-
sents a specific realization of an SBS from the family. On the other hand, system
layers help perceive the SBS constitution at a high level of abstraction.

3.3.1 System Model

There is a large variety of service-based systems, which differ for the covered
layers and for the way these layers are structured, as well as for the capabilities
that can be exploited for adaptation. For this reason, our first step is to define a
system model as a definition of a family of service-based systems that share the
same structure. More precisely, a system model is defined by a graph, which
nodes define the different types of elements that are present in the service-based
system, and which edges define the relations among these elements.

Definition 3.1 (System Model) A system model is a graph M = ⟨NM, RM⟩,
where:

• NM is a finite set of types of admissible elements of the system;

48



3.3. FORMAL MODEL OF SERVICE-BASED SYSTEM

• RM, where r ⊆ NM×NM for each r ∈ RM, is the set of possible relations

among the element types.

Notice that each edge r can connect different pairs of nodes, i.e., relations are
polymorphic for what concerns the elements they connect. Whenever ⟨n1, n2⟩ ∈
r, we write r(n1, n2).

Example 3.1 Figure 3.5 represents the system model for our “Call and Pay

Taxi” application. We can see each element type as a node of the graph. We

have various element types from different parts of the system. For example at

the application level we have the process, which implements the application, its

constituent process activities, and the corresponding KPIs of the application.

Then, we have the partner services, which our application relies on, together

with their quality attributes. Finally, we have the elements that belong to the

underlying infrastructures of the SBS. On the other hand, for our scenario, we

have three types of relations represented by the graph edges: “has”, “con-

strains” and “consumes”. To illustrate:

• A process is composed of process activities, so, we relate the element type

“process” to the element type “process activity” through the relation type

“has”.

• KPIs impose constraints on the application to enable the fulfilment of the

business goals, thus, we have the “constrains” relation type between the

“time KPI”, “cost KPI” element types and the “process” element type.

• A process activity is realized by the invocation of a service operation. A

service is implemented on top of an infrastructure, so, whenever we have

this type of dependency, we relate two element types with the “consumes”

relation type.

We remark that NM is a finite set of element types since the designer deter-
mines them when he creates the model.

49



CHAPTER 3. CROSS-LAYER ADAPTATION FRAMEWORK

3.3.2 System Configuration

While a system model defines a whole family of service-based systems, a sys-

tem configuration defines a specific service-based system, which is deployed
and running or which is ready to deploy and run. The system configuration is
defined in terms of its elements and the existing relations among them. For-
mally, a system configuration is modeled as a graph which nodes –representing
the elements of the SBS– are typed on the nodes of the system model, and which
edges –representing the relations among these elements– are typed on the edges
of the system model.

Definition 3.2 (System Configuration) A system configuration of a system model

M = ⟨NM, RM⟩ is a typed graph SC = ⟨N, TN , R, TR⟩, where:

• N is the set of elements of the system configuration;

• TN : N → NM associates to each element n ∈ N an element type

TN(n) ∈ NM;

• R ⊆ N ×N is the set of relations among the element of the system config-

uration;

• TR : R → RM associates to each relation r = ⟨n1, n2⟩ ∈ R a relation

type TR(r) ∈ RM such that ⟨TN(n1), TN(n1)⟩ ∈ TR(r).

Example 3.2 Figure 3.6 represents a system configuration for our “Call and

Pay Taxi” application. We use the notation n : TN(n) for the nodes of the

graph. As it can be seen from the graph, in some cases we have a single node

for a given element type, but in some other cases we have multiple nodes having

the same element type. For example, for the “process” element type, we have

the “taxiBPEL” node. On the other side,“taxiBPEL” “has” multiple nodes

having the “process activity”element type: “getTaxiReq”, ..., “getPayment”.

50



3.3. FORMAL MODEL OF SERVICE-BASED SYSTEM

Process 

activity

Process 

Cost KPI

consumes

co
ns
tra
in
s

consumes

Service 

infrastructure

Infrastructure 

time QoS

consumes

has

has

consumes

Service 

provider
Service

Service

operation

Service

time QoS

has

has

has

has

Infrastructure 

provider

Time KPI

co
ns
tra
ins

Service

cost QoS

Infrastructure 

cost QoS

has has

consumes consumes

Figure 3.5: Example of System Model

. . .. . .

. . .

. . .

has

has

. . .

has

. . .. . .. . .. . .

taxiTrento: 

service

takeUser:

service 

operation

. . .

getTaxiReq: 

process 

activity

taxiBPEL: 

process

consumes

c
o
n
s
tr

a
in

s

consumes
TelCoInfra: 

service 

infrastructure

TelCoInfraTime: 

Infrastructure time 

QoS

has

hasconsumes

TIM: 

service 

provider timSMS: 

service

sendSMS:

service 

operation

timSMStime:

service

time QoS

has

has

has

has

TelCo:

Infrastructure 

provider

co
ns

tra
in

s

has
has

has

consumes

consumes

consumes

has
has

. . .
getPayment: 

process 

activity
. . .  .

getPay:

service 

operation

has has

. . .  . timPay: 

service

. . .
timPaytime:

service time 

QoS

hashas has

has

TrentoTaxi: 

service 

provider has

taxiBPELcost: 

cost KPI

consumes

consumes
consumes

consumes

consumes
consumes

consumes

consumes

consumes
consumes

consumesconsumes

taxiBPELtime: 

time KPI

Figure 3.6: Example of System Configuration

51



CHAPTER 3. CROSS-LAYER ADAPTATION FRAMEWORK

We remark that the nodes of the system configuration keep references to the
real data relevant for them. For instance, while a process node keeps a pointer
to the process file such as a BPEL file, the service node keeps a pointer to its
functional description such as a WSDL file. Similarly, a service quality node
may keep a reference to its SLA agreement or to its online monitor and so on.

3.3.3 System Layers

Multi-layer systems are systems in which components are grouped, i.e., layered,
usually in a hierarchical arrangement such that lower layers provide functions
that support the functions of higher layers. SBSs are multi-layer systems by
nature when their application workflows, constituent services, underlying plat-
forms and infrastructures are considered.

One of the main characteristics of such layers is that, they are designed and
developed in isolation by different experts, having different levels of abstraction
with different technical aspects. While they are independently created layers,
they become dependent on each other when they form the multi-layer system
and need to work altogether. Let us consider an SBS with process, service,
platform, operating system and hardware layers. We can easily see the reliant
relations among them. E.g., the process consumes services and runs on top of
a platform, and similarly platforms are a kind of middleware built on top of
operating systems while operating systems are installed on computer hardware.

Note that the fundamental contribution of having a layered structure is that
it helps understand the maintenance facilities of the system since usually each
layer offers its own monitoring and adaptation capabilities. At this point, it gets
clear that there is no concrete, unique set of layers, which describes all possible
service-based systems. Depending on the application domain and what kind of
adaptation capabilities the system has, different layers can be of consideration.
For instance, if the operating system and the hardware do not contribute to the
adaptiveness, i.e., they are not monitored and not adaptable either, then we do

52



3.3. FORMAL MODEL OF SERVICE-BASED SYSTEM

not need to have them as a separate layer.
After discussing the layer concept, now we are ready to give its formal defi-

nition:
We remark that, by exploiting the system model defined in Figure 3.5, we

can formally capture the concept of layer as a set of nodes connected through
“has” and “constrains” relations: these relations, indeed, serve the purpose to
connect elements in the same layer, while “consumes” relations link elements
belonging to different layers.

Definition 3.3 (Layer) A layer in a system model M = ⟨NM, RM⟩ is a set of

nodes LM ⊆ NM that satisfies the following two conditions:

• closed: assume n ∈ LM and one of the following relations holds has(n, n′),

has(n′, n), constrains(n, n′), constrains(n′, n); then n′ ∈ LM;

• connected: if L′
M ⊆ LM and L′

M also satisfies the previous condition

”close”, then either L′
M = ∅ or L′

M = LM.

Example 3.3 E.g. The layers of “Call and Pay Taxi” application are as fol-

lows:

• application layer = {process, process activity, cost KPI, time KPI}

• service layer = {service, service operation, service provider, cost SQoS,

time SQoS}

• infrastructure layer = {infrastructure, infrastructure provider, cost IQoS,

time IQoS}

Note that the given definition of layer can be applied also to system config-
urations. We remark that, in a configuration, more “layers” can correspond to
the same system model “layer”, in case there are different unconnected sets of
elements corresponding to a layer in the system model (e.g., two unconnected
infrastructures).

53



CHAPTER 3. CROSS-LAYER ADAPTATION FRAMEWORK

We also point out that while one can specify various types of relations among
system elements, “has” and “constrains” are special type of relations which en-
able to formally define the layers. It is the domain expert’s responsibility to
identify the principal element of a layer and subsequently to comprehend which
main aspects this element “has” and which other elements impose requirements
on this element, i.e. “constrains” the element. Let us consider a “service layer”.
Obviously the main concept at this layer is the service. At this point, the ex-
pert should identify what service has as the main aspects and whether there are
constraints imposed on the element. The relations identified should be seman-
tically meaningful. For instance, a service can have quality attributes, but it
cannot have a key performance indicator because key performance indicator is
a concept related to the processes, not services.

3.4 Formal Model of Adaptation

The system model presented in the previous section represents an SBS in stable
conditions, i.e., given the system does not need to be adapted, the definitions
we have made so far fulfill the requirements of SBS representation. However,
as we discussed in the beginning of this chapter, SBSs are exposed to many
changes considering their surrounding context as well as their dynamic system
parts. Hence, we have to extend the presented system model to capture the
adaptiveness of service-based systems in the model.

First, let us clarify the “adaptation need” and the “adaptation action” con-
cepts: when a system constraint is checked by an analysis mechanism and a
problem is identified, we can exploit the relevant adaptation mechanisms avail-
able in the system to address this problem. Every possible way to solve the
problem corresponds to an adaptation need. Hence, adaptation mechanisms,
tackling specific problems, work on adaptation needs. What those mechanisms
produces as concrete solutions to the problem correspond to adaptation actions.

54



3.4. FORMAL MODEL OF ADAPTATION

We remind that in our approach we call every analysis mechanism of the SBS
an “analyzer”, and its every adaptation capability a “solver”. At the same time,
when we define the existing analysis mechanisms as “analyzers”, as an addi-
tional step we extend them by associating the adaptation needs with their out-
puts. Moreover, we introduce a third new type of tool to utilize in our approach:
the “enactor”.

Now, let us explain how we model adaptation with these tools. The ap-
proach we follow, illustrated in Figure 3.7, is based on the system configuration
graph and extends it with additional nodes representing identified adaptation
needs and adaptation actions. More precisely, whenever an analyzer identifies
an adaptation need, this is added to a system configuration as a new node, which
is connected to the system elements that are associated to the need. Similarly,
whenever a solver identifies an adaptation action that solves a given need, it
updates the graph by replacing the need node with an action node, which is
connected to the elements of the graph that are affected by the action. Finally,
when an adaptation action is executed by an enactor, the corresponding node is
removed, and the part of the graph connected to it is updated according to the
effects of the adaptation actions.

Example 3.4 Let us consider the adaptation example in Figure 3.7. At first,

we have the initial subgraph of the system configuration, which consists of cost

QoSs of the partner services of the application. Then, the “cost analyzer” trig-

gers the adaptation need “negotiate service cost”, associated to this subgraph.

Next, the need is passed to the solver “QoS negotiator”. Negotiator solves the

need by the adaptation action “new service costs”, which proposes newly ne-

gotiated cost values for “timSMS”, “timLoc” and “timPay” services, and the

graph is updated accordingly, i.e., the need is removed, the action is inserted. At

final step, the corresponding enactor gets the action and applies it to the graph.

55



CHAPTER 3. CROSS-LAYER ADAPTATION FRAMEWORK

Element 1

.....

Extended System Model: An Example of Adaptation:

AnalyzerElements Needs

Solver
Needs

Actions

Need

Action

Elements

Elements

EnactorActions Elements

I) initial graph

timPaycost.v1: 

service

cost QoS

timLoccost.v1: 

service

cost QoS

taxiTrentcost.v1: 

service

cost QoS

II) graph + need “negotiate service cost”

Need

timSMScost.v1: 

service

cost QoS

timPaycost.v1: 

service

cost QoS

timLoccost.v1: 

service

cost QoS

taxiTrentcost.v1: 

service

cost QoS

timSMScost.v1: 

service

cost QoS

concerns

concerns

concerns

concerns

timPaycost.v1: 

service

cost QoS

timLoccost.v1: 

service

cost QoS

taxiTrentcost.v1: 

service

cost QoS

timSMScost.v1: 

service

cost QoS

affects

affects

affects

Action timPaycost.v2: 

service

cost QoS

timLoccost.v2: 

service

cost QoS

taxiTrentcost.v1: 

service

cost QoS

timSMScost.v2: 

service

cost QoS

IV) new graph
III) graph + action “new service costs”

Element 2 Element 3

... ...

Figure 3.7: Overall Approach to Modeling Adaptation

3.4.1 Extended System Configuration

Definition 3.4 (Extended System Model and Configuration)

An extended system model for system model ⟨NM, RM⟩ is a graph EM =

⟨NM ∪DM ∪ AM, RM ∪ {concerns, affects}⟩, where:

• DM is the finite set of need types and AM is the finite set of action types;

NM, DM and AM are disjoint;

• concerns ⊆ DM ×NM and affects ⊆ AM ×NM relate each need/action

type to a set of associated nodes in the system model; for each d ∈ DM

(resp. a ∈ AM) there is at least one n ∈ NM such that concerns(d, n)
(resp. affects(a, n)).

An extended system configuration for extended system model EM = ⟨NM ∪
DM ∪ AM, RM ∪ {concerns, affects}⟩ is a system configuration ESC = ⟨N ∪
D ∪ A, TN , R ∪ {concerns, affects}, TR⟩ for EM, according to Def. 3.2.

56



3.4. FORMAL MODEL OF ADAPTATION

Notice that having the system with finite adaptation and analysis capabilities,
DM and AM are finite sets designed by the modeler.

Example 3.5 In the adaptation example in Figure 3.7, while the initial graph

and the final graph correspond to a subgraph of a “non extended SC”, the

others, the second and the third, are examples illustrating (partially) an ESC.

Here, we would like to recall our reasoner that we have introduced in Fig-
ure 3.3. Now, having defined the extended system configuration, we can explain
how our reasoner is supposed to work at a conceptual level, that is depicted in
Figure 3.8. Suppose that we have a non-extended system configuration, i.e.,
SC, which implies that it is a stable instance of the SBS and there is no problem
in the system, neither an adaptation need d nor an adaptation action a triggered.
Then whenever we observe a problem in the system, it necessitates a new need
d, which in turn puts the system into an extended system configuration ESC.
To address the d in the new ESC, we can apply an adaptation, which removes
the d, and adds an a. This new action might cause a new problem, which intro-
duces a new need to the ESC. The system can stay in this loop for a while until
the moment it arrives at a stable point again, i.e., no more problem is triggered
and the system is back to a non-extended configuration. The responsibility of
the reasoner is to coordinate those loops and to bring back the system into a
non-extended configuration state whenever it falls into an extended one.

We remark that those action-need loops reflect the non-deployed ESC’s.
More precisely, once the system gets an initial problem in the running system
and falls into an ESC, we do not modify the running instance until the reasoner
finds out a new non-extended, stable configuration, which is safe to deploy in
the system.

57



CHAPTER 3. CROSS-LAYER ADAPTATION FRAMEWORK

SC ƐSC

ƐSC(d)

ƐSC'(a,d)

SC'

Figure 3.8: Conceptual Model of CLAM’s Reasoner

3.4.2 Tools

We are now ready to understand how the ESC transformations in Figure 3.8
happen. The three kinds of tools which we have introduced in the beginning of
this section, namely analyzers, solvers and enactors perform these transforma-
tions. Indeed, they are defined in terms of the transformations that they apply
to an (extended) system configuration. More precisely:

• an analyzer is a tool that adds a need node to a system configuration – or
leaves it unaffected, if no adaptation need is present;

• a solver is a tool that takes in input a system configuration containing a
node d, removes it and adds an action node – or leaves it unaffected, if the
solver is not able to solve the adaptation need;

• an enactor is a tool that takes in input a system configuration containing
a node a, removes it, and possibly restructures the graph to reflect the
changes implemented by the enactor.

Definition 3.5 (Tools) An adaptation tool T is a nondeterministic function on

extended system configurations such that, if ESC ′ ∈ T (ESC) then ESC ′ satis-

fies one of the following conditions:

• Analyzer: either ESC ′ = ESC or D = D′ \ {d}, concerns′ ∩ (D×N) =

concerns, the other nodes and edges in ESC ′ are equal to those in ESC;

58



3.4. FORMAL MODEL OF ADAPTATION

• Solver: either ESC ′ = ESC or D′ = D \ {d}, A = A′ \ {a}, concerns′ =
concerns ∩ (D′×N), affects′ ∩ (A×N) = affects, the other nodes and

edges in ESC ′ are equal to those in ESC;

• Enactor: A′ = A \ {a}, affects′ = affects ∩ (A′×N), N ′ and R′ are

(arbitrary) variants of N and R, the other nodes and edges in ESC ′ are

equal to those in ESC.

In the following, we assume to have three disjoint sets of tools ToolsA (an-
alyzers), ToolsS (solvers) and ToolsE (enactors), and we will define Tools as
ToolsA ∪ ToolsS ∪ ToolsE.

Example 3.6 Let us recall the adaptation example in Figure 3.7. As we men-

tioned previously, the “cost analyzer” triggers the adaptation need “negotiate

service cost”, and afterwards, the solver “QoS negotiator” triggers the action

“new service costs”. Here, the T definition applies as follows:

• Analyzer: D = ∅, D′ = {d1}, d1 = negotiateServiceCost, concerns =

∅, concerns′ = {concerns(d1, timSMScost.v1), concerns(d1, timPaycost.v1),

concerns(d1, timLoccost.v1), concerns(d1, taxiTrentocost.v1)},

• Solver: D = {d1}, D′ = ∅, A = ∅, A′ = {a1}, a1 = newServiceCosts,

concerns = {concerns(d1, timSMScost.v1), concerns(d1, timPaycost.v1),

concerns(d1, timLoccost.v1), concerns(d1, taxiTrentocost.v1)}, concerns′ =
∅, affects = ∅, affects′ = {affects(a1, timSMScost.v1), affects(a1,
timPaycost.v1), affects(a1, timLoccost.v1)}

• Enactor: A = {a1}, A′ = ∅, affects = {affects(a1, timSMScost.v1),

affects(a1, timPaycost.v1), affects(a1, timLoccost.v1)}, affects′ = ∅,

{timSMScost.v1, timPaycost.v1, timLoccost.v1} ∈ N ,

{timSMScost.v1, timPaycost.v1, timLoccost.v1} ̸∈ N ′,

{timSMScost.v2, timPaycost.v2, timLoccost.v2} ̸∈ N ,

{timSMScost.v2, timPaycost.v2, timLoccost.v2} ∈ N ′

59



CHAPTER 3. CROSS-LAYER ADAPTATION FRAMEWORK

ConverterAin ConverterAout

Analysis 

mechanism / 

Monitor

inA outA
SC

(E.g. SC →BPEL, WSDL, SLAs, KPI 

targets, process requirements...)

SC or ƐSC(d)

ANALYZER A

ConverterSin ConverterSout
Adaptation 

capability

inS outS
ƐSC(d) ƐSC(ɑ) or ƐSC(d)

(E.g. ƐSC(d) →BPEL, WSDL, 

SLAs, infrastructure profiles...)

SOLVER S

Enactor 

E
ƐSC(ɑ) SC

Figure 3.9: Adaptation Tools of the Formal Framework

We expect that tools work on specific elements of an extended system con-
figuration. In particular, we require that solvers are specialized on needs d of
a specific type and, similarly enactors are specialized on actions a of a specific
type. Instead, analyzers work on a subset of system nodes, in other words, for
each system node n in the ESC, there exists a set of analyzers associated with
it. We recall that analyzers and solvers correspond to the real adaptation and
analysis mechanisms existing in current works, whereas enactors are internal to
our framework (Figure 3.9).

The analyzers (resp. solvers) have nondeterministic behavior because in
some cases they might be producing alternative needs d (resp. actions a). E.g.
when a cost analyzer identifies that cost KPI is violated, it can report that we
need to either relax the KPI target value or re-negotiate service costs or re-
place some existing services with cheaper ones. Or a service replacer solver
can identify a set of alternative services from different providers having the

60



3.5. THE FRAMEWORK

REASONER

Adaptive 

SBS

Monitor 

(sensor)

monitored data

SBS
Analyzer

A
SBS'Executors

inA

outA

SC ƐSC

CORE

C
o
n

v
e

rt
e
rA

in
C

o
n

v
e
rt

e
rA

o
u
t

ConverterSin ConverterSout

Solver

S

ƐSC(d) ƐSC(ɑ) or ƐSC(d)

SC

SC or ƐSC(d)

inS
outS

Enactor 

E

ƐSC(ɑ) SC

SC

Figure 3.10: The Overall Framework

same functionality.

3.5 The Framework

Now, having defined all the required components, we can elaborate on our rea-
soner, which we have introduced in Figure 3.3, and present the overall frame-
work. The architecture of the framework is depicted in Figure 3.10. Its main
constituents are the reasoner, analyzers, solvers, executors and the monitor. The
reasoner, one of the principal contributions of this dissertation, comprises the
core, converters and enactors. Given these components, let us see below how
the framework is expected to work.

3.5.1 The initial trigger

The execution of the service-based application and its context, i.e., the overall
SBS, are continuously observed through the monitoring mechanisms available
in the system. Whenever a monitor signals a problem to the reasoner, the rea-

61



CHAPTER 3. CROSS-LAYER ADAPTATION FRAMEWORK

soner should start its operation.

3.5.2 Coordination and decision of the adaptation strategy

Whenever the reasoner receives a signal from a monitor, it is considered as a
new problem to be addressed by an adaptation strategy. The core is responsi-
ble for building up the strategy through an iterative coordination of the tools
Tools, and by keeping track of the modifications made to the (extended) system
configuration by the tools. The first thing to do is to identify the needs that
correspond to the problem signaled by the monitor. We remark that monitors
are in the set of analyzers ToolsA, which means by Def. 3.5 the core knows the
corresponding needs d for this monitor. Once the needs are identified, the core
can initiate its coordination starting from the solvers, which can tackle those
needs. The actions a, proposed by the solvers and executed by enactors, should
be validated by the proper analyzers. If the analyzers identify new needs, sim-
ilarly they should be addressed by the proper solvers. A continuous invocation
of tools should be performed until a non-extended system configuration is found
without any need d and any action a. Notice that the core requires the convert-

ers in order to invoke analyzers and solvers as they are external tools, whereas
this is not the case for enactors since they are internal to the reasoner.

3.5.3 Deployment of the adaptation strategy

Once the coordination is completed and an adaptation strategy is identified by
the reasoner, the eventual step should be the invocation of executors to de-
ploy the strategy in the running system and to bring the SBS to a new state.
Notice that the executors are external components like analyzers and solvers:
The framework should utilize the existing deployment mechanisms to apply the
adaptation strategy to the running SBS.

62



3.6. DISCUSSION

3.6 Discussion

We presented a formal adaptation framework, which allows for the representa-
tion of the SBS and its adaptation and analysis mechanisms. In the next chapter,
the proposed framework will aid us to define of cross-layer adaptation problem
and to provide a basis for its solution.

A crucial contribution of our framework is that, differently from the numer-
ous adaptation works, it proposes a coordination procedure before executing an
adaptation in the running service-based system. This is a fundamental aspect
that cannot be neglected when we consider the complexity of such systems and
the interdependencies of their components. Moreover, the capability to accom-
modate diverse SBSs –with a diverse set of maintenance facilities– in the model
brings a remarkable genericness and a distinct flexibility to the approach. The
last but not least, the framework aims at aligning the existing monitors and anal-
ysis mechanisms, i.e. analyzers, and the adaptation capabilities, i.e., solvers,
which run in isolation from each other. We remark that in real world we might
have analyzers working on more than one problem, and similarly, solvers ad-
dressing more than one problem. However, in our approach we separate them
functionally to enable their easy management by the reasoner. One example can
be the work in [37], which proposes an aggregation mechanism to analyze the
execution time, cost and reliability aspects of the process. This analysis tool
corresponds to three different analyzers in our framework, i.e., the time, cost
and reliability analyzers.

Modeling the service-based system for adaptiveness is proposed also by pre-
vious works [113, 21, 43, 46]. These approaches, in particular, targets a spe-
cific SBS and lacks the flexibility to allow SBSs with different system elements
and layers. In [113], a method for change management is introduced for the
business process model and the underlying service composition implemented
in BPEL. However, the definition of change management is limited to the nec-

63



CHAPTER 3. CROSS-LAYER ADAPTATION FRAMEWORK

essary changes to be done in BPEL upon the modification of the process. Like
in our approach, [21] considers the system elements and their interdependen-
cies in the SBS representation. The authors utilize goal and variability models
to facilitate adaptiveness. Similarly, [46] proposes a variability framework to
model the business process management for reusability and flexibility. How-
ever, the authors do not explain how one can decide and perform the adaptation
benefiting from the proposed variability framework. Instead, [46] focuses on
modeling environment-aware service compositions to enable self-adaptiveness,
but similar to the approach in [46], it is not clear how the adaptation is achieved.

64



Chapter 4

Cross-layer Adaptation Manager

In this chapter, we formally describe cross-layer adaptation problem, present
the algorithm that solves it and prove that the algorithm is complete and correct
with respect to the definition of cross-layer adaptation problem. Moreover, we
discuss the conditions under which the algorithm terminates.

4.1 Problem Statement

Given the framework presented in the previous chapter, we would like to coor-
dinate the adaptation capabilities in such a way that the resultant strategy brings
the system to a stable point in which none of the system analyzers produce any
more problems.

We are now ready to give the formal definition of cross-layer adaptation
problem.

4.1.1 Stable System Configuration

Before defining cross-layer adaptation problem, we should define the “stability”
concept.

We define the stable system configurations as those configurations that do
not imply any adaptation need.

65



CHAPTER 4. CROSS-LAYER ADAPTATION MANAGER

Definition 4.1 (Stable System Configuration) A (non-extended) system configu-

ration SC is stable if, for each analyzer T ∈ ToolsA, T (SC) = SC.

4.1.2 Cross-layer Adaptation Problem

A cross-layer adaptation problem for a given initial system configuration is the
problem of identifying a sequence of tools that is able to transform the initial
system configuration into a stable system configuration.

Definition 4.2 (Cross-layer Adaptation) A cross-layer adaptation for system

configuration SC0 is a sequence T1, T2, . . . , Tn, such that:

• SCi ∈ Ti(SCi−1), for each i ∈ {1, 2, . . . , n};

• SCi−1 ̸= SCi, for each i ∈ {1, 2, . . . , n} (i.e., all tools contribute to the

solution);

• SCn is stable.

4.2 Cross-layer Adaptation Approach

We propose a tree-based solution to the cross-layer adaptation problem in Def-
inition 4.2, which the initial idea originated in the works [134, 136, 135, 133].
More precisely, there should be a cross-layer adaptation solution, which can be
extracted from a tree produced by a cross-layer adaptation manager (CLAM).

A CLAM Tree is a connected graph without cycles. Nodes of the tree keep a
system configuration SC and an ordered set of tools T , which we call a queue.
The queue elements correspond to the necessary tools that we need to invoke
for the given system configuration in the same tree node. Subsequently, edges
keep information about the invocation of tools, thus we label them with the first
element of the queue in the parent node.

66



4.2. CROSS-LAYER ADAPTATION APPROACH

When a tool invocation happens, depending on the response of the tool, the
system configuration may remain unchanged or may be updated by a need d or
an action a. We distinguish one case from the other. If the node transition, i.e.,
a tool invocation, ends up in the same system configuration, we call the edge a
useless edge, otherwise it is a useful edge.

Definition 4.3 (CLAM Tree) A CLAM Tree is a tree T = ⟨V,E, TE, rt, L⟩,
where:

• V is the set of nodes of the CLAM tree where node v ∈ V is a tuple

⟨SC, Q⟩, queue Q is an ordered set of tools T in which a solver has always

a priority over an analyzer, SC is a system configuration;

• E ⊆ V × V is the set of edges among the tree nodes such that E =

Euseful ∪ Euseless, where:

– an ei ∈ Euseful is a useful edge iff ei(vi−1, vi) such that SCvi−1
̸= SCvi;

– an ej ∈ Euseless is a useless edge iff ej(vj−1, vj) such that SCvj−1
=

SCvj;

– Euseful ∩ Euseless = ∅;

• TE : E → Tools associates to each edge e ∈ E an edge label TE(e) ∈
Tools, where there exists an edge ei(vi−1, vi) iff:

– there exists the tool Ti = TE(ei) such that Ti(SCvi−1
) = SCvi and Ti

is the first tool of the queue Qvi, and

– SCvi ̸= SCvi−1
if Ti is a solver such that Ti ∈ ToolsS;

• rt is the root node of the CLAM tree;

• L ⊆ V is the set of leaves of the CLAM tree.

67



CHAPTER 4. CROSS-LAYER ADAPTATION MANAGER

Notice that every path from the root node to a leaf of the CLAM Tree T

corresponds to a sequence of tools which are applied to an initial system con-
figuration one after the other such that the sequence brings the system to a final
configuration. Here, we can define a collapsed tree path in which we ignore the
useless edges since they do not contribute to the transformation of the system
configuration.

Definition 4.4 (Tree Paths and Collapsed Tree Paths) Tree paths P is the set

of paths in a CLAM Tree T where the path p ∈ P is a sequence of tools

T1, T2, . . . , Tk for a sequence of tree nodes v0, v1, . . . , vk such that v0 = rt,

vk ∈ L, (vi−1, vi) is an edge ei for i = 1, 2, . . . , k, TE(ei) = Ti.
Collapsed tree paths Pc is the set of collapsed paths in a CLAM Tree T where

a collapsed path pc ∈ Pc is a reduced form of a path p ∈ P such that if for a

Ti ∈ p, ei = T−1
E (Ti) is a useless edge, then Ti /∈ pc.

Intuitively, we can notice that if a collapsed tree path pc ends up in a leaf
which has a non empty queue Q, it cannot be a solution to a cross-layer adap-
tation problem since some of the tools, which are identified to be necessary to
invoke, remain in the queue.

Now we are ready to give the definition of a solution tree. A CLAM tree
is a solution tree if and only if there exists at least one collapsed tree path that
terminates in a leaf with an empty queue (Figure 4.1). Intuitively we expect that
such path corresponds to a solution to a cross-layer adaptation problem since
(i) all the necessary tools that we identify on the path are exhausted, and (ii)

they all contribute to the solution, i.e., modify the system configuration.

Definition 4.5 (Solution Tree) A CLAM Tree T = ⟨V,E, TE, rt, L⟩ is a Solution
Tree Ts iff T has at least one leaf l ∈ L such that Ql = ∅.

68



4.2. CROSS-LAYER ADAPTATION APPROACH

<SC0,Q0>

<SC1,Q1> <SC2,Q2>

<SC3,Q3>

T1
T1

T1

<SC4,Q4> <SC5,Q5>

T2 T2 <SC3,Q6>

T3

<SC3,Ø>

T4
useless e

useless e

solution path (collapsed): T1 

Figure 4.1: A Sample Solution Tree

4.2.1 CLAM Algorithm

We now present the “CLAM algorithm” that grounds on the cross-layer adap-
tation framework presented in Chapter 3 and realizes the reasoner of the frame-
work, which is responsible for coordinating the tools integrated (Figure 3.10.
Given an initial SC0, a set of tools Tools and an initial trigger from a moni-
tor, the algorithm implements the tree-based approach that we propose for the
solution of cross-layer adaptation problem.

The algorithm exploits a tree data structure such that at the tree nodes we
keep the statuses of system configuration SC and a queue Q of tools T , and at
the tree edges we keep the outputs, called “report”, of the tool invocations. We
remark that the queue serves as a means for keeping and continuously updating
an ordered set of analyzers and solvers that we identify to be invoked. Notice
that in a queue, a solver is always inserted in the queue head, which in turns
implies that solvers have priority over analyzers and invoked first as soon as
they are identified.

Figures 4.2 & 4.3 present the algorithm. To find the cross-layer adaptations,
CLAM algorithm performs three key steps:

1. Receiving the initial trigger. First, we get the running system configura-

69



CHAPTER 4. CROSS-LAYER ADAPTATION MANAGER

1 f u n c t i o n main ( SC , monTr igger )
2 a n a l y z e r a := monTr igger . g e t A n a l y z e r ( )
3 t r e e T y p e t r e e := new t r e e ( )
4 nodeType r o o t := new node ( )
5 r o o t . se tSC ( SC)
6 r o o t . addQueue ( a )
7 r o o t . s e t L e a f ( t r ue )
8 t r e e . addNode ( r o o t )
9 re turn expandTree ( t r e e )

1 f u n c t i o n expandTree ( t r e e )
2 L i s t <node> l e a v e s := t r e e . ge tLea fNodes ( )
3 i f ( l e a v e s . i sEmpty ( ) ) | | s t o p C o n d i t i o n ( t r e e )
4 re turn t r e e
5 l e a f := p ickOneLeaf ( l e a v e s )
6 i f ! l e a f . ge tQueue ( ) . i sEmpty ( )
7 r e p o r t := i n v o k e T o o l ( l e a f . getSC ( ) , l e a f . getQueueHead ( ) )
8 n o d e s a n d e d g e p a i r s := expandNode ( r e p o r t , l e a f )
9 f o r a l l <node , edge> in n o d e s a n d e d g e p a i r s
10 i f ! ( r e p o r t . f r o m S o l v e r ( ) && node . i s I n T r e e ( ) )
11 t r e e . addNode ( node )
12 t r e e . addEdge ( l e a f , edge , node )
13 l e a f . s e t L e a f ( f a l s e )
14 re turn expandTree ( t r e e )

1 f u n c t i o n expandNode ( r e p o r t , node )
2 i f node . ge tQueue ( ) . i sEmpty ( )
3 re turn e m p t y l i s t
4 swi t ch r e p o r t . ge tType ( )
5 c a s e OK:
6 re turn expandForNextQueuedTool ( r e p o r t , node )
7 c a s e a d a p t :
8 re turn e x p a n d A d a p t a t i o n s ( r e p o r t , node )
9 c a s e need :
10 re turn expandNeeds ( r e p o r t , node )
11 c a s e NOK:
12 re turn e m p t y l i s t

Figure 4.2: CLAM algorithm - main functions.

70



4.2. CROSS-LAYER ADAPTATION APPROACH

1 f u n c t i o n expandForNextQueuedTool ( r e p o r t , node )
2 L i s t <nodeType , edgeType> r e s u l t := e m p t y l i s t
3 i f node . ge tQueue ( ) . i sEmpty ( )
4 re turn e m p t y l i s t
5 new n := node . c l o n e ( )
6 new n . removeQueueHead ( )
7 new e := new edge ( r e p o r t . ge tType ( ) , r e p o r t . g e t T o o l ( ) )
8 r e s u l t . add(<new n , new e>)
9 re turn r e s u l t

1 f u n c t i o n e x p a n d A d a p t a t i o n s ( r e p o r t , node )
2 L i s t <nodeType , edgeType> r e s u l t := e m p t y l i s t
3 f o r a l l a d a p t in r e p o r t . g e t A d a p t s ( )
4 tmp n := node . c l o n e ( )
5 tmp n . getSC ( ) . a t t achAdaptToSC ( a d a p t )
6 tmp n . getSC ( ) . applyAdaptToSC ( adap t , a d a p t . g e t E n a c t o r ( ) )
7 L i s t <a n a l y z e r > a n a l y z e r s := a d a p t . ge tSys temNodes . g e t A l l U n i q u e A n a l y z e r s ( )
8 tmp n . removeQueueHead ( )
9 f o r a l l a n a l y z e r in tmp n . ge tQueue ( )
10 a n a l y z e r s . addUnique ( a n a l y z e r )
11 L i s t <L i s t <a n a l y z e r >> a l l P e r m u t a t i o n s := permute ( a n a l y z e r s )
12 tmp n . c l e a r Q u e u e ( )
13 f o r a l l a n a l y z e r l i s t in a l l P e r m u t a t i o n s
14 new n := tmp n . c l o n e ( )
15 new n . addAllToQueue ( a n a l y z e r l i s t )
16 new e := new edge ( adap t , r e p o r t . g e t T o o l ( ) )
17 r e s u l t . add(<new n , new e>)
18 re turn r e s u l t

1 f u n c t i o n expandNeeds ( r e p o r t , node )
2 L i s t <nodeType , edgeType> r e s u l t := e m p t y l i s t
3 L i s t <s o l v e r > s o l v e r s := e m p t y l i s t
4 f o r a l l need in r e p o r t . ge tNeeds ( )
5 s o l v e r s . add ( need . g e t S o l v e r s ( ) )
6 f o r a l l s o l v e r in s o l v e r s
7 new n := node . c l o n e ( )
8 new n . removeQueueHead ( )
9 new n . getSC ( ) . a t tachNeedToSC ( s o l v e r . ge tNeed ( ) )
10 new n . addToQueueHead ( s o l v e r )
11 new e := new edge ( s o l v e r . ge tNeed ( ) , r e p o r t . g e t T o o l ( ) )
12 r e s u l t . add(<new n , new e>)
13 re turn r e s u l t

Figure 4.3: CLAM algorithm - functions to create node and edge pairs.
71



CHAPTER 4. CROSS-LAYER ADAPTATION MANAGER

tion and the initial trigger, that is, a problem signaled by a monitor. Then,
we create a new queue instance, add the analyzer relevant for the moni-
tored data to the queue and instantiate a new tree with the root node, which
keeps the queue and the system configuration (see main in Figure 4.2).

2. Performing tool invocations. Starting from the root node, each time a
new node is created, we get the first tool of the queue in this node and in-
voke the tool.The output of a tool invocation, which we call a report, is of
one of the following 4 types: (i) OK: an analyzer validates a system config-
uration and does not produce any needs, (ii) need: an analyzer identifies
a problem and produces a set of alternative needs, (iii) adapt: a solver
produces a set of alternative actions for a given need, (iv) NOK: a solver
cannot address an adaptation need (see expandNode in Figure 4.2). No-
tice that the first tool invocation is always an analyzer invocation and the
report is a need. This is because we initiate the algorithm with a problem
triggered by a monitor (see step 1).

3. Constructing the tree recursively. Based on the output type of the report
from a tool, we create new (node, edge) pairs (see expandForNext-
QueuedTool, expandAdaptations, and expandNeeds in Figure 4.3)
and append them to the tree (lines 11, 12 in expandTree).We repeat
steps 2 & 3 for the new nodes until all the nodes are visited and no new
ones are created (see the recursion, lines 3, 4, 14 in expandTree).

Let us see how the algorithm works on a sample tree produced by CLAM
(Figure 4.4). When we have an initial trigger inside CLAM (see main), we
identify a corresponding analyzer for the monitoring data we receive –in our
case time analyzer–, create a queue Q0, insert the analyzer in Q0 and create
the root node < Q0,SC0 > to instantiate the tree, which the initial system
configuration SC0 is input to the algorithm (lines 1-8 in main). Then we call
expandTree function (lines 9 in main). The core of the algorithm is realized
by this function. First, it identifies the set of leaf nodes in the tree (line 3 in

72



4.2. CROSS-LAYER ADAPTATION APPROACH

timeA = need2
negotiate time QoS

{timeA }

SC0

{pOptimizer }

SC14

pOptimizer = adapt

new BPEL

{sNegotiator }

SC11

sNegotiator = adapt

new cost and time QoS 

for taxiS

{rAllocator }

SC13

rAllocator = adapt

new memory and CPU 

values

{sReplacer }

SC12

sReplacer = adapt1
switch to the faster 

taxiS X

{costA, timeA}

SC24

{costA, timeA }

SC25

costA = OK

{timeA }

SC21

{ }

SC21

timeA = OK

dataNetA = OK

costAnalyzer = need1 
relax costKPI

{KPIrelaxer, timeA }

SC32

(KPIrelaxer = NOK)

timeA = need3
replace service

timeA = need4
allocate resource

timeA = need5
optimize process

timeA = need1
relax timeKPI

{KPIrelaxer }

SC10

{costA, timeA}

SC21

(KPIrelaxer = NOK)

sReplacer = adapt2
switch to the faster 

taxiS Y

{dataNetA, 

costA, timeA}

SC22

costA = OK

{costA, timeA}

SC22

timeA = OK

{timeA}

{ }

SC22

dataNetA = need

solve mismatch

SC31

mismatchSolver = adapt1
add mediator service A

{dataNetA, 

costA, timeA}

SC23

{mismatchSolver, 

costA, timeA}

SC41

{dataNetA, 

costA, timeA}

dataNetA = OK

SC41

{costA, timeA}

SC41

timeA = OK

{timeA}

{ }

SC41

costA = OK

mismatchSolver = adapt2
add mediator service B

SC42

{dataNetA, 

costA, timeA}

dataNetA = OK

SC42

{costA, timeA}

{sNegotiator, timeA }

SC33

costAnalyzer = need2 
negotiate cost QoS

{sReplacer, 

timeA }

SC34

costAnalyzer = need3
replace service

sNegotiator = adapt

new cost and time QoS 

for paymentS

sReplacer = adapt

switch to the cheaper 

paymentS P

costA = OK

{timeA }

SC43

{ }

SC43

timeA = OK

{costA, timeA}

SC43

dataNetA = OK

{dataNetA, 

costA, timeA}

SC44

SC44

{costA, timeA}

SC44

timeA = OK

{ }

SC44

costA = OK

{timeA}

SC25

timeA = OK

{ }

SC25

costA = OK

{timeA}

SC22

SC42

timeA = OK

{timeA}

{ }

costA = OK

SC42

Figure 4.4: A Sample Cross-layer Adaptation Tree Produced by CLAM

73



CHAPTER 4. CROSS-LAYER ADAPTATION MANAGER

expandTree), which is only the root node for the initial call. Then, it picks
up one of the leaves (based on the setting it can be breadth-first or depth-first
tree traversal) and invokes the first tool from the queue of this node (lines 5, 7
in expandTree). In this case, since we have only the root node, we invoke
the time analyzer from the queue. Afterwards, we get back a report from the
tool and we call the expandNode function (line 8 in expandTree). This
function is responsible for figuring out the report type and calling the proper
procedure which will return the new (node, edge) pairs to be appended to the
tree.

Based on the report type, expandNode calls one of the following 3 func-
tions (Figure 4.3): (i) in case of an OK: expandForNextQueuedTool
(ii) in case of an adapt: expandAdaptations (iii) in case of a need:
expandNeeds. Otherwise if it is a NOK from a solver, it returns back an
empty list of (node, edge) pairs, which means there is nothing more to ex-
pand in that branch. In our example, we get a need report, i.e., a set of al-
ternative needs from the time analyzer. So we call the expandNeeds. Us-
ing our adaptation model, for each need d it identifies a solver (lines 4, 5
in expandNeeds), updates the queue, and extends the system configuration
(lines 6-10 in expandNeeds). Notice that extending the system configuration
with need d implies attaching the need to the relevant elements in the system
configuration (in this case SC0). Then, having identified an updated queue Q

and system configuration SC, for each need d it creates the (node, edge) pair
(lines 11,12 in expandNeeds). For instance, in this case, pairs are:

Node: Edge:

Q1 = {KPIrelaxer},SC10 timeA = need, d1 = relaxtimeKPI

Q2 = {sNegotiator},SC11 timeA = need, d2 = negotiatetimeQoS

Q3 = {sReplacer},SC12 timeA = need, d3 = replaceservice

Q4 = {rAllocator},SC13 timeA = need, d4 = allocateresource

Q5 = {pOptimizer},SC14 timeA = need, d6 = optimizeprocess

74



4.2. CROSS-LAYER ADAPTATION APPROACH

After all the pairs are computed, expandNode returns them back to the
main procedure expandTree so that they can be appended to the leaf under
investigation (lines 11,12 in expandTree). As a next step, expandTree
makes a recursive call in order to perform the same analysis steps for the up-
dated tree (line 14 in expandTree). In the next iteration, all the leaves con-
tain a queue with a solver. Then a leaf is picked, the solver in its queue is
invoked and a set of adaptation actions are received as an invocation output,
which implies that this time expandAdaptations function is called (line 8
in expandNode): For each action a, first we extend the system configuration.
Notice that extending the system configuration with action a (attachAdapt-
ToSC, line 5 in expandAdaptations) implies attaching the proposed ac-
tion a to the relevant elements in the system configuration, and removing the
corresponding need d. Subsequently, the action a is applied to the system con-
figuration (applyAdaptToSC, line 6 in expandAdaptations) by calling
the relevant enactor of the action a, which implies adding a subset of new el-
ements and/or removing a subset of existing elements in the system configura-
tion. Next, for each action a, using our adaptation model, we get the affected
system elements and identify the analyzers associated to these elements (line 7
in expandAdaptations). Then, we combine the identified analyzers with
the existing analyzers of the queue and create an overall list of unique analyzers
(lines 8-10 in expandAdaptations). Afterwards, we create the permuta-
tions of this list to identify all the possible orders of analyzer invocations (line
11 in expandAdaptations). We add every permuted analyzer list to a dif-
ferent queue, which every queue results in a separate new tree node (lines 12-17
in expandAdaptations). Notice that, for the sake of space, our example
in Figure 4.4 illustrates only one specific order of identified analyzers and does
not show all the permutations of queues.

Subsequent to the execution of expandAdaptations function, we will
end up with the new tree nodes which have the queues with the analyzers identi-

75



CHAPTER 4. CROSS-LAYER ADAPTATION MANAGER

fied to check the changes in an adapted system configuration. After adding them
to the tree, expandTreewill initiate a new iteration inside the recursion. Sup-
pose that this time we pick a leaf in which the queue head is an analyzer and
after invoking it we receive an OK report. In this case, expandNode calls the
expandForNextQueuedTool function (line 6 in expandNode): Since
we get a positive response from the analyzer, there is nothing to modify in the
system configuration. Only the queue is updated, i.e., the analyzer just invoked
is removed from the queue (line 6 in expandForNextQueuedTool).

expandTree keeps on building the tree until all the nodes in the tree are
visited. To prevent the infinite trigger of needs and adapts, at each iteration
expandTree can exploit a stop condition, which is optional to use in the
algorithm (line 3 in expandTree). A stop condition can be, for instance, a
threshold on the tree size. Furthermore, during the iterations, the algorithm
checks the repetition of a node creation, which can be the case after a solver
triggers an adaptation action and the enactor applies it to the configuration: If a
newly created tree node is already in the tree, we stop the iteration on that tree
path (line 10 in expandTree).

The resultant tree paths correspond to the possible cases that one can have
as a consequence of the initial trigger. The paths that have an empty queue in
the leaf node represent the solutions (cross-layer adaptations) which ensure that
there is no need left connected to the final SC and it is a stable one, that is safe to
be deployed in the running system. For instance, in Figure 4.4 the paths having
the SC21, SC22, SC41, SC42, SC43, SC44 and SC25 final system configurations
constitute alternative cross-layer adaptations. Whereas, the paths with the final
configurations SC10 and SC32 constitute the unsuccessful ones since the analysis
was terminated due to a NOK report from a solver.

76



4.2. CROSS-LAYER ADAPTATION APPROACH

4.2.2 Correctness of the Approach

In the following we will prove the correctness of the proposed approach and dis-
cuss the termination conditions of the presented algorithm. In particular, we will
show that the algorithm produces a CLAM tree T as defined in Definition 4.3,
and if it is a solution tree Ts it solves the cross-layer adaptation problem with
respect to the Definition 4.2. Moreover, we will demonstrate the completeness
of the algorithm.

Lemma 4.1 The CLAM algorithm produces a CLAM Tree T as defined in Def-

inition 4.3.

Proof.

1) The output of the algorithm is a graph which nodes keep a system configura-
tion SC and a queue of tools T , and edges keep a tool T :

From the algorithm we see that we initialize the graph with the root node in
lines 3-8 of main. Lines 5,7 of expandForNextQueuedTool, lines 14,16
of expandAdaptations, and lines 7,11 of expandNeeds show the cre-
ation of new nodes and edges. Then, expandTree recursive function shows
that we continuously add them to the graph in lines 11, 12.

From line 5 of main, lines 5,6 of expandAdaptations, and line 9 of
expandNeeds we see that the “node” data structure keeps a system config-
uration SC. From line 6 of main, lines 8,9,12,15 of expandAdaptations
and lines 8,10 of expandNeeds we see that the nodes keep also a queue
of tools T . Finally, line 7 of expandForNextQueuedTool, line 16 of
expandAdaptations and line 11 of expandNeeds show that the edges
comprise a tool T .

2) The output graph of the algorithm is a tree, which implies that the graph is
acyclic:

77



CHAPTER 4. CROSS-LAYER ADAPTATION MANAGER

To conclude that the output of the algorithm is an acyclic graph, we should
prove that every transition always produces a novel node. Let us see all the
possible cases in which we add a node to the tree: We expand the tree in lines
11-12 of expandTree and the (node, edge) pairs to be appended to the tree
are decided in the expandNode function (see line 8 of expandTree).

Let us consider an instantaneous leaf l = ⟨SC, Q⟩ in the tree and invoke the
first tool T from its queue Q. If we look inside expandNode, as a result of an
invocation we may have three cases in which new (node, edge) pairs are created
(lines 5-10). Let us analyze each case one by one:

Case I. A solver is invoked and a set of alternative adaptation actions is pro-
duced (lines 7-8 in expandNode).

In this case, expandAdaptations function is called. For each action
a that the solver produced, the system configuration SC is updated to an SC ′

(lines 5,6) , and the queue Q is updated to a set of Q′s (lines 12-15), each of
which has the same updated set of tools, but with different ordering. Notice
that (i) SC changes because of the execution of the action a by the enactor, and
(ii) Q changes because the solver, which has been just invoked, is deleted from
the queue, and new analyzers, associated with the changed SC nodes, are added
to the queue. However, it is possible that a newly generated node ⟨SC ′, Q′⟩
already exists in the tree. In this case, we do not append it to the tree (line 10 in
expandTree).

Case II. An analyzer is invoked and a set of alternative adaptation needs is
produced (lines 9-10 in expandNode).

In this case, expandNeeds function is called. For each need d that the
analyzer produced, the system configuration SC is updated to an SC ′ (line 9) ,
and the queue Q is updated to a Q′ (lines 8, 10): (i) SC changes because of the
attachment of the need d to the configuration, and (ii) Q changes because the
analyzer, which has been just invoked, is deleted from the queue, and the new
alternative solver, associated with the need, is added to the queue. Notice that it

78



4.2. CROSS-LAYER ADAPTATION APPROACH

is impossible that the new node ⟨SC ′, Q′⟩ already exists in the tree because its
parent node is a novel tree node which has been proposed by a solver (Case I).

Case III. An analyzer is invoked and an acknowledgement is received for the
SC.

In this case, expandForNextQueuedTool function is called. Since
there is no new need d or new action a proposed, the system configuration
SC remains unchanged, and the queue Q is updated to Q′ (line 6). Q changes
because the analyzer, which has been just invoked, is deleted from the queue.
In the next iterations either Q′ will be reduced by a continuous invocation of a
series of analyzers and end up with an empty queue, or a new need will be iden-
tified by one of the forthcoming analyzers, which in turn will invoke a solver.
Notice that, even if the SC remains unmodified, the fact that the queue is always
reduced guarantees the creation of a novel tree node in this function.

From 1) and 2) we conclude that the output of the algorithm is a CLAM Tree
T. 2

When the algorithm constructs the tree T, if in an iteration it receives an
adapt report from a solver and accordingly an adaptation action a is applied to
the system configuration, later it does not take into account all the analyzers to
validate the new configuration SCnew, instead it identifies a subset of analyzers
from the set ToolsA. This is because in the cross-layer adaptation framework,
each analyzer works on a subset of system configuration nodes, which in turn
implies that if an a does not change the input of an analyzer, then this analyzer
remains unaffected by the a, and consequently, the new configuration SCnew

does not require to be checked by this analyzer.

Definition 4.6 (Unaffected Analyzers) In a CLAM Tree T, for every edge ei(vi−1, vi)

with an edge lable TE(ei) = Ti such that Ti ∈ ToolsS, there exists a set of Unaf-
fected Analyzers ToolsAunaf

such that Qvi = (Qvi−1
\{Ti})∪{Ta0, Ta1, . . . , Tan}

where Ta0, Ta1, . . . , Tan ∈ ToolsA and ∀Ta ∈ ToolsA if Ta /∈ {Ta0, Ta1, . . . , Tan}

79



CHAPTER 4. CROSS-LAYER ADAPTATION MANAGER

then Ta ∈ ToolsAunaf
where Ta(SCvi) = SCvi.

Lemma 4.2 (CLAM Path Structure)

Let T be a CLAM tree produced by the algorithm. For all path p ∈ P of T,

there exists a path structure p = pNA0
pOK0

pNA1
pOK1

. . . pNAk
pOKk

such that:

• a pNA = {Ta, Ts | Ta ∈ ToolsA, Ts ∈ ToolsS} ∪ {Ta | Ta ∈ ToolsA,

Ta(ESC) = ESC ′};

• a pOK = {Ta0, Ta1, . . . Tan | Ta0, Ta1, . . . Tan ∈ ToolsA, 0 ≤ n ≤ Size(ToolsA),

Ta0(SC) = Ta1(SC) = . . . = Tan(SC) = SC}∪ ⊥.

Proof.

From Lemma 4.1 we know that the algorithm produces the CLAM tree, T.
Let us consider an arbitrary p of T and analyze its construction from the root
node rt:

Step 1. rt = ⟨SC0, Q0⟩ has always the queue Q0 = {Ta} such that Ta ∈ ToolsA.
Thus p will always start with an analyzer edge, which produces a need d (lines
2,6 in main).

Step 2. For the need d produced by Ta in Step 1, there are two cases: (i) There
is a solver which can address d. In this case, we delete the analyzer of the last
invocation from the queue and add the newly identified solver: Q1 = {Ts},
Ts ∈ ToolsS. We create a new (node,edge) pair (v1, e1) where v1 = ⟨SC1, Q1⟩,
TE(e1) = Ta, add v1 and e1 to the tree and the iteration continues. (ii) there is
no solver found to address d. In this case, the iteration stops, and since there is
no edge created, p does not exist.

Step 3. We follow by the solver invocation from the queue Q1, created in Step
2. There are two cases: (i) It proposes an adaptation action a. In this case,
after the enactor executes a and updates SC1 to SC2, the algorithm identifies
a set of analyzers, associated with the system configuration nodes which are

80



4.2. CROSS-LAYER ADAPTATION APPROACH

updated by the enactor (line 7 in expandAdaptations). Thus, we delete the
solver of the last invocation from the queue and add in the queue the identified
analyzers: Q2 = {Ta0, Ta1, . . . , Tak}, Ta0, Ta1, . . . , Tak ∈ ToolsA. We create a
new (node,edge) pair (v2, e2) where v2 = ⟨SC2, Q2⟩, TE(e2) = Ts, add v2 and
e2 to the tree and the iteration continues. (ii) The solver could not find any
adaptation actions. In this case, the iteration stops for p and we end up with
p = pNA0

pOK0
where pNA0

= TE(e1) = Ta and pOK0
=⊥.

Step 4. We follow by a tool invocation from Q2, created in Step 3. The first
element of Q2 is Ta0, i.e., it will be an analyzer invocation. There are two cases:

Step 4a. The analyzer produces a new need d′, in this case, it implies that
we go back to Step 2 until we get at Step 4 again.

Step 4b. The analyzer does not produce any need, i.e., leaves the SC2 un-
changed, which implies a reduced queue by the deletion of the lastly invoked an-
alyzer. Afterwards, there are two possibilities: (i) Q3 = ∅, which implies that
the iteration stops for p and we end up with p = pNA0

pOK0
where pNA0

= Ta, Ts
and pOK0

= Ta0. (ii) Q3 = {Ta1, . . . , Tak}. We create a new (node,edge) pair
(v3, e3) where v3 = ⟨SC2, Q3⟩, TE(e2) = Ta0, add v3 and e3 to the tree and the
iteration continues with a new application of Step 4.

From above steps, we can easily see that every path p ∈ P has always a path
structure p = pNA0

pOK0
pNA1

pOK1
. . . pNAk

pOKk
such that

• In case the iteration stops in Step 2: if there exists a path p, it finishes with
pNAk

pOKk
such that pNAk

= Tak, Tsk and pOKk
=⊥ if the previous step is

Step 4a, or pOKk
̸=⊥ if the previous step is Step 4b;

• In case the iteration stops in Step 3: it finishes with pNAk
pOKk

such that
pNAk

= Tak and pOKk
=⊥;

• In case the iteration stops in Step 4b: it finishes with pNAk
pOKk

such that
pNAk

= Tak, Tsk and pOKk
̸=⊥. 2

81



CHAPTER 4. CROSS-LAYER ADAPTATION MANAGER

Lemma 4.3 In a solution tree Ts, each leaf l ∈ L with an empty queue Ql = ∅
has a stable system configuration with respect to the Definition 4.1.

Proof.

From Lemma 4.1 and by Definition 4.5, the algorithm produces a solution
tree Ts if it has at least one tree path ending with a leaf that has an empty
queue. Let us consider a path p of Ts –produced by the algorithm– such that
its leaf l = ⟨SCl, Ql⟩, Ql = ∅. From Lemma 4.2 it has a structure p =

pNA0
pOK0

pNA1
pOK1

. . . pNAk
pOKk

such that pOKk
= Ta0, Ta1, . . . Tan, Ta0(SCl) =

Ta1(SCl) = . . . = Tan(SCl) = SCl. Ql = ∅ implies that all the identi-
fied analyzers on p are invoked and deleted from the queue. Then, Defini-
tion 4.6 guarantees that the execution of pNAk

introduces all the analyzers af-
fected by the last adaptation action, which in turn implies that ToolsAunaf

=

ToolsA \ {Ta0, Ta1, . . . Tan} and ∀Ta ∈ ToolsAunaf
Ta(SCl) = SCl. Thus, given

the fact that we consider an initial trigger as the only concern which impedes
the system stability –the overall framework works with a single problem at a
time, Lemma 4.2 and Definition 4.6 enforce that SCl of the leaf l of the path p

is stable, i.e., for each analyzer T ∈ ToolsA, T (SCl) = SCl. 2

Theorem 4.1 (Correctness of the CLAM Algorithm)
If the algorithm finds a cross-layer adaptation solution, which implies a leaf

node with an empty queue in the produced tree, it is correct with respect to the

Definition 4.2.

Proof.

From Lemma 4.1, the algorithm produces a CLAM tree T. From Lemma 4.3,
if the output of the algorithm is a solution tree Ts, then it has at least one path
p which leads to a stable system configuration SCf in the leaf l of p. From
Definition 4.4, we can always obtain the collapsed path pc of the path p such

82



4.2. CROSS-LAYER ADAPTATION APPROACH

that all the edges, which are not contributing to the modification of an instan-
taneous system configuration, are removed, which in turn enforces a sequence
T1, T2, . . . , Tf , such that SCi−1 ̸= SCi, for each i ∈ {1, 2, . . . , f}. Thus, from
Lemma 4.1, Lemma 4.3 and Definition 4.4, the collapsed path pc is a cross-layer
adaptation solution, and is correct with respect to the Definition 4.2. 2

Theorem 4.2 (Completeness of the CLAM Algorithm)
If there exists a solution for cross-layer adaptation problem defined in Defini-

tion 4.2, the algorithm guarantees to find it.

Proof.

Let the sequence ps = T1, T2, . . . , Tn be a cross-layer adaptation for system
configuration SC0 with respect to the Definition 4.2. The definition enforces
two concerns: (i) Every tool in the sequence must contribute to the solution,
which in turn implies that for every analyzer Tai ∈ ps, Tai(SCi) = SCi ∪ {di}.
(ii) The final system configuration SCn, produced from the execution of Tn is
stable, which implies that SCn must be non extended and Tn can only be an
enactor. Given the fact that the enactor is a tool type internal to the cross-layer
adaptation framework and executed always subsequent to an action a produced
by a solver, we can consider the following equivalence: If Ts is a solver pro-
ducing an action a and Te is its enactor, i.e., working on a, then we can com-
bine the functionalities of two tools by generalizing the definition of a solver:
Ts(SC) ≡ Te(Ts(SC)). Given this generalization, the last tool of the sequence
is a solver: Tn ∈ ToolsS.

Notice that (ii) also enforces that for every need di, produced by Tai ∈ ps,
there must be a corresponding solver Tsi ∈ ps, which works on di. Similarly,
for every Tsi ∈ ps, there must be its corresponding need di, already produced by
a Tsi ∈ ps. Thus, given that each solver works on a single need, the sequence ps
must have an equal number of analyzers and solvers.

83



CHAPTER 4. CROSS-LAYER ADAPTATION MANAGER

Since an analyzer Tai modifies a SCi only by extending it with a need di,
it is a consequent solver Tsi –responsible for addressing di– which is really
modifying a SCi by introducing variants of N,R ∈ SC. Therefore, what really
brings SC0 to SCn is a specific order of solver invocations.

In the algorithm, as soon as a need di is triggered by an analyzer Tai, all the
possible corresponding solvers are identified and each alternative solver is in-
serted to an alternative queue as the queue head (lines 4,5,10 in expandNeeds).
This ensures the identification of all the combinations of solvers. However, this
is not sufficient, we must have all the possible sequences of solver combina-
tions because if we invoke the same set of solvers in different sequences, each
sequence will produce a different final SCn. The algorithm addresses this issue
as follows:

From Lemma 4.2 every tree path has a structure p = pNA0
pOK0

pNA1
pOK1

. . .

pNAk
pOKk

such that pOKk
= Ta0, Ta1, . . . Tan, Ta0(SCl) = Ta1(SCl) = . . . =

Tan(SCl) = SCl, which in turn implies that by Definition 4.4, every collapsed
path pc of p has the following structure: p = pNA0

pNA1
. . . pNAk

where pOK0
=

pOK1
= . . . = pOKk

=⊥. Thus, every sequence of tools that CLAM Tree
T can find as a potential solution for cross-layer adaptation is in the form
Ta1, Ts1, Ta2, Ts2, . . . , Tak, Tsk where Ta1, Ta2, . . . , Tak ∈ ToolsA, Ts1, Ts2, . . . , Tsk
∈ ToolsS. Therefore, for us, finding all the possible sequences of solver com-
binations is equivalent to finding all the possible sequences of analyzers, which
produce the relevant needs, i.e., inputs of the solvers. In the algorithm, each time
an adaptation action a is triggered by a solver Tsi, all the analyzers of affected
system nodes are identified, by Definition 4.6 we know that we do not need to
consider the remaining analyzers of the system (line 7 in expandAdaptations).
Then, the identified analyzers are combined with the ones already existing in the
queue and this combined set is permuted to create all the possible sequences and
reset the queues with these sequences (lines 9-11 in expandAdaptations).
In this way, we guarantee all the specific orders of solver invocations, which in

84



4.2. CROSS-LAYER ADAPTATION APPROACH

turn implies that if there exists a solution sequence ps with respect to Defini-
tion 4.2, the algorithm finds it. 2

Termination.

In order to apprehend if the CLAM algorithm terminates, let us analyze func-
tion expandTree, which is responsible for constructing the CLAM Tree T

recursively. Figure 4.5, starting from the creation of the root node of T, elab-
orates all the possible transitions inside expandTree function. As the figure
demonstrates, we might have three cases for the construction of a tree path:

root

invoke 

solver

invoke 

analyzer

adapt NOK

identified 

new analyzer

need
OK

no new 

analyzer

invoke 

analyzer

empty 

queue

need OK

invoke 

analyzer
empty 

queue

invoke 

analyzer

invoke 

solver

no solver 

found

adapt NOK

identified 

new analyzer

invoke 

analyzer

empty 

queue

no new 

analyzer

... .   .    .
... .   .    .

... .   .    .

... .   .    .

... .   .    .

invoke 

solver

no solver 

found

Figure 4.5: Non Termination: Analysis of Recursive expandTree Function

1) A finite path with a solution: This case is depicted with a green node in
the figure. As soon as there is a state with an empty queue, it implies that
the algorithm finds a cross-layer adaptation and the relevant tree path p can be
finalized. Note that in case of the first invocation, if it is an analyzer and the

85



CHAPTER 4. CROSS-LAYER ADAPTATION MANAGER

response is an OK, it directly implies that there is no problem in the system, and
thus, no need to search for a cross-layer adaptation.

2) A finite path without a solution: This case is depicted with a red node in
the figure. It implies that there is no solution for the path p under investigation,
and thus, we can finalize the path. It happens in two different ways: (i) a solver
cannot propose an adaptation for the given need, (ii) there is no corresponding
solver for the need.

3) An infinite path: This case occurs whenever analyzers keep on trigger-
ing new needs in some of the tree paths, which results in further invocations
of solvers and subsequently they produce new adaptation actions again to be
checked by analyzers. Such paths can go to infinity.

As we can observe from the analysis of the algorithm, in the third case it does
not terminate. This is due to the fact that there might be cross-layer adaptation
solutions with arbitrary path lengths, and moreover, the solution space might be
infinite. Then, we might end up with combinations of infinitely many adapta-
tion actions. However, from Theorem 4.2 and given the fact that the algorithm
constructs the tree in a breadth-first manner, the algorithm eventually finds all
the solutions, which in turn implies that if a path goes to infinity, there exists no
cross-layer adaptation solution that could be found in that path.

In a practical setting, non-termination is a problem as infinitely long paths
are never desired for a good design of an adaptation framework. Moreover,
such paths do not serve us since they do not contain a solution, which can be
proposed for system stability. Getting encouraged by these two phenomena, in
Chapter 7 we present practical cases that we can work on a finite tree depth and
still find a reasonable set of solutions by applying a heuristic method.

86



4.3. DISCUSSION

4.3 Discussion

In this chapter, we defined formally the cross-layer adaptation problem, which
we grounded on the framework introduced in Chapter 3, and presented the
CLAM algorithm in order to tackle it. We proved that the algorithm is correct
and complete with respect to the formal definition of the cross-layer adaptation
problem.

As we have discussed in related work in Chapter 2, there exists different
approaches for addressing the cross-layer adaptation problem. One intention
of this chapter was to clarify our position within existing cross-layer adaptation
approaches by presenting in depth our understanding of a cross-layer adaptation
problem and its possible solution.

The problem we want to tackle can be summarized as follows: Given (i) a
set of adaptation capabilities, called solvers, and monitoring and analysis mech-
anisms, called analyzers, i.e., a set of tools, and (ii) an initial monitoring trigger,
i.e., an adaptation need, we aim at coordinating the system tools to find a cross-
layer adaptation strategy, which will bring the system back to an overall stable
configuration where all the system analysis tools are satisfied with the resultant
configuration.

Given this description, we can clearly define the characteristics of our pro-
posed approach: (i) it identifies cross-layer adaptation solutions on the fly since
it is an iterative coordination approach, (ii) it is a static approach since the tools
to be used are decided at design time, (iii) it can identify complex or unexpected
cross-layer adaptation cases since the solutions are discovered at run-time dur-
ing the coordination process.

In addition to summarizing the overall idea of our approach, we would also
like to comment on more specific aspects: We remark that even if the presented
algorithm starts with an analyzer (initial trigger is always an adaptation need), it
can be easily seen that we can apply the same algorithm with an initial adapta-

87



CHAPTER 4. CROSS-LAYER ADAPTATION MANAGER

tion action, in this case the root node will comprise the system configuration in
which the triggered adaptation is not applied yet, and the queue in which there
is the solver, which triggered the adaptation.

One limitation of our approach is that the framework, which the algorithm
grounds on, receives one problem at a time, which means that we do not allow
the correlation of problems that might come from the monitors simultaneously.
In future work, this limitation can be overcome by integrating a cross-layer
monitoring tool to the CLAM, which will first diagnose the various monitoring
events triggered from different system parts, then will produce a resultant trigger
to the CLAM algorithm.

Another issue regarding our current solution is that, even if it allows for
alternative solvers and their alternative adaptation solutions, it does not allow
for alternative analyzers. All the analyzers that we identify after an adaptation
action are to be invoked for system stability, thus, put in the same queue. How-
ever, assuming that tools behave correctly, we do not need alternative analyzers
to investigate the validity of the same system constraint.

Coming back to the discussion about our position within the existing cross-
layer adaptation approaches, in particular, related work lacks severely for the
capability to identify a wide range of possible cross-layer adaptation solutions.
E.g. the approaches presented in [132, 103] are based on a centralized knowl-
edge of cross-layer adaptation patterns, which in turn implies that if a pattern
for a possible cross-layer adaptation solution is not predefined, this solution will
never be found.

Furthermore, our approach differs significantly in being holistic. In every
iteration of the coordination, we take into account the possible consequences
of each adaptation action, and do not propose any final solution unless all the
identified problems are handled. Most of the existing works oversimplify the
cross-layer adaptation problem by not considering the impact of the proposed
adaptations on the overall system [45, 41, 132, 103, 123, 108].

88



Chapter 5

Selection and Deployment of a Cross-layer
Adaptation

In this chapter we propose two approaches to rank and select the produced
cross-layer adaptation solutions (strategies), and furthermore, discuss the de-
ployment issues once a strategy is selected to be enacted in the running system.

Given the variety & complexity of adaptations, it is important to understand
what each solution means, which ranking criteria should be taken into account
and how a cross-layer adaptation strategy could be selected based on these cri-
teria.

To address the selection problem, we propose novel criteria, which take into
account the required efforts to enact an adaptation strategy as well as the sys-
tem quality. For selection method, we propose two different approaches. The
first one is the well known multi criteria decision making, which we we have
implemented in the framework and present the achieved results in Chapter 7.
However, the cross-layer adaptation framework is open to exploit different tech-
niques for the selection problem. Regarding this, we have collaborated with Po-
litecnico Milano and investigated a second selection approach based on fuzzy
logic.

89



CHAPTER 5. SELECTION AND DEPLOYMENT OF A CROSS-LAYER ADAPTATION

5.1 Ranking and Selection

Selecting an appropriate adaptation strategy in service-based systems (SBS) is
not an easy task. Basically a problem in the system can be addressed using
various sets of adaptation actions, each having different consequences once de-
ployed in the system. The problem gets even more complex when we consider
the multi-layer nature of such systems. As we have observed in Chapter 4.1,
given the variety of layer-specific adaptation capabilities, and the interdepen-
dencies among system elements, CLAM can identify various cross-layer adap-
tation strategies to tackle the same problem. Regarding this fact, apparently,
traditional QoS-based selection approaches, e.g. [123, 28, 3, 27] are not suffi-
cient to address the complexity of adaptation selection problem in multi-layer
systems. Let us elaborate the problem on a motivating example from our refer-
ence scenario “Call & Pay Taxi” which we introduced in Section 3.2:

Example 5.1 Let us recall the case study that we utilized in Chapter 4 to de-

scribe the CLAM algorithm: The monitor detects a violation for the KPI process

execution time of “Call & Pay Taxi” composite service (CPTS). Given the adap-

tation capabilities, i.e., the available solvers, one can take various decisions to

address this problem: We can make changes at the application level such as

trying to optimize the process o relaxing the KPI target a bit. Moreover, we

can move to the service level by negotiating the execution time QoS of part-

ner services, i.e., messaging, location, payment and taxi services, or replacing

some of them with some faster ones. Finally, we can improve the response time

of the underlying infrastructure by allocating more resources. Note that some

of these actions can have also alternatives: e.g., for service replacements, we

might have various alternative services with the same functionality. In the end,

each option might have various consequences. For instance, negotiating for a

faster execution of services might increase the overall cost and cause a new KPI

violation, the newly replaced service might have data incompatibility, which in

90



5.1. RANKING AND SELECTION

turn requires a solution to the data mismatch problem. In such cases, CLAM

needs to identify new, additional actions to remove the negative effects of these

adaptations.

As the example above reveals, CLAM might produce several solution paths
for the cross-layer adaptation problem. In the end, path selection in a CLAM
tree is a complex task not only because of the large number of solutions, but
also because we need to understand what each solution path means when we
consider its deployment in the system. This is not straightforward to figure out:
First of all, adaptation actions on a path may be originated from different system
elements with their own characteristics. Usually it is not trivial to compare
two adaptations from two different system layers. Moreover, resultant QoS of
the entire SBS should be taken into account for ranking. As a result, it is an
important issue to carefully decide on the right selection criteria.

Finally, on top of our selection criteria, we need a technique to evaluate each
path and eventually to select the best one for deployment in the SBS.

5.1.1 Selection Criteria

The main difficulty behind determining the selection criteria originates from the
heterogeneity of the adaptation paths produced by CLAM. The adaptation ac-
tions on a path might have different deployment aspects, e.g., the time required
to deploy the adaptation, the cost of adaptation. Moreover, each cross-layer
adaptation solution might constitute different layers. It is reasonable that, if
possible, we prefer to solve the problem by staying in the same layer without
modifying further layers when a problem originates in a specific layer. More-
over, each path brings the system to a different level of quality in terms of var-
ious dimensions such as process execution time, process cost or the underlying
infrastructure cost. We must take into account all these concerns for ranking
and selection.

91



CHAPTER 5. SELECTION AND DEPLOYMENT OF A CROSS-LAYER ADAPTATION

Adaptation Deployment Criteria. Let us consider a cross-layer adaptation
solution which brings an initial system configuration SC0 to a final system con-
figuration SCf . In order to determine the efforts required to deploy this solution
in the system, initially we have to understand what are the changes in SCf with
respect to SC0.

We associate a number of deployment tasks with each updated node, which
are necessary to realize the change in the running system, and each deployment
task has two main aspects: (i) required time for deployment, (ii) deployment
cost. In this way, once we identify the updated nodes of the system, we can
reason about the overall efforts required to deploy a cross-layer adaptation so-
lution. Note that the identification of deployment costs and times for each task
and its association with the system nodes are carried out at design time and we
use normalized values in a range of integers (0-5) for each deployment time and
cost.

Definition 5.1 (Deployment Tasks) Deployment Tasks DT is a set of deploy-

ment tasks dt available for a system model M = ⟨NM, RM⟩ such that

• dt ∈ DT is a tuple ⟨dttime, dtcost⟩ where dttime is the required time, dtcost
is the cost for the deployment task dt;

• ∀n ∈ NM ∃DT (n) = DT ′ such that DT ′ ⊆ DT .

Example 5.2 Table 5.1 illustrates the association of the SC nodes of our “Call

& Pay Taxi” scenario with the deployment tasks available for the SBS. Subse-

quently, Table 5.2 depicts the normalized values for the required time and cost

to deploy each task.

We remark that the cost and time values of deployment tasks depend on
the system mechanisms, which we call executors in our cross-layer adaptation
framework (Figure 3.10), since they are responsible for implementing the de-
ployment tasks in the system. For instance, if we have an executor that modifies

92



5.1. RANKING AND SELECTION

Changed System Node: Deployment Tasks:

process migrate process; create machine image

service prepare new SLA; set up new monitor

service QoS (time, cost) modify SLA; modify monitor

KPI (time, cost) modify monitor

infrastructure migrate machine image

infrastructure QoS (time, cost) reconfigure resources

Table 5.1: Mapping Changes in SC Nodes to Deployment Tasks

Deployment Tasks:
Efforts for Deployment

Required Time: Deployment Cost:

migrate process 2 3

create machine image 0 1

prepare new SLA 1 2

set up new monitor 1 2

modify SLA 0 1

modify monitor 0 1

migrate machine image 2 4

reconfigure resources 0 1

Table 5.2: Required Efforts for Adaptation Deployment in terms of Time and Cost

the monitors automatically once an updated SLA is in place, then the required
time to enact this deployment task will be short. Instead, for a semi-automated
mechanism where there needs to be also human involvement, both the time and
the cost of the deployment will be high. Notice that the cost of the deploy-
ment task involves also the penalties that the SBS owner might get due to the
adaptations.

Adaptation Location Criteria. Let us consider a problem signaled to CLAM
by a monitor. We can see from which layer the problem arises since we know
which SC elements a monitor works on. Once the problematic layer is identi-

93



CHAPTER 5. SELECTION AND DEPLOYMENT OF A CROSS-LAYER ADAPTATION

fied, through the execution of CLAM, various ways to solve the problem can
come out. Each cross-layer adaptation solution involves a subset of system lay-
ers. Then we can distinguish among these solutions considering their locations
in terms of system layers. In general we prefer to solve the problem by modify-
ing a minimum number of layers. If we are able to find a solution by staying in
the same layer of the problem, this is the most preferable case. For other cases,
we define a preference list of layers for a given problem layer. So when two
solutions involve the same number of layers, we investigate how preferable the
constituent layers. Preferable solution layers of a problem layer is an ordered
list such that each list element corresponds to the constituent layers of a cross-
layer adaptation solution. The elements in the list are ordered by considering
(i) the total number of layers involved and (ii) the preference list of layers for
the given problem layer. The first list element is the most preferable for a cross-
layer adaptation solution and the last is the worst one. Notice that the preference
list for every system layer is decided at design time.

Definition 5.2 (Preferable Solution Layers) Let Layers be the set of layers L
in a system model M = ⟨NM, RM⟩. Let Lp ∈ Layers be a problem layer.

Let L0,L1 . . .Ln be an ordered list of Layers denoting the preferences for the

solution layer of the problem layer Lp where the most preferable, L0, is always

equal to Lp. Preferable Solution Layers LayersS of the problem layer Lp is a set

of possible combinations of solution layers such that:

• LayersS = {L0L1 . . .Ln | L0 = {Lp ∪ ∅},L1,L2, . . . ,Ln ∈ {Layers ∪
∅}}

• There exists an order relation ≤: LayersS × LayersS such that

∀Li0Li1 . . .Lik,Lj0Lj1 . . .Ljm ∈ LayersS:

– Li0Li1 . . .Lik < Lj0Lj1 . . .Ljm if k < m

– Li0Li1 . . .Lik ≤ Lj0Lj1 . . .Ljm if k = m and i0 + i1 + . . . + ik ≤
j0 + j1 + . . .+ jm

94



5.1. RANKING AND SELECTION

Example 5.3 Let us consider the layers of our “Call & Pay Taxi” scenario,

namely, application, service and infrastructure layers. Table 5.3 illustrates the

preference list for each layer in case a problem occurs there. The ordered list of

preferable solution layers is then generated based on these preference lists by

Definition 5.2.

Problem Layer: Layer Preference for Solution: Ordered List of Preferable Solution Layers:
Application (A) A, S, I OneOf (A, S, I, AS, AI, SI, ASI)
Service (S) S, A, I OneOf (S, A, I, AS, SI, AI, ASI)
Infrastructure (I) I, A, S OneOf (I, A, S, AI, SI, AS, ASI)

Table 5.3: Preferable Solution Layers for a Given Problem Layer

SBS Quality Criteria. Each cross-layer adaptation solution brings an initial
system configuration SC0 to a different final system configuration SCf . Thus,
before deployment in the system, we should also take into consideration the
quality aspects of the alternative SCfs. We consider two quality dimensions:
process execution time and overall application cost, which includes the costs of
external service invocations and the cost of the underlying infrastructure. We
can easily obtain the values for these selection criteria by taking advantage of
quality degrees that are committed in the SLAs signed with the service and
infrastructure providers.

5.1.2 Multi Criteria Decision Analysis

As discussed above, to summarize, we have the following ranking and selection
criteria for alternative cross-layer adaptation solutions: (i) overall adaptation
deployment time, (ii) overall adaptation deployment cost, (iii) system layers
involved in the solution, (iv) system quality in terms of process execution time,
and (v) system quality in terms of overall application cost, i.e., external services

95



CHAPTER 5. SELECTION AND DEPLOYMENT OF A CROSS-LAYER ADAPTATION

and infrastructures. Based on those criteria, alternative cross-layer adaptation
solutions are evaluated and ranked as follows:

Aggregated Score for a Cross-layer Adaptation Solution. We calculate the
overall value for a cross-layer adaptation solution by aggregating the selection
criteria presented. In our technique we apply Simple Additive Weighting - Mul-
tiple Criteria Decision Making Approach (SAW – MCDA) for criteria aggrega-
tion [55].

Let ypx be the value of a selection criterion y for a particular px which denotes
an alternative cross-layer adaptation path in the CLAM tree. Then, for each
cross-layer adaptation solution px; the normalized score of a criterion y, namely
n(ypx), and the aggregated score of all the criteria, namely score(px), are:

n(ypx) =


max(y)−ypx

max(y)−min(y) if lower values of y are preferred

ypx−min(y)
max(y)−min(y) if higher values of y are preferred

(5.1)

score(px) =
1

k

k∑
y=1

wyn(ypx) (5.2)

Above, max(y) is the maximum value of the selection criterion y available
in a solution tree created by CLAM, similarly, min(y) is the minimum value of
the selection criterion y available in the solutions. We remark that for all our
selection criteria, lower values are preferred. More precisely, we would like to
minimize the overall adaptation deployment time and cost, and similarly, pro-
cess execution time and application cost. Considering the criterion for the layers
involved in the solution, we apply Definition 5.2 to create the set of Preferable

Solution Layers. In this way, we order all the possibilities and give each element
in the set a value where the first element in the order must take the minimum
value since it is the most preferable one.

The weight wy is assigned to each selection criterion y depending on its
importance for us, and the value k represents the number of used criteria. The

96



5.1. RANKING AND SELECTION

CLAM 

trees

a
lt
e
rn
a
ti
v
e
 

a
d
a
p
ta
ti
o
n
 p
a
th
s Extract 

adaptation 

actions

Extract final 

system QoS 

values

Calculate crisp 

values for the 

enactment time 

and cost

adaptations

Quality 

Fuzzy 

Engine

Path 

Fuzzy 

Engine

crisp 

enactment 

values

crisp QoS 

values

aggregated 

QoS

aggregated

path value

Ranking 

Fuzzy 

Engine

ranked 

adaptation 

paths

fuzzify

A Fuzzy Engine:

crisp 

inputs

fuzzy 

inputs apply 

rules

aggregate 

results
defuzzify

fuzzy 

outputcrisp 

output

Figure 5.1: The Overall Ranking Approach

sum of all weights must be equal to 1. The result of this procedure, score(px),
is a score by which the overall path value of a cross-layer adaptation solution
can be compared with the overall path value of other solutions. Consequently,
the path having the highest score can be selected to be deployed in the running
system.

5.1.3 An Alternative Fuzzy Logic-based Method

In this section we present an alternative ranking and selection technique, which
is the outcome of our collaboration with Polimi [109]. The approach makes use
of fuzzy logic [130] to evaluate the alternative cross-layer adaptation solutions
and the selection is carried out by inferring the ranking criteria through a fuzzy
inference system (FIS).

Fuzzy logic has been applied to many fields for decision making where the
relation of involving parameters is too complex to be modeled by conventional
mathematical techniques. Fuzzy logic, applying fuzzy set theory [129], is suit-
able to understand the relation between input and output parameters which uses
linguistic parameters and applies if-then fuzzy rules to express input-output re-
lations.

The overall ranking approach that shows the exploitation of fuzzy logic

97



CHAPTER 5. SELECTION AND DEPLOYMENT OF A CROSS-LAYER ADAPTATION

through fuzzy engines is illustrated in Figure 5.1. We apply a fuzzy inference
system (FIS) for each fuzzy engine in Figure 5.1, which is a system to inter-
pret if-then fuzzy rules. It consists of five major steps [56] as follows: The first
step is fuzzification of the input parameters in which crisp parameters are con-
verted to linguistic parameters using membership functions. The second and
third steps are defining and evaluating fuzzy rules by applying fuzzy operators
to the if-part, later applying the result to the then-part. This will result an output
fuzzy set for each rule. Since there are several rules, the next step is applying
an aggregation method so that the result of each rule can be combined and ag-
gregated to a single fuzzy set. The final step is called defuzzification to convert
the fuzzy set (from the aggregation step) to a single crisp value.

More precisely, the approach comprises the following phases:

i) Ranking parameters and the hierarchy of the fuzzy inference engines.
Selection criteria are inputs to the fuzzy inference engines, which have a hier-
archical structure. Let us start with the highest level of hierarchy: We consider
two main criteria to rank cross-layer adaptation solutions: (i) the overall quality
of the resultant service-based system, (ii) aggregated path value for the adapta-
tion deployments in a solution. Those criteria depend on lower level aspects in
the hierarchy. For the quality, we have time and cost dimensions. Thereby, the
overall system quality relies on the process execution time, process execution
cost and underlying infrastructure cost. Similarly, for the path value we con-
sider the required time and cost for the deployment of a solution. Each of the
dependence relation among parameters corresponds to a fuzzy inference engine.
The hierarchy of the parameters can be seen in Figure 5.2. At the lower level of
the hierarchy, we have two different fuzzy engines. While one of them serves
for the inference of the aggregated system QoS, the other is used for inferring
the path value for an alternative cross-layer adaptation solution. After deciding
on these two parameters, at the higher level of the hierarchy a third engine is
used to rank all the alternatives and come up with a final result.

98



5.1. RANKING AND SELECTION

Adaptation 

strategy priority

System 

aggregated 

QoS

Path value

Process 

execution 

time
Process 

cost

Aggregated time 

required to enact the 

adaptations on the 

path

Aggregated cost 

required to enact the 

adaptations on the 

path
Infrastructure 

cost

Figure 5.2: Hierarchy of Fuzzy Inference Engines

ii) Assigning crisp values to the criteria. Fuzzy engines need crisp values
of parameters as input to perform the fuzzification process. As discussed in
the previous step, the ranking parameters are (i) overall adaptation deployment
time, (ii) overall adaptation deployment cost, (iii) process execution time, (iv)
process execution cost, and (v) underlying infrastructure cost. Their crisp val-
ues are obtained as described in Section 5.1.1.

iii) Creation of fuzzy parameters via membership functions. In order to op-
erate our fuzzy ranker, all the input parameters need to be converted to fuzzy
parameters. Therefore, we introduce linguistic parameters defined by fuzzy sets
as follows: All the parameters are defined by three linguistic variables, how-
ever, they have different impression according to their membership function
that we define later. For instance, the process execution time, process execution
cost, infrastructure cost and aggregated QoS are defined by fuzzy variables as
in the set {bad, normal, good}. In this set, obviously “good” is more prefer-
able than the other fuzzy values. Similarly, the adaptation deployment time,
adaptation deployment cost and the overall path value for deployment are de-
fined by three linguistic variables as in the set {low,medium, high}. In this

99



CHAPTER 5. SELECTION AND DEPLOYMENT OF A CROSS-LAYER ADAPTATION

case, since we would like less cost and less time for an adaptation deployment,
“low” is more preferable than the other fuzzy values. While we use the same
set {low,medium, high} for cross-layer adaptation value (final ranking), here
differently “high” is more preferable than the others, therefore, at the end of the
overall process we rank the highest cross-layer adaptation value as first.

We define membership functions in order to understand the mathematical
meaning of the linguistic variables. A fuzzy set represents the degree to which
an element belongs to a set and it is characterized by membership function
µÃ(x) : X 7→ [0, 1]. A fuzzy set Ã in X is defined as a set of ordered pairs

Ã = {(x, µÃ(x)) | x ∈ X,µÃ(x) ∈ [0, 1]} (5.3)

where µÃ(x) is the membership function of x in Ã. Therefore, a membership
function shows the degree of affiliation of each parameter by mapping its values
to a membership value between 0 and 1. We associate membership functions to
a given fuzzy set to define the appropriate membership value of linguistic vari-
ables. We apply the Gaussian function to define membership functions for all
parameters. The initial ranges of parameters are taken from a predefined con-
tract (refer to [100] and [101] for further detail) and the shape of the functions
are defined by experts of the system through experiments.

The membership functions are illustrated in Figure 5.3 for process execution
time (5.3a), adaptation deployment time (5.3b) and adaptation deployment cost
(5.3c) respectively. For instance, the adaptation deployment cost of each cross-
layer adaptation path in our scenario is derived as described in Section 5.1.1 and
then its membership value can be calculated using the membership function in
Figure 5.3c.

Note that the ranges of parameters are fixed in our approach and we do not
perform optimization to tune the shape and range of membership functions. A
well known optimization technique, which can also be used in our case, is to
apply learning as proposed in [56].

100



5.1. RANKING AND SELECTION

Process Execution Time Adaptation Deployment Time

Adaptation Deployment Cost

Figure 5.3: Membership functions for quality and adaptation deployment parameters

iv) Implication of fuzzy rules. Having defined the fuzzy parameters and their
membership functions, we introduce fuzzy rules in order to find relations be-
tween parameters.

In our approach we use a hierarchical fuzzy system and apply three fuzzy
inference engines according to Figure 5.2. Each inference engine should use
a specific set of fuzzy rules. Therefore, we use three sets of fuzzy rules: (i)

quality rules to assess the aggregated QoS, (ii) path rules to evaluate the value of
different paths regarding their deployment efforts and finally (iii) ranking rules
related to the final evaluation of the cross-layer adaptation alternatives, which
we call adaptation strategies. In this way, the relation between aggregated QoS
and the quality parameters can be defined using fuzzy rules and aggregated QoS
value can be calculated using an inference mechanism. Similarly the overall
path value is derived from the adaptation deployment time and cost of each path.

101



CHAPTER 5. SELECTION AND DEPLOYMENT OF A CROSS-LAYER ADAPTATION

At the end, an overall ranking degree, i.e., adaptation value, can be derived from
taking into account both adaptation deployment value and aggregated quality of
the SBS.

In Figure 5.4 and 5.5 we present the quality and ranking rules defined by the
expert of the system. Figure 5.4 shows a subset of the fuzzy quality rules that
we use to measure the aggregated QoS from the involving quality criteria. For
example the first rule, highlighted in the Figure 5.4, shows that when the process
execution time is good, process execution cost is good and infrastructure cost
is good, then the aggregated QoS is good. Note that path rules to evaluate
deployment efforts are defined in a similar way.

Figure 5.4: Fuzzy rules to evaluate the aggregated QoS from quality criteria

Figure 5.5: Fuzzy rules to evaluate adaptation strategies in each path

Figure 5.5 shows the ranking rules that we use to measure the overall value
of each cross-layer adaptation alternative. For example the rule highlighted in
the Figure 5.5 expresses that when the aggregated QoS is good and the path-
value is low, then the adaptation value is high, which means it is a preferable
strategy to deploy among the alternatives. Note that the number at end of each

102



5.2. ADAPTATION DEPLOYMENT

rule in Figure 5.4 and 5.5 represents the rule’s weight. Since we do not provide
weight in this illustration, they are all indicated by number 1.

v) Aggregation of implication results and defuzzification Since there are sev-
eral rules, the output fuzzy set of each rule is required to be aggregated to a
single fuzzy set, which is called aggregation. The last step is defuzzification
that converts the fuzzy set resulted from the aggregation to a single crisp value.
Eventually, having a resultant crisp value for each cross-layer adaptation solu-
tion, we can rank them and deploy the highest ranked in the system.

5.2 Adaptation Deployment

As proposed by Definition 5.1, for each updated node in the system configura-
tion, we associate a number of deployment tasks from the overall set of deploy-
ment tasks available for the SBS. We assume that we have a mechanism, which
we call an “executor”, to realize each deployment task in the system. Thus,
given the selected cross-layer adaptation solution and its resultant deployment
tasks, we can eventually enact this solution in the running system through the
executors.

Definition 5.3 (Executors) Executors Exec is a set of deployment mechanisms

where each mechanism is called an executor E such that ∀dt ∈ DT , there exists

an E(dt).

We remark that although deployment is not part of the cross-layer adaptation
problem, as discussed above, our framework proposes a method to map a se-
lected cross-layer adaptation solution to a set of deployment mechanisms, i.e.,
executors.

There have been several state-of-the-art approaches which can be used as ex-
ecutors in the cross-layer adaptation framework. [131, 15] propose techniques

103



CHAPTER 5. SELECTION AND DEPLOYMENT OF A CROSS-LAYER ADAPTATION

to migrate BPEL process instances. The authors of [131] present a migra-
tion data meta-model for enhancing existing processes with the ability for run-
time migration. The approach permits the inclusion of intensions and privacy
requirements of both process modelers and initiators and supports execution
strategies for sequential and parallel execution of processes. Instead, [15] pro-
poses a monitoring and recovery framework for the self-supervision of BPEL
processes where the supervision-aware runtime environment enables the migra-
tion of updated processes. Among the approaches [22, 118], while [22] focuses
on the automated generation of service-level agreements to address the changes
in quality provisions due to negotiations, [118] tackles the problem of dynamic
generation of monitors in case the SLAs are modified. Differently, [64, 116]
present deployment mechanisms at the infrastructure level. [64] proposes an
SLA-aware self-configuration approach in the cloud through autonomic service
virtualization, and [116] introduces a phase-driven step-by-step strategy for mi-
grating applications to the Amazon Web Services (AWS) Cloud.

5.3 Discussion

In this chapter, we dealt with the problem of selection and deployment of a
cross-layer adaptation solution. Selection is not trivial considering the variety
of solution alternatives in a CLAM tree. Initially, we presented our selection
criteria, and subsequently we proposed two different ranking approaches, which
both ground on the identified selection criteria, but apply different techniques
for evaluating the ranks. Finally, we discussed the deployment issue.

The first approach presented, simple additive weighting - multiple criteria
decision making, is a widely used technique in the field of service and service
composition selection [6, 47, 54, 123]. However, these approaches consider
only the QoS parameters as selection criteria.

Regarding the second approach, fuzzy logic has been applied to many fields

104



5.3. DISCUSSION

(e.g. control and communication) for solving problems and decision making
where the relation of existing parameters are complicated to be modeled by
conventional mathematical models and techniques [101, 104, 66, 73]. However,
similar to the previous case, the existing fuzzy logic approaches mostly focus
on quality aspects of the system.

Notice that we can easily introduce new criteria to both techniques presented.
The selection criteria can be decided based on the application domain. E.g.
usually process KPIs are driving forces for the quality criteria. Moreover, the
SBS owner should decide what kind of criteria are more important for ranking
and selection. Such decisions affect the weights of each criterion in the overall
evaluation. For instance, for a long running process it is an expected thing that
the adaptation deployment time is not a very significant selection criterion.

Among the existing cross-layer adaptation approaches, only [123] and [103]
propose a method to select an adaptation strategy. [123] considers the quality
dimensions of the application and applies simple additive weighting - multiple
criteria decision making like we do. Instead, [103] totally leaves out the system
quality and considers only the metrics related to the length of a cross-layer
adaptation pattern such as number of specific adaptation actions, number of
general adaptation actions, number of total adaptation actions, and number of
raised events in the pattern. Evidently, our proposed ranking methods surpass
those approaches since we take into account various selection criteria, which in
turn results in a more comprehensive ranking.

105



CHAPTER 5. SELECTION AND DEPLOYMENT OF A CROSS-LAYER ADAPTATION

106



Chapter 6

Implementation and Design

The cross-layer adaptation approach and the SAW – MCDA adaptation selec-
tion technique presented in previous chapters were implemented as a prototype
toolkit, namely CLAM Platform. The tool provides means for integrating in
a common platform system analysis and adaptation capabilities, coordinating
them for cross-layer adaptation, and selecting the best solution once all the al-
ternative cross-layer adaptation solutions are identified by the coordination.

In this chapter we describe the CLAM platform and its implementation in
detail. Moreover, we present a methodology to decide on the system elements,
and subsequently create the overall model, which is required for CLAM opera-
tion. Finally, starting from the creation of the model, we guide the SBS owners
in the concrete steps that they should follow in order to use our platform.

6.1 CLAM Platform

The CLAM platform presented here is implemented as a Java API and provides
facilities for integrating and coordinating adaptation and analysis mechanisms
in order to tackle an initial adaptation problem, and furthermore, allows for
selecting a solution among alternatives.

The functional architecture of the CLAM Platform is presented in Figure 6.1.
The operations in the platform pass several steps, starting from the CLAM in-

107



CHAPTER 6. IMPLEMENTATION AND DESIGN

WRAPPED TOOLS

CLAM   

INSTANTIATOR

System 

model 

construction

Initial system 

configuration 

construction

Adaptation 

model 

construction

Creation of 

analyzer and 

solver 

wrappers

System 

description

- Node types

- Edge types

System 

conf. 

description

- Nodes

Adaptation 

action and 

need types 

description

Solvers and 

analyzers 

description

Solvers
Analyzers

COORDINATOR

Update 

SC

Invoke 

tool

Recursive tree 

constructor

Initialize 

coordinator

initial tree
initial 

trigger

final 

tree

SCSC

SC0

M

DM, AM

RANKER

ranking 

results

TREE 

ANALYZER

analysis results

Figure 6.1: The Functional Architecture of CLAM Platform

stantiation to the coordination phase where there takes place an iterative analy-
sis approach upon receiving an initial problem, and eventually to the selection
phase where the produced results –cross-layer adaptation solutions– from the
previous step are analyzed and ranked to select a final solution.

Input specification

The CLAM operation accepts the following input parameters:

• System description. We need to identify the elements of the system model,
i.e., admissible node types of the service-based system and the relation
types among them. Notice that this is a very high-level description of
the system without referring to any concrete system parts, i.e., without
including any implementation details.

• System configuration description. Once we have the system model, we can
have its various instantiations, each corresponding to a specific deployment

108



6.1. CLAM PLATFORM

which is running or ready to run. As discussed in previous chapters, we call
each instantiation a system configuration and we need to specify the initial
system configuration in order to enable the initialization of the CLAM
operation. We remark that it is sufficient to identify the nodes of the system
configuration. Next, relations among them can be derived from the system
model. Notice that for each node, we must specify the links pointing to the
locations of its implementation and/or configuration files.

• Adaptation action and need types description. The CLAM platform re-
quires an extended system model which includes need and adaptation ac-
tion types in the system. For each need type, we must identify a set of
system nodes which it concerns, and similarly for each action type, we
must identify a set of nodes which it affects. Furthermore, for each action
type, we must also identify a set of deployment tasks together with the cost
and the time values required for each deployment task.

• Solvers and analyzers description. Finally, we must identify the system
tools, more precisely; the analyzers, i.e., monitoring and analysis mecha-
nisms, and the solvers, i.e., adaptation capabilities that we want to coordi-
nate in the CLAM platform. For each tool, we must specify the input and
the output. For an analyzer, the input is a set of node types from the sys-
tem model which the tool works on, and the output is a set of alternative
need types that the tool can trigger in case of a negative analysis result.
For a solver, the input is a need type, and the output is a set of alterna-
tive adaptation action types that the tool can produce to address the given
need. Once tool inputs and outputs are described, they are integrated to
the extended system model. However, this is not adequate. We must also
define a wrapper function for each tool, which is responsible for extract-
ing the required data from the system configuration, invoking the real tool
with this data, and finally converting the tool response to the appropriate

109



CHAPTER 6. IMPLEMENTATION AND DESIGN

output format, i.e., need or adaptation action instantiations in the system
configuration. Notice that wrapper functions enable the integration of tools
with the CLAM execution environment, which in turn reflects the overall
degree of adaptability of the service-based system.

CLAM execution: coordination phase

CLAM coordination phase is performed in several steps. Depending on the
specified parameters, certain steps may be omitted or executed in different
modes.

1. Inside the CLAM instantiator module, the set of input parameters –descriptions
for the system, system configuration nodes, adaptation action and need
types, and solvers and analyzers– are translated into the extended system
model and the initial system configuration of this model. In this way adap-
tation model and tools are integrated in the overall system representation
according to the definitions presented in Chapter 3. Moreover, the wrap-
pers for analyzers and solvers are created based on their descriptions and
the constructed models.

2. Once CLAM is instantiated with the required models, it is ready to get
the initial trigger. Notice that even if the initial trigger is described as a
monitored event coming from an analyzer, the implementation easily han-
dles any trigger from an integrated tool. Thus, the initial trigger can be
an adaptation action from a solver or an adaptation need from an analyzer.
When we get the initial trigger, the coordinator module starts its execution
by creating the initial CLAM tree, which is a root node including the ini-
tial system configuration and the queue with the tool that sends the initial
trigger (see initialize coordinator in Figure 6.1).

3. After the initial tree is created, we are ready to recursively construct the
CLAM tree inside the recursive tree constructor module, which is the core

110



6.1. CLAM PLATFORM

part of the coordinator and implements the CLAM algorithm presented in
Chapter 4. The tree construction corresponds to an iterative impact analy-
sis of the initial trigger by checking in each step the required analyzers or
solvers to invoke and each time we put them in the queue or delete them
from the queue, we create a new tree node. Notice that tools are invoked
through executing invoke tool method and their responses are reflected to
the system configuration through update SC method. The iteration on a
path terminates in the following cases: (i) the queue is emptied, there are
no more tools to invoke, (ii) a solver could not find an adaptation action.
However, we remark that there are configuration parameters for CLAM
and some of them enforce the path termination even if neither of those
mentioned cases hold. The configuration parameters, which must be set
before the coordination starts, are as follows:

(a) Tree traversal. To construct the CLAM tree, the implementation sup-
ports both DFS and BFS traversal algorithms as well as a greedy search
heuristic, presented in Chapter 7.

(b) Stop condition. Since in theory the CLAM algorithm does not termi-
nate, we must put a stop condition to ensure that the tree construction
is finalized. We have the following options: (i) stopping the iteration
on a path when it reaches a maximum number of changes allowed in
the system configuration with respect to a threshold defined in terms
of a percentage of the total system size, (ii) stopping after the coor-
dinator finds the first cross-layer adaptation solution. Note that the
second case allows for finding a fast solution under BFS traversal, but
impedes completeness, i.e., we are not producing all the possible so-
lutions. Whereas, for the first case, if not all, we can still identify a
good set of solutions by utilizing a heuristic method. We present in
Chapter 7 the method which we apply.

111



CHAPTER 6. IMPLEMENTATION AND DESIGN

(c) Analyzer invocation. Recalling the CLAM algorithm, to ensure com-
pleteness, we try all the possible permutations of analyzer invocations
when we want to validate an adaptation action proposed by a solver.
However, this leads to the enlargement of the tree size exponentially.
Thereby, we introduce an optional parameter in which we can define
a fixed order of analyzers and invoke them only with this order. This
practice, similarly, impedes finding all the possible solutions.

CLAM execution: tree analysis phase

After the tree construction, the next phase is the tree analysis with the following
steps:

1. The tree analyzer module receives the constructed CLAM tree and extracts
the cross-layer adaptation solutions, which correspond to the tree paths
ending with an empty queue.

2. After the extraction of solutions, we should understand what each solu-
tion signifies. This is achieved by evaluating each criterion introduced in
Section 5.1.1:

(a) Adaptation deployment criteria. The tree analyzer identifies the corre-
sponding deployment tasks for each solution and based on them calcu-
lates the time and cost required to deploy the solution.

(b) Adaptation location criteria. Once a solution path is extracted by de-
termining the node differences between the initial and final system
configuration, we can easily figure out which layers are included in
the solution. Then the value of each path with respect to the adaptation
location is calculated according to the Definition 5.2.

(c) System quality criteria. Process execution time and the overall appli-
cation cost are the system quality criteria which we consider in the

112



6.2. METHODOLOGY FOR CROSS-LAYER SYSTEM MODELING

current version of the implementation. It is sufficient to take into ac-
count the final system configuration in order to calculate the values of
these criteria.

3. Once all the criteria are evaluated for all the cross-layer adaptation solu-
tions in the CLAM tree, the tree analyzer outputs the analysis results which
comprise the entire set of criteria values for each solution. This output is
fed also to the ranker module.

CLAM execution: adaptation selection phase

In the final phase of the CLAM execution, the ranker module takes the tree anal-
ysis results and produces an overall ranking of the solutions according to the
SAW – MCDA technique presented in Section 5.1.2. Furthermore, it also pub-
lishes a separate ranked list of solutions with respect to the each criterion. The
default selection of the cross-layer adaptation solution implies the first ranked
solution in the overall ranking.

Notice that in current version of the CLAM platform, we have a definite set
of selection criteria, each assigned with a default weight to calculate the overall
value of a solution. However, this set of inputs may be extended in order to
accept further selection criteria. Moreover, the weight of each criterion can be
specified by the SBS owner. Similarly, at the final step, the SBS owner can
ignore the default selection and takes his own decision by examining the tree
analysis and ranking results.

6.2 Methodology for Cross-layer System Modeling

The operation of the coordinator in the CLAM platform relies on the continuous
updates to the system configuration through tool invocations. Thus, the over-
all coordination tightly depends on the system model. Yet, it is not trivial how
designers can decide on the elements of the system and what is the right level

113



CHAPTER 6. IMPLEMENTATION AND DESIGN

of abstraction to represent the service-based system comprehensive enough, but
at the same time, not too intricate. Consequently, we want to guide design-
ers in creating the system model so that they can reason out the right level of
abstraction when they determine the elements of the system model.

We follow an opportunist methodology to decide on system elements and
create the overall model: Given a service-based system and a set of tools avail-
able to analyze(monitor) and adapt this system, we create the model based on
the tools available. There are two main benefits of this methodology. First, we
identify the system elements more easily by looking at the inputs and outputs
of the available tools. Second, we avoid putting unnecessary elements in the
model, which do not have a corresponding tool, i.e., which would never be used
by CLAM.

The main steps of the modeling methodology is as follows:

1) Identify the analyzers and solvers available in the system. As the primary
step, we need to identify the existing system facilities, i.e., the monitoring, anal-
ysis and adaptation capabilities of the SBS.

2) Identify the inputs and outputs of analyzers and solvers. To derive the system
element types, need and action types to be used at CLAM operation, we need
to clarify what kind of information each system capability needs to operate on
and what kind of output it produces.

3) Identify the system element types. Analyzer inputs reveal which parts of
the system are under observation, and solver outputs reveal which parts of the
system are modifiable. Hence, we can derive the system element types to be
used by CLAM by looking at the analyzer inputs and the solver outputs.

4) Identify the relation types among system element types. Once the system
element types to be used in the model get clear, the SBS domain expert should
identify the relations among those element types.

5) Identify the need and action types. Each solver targets an adaptation prob-

114



6.3. CLAM USER GUIDE

lem, i.e., a need in the system. Therefore, we can identify a set of need types
by looking at the problems targeted by solvers, and similarly, we can look at
the outputs of solvers to identify a set of adaptation action types that can be
coordinated in CLAM.

6) Associate the analyzer outputs with needs. A system analyzer reports whether
a system constraint is violated or not. In case of a violation, this problem should
be transferred to a set of solvers which can address this type of problem. Thus,
we should map the analyzer outputs to the solver inputs, i.e., the needs.

6.3 CLAM User Guide

In this section we illustrate on our reference scenario “Call & Pay Taxi” –
introduced in Section 3.2– the main steps to do in order to get CLAM work-
ing. We demonstrate how we can benefit from the modeling methodology we
present in the previous section. Moreover, we describe the concrete actions to
be performed in case we need to introduce new, additional tools to the CLAM
platform.

6.3.1 Initial Setup of CLAM

Setting up CLAM requires that the system model is created and instantiated,
i.e., the initial system configuration is specified, and the tools are integrated to
the model and to the java execution environment. Let us see in more detail what
are the main steps to get CLAM ready to work:

i. Create the model. Here we apply our opportunist modeling methodology to
determine the system element types and eventually to create the system model.

1) Identify the analyzers and solvers available in the system. We start with
the analysis and adaptation capabilities available for the “Call and Pay Taxi”

115



CHAPTER 6. IMPLEMENTATION AND DESIGN

application. As also introduced in Section 3.2, the application is equipped with
the following state-of-the-art tools:

System analyzers: We use the time and cost analyzers [37] for the process
KPIs. They take as input the BPEL file of the application and the execution
times/costs of each process activity in the BPEL, then produce an aggregate
value. Then the aggregate values can easily be compared with KPI target values
to detect violations. We used the data flow analyzer [67] to check the data
compatibility of the services newly introduced to the process.

System solvers: In our scenario we use as solvers a number of adaptation ca-
pabilities from different SBS layers. At the application layer, we use the process

optimizer [105] to reduce the execution time of the process through possible task
parallelizations, and the data mismatch solver [67] to resolve data incompatibil-
ity problems through mediators. We assume that from the beginning business
analyst identifies the possible KPI margins for the application. At the service
layer, we utilize the service quality negotiator [30] to negotiate the time and
cost quality metrics of the partner services, and the service replacer [89] to re-
place the services in the process, which have poor performance or high cost.
Finally, at the infrastructure layer we use the cloud for flexible resource alloca-
tion. We designed a custom resource allocator based on pre-selected Amazon
EC2 Cloud, IBM Smart Cloud instances. We created profiles for time perfor-
mance of these instances by relying on the benchmarking results presented in
[49].

2) Identify the inputs and outputs of analyzers and solvers. After the identi-
fication of the tools, we examine what kind of information each tool needs to
operate on and what kind of output it produces. The description of the tool
interfaces in our scenario are presented in Table 6.1.

3) Identify the system element types. If we observe the analyzer inputs and the
solver outputs in Table 6.1, we can easily figure out the system element types,
which are analyzable and adaptable, i.e., which must be taken into considera-

116



6.3. CLAM USER GUIDE

Tool Inputs Outputs

Analyzer–Time BPEL Process ∧ process execution time KPI target
∧ service execution times

OK ∨ NOK

Analyzer–Cost BPEL Process ∧ application cost KPI target ∧ ser-
vice costs

OK ∨ NOK

Analyzer–Data Flow BPEL Process ∧ service WSDL OK ∨ NOK

Solver–Process Optimizer old BPEL process optimized new BPEL process

Solver–Data Mismatch BPEL Process ∧ incompatible service WSDL a set of alternative mediator services

Solver–QoS Negotiator old service execution times / old service execution
costs

new service execution times / new service execution
costs

Solver–Service Replacer old services to be replaced by the faster / old services
to be replaced by the cheaper

a set of new alternative faster services / a set of new
alternative cheaper services

Solver–Resource Allocator old infrastructure to be reconfigured for cost / old
infrastructure to be reconfigured for time

a set of new alternative infrastructure configurations
with less cost / a set of new alternative infrastructure
configurations with faster response time

Table 6.1: The Tools Available in “Call & Pay Taxi” SBS

tion for the adaptation coordination in CLAM platform. From the presented tool
data we infer the following types: process, time KPI, cost KPI, service, service
execution time, service cost, infrastructure, infrastructure response time, infras-
tructure cost. Notice that this set of element types is smaller than the illustrated
system model for “Call & Pay Taxi” scenario in Chapter 3. In that example, the
system model has further element types such as process activity, service opera-
tion, service provider and infrastructure provider. This observation reconfirms
that the methodology, which we follow, avoids putting unused element types in
the model.

4) Identify the relation types among system element types. In this step the SBS
domain expert must specify the relation types among the element types just
identified in the previous step. At a first glance we can quickly see that time
KPI and cost KPI are process-related element types, whereas, service execution
time and service cost are service-related, and infrastructure response time and
infrastructure cost are infrastructure-related. This observation, in turn, clarifies
the system layers, namely process, service and infrastructure layers. From this
starting point, we can specify more concretely the possible relations among el-
ement types, namely, “has” and “constrains” relations among element types of

117



CHAPTER 6. IMPLEMENTATION AND DESIGN

the same layer and “consumes” relations to address the inter-layer dependen-
cies.

5) Identify the need and action types. The need and action types reflect the
adaptation capabilities of solvers. So we can easily identify them by examining
the solvers. Let us pick a solver from Table 6.1, e.g. Service Replacer. From
its inputs we identify two needs: (i) replace service for cost and (ii) replace
service for time, and actually the outputs, i.e., the adaptation actions just follow
accordingly: (i) new alternative services to replace for cost (ii) new alternative
services to replace for time. Notice that since the service replacer can work on
two different problems, i.e., replacement for time or cost, in our platform, we
treat it as two separate solvers being consistent with the solver description in
Chapter 3 that each solver in CLAM works on a single need. We remark that
once an action type is identified, we must also specify its deployment tasks.
For instance, for service replacement, since we modify the process with the
new partner service, we must migrate the process instances to the new version.
Moreover we must create the SLA and the service monitor.

6) Associate the analyzer outputs with needs. Every analyzer checks a specific
system constraint given a system configuration. In our example we have three
analyzers, thus, three constraints: the process execution time constraint which is
imposed by the time KPI, the SBS cost constraint which is similarly imposed by
the cost KPI, and finally the data flow constraint which is imposed by the com-
position requirements of the process. To map the needs to the analyzer outputs,
we go through the solvers and try to find out which aspect they target to im-
prove. Let us consider the process optimizer. Since it performs parallelizations
inside the workflow, it is obvious that it tries to improve time, so we can asso-
ciate its need with the output of time analyzer. We perform the same exercise
for each solver and map its need to the appropriate analyzer.

ii. Create initial system configuration. After we create the model –by fol-

118



6.3. CLAM USER GUIDE

lowing the steps above, next, we can create the initial system configuration:
Being the instantiation of the system model, it keeps the references to the im-
plementations of system element types. E.g. in case of process system element
type, we will have the “taxiBPEL” node and we need to know where the run-
ning BPEL file is, similarly; for partner services the WSDL files, for quality
attributes the signed SLAs. Note that we are not interested in how system con-
figuration nodes are implemented in the running environment, what platform or
technology is used. We only need to know and have access to the locations of
the data required for analyzers and solvers. Notice that once nodes are identi-
fied, the relations among nodes can be easily inferred from the relation types
identified in the system model.

iii. Create analyzer and solver wrappers. Finally, for each tool that we would
like to integrate in the CLAM platform, we must create a wrapper. A wrapper
function is responsible for the data conversion between the actual tool to be
invoked and the CLAM platform. Let us pick an analyzer from Table 6.1, e.g.
Time Analyzer. As mentioned in the table, it requires the BPEL file, execution
times of partner services and the target value of the time KPI. This implies
that when the wrapper function gets the relevant input nodes from the system
configuration, i.e., process, time KPI and service execution times, it must pass
to the tool real implementation data which are referenced inside the nodes. Then
when the tool response is received, in case no violation is reported, the wrapper
must send back just an “OK” to the coordinator. Otherwise, it must send back
the set of alternative needs associated with the time analyzer.

Let us see also the case of a solver, e.g. Service Replacer. As we mentioned
before, for CLAM platform it corresponds to two separate solvers. So we have
one wrapper of Service Replacer for time and another wrapper for cost. Let us
consider the one for time. Table 6.1 shows that it requires the current services
involved in the BPEL. Similar to the analyzer case, this implies that the wrapper
must pass to the tool the relevant data referenced inside service nodes of system

119



CHAPTER 6. IMPLEMENTATION AND DESIGN

configuration. Then when the tool response is received, in case no adaptation
is found, i.e., no new service is identified for substitution, the wrapper must
send back just a “NOK” to the coordinator. Otherwise, it must send back the
set of alternative adaptation actions in the following format: The old system
configuration nodes to be removed, the new system configuration nodes to be
added. This implies that the service quality profiles, WSDLs and any other
relevant data of these services must be referenced in the newly created nodes.

6.3.2 Updating CLAM with the New Tools

Adaptive systems are by nature dynamic systems, which in turn implies that
throughout the SBS life cycle, we might need to furnish the system with new
monitoring, analysis and adaptation capabilities. Let us see what we precisely
need to do in case we would like to introduce a new tool to the CLAM platform:

i. Integrate the tool with the system model. We should follow the same order
of steps proposed above to create the system model. Therefore we start with the
identification of tool inputs and outputs. Based on that, we check if there are
new system elements to be added in the system model to ensure the utilization
of the tool in CLAM platform. If this is the case, we create the new system
element and connect it to the relevant elements in the model. Next, if it is a
solver, we must create the new need type which corresponds to its input, and
the new action type which corresponds to its output. Moreover, we must go
through the analyzers to associate the new need type with the relevant ones.
Instead, if it is an analyzer, we must simply associate its output with a set of
existing needs.

ii. Integrate the tool with the CLAM run-time environment. This step re-
quires the creation of the tool wrapper. Once the wrapper is prepared, then
the tool is ready to be invoked by the coordinator, as a result, it is ready to be
included in the overall solution search.

120



6.3. CLAM USER GUIDE

6.3.3 Changing the System Model

Above we discussed extension of the system capabilities by introducing new
tools to the CLAM platform. However, this is not the only case that we might
need to update our platform. One other case, which is a more considerable
alteration in the SBS life cycle, is the need to update the system itself. This
might happen under circumstances that require more fundamental changes such
as re-design of the system. Let us see what we precisely need to do in case we
would like to change the system model by adding new system element type:

i. Update the system model. First of all, we insert the new system element
type to the system model by determining properly its relations with the existing
element types. Next, we identify the new analyzers and solvers associated with
the element type. Then, similarly to the steps in Section 6.3.2 we integrate the
new tools with the system model by defining the new need and adaptation action
types for them.

ii. Update the system configuration. After we update the model, next, we
can update the existing system configuration. Being an instantiation of the sys-
tem model, the updated system configuration should contain the corresponding
node instance for the new system element type, including the references to the
implementation of the element type.

iii. Create wrappers of the new tools. Again, similarly to Section 6.3.2, this
step necessitates the creation of wrappers, which is required to incorporate the
new tools in the overall CLAM coordination.

Rather than adding a new system element type in case we would like to
remove an existing element type from the system model, the procedure is more
straightforward: we should remove the corresponding tools associated with this
element type in the model as well as removing the relevant element instances
from the system configuration.

121



CHAPTER 6. IMPLEMENTATION AND DESIGN

6.4 Discussion

We presented the prototype implementation of the cross-layer adaptation frame-
work, the CLAM platform. In CLAM platform we exploit separation of con-
cerns, which is one of the main advantages of our approach making it flexible
and extensible. The implemented coordination algorithm, namely the CLAM
algorithm, does not depend on the application domain nor the specific imple-
mentation of tools.

Second, we introduced a methodology that proposes an easy way to deter-
mine the system elements and subsequently the overall system and adaptation
models required for the operation of CLAM. We illustrated on our reference
scenario the concrete steps that the designers must follow in order to utilize our
platform. In addition to the initial set up, the presented user guide includes the
must-do’s for updating the CLAM platform with new tool integrations, and for
changing the system model by adding new element types and/or removing some
existing ones.

As previous sections showed, our opportunist modeling methodology, which
proposes to start from the available tools, brings us the following benefits: (i)
we identify the system elements more easily by looking at the required inputs
and produced outputs of the available tools. (ii) we keep the model at the right
level of abstraction, which means that we avoid putting unnecessary details in
the model which would never be used by CLAM since there wouldn’t be the
corresponding tool.

We remark that one can create the models also starting from the system el-
ements, and afterwards, determining the tools to be included. We will later
analyze this case and compare it with our methodology in Chapter 7.

Eventually, it requires some efforts to set up CLAM, however, once we start
using it, we have substantial advantages: (i) we get the overall adaptation im-
pact analysis and the coordination in an automated way, (ii) we get an extensi-

122



6.4. DISCUSSION

ble run-time set-up that can easily accommodate new tools without interrupting
an ongoing CLAM operation.

123



CHAPTER 6. IMPLEMENTATION AND DESIGN

124



Chapter 7

Evaluation

In this chapter we present the evaluation of our approach. In order to evalu-
ate the cross-layer adaptation framework, as well as the presented techniques
and algorithms, we conducted a range of empirical research methods on the
case study described in the thesis, namely “Call & Pay Taxi” application. In
the evaluation we exploited the implemented CLAM platform together with a
set of state-of-the-art analysis and adaptation tools integrated with the platform,
which overall enabled to analyze an initial adaptation problem through the co-
ordination of tools, identify the possible cross-layer adaptation solutions, and
eventually rank them for selection.

The chapter discusses the results of the empirical work in three directions:
(i) Viability of the approach. We used the prototype toolkit, i.e., the CLAM
platform, to instantiate the cross-layer adaptation approach and the presented
“simple additive weighting – multi criteria decision making” ranking method.
The results of the experiments demonstrated the viability of our approach, and
its contribution with respect to the existing works when we consider the variety
of adaptation capabilities that can be available in the SBS. (ii) Heuristics for

optimization and algorithm termination. We identified and implemented two
novel heuristic methods to optimize the tree construction and to enforce the ter-
mination of the CLAM algorithm in practical context. (iii) Contribution of the

125



CHAPTER 7. EVALUATION

modeling methodology. We evaluated the contribution of the proposed model-
ing methodology by changing the level of abstraction of the model for the same
SBS, and calculating the design-time efforts required for each abstraction.

7.1 Experimental Set-up and a Sample Run

Here, we present the experimental set-up of the implemented CLAM platform
on our reference scenario, “Call & Pay Taxi” application and demonstrate the
output of a sample run of the CLAM platform. We use the system model, which
we create based on the adaptation and analysis tools and the methodology pre-
sented in Section 6.3. Figure 7.1 depicts the consequent system and adaptation
models for the scenario after following the methodological steps one by one.

As it can be seen from the displayed figure, we have in total 8 adaptation
needs defined in the system, and correspondingly 8 solvers to tackle them. Each
solver can propose diverse adaptation actions depending on the adaptation space
it utilizes. For instance, let us consider the service replacer for time. The num-
ber of alternative adaptations which it can propose depends on not only the
service repository it exploits, but also the quality profiles of the available al-
ternatives from the same service category. Thus, the service repository that a
service replacer contacts underlies the adaptation space for this solver. Table 7.1
presents an illustrative list of adaptation spaces for the solvers of “Call & Pay
Taxi” presented in Figure 7.1.

Given the adaptation space in Table 7.1 we created a case study where the
process execution time is higher than the expected value, i.e., time KPI is vio-
lated. For this problem, CLAM coordinated the tools introduced in Figure 7.1
and, using BFS for tree construction, produced a tree of 1615 nodes with 8
successful paths, i.e., alternative cross-layer adaptation strategies. The exper-
iment took around 2 minutes on a 4GB 2.53GHz Dual Core machine running
Windows. 85% of the time was elapsed inside the tools.

126



7.1. EXPERIMENTAL SET-UP AND A SAMPLE RUN

Process 

Cost KPI

co
ns
tra
ins

consumes

Service 

infrastructure

Infrastructure 

time QoS

consumes

has

consumes

Service

Service

time QoS

has

Time KPI

co
n
st
ra
in
s

Service

cost QoS Infrastructure 

cost QoS

has has

consumes
consumes

consumes

Time 

Analyzer

BPEL

Need 1:

Renegotiate service time

Need 2:

Replace service for time

Need 3:

Optimize process for time

Need 4:

Optimize resources for time

Service 

time QoS

Time KPI

Cost 

Analyzer

BPEL
Need 1:

Renegotiate service cost

Need 2:

Replace service for cost

Need 3:

Optimize resources for cost

Service 

cost QoS

Cost KPI

Data flow 

Analyzer

BPEL Need 1:

Remove data mismatchService

Service 

Replacer for 

Time

Need:

Replace 

service for 

time

Action 1: 

Replace service X1

with service X2

Action 2: 

Replace service Y1

with service Y2

. . .

Service 

Replacer for 

Cost

Need:

Replace 

service for 

cost

Action 1: 

Replace service X1

with service X2

Action 2: 

Replace service Y1

with service Y2

. . .

Service 

Renegotiator 

for Time

Need:

Renegotiate 

service time

Action 1: 

Renegotiated time 

QoS for service X

Action 2: 

Renegotiated time 

QoS for service Y 

. . .

Service 

Renegotiator 

for Cost

Need:

Renegotiate 

service cost

Action 1: 

Renegotiated cost 

QoS for service X

Action 2: 

Renegotiated cost 

QoS for service Y 

. . .

Resource 

allocator for 

Time

Need:

Optimize 

resources 

for time

Action: 

New optimized 

resources for time

Resource 

allocator for 

Cost

Need:

Optimize 

resources 

for cost

Action: 

New optimized 

resources for cost

Process 

Optimizer

Need:

Optimize 

process for 

time

Action: 

New optimized 

process for time

Data 

Mismatch 

Solver

Need:

Remove data 

mismatch

Action 1: 

Add mediator service X

Action 2:

Add mediator service Y

. . .

BPEL

Service

Service 

time QoS
Service 

cost QoS

BPEL

Service

Service 

time QoS
Service 

cost QoS

BPEL

Service

Service 

time QoS

Service 

cost QoS

BPEL

Infrastructure 

time QoS

Infrastructure 

cost QoS

Service 

time QoS

Service 

cost QoS

Figure 7.1: The System and Adaptation Models for “Call & Pay Taxi” Scenario

127



CHAPTER 7. EVALUATION

Solver: Adaptation Space:

Service QoS negotiator for time
service-taxiCoop.0 → service-taxiCoop.1
service-timSMS.0 → service-timSMS.1
service-vodafonePAY.0 → service-vodafonePAY.1

Service QoS negotiator for cost

service-TaxiTrento.0 → service-taxiTrento.2
service-timLBS.0 → service-timLBS.2
service-timPAY.0 → service-timPAY.2
service-vodafoneLBS.0 → service-vodafoneLBS.2
service-vodafoneSMS.0 → service-vodafoneSMS.2

Service replacer for time

service-taxiTrento → service-taxiCoop
service-vodafoneLBS → service-timLBS
service-vodafonePAY → service-timPAY
service-vodafoneSMS → service-timSMS

Service replacer for cost

service-taxiCoop → service-taxiTrento
service-timLBS → service-vodafoneLBS
service-timPAY → service-vodafonePAY
service-timSMS → service-vodafoneSMS

Resource allocator for time infra-amazonEC2.0 → infra-amazonEC2.1
Resource allocator for cost infra-amazonEC2.0 → infra-amazonEC2.2
Process optimizer process-callAndPayTaxi.bpel.0 → process-callAndPayTaxi.bpel.1

Data mismatch solver
service-mediatorFull2Geo
service-mediatorGeo2Full

Table 7.1: Adaptation Spaces for the Solvers used in the “Call & Pay Taxi” Scenario

128



7.1. EXPERIMENTAL SET-UP AND A SAMPLE RUN

Performance improvement. We remark that such a large number of tree nodes
despite a relatively small adaptation search space is due to the fact that we are
using permutations of analyzers to ensure completeness as already discussed in
Section 4.2.2. However, in reality, for the given example the tree size should be
much larger than 1615 since permutations introduce an exponential growth. We
tackled this performance issue as follows: (i) We updated the CLAM algorithm
such that as soon as a set of analyzers are identified, they are immediately in-
voked and only in case of problems they are added into the CLAM Queue and
reflected as tree nodes in the CLAM tree. (ii) In fact, it is sufficient to generate
the tool sequences of the queue where only queue head is important. This is be-
cause each time a solver proposes an adaptation, we are checking the affected
analyzers and updating the queue. All in all this implies that for a queue of size
n, we reduce the number of permutations from n! to n.

Solutions for a sample run. Table 7.2 presents the paths, i.e., cross-layer adap-
tations, which CLAM identified for our sample run. Note that CLAM searches
for the whole solution space through numerous iterations and organizes the
paths in the end. It implies that it discards the adaptations that are rolled back
during the iterations and eventually keeps the ones who make direct effects on
the final system configuration with respect to the initial system configuration.
This leads to obtain interesting results such as paths 5, 6, 7 and 8 in which there
exist adaptations for improving cost although the initial problem was time and
could be solved by actions performed only for this problem (see paths 1, 2, 3
and 4). In general unexpected solutions like paths 5, 6, 7 and 8 optimize overall
system quality considering both time and cost at the same time, but, entailing
many adaptation actions they might require too much effort to be deployed in
the running SBS. In the end, it is the SBS owner’s decision what kind of path
he prefers. If the SBS owner is not very concerned about optimizing the system

129



CHAPTER 7. EVALUATION
Path

id
FinalSystem

C
onfigura-

tion
Triggered

A
daptations

R
equired

E
nactm

entE
f-

forts
A

daptation
L

ocation
A

daptation
D

eploym
ent

C
ost

A
daptation

D
eploym

ent
Tim

e

Total
System

C
ost

Process
C

ycle
Tim

e
A

ggregated
N

orm
alized

Path
Value

path
1

C
allA

ndPayTaxi-
opt.bpel,

taxiTrento.0,
tim

L
B

S.0,
tim

SM
S.1,

tim
PA

Y.0,am
azonE

C
2.0

negotiated
service

tim
e

for
tim

SM
S;

new
opti-

m
ized

process

m
odify

service
m

onitor;
m

odify
service

SL
A

;
m

i-
grate

process;
create

new
m

achine
im

age

application
and

service
layers

6.0
2.0

31.7
19.7

0.146
(B

E
ST

R
A

N
K

E
D

)

path
2

C
allA

ndPayTaxi-
opt.bpel,

taxiTrento.0,
tim

L
B

S.0,
tim

SM
S.0,

tim
PA

Y.0,am
azonE

C
2.0

new
optim

ized
process

m
igrate

process;
create

new
m

achine
im

age
application

layer
4.0

(B
E

ST
D

E
-

PL
O

Y
M

E
N

T
C

O
ST

)

2.0
(B

E
ST

D
E

-
PL

O
Y

M
E

N
T

T
IM

E
)

31.7
20.3

0.137

path
3

C
allA

ndPayTaxi-
opt.bpel,

taxiTrento.0,
tim

L
B

S.0,
tim

SM
S.1,

tim
PA

Y.0,am
azonE

C
2.1

new
resources

for
tim

e;
negotiated

service
tim

e;
new

optim
ized

process

m
odify

service
m

onitor;
m

odify
service

SL
A

;
m

i-
grate

process;
create

new
m

achine
im

age;
m

igrate
m

achine
im

age

application,
service

and
infrastructure

layers
8.0

4.0
31.7

19.3
(B

E
ST

SC
T

IM
E

)
0.129

path
4

C
allA

ndPayTaxi-
opt.bpel,

taxiTrento.0,
tim

L
B

S.0,
tim

SM
S.0,

tim
PA

Y.0,am
azonE

C
2.1

new
resources

for
tim

e;
new

optim
ized

process
m

igrate
process;

create
new

m
achine

im
age;

m
i-

grate
m

achine
im

age

application
and

infrastruc-
ture

layers
6.0

4.0
31.7

19.9
0.122

path
5

C
allA

ndPayTaxi-
opt.bpel,

taxiTrento.0,
tim

L
B

S.2,
voda-

foneSM
S.0,

tim
PA

Y.2,
am

azonE
C

2.1

new
resources

for
tim

e;
replaced

service
for

cost;
negotiated

service
cost;

new
optim

ized
process

m
odify

service
m

onitor;
m

odify
service

SL
A

;
cre-

ate
new

service
m

onitor;
sign

new
service

SL
A

;
m

igrate
process;

create
new

m
achine

im
age;

m
i-

grate
m

achine
im

age

application,
service

and
infrastructure

layers
14.0

6.0
30.7

20.09
0.101

path
6

C
allA

ndPayTaxi-
opt.bpel,

taxiTrento.0,
tim

L
B

S.2,
voda-

foneSM
S.0,

vodafone-
PA

Y.1,am
azonE

C
2.0

replaced
service

for
cost;

replaced
service

for
tim

e;
negotiated

service
cost;

negotiated
service

tim
e;

new
optim

ized
process

m
odify

service
m

onitor;
m

odify
service

SL
A

;
cre-

ate
new

service
m

onitor;
sign

new
service

SL
A

;
m

igrate
process;

create
new

m
achine

im
age

application
and

service
layers

14.0
6.0

30.8
20.2

0.091

path
7

C
allA

ndPayTaxi-
opt.bpel,

taxiTrento.0,
tim

L
B

S.2,
voda-

foneSM
S.0,

vodafone-
PA

Y.1,am
azonE

C
2.2

replaced
service

for
cost;

new
resources

for
cost;

negotiated
service

cost;
negotiated

service
tim

e;
new

optim
ized

process

m
odify

service
m

onitor;
m

odify
service

SL
A

;
cre-

ate
new

service
m

onitor;
sign

new
service

SL
A

;
m

igrate
process;

create
new

m
achine

im
age;

m
i-

grate
m

achine
im

age

application,
service

and
infrastructure

layers
16.0

8.0
30.5

(B
E

ST
SC

C
O

ST
)

20.2
0.079

path
8

C
allA

ndPayTaxi-
opt.bpel,

taxiTrento.0,
tim

L
B

S.2,
voda-

foneSM
S.0,

vodafone-
PA

Y.1,am
azonE

C
2.1

replaced
service

for
cost;

new
resources

for
tim

e;
negotiated

service
cost;

negotiated
service

tim
e;

new
optim

ized
process

m
odify

service
m

onitor;
m

odify
service

SL
A

;
cre-

ate
new

service
m

onitor;
sign

new
service

SL
A

;
m

igrate
process;

create
new

m
achine

im
age;

m
i-

grate
m

achine
im

age

application,
service

and
infrastructure

layers
16.0

8.0
30.8

19.8
0.075

Table
7.2:C

ross-layerA
daptation

Paths
fora

Sam
ple

R
un

130



7.2. HEURISTIC METHODS FOR SEARCH OPTIMIZATION AND TERMINATION

quality, he could go for the simplest path which is not costly to deploy in the
system, i.e., path 2.

Moreover, the presented paths demonstrate two important characteristics of
our approach: First, it is able to identify the combinations of alternative adapta-
tions to solve a single problem. Paths 1, 3 and 4 illustrate such cases that they
propose more than one action to improve the time performance of the process.
Second, CLAM is capable of tackling new problems triggered on the path due
to the proposed adaptations. Paths 5, 6, 7 and 8 are the examples in which new
cost problem is arisen and addressed during the iterations. We remark that, as
a consequence of our flexible, on-the-fly cross-layer adaptation detection, these
are important aspects distinguishing our approach from the existing works. E.g.
the pattern-based approach proposed in [103] requires the description of cross-
layer adaptation patterns at design time, which in turn implies that the approach
cannot catch an unexpected problem, which might originate from a proposed
cross-layer adaptation. Moreover, in the case that such problem patterns are
envisaged at design time, (i) it will be very costly to go through all the possible
interactions among tools, and (ii) it will not be realistic for an open adaptive
system since the adaptations proposed by solvers may vary by time as well as
the set of solvers and analyzers used in the system.

7.2 Heuristic Methods for Search Optimization and Termi-
nation

Regarding the implementation of our framework, we addressed two practical
issues through heuristic methods and evaluated the proposed methods through
experiments. First, we optimized the tree construction by designing a greedy
search algorithm [125], which investigates the tree nodes that seem to be most
likely to reach a cross-layer adaptation solution. Second, we devised a princi-
pled way for termination in practical settings, which relies on our primary intu-

131



CHAPTER 7. EVALUATION

ition that we do not want to deploy a cross-layer adaptation, which brings the
system to a very different configuration with respect to the initial configuration.

7.2.1 Optimization Heuristics

In our optimized search algorithm, as being greedy, the node selection for ex-
panding the tree is based on the goal-distance function that is an admissible
“heuristic estimate” of the distance from the current node to the goal, i.e., for
the given tree node, how close we are to the solution. In fact, It is not straightfor-
ward to determine a promising function for the heuristic estimate of the distance
to reach the goal. In this dissertation, we present a novel optimization approach
to search and find solutions faster compared to the well known tree traversal
algorithms such as DFS and BFS.

The main idea behind is to be able to utilize as much information as possible
so that our algorithm performs an informed search rather than picking up an
arbitrary node to continue. At this point it is obvious that we should turn our
head towards the system and adaptation models because they are the only ones
that keep information about tool behaviors. Especially we concentrate on solver
behaviors since they are the actual builders of a cross-layer adaptation solution.
At a qualitative level we can extract the following information from the models:
We know that each analyzer works on a single system constraint and produces
a set of alternative needs to address a constraint violation. Thus, we know
which constraint problem is solved when a solver addresses a need, which in
turn implies at best case a solver can solve the given problem. However, as
discussed throughout the thesis, solvers might have negative effects on other
system constraints. Again, from the model, we know the associated system
parts where a solver work on, and similarly the parts on which a constraint is
imposed, i.e., the analyzer inputs. Thus, from this bunch of information, we can
easily extract the best case and worst case consequent effects of solvers on the
system.

132



7.2. HEURISTIC METHODS FOR SEARCH OPTIMIZATION AND TERMINATION

Table 7.3 depicts the solver behaviors for our reference scenario. It displays
for each solver the set of affected analyzers and the analysis of effects if they
are positive or negative. For all the unaffected analyzers, the effect is neutral.
Using Table 7.3 we can calculate optimistic and pessimistic bounds on a CLAM
queue size at a given tree node. At optimistic case, the solver addresses the
problem and does not touch the other constraints, so the queue is reduced by 1.
At pessimistic case, even if the solver proposes an adaptation, it is not enough
to solve the problem, moreover it negatively affects all its associated analyzers,
so the queue is increased by the number of negatively affected analyzers. The
resultant bound calculations are given in Table 7.4.

SOLVER: List of triggered analyzers: Impact on time: Impact on cost: Impact on data flow:
Process optimizer time analyzer positive neutral neutral
Resource optimizer for time time analyzer positive neutral neutral
Resource releaser for cost cost analyzer neutral positive neutral
Service time QoS negotiator time analyzer positive neutral neutral
Service cost QoS negotiator cost analyzer neutral positive neutral
Data Mismatch solver time, cost, data flow analyzers negative negative positive
Service Replacer for time time, cost, data flow analyzers positive negative negative
Service Replacer for cost time, cost, data flow analyzers negative positive negative

Table 7.3: Qualitative Analysis of Effects of Solvers on the System

SOLVER: Optimistic bound on CLAM Queue size: Pessimistic bound on CLAM Queue size:
Process optimizer Q - 1 Q
Resource optimizer for time Q - 1 Q
Resource releaser for cost Q - 1 Q
Service time QoS negotiator Q - 1 Q
Service cost QoS negotiator Q - 1 Q
Data Mismatch solver Q - 1 Q +2
Service Replacer for time Q - 1 Q +2
Service Replacer for cost Q - 1 Q +2

Table 7.4: Calculation of Optimistic and Pessimistic Bounds of a CLAM Queue based on Solver
Behaviors

Optimized Search Algorithm. Figure 7.2 presents the greedy search algorithm
that we have implemented based on the optimistic and pessimistic bounds in-

133



CHAPTER 7. EVALUATION

1 f u n c t i o n p i c k B e s t L e a f ( t r e e T y p e t )
2 nodeType b e s t := n u l l
3 L i s t <node> l e a v e s := t . ge tLea fNodes ( )
4 i f l e a v e s == n u l l | | l e a v e s . i sEmpty ( )
5 re turn n u l l
6 f o r a l l l e a f in l e a v e s
7 i f ! l e a f . ge tQueue ( ) . h a s S o l v e r ( )
8 re turn l e a f
9 i f b e s t == n u l l
10 b e s t = l e a f
11 e l s e i f l e a f . g e t O p t i m i s t i c B o u n d ( ) <= b e s t . g e t O p t i m i s t i c B o u n d ( ) &&

l e a f . g e t P e s s i m i s t i c B o u n d ( ) < b e s t . g e t P e s s i m i s t i c B o u n d ( )
12 b e s t = l e a f
13 e l s e i f l e a f . g e t O p t i m i s t i c B o u n d ( ) < b e s t . g e t O p t i m i s t i c B o u n d ( ) &&

l e a f . g e t P e s s i m i s t i c B o u n d ( ) <= b e s t . g e t P e s s i m i s t i c B o u n d ( )
14 b e s t = l e a f
15 e l s e i f l e a f . g e t O p t i m i s t i c B o u n d ( ) == b e s t . g e t O p t i m i s t i c B o u n d ( ) &&

l e a f . g e t P e s s i m i s t i c B o u n d ( ) == b e s t . g e t P e s s i m i s t i c B o u n d ( ) &&
l e a f . g e t C u r r P r o b l e m L i s t ( ) < b e s t . g e t C u r r P r o b l e m L i s t ( )

16 b e s t = l e a f
17 e l s e i f l e a f . g e t O p t i m i s t i c B o u n d ( ) == b e s t . g e t O p t i m i s t i c B o u n d ( ) &&

l e a f . g e t P e s s i m i s t i c B o u n d ( ) == b e s t . g e t P e s s i m i s t i c B o u n d ( ) &&
l e a f . g e t D i s t a n c e F r o m C r i t e r i a ( ) < b e s t . g e t D i s t a n c e F r o m C r i t e r i a ( )

18 b e s t = l e a f
19 re turn b e s t

Figure 7.2: Greedy Search Algorithm.

134



7.2. HEURISTIC METHODS FOR SEARCH OPTIMIZATION AND TERMINATION

troduced above. It first expands all the tree nodes which do not have any solvers
in the queue, i.e. the nodes with analyzer queues (lines 7-8). Once we have
only the tree nodes in which we have a solver to invoke, we start utilizing the
information we have in hand to select the best leaf. We go through all the leaves
(line 6), and first, we compare the optimistic and pessimistic bounds and we try
to find the leaf minimizing both values (lines 11-14). If we find a leaf having
the same bounds with the current “best”, in order to break the ties we check the
current number of analyzers in their queues, which correspond to current num-
ber of problems to be solved (lines 15-16). Finally, if also the current number
of problems are equal, we apply tie breaking for a second time, this time using
the overall quantitative distance from the target constraint values such as KPI
target for process cycle time and KPI target for overall application cost (lines
17-18). Notice that we have the third system constraint in our reference sce-
nario, which is the data flow compatibility. Naturally, this type of constraints
take boolean values instead of numeric values. We assume that the distance is
1 when the boolean value is false. Furthermore, when we calculate the overall
distance from the target values, we tackle this kind of heterogeneities by the
normalization of values.

Comparison with BFS and DFS. We conducted two experiments to see the
contribution of our greedy search algorithm compared to the traditional tree
traversal algorithms such as BFS and DFS. For both experiments, we used the
same SBS presented in Figure 7.1 and the same adaptation search space intro-
duced in Table 7.1. In the first scenario we used the same adaptation case study
introduced in the previous section where the process cycle time KPI is violated
and all the other system constraints are OK. In the second scenario we gener-
ated a different problem where the overall application cost KPi is violated and
all the other system constraints are OK:

Scenario 1. There is a time problem in the system. The initial values are as

135



CHAPTER 7. EVALUATION

follows:

Current application cost: 31.7

Current process cycle time: 26.1

Current data compatibility status: true

Max application cost allowed: 32

Max process cycle time allowed: 20.3

Data compatibility must be: true

Scenario 2. There is a cost problem in the system. The initial values are as
follows:

Current application cost: 32.5

Current process cycle time: 19.5

Current data compatibility status: true

Max application cost allowed: 32

Max process cycle time allowed: 20.3

Data compatibility must be: true

Figure 7.3 presents the results of experiments. As it can clearly be seen
from both experiments, our proposed greedy algorithm, taking advantage of
performing an informed search, finds the solutions much earlier compared to
both BFS and DFS algorithms. This observation validates that the information
that we feed to the search algorithm is indeed meaningful and helps optimize
the search.

7.2.2 Termination Heuristics

Previously, in Section 4.2.2 we discussed the termination of CLAM algorithm
and concluded that the algorithm does not terminate from the theoretical point

136



7.2. HEURISTIC METHODS FOR SEARCH OPTIMIZATION AND TERMINATION

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0  2  4  6  8  10

# 
of

 n
od

es

# of solutions

Solutions vs nodes

BFS
DFS
HEU

Scenario 1

 0

 100

 200

 300

 400

 500

 600

 700

 0  2  4  6  8  10  12  14

# 
of

 n
od

es

# of solutions

Solutions vs nodes

BFS
DFS
HEU

Scenario 2

Figure 7.3: Comparison of greedy search with BFS and DFS algorithms.

of view. This is due to the fact that we might have infinitely many adaptations
proposed by solvers, and infinitely many ways to configure the system even with
a finite set of solvers, even with a finite set of actions proposed by a solver. One
illustrative solver would be a BPEL reconstructor which is adding an exception
handler in front of an activity. So, each time a new BPEL activity is observed,
the solver adds a new exception handler. Suppose that we have a second solver,
which is parallelizing the process activities. When we continuously apply these
two solvers one after the other, we can generate infinitely many versions of
BPEL by adding an exception handler, then putting it in parallel, then adding a
new exception handler in front of the new parallel activity and so on.

In a practical setting, it is not feasible continuously modifying a BPEL pro-
cess to address an adaptation problem. Moreover, it is not feasible to replace
a big part of the system configuration either: We do not want to introduce new
better services, new faster infrastructures to address a local adaptation prob-
lem. We would like find the most reasonable solution to an adaptation problem,
which will not imply a continuous modification of a system part nor a big revi-
sion of the overall system.

The principle of our termination method leans on the fact that we do not

137



CHAPTER 7. EVALUATION

want to bring the system to a final configuration which is very different from
the initial system configuration, because eventually we want to adapt the sys-
tem, not to convert it into a totally new system as a result of a chain of adaptation
actions. Such cases indeed imply a huge amount of efforts for the adaptation de-
ployment, which obviously turns out to be comparable to the amount of efforts
we would require for a re-design. Therefore, we propose a heuristic method
to measure and control the number and distribution of changes imposed on the
system due to a cross-layer adaptation. In this way, when we visit a tree node, if
we identify that we exceed the threshold, which is defined on the basis of system
configuration size and its maximum percentage that we permit for adaptation,
we stop the tree expansion for that node.

Termination threshold. We consider the required efforts to design a system,
at a very high level, is equivalent to the size of initial system configuration. We
assume that if we have a system with 2n elements, it is more costly to design
and deploy it compared to system of size n. Our main motivation to specify
a termination threshold in CLAM iterations exactly bases upon this universal
threshold, which definitely we do not want to do actions which are equivalent to
re-design in terms of the amount of efforts. To be more realistic, we propose a
parameter to specify the threshold, which is the percentage of the initial system
configuration size, |SC0|. This parameter can be fixed by the domain expert to
a reasonable value at design-time given the complexity and dynamicity of the
system.

Node acceptability. Intuitively, a cross-layer adaptation which brings the sys-
tem from size n to size 2n is not acceptable since each node addition counts
for increasing the initial size of the system, i.e., |SC0|, by a factor of 1/|SC0|
and in the end we would arrive at the same amount of efforts required for a
system design. Similarly, replacing a node or removing a node are significant
changes in a system configuration, so they have the same effects like adding

138



7.2. HEURISTIC METHODS FOR SEARCH OPTIMIZATION AND TERMINATION

a node. Whereas, modifying a node is in general a less significant change for
a system configuration, so it should be handled in a different way. Thus, we
propose to assign weights to each action type when we are summing up all the
actions required to reach a final system configuration from an initial one.

Moreover there is another aspect that we should take into account. Not only
the total number of changes matters, but also we should consider the node dis-
tribution of changes. Definitely, modifying the same node three times is not
equal to modifying three distinct nodes, each of them just once. Therefore, we
aggregate these two metrics into a single metric that we call “node acceptabil-
ity”. Then, each time we are visiting a node, we can calculate its acceptability
and stop the expansion at that node if it has reached the termination threshold.

Definition 7.1 (Node Acceptability) A node v in the CLAM tree T is acceptable
if and only if its acceptability acceptv is smaller than the termination threshold

Threshold where

• acceptv = W1∆SCv +W2numChangev such that W1,W2 ∈ R and W1+

W2 = 1.0;

• ∆SCv, the SC distance factor, is the weighted sum of {add, remove, re-

place, modify} actions to arrive from SC0 to SCv and the weight for each

action, represented by wa, is a real number such that wa ∈ [0, 1];

• numChangev is the change distribution factor which denotes the total

number of changed nodes in SCv with respect to the SC0;

• Threshold = Wthr|SC0| where Wthr is a real number such that Wthr ∈
[0, 1] and it denotes the maximum percentage of the system that we allow

for adaptation.

In our experiments while we tried different value sets for the parameters W1,
W2 and Wthr, we fixed the weights of actions to calculate ∆SC. For each add,

139



CHAPTER 7. EVALUATION

 0

 2

 4

 6

 8

 10

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

# 
of

 s
ol

ut
io

ns

threshold

# of solutions at different thresholds

w=0.0
w=0.3
w=0.5
w=0.7
w=1.0

Scenario 1

 0

 2

 4

 6

 8

 10

 12

 14

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

# 
of

 s
ol

ut
io

ns
threshold

# of solutions at different thresholds

w=0.0
w=0.3
w=0.5
w=0.7
w=1.0

Scenario 2

Figure 7.4: Effect of variation of ∆SC weight on the number of solutions found at varying
termination thresholds.

remove and replace action we assigned 1 as weight, instead for each modify

action we assigned 0.5 since they impose less significant changes on the system
compared to the other actions as also discussed above. We remark that one can
have a more elaborate weight list for different adaptation actions, e.g., one can
distinguish between adding a service node and adding an infrastructure node.
Such refinements can easily be handled by our approach.

Let us consider the experiments that we conducted to evaluate our termina-
tion heuristics. We remark that for all the experiments, we used the two scenar-
ios, Scenario 1 and Scenario 2, which we already introduced in the previous
section.

The first concern we would like to observe is the variation of results when we
consider different weights for the SC distance factor ∆SC and the change distri-
bution factor numChange. Figure 7.4 depicts the experiment results where we
tried different variations of W1, W2 and Wthr. As it can be seen from the exper-
iment results, when we totally ignore ∆SC factor, i.e., it has a 0 weight, then,
only relying on the change distribution factor, we do not prune solutions at high
thresholds since even if many changes are made to the system configuration,

140



7.2. HEURISTIC METHODS FOR SEARCH OPTIMIZATION AND TERMINATION

roughly, we only consider the number of changed nodes. So in that case, we
start pruning solutions much later only around 30% of the system configuration
size. However, on the contrary, when we consider lower percentages such as
10%, we see that “applying purely numChange factor” prunes more solutions
than “applying purely ∆SC factor”. This is because when we consider smaller
thresholds numChange might be overestimating the meaning of the changes.
More precisely, it will treat a modification equally as it treats replacement, ad-
dition or removal of nodes. For instance, we have a system configuration of
20 nodes and we have the threshold 10%. If we perform 3 modifications in 3
nodes, “applying purely ∆SC factor” would keep the solution since the accept-
ability would imply 3 times the weight of modification action, which is 0.5, so
the node acceptability value would be 1.5. On the other hand, “applying purely
numChange factor” would discard the solution since the acceptability would
imply the number of changed nodes, which is 3.

From this observation, we conclude that SC distance factor ∆SC proposes
a more refined way of understanding changes in the system. However, one can
still give more weight to numChange if the localization of adaptations is of
highest importance.

Our second concern is to understand if we are really pruning the bad solu-
tions and what remains is really a good set of solutions at low thresholds. We
will use purely ∆SC factor since it is more refined, and pruning the solution
more gradually compared to numChange factor.

Figure 7.5 presents the results when we observe the pruned tree nodes and
solutions at varying termination thresholds. Let us consider the 10% threshold.
In the first scenario we keep 4 solutions out of 8 possible solutions and in the
second we keep 2 solutions out of 14. We should understand if the remaining
solutions are actually the preferable ones that we have intended to keep. Ta-
ble 7.5 presents the remaining solutions of Scenario 1 and Table 7.6 presents
the remaining solutions of Scenario 2. Both tables demonstrate that we find the

141



CHAPTER 7. EVALUATION

 0

 500

 1000

 1500

 2000

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 2

 4

 6

 8

 10

# 
no

de
s

# 
so

lu
tio

ns

threshold

# of solutions and nodes at different thresholds for w=1.0

# sol
# nodes

Scenario 1

 0

 100

 200

 300

 400

 500

 600

 700

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 2

 4

 6

 8

 10

 12

 14

# 
no

de
s

# 
so

lu
tio

ns

threshold

# of solutions and nodes at different thresholds for w=1.0

# sol
# nodes

Scenario 2

Figure 7.5: Observation of pruned tree nodes and solutions at varying termination thresholds
when only ∆SC weight is applied.

Solutions: Tree size at the
solution node:

Distance from
initial SC /
threshold

Nodes af-
fected from
adaptation:

Final SC
cost:

Final SC
time:

Overall rank
among the
whole set of 8
solutions:

solution#1 5 1.0 (2 modify)
/ 1.8

process, ser-
vice time
QoS

31.7 19.7 1st

solution#2 9 1.5 (3 modify)
/ 1.8

process, ser-
vice time QoS,
infra time QoS

31.7 19.3 3rd

solution#3 17 1.0 (2 modify)
/ 1.8

process, infra
time QoS

31.7 19.9 4th

solution#4 20 0.5 (1 modify)
/ 1.8

process 31.7 20.3 2nd

Table 7.5: Pruned solutions of Scenario 1 when 10%|SC0| threshold is applied

142



7.2. HEURISTIC METHODS FOR SEARCH OPTIMIZATION AND TERMINATION

Solutions: Tree size at the
solution node:

Distance from
initial SC /
threshold

Nodes af-
fected from
adaptation:

Final SC
cost:

Final SC
time:

Overall rank
among the
whole set of 8
solutions:

solution#1 5 1.5 (3 modify)
/ 1.8

2 service cost
QoS + infra
cost QoS

31.6 19.5 2nd

solution#2 8 1.0 (2 modify)
/ 1.8

2 service cost
QoS

31.9 19.5 1st

Table 7.6: Pruned solutions of Scenario 2 when 10%|SC0| threshold is applied

minimum ∆SC solutions which are based on modification actions and much
simpler paths compared to the discarded solutions. If we again have a look
at the full solution list for Scenario 1 (Table 7.2), we can easily see that the
pruning keeps the first 4 highly ranked paths and discarded the worse ones with
respect to our overall adaptation selection criteria. The discarded solutions are
indeed bad since they include service replacements, which are definitely more
costly than optimizing the process or reconfiguring the infrastructure. This is an
expected result since we have a fine-grained evaluation of SC distance which is
aligned with adaptation selection criteria especially considering the adaptation
deployment efforts. Moreover, the presented results show once more that our
optimized search algorithm works very efficiently since it finds the solutions
very early. In addition, from the plots it can be seen that at 10% termination
threshold, the final tree size is reduced from around 1600 nodes to less than 40
nodes in Scenario 1, and from around 600 nodes to less than 20 nodes in Sce-
nario 2. This is a motivating result to consider the use of our approach online in
run-time adaptation scenarios.

One other observation that we deduce from Figure 7.5 is the relation between
the number of pruned tree nodes and the number of pruned solutions when we
vary the termination threshold. Intuitively as we decrease the threshold, we
expect that we start pruning the tree before we start pruning the solutions. So,

143



CHAPTER 7. EVALUATION

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  200  400  600  800  1000  1200  1400  1600  1800

S
C

 d
is

ta
nc

e

# of nodes

Nodes vs SC distance

exp1, SC heu

Scenario 1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  100  200  300  400  500  600  700

S
C

 d
is

ta
nc

e
# of nodes

Nodes vs SC distance

exp2, SC heu

Scenario 2

Figure 7.6: Variation of ∆SC throughout the tree expansion when ∆SC driven search heuristic
is applied.

there should be a range for the threshold value in which we decrease the tree
size but still we do not lose any solutions. However, in our plots we observe
that when we are going down from 100% to ∼50%, we do not prune neither the
tree nor the solutions, then almost at the same threshold we start pruning them
both. More precisely, experiment results report that there does not exist a range
for the threshold value in which we guarantee to find all the solutions and at the
same time we prune the tree.

We conducted an additional experiment to investigate this behavior more
elaborately. We implemented an ad-hoc ∆SC driven search algorithm to under-
stand the variation of ∆SC in case that we construct the complete tree without
applying any termination condition. By “∆SC driven search algorithm”, we
mean that –instead of applying our solution driven greedy search algorithm– at
every iteration we pick the leaf which has the minimum SC distance from the
root node. By replacing the proposed greedy search with this algorithm, we
can eliminate the possible effects of the greedy search on the variation of ∆SC,
and instead, we can purely concentrate on what happens to the ∆SC during the
construction of the whole tree.

144



7.3. CONTRIBUTION OF THE MODELING METHODOLOGY

Figure 7.6 depicts the experiment results when we utilize the “∆SC driven
search algorithm”. We observe from the results that in the beginning there is
quite a gradual increase in ∆SC as expected since we use a search heuristic
which always tries to minimize ∆SC. However, later, even if we construct the
tree purely ∆SC driven, the ∆SC starts oscillating. This is due to the fact that
when we apply as adaptation “replace” action to a SC element, we might be
decreasing the current ∆SC since we might be going back to the initial state
of this element, i.e., its state at the tree root. We call this “roll back effect
of adaptations”. In our analyses we check the roll back to the same SC and
we do not expand such tree nodes, however, as mentioned, also some of the
SC elements can roll back to a previous version. This clarifies why we have
oscillations in ∆SC even if we use a tree search algorithm which is minimizing
the ∆SC at each node pick, and due to the same reason, we cannot prune the
tree by ensuring at the same time that we do not prune any solutions.

Moreover, Figure 7.6 shows that the oscillations never exceed ∆SC = 9,
which corresponds to 50% of threshold as the SC size of our reference scenario
is 18. The reason why they do not exceed 9 is because this is the maximum
level of adaptations we can perform on the system given the adaptation search
space presented in Table 7.1. All in all, this explains why we do not prune any
tree nodes down to 50% in Figure 7.5.

7.3 Contribution of the Modeling Methodology

In this section we discuss the contribution of the modeling methodology pre-
sented in Chapter 6. We evaluate the contribution in two extents: (i) the efforts
required to create system and adaptation models (ii) the resultant outputs of
different model abstractions on an adaptation case study.

For evaluation we considered two different scenarios. In the first experiment
we worked on the system model introduced in Section 7.1. Instead, in the sec-

145



CHAPTER 7. EVALUATION

ond experiment we worked on a more complicated system with more adaptation
and system tools (Figure 7.7).

For each experiment, first we measured the design-time efforts required in
the case that we follow our opportunist modeling methodology, that is deriva-
tion of system elements from the available system tools. Then we measured the
efforts in the case that we follow another modeling methodology where we start
from the identification of very high level system elements, and then associating
the tools with these elements. In order to demonstrate that the system model in
the first case, which is created via our methodology, has the right level of ab-
straction, intentionally we kept the model of the second case more simple with
less number of system elements. Then as the second stage of the evaluation, we
ran CLAM platform for the adaptation case study presented in Section 7.1 and
observed the results in both cases.

Measuring Modeling Efforts. We used the techniques proposed by [52] in or-
der to identify and calculate required design-time efforts for each case presented
in Figure 7.7. The calculation comprises the efforts required to create system
and adaptation models.

[52] defines the modeling effort as the number of actions required to com-
plete a high-level modeling goal. The general equation for measuring modeling
effort M(T ) is defined as:

M(T ) =
∑

Zt + time(t)

For each action t in task T , modeling effort is measured as the summation
of the think time for the action, that is Zt, i.e., human portion of the task, and
the time for the computer to complete its given portion of the task, i.e., time(t).
For our computations we ignore the computer portion since it is relatively too
small compared to the human portion.

Following the approach in [52], we performed the measurement for model-
ing efforts in three steps: (i) identification of modeling tasks in chronological

146



7.3. CONTRIBUTION OF THE MODELING METHODOLOGY

SCENARIO 2

SCENARIO 1

CASE 0

Process 
Service 

infrastructure
consumes

Service
consumes

CASE 1

Process 

Cost KPI

co
ns
tra
ins

consumes

Service 

infrastructure

Infrastructure 

time QoS

consumes

has

consumes

Service

Service

time QoS

has

Time KPI

co
n
st
ra
in
s

Service

cost QoS

Infrastructure 

cost QoS

has has

consumes
consumes

consumes

Process 

Cost KPI

co
ns
tra
ins

consumes

Infrastructure

Infrastructure 

time QoS

consumes

has

consumes

Service

Service

time QoS

has

Time KPI c
o
n
s
tr
a
in
s

Service

cost QoS

Infrastructure 

cost QoS

has

has

consumes consumes

consumes

Process 

Platform 

Service 

Platform 

Process 

Security 

co
ns
tra

ins

has has

Service 

Security 

has

Infrastructure 

security

has

consumes

consumes
CASE 0

Process 
Service 

infrastructure
consumes

Service
consumes

CASE 1

Analyzers:

Time Analyzer

Cost Analyzer

Data Flow Analyzer

Solvers:

Process Optimizer

Quality Negotiator for Time

Quality Negotiator for Cost

Service Replacer for Time

Service Replacer for Cost

Resource Allocator for Time

Resource Releaser for Cost

Data Mismatch Solver

Analyzers:

Time Analyzer

Cost Analyzer

Data Flow Analyzer

Infrastructure Security Analyzer

Process Security Analyzer

Process/Infra Compatibility Analyzer

Service/Infra Compatibility Analyzer

Solvers:

Process Optimizer

Quality Negotiator for Time

Quality Negotiator for Cost

Service Replacer for Time

Service Replacer for Cost

Resource Allocator for Time

Resource Releaser for Cost

KPI Relaxer for Cost

KPI Relaxer for Time

Data Mismatch Solver

Service Replacer for Security

Infrastructure Replacer for Security

Infra Incompatibility Resolver for Process

Infra Incompatibility Resolver for Service

Figure 7.7: Two Different Levels of Abstraction for Scenario 1 and Scenario 2

147



CHAPTER 7. EVALUATION

order, (ii) identification of number of actions we need to consider for each
modeling task, (iii) identification of effort required for each single action. Ta-
bles 7.7, 7.8, 7.9 and 7.10 illustrate the calculation of overall efforts for “Case
0 of Scenario 1”, “Case 1 of Scenario 1”, “Case 0 of Scenario 2” and “Case 1
of Scenario 2” respectively.

Notice that when we follow our approach, i.e., starting from the tools, we
have the “identify relations among system elements” and “associate needs with
analyzer outputs” modeling actions more costly than the other actions. This
is because, while other actions can be easily derived from the tool inputs and
outputs, these two actions should be reasoned based on interdependences of
system elements and tools behavior. Also in the second modeling approach, i.e.,
when we start from the system elements to design, we have some actions more
costly compared to some other. To elaborate, while we have the same issues
for the identification of relations and the mapping of needs to analyzer outputs,
additionally, we have a remarkable difficulty to determine the system elements
since in this case they are not obtained by derivation. Similarly, we need to
make more efforts to understand how to map the decided system elements to
the analyzer inputs and solver outputs. We remark that the time units in the
results are normalized values in order to compare different scenarios and cases.
The actual values strongly depend on the domain expertise of the designer.

The results reveal the following facts: In case of not following our modeling
methodology (Tables 7.8 and 7.10), even if we keep the model at a very high
level by increasing the level of abstraction, we still need a considerable amount
of efforts to create the system and adaptation models. This gets more obvious
when we consider more complicated systems with more adaptation and analysis
tools like in Scenario 2. In that scenario while we generalize the model from
14 system elements to 3 system elements, the modeling effort is only halved
compared to the case where we follow our methodology, i.e., deciding the right
level of abstraction by deriving the system elements from tool inputs and out-

148



7.3. CONTRIBUTION OF THE MODELING METHODOLOGY

Modeling tasks (in chronologi-
cal order)

Number of total
actions in the task

Human effort re-
quired for a single
action

Total effort re-
quired for the
task

Identify analyzers 3 analyzers 1 unit of time 3
Identify solvers 8 solvers 1 unit of time 8
Identify solver inputs (needs) 8 inputs 1 unit of time 8
Identify solver outputs (system
elements involved in produced
adaptations)

17 outputs 1 unit of time 17

Identify analyzer inputs (system
elements involved in analyses)

10 inputs 1 unit of time 10

Identify system elements 9 elements 1 unit of time 9
Identify relations among system
elements

9 x 9 relations 2 unit of time 162

Associate needs with analyzer
outputs

3 analyzers x 8
needs

2 unit of time 48

OVERALL MODELING EF-
FORT

265 units of time

Table 7.7: Modeling Efforts: Scenario 1 - Case 0

Modeling tasks (in chronologi-
cal order)

Number of total
actions in the task

Human effort re-
quired for a single
action

Total effort re-
quired for the
task

Identify system elements 3 elements 5 unit of time 15
Identify relations among system
elements

3 x 3 relations 2 unit of time 18

Identify analyzers 3 analyzers 1 unit of time 3
Identify solvers 8 solvers 1 unit of time 8
Identify solver inputs (needs) 8 inputs 1 unit of time 8
Identify solver outputs (system
elements involved in produced
adaptations)

11 outputs 2 unit of time 22

Identify analyzer inputs (system
elements involved in analyses)

8 inputs 2 unit of time 16

Associate needs with analyzer
outputs

3 analyzers x 8
needs

2 unit of time 48

OVERALL MODELING EF-
FORT

138 units of time

Table 7.8: Modeling Efforts: Scenario 1 - Case 1

149



CHAPTER 7. EVALUATION

Modeling tasks (in chronologi-
cal order)

Number of total
actions in the task

Human effort re-
quired for a single
action

Total effort re-
quired for the
task

Identify analyzers 7 analyzers 1 unit of time 7
Identify solvers 14 solvers 1 unit of time 14
Identify solver inputs (needs) 14 inputs 1 unit of time 14
Identify solver outputs (system
elements involved in produced
adaptations)

37 outputs 1 unit of time 37

Identify analyzer inputs (system
elements involved in analyses)

17 inputs 1 unit of time 17

Identify system elements 14 elements 1 unit of time 14
Identify relations among system
elements

14 x 14 relations 2 unit of time 392

Associate needs with analyzer
outputs

7 analyzers x 14
needs

2 unit of time 196

OVERALL MODELING EF-
FORT

691 units of time

Table 7.9: Modeling Efforts: Scenario 2 - Case 0

Modeling tasks (in chronologi-
cal order)

Number of total
actions in the task

Human effort re-
quired for a single
action

Total effort re-
quired for the
task

Identify system elements 3 elements 5 unit of time 15
Identify relations among system
elements

3 x 3 relations 2 unit of time 18

Identify analyzers 7 analyzers 1 unit of time 7
Identify solvers 14 solvers 1 unit of time 14
Identify solver inputs (needs) 14 inputs 1 unit of time 14
Identify solver outputs (system
elements involved in produced
adaptations)

17 outputs 2 unit of time 34

Identify analyzer inputs (system
elements involved in analyses)

15 inputs 2 unit of time 30

Associate needs with analyzer
outputs

7 analyzers x 14
needs

2 unit of time 196

OVERALL MODELING EF-
FORT

328 units of time

Table 7.10: Modeling Efforts: Scenario 2 - Case 1

150



7.4. DISCUSSION

puts. Thus, even if in the end it might be proposing a more refined system
model, the required efforts are still reasonable.

Scenario:
Analyzer Invocations

Case 0 Case 1 Increase
Scenario 1 1417 1927 36%
Scenario 2 2179 3797 74%

Table 7.11: Comparison of Analyzer Invocations at Different Modeling Abstractions

Minimization of Analyzer Invocations. We would like to underline that our
modeling approach finds the right level of abstraction. More precisely, it helps
us identify a model, which is not overdetailed due to the unnecessary system
elements that are never used by system tools, and at the same time, which is not
too general that causes unnecessary analyzer invocations. When a model is too
general with only few elements, each time we adapt even a small part of the sys-
tem, we might have to call a series of irrelevant analyzers, which are in reality
working on some other small parts of the system. The experiments verify our
intuitive outlook. Table 7.11 depicts the total number of analyzer invocations
required inside CLAM to identify the cross-layer adaptations. Consequently,
even if we put some efforts to create a little bit more detailed model, we con-
siderably minimize the number of tool invocations, which leads to the further
optimization of the overall CLAM approach. The results get even more obvious
in case of more complicated systems such as Scenario 2.

7.4 Discussion

In this chapter, first we presented the practical results obtained from the appli-
cation of the presented cross-layer adaptation framework to our reference sce-
nario. The results show that the cross-layer adaptation solutions identified by
CLAM are more comprehensive compared to the state-of-the-art approaches,

151



CHAPTER 7. EVALUATION

especially considering new problems that might arise due to adaptations. To
the best of our knowledge except for [53], none of the cross-layer adaptation
approaches consider the impact analysis of a local adaptation on the overall sys-
tem. Differently, [103] proposes an exhaustive taxonomy of cross-layer adap-
tation patterns. As we discussed before, this approach brings forward draw-
backs such as the design-time costs of patterns and inadequacy of handling un-
expected consequences of adaptations. However, one advantage of [103] over
our approach is that the authors propose Web Service wrappers to integrate the
adaptation tools, which makes it more standard and reusable from the service
oriented point of view.

After presenting the produced cross-layer adaptations of a sample CLAM
run, we introduced our greedy search algorithm, which is solution-driven when
picking a tree leaf for the coordination algorithm. Compared to using well
known tree search algorithms such as DFS and BFS , the results reveal a big
optimization in terms of finding the solutions faster.

We also introduced a novel practical approach to terminate the algorithm in
a principled way while at the same time we can still work with infinitely many
adaptations proposed by solvers. This is a significant contribution, because none
of the existing cross-layer adaptation approaches consider the infiniteness of the
possible solutions. The termination approach takes advantage of the fact that in
practice we never want to change the overall SBS significantly for a problem
which arises locally.

Finally, we evaluated our modeling methodology in terms of the required
efforts for constructing the system and adaptation models. The results show that
applying our methodology, i.e., starting from the system tools and deriving the
models out of them, is a convincing approach and it entails reasonable modeling
efforts compared to the case that we follow the other way around, i.e., we start
from the system elements and then associate the tools with them. However, we
remark that in any case, CLAM is not totally blind for the behavior of tools.

152



7.4. DISCUSSION

It is true that we do not need to know how an analyzer works internally or
how a solver produces the adaptations, but in order to integrate them in our
framework, we still need to know for what purposes we want to use them, what
kind of inputs they need, and what kind of outputs they produce.

153



CHAPTER 7. EVALUATION

154



Chapter 8

Conclusions

In this dissertation, we presented a novel approach to the cross-layer adaptation
problem in service-based systems. With cross-layer adaptation we mean gener-
ating an adaptation strategy, which may involve various adaptation actions from
different SBS domain layers, such that its deployment in the running system
ensures an overall system stability where the system is stable if and only if all
the system parts are satisfied with regard to their individual constraints that they
impose on the system.

8.1 Achieved Results

To address the cross-layer adaptation problem we have developed a holistic
framework that supports the identification of the problems that might occur in
different parts of the SBS layers due to an adaptation, and tackles these prob-
lems by proposing new adaptations, and finally brings the system to an over-
all consistency. This framework integrates the existing monitoring, analysis
and adaptation capabilities of the system by defining a formal model for the
representation of the system and adaptation concepts. Based on this model, it
introduces a tree-based algorithm which is capable of deriving the cross-layer
adaptation solutions through a proper coordination of the integrated system ca-
pabilities.

155



CHAPTER 8. CONCLUSIONS

We build our framework on top of a formal model, where we have the sys-
tem model for the representation of service-based system, and the adaptation
model for the representation of external system capabilities, i.e., analysis and
adaptation tools. The system model is represented as a graph of nodes and
edges. Nodes correspond to the different types of elements that are present in
the system, and edges correspond to the relations among these elements. While
the system model represents a class of service-based systems, a system con-
figuration of a service-based system represents a specific service-based system,
which is deployed and running or ready for deployment. On the other hand the
adaptation model extends a system model and its system configurations with the
system capabilities, i.e., analyzer and solver tools. In order to enable a conve-
nient creation of the proposed models we introduced an opportunist modeling
methodology which benefits from a given set of tools to derive the system ele-
ments to be considered in the model.

The CLAM algorithm, incorporated in the presented framework and respon-
sible for solving the cross-layer adaptation problem, is a recursive tree expan-
sion algorithm, which coordinates the analyzer and solver tools, invokes them
iteratively, and investigates the possible stable system configurations that can be
reached to solve the adaptation problem of an initial system configuration.

While we showed that the presented algorithm is correct and complete with
respect to the definition of cross-layer adaptation problem, given the infinite
input space of possible system configurations and also adaptation actions, we
detected that at theoretical level the algorithm does not terminate. To address
this issue in practical settings, we presented a novel termination method that is
based on the fact that we do not want to bring the system to a final configuration
which is very different from the initial system configuration.

Following the presentation of the cross-layer adaptation framework, we pre-
sented selection criteria to evaluate and rank the alternative cross-layer adapta-
tion solutions identified by the CLAM algorithm. We used as criteria the overall

156



8.1. ACHIEVED RESULTS

system quality in terms of time and cost aspects, the total amount of efforts to
deploy a solution again in terms of time and cost, and finally the adaptation lo-
cation in terms of the SBS domain layers involved in the solution path. On top
of these selection criteria we proposed two ranking methods, one of them based
on simple additive weighting – multi criteria decision making, the other based
on fuzzy inference systems.

We implemented our cross-layer adaptation approach and the presented al-
gorithms into a prototype tool that we call the CLAM platform where the co-
ordinator is the core part which realizes the CLAM algorithm. The platform
allows for creation of the required models, integration of the tools with the
models and the coordinator, coordination of the tools to discover the cross-layer
adaptation solutions, and ranking of the discovered solutions to select a best one
for deployment.

Using the prototype implementation, we evaluated our framework on “Call
& Pay Taxi” SBS scenario using the state-of-the-art analysis and adaptation
mechanisms as analyzers and solvers. The experiments revealed substantial
results: First, our approach for cross-layer adaptation problem overcomes the
limitations of existing works especially with regard to the extension of SBS
with new system elements and new tools, and the construction of cross-layer
adaptation paths on the fly, which leads to the identification of non-trivial so-
lutions. Second, the proposed heuristic methods not only achieve to guarantee
termination, but also optimize the tree construction. Last, but not least, the
proposed modeling methodology minimizes the number of necessary analyzer
invocations, and indeed, the effort to create a very high level system model with
a single node, which does not follow the presented methodology, is comparable
to the effort to create the model adhering to the methodology which we propose.

To sum up, the main contributions of the presented research work are: (i)
a new generic and flexible modeling approach which is capable of capturing
the cross-aspects of the system in terms of both its elements and the supporting

157



CHAPTER 8. CONCLUSIONS

tools, (ii) a novel iterative approach for solving cross-layer adaptation problem
on the fly, (iii) a heuristic method to cope with infinite-range adaptations and
system configuration options, (iv) a convenient modeling methodology to fa-
cilitate the creation of the system and adaptation models, and finally (v) novel
adaptation selection criteria, which flexibly allow for the usage of diverse rank-
ing techniques.

8.2 Future Directions

There is a broad range of research directions that we can investigate for future
work. These directions would potentially tackle important limitations of the
current state of the presented work both from the methodological and from the
technical points of view. We take them into account as future extensions of the
presented cross-layer adaptation framework and its implementation, namely, the
CLAM platform.

Currently in our approach we do not support the correlation of monitoring
events. We assume that in the running SBS, a single problem occurs at a single
time, which is quite a restrictive assumption considering the real world cases.
In this sense, an appropriate cross-layer monitoring technique should be incor-
porated into our cross-layer adaptation framework. A starting point could be
the investigation of the existing methods presented in [122, 88]. In this way, we
can deal with multiple monitoring events at the same time and accept only the
resultant aggregate event as the initial trigger for cross-layer adaptation man-
agement.

Furthermore, beyond the correlation of monitoring events, one can think of
other type of correlations as an extension. It could be useful information to have
the correlation of observations, predictions and events from different sources,
and provided by different analysis, decision and adaptation mechanisms. This
kind of research challenges for multi-layered applications are emphasized also

158



8.2. FUTURE DIRECTIONS

in [80]. For instance, monitoring events could be cross-correlated with predic-
tion mechanisms concerning future situations, and further with results of similar
monitors to confirm the validity of a triggered event. Such correlations would
imply introduction of new tool types to the cross-layer adaptation framework
and extend the overall coordination approach accordingly.

On the contrary to what is discussed above, instead of correlating similar in-
formation of similar tools, another extension could be –like alternative solvers–
the consideration of alternative analyzers during the iterative CLAM operation.
Then, all the analysis results and their consequences would appear as alternative
paths and at the final stage they would be analyzed to extract the solutions.

Another limitation of the presented approach is that it does not support re-
ceiving multiple adaptations at the same time. In order to be able to deal with
real systems, it is necessary to take into account a more dynamic run-time sys-
tem setting where it is possible to receive adaptation actions being triggered at
different system parts at the same time. In such a setting, CLAM should be able
to first reason on the possible contradictions among triggered adaptations, next
combine them properly, and then analyze the impact of the aggregate adapta-
tions on the entire system.

In the evaluation of the prototype tool, we did not consider in depth the online
applicability of our approach, which implies to update the system configuration
without affecting the already running process instances. For such purposes,
the tree construction algorithm should be further optimized properly so that the
overall computation time is decreased to a reasonable level. We remark that this
also highly depends on the response times of the integrated tools. For the online
adaptation of SBSs, the analyzers and solvers should be carefully selected so
that they do not cause unaffordable delays. Moreover, it is necessary to inves-
tigate the deployment mechanisms in more detail to select the appropriate ones
for this kind of setting.

For what concerns the overall impact analysis of an initial adaptation, The

159



CHAPTER 8. CONCLUSIONS

current approach is pragmatistic in the sense that it only identifies the short-term
consequences of an adaptation on the system constraints through immediate in-
vocations of analyzers. Whereas, it would be very useful to investigate addi-
tionally the long-term consequences as also mentioned in [82], which are based
on the past execution of the system and the adaptation history. As a starting
point, we could study a possible exploitation of the existing learning, process
mining and system evolution approaches [106, 48, 114].

In addition to all the foregoing, we underline that the presented cross-layer
adaptation approach is generic and flexible enough to be applied to any system,
i.e., not necessarily service-based systems. We remark that this thesis reflects
and validates its first application in the field of service-based systems.

160



Bibliography

[1] S-cube project - software services and systems network. http://www.s-
cube-network.eu.

[2] J. Almeida, V. Almeida, D. Ardagna, C. Francalanci, and M. Trubian.
Resource management in the autonomic service-oriented architecture. In
Autonomic Computing, 2006. ICAC’06. IEEE International Conference

on, pages 84–92. IEEE, 2006.

[3] M. Alrifai and T. Risse. Combining global optimization with local selec-
tion for efficient qos-aware service composition. In Proceedings of the

18th international conference on World wide web, pages 881–890. ACM,
2009.

[4] Sergio Andreozzi, Natascia De Bortoli, Sergio Fantinel, Antonia Ghis-
elli, Gian Luca Rubini, Gennaro Tortone, and Maria Cristina Vistoli.
GridICE: a monitoring service for grid systems. Future Generation Com-

puter Systems, 21(4):559–571, April 2005.

[5] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, et al. Business process execution
language for web services, 2003.

[6] D. Ardagna and B. Pernici. Global and local qos guarantee in web service
selection. In Business Process Management Workshops, pages 32–46.
Springer, 2006.

161



BIBLIOGRAPHY

[7] Danilo Ardagna, Marco Comuzzi, Enrico Mussi, Barbara Pernici, and
Pierluigi Plebani. Paws: A framework for executing adaptive web-service
processes. IEEE Softw., 24(6):39–46, 2007.

[8] A. Arkin et al. Business process modeling language. BPMI.org, 2002.

[9] W. Arnold, T. Eilam, M. Kalantar, A. Konstantinou, and A. Totok. Pattern
based soa deployment. Service-Oriented Computing–ICSOC 2007, pages
1–12, 2007.

[10] A. Arsanjani. Service-oriented modeling and architecture. IBM developer

works, 2004.

[11] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Ganapathy, and
K. Holley. Soma: A method for developing service-oriented solutions.
IBM systems Journal, 47(3):377–396, 2008.

[12] R. Aschoff and A. Zisman. Qos-driven proactive adaptation of service
composition. Service-Oriented Computing, pages 421–435, 2011.

[13] Fabio Barbon, Paolo Traverso, Marco Pistore, and Michele Trainotti.
Run-Time Monitoring of Instances and Classes of Web Service Compo-
sitions. In IEEE International Conference on Web Services (ICWS 2006),
pages 63–71, 2006.

[14] L. Baresi, M. Caporuscio, C. Ghezzi, and S. Guinea. Model-Driven Man-
agement of Services. In ECOWS’10, pages 147–154, 2010.

[15] L. Baresi and S. Guinea. Self-supervising bpel processes. Software En-

gineering, IEEE Transactions on, 37(2):247–263, 2011.

[16] L. Bass, P. Clements, and R. Kazman. Software architecture in practice.
Addison-Wesley Longman Publishing Co., Inc., 2003.

162



BIBLIOGRAPHY

[17] Catriel Beeri, Anat Eyal, Tova Milo, and Alon Pilberg. Monitoring Busi-
ness Processes with Queries. In Proceedings of the 33rd International

Conference on Very Large Data Bases, pages 603–614, 2007.

[18] Antonio Brogi and Razvan Popescu. Automated Generation of BPEL
Adapters. In ICSOC 2006:Service-Oriented Computing, pages 27–39,
2006.

[19] A. Bucchiarone, A. Marconi, M. Pistore, and H. Raik. Dynamic adap-
tation of fragment-based and context-aware business processes. In Web

Services (ICWS), 2012 IEEE 19th International Conference on, pages
33–41. IEEE, 2012.

[20] A. Bucchiarone, M. Pistore, H. Raik, and R. Kazhamiakin. Adapta-
tion of service-based business processes by context-aware replanning. In
Service-Oriented Computing and Applications (SOCA), 2011 IEEE In-

ternational Conference on, pages 1–8. IEEE, 2011.

[21] B. Burgstaller, D. Dhungana, X. Franch, P. Grunbacher, L. López,
J. Marco, M. Oriol, R. Stockhammer, J.K. Universitat, and J.K. Uni-
versitat. Monitoring and Adaptation of Service-oriented Systems with
Goal and Variability Models. Technical report, Universitat Politècnica de
Catalunya, 2008.

[22] C. Cappiello, M. Comuzzi, and P. Plebani. On automated generation of
web service level agreements. In Advanced Information Systems Engi-

neering, pages 264–278. Springer, 2007.

[23] Malu Castellanos, Fabio Casati, Ming-Chien Shan, and Umesh Dayal.
iBOM: A Platform for Intelligent Business Operation Management. In
ICDE ’05: Proceedings of the 21st International Conference on Data

Engineering, pages 1084–1095, 2005.

163



BIBLIOGRAPHY

[24] Luca Cavallaro, Elisabetta Di Nitto, and Matteo Pradella. An automatic
approach to enable replacement of conversational services. In Luciano
Baresi, Chi-Hung Chi, and Jun Suzuki, editors, ICSOC/ServiceWave, vol-
ume 5900 of Lecture Notes in Computer Science, pages 159–174, 2009.

[25] S.H. Chang and S.D. Kim. A variability modeling method for adapt-
able services in service-oriented computing. In Software Product Line

Conference, 2007. SPLC 2007. 11th International, pages 261–268. Ieee,
2007.

[26] Anis Charfi, Tom Dinkelaker, and Mira Mezini. A plug-in architecture
for self-adaptive web service compositions. In ICWS ’09: Proceedings of

the 2009 IEEE International Conference on Web Services, pages 35–42,
Washington, DC, USA, 2009. IEEE Computer Society.

[27] P. Châtel, J. Malenfant, and I. Truck. Qos-based late-binding of service
invocations in adaptive business processes. In Web Services (ICWS), 2010

IEEE International Conference on, pages 227–234. IEEE, 2010.

[28] Kareliotis Christos, Costas Vassilakis, Efstathios Rouvas, and Panayiotis
Georgiadis. Qos-driven adaptation of bpel scenario execution. In ICWS

’09: Proceedings of the 2009 IEEE International Conference on Web

Services, pages 271–278, Washington, DC, USA, 2009. IEEE Computer
Society.

[29] Massimiliano Colombo, Elisabetta Di Nitto, and Marco Mauri. SCENE:
A Service Composition Execution Environment Supporting Dynamic
Changes Disciplined Through Rules. In In ICSOC06, pages 191–202,
2006.

[30] M. Comuzzi and B. Pernici. An architecture for flexible web service qos
negotiation. In EDOC Enterprise Computing Conference, 2005 Ninth

IEEE International, pages 70–79. IEEE, 2005.

164



BIBLIOGRAPHY

[31] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid informa-
tion services for distributed resource sharing. In High Performance Dis-

tributed Computing, 2001. Proceedings. 10th IEEE International Sympo-

sium on, pages 181–194. IEEE, 2001.

[32] HT Davenport. The e-process evolution. Business Process Management

Journal, 10(1):12–15, 2004.

[33] N. Delgado, A.Q. Gates, and S. Roach. A taxonomy and catalog of run-
time software-fault monitoring tools. Software Engineering, IEEE Trans-

actions on, 30(12):859–872, 2004.

[34] D. Dib, N. Parlavantzas, M. Christine, et al. Towards multi-level adap-
tation for distributed operating systems and applications. In ICA3PP-12,
2012.

[35] J.C. Doyle, B.A. Francis, and A. Tannenbaum. Feedback control theory,
volume 134. Macmillan New York, 1992.

[36] H. Dresner. Business activity monitoring: Bam architecture. In Gartner

Symposium ITXPO, 2003.

[37] M. Dumas, L. Garcı́a-Bañuelos, A. Polyvyanyy, Y. Yang, and L. Zhang.
Aggregate quality of service computation for composite services.
Service-Oriented Computing, pages 213–227, 2010.

[38] C. Efstratiou, K. Cheverst, N. Davies, and A. Friday. An architecture
for the effective support of adaptive context-aware applications. In Pro-

ceedings of Mobile Data Management (MDM’01), pages 15–26, Berlin,
January 2001. Springer.

[39] S. Ferretti, V. Ghini, F. Panzieri, M. Pellegrini, and E. Turrini. Qos–aware
clouds. In Cloud Computing (CLOUD), 2010 IEEE 3rd International

Conference on, pages 321–328. IEEE, 2010.

165



BIBLIOGRAPHY

[40] H. Foster and G. Spanoudakis. Smart: a workbench for reporting the
monitorability of services from slas. In Proceedings of the 3rd Interna-

tional Workshop on Principles of Engineering Service-oriented Systems,

PESOS, pages 36–42, 2011.

[41] M. Fugini and H. Siadat. Sla contract for cross-layer monitoring and
adaptation. In Business Process Management Workshops, pages 412–
423. Springer, 2010.

[42] M. Gambini, M. La Rosa, S. Migliorini, and A. Ter Hofstede. Automated
error correction of business process models. Business Process Manage-

ment, pages 148–165, 2011.

[43] L. Ge and B. Zhang. A modeling approach on self-adaptive composite
services. In Multimedia Information Networking and Security (MINES),

2010 International Conference on, pages 240–244. IEEE, 2010.

[44] C. Ghezzi and S. Guinea. Run-time monitoring in service-oriented archi-
tectures. Test and analysis of web services, pages 237–264, 2007.

[45] E. Gjørven, R. Rouvoy, and F. Eliassen. Cross-layer self-adaptation of
service-oriented architectures. In Proceedings of the 3rd workshop on

Middleware for service oriented computing, pages 37–42. ACM, 2008.

[46] H. Groefsema, P. Bulanov, and M. Aiello. Declarative enhancement
framework for business processes. Service-Oriented Computing, pages
495–504, 2011.

[47] R. Grønmo and M.C. Jaeger. Model-Driven Methodology for Building
QoS-Optimised Web Service Compositions. In Proceedings of the 5th

IFIP International Conference on Distributed Applications and Interop-

erable Systems (DAIS05, pages 68–82. Citeseer, 2005.

166



BIBLIOGRAPHY

[48] C.W. Gunther, S. Rinderle-Ma, M. Reichert, and W.M.P. Van Der Aalst.
Using process mining to learn from process changes in evolutionary sys-
tems. International Journal of Business Process Integration and Man-

agement, 3(1):61–78, 2008.

[49] Cloud Harmony. Cloudharmony benchmarks. http:

//cloudharmony.com/benchmarks.

[50] Marcel Hiel and Hans Weigand. Interoperability changes in an adaptive
service orchestration. In ICWS ’09: Proceedings of the 2009 IEEE Inter-

national Conference on Web Services, pages 351–358, Washington, DC,
USA, 2009. IEEE Computer Society.

[51] Julia Hielscher, Andreas Metzger, and Raman Kazhamiakin, editors.
Taxonomy of Adaptation Principles and Mechanisms. S-Cube project
deliverable, March 2009. S-Cube project deliverable: CD-JRA-1.2.2.
http://www.s-cube-network.eu/achievements-results/s-cube-deliverables.

[52] J.H. Hill. Measuring and reducing modeling effort in domain-specific
modeling languages with examples. In Engineering of Computer Based

Systems (ECBS), 2011 18th IEEE International Conference and Work-

shops on, pages 120–129. IEEE, 2011.

[53] MA Hirzalla, A. Zisman, and J. Cleland-Huang. Using traceability to
support soa impact analysis. In Services (SERVICES), 2011 IEEE World

Congress on, pages 145–152. IEEE, 2011.

[54] A.F.M. Huang, C.W. Lan, and S.J.H. Yang. An optimal QoS-based Web
service selection scheme. Information Sciences, 2009.

[55] C.L. Hwang, K. Yoon, et al. Multiple attribute decision making: methods

and applications: a state-of-the-art survey, volume 13. Springer-Verlag
New York, 1981.

167



BIBLIOGRAPHY

[56] J.-S.R. Jang. Anfis: adaptive-network-based fuzzy inference system.
Systems, Man and Cybernetics, IEEE Transactions on, 23(3):665 –685,
1993.

[57] J.J. Jeng, J. Schiefer, and H. Chang. An agent-based architecture for
analyzing business processes of real-time enterprises. In Enterprise

Distributed Object Computing Conference, 2003. Proceedings. Seventh

IEEE International, pages 86–97. IEEE, 2003.

[58] M. Kapuruge, J. Han, and A. Colman. Controlled flexibility in busi-
ness processes defined for service compositions. In Services Computing

(SCC), 2011 IEEE International Conference on, pages 346–353. IEEE,
2011.

[59] D. Karastoyanova and F. Leymann. Bpel’n’aspects: Adapting service or-
chestration logic. In Web Services, 2009. ICWS 2009. IEEE International

Conference on, pages 222–229. IEEE, 2009.

[60] R. Kazhamiakin, M. Pistore, and A. Zengin. Cross-layer adaptation
and monitoring of service-based applications. In Service-Oriented Com-

puting. ICSOC/ServiceWave 2009 Workshops, pages 325–334. Springer,
2010.

[61] Alexander Keller and Heiko Ludwig. The WSLA Framework: Speci-
fying and Monitoring Service Level Agreements for Web Services. J.

Network Syst. Manage., 11(1), 2003.

[62] J.O. Kephart and D.M. Chess. The vision of autonomic computing. Com-

puter, 36(1):41–50, 2003.

[63] A. Kertész, G. Kecskeméti, and I. Brandic. Autonomic sla-aware ser-
vice virtualization for distributed systems. In Parallel, Distributed and

168



BIBLIOGRAPHY

Network-Based Processing (PDP), 2011 19th Euromicro International

Conference on, pages 503–510. IEEE, 2011.

[64] A. Kertesz, G. Kecskemeti, and I. Brandic. Autonomic sla-aware ser-
vice virtualization for distributed systems. In Parallel, Distributed and

Network-Based Processing (PDP), 2011 19th Euromicro International

Conference on, pages 503–510. IEEE, 2011.

[65] R. Khalaf and F. Leymann. On web services aggregation. Technologies

for E-Services, pages 1–13, 2003.

[66] C. Koliver, K. Nahrstedt, J.M. Farines, J.D.S. Fraga, and S.A. Sandri.
Specification, mapping and control for qos adaptation. Real-Time Sys-

tems, 23(1):143–174, 2002.

[67] W. Kongdenfha, H.R. Motahari-Nezhad, B. Benatallah, F. Casati, and
R. Saint-Paul. Mismatch patterns and adaptation aspects: A foundation
for rapid development of web service adapters. IEEE Transactions on

Services Computing, pages 94–107, 2009.

[68] Woralak Kongdenfha, Rgis Saint-paul, Boualem Benatallah, and Fabio
Casati. An aspect-oriented framework for service adaptation. In In IC-

SOC06, pages 15–26. ACM Press, 2006.

[69] D. Kourtesis and I. Paraskakis. A registry and repository system sup-
porting cloud application platform governance. In Service-Oriented

Computing-ICSOC 2011 Workshops, pages 255–256. Springer, 2012.

[70] M. Fugini L. Console. Ws-diamond: An approach to web services -
diagnosibility, monitoring and diagnosis, 2007.

[71] L. Lambers, L. Mariani, H. Ehrig, and M. Pezzè. A formal framework
for developing adaptable service-based applications. Fundamental Ap-

proaches to Software Engineering, pages 392–406, 2008.

169



BIBLIOGRAPHY

[72] F. Leymann. Web services flow language (wsfl 1.0), may 2001.
Web site available at http://www-3. ibm. com/software/solutions/webser-

vices/pdf/WSFL.pdf.

[73] B. Li and K. Nahrstedt. A control-based middleware framework for
quality-of-service adaptations. Selected Areas in Communications, IEEE

Journal on, 17(9):1632–1650, 1999.

[74] C. Lin and S. Lu. Scpor: An elastic workflow scheduling algorithm
for services computing. In Proceedings of the 2011 IEEE International

Conference on Service-Oriented Computing and Applications, pages 1–
8. IEEE Computer Society, 2011.

[75] Heiko Ludwig, Asit Dan, and Robert Kearney. Cremona: An Architec-
ture and Library for Creation and Monitoring of WS-Agreements. In
Service-Oriented Computing - ICSOC 2004, Second International Con-

ference, pages 65–74, 2004.

[76] D. Luenberger. Introduction to dynamic systems: theory, models, and
applications. 1979.

[77] Linh Thao Ly, Stefanie Rinderle, and Peter Dadam. Integration and veri-
fication of semantic constraints in adaptive process management systems.
Data Knowl. Eng., 64(1):3–23, 2008.

[78] C.M. MacKenzie et al. Reference model for service oriented architecture.
Public Review Draft 2, 2006.

[79] Khaled Mahbub and George Spanoudakis. Monitoring WS-Agreements:
An Event Calculus-Based Approach. In Luciano Baresi and Elisa-
betta Di Nitto, editors, Test and Analysis of Web Services, pages 265–306.
Springer, 2007.

170



BIBLIOGRAPHY

[80] A. Marconi, A. Bucchiarone, K. Bratanis, A. Brogi, J. Cámara, D. Drani-
dis, H. Giese, R. Kazhamiakin, R. de Lemos, C.C. Marquezan, et al.
Research challenges on multi-layer and mixed-initiative monitoring and
adaptation for service-based systems. In Proceedings of the ICSE 2012

Workshop on European Software Services and Systems Research–Results

and Challenges (S-Cube), 2012.

[81] Annapaola Marconi, Marco Pistore, Adina Sirbu, Hanna Eberle, Frank
Leymann, and Tobias Unger. Enabling adaptation of pervasive flows:
Built-in contextual adaptation. In Luciano Baresi, Chi-Hung Chi, and
Jun Suzuki, editors, ICSOC/ServiceWave, volume 5900 of Lecture Notes

in Computer Science, pages 445–454, 2009.

[82] J.A. Martı́n H, J. de Lope, and D. Maravall. Adaptation, anticipation
and rationality in natural and artificial systems: computational paradigms
mimicking nature. Natural Computing, 8(4):757–775, 2009.

[83] R. Mietzner and F. Leymann. A self-service portal for service-based ap-
plications. In Service-Oriented Computing and Applications (SOCA),

2010 IEEE International Conference on, pages 1–8. IEEE, 2010.

[84] D. Minoli. Enterprise architecture A to Z: frameworks, business process

modeling, SOA, and infrastructure technology. Auerbach Publications,
2008.

[85] C. Momm, M. Gebhart, and S. Abeck. A model-driven approach for mon-
itoring business performance in web service compositions. In Internet

and Web Applications and Services, 2009. ICIW’09. Fourth International

Conference on, pages 343–350. IEEE, 2009.

[86] F. Moo-Mena, J. Garcilazo-Ortiz, L. Basto-Dı́az, F. Curi-Quintal, and
F. Alonzo-Canul. Defining a self-healing qos-based infrastructure for

171



BIBLIOGRAPHY

web services applications. In Computational Science and Engineering

Workshops, 2008. CSEWORKSHOPS’08. 11th IEEE International Con-

ference on, pages 215–220. IEEE, 2008.

[87] A. Mos, A. Boulze, S. Quaireau, and C. Meynier. Multi-layer perspec-
tives and spaces in soa. In Proceedings of the 2nd international workshop

on Systems development in SOA environments, pages 69–74. ACM, 2008.

[88] A. Mos, C. Pedrinaci, G. Rey, J. Gomez, D. Liu, G. Vaudaux-Ruth, and
S. Quaireau. Multi-level monitoring and analysis of web-scale service
based applications. In Service-Oriented Computing. ICSOC/ServiceWave

2009 Workshops, pages 269–282. Springer, 2010.

[89] O. Moser, F. Rosenberg, and S. Dustdar. Non-intrusive monitoring and
service adaptation for ws-bpel. In Proceedings of the 17th international

conference on World Wide Web, pages 815–824. ACM, 2008.

[90] Hamid Reza Motahari Nezhad, Boualem Benatallah, Axel Martens, Fran-
cisco Curbera, and Fabio Casati. Semi-automated adaptation of service
interactions. In WWW ’07: Proceedings of the 16th international confer-

ence on World Wide Web, pages 993–1002, New York, NY, USA, 2007.
ACM.

[91] M. Nami and M. Sharifi. A survey of autonomic computing systems.
Intelligent Information Processing III, pages 101–110, 2007.

[92] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: managing perfor-
mance interference effects for qos-aware clouds. In Proceedings of the

5th European conference on Computer systems, pages 237–250. ACM,
2010.

[93] Elisabetta Nitto, Massimiliano Penta, Alessio Gambi, Gianluca Ripa, and
Maria Luisa Villani. Negotiation of service level agreements: An archi-

172



BIBLIOGRAPHY

tecture and a search-based approach. In ICSOC ’07: Proceedings of

the 5th international conference on Service-Oriented Computing, pages
295–306, Berlin, Heidelberg, 2007. Springer-Verlag.

[94] M. Papazoglou and P. Ribbers. E-business: organizational and technical

foundations. Wiley, 2006.

[95] Mike P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-
oriented computing: A research roadmap. International Journal of Co-

operative Information Systems, 17(2):223–255, (2008).

[96] M.P. Papazoglou. Service-oriented computing: Concepts, characteristics
and directions. In Web Information Systems Engineering, 2003. WISE

2003. Proceedings of the Fourth International Conference on, pages 3–
12. IEEE, 2003.

[97] M.P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-
oriented computing: State of the art and research challenges. Computer,
40(11):38–45, 2007.

[98] C. Peltz. Web services orchestration and choreography. Computer,
36(10):46–52, 2003.

[99] Barbara Pernici and Anna Maria Rosati. Automatic learning of repair
strategies for web services. In ECOWS ’07: Proceedings of the Fifth

European Conference on Web Services, pages 119–128, Washington, DC,
USA, 2007. IEEE Computer Society.

[100] Barbara Pernici and Seyed Hossein Siadat. A fuzzy service adaptation
based on qos satisfaction. In CAiSE, pages 48–61, 2011.

[101] Barbara Pernici and Seyed Hossein Siadat. Selection of service adapta-
tion strategies based on fuzzy logic. In SERVICES, pages 99–106, 2011.

173



BIBLIOGRAPHY

[102] M. Pistore, R. Kazhamiakin, and A. Bucchiarone. Integration framework
baseline. S-Cube Deliverable CD-IA-3.1, 1, 2009.

[103] R. Popescu, A. Staikopoulos, A. Brogi, P. Liu, and S. Clarke. A formal-
ized, taxonomy-driven approach to cross-layer application adaptation.
ACM Transactions on Autonomous and Adaptive Systems (TAAS), 7(1):7,
2012.

[104] B. Qiu. The application of fuzzy prediction for the improvement of qos
performance. In Communications, 1998. ICC 98. Conference Record.

1998 IEEE International Conference on, volume 3, pages 1769–1773.
IEEE, 1998.

[105] N. Rasadka and A. Marconi. Optimizing bpel compositions via automatic
process re-writing. Technical Report, 2011.

[106] S. Rinderle, B. Weber, M. Reichert, and W. Wild. Integrating process
learning and process evolution–a semantics based approach. Business

Process Management, pages 252–267, 2005.

[107] Heinz Roth, Josef Schiefer, and Alexander Schatten. Probing and Moni-
toring of WSBPEL Processes with Web Services. In CEC-EEE ’06: Pro-

ceedings of the The 8th IEEE International Conference on E-Commerce

Technology and The 3rd IEEE International Conference on Enterprise

Computing, E-Commerce, and E-Services, page 30, 2006.

[108] E. Schmieders, A. Micsik, M. Oriol, K. Mahbub, and R. Kazhamiakin.
Combining sla prediction and cross layer adaptation for preventing sla
violations.

[109] Seyed Hossein Siadat, Asli Zengin, Annapaola Marconi, and Barbara
Pernici. A fuzzy approach for ranking adaptation strategies in clam. In
SOCA, 2012.

174



BIBLIOGRAPHY

[110] B. Sotomayor, R.S. Montero, I.M. Llorente, and I. Foster. Capacity leas-
ing in cloud systems using the opennebula engine. In Workshop on Cloud

Computing and its Applications, volume 3, 2008.

[111] E.M. Taid Holmes, U. Zdun, and S. Dustdar. Model-aware monitoring of
soas for compliance. Service Engineering: European Research Results,
page 117, 2010.

[112] S. Thatte. Xlang: Web services for business process design. Microsoft

Corporation, page 13, 2001.

[113] U.K. Tripathi, K. Hinkelmann, and D. Feldkamp. Life cycle for change
management in business processes using semantic technologies. Journal

of Computers, 3(1):24, 2008.

[114] W. van der Aalst, M. Pesic, and M. Song. Beyond process mining: from
the past to present and future. In Advanced Information Systems Engi-

neering, pages 38–52. Springer, 2010.

[115] L.M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. A break
in the clouds: towards a cloud definition. ACM SIGCOMM Computer

Communication Review, 39(1):50–55, 2008.

[116] J. Varia. Migrating your existing applications to the aws cloud. Amazon

Web Services Whitepaper. Available at http://www. media. amazonweb-

services. com/[Last Accesed: December 2011], 2010.

[117] K. Verma, K. Gomadam, A.P. Sheth, J.A. Miller, and Z. Wu. The
meteor-s approach for configuring and executing dynamic web processes.
LSDIS METEOR-S project. http://lsdis. cs. uga. edu/projects/meteor-

s/techRep6-24-05. pdf. Technical report, 2005.

[118] N.M. Villegas, HA Muller, and G. Tamura. Optimizing run-time soa gov-
ernance through context-driven slas and dynamic monitoring. In Main-

175



BIBLIOGRAPHY

tenance and Evolution of Service-Oriented and Cloud-Based Systems

(MESOCA), 2011 International Workshop on the, pages 1–10. IEEE,
2011.

[119] F. Wagner, F. Ishikawa, and S. Honiden. Qos-aware automatic service
composition by applying functional clustering. In Web Services (ICWS),

2011 IEEE International Conference on, pages 89–96. IEEE, 2011.

[120] H. Wei, J. Shao, B. Liu, H. Liu, Q. Wang, and H. Mei. A self-management
approach for service developers of paas. In Service Oriented System En-

gineering (SOSE), 2011 IEEE 6th International Symposium on, pages
85–92. IEEE, 2011.

[121] M. Weidmann, M. Alvi, F. Koetter, F. Leymann, T. Renner, and
D. Schumm. Business process change management based on process
model synchronization of multiple abstraction levels. In Proceedings of

the 2011 IEEE International Conference on Service-Oriented Computing

and Applications, pages 1–4. IEEE Computer Society, 2011.

[122] B. Wetzstein, P. Leitner, F. Rosenberg, I. Brandic, S. Dustdar, and F. Ley-
mann. Monitoring and analyzing influential factors of business process
performance. In Enterprise Distributed Object Computing Conference,

2009. EDOC’09. IEEE International, pages 141–150. IEEE, 2009.

[123] B. Wetzstein, A. Zengin, R. Kazhamiakin, A. Marconi, M. Pistore,
D. Karastoyanova, and F. Leymann. Preventing kpi violations in business
processes based on decision tree learning and proactive runtime adapta-
tion. Journal of Systems Integration, 3(1):3–18, 2012.

[124] Branimir Wetzstein, editor. Initial Models and Mechanisms for

Quantitative Analysis of Correlations between KPIs, SLAs and Un-

derlying Business Processes. S-Cube project deliverable, March

176



BIBLIOGRAPHY

2009. S-Cube project deliverable: CD-JRA-2.1.2. http://www.s-cube-
network.eu/achievements-results/s-cube-deliverables.

[125] D.P. Williamson and D.B. Shmoys. The design of approximation algo-

rithms. Cambridge University Press, 2011.

[126] U. Winkler and W. Gilani. Erp b3: Business continuity service level
agreement translation and optimisation. In Service-Oriented Computing-

ICSOC 2011 Workshops, pages 239–240. Springer, 2012.

[127] J. Yao, S. Chen, C. Wang, D. Levy, and J. Zic. Modelling collaborative
services for business and qos compliance. In Web Services (ICWS), 2011

IEEE International Conference on, pages 299–306. IEEE, 2011.

[128] W. Yuan, K. Nahrstedt, S. Adve, D.L. Jones, and R.H. Kravets. Design
and evaluation of a cross-layer adaptation framework for mobile multi-
media systems. In Proceedings of SPIE, volume 5019, page 1, 2003.

[129] Lotfali Askar Zadeh. Fuzzy sets. Information and Control, 8:338–353,
1965.

[130] Lotfi A. Zadeh. Fuzzy logic, neural networks, and soft computing. Com-

mun. ACM, 37(3):77–84, 1994.

[131] S. Zaplata, K. Hamann, K. Kottke, and W. Lamersdorf. Flexible execu-
tion of distributed business processes based on process instance migra-
tion. Journal of Systems Integration, 1(3):3–16, 2010.

[132] C. Zeginis, K. Konsolaki, K. Kritikos, and D. Plexousakis. Ecmaf: An
event-based cross-layer service monitoring and adaptation framework.

[133] A. Zengin. Clam: cross-layer adaptation management in service-based
systems. In Service-Oriented Computing-ICSOC 2011 Workshops, pages
213–219. Springer, 2012.

177



BIBLIOGRAPHY

[134] A. Zengin, R. Kazhamiakin, and M. Pistore. Clam: Cross-layer man-
agement of adaptation decisions for service-based applications. In Web

Services (ICWS), 2011 IEEE International Conference on, pages 698–
699. IEEE, 2011.

[135] A. Zengin, A. Marconi, L. Baresi, and M. Pistore. Clam: Managing
cross-layer adaptation in service-based systems. In Service-Oriented

Computing and Applications (SOCA), 2011 IEEE International Confer-

ence on, pages 1–8. IEEE, 2011.

[136] A. Zengin, A. Marconi, and M. Pistore. Clam: cross-layer adaptation
manager for service-based applications. In Proceedings of the Interna-

tional Workshop on Quality Assurance for Service-Based Applications,
pages 21–27. ACM, 2011.

[137] H. Zheng, J. Yang, W. Zhao, and A. Bouguettaya. Qos analysis for web
service compositions based on probabilistic qos. Service-Oriented Com-

puting, pages 47–61, 2011.

178


