
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

On Neighbors, Groups and Application Invariants in
Mobile Wireless Sensor Networks

Ştefan Gună

Advisor:

Prof. Gian Pietro Picco

Università degli Studi di Trento

November 2011

To my family
Familiei mele

This thesis, prepared under the supervision of Prof. Gian Pietro Picco, was re-
viewed by:

Prof. Christine Julien University of Texas at Austin, USA
Prof. Kay Römer University of Lübeck, Germany
Prof. Kamin Whitehouse University of Virginia, USA

vi

Abstract

The miniaturization and energy-efficient operation of wireless sensor networks (WSNs)
provides unprecedented opportunities for monitoring mobile entities. The motivation for
this thesis is drawn from real-world applications including monitoring wildlife, assisted
living, and logistics. Nevertheless, mobility unveils a series of problems that do not arise
in fixed scenarios. Through applications, we distill three of those, as follows.

Neighbor discovery, or knowing the identity of surrounding nodes, is the precondition
for any communication between nodes. As compared to other existing solutions, we pro-
vide a framework that approaches the problem from the perspectives of latency (the time
required to detect an amount of contacts), lifetime (the time nodes are expected to last)
and probability (the fraction of contacts guaranteed to be detected within a given latency).
By formalizing neighbor discovery as an optimization problem, we obtain a significant im-
provement w.r.t. the state-of-art. We offer a solver providing the optimal configuration
and an implementation for popular WSN devices.

Group membership, or knowing the identity of the transitively connected nodes, can
be either the direct answer to a requirement (e.g., caring for people that are not self-
sufficient), or a building-block for higher-level abstractions. Earlier works on the same
problem target either less constrained devices such as PDAs or laptops or, when targeting
WSN devices, provide only post-deployment information on the group. Instead, we provide
three protocols that cover the solution space. All our protocols empower each node with a
run-time global view of the group composition.

Finally, we focus on the behavior of the processes monitored by WSNs. We present a
system that validates whether global invariants describing the safe behavior of a monitored
system are satisfied. Although similar problems have been tackled before, the invariants
we target are more complex and our system evaluates them in the network, at run-time.
We focus on invariants that are expressed as first-order logic formulas over the state of
multiple nodes. The requirement for monitoring invariants arises in both fixed and mobile
environments; we design and implement an efficient solution for each. Noteworthy is that
the solution targeting mobility bestows each node with an eventually consistent view on the
satisfaction of the monitored invariants; in this context, the group membership algorithms
play the role of global failure detectors.

Keywords
[Wireless Sensor Networks; Network Protocols; Global Invariants; Distributed Algorithms]

vii

viii

Acknowledgments

I owe a great debt of gratitude to many people that have mentored me, collaborated with
me, supported me, and shared their friendship throughout all the time I took to develop
this work. In front of all, I would like to thank my advisor, Gian Pietro Picco, who has
shown me what thorough research is and constantly pushed me to go beyond my limits.
Perhaps the two most important lessons that I learned from him is the importance of
argumentation and standing for my ideas.

I am also grateful to Christine Julien, Kay Römer, and Kamin Whitehouse who took
the time to review my work and serve on my defense committee.

I would also like to thank everybody that had a direct contribution to this thesis: Amy
L. Murphy (for a joint work that resulted in Chapter 4), Marco Cattani (for the results in
Chapter 5), Luca Mottola (for the system in Chapter 6), Gianalberto Chini and especially
Davide Molteni who provided tremendous help in the collection of valuable data required
to support my work. I am double thankful to Amy, who also provided priceless advices
towards the ending of my PhD studies. I would like to extend my gratitude to Daniel
Petriceanu who provided insightful feedback on the analytical model in Chapter 4.

Outside of the thesis, I have enjoyed the work with Matteo Ceriotti and Daniele Fachin
on the TeenyLime middleware, on which they built upon in their efforts in the tower [17]
and tunnel [16]. I also owe a lot to Giuliano Mega for the stimulating discussions in front
of the coffee machines that helped me keep a broader perspective on computer science.

Most importantly, some of these people have become my friends; I cannot be thankful
enough for the quality time spent outside work with Adam, Amy, Chin8, Davide, Giuliano,
G.P., Lele, Marco, Matteo, Meritxell, Pierre, Ramona, and Silvia. I also owe a lot to my
friends back home, especially Alexandra and Ana, who kept me going on a straight line.

Although they have contributed only indirectly to this work, I owe the deepest grati-
tude to my parents and to Bogdan, to which I dedicate this thesis and who have always
pushed me to pursue my dreams. Their encouragements, advices and support have played
a key role in the completion of my studies.

Saving the best for last, I wish to thank Anamaria. Her kindness and endurance had
helped me understand the true goals of my life.

Thank you all!

Ştefan

ix

x

Mult,umiri

Sunt profund ı̂ndatorat tuturor celor de la care am ı̂nvăt,at, cu care am colaborat, m-au ajutat
s, i mi-au fost prieteni ı̂n timpul ı̂n care am realizat această lucrare. Înaintea oricui altcuiva,
vreau să-i mult,umesc ı̂ndrumătorului meu, Gian Pietro Picco, cel care m-a ı̂nvăt,at ce ı̂nseamnă
cercetarea riguroasă s, i care m-a ı̂ndemnat ı̂n mod constant să-mi depăs,esc limitele. Probabil că
cele mai importante două lect, ii pe care le-am ı̂nvăt,at de la el sunt nevoia de a argumenta s, i de
a sust, ine ideile.

Sunt ı̂ndatorat s, i celor care mi-au revizuit teza s, i au făcut parte din comitetul meu de
evaluare, Christine Julien, Kay Römer s, i Kamin Whitehouse.

Deasemenea, doresc să le mult,umesc s, i celor care au avut o contribut, ie directă la aceasta
teză: Amy L. Murphy (pentru rezultatele din Capitolul 4), Marco Cattani (pentru rezultatele
din Capitolul 5), Luca Mottola (pentru sistemul din Capitolul 6), Gianalberto Chini s, i ı̂n mod
special Davide Molteni care mi-au oferit un imens sprijin ı̂n colectarea datelor necesare validării
muncii mele. Sunt dublu ı̂ndatorat fat, ă de Amy, care mi-a sfaturi de nepret,uit ı̂nspre finalul
studiilor mele. As, vrea să-i mult,umesc s, i lui Daniel Petriceanu, cel care mi-a oferit sprijin ı̂n
dezvoltarea modelului din Capitolul 4.

Pe lângă teză, m-am bucurat să lucrez ı̂mpreună cu Matteo Ceriotti s, i Daniele Fachin la
middleware-ul TeenyLime, pe care l-au folosit ı̂n eforturile lor din turn [17] s, i tunel [16]. Îi
datorez mult,umiri s, i lui Giuliano Mega, ı̂n special pentru discut, iile din fat,a automatelor de
cafea care m-au ajutat să ı̂mi ment, in o perspectivă largă asupra s,tiint,ei calculatoarelor.

Probabil că cel mai important lucru este faptul că o parte din aceste persoane mi-au devenit
prieteni; nu le pot mult,umi suficient pentru momentele petrecute ı̂mpreună ı̂n afara muncii lui
Adam, Amy, Chin8, Davide, Giuliano, G.P., Lele, Marco, Matteo, Meritxell, Pierre, Ramonei s, i
Silviei. Sunt ı̂ndatorat s, i prietenilor de acasa, ı̂n special Alexandrei s, i Anei, care m-au ajutat să
merg pe o linie dreaptă.

Des, i au contribuit numai ı̂n mod indirect la această teză, le datorez cea mai mare recunos,tiint, ă
părint, ilor mei s, i lui Bogdan, cei cărora le-am dedicat aceasta teză s, i cei care m-au ı̂ndemnat
dintotdeauna să-mi urmez visele. Încurajările, sfaturile s, i ajutorul lor au avut un rol principal
ı̂n terminarea studiilor mele.

Am păstrat ce este mai bun pentru sfârs, it. Îi mult,umesc Anamariei pentru bunătatea s, i
răbdarea pe care mi le-a arătat s, i care m-au ajutat să ı̂nt,eleg care sunt obiectivele adevărate
din viat, ă.

Vă mult,umesc!

S, tefan

xi

Contents

1 Introduction 3
1.1 Goals and Motivating Scenarios . 3
1.2 Contribution . 5
Thesis Outline . 7

I Background 9

2 Mobile Wireless Sensor Networks 11
2.1 Why Mobile Wireless Sensor Networks? . 11

2.1.1 Mobile WSN Applications . 12
2.1.2 Improving the Performance of Static Networks 13

2.2 Networks with Mobile Nodes . 14
2.3 Challenges of Mobile Wireless Sensor Networks 16

2.3.1 Networking With Mobile Nodes . 17
2.3.2 Application Development . 18

2.4 Discussion and Outlook . 19

3 Application Scenarios 21
3.1 Assisted Living: The ACube Project . 21

3.1.1 Scenario and Requirements . 22
3.1.2 Solution Overview . 22

3.2 Study of Wildlife Social Behavior . 24
3.2.1 Scenario and Requirements . 24
3.2.2 Solution Overview . 25

3.3 Supporting Business Processes . 27
3.4 Discussion and Outlook . 29

II Technical Contribution 31

4 RUTh: Neighbor Discovery Made To Measure 33
4.1 Introduction . 33
4.2 Related Work . 36
4.3 Overview and Assumptions . 39

xiii

4.4 Latency-driven Discovery . 42
4.4.1 Deterministic Discovery . 42
4.4.2 Probabilistic Discovery . 43

4.5 Lifetime-driven Discovery . 45
4.6 Implementation . 46
4.7 Evaluation . 48

4.7.1 Analytical Study . 49
4.7.2 Impact of Model Assumptions . 53
4.7.3 Empirical Evaluation . 54
4.7.4 RUTh as a Social Contact Sensor 56
4.7.5 RUTh as a Proximity Sensor:

Lessons Learned From A Dense Deployment 58
4.8 RUTh in Action: The Assisted Living Application 63

4.8.1 RUTh and Data Collection . 64
4.8.2 Results . 65

4.9 Discussion and Outlook . 67

5 The Group Membership Problem 69
5.1 Introduction . 69
5.2 Related Work . 71
5.3 Using Logical Clocks . 72
5.4 Using Link State Information . 73
5.5 Using Distance Vectors . 74
5.6 Evaluation . 76

5.6.1 Synthetic Mobility Patterns . 77
5.6.2 Real-world GPS Traces . 82

5.7 Applying RUTh to Group Membership . 82
5.8 Discussion and Outlook . 83

6 Distributed Monitoring of Application Invariants 85
6.1 Introduction . 85
6.2 Specifying Invariants . 87
6.3 Monitoring Invariants: Local View . 88

6.3.1 Type I Invariants . 89
6.3.2 Type II Invariants . 90

6.4 Local View Dissemination: Protocols . 91
6.4.1 Run-time architecture . 91
6.4.2 Flat . 93
6.4.3 Tree . 94
6.4.4 Communication Delays . 96

6.5 Implementation . 98
6.6 Evaluation . 99

6.6.1 Simulation Experiments . 100
6.6.2 Testbed Experiments . 108

6.7 DICE on Mobile Nodes . 110

xiv

6.7.1 Slowly Mobile Scenarios . 110
6.7.2 Using Group Monitoring in Dynamic Scenarios 111
6.7.3 Choosing a Solution . 114
6.7.4 Mobile DICE in Action . 117

6.8 Related Work . 120
6.9 Discussion and Outlook . 120

III Conclusions 123

7 Conclusions and Outlook 125

IV Addendum 129

Bibliography 131

A The Discovery Probability in RUTh 141

B Traffic Overhead in DICE 149

xv

List of Tables

4.1 Summary of notation. 40
4.2 Electrical characteristics. 49

5.1 Protocol parameters. 77

6.1 Code memory usage of DICE components. 99
6.2 Values used in the numerical comparison. 116

xvii

List of Figures

1.1 Overview of this thesis. 5

2.1 Examples of network topologies with mobile nodes. 15
2.2 Networking flow in mobile WSNs. 17

3.1 ACube network topology. 22
3.2 The mobile node in ACube. 22
3.3 ACube software architecture. 23
3.4 Nodes used in the wildlife project. 25
3.5 Wildlife network topology. 25
3.6 Software architecture for monitoring of wildlife. 26
3.7 Supply-chain scenario. 28

4.1 RUTh tool chain. 35
4.2 Low Power Listening. 36
4.3 Neighbor discovery protocols. 37
4.4 A receive check in LPL (and RUTh). 38
4.5 A sample execution of RUTh. 39
4.6 Deterministic discovery in RUTh. 41
4.7 Latency-driven deterministic discovery. 42
4.8 Latency-driven probabilistic discovery. 44
4.9 Schedule for a 6-discovery chain. 45
4.10 Lifetime-driven discovery. 46
4.11 The RUTh control interface. 47
4.12 Current profile of a b = 20 ms RUTh beacon. 47
4.13 Reliability of channel activity recognition vs. receive check duration. 48
4.14 Deterministic behavior: sample protocol configurations 〈τ(ms), s, T (s)〉 are

shown for τmin = 20 ms. 50
4.15 Latency-driven: relative expected lifetime for U-Connect and various RUTh

configurations. 51
4.16 Lifetime-driven: relative discovery latencies for U-Connect and various

RUTh configurations. 52
4.17 Discovery probability for τmin = 20 ms, high power. The configuration

output 〈τ, s, T 〉 is shown for each curve. 53
4.18 Probability deviation of simulation vs. model (∆p in Figure 4.17(a)) for

high power and τmin = 20 ms. 54

xix

4.19 Neighbor discovery time for T = 1 s, s = T/2b. 56
4.20 Building and node movement sketch . 56
4.21 Total duration of contacts for each node. 56
4.22 Timeline showing the contacts for each node in the experiment. Contacts

recorded by volunteers are on the horizontal lines called “report”, while
contacts recorded by RUTh are on the lines called “mote”. 57

4.23 Testbed and mobile node path. 59
4.24 Histogram of the PDR function of the distance sender–receiver for our

testbed. Averages over 300 packets / node, each broadcast in a dedicated
time slot for each node. 59

4.25 Definition of contacts. 59
4.26 Contacts among fixed nodes missed when using high power and configura-

tions 〈τ, s, T 〉. 60
4.27 Contacts among fixed nodes missed when using high power, various desired

latencies L = T , and configurations 〈τ, s, T 〉 compensating for epoch skew. 61
4.28 Contacts among fixed nodes missed when using high power, a desired la-

tency L = 2 s and configurations 〈τ, s, T 〉 for probabilistic discovery. 61
4.29 Missed contacts between the mobile node and the fixed nodes. 62
4.30 Mobile node contacts detected inside the virtual range. 63
4.31 Distance from ρ for 〈τ, s, T 〉 = 〈167, 5, 2〉 measuring δ in Figure 4.25. 63
4.32 Periodic broadcast scheme to ensure delivery in ACube. 64
4.33 ACube test deployment. 65
4.34 Round-trip for mobile-to-fixed. 66
4.35 Latency function of path length. 66
4.36 Event loss analysis. 67
4.37 Network overhead. 67

5.1 Operation of Links. 73
5.2 Operation of Dist. 75
5.3 Dist: finding alternative paths over loops. 75
5.4 Our synthetic scenario for group movement. 78
5.5 Cumulative energy for churn = 20, corresponding to 2 swaps every 10 m. . 79
5.6 Power consumed as a function of churn. 80
5.7 Error and detection latency vs time (b = 10 s). 81
5.8 Experiments with the real-world GPS traces in [101]. 82

6.1 The architecture of the DICE run-time. 91
6.2 Local view processing for a invariant whose signature requires monitoring

two network-wide maximum. Value changes are shown in bold. 92
6.3 Disseminating local view updates in Flat. 93
6.4 Disseminating local view updates in Tree. 95
6.5 History buffer: motivation and limitations. 97
6.6 The DICE tool chain. 98
6.8 Average local view changes per node. 101
6.7 A gradient distribution for x. 101

xx

6.9 Average number of sent packets per node. 102
6.10 Communication overhead vs. update rate. 102
6.11 Average node detection latency. 103
6.12 Detection latency for 225 nodes, k = 2. Values on the x-axis have different

scales. 103
6.13 Global detection latency. 104
6.14 Ratio between average node detection and global detection latency. 105
6.15 Nodes detecting violations in Tree. 105
6.16 Distributions to assess the impact of history size. 105
6.17 Impact of history size in Flat. 106
6.18 Detection of fast violation pulses. 107
6.19 Load distribution in Tree. 108
6.20 Laboratory testbed. 108
6.21 Real-world results. 109
6.22 Example of node relocation in Flat. 111
6.23 Updated DICE architecture integrating Flat and group monitoring. . . . 111
6.24 Scenario depicting the limitations of the group monitoring algorithms. . . . 113
6.25 Impact of node mobility. 116
6.26 Deployment of mobile nodes. 117
6.27 The behavior of DICE with Clocks on mobile nodes. The results show

averages over 10 min steps. Note the double scale on the y axis which
highlights the peaks for group changes, packets transmitted, local view
and temperature changes. 118

6.28 Testbed for controlled node departures. 119
6.29 Results of controlled departures experiments. 119

A.1 Schedule for a 6-discovery chain. Also shown are the helper intervals Im
and Jm. 142

B.1 The reference network topology used throughout this section. N0 is the
node where the maximum appears. 149

B.2 Sample timeline showing broadcasts by nodes N0 and Nj = 3 consequence
of periodic maximum appearances. 151

xxi

Introduction

Chapter 1

Introduction

Wireless Sensor Networks (WSNs) are a large collection of miniaturized untethered com-
puting devices with scarce resources, self-organized and collaborating towards a common
goal. These networks have been successfully deployed by scientists in a variety of en-
vironments and scenarios, e.g., historic buildings [17], road tunnels [16], vineyards [10],
forests [114], volcanoes [123]. Although all previous success stories exploit an infras-
tructure with fixed nodes, researches have not neglected node mobility. In fact, recent
applications such as medical care [23], shepherding [121] and monitoring of wildlife [33] or
moving assets [46] denote the interest of the scientific community in transposing WSNs
from fixed to mobile environments.

1.1 Goals and Motivating Scenarios

In the context of the fixed-to-mobile paradigm shift, this thesis addresses issues of WSNs
mobility from the perspective of three fundamental problems: 1) knowing all nearby
nodes, 2) knowing all nodes reachable through multi-hop communication, and 3) knowing
whether nodes behave according to a set of given specifications. Indeed, we maintain that
these are key issues in the design of mobile WSNs. To understand why, we briefly focus
on one of our research projects, ACube (acube.fbk.eu), where these problems come to
the forefront of application requirements.

Funded by the local authorities of Trento, ACube studies how various technologies
(WSN, video cameras, microphones, RFID tags) can be used as a means towards an
assisted living platform. The resulting system will be deployed in several day-care centers
for Alzheimer’s impaired patients. A serious concern of the staff in these centers is the
monitoring of:

1. patients in the proximity of other patients and social workers (to monitor the pa-
tients’ social behavior) as well as of hazards such as stairwells and other dangerous
areas (to monitor the patients’ safety). Mainly due to privacy issues, we cannot
employ video surveillance to solve this issue. Neither can we use IR sensors, as
these do not convey the identity of a person. Instead, in our project patients and
staff members carry WSN nodes, which we also use to tag hazards. Consequently,
detection of proximity to people and/or hazards can be achieved when radios are

3

http://acube.fbk.eu/

1.1. Goals and Motivating Scenarios

operated such that packets are received only at close range, which is not required to
be highly accurate. Essentially, we use the radio as a proximity sensor.

Addressing this requirement requires solving the first problem tackled by this thesis,
that is, discovering all nearby nodes.

2. patients that leave travel groups during trips outside the care centers. Usually,
the trips occur in places where infrastructure is lacking. Therefore, an untethered
technology such as WSN is useful to detect wandering patients in a fully autonomous
and distributed fashion. However, as monitored patients must not feel they are under
constant surveillance, they are allowed to exit the direct supervision range of the
person attending the group. Consequently, the area to be covered can potentially be
large and thus monitoring of groups must be performed across a multi-hop network.

This requirement maps to the second goal set forth for this thesis, i.e., that of
knowing all reachable nodes.

3. patients for which the surrounding environment is not appropriate, such as agitated
patients not calmed by music. This provides motivation for a system that monitors
application-level invariants, essentially predicates that describe the correct behavior
of a monitored process. Arguably, monitoring invariants of a single node is simple.
We are rather interested in global invariants , that is, those that are expressed over
the combined state of several nodes. For instance, in ACube, such an invariant is
“when on-body accelerometers report high activity, the music must be on”. Viola-
tions of the previous invariant are detected through the observation of both the state
of the accelerometer-enabled nodes and that of nodes monitoring music players.

Notice that this requirement is the essence of our third goal: understanding whether
nodes conform to a set of given specifications.

The previous research questions are not necessarily specific to our project, rather they
are general problems lying at the core of a wider range of application scenarios. For exam-
ple, we are collaborating with biologists that analyze the social behavior of roe deer. Their
study relies on animal-to-fixed node contact traces (to infer location), on animal-to-animal
contact traces (to study social contact) and on how the composition of herds changes over
time (to study group behavior). Albeit detection occurs at greater distances, the first
two problems emerge again: the discovery of all nearby nodes and that of all reachable
nodes. Similarly, the need to monitor global invariants arises in other scenarios such as
logistics. For instance, in the management of cold chains, it is essential to strictly control
temperature in an uninterrupted series of storage and distribution activities. Faults in the
chain can be identified by checking whether the refrigeration fans of a smart container are
activated every time the temperature increases above a threshold. Unlike neighbor dis-
covery and group membership, demands for global invariants also appear in applications
where nodes are fixed, e.g., in business processes like the management of green buildings.
We further expand on these scenarios in Chapter 3.

In the remainder of this chapter, we concisely illustrate the technical contribution of
this thesis.

4

Chapter 1. Introduction

1.2 Contribution

The solutions to each of the aforementioned problems result in three building blocks that
cover all three layers of a mobile WSN software stack, as depicted by Figure 1.1:

1. At the MAC layer, we design a neighbor discovery protocol that identifies all nodes
in radio range. This building block provides person-to-hazard proximity detection
and animal-to-animal contact traces in ACube, respectively the wildlife social study
project.

2. At the routing layer, we design several algorithms that monitor group membership,
i.e., that identify a node’s transitively connected component. These protocols will be
used in ACube to detect when patients leave their group and also to monitor herds
in our wildlife project.

3. Finally, our contribution at the highest level, the application layer, is a system that
monitors whether an observed process executes according to specifications. These
are provided in a declarative language as a set of global invariants, or predicates
expressed over the state of several nodes, and monitored by an efficient run-time.
The system can be used either in a mobile (e.g., ACube, logistics) or in a combined
fixed environment (e.g., business processes).

We briefly present each individual contribution next.

RUTh: Neighbor Discovery Made to Measure. Neighbor discovery, or knowing
the identity of nodes in communication range, is a fundamental problem in mobile WSNs.
Discovery latency and system lifetime are two key aspects along which this problem can
be formulated. We address both in Chapter 4, showing how an optimal maximum lifetime
can be achieved for latency-constrained scenarios and, dually, how latency can be traded
off to optimally meet strong lifetime requirements. Moreover, by offering a choice between
deterministic and probabilistic guarantees on discovery latency, we give developers another
knob for optimizing their lifetime- or latency-driven application.

co
re

 m
ob

ilit
y

pr
ot

oc
ol

s

assisted living
(ACube)

study of wildlife
social behavior

business
processes

m
ob

ile
 W

SN

ab
st

ra
ct

io
ns

fix
ed

 W
SN

motivating scenarios technical contribution

M
A

C
ro

ut
in

g
ap

pl
ic

at
io

n

so
ftw

ar
e

la
ye

r

monitoring of
global

invariants

group
membership

neighbor
discovery

pr
ot

oc
ol

s

logistics

Figure 1.1: Overview of this thesis.

Although lifetime, latency and probabil-
ity have been previously identified in the lit-
erature as dimensions of the neighbor discov-
ery problem, we are the first to combine all
three in a single, unified framework. Our ap-
proach relies on an analytical model, used at
the core of an optimizer. The latter takes dis-
covery constraints as input from application
developers and outputs configuration param-
eters for our discovery protocol, RUTh (“R U
There?”), implemented at the MAC layer of
TinyOS. Our analysis validated by real-world
experiments shows that RUTh outperforms
other state-of-art approaches: for instance,
given the same energy budget, it yields up to
a 50% reduction of the discovery latency.

5

1.2. Contribution

The Group Membership Problem. In Chapter 5, we design and compare protocols
that enable nodes to have constant knowledge of which other nodes are reachable through
multi-hop communication. An answer to this problem enables human-, animal- or asset-
borne wireless devices to detect the joining or leaving of group members in infrastructure-
less scenarios.

In contrast with Chapter 4, where we focus on knowing the neighbors within radio
range, here we address the discovery of nodes beyond the physical range. We do so by
analyzing three points that together cover the solution space. At one extreme, group mem-
bership information is proactively and collectively maintained by each node in the group.
At the other extreme, dissemination of membership updates is triggered reactively by re-
lying on a lower-level neighbor discovery protocol. In the middle lies a solution borrowing
ideas from the two extremes. Group membership is maintained mainly as hard-state,
however, nodes periodically broadcast state summaries to detect possible inconsistencies.

Different protocols exhibit different performance based on the degree of mobility. In
this respect, we simulate artificial scenarios that allow us to assess the impact of mobility
and group departures. We validate these through simulation of human GPS traces.

Depending on the application, the group monitoring protocols can either be used as
stand-alone solutions, or can be used in conjunction with higher-level abstractions, such
as the system introduced next.

Distributed Monitoring of Global Invariants. In Chapter 6, we present DICE (“Dis-
tributed Invariant CheckEr”), a system which monitors application-level global invariants
in a WSN. A DICE invariant is a predicate that can be expressed as a boolean expres-
sion or as a linear inequality quantified over the state of multiple nodes. Invariants are
specified in a declarative language. For example, referring to the cold chain scenario de-
manding the activation of refrigeration fans when the temperature of packages increases
over a threshold, in DICE we specify the invariant denoting the correct behavior as:

invariant {forall m: type@m = FOOD_PACKAGE and temp@m > T}
-> exists n: type@n = FAN and isActive@n}

where temp@m denotes the temperature of a food package m, and T is a constant.
An efficient run-time evaluates whether the monitored invariants are violated or com-

plied with. The problem can be solved trivially by gathering all data from all nodes at a
designated node where it is processed. However, this is inefficient in terms of communi-
cation overhead and detection latency. Therefore, we explore two alternate designs:

• a flat, decentralized solution, suitable for mobile, dynamic networks, such as those
providing the core motivation for this thesis. Significant in this approach are the
group membership algorithms in Chapter 5: these play the role of failure detectors,
deciding whether a mobile node is truly departed or still contributing with state to
the monitored invariant.

• a hierarchical, centralized solution exploiting in-network aggregation of the moni-
tored state, suitable for scenarios where nodes are static. In this solution, only one
node, i.e., the sink, is guaranteed to have complete knowledge on the network state
and to properly detect invariant violations.

6

Chapter 1. Introduction

We implement both solutions and compare their performances using large-scale simu-
lations and a real-world testbed. Results indicate that, in both cases, invariant violations
are detected in a timely and energy-efficient manner. For instance, in a 15×15 grid net-
work, violations are detected in less than a second and with only a few packets sent by
each node.

Thesis Outline

Although we are aware that neighbor discovery, group membership and monitoring of
global invariants are only some of the challenges related to mobile WSNs, we argue that
these are among the most important ones, as seen in our application examples. Part I sets
the background of this thesis. Specifically, in Chapter 2 we take a look at mobility in WSNs
and in Chapter 3 we detail our application scenarios. Part II describes our contribution.
We discuss the previous challenges and address each with an implementation at a different
software layer. In Chapter 4 we present our neighbor discovery protocol which executes
at the layer of MAC protocols. Our protocol uses an analytical model to optimally
meet a given latency or lifetime target. The focus of Chapter 5 are protocols monitoring
group membership; these run at the routing layer and their objective is to identify a
node’s connected component. Chapter 6 covers the application layer with a system that
identifies whether the global state of the network complies to a set of given invariants.
Finally, Chapter 7 concludes the thesis with an outlook on future research directions
emerging from this work.

7

1.2. Contribution

8

Part I

Background

Chapter 2

Mobile Wireless Sensor Networks

WSNs are a large collection of battery-operated small devices that perform the following
steps: i) take sample measurements of the environment, ii) perform a minimal amount
of processing, e.g., aggregation or compression of the sampled measurements, iii) transfer
these through multi-hop communication to one or more collection points, and iv) possibly,
in the case of sensor and actuator networks, operate a device which closes the control
loop. The general assumption is that the network is transitively connected and static.
As a consequence, WSN architectures, protocols, programming abstractions and their
supporting run-time has been designed to support this view.

The work in this thesis deviates from this traditional view on WSNs in the sense
that it addresses networks with mobile nodes. Similar paths have already been taken
by other researchers. In this chapter we discuss the general motivation (Section 2.1) of
mobile WSNs, we analyze the extent at which mobility appears in WSNs (Section 2.2),
and we present the challenges of mobile WSNs (Section 2.3). We defer the analysis of the
state-of-art topics specifically related to our contribution to the corresponding chapters.

2.1 Why Mobile Wireless Sensor Networks?

We distinguish in the relevant literature two main motivations for WSNs mobility:

• Application requirements intrinsically demand mobile nodes.

One of the early works in the field [80] rightfully argues that WSN represent a
non-intrusive, long-term and cost-efficient monitoring solution. Without the tech-
nology, some phenomena would otherwise be impossible to observe. The same type
of monitoring is required for moving entities, may it be assets, animals or humans.
Therefore, in this case, mobility of nodes becomes a functional requirement of ap-
plications. We review such applications in Section 2.1.1.

• Mobility improves the performance of static deployments.

There are cases when, even if applications do not directly demand mobile sensors,
they are exploited to address technical aspects. For instance, a number of papers
suggest to relocate nodes in order to prevent premature energy depletion or to reduce
radio interference. We review such papers in Section 2.1.2.

11

2.1. Why Mobile Wireless Sensor Networks?

2.1.1 Mobile WSN Applications

WSNs offer unprecedented opportunities in the monitoring of mobile entities. In this
section, we survey some of the most representative systems using mobile sensors applied
on animals, humans and moving assets.

Animal study. One of most prominent application of mobile WSNs is in the field of
animal study, e.g., badgers [33], turtles [109], zebras [56, 129], and our wildlife project
described in Chapter 3. The most representative of these is in fact one of the early works
in the field, that is, the ZebraNet project [56, 129], whose goals were to understand how,
why, and when zebras undertake long-term migrations.

Shepherding. Applications of WSNs related to animals are not limited to “sense” only.
Sensor and actuator networks have been actively employed in the shepherding of do-
mesticated animals. In [121], the authors describe a system where an actuator, i.e., an
animal-borne electric shock generator, prevents clashes between bulls in on-farm breeding
paddocks. A similar system [11] was used to confine cattle within perimeters defined by
virtual boundaries.

Asset sensing. Tracking of goods and freight is important in logistics, but also in day-
to-day activities. For instance, in [81], the authors design a platform for monitoring
freights. The hardware incorporates shock, sound, breach and environmental sensors and
features a novel RF wake-up circuitry for greater energy efficiency. With a focus on indoor
scenarios, systems such as [126] allow users to search the location of their everyday-use
objects through queries issued in web browsers. In other cases, i.e., [66], the mobility of
a sensor can be used in the exploration and charting of unknown structures, i.e, water
pipes.

Human-centric and participatory sensing. Ongoing research suggests the utilization
of human-borne sensors in assisted living systems like [125] and our project described in
Chapter 3, health care [23], understanding of social behavior [67], in sports [35], or as a
means to increase responsiveness in emergencies [52, 73, 98, 106]. In this context, human-
borne motes provide identification [73], position tracking [62], motion control and posture
detection [42, 72, 128] and vital sign monitoring [23]. WSNs may be retrofitted into
hospitals [23], applied ad hoc at the place of a disaster [106] or can perform tracking and
monitoring of individuals in remote places [35, 52].

An important amount of research has been undertaken on the sensing capabilities of
cellular phones and other mobile “gadgets” that have lately became pervasive in our soci-
ety. From this aspect, researchers are concerned mainly with i) participatory sensing, or
on how resources donated by volunteers can be used to monitor a large scale phenomenon
such as earthquakes [36], noise map [99], traffic conditions [88], or transit tracking [113],
and ii) inferring information about the carrier’s context or activities using sensors available
on popular phones, e.g., cameras, microphones, accelerometers, gyroscopes [60, 74, 87].
Although most of these works target significantly more powerful platforms, some of the
contributions of this thesis, e.g., neighbor discovery, can be transposed to this environment
and serve as building blocks towards more complex functionality.

Environment monitoring. Mobile sensor networks may be used in an ad hoc deploy-
ment to monitor unpredictable phenomena which can be otherwise impossible to observe.

12

Chapter 2. Mobile Wireless Sensor Networks

An interesting approach is the usage of WSNs on unmanned aerial vehicles, useful to
understand atmospheric events, plumes and pollution [3].

Environmental monitoring using mobile entities have also been studied by other com-
puter science areas, such as mobile and vehicular ad-hoc networks. For instance, re-
searchers [53] envisaged that sensor on board vehicles can be queried to provide environ-
mental and geo-imaging data through a SQL. In general, such networks employ devices
that are more powerful and energy hungry, and use dedicated protocols (some surveyed
in [105]), albeit some of the challenges are similar to the one faced in mobile WSNs,
discussed in Section 2.3.

2.1.2 Improving the Performance of Static Networks

Mobility is also employed to address non-functional requirements and improve the per-
formance of static networks. We discuss these possibilities next.

Sensing coverage. Two problems of WSNs are finding a node arrangement which maxi-
mizes the number of detected events or, dually, which minimizes the number of undetected
events. As observed in [38, 43], these are actually two facets of the same problem, i.e., sens-
ing coverage. When nodes are mobile, sensors can be relocated to increase the coverage
in remote regions of the network on a per need basis. Consequently, a dense deployment
is likely to become unnecessary, reducing thus the number of nodes and costs. Possible
solutions to the coverage problem are described in [5, 43].

Connectivity and reliability. Similar to sensing coverage is the problem of network
connectivity. Due to various causes, e.g., radio interference, node failures or node reposi-
tioning, the wireless network may become partitioned.

To mitigate this phenomenon, a greater number of nodes can be deployed to increase
redundancy and connectivity to remote areas. However, this solution may be cost inef-
fective and potentially lead to other problems. For instance, an increased node density
raises the risk of channel contention and collisions. The alternatives provided by mobile
nodes are:

• mobile nodes can be repositioned to reconnect the severed nodes. This problem is
similar to the one of sensing coverage, and the same solutions may be applied to
both, e.g., [43].

• mobile nodes can visit nodes and transfer data using one-hop transmissions. This
solution works best for collecting data in batches. Note that the same principle works
both ways, that is, mobile nodes can disseminate data to fixed nodes, e.g., they may
re-program the network with a newer software version. Mobile nodes collecting data
are usually referred to in the literature as “data mules” [54, 58, 112].

In general, however, any adopted relocation scheme must ensure that node movement
does not break connectivity.

Energy efficiency. Consider the typical WSN topology for sense-only applications: it
resembles a tree, where each node relays towards the root data on behalf of itself or a
number of other nodes. In the absence of any aggregation scheme, the closer to the root
a node is, the more data it must relay. This phenomenon, called the “funneling effect”

13

2.2. Networks with Mobile Nodes

in [119], translates to a peak in the rate of energy consumption on nodes close to the root;
in result, the operational lifetime of the network shortens considerably. As suggested in
[119], this undesirable result can be diminished by a secondary fixed network with long(er)
range data links that bypass the overloaded areas of the WSN.

Alternatively, one or more mobile sinks can be relocated to balance the energy con-
sumption and increase the lifetime of the network as a whole. This is different from the
previous case, where the goal was to increase sensing coverage and connectivity in certain
areas of the network. Interesting analytical frameworks are provided in [4, 40, 75, 120], in
which sink relocation is formulated as an optimization problem whose goal is to maximize
the network lifetime.

Throughput. In addition to lifetime, it is important to asses the performance of net-
works. One metric that can be used is the network’s throughput, an indication of how
much information can be transmitted over the unit of time.

Interestingly, it has been shown that, at least theoretically, mobility increases the
overall throughput of a network at the expense of the delivery delay. Intuitively, the
mixture of node mobility, low power transmissions and multi hop communication reduces
interference and allows data from more nodes to travel through the network at the same
time. The maximum throughput increases from O (1/√n), where n is the number of nodes,
for static networks [47] up to O (1) for mobile networks [45].

Security. In ad hoc networks in general and WSN in particular, establishing a secure
route between nodes requires the existence of a key which is used by security protocols [59].
The key may be preset [19], or established at runtime [51]. The former may not offer
sufficient flexibility and security, since keys are hardcoded in the memory of motes before
deployment. The latter raises a circular dependency: in order to distribute a key in a
multi-hop network, secure paths must first be established; however, secure paths cannot
be established without first distributing a key. The procedures [51] to break this circular
dependency are complex and unsustainable by the constrained hardware in WSNs.

Noteworthy is that, from this aspect, mobility indeed helps. Authors of [117] suggest
that a simple solution to the problem of key distribution exists when nodes are mobile:
once a node enters the direct communication range of another node, the two nodes can
directly establish a security association, i.e., they exchange directly the minimal amount
of data required to establish the non-repudiation, integrity and confidentiality of mes-
sages exchanged afterwards. The security association can be maintained across multi-hop
paths once the node moves, and therefore the dependency between routing and security
is limited.

2.2 Networks with Mobile Nodes

The aforementioned applications and techniques are supported by networks in which some
or all networks nodes are mobile. In this section, we analyze the impact of mobility on
network topology. The first step we take in this direction is to distinguish between the
elements of a mobile network. We build on a survey [28] that describes networks as
consisting of:

• Regular nodes that produce data and possibly relay data on behalf of other nodes.

14

Chapter 2. Mobile Wireless Sensor Networks

sink

regular node

(a) A network with relocatable nodes

mobile sink

(b) A network with mobile sinks.

sink

data mule

(c) A network with data mules.

sink

(d) A network with general mobility.

Figure 2.1: Examples of network topologies with mobile nodes.

• Sinks that consume information produced by regular nodes, i.e., they are the des-
tination of the data. Networks usually have a single sink, but sometimes solutions
using several sinks can be employed for load balancing and reliability [16].

• Support nodes that do not produce, neither consume data. Rather, they leverage
on mobility to play the role of an intermediary data collector on behalf of sinks.
Networks may have several or no support nodes at all.

As depicted in Figure 2.1 and also presented in [28], mobility in WSN can appear for
any of the previous three types of nodes. We review these next.

Relocatable nodes. In Section 2.1.2 we discussed how mobility can increase the sensing
coverage, connectivity and reliability of a network. Figure 2.1(a) depicts a network where
one of the regular nodes is relocated to reconnect a part of the network which, due to an
earlier failure, has been previously disconnected from the sink. It should be noted that
this relocated node does not carry any data, but rather it is used to change the network
topology. Similarly, it may be used to increasing the sensing coverage. A survey on the
topic of connectivity and coverage can be found in [43].

Mobile sinks. When the deployment is sparse and it is impossible to form a collection
tree spanning all nodes, leverage can be taken from a mobile sink collecting data. One such
scenario is described in [6], in which sensors are deployed throughout the city and data is
gathered using one-hop communication while mobile collectors passing in the vicinity of
sensors.

15

2.3. Challenges of Mobile Wireless Sensor Networks

In more complex cases, a routing structure must be maintained while the sink is
moving. For instance, a deployment like in Figure 2.1(b) featuring mobile sinks can be
used to load balance the energy consumption and increase the overall network lifetime.
Here, differently from the previous case, regular nodes are fixed and form a collection tree
rooted at sink (or the nearest one, if several sinks are being used), e.g., like in [4, 40, 120].

Data mules. An approach for the case when both the sink(s) and sensing nodes are
static and disconnected requires the existence of one or more special support nodes that
play the role of data mules. Like in Figure 2.1(c), data is collected from sensors by a mule
using one-hop communication and delivered to the sink once the two are in communication
range. In this scenario, the mule solely plays the role of a data carrier. Therefore, the
mule must have a large storage capacity. Such a topology is described in [54].

General mobility. When the monitored entities are mobile, e.g., [129] and our wildlife
application (Chapter 3), the network experiences the most general form of mobility, as
depicted in Figure 2.1(d). In this case, node mobility cannot be described using a struc-
ture. Moreover, a node can be an originator of messages, but also a data mule that relays
messages on behalf of other nodes. In these networks, also called delay tolerant networks,
a contemporaneous end-to-end path between the message originators and source is not
guaranteed; routing of packets occurs opportunistically when two nodes encounter one
another, as in [130]. This general form of mobility can result from application require-
ments (e.g., monitoring of zebras [129]), but can also be exploited to observe phenomena
too large to be covered by a fixed network (e.g., as suggested by [3]).

This characterization of mobile WSNs is the first step in understanding the interactions
between mobile nodes and their corresponding challenges. We describe these next.

2.3 Challenges of Mobile Wireless Sensor Networks

In Section 2.1.1 we reviewed a wide range of applications entailing mobile nodes. To
develop such applications, developers face a number of challenges that emerge at different
layers:

• From the networking aspect, developers are concerned with developing energy effi-
cient protocols that meet the requirements of the applications.

• The programming platform has a direct impact on the difficulty of the software
development process. Expressive and efficient languages, abstractions or middleware
platforms make the difference in complex applications.

• The application logic is a difficult problem in itself. Consider, for instance, the
shepherding application in Section 2.1.1; a poor decision may result in useless electric
shocks applied to the wrong bull.

Hereafter, we focus on the networking (Section 2.3.1) and programming aspects (Sec-
tion 2.3.2) of mobile WSNs. In this section, we purposely neglect application logic as
it varies greatly with the application scenarios. Moreover, we have already address this
subject in Section 2.1.1.

16

Chapter 2. Mobile Wireless Sensor Networks

2.3.1 Networking With Mobile Nodes

YES

NO1. Am I
alone?

2. Transfer
data

Figure 2.2: Networking flow in
mobile WSNs.

Recent experiments [23] demonstrate that unmodified
state-of-art collection protocol, e.g., CTP [44] are un-
suitable when mobility appears. Moreover, a study [7]
shows that if the paths of two motes intersect, they have
a time window during which they can communicate1 that
ranges from 61 s down to 2 s for a relative velocity be-
tween motes of 1 m/s, respectively 5.55 m/s (20 km/h).
Communicating in a mobile environment is thus a diffi-
cult task.

From the point of view of communication, we characterize the process using the flow
in Figure 2.2:

1. Contact detection. Communication between two nodes is possible only when they
are within radio range; at any other point in time, communication attempts are not
only futile, but also waste precious energy.

2. The actual data transfer with or without routing of packets. As we have just seen,
the time window for communication may be very short. Therefore, when two nodes
are in contact, communication efficiency should be at its utmost.

3. Contact detection revisited. Several throughput-related optimizations are possible
when two nodes are in contact, e.g., the radio duty-cycling [96] can be disabled.
However, once contact is lost, these optimizations are wasteful and must be disabled
to increase lifetime.

We review each of the these states next.

Contact detection. Neighbor discovery, or contact detection, is the problem of identify-
ing the nodes in radio range. This information is the precondition for any communication
between two nodes. Protocols for contact detection can equally identify the departure of
neighbors and, consequently, can be used to tear-down any data transfer. Protocols for
neighbor discovery fall into two main categories, as follows.

In the first class fall asynchronous protocols that make no assumption on the time
when the contact occurs. Two nodes discover each other by exploiting schemes in which
sleep intervals are interleaved with beacon broadcasts or samples of channel activity.
Generally, the longer the sleep interval is (w.r.t. the durations corresponding to broadcasts
and channel samples), the longer both node lifetime and discovery latency are. Our
neighbor discovery protocol falls into this category; we discuss similar protocols, e.g.,
[32, 57, 85, 116], in Chapter 4.

The second class of protocols, the scheduled rendezvous protocols, exploit information
on the mobility and patterns of the interaction among nodes. By making assumptions
on when nodes are likely to be in contact, these protocols afford longer sleep periods and
wake up the radio only at pre-defined times. The wake up schedule can be based on:

1The experiments in [7] involved two nodes such that a mobile node passes as close as 15 m to a static node.
The time window during which nodes can communicate is defined as the duration of the interval when the achieved
packet delivery ratio is greater than 75%.

17

2.3. Challenges of Mobile Wireless Sensor Networks

• already existing models of the interaction patterns, like in [129],

• already existing knowledge on the route followed by mobile nodes, e.g., a bus carrying
a data mule and passing through the vicinity of sensors [18], or

• knowledge gained at run-time from previous encounters [34].

Irrespective of the adopted method, scheduled rendezvous has the advantage of a decreased
energy consumption and, implicitly, an increased lifetime. However, such protocols must
rely on time synchronization that, considering the disconnected nature of the network, can
only come from an external source such as a GPS receiver. Additionally, these protocols
are unsuitable for the cases when the interaction patterns are random and when the
application demands the detection of contacts that fall outside a pattern.

Data transfer. As described earlier in this section, nodes may have a limited time
window during which data transfer can occur. Therefore, during this time, throughput
must be maximized. Data transfer can be as simple as an offload to a neighboring mule [54]
or a fixed routing structure [23]. Another interesting case appears when the sink is mobile
and the routing structure must cope with the mobility of the sink. The general approach
in this case is to exploit one ore more fixed nodes in the neighborhood of the sink and build
a hierarchical routing scheme. For instance, in [61, 127], the authors describe protocols
where mobile sinks select a “proxy” node, that is, a single node that connects a sink to
the remainder of the network.

Complex cases entail routing, possibly in an arbitrary fashion across mobile nodes
similarly to the case of mobile ad hoc networks. To further increase difficulty, paths
can be transiently disconnected, as in the case of delay tolerant networks. However, the
subject of end-to-end routing in mobile networks falls outside of the contributions of this
thesis; we refer the interested reader to relevant surveys on the topic [105, 130].

2.3.2 Application Development

A decade has passed since the first release of TinyOS [49], the de facto operating system for
WSNs. During this time, a wide landscape of programming abstractions and middleware
platforms for WSNs [91] have emerged; a proper abstraction reduces the programming
hurdle without sacrifices in efficiency. Interestingly, none of the higher level programming
platforms explicitly addresses mobile networks. In practice, applications are developed
using low level primitives in an ad hoc manner. No reference software architecture for
mobile WSNs has emerged so far, even in the case when middleware platforms have
been employed in mobile applications. Consider for instance Impala [71], the middleware
layer used in the ZebraNet project; although it offers an interesting approach to code
modularity, reprogramming, and concurrency, there is no support genuinely dedicated to
node mobility.

In the literature describing high-level abstractions for WSNs, there are however several
indirect references to node mobility. Interestingly, most relate to the problem of node
identity, which we address in this thesis at various levels. For instance, in TeenyLime [26],
the middleware transparently manages a list of one-hop neighbors. Abstract Regions [122],
Pleiades [64], Hood [124] all build high level operators such as enumeration, data sharing,

18

Chapter 2. Mobile Wireless Sensor Networks

annotation on top of one- or multi-hop neighborhoods. From the perspective of our
contribution, RUTh can be in principle employed as a underlying layer to offer these
abstractions a view on the one-hop neighborhood and, similarly, our group membership
protocols to provide a view of the neighborhood at the multi-hop level.

Differently from the state-of-art, in Chapter 6 we present a run-time solution of our
application invariant monitoring system which is designed from start for mobile nodes.
Unlike the aforementioned abstractions, DICE is not a general purpose programming
solution. Rather, it allows a simple development of applications where the goal is to
monitor processes that can be described using logical expressions. DICE makes use of our
contributions at the lower levels, for instance, it employs group membership as a global
failure detector. However, group monitoring is only a building-block for the run-time
and does not appear in the programming abstraction, which to which node mobility is
transparent.

2.4 Discussion and Outlook

Mobility of wireless sensor networks has emerged not only as a direct necessity of ap-
plications, but also as an elegant solution addressing non-functional requirements, e.g.,
to increase sensing coverage. In this chapter, we reviewed these two aspects, and we
also surveyed the literature to identify the degree in which mobility appears in network
topologies. We discuss challenge occurring during the development of mobile applications
from the perspective of networking and programming. Our contribution directly enables
several applications such as monitoring of wildlife, but can also be envisaged to provide
services for higher level abstractions.

19

2.4. Discussion and Outlook

20

Chapter 3

Application Scenarios

The research in this thesis is driven by several real-world applications scenarios addressed
during the Ph.D. studies. In these applications, node mobility appears at various extents:
some applications are based on purely mobile networks, other applications are a mixture of
mobile and fixed nodes, while some solutions we describe are applicable to static scenarios.
Moreover, at the time when this thesis was written, the applications described in this
chapter had different levels of maturity:

• We have already designed, implemented and tested a solution for the ACube assisted
living scenario. We present this application in Section 3.1, and we describe the role
of our protocols in ACube and data gathered from a test deployment in Chapter 4.

• We have been recently provided with the hardware enabling the wildlife monitoring
project described in Section 3.2. We designed and implemented an initial solution
to this problem, which we are currently testing in the field.

• In our group, there is currently ongoing work on applying WSNs as supporting
means for business process. We are presently assessing opportunities of applying
DICE, the system described in Section 6, in scenarios similar to the those described
in Section 3.3.

Next, we discuss each application in more details.

3.1 Assisted Living: The ACube Project1

There are no doubts that aging is a widespread phenomenon. In fact, by 2050 there will
be more elderly than children and the population’s average age will be 45 everywhere but
in Africa [63]. The frequency of degenerative diseases associated to old age will increase
accordingly: one person in 85 will be suffering from the Alzheimer’s disease in 2050 [9].
In this somber reality, new technologies are sought to achieve greater efficiency and lower
costs in social care.

One application of the research in this thesis is ACube, a project funded by the Au-
tonomous Province of Trento. The aim of this project is to build technologies for an

1An early description of the ACube application appeared in [21].

21

3.1. Assisted Living: The ACube Project

assisted living platform that targets people suffering from cognitive impairments, mainly
patients suffering from the Alzheimer’s disease.

3.1.1 Scenario and Requirements

The small-size, accuracy, and ease in deployment make WSNs more suitable to be retrofitted
in care centers w.r.t. traditional monitoring means, such as video cameras, RFIDs and
microphones. In addition, WSNs are less intrusive and can be used to monitor patients
in locations where privacy is of concern. In ACube, a number of fixed WSN nodes will be
deployed throughout several day-care facilities, while patients and care-givers will carry
mobile nodes that

• raise alerts when patients are in the proximity of hazards,

• report social contacts among patients, and between patients and care-providers, and

• detect basic posture changes, i.e., falls or long immobility periods.

mobile
node

sink

fixed node
range of

mobile node

Figure 3.1: ACube network topology.

Figure 3.2: The mobile node in ACube.

Thus, in ACube, the detection and report-
ing latencies of such events are important as
both increase the responsiveness of social work-
ers. Moreover, considering that in ACube mo-
bile nodes can be collected and recharged on a
daily base, we can trade off lifetime to decrease
event detection latency.

3.1.2 Solution Overview

As illustrated in Figure 3.1, our network con-
sists of a mixture of mobile and fixed nodes:

• Mobile nodes detect events, i.e., proxim-
ity, contacts, falls. They are a scaled down
version of the TMote SKY [97] featuring
an on-board accelerometer and a recharge-
able battery. Figure 3.2 shows the picture
of a mobile node, including its casing.

• Fixed nodes play the role of hazard mark-
ers and form the infrastructure necessary
to relay events on behalf of mobile nodes
on a multi-hop path to the sink; the latter
is a central node connected to a PC which
dispatches events to operators. In ACube, the role of fixed nodes is played by regular
TMotes.

The software architecture of our solution is built around the TeenyLime middle-
ware [26]. TeenyLime empowers WSN programmers with a higher level of abstraction

22

Chapter 3. Application Scenarios

TeenyLIME

TinyOS

Proximity
Detection

Falls &
Immobility

Security

Collection

TupleSpaceTupleSpaceTupleSpace

TupleSpace

Orchestrator

TupleSpace

sensing logic communication

Mobile-To-
Fixed

Offload
TupleSpace

Figure 3.3: ACube software architecture.

that replaces the OS-level communication constructs with a shared memory space span-
ning neighboring (1-hop) nodes. The shared memory is provided in the form of a tuple
space, i.e., a collection of sequences of typed fields, and is represented by a memory block
on each node shared with other nodes within communication range. Along with the
higher-level tuple space abstraction, TeenyLime provides interfaces that allow a low-level
configuration of the underlying hardware. TeenyLime is built on top of TinyOS [49] and
applications are developed in the component model inherited from nesC.

The ACube components interact exclusively through the tuple space abstraction, as
indicated by the architecture illustrated in Figure 3.3. This allows a high decoupling of
components, providing the flexibility to alter or insert only those components required
to cope with changes in the deployment or in the project’s requirements. For instance,
the software configuration of a fixed node does not include functionality specific to fall
and immobility detection, which is available instead on mobile nodes. We overview these
components next:

Proximity Detection This component is included on both mobile and fixed nodes and
its duty is to notify when mobile carriers approach fixed nodes or other carriers. The
operation of this component is based on the neighbor discovery protocol described
in Chapter 4.

Falls & Immobility This component is included only in the configuration of mobile
nodes. Fall and immobility detection is achieved through an algorithm that uses
accelerometers to detect the posture and peaks in the carrier’s movement. The fall
detection functionality is out of the scope of this thesis; it is described in [21].

Orchestrator Included on all nodes, the Orchestrator coordinates the activities of other
components so that they do not interfere in their operation. It achieves this by mul-
tiplexing hardware sensors, controlling the radio duty cycle and scheduling trans-
missions according to the radio duty cycle. For instance, this component manages
the radio chip in order to address the communication demands of the proximity de-
tection and collection components; in this case, the Orchestrator decides when the
radio should be on and when transmissions should occur.

Mobile-To-Fixed Offload Mobility of patients and care providers prevents us from

23

3.2. Study of Wildlife Social Behavior

building a collection tree that include mobile nodes. Consequently, these offload
data to neighboring fixed nodes that further relay the information further. This
process is handled by a specialized component, running on both fixed and mobile
nodes. We present the behavior of this component in Chapter 4.

Collection This component is included only on fixed nodes and its purpose is to forward
events to the sink along a collection tree formed by all fixed nodes. To build the
tree and ensure forwarding, we adapt protocols previously developed in our group
to address other deployments [16, 17], as described in Chapter 4.

Security Differently from other components, the Security component lays between Teeny-
Lime and TinyOS. Its purpose is to provide an encryption layer that prevents any
unauthorized messages to pass through the radio stack. In this respect, we use the
software solution available at [29].

RUTh, our neighbor discovery protocol, lies at the core of the software architecture of the
WSN in ACube. Its nature, however, poses peculiar challenges to any protocol running
on top of it. We discuss these aspects at large and evaluate them in Chapter 4.

3.2 Study of Wildlife Social Behavior2

The understanding of social interactions is a stepping stone towards a better under-
standing of evolution, of endangered species, of the mechanisms behind epidemics, of
the equilibrium in fragile ecosystems, and of the abilities to adapt to the surroundings.
Study of wildlife has been traditionally performed by biologists using direct observation,
although the effectiveness of this method is severely hampered by the human intrusion in
the environment and impossibility of a full observation coverage in space and time.

Consequently, considerable research efforts have been invested into energy efficient
technologies (e.g., GPS [12], RFID [33]) that allow an untethered, non-intrusive, and long
term monitoring of wildlife. Along these lines, WSNs are suitable to the wildlife monitor-
ing problem because of their small form factor, energy efficiency, and, most important, of
their ability to embed application logic into the environment (e.g., [121]).

3.2.1 Scenario and Requirements

We are working with biologists that are analyzing the social behavior of roe deer. They
are interested in:

• information on the contacts between animals, and

• information on where deer spend time.

In our wildlife monitoring system, we tag each monitored deer with a node as described
in the next section. Our solution must take into account that deer are solitary animals.

2An early description of the wildlife monitoring application appeared in [89].

24

Chapter 3. Application Scenarios

FRAM

CC2420

MSP430F2618 GSM antenna
GPS

module

μSD mount slot

MOTE EXTENSION BOARD

Figure 3.4: Nodes used in the wildlife project.

application server

basestation
deer in isolation

deer group

TCP/IP link

GSM

deer in contact802.15.4

Figure 3.5: Wildlife network topology.

Consequently, the system must be designed to operate at maximum efficiency when nodes
are disconnected w.r.t. other nodes. Moreover, deer are difficult to capture [95], thus,
differently from ACube, a greater emphasis must be made on lifetime, rather than latency.

3.2.2 Solution Overview

In this project, we use motes purposely designed to meet the previous requirements.
Our motes are derived from the TMote SKY [97] and feature a Texas Instruments
MSP430F2618, a MCU from the MSP430 family from a more recent generation w.r.t.
the one empowering standard TMotes. Compared to the TMote, the new MCU is faster
and has larger code storage3; it is necessary to handle a larger amount of peripherals, as
follows. We use the standard Chipcon CC2420 transceiver for its networking capabilities,
but we also employ it as a “contact sensor”. To increase lifetime, collected data is per-
sisted on a FRAM chip, a fast, non-volatile memory, operable at lower voltages w.r.t. to
standard Flash memory4. An extension board provides a combination of the following
peripherals: a GPS module, a GSM modem, and a µSD card for additional storage.

As per Figure 3.5, we distinguish the following categories of entities in this project:

• All monitored deer bear a mote that features at least a GPS device. These use the
radio transceiver to run the neighbor discovery protocol described in Chapter 4. All
detected neighbors and localization information are persisted in the FRAM.

• We employ several fixed basestations, each equipped with a GSM modem and SD
storage, to collect data from the deer-borne motes. We deploy these in the proximity
of feeding stations that biologists expect to be repeatedly visited by deer.

3The new MCU that we use runs at 16 MHz, has 116 KB of Flash memory and consumes 365 µA and 0.5 µA
when active, respectively when in standby. Comparatively, the MSP430F1611 on standard TMotes runs at 8 MHz,
has 48 KB of Flash memory and consumes 330 µA and 1.1 µA when active, respectively when in standby.

4The Flash memory on the standard TMote is inoperable when the power supply drops below 2.7 V. Instead,
our 1 Mb FRAM can be operated when the supply is as low as 2 V.

25

3.2. Study of Wildlife Social Behavior

• The hardware configuration of a fraction of the deer-borne motes includes the GSM
modem. These play the role of mobile basestations. While in principle all deer can
bear a GSM modem, this solution is not feasible in practice due to cost constraints.

• The basestations, including the deer with GSM modems, report the downloaded
data to an application server using a TCP/IP connection established through the
GSM modem. The server runs on a PC in our lab.

The wildlife monitoring application is built on top of our TeenyLime middleware and
has an architecture similar to the one in the ACube project. Figure 3.6 sketches our
solution. Hereafter, we detail the components included in the configuration of deer-borne
motes:

Proximity Detection This component is similar to the component bearing the same
name in the ACube architecture described in Section 3.1. Its goal is to detect contacts
between deer and between a deer and a basestation. The operation of this component
is based on the neighbor discovery protocol described in Chapter 4.

Location Manager Essentially, this component is a driver for the GPS chip. The lo-
cation manager acquires the position periodically to maintain fresh information re-
garding the satellites in view. Additionally, it refreshes the positioning information
when a contact is detected, managed as described next.

Contact Manager A dedicated component is dedicated to manage ongoing contacts
between deer. The purpose of this component is to maintain a list containing the
other nodes in the range and detect when the contact with one of these is lost. When
this occurs, contact information — identity, duration, fresh position sampled from
the location manager – is persisted on the FRAM.

Mobile-To-Basestation Offload This component implements the policies of the proto-
col transferring data (i.e., contact and position) from mobile nodes to basestations.
In this protocol, a basestation plays the role of an arbiter ordering the transmissions
of the deer-borne motes in range. Specifically, it gives higher priority to the nodes
with a lower amount of available memory and battery. To increase throughput, data
transfers occur in bulks, i.e., a deer-borne mote offloads a predetermined amount of
data, and without any form of duty-cycling.

TeenyLIME

TinyOS

Proximity
Detection

Location
Manager

Mobile-To-
Basestation

Offload
TupleSpaceTupleSpaceTupleSpace

Contact
Manager

TupleSpace

sensing communication

GSM
Reporting

TupleSpace

Mobile-To-
Mobile
Offload

TupleSpace

logic

Figure 3.6: Software architecture for monitoring of wildlife.

26

Chapter 3. Application Scenarios

GSM Reporting The GSM modem is managed by this component. Our experiments
show that GPRS data connections are established at a high energy overhead5. There-
fore, we prefer to transfer data to our application server in bulks during infrequent
modem connections. All data collected between consecutive GSM offloads are stored
on the high capacity µSD card.

Mobile-To-Mobile Offload We are currently investigating methods enabling an op-
portunistic multi-hop collection protocol similarly to [129]. Our goal is to enable
deer-borne motes to offload their data to other deer-borne motes if the latter have
higher changes of delivering data to a basestation. This is part of ongoing unfinished
work which ultimately will become the mobile-to-mobile offload component.

The wildlife project provides a straightforward application for the research undertaken
in this thesis. Moreover, it provides the possibility to analyze our neighbor discovery
protocol in a context where system lifetime bears a higher weight w.r.t. to latency, which
instead is more important in ACube. We revisit the wildlife application in Chapter 5, where
we discuss the opportunities for integrating RUTh, our neighbor discovery protocol, with
the group monitoring protocols.

3.3 Supporting Business Processes

Since the inception of the field, scientists leveraged wireless sensor networks (WSNs) to
harvest large amounts of environmental data for off-line analysis [80, 83]. Alongside these
applications, advances in power efficiency and miniaturization have also enabled the use of
WSNs for online monitoring of business processes. The research on global invariants (i.e.,
properties over data sensed at different nodes) we present in Chapter 6 was originally
motivated by scenarios in which nodes are partially mobile. One such scenarios is the
management of supply-chains, discussed next.

Supply-chain management. Consider food transportation, a business where $35 billion
are literally trashed yearly [50]. Increasingly often, shipped products are equipped with
an RFID tag, which however only allows tracking the location of the item at specific
points along the supply chain. WSNs devices enable continuous, fine-grained monitoring
of the storage conditions, preventing deterioration of goods.

In this context, it is often essential to monitor the temperature of the packages where
the food is stored. A typical invariant may concern the relation between the package
temperature and the operation of the refrigeration system

(I1) When the temperature of packages is above a threshold, there must be at
least one refrigeration fan active.

Nevertheless, the transportation process is subject to further constraints. For instance,
a non-uniform load in a container may cause stability problems during transportation.
WSN nodes may be installed in a food container to ensure that

5We empirically determined that connecting to a GSM network and establishing a GPRS connection takes
15 s cca., time during which there is a current surge of 2 A.

27

3.3. Supporting Business Processes

(I2) The weight difference between any two sampling points in a container must
remain below a threshold.

invariants
to monitor

transporter

violated /
not violated

package
instrumentation

supplier

package
manufacturer

monitoring system

Figure 3.7: Supply-chain scenario.

Figure 3.7 illustrates how the WSN-based
monitoring infrastructure integrates with the
transportation process. Package manufactur-
ers embed WSN nodes in their products. Food
suppliers define the invariants ensuring cor-
rect shipping and handling of their products,
and install them on the sensors monitoring
packages. Transporters receive notifications
of invariant violations, and take corrective ac-
tions in response. Different suppliers may pro-
vide different invariants for different products.
Thus, multiple invariants must monitored si-
multaneously when products travel together.

This scenario decouples the interactions among the various actors, simplifying manage-
ment and increasing flexibility.

In the example above, the composition of the system is dynamic; all nodes are mobile.
Furthermore, they join and leave the network as transporters load and unload freight. In
Chapter 6, we describe a distributed approach to invariant monitoring; this is the key
asset of a flexible deployment of mobile nodes, able to operate virtually anywhere in an
autonomous fashion.

From Mobile To Fixed Nodes. Some mobile applications can easily be migrated
to a fixed environment. Indeed, monitoring of invariants can be equally monitored by
the nodes of fixed network. This is, for instance, the case of a scenario in makeSense
(project-makesense.eu), an EU FP7 project to which our research group contributes
and whose aim is at simplifying WSNs programming and their integration in business
processes.

The aforementioned makeSense use-case is concerned with the ventilation systems de-
ployed in green buildings. A fault of the Heating, Ventilation, and Air-conditioning Con-
troller (HVAC) can be identified solely by checking whether the pressure exhibits varia-
tions throughout the building. In other words, by detecting violations of the invariant

(I3) The difference in pressure between any two sampling points must remain
below a threshold.

which closely resembles the invariant I2 in the cold-chain application. However, differently
from the previous application, the makeSense scenario is inherently fixed; once deployed,
the HVAC and sensors inside the building remain immobile. While in principle the moni-
toring approaches for mobile nodes are also amenable to static networks, a different, more
efficient solution can be adopted to tackle the case of fixed nodes. We address both in
Chapter 6, where we present i) a decentralized solution suitable for dynamic networks,
and ii) a centralized solution targeting static nodes.

28

http://project-makesense.eu

Chapter 3. Application Scenarios

3.4 Discussion and Outlook

In this chapter, we presented the applications that drive the efforts in this thesis. In each,
we identified possible avenues for the research hereafter presented. We further identified
that some of the problems we address for mobile nodes, specifically the need of monitoring
application invariants, arise also in scenarios where nodes are fixed; these can be addressed
with a dedicated, efficient solution.

29

3.4. Discussion and Outlook

30

Part II

Technical Contribution

Chapter 4

RUTh: Neighbor Discovery Made To
Measure

Neighbor discovery, or knowing the identity of nodes in communication range, is a funda-
mental problem in mobile wireless sensor networks. Discovery latency and system lifetime
are two key aspects along which this problem can be formulated. We address both, show-
ing how an optimal maximum lifetime can be achieved for latency-constrained scenarios
and, dually, how latency can be traded off to optimally meet strong lifetime require-
ments. Moreover, by offering a choice between deterministic and probabilistic guarantees
on discovery latency, we give developers another knob for optimizing their lifetime- or
latency-driven application.

Although lifetime, latency and probability have been previously identified in the lit-
erature as dimensions of the neighbor discovery problem, we are the first to combine all
three in a single, unified framework. Our approach relies on an analytical model, used
as the core of an optimizer. The latter takes discovery constraints as input from applica-
tion developers and outputs configuration parameters for our discovery protocol, RUTh,
currently implemented on top of TinyOS 2.1. In comparison to other approaches, RUTh
shows improved performance: for instance, given the same energy budget, it yields up to
a 50% reduction of the discovery latency.

4.1 Introduction

The reduced size and flexible nature of wireless sensor network (WSN) nodes open a
multitude of application scenarios in which participants carry nodes. Being small, WSN
nodes are non-intrusive and less likely to influence the behavior of the carrier. Nodes are
designed to be extended with sensors customized to the application. Also, they are more
privacy-friendly and less power-hungry than, say, video-cameras. Privacy is important in
applications for sensing people’s activities and environment. A reduced reliance on power
availability increases the deployment options.

In applications involving mobile WSN nodes, one challenge is to manage the interac-
tions among them and with nodes belonging to a fixed infrastructure. The key building
block is neighbor discovery, or the process of determining when a pair of nodes is within

33

4.1. Introduction

communication range. This process must be both energy-efficient and tailored to the ap-
plication needs. We concretely explore the space of alternatives through two applications
that motivate this research.

Example 1: Assisted living. At an Alzheimer’s day care center, we work with health
care providers to support their daily routines. For example, WSN nodes are used to detect
the proximity of patients to hazardous areas such as open exits and stairwells. This is
accomplished by tagging each hazard with a node, and using low-power radio beacons to
detect when a hazard tag and the mobile node carried by a patient are within range, thus
reducing hazard proximity detection to neighbor discovery. The beacon rate influences
the discovery latency, i.e., the time it takes two nodes in range to discover each other. In
our application, latency is determined by the acceptable delay to detect proximity and the
motion abilities of patients. However, different configuration of the beacons may provide
the same detection latency; therefore, we must choose the configuration that yields the
lowest energy consumption and, inherently, the largest system lifetime. In brief, the
problem of latency-driven neighbor discovery is:

How should two nodes behave such that one discovers the other by a given
maximum latency while minimizing energy consumption?

Example 2: Wildlife monitoring. We also work with biologists studying wildlife
behavior. Currently, GPS-enabled devices track animal movements [12] from which in-
teractions are inferred. However, GPS is energy-hungry and requires clear sky, making
it unsuitable for frequent sampling or underground deployments with burrowing animals.
Also, in many studies (e.g., those concerned with disease spread or social interactions)
precise GPS location is not required. Biologists need to know only which animals are
close to one another, for which neighbor discovery is sufficient.

A limiting factor in these deployments is collar weight, which must be light enough
to avoid affecting the behavior of the tagged animal. Battery weight dominates over all
other electronics, placing firm limits on the total energy available. This is at odds with
the fact that in many cases (e.g., for solitary, long-range animals) the notion of contact
implies a much larger distance than in the assisted living example, thus requiring high-
power beacons. Still, the system must guarantee a lifetime sufficient for biologists to
glean statistically-relevant information, e.g., a season, a year, etc. Similar to the previous
problem, different radio configurations that vary in the provided discovery latency may
yield the same lifetime; out of these, we must choose the configuration that results in the
lowest latency. Therefore, the problem of lifetime-driven neighbor discovery is:

How should two nodes behave such that, given a minimum expected lifetime,
one discovers the other other with minimal latency?

Nevertheless, it may be that, to meet the required lifetime, the resulting latency is unac-
ceptably large for the application. In this case, and in general as a trade-off developers
can play with, we offer an option that decreases the discovery latency for some neighbor
discoveries. In other words, we have hitherto assumed that 100% of discoveries occur
within the specified latency: deterministic detection. But, if the application can accept
that at least, e.g., 80% of detections happen by the desired latency, we can lower energy

34

Chapter 4. RUTh: Neighbor Discovery Made To Measure

consumption and increase system lifetime. These probabilistic discovery requirements can
be applied both in latency- and lifetime-driven neighbor discovery.

Goals, contributions, and roadmap. In this work we define neighbor discovery in
a way that makes explicit the trade-offs between energy consumption, discovery latency,
and discovery probability. While others have explored energy-efficient neighbor discovery
(Section 4.2), we are the first to address these trade-offs in a single, unified framework for
which we offer:

• a neighbor detection protocol, RUTh (“R U There?”);

• a tool chain that accepts problem constraints from end-users and, based on an
analytical model of RUTh that takes into account low-level characteristics of the
radio, outputs the optimal protocol parameters.

RUTh itself has a simple, periodic behavior: at a certain point in each period, each
node broadcasts a beacon, takes several channel activity samples to detect beacons orig-
inating from possible neighbors, and sleeps for the rest of the time. Each node has the
same behavior, yielding uniform energy depletion. The system model and protocol are
outlined in Section 4.3. The length of the beacon, the number of channel samples, and
the length of the period are the fundamental configuration parameters, whose values de-
termine determine the discovery latency, the system lifetime, and whether the discovery
is deterministic or probabilistic.

input

output
used

inprotocol
configuration

application
code

targets:

input

optimizer

probability
model

max latency
OR

min lifetime

discovery
probability

Figure 4.1: RUTh tool chain.

The tool chain, outlined in Figure 4.1,
allows a domain expert to specify a dis-
covery probability and either the maxi-
mum latency (for an assisted-living-style
problem) or the minimum lifetime (for a
wildlife-style problem). We feed these con-
straints to an optimizer that exploits an
analytical model of the problem to iden-
tify the appropriate protocol configuration, as described in Sections 4.4 and 4.5. The
model takes into account, in a hardware-independent fashion, some radio details includ-
ing ramp-up and ramp-down times and the operation of the channel activity recognition
procedure. We show that these low-level details, neglected by related work, are fundamen-
tal not only to ascertain the trade-off between latency and lifetime, but also to determine
if a protocol configuration can be implemented in practice.

Although its formalization is mathematically complex, RUTh remains simple to un-
derstand — and to implement, as described in Section 4.6. Our goal is a neighbor dis-
covery solution immediately usable in real-world deployments and on mainstream WSN
platforms. Therefore, while the aforementioned model of RUTh is radio-independent,
our implementation targets the popular CC2420 radio chip on Telos-like [97] hardware
running TinyOS. Section 4.7 details our comprehensive analysis of parameters affecting
our implementation and show how RUTh outperforms state-of-art protocols. We validate
our analysis using simulation and experiments on real hardware. In Section 4.8, we show
RUTh in the context of ACube, focusing on the integration with higher level routing
protocols. Concluding remarks end the chapter in Section 4.9.

35

4.2. Related Work

4.2 Related Work

In an energy-abundant system, a periodic broadcast targeting always-on receivers is a
straightforward solution enabling neighbor discovery. The problem is similarly simple if
nodes are time-synchronized, therefore exchanging discovery beacons at pre-determined
times. Precise time synchronization, however, requires either dedicated protocols or ex-
ternal hardware (e.g., GPS). In this work, similarly to others mentioned below, we view
neighbor discovery as a basic building block to be realized with minimal assumptions on
the system. Therefore, our neighbor discovery relies only on wireless communication, and
minimize power consumption by operating the radio with an efficient duty cycle.

receive checkpreamble

transmitter

receiver

receive
payload TX

Figure 4.2: Low Power Listening.

Low-Power Listening. The reference
duty cycle technique in WSNs, developed
in the context of MAC protocols, is Low-
Power Listening (LPL) [96]. As shown in
Figure 4.2, in LPL mode a receiver periodi-
cally wakes up to perform a receive check, a
procedure involving the Clear Channel As-
sessment (CCA) circuitry of the radio chip.

This determines the presence of communication activity on the shared wireless medium.
If activity is detected, the radio is kept on to enable subsequent packet receipt. This
approach requires a transmitted packet to be preceded by a preamble, whose duration
must span at least the entire period between two receive checks. The preamble guar-
antees that the receive check detects the transmission activity, enabling communication.
Unlike MAC protocols, the focus of neighbor discovery is not on packet transmissions.
Therefore, one can imagine a neighbor discovery scheme on top of LPL that relies on a
periodic broadcast of preambles, used as beacons. Our work is indeed inspired by this
very simple idea although, different from LPL, RUTh does not continuously probe the
channel. This would unnecessarily waste resources especially in the absence of neighbors.
In a sense, we use the same “building blocks” of LPL—preambles and receive checks—but
i) compose them in a different way; ii) rely on a formalization of the problem to choose
the optimal configuration meeting user-specified goals.

Neighbor discovery protocols. In contrast, state-of-the-art proposals all rely on some
form of time-slotting where time is divided into periods of equal duration during which the
node is either active (radio on) or inactive (radio off). For instance, in “birthday proto-
cols” [85] a node chooses with a given probability whether a slot represents transmission,
reception, or power-off time. Discovery occurs when a transmission slot of one node over-
laps with a reception slot of the other. Birthday protocols solve neighbor discovery only
probabilistically and, since the behavior in each slot is random, it is difficult to form
an accurate energy model. This is instead possible in RUTh, thanks to its well-defined
behavior. Moreover, alongside probabilistic discovery, RUTh can provide deterministic
discovery with given latency bounds. The quorum-based protocol [116] also distinguishes
between transmission and reception slots. Time is divided in sequences of m2 contiguous
slots, arranged in a m×m matrix. Each node randomly selects a column when it trans-
mits, and a row when it listens. Detection is therefore guaranteed to occur within m2

36

Chapter 4. RUTh: Neighbor Discovery Made To Measure

node A node B

discovery
broadcast

listentime flow

(a) Quorum.

active

discovery
node A

node B

k1 2k1 3k1

k2 2k2 3k2

k1 × k2

(b) Disco.

active

discovery
node A

node B

k 2k k2k+1
2 ...

period

(c) U-Connect in theory.

receive check

discovery node A

node B

broadcast
k 2k k2k+1

2 ...
period

(d) U-Connect in practice.

Figure 4.3: Neighbor discovery protocols.

slots. Other approaches [32, 57, 131] do not make a functional distinction among slots,
simply assuming that discovery occurs when the active slots of two nodes overlap. All
these works determine the active slots using prime numbers. In Disco [32] each node is
associated with a different prime, which determines the period between two active slots,
as shown in Figure 4.3(b). Discovery occurs between two nodes at each common multi-
plier of their primes. Disco is asymmetric: nodes have different primes and thus different
behaviors. Smaller primes lead to faster batter discharge complicating the estimate of
lifetime.

U-Connect [57] is instead symmetric, i.e., the same prime k determines the period
between active slots on all nodes, as shown in Figure 4.3(c). In addition, a train of k+1

2
contiguous active slots are scheduled every k2 slots. The length of the train guarantees
that there is at least one overlap of active slots during a period of k2 slots. The U-
Connect authors build upon the theoretical results in [131] to argue that, among all of
the aforementioned protocols, U-Connect most closely approaches the optimal schedule.
Moreover, the discovery latencies reported in their experimental section are significantly
smaller w.r.t. the other systems. Consequently, in Section 4.7, we compare RUTh only
against U-Connect. We show that RUTh is more efficient than U-Connect in terms of
latency and lifetime, both in probabilistic and deterministic modes. Key to our superior
performance are i) the many degrees of freedom our protocol allows w.r.t. the single,
discrete parameter—the prime k—available for tuning U-Connect and, equally important,
ii) the analytical model and optimization strategy that enables us to master this flexibility
and easily determine the best RUTh configuration for the scenario at hand. In addition, in
RUTh we considered a number of implementation details concerning the radio operation.
These details, neglected by U-Connect, bear a strong impact on the configuration space
and on the practical applicability of neighbor discovery protocols, as discussed next.

A Critical Look at the State of the Art. All of the above protocols assume that
time is discrete and divided into slots. However, this leads to two problems:

• Slots are not aligned in reality. To ensure that transmissions overlap with receive
checks, protocols often transmit for longer than nominally expected. For instance, in

37

4.2. Related Work

the actual LPL code of TinyOS 2.1, a “magic” 20 ms is added to the user-specified
preamble duration. Similar workarounds increase power consumption well beyond
what is expected by the associated models.

• In [32, 57, 131], for discovery to occur when active slots overlap, each node must both
transmit and listen during its active slot. This fact is acknowledged by Disco, but
neglected in the U-Connect model. In the implementation, however, this problem
is worked around by broadcasting in the contiguous k+1

2
slots occurring with period

k2, and performing a receive check in all other active slots, as seen in Figure 4.3(d).
This behavior can be regarded as pure LPL with periodic, shorter preambles and no
actual data packet transmission.

U-Connect achieves superior performance by using very small slots of 250 µs, which
coincide with the receive check duration. This creates two further implementation prob-
lems:

• In [57], the authors motivate their choice as follows: “Although the minimum channel
duration from the CC2420 datasheet is 128 µs, we observed that for a reliable channel
detection, 250 µs is required.” As no further details are provided, we performed
experiments to assess how the duration of the receive check affects its reliability.
We performed the experiments on the CC2420, the radio used by both RUTh and
U-Connect implementations. As further discussed in Section 4.6, we observed that a
duration of about 5 ms already fails to recognize channel activity in 20% of the cases;
a 250 µs receive check, as in U-Connect, fails in 80% of the cases. Our results are
in line with common practice: the duration of the receive check in LPL (as reported
in [100] and confirmed by our experiments) is about 10 ms, which indeed according
to our measurements correctly recognizes channel activity in 100% of the cases.

• Transmissions and receive checks are preceded and followed by radio ramp-up and
ramp-down phases whose durations are non-negligible—especially if one assumes a
very short receive check as in U-Connect. To give an idea of the values at stake,
Figure 4.4 shows the current drained over time by the aforementioned 10-ms re-
ceive check in LPL, as seen on a mote in series with a 10 Ω resistor. The radio
ramp-up/down phases collectively account for ∼5 ms. These are neglected in U-
Connect [57]. Nevertheless, radio ramp-up/down is important, as it introduces a

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16 18 20

C
u

rr
e

n
t
(m

A
)

Time (ms)

ramp up receive check

ra
m

p
 d

o
w

n

Figure 4.4: A receive check in LPL (and RUTh).

38

Chapter 4. RUTh: Neighbor Discovery Made To Measure

constraint on the minimum amount of time that must elapse between two consec-
utive radio activations. This in practice limits the set of configurations that are
implementable for a given latency/lifetime goal.

Our model for RUTh explicitly considers the receive check duration and the radio
ramp-up/down in a hardware-independent fashion, accounting for different radios. Cap-
turing these low-level radio details, which directly affect the protocol configuration, yields
latency/lifetime estimates reflecting more accurately the reality of implementation.

4.3 Overview and Assumptions

The operation of RUTh is very simple, yielding a lightweight implementation. Figure 4.5
shows a sample execution we use for illustration and Table 4.1 summarizes our notation.
Discovery relies on beacons and receive checks, widely used in MAC protocols, as men-
tioned earlier. For all nodes, time is divided in epochs of equal duration T . Nodes are not
synchronized: we assume a phase φ ∈ [0, T), i.e., the delay of node B’s schedule w.r.t. A’s,
with the latter assumed as a time reference; intuitively, any epoch i begins at node B
with a delay φ w.r.t. the same epoch i begun at A.

T0

φ

Λ

out of
range in range

discovery

α0

β0

node A

node B

τb

contact

beacon receive
check

α1

β1

γ

ACTIVE

epoch 0 epoch 1

discovery latency

λ

τ

Figure 4.5: A sample execution of RUTh.

A contact occurs when a node enters the
radio range of another. We assume this hap-
pens at γ ∈ [0, T) w.r.t. A’s time origin.
This is the first moment when communi-
cation between A and B becomes possible.
However, the two nodes in contact are obliv-
ious of each other until discovery occurs; the
difference between the contact and discov-
ery times, hereafter referred to as discovery
latency. Our goal is to ensure that the dis-
covery latency is always smaller than a given
maximum discovery latency L.

In each epoch i, every node runs the following sequence:

• picks a time (αi for node A, βi for node B) within the epoch, at which it transmits
a beacon of duration b. After the beacon, the radio is switched off;

• performs s receive checks, each with duration Λ and repeated with a period τ . In
between receive checks the radio is switched off;

• switches off the radio until its next beacon.

For discovery to happen, there must be a minimum overlap λ between the beacon of
the discovered node and the receive check of the discoverer. The duration λ is a hardware
constraint; it is lower-bounded by the amount of time it takes the CCA circuitry to sample
the channel and reliably detect activity, i.e., 128 µs according to [24]. The upper bound
is instead the entire duration Λ of the receive check, λ ≤ Λ. We return to the relation
between λ and Λ at the end of this section.

39

4.3. Overview and Assumptions

We choose the beacon duration b = τ+λ, equal to the period τ between receive checks,
augmented by the minimal overlap λ necessary for detection. This choice guarantees that,
if a transmitter’s beacon is sent during the receiver’s sequence of s receive checks, the
beacon is correctly detected, does not fall in the gap between receive checks, and there is
an overlap of at least λ with one of two consecutive receive checks of the receiver.

Moreover, the interval τ between two consecutive receive checks cannot be arbitrarily
small due to physical constraints of the radio. As mentioned in Section 4.2, the radio
ramp up/down is not instantaneous: if τ is too small, the radio cannot be turned off to
save energy. We therefore assume that a lower bound τ > τmin is defined in practice.

From the protocol description above, it is clear that each node alternates an interval
when it is active with another when it is inactive and the radio is switched off. The
active interval active = b+ sτ , is constituted by the transmission of the beacon followed
by the sequence of s receive checks, and is when discovery may occur. We require an
active interval to be fully contained within an epoch, that is, with reference to Figure 4.5,
αi, βi ∈ [0, T −active). The radio is actually on only for a fraction of the active interval
on = b+sΛ < active, yielding a duty cycle on/T . active is a fundamental parameter of
RUTh, and deeply affects its operation by determining whether it provides deterministic
or probabilistic guarantees, as we discuss next.

Deterministic discovery. If the active interval is slightly longer than half of the epoch
(i.e., active ≥ T/2 + λ) and on both nodes A and B the active interval begins with
the epoch (i.e,. ∀i, αi = βi = 0) then discovery is guaranteed to occur within an epoch
duration T , regardless of the value of the phase φ. Indeed, as illustrated in Figure 4.6,
since active covers more than half of the epoch, i) the active intervals of the two nodes
are guaranteed to overlap during either node’s epoch; ii) the constraint b = τ + λ, tying
the beacon duration to the spacing among receive checks, guarantees discovery.

Symbol Description Source
L Maximum discovery latency

Application
pmin Discovery probability at time L
T Duration of an epoch

Optimizer outputτ Period of the receive check sequence
s Number of receive checks during an active interval
γ Time of contact

Random variable
φ Phase between two nodes A and B
Λ Duration of a receive check

Hardware constraint
λ Minimum overlap between beacon and receive check

b Duration of a beacon b
∆
= τ + λ

active Duration of active interval active
∆
= b+ s · τ

on Time during which the radio is on within active on
∆
= b+ s · Λ

Q (τ, s, T) The drain of electrical charge during one epoch Equation 4.1
αi, βi The start of an active interval in epoch i of node A, respectively B. αi = βi = 0

for deterministic and random in [T − active) for probabilistic
Ai ← Bj The event of A receiving, in its i-th epoch, a beacon from B’s j-th epoch
C (i) The event of detecting a contact in the epoch i of A

Table 4.1: Summary of notation.

40

Chapter 4. RUTh: Neighbor Discovery Made To Measure

0 2T

φ

out of
range in range

node A

node B

γ

epoch 0 epoch 1

discovery latency
T/2 3T/2T

Figure 4.6: Deterministic discovery in RUTh.

If φ is such that the beacons of the two
nodes overlap, a collision occurs. The prob-
lem is solved as in any CSMA/CA proto-
col, including LPL and U-Connect, by per-
forming a CCA before transmission. This is
easily achieved by enabling the appropriate
hardware feature. Its (negligible) effects in
terms of energy and timing can be accounted
for by properly increasing the duration of the beacon b.

Probabilistic discovery. If active < T/2 + λ and the active interval begins at a
random time in the epoch (i.e., ∀i, αi, βi ∈ [0;T − active) are independent random
variables), energy can be spared, but we cannot guarantee that all contacts are detected
by a determined latency. Nevertheless, a probabilistic bound is possible and acceptable in
several applications, as we argued in Section 4.1. For instance, in our wildlife application,
zoologists are satisfied with a discovery latency of 5 s for 80% of the contacts. Incidentally,
this does not mean that the remaining 20% are never detected, rather their detection
occurs beyond 5 s. In our application, the small impact on the quality of the retrieved
data is overcome by the gain in lifetime.

The above reasoning holds as long as the application developer is provided with princi-
pled tools for configuring RUTh such that the required latency, lifetime, and probability
targets are met. The formal framework and optimization tools to achieve this configura-
tion, one of the main contributions of this chapter, are described in Sections 4.4 and 4.5.

Energy expenditure. To determine the optimal configuration, we must derive an es-
timate of the energy spent by a node during each epoch. In doing this, we neglect the
energy drain by components other than the radio, such as CPU and sensors. Although
these aspects can be taken into account when determining the energy budget [65], their
contribution is dominated by the specifics of the application, while in this work we focus
solely on the application-independent neighbor discovery functionality. We adopt an en-
ergy model for the radio similar to [96]. We assume that the radio consumes a current
Itx when transmitting, Irx when receiving, and Ioff when switched off. Moreover, we as-
sume that the radio ramp-up and ramp-down have collectively a duration ρ, and consume
an average current Iramp . The drain of electrical charge during one epoch can then be
estimated as:

Q (τ, s, T)
∆
= bItx + sΛIrx + (s+ 1)ρIramp + [T − on] Ioff (4.1)

This formulation accounts for different types of radios. For instance, radios where the
transmit power is higher than the receive power (e.g., the popular CC1000) can be easily
accommodated by properly defining the values of Itx and Irx .

Receive check Λ and minimum overlap λ. Modeling explicitly the distinction be-
tween the receive check Λ and its minimal overlap λ with a beacon allows us to take
into account more precisely their contribution, yielding more accurate estimates. Λ has a
direct impact on energy expenditure, and thus lifetime, as shown in Equation (4.1) and
by the duty cycle on = b + sΛ. Instead, λ plays a key role in defining the discovery
probability. λ represents the worst-case situation where a beacon “barely” overlaps with

41

4.4. Latency-driven Discovery

input : τmin, L
output: a protocol configuration 〈τ, s, T 〉
output: the (minimal) current consumption Q per epoch

1 T ← L; Qmin ←∞
2 for s← 1 to

⌊
T
τmin

⌋
do

3 τ ← T
2(s+1)

4 if τ ≤ τmin then τ ← τmin

5 if τ (s+ 1) + λ > T then continue
6 if Q (τ, s, T) < Qmin then Qmin ← Q (τ, s, T)

Figure 4.7: Latency-driven deterministic discovery.

a receive check. However, b = τ + λ ensures that a beacon overlapping with at least two
consecutive receive checks (spaced by τ − Λ) is detected reliably. Instead, if the beacon
overlaps only with the last receive check of active, the possibility of detection is de-
termined solely by the extent of the overlap: detection is possible only if the overlap is
at least λ. This explains why, although the receive check Λ is the radio parameter we
can control directly, in our treatment of discovery probability it is only λ ≤ Λ that truly
matters.

4.4 Latency-driven Discovery

Our objective is to find a proper RUTh configuration 〈τ, s, T 〉 such that battery dis-
charge is minimal and neighbors are discovered with a maximum latency L. Hereafter
we consider Λ and λ as configuration constants. First we address deterministic discovery
where, as mentioned in Section 4.3, discovery is guaranteed to occur within one epoch and
therefore T = L. Next, we turn to probabilistic discovery, and determine the probability
of discovery for a given latency L.

4.4.1 Deterministic Discovery

We saw in Section 4.3 that the constraint active ≥ T/2 + λ guarantees discovery within
one epoch. Our goal is to minimize energy consumption for this deterministic discovery,
based on Equation (4.1) and the protocol operation. By recalling T = L, we can state
our optimization problem as follows:

minimize: Q (τ, s, T)

subject to: active ≥ T/2 + λ

τ ≥ τmin

Our solution is implemented by the algorithm in Figure 4.7. We observe a strong
connection between s and τ . Consider that s ≥ 1: nodes must perform at least one
receive check per epoch to enable discovery. The maximum value is instead achieved

for τ = τmin, yielding
⌊

L
τmin

⌋
as the upper bound for s. This sufficiently constrains the

42

Chapter 4. RUTh: Neighbor Discovery Made To Measure

problem, allowing us to solve it by exhaustive search (lines 2–6 of Figure 4.7). The solution
space is small for practical configurations, e.g., L = 10 s and τmin = 10 ms yield only 1000
possible values for s.

Second, for each value of s, there is a unique value of τ minimizing Q (τ, s, T). To
understand why note that, for a fixed s, energy consumption is determined by the only
“free” parameter, the beacon duration b = τ + λ. Also, given that Ioff < Itx in Equa-
tion (4.1), Q is monotonically increasing with τ or, in other words, for a given value of
s, the smallest discharge Q is always given by the smallest value of τ . Consequently, for
each s we choose the smallest value of τ that complies with the two constraints of the
optimization problem above, recalling that active = b + τs = τ(s + 1) + λ (line 3–4).
We skip those pairs (τ, s) that yield an active interval longer than one epoch T (line 5).

4.4.2 Probabilistic Discovery

If active < T/2 + λ, discovery is not guaranteed to occur within an epoch. This achieves
energy savings by reducing the duty cycle, but at the expense of decreasing the probability
to detect a contact within the target latency. This section lays the formal foundation that
allows us to determine the protocol configuration that provides maximal energy savings
while providing a lower bound for the discovery probability.

Next, we formalize this as an optimization problem, show how to solve it and illus-
trate the salient aspects of an analytical model that allows us to compute the discovery
probability.

Finding the Optimal Configuration

When running in probabilistic discovery mode, during each i-th epoch every node picks
a random time for the beginning of its active interval. We assume that these times,
αi and βi in Figure 4.5, are independent random variables uniformly distributed on
[iT, (i+ 1)T − active]. Let C (i) denote the event “a contact is discovered during epoch i”.
Since an epoch is in general not enough to guarantee detection, we must consider the over-
all probability P [

∨n
i=0 C (i)] (discussed in Section 13) to detect at least one contact during

a sequence of n consecutive epochs. We assume that the maximum discovery latency is a
multiplier of the epoch duration, L = nT .

The problem reduces to finding a protocol configuration 〈τ, s, T 〉 that guarantees dis-
covery within L = nT with probability P [

∨n
i=0 C (i)] ≥ pmin and minimizes energy con-

sumption. Recalling that active < T/2 + λ achieves probabilistic mode, we focus on
solving the optimization problem:

minimize: Q (τ, s, T)

subject to: active < T/2 + λ

τ ≥ τmin

P [
∨n
i=0 C (i)] ≥ pmin

L = nT where n ∈ N
An exhaustive search of the solution space is feasible also in this case, using the solver

algorithm in Figure 4.8 and based on the following observations. First, we impose a

43

4.4. Latency-driven Discovery

input : τmin, pmin, L
input : the desired precision ε over the value of τ
output: a protocol configuration 〈τ, s, T 〉
output: the (minimal) current consumption Q per epoch

1 Qmin ←∞
2 for n← 1 to

⌊
L

4τmin

⌋
do

3 T ← L/n

4 for s← 1 to
⌊

T
2τmin

⌋
− 1 do

5 τl ← τmin; τh ← T
2(s+1) ; τ ′ ←∞; τ ← τh

6 if P [
∨n
i=0 C (i)] < pmin then continue

7 while |τ ′ − τ | > ε do

8 τ ′ ← τ ; τ ← τl−τh
2

9 if P [
∨n
i=0 C (i)] < pmin then

10 τl ← τ
11 else
12 τh ← τ
13 if Q (τ, s, T) < Qmin then Qmin ← Q (τ, s, T)

Figure 4.8: Latency-driven probabilistic discovery.

bound on the smallest possible epoch T by observing that this corresponds to the case
when active is minimal, and subject to the first constraint. The active interval is minimal
when τ = τmin and s = 1, i.e., the node performs only one receive check. In this case,
active = 2τ + λ, thus T > 4τmin must hold. Therefore, n can take integer values up to
L

4τmin
(line 2 of the algorithm). For a given n, T is easily determined from the constraint

L = nT . To satisfy the constraint active < T/2 + λ, we derive a maximal value for s
based on the equivalence active = τ (s+ 1) + λ (line 4). Given n and s, we need to find
the proper value for τ . The lower bound is given directly by τmin, while the upper bound
can be derived again from the definition of active and the constraint on its duration,
τ = T

2(s+1)
. Since both discovery probability, discussed next, and energy consumption are

monotonically increasing with τ , we can perform a binary search for the value of τ that
minimizes energy consumption (lines 5–13).

Computing the Discovery Probability

The algorithm in Figure 4.8 relies on knowledge of the discovery probability P [
∨n
i=0 C (i)]

for a given RUTh configuration. Computing this probability is complicated by the fact
that the same contact may be detected multiple times across several epochs, as shown in
Figure 4.9. We refer to this as an x-discovery chain, where x is the number of consecutive
discoveries (x = 6 in Figure 4.9). Intuitively, the x-discovery chain results from the
recursive application of the formula P [A ∨B] = P [A] + P [B] − P [A ∧B], where A
and B are random events, on the epochs constituting the chain. Specifically, the chain
corresponds to the joint probability P [A ∧B] in the previous formula. Schedules like this
must be taken into account, to avoid incorrectly overestimating the discovery probability.

44

Chapter 4. RUTh: Neighbor Discovery Made To Measure

node A

node B

T0 2T 3T

discovery chain

Figure 4.9: Schedule for a 6-discovery chain.

To compute the probability of a discov-
ery chain, we make the simplifying assump-
tion that the contact occurs at time γ = 0.
With this assumption, the analytical formu-
lation is already quite complex: without it,
it would become essentially intractable ana-
lytically. The effects of this assumption on
the accuracy of our method are analyzed in
Section 4.7. We determine the analytical expression of the discovery probability as follows:

1. we show that the length of a discovery chain is finite;

2. we use the previous result to express the discovery probability at the end of epoch n
as a recursive function;

3. the coefficients in the above function are basic probabilities such as P [An ← Bn].
We determine their probability density function (pdf) and then use the relation
P [X ∈ D] =

∫
D
f (x) dx, where f is the pdf of X, to switch to probabilities. To

embed this analytical process in our solver, we rely on the numerical integration
tools in [39].

We skip the rather tedious details of the three steps above. However, the full ma-
chinery, including proofs of the aforementioned lemmas and theorems, can be found in
Appendix A.

4.5 Lifetime-driven Discovery

We now turn our attention to the problem of finding a configuration 〈τ, s, T 〉 of our pro-
tocol such that a target expected lifetime E is met by minimizing the maximal discovery
latency L. The solution we provide here builds on the solvers described in Section 4.4:
the one to use depends on whether we are solving the lifetime-driven discovery problem
deterministically or probabilistically.

In our solution, we assume that each node is equipped with a battery of capacity B.
Then, the maximum average current a node is allowed to drain to meet the lifetime
expectancy is defined by the fraction B/E. A constraint of our problem is therefore that the
battery discharge Q/T during a single epoch cannot be higher than this value. Moreover,
although our objective is to minimize the maximum discovery latency L, in practice the
latter cannot assume arbitrarily large values: end-users will set an upper bound Lmax,
acceptable for their application. In the deterministic case, the optimization problem can
be formulated as:

minimize: L

subject to: active ≥ T/2 + λ

τ ≥ τmin

Q/T ≤ B/E
L ≤ Lmax

45

4.6. Implementation

input : τmin, B and E
input : upper bound Lmax for maximum discovery latency L
input : the desired precision ε over the value of L
output: a protocol configuration 〈τ, s, T 〉
output: a (minimized) maximum discovery latency
uses : LatencySolver(L), returns the smallest current consumption for a given

maximum discovery latency L; in practice, it is either of the solvers in Figure 4.7
or 4.8

1 Ll ← 4τmin; Lh ← Lmax; L′ ←∞; L ← Lh
2 if LatencySolver(L) > T · BE then return NIL
3 while |L′ − L| > ε do

4 L′ ← L; L ← Lh−Ll
2

5 if LatencySolver(L) > T · BE then
6 Ll ← L

7 else
8 Lh ← L

Figure 4.10: Lifetime-driven discovery.

The formulation of the probabilistic case is identical, except for the first constraint on
active. The solver, in Figure 4.10, is the same for both cases, as it builds on previous
results.

First, we define the domain of the latency L. As already seen in Section 4.4.2, the
lower bound for T (and thus L) is Ll = 4τmin, while the user-specified upper bound is
Lh = Lmax. The case where no protocol configuration complies with the lifetime and
latency goals is considered (line 2). To find the minimal L meeting the lifetime goal, we
observe that a higher amount of energy is spent when targeting a smaller latency. Hence,
we narrow down the [Ll, Lh] interval by halving it until we reach a desired precision ε
(line 3). At each step (line 5), we use either of the solvers for the latency-driven problem
in Figure 4.7 and 4.8, to achieve a deterministic or probabilistic solution, respectively.
These find the minimum energy spent for a maximum discovery latency L = Lh − Ll/2.
If the energy spent for L complies with the constraint on average battery discharge, we
continue by looking for an even smaller compliant L in the first half of [Ll, Lh] (line 6),
otherwise resume the search in the other half (line 8). This algorithm converges to the
solution with logarithmic behavior, as it performs a binary search for the smallest value
of L complying with the constraints.

4.6 Implementation

We implemented RUTh as a neighbor discovery service integrated with the CC2420 stack
of TinyOS 2.1. Applications control the service behavior through the control interface
NeighborDiscovery in Figure 4.11. Protocol configuration is achieved by supplying
the start command with the values for T , b, s obtained from one of the solvers presented
in the previous sections. Contact is signaled through an event that includes the identifier

46

Chapter 4. RUTh: Neighbor Discovery Made To Measure

interface NeighborDiscovery {
command void start(uint32_t epochDuration, uint16_t beaconDuration,

uint16_t samples);
command void stop();
event void detected(am_addr_t neighbor);

}

Figure 4.11: The RUTh control interface.

of the discovered neighbor.

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

C
u
rr

e
n
t
(m

A
)

Time (ms)

ramp up T
X

T
X

T
X

...

ra
m

p
 d

o
w

n

Figure 4.12: Current profile of a b =
20 ms RUTh beacon.

Internally, RUTh employs a timer that both trig-
gers the periodic broadcast of the beacon and starts
the LPL service to execute a number of receive checks,
according to the RUTh configuration. The beacon is
a packet of minimal size (i.e., it consists only of the
802.15.4 header [2]) repeatedly broadcast for a dura-
tion b. To distinguish beacons from application pack-
ets, the former carry a different PAN identifier. With
the CC2420, as also noted in [90], strobing the bea-
con packet does not result in a continuous stream of
activity on the channel, and leaves instead small gaps
between packets1. These gaps are inherent in the hardware design: after a transmis-
sion, the CC2420 must undergo several state transitions before being able to transmit
again [24]. To determine the gaps’ duration, we build with an oscilloscope the current
profile of a Telosb when sending a b = 20 ms beacon (Figure 4.12). This measurement
shows that each gap lasts approximately 480 µs and a beacon transmission lasts about
720 µs. The duration Λ of a receive check should be at least greater than the inter-packet
gap. Radios that, unlike the CC2420, are not packed-based do not suffer from the same
limitation and can in principle employ shorter receive checks.

To receive beacons, RUTh optimizes the receive check procedure inside the LPL stack,
long enough to account for the gaps in the beacon. The behavior is illustrated in Fig-
ure 4.4. During this procedure, LPL repeatedly polls (400 times) a flag set by an inter-
rupt handler to indicate that a raw signal has been detected by the CCA circuitry on the
CC2420 radio. Channel activity is identified when the flag check returns true t = 4 times,
which reduces the possibility of falsely detecting radio activity [90]. If a full packet is re-
ceived during the poll loop, this is properly notified on a separate pin and serves as proof
of channel activity. Our measurements indicate that this procedure takes Λ = 10.04 ms,
excluding radio ramp-up/down, which collectively take ∼5 ms. If activity is recognized,
which in practice could also be channel noise, the radio is kept on for 100 ms to receive the
actual data. The number t of required flag checks returning true is positively correlated
with λ, the minimum overlap between a beacon and a receive check. The higher t is, the
longer a beacon b = τ + λ must be—hence the “magic” extra 20 ms of LPL beacons in

1Although [24] describes a streaming mode, it is labeled as for lab testing only, hence we do not consider it
further.

47

4.7. Evaluation

the TinyOS stack. To keep beacons as small as possible, in RUTh we use t = 1, at the
risk of obtaining more false positives in the receive check. To mitigate their effect on the
duty cycle, we keep the radio on for only 10 ms when activity is (supposedly) recognized,
rather than 100 ms, as LPL does. For practical purposes, in our optimizer, we attribute
t = 1 to a duration of λ = 1 ms, the rough duration of a packet transmission and an
inter-packet gap.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12
 0

 100

 200

 300

 400

 500

A
c
ti
v
it
y
 r

e
c
o
g

n
it
io

n
s
 (

%
)

F
la

g
 p

o
lls

Receive check duration (ms)

R
U

T
h
 a

n
d
 L

P
L

U-Connect

Recognitions
Flag polls

Figure 4.13: Reliability of channel ac-
tivity recognition vs. receive check du-
ration.

During the development of RUTh, we also at-
tempted to reduce the duration Λ of the receive check
to lower energy consumption. However, shortening
the receive check negatively affects channel activity
recognition. We observed this phenomenon in exper-
iments with two nodes deployed 1 m apart, one pro-
grammed to broadcast continuously the same packet
at the commonly-used power level of −1 dBm, and
the other programmed to perform a receive check ev-
ery 200 ms. The ability to correctly recognize channel
activity was measured, for each data point, as the per-
centage of successful receive checks over a total 10,000.
As shown in Figure 4.13, we used various settings for
the number of CCA flag polls, ranging from 10 to 400,

yielding the receive check durations (represented on the x-axis) which range from a min-
imum of ∼250 µs (as in U-Connect) to ∼10 ms (as in LPL). The number t of checks
returning true required to recognize activity was set to 1 for each experiment. The results
in Figure 4.13 show that the receive check duration used by LPL, and adopted in RUTh,
always guarantees a correct activity recognition. Lower values fail to recognize activity:
in particular, the 250 µs receive check succeeds in only in 20% of the cases.

4.7 Evaluation

In our evaluation, we first use the analytical model to study the behavior of RUTh
when given different latency or lifetime targets, and to compare against U-Connect. The
accuracy of our model w.r.t. the assumption that contact occurs at γ = 0 is evaluated
using a simulator. Then, we assess how RUTh behaves on real Telos motes. Performing
an in-field evaluation with mobile nodes is however difficult: obtaining ground truth
requires localization devices (e.g., GPS) and is complicated by the vagaries of wireless
communication. Indeed, none of the works in Section 4.2 is evaluated with mobile nodes,
and all resort to a controlled environment with static nodes. At first, we follow the
same route and perform a suite of micro-benchmarks on fixed nodes that confirm the
simulation results. Then, we report on data from preliminary experimentation on mobile
motes employed as social contact sensors in a less controlled environment. Finally, we
share the lessons learned from a deployment of RUTh used as a proximity sensor.

48

Chapter 4. RUTh: Neighbor Discovery Made To Measure

4.7.1 Analytical Study

We use the analytical model to study the behavior of RUTh when given either latency
or lifetime requirements. We investigate deterministic discovery, along with probabilistic
discovery with values of pmin ranging from 0.5 to 0.9.

Parameters and Assumptions. Although our model does not depend on a specific
radio, here we use the electrical characteristics of the CC2420 radio from [24], shown in
Table 4.2, as this radio is used in [32, 57] and is arguably the most popular in WSN
deployments. We assume currents are constant. For simplicity, we assume a battery with
an initial capacity of 2 Ah and uniform discharge throughout its lifetime.

Here, we use Λ = λ = 250 µs, the same as in U-Connect. Although we pointed out
a number of implementation issues with this value for Λ, this choice makes our results
directly comparable to [57]. Section 4.7.3 provides an empirical evaluation with the actual
values used in our implementation.

Radio ramp-up/down times place constraints on protocol behavior and energy con-
sumption. These are neglected by U-Connect, whose model assumes that switching the
radio on/off is instantaneous and consumes zero energy. As the CC2420, like other radios,
exhibits non-negligible ramp-up/down times, we impose these constraints on U-Connect
when we perform our comparison. The most serious consequence of this choice, dictated
by the desire of evaluating both protocols against the reality of implementation, is that
adjacent receive checks must have a minimal space between them. In other words, there
must be enough time to allow the radio to actually switch off then reactivate. Our anal-
ysis shows only U-Connect configurations that comply with these spacing constraints. In
RUTh, the spacing among receive checks is determined by τmin, set to 5, 10, or 20 ms
in our analysis. In light of the measurements in Figure 4.4 showing that ramp-up/down
alone takes ∼5 ms, τmin = 5 ms is actually insufficient, and we show it only to provide a
lower bound. In practice, τmin = 20 ms is desirable to provide sufficient slack for hardware
delays that affect timer accuracy. Finally, regarding energy consumption, although our
model incorporates these phases through Iramp , for a fair comparison, we set the current
drain to Ioff during ramp-up/down.

Application requirements determine the acceptable physical distance at which to de-
tect contact. For example, distances are small in our indoor assisted living scenario, while
in the outdoor wildlife scenario, relevant social interactions occur at larger distances, espe-
cially for solitary animals. Tuning our discovery protocol for this constraint corresponds to
selecting the appropriate transmit power of the CC2420 and providing the corresponding
radio consumption values to the analytical model. Here we show results for common

Symbol Description Value
Itx Transmission current 17.4 mA (high power, −1 dBm)

8.5 mA (low power, −25 dBm)
Irx Receive current 19.7 mA
Ioff Radio off current 0.02 mA

B Battery capacity 2 Ah

Table 4.2: Electrical characteristics.

49

4.7. Evaluation

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

L
if
e
ti
m

e
 (

m
o
n
th

s
)

Latency (s)

<20, 12, 0.5>

<27, 93, 5>

<41, 60, 5>

<58, 86, 10>

<38, 132, 10>

high TX power
low TX power

(a) Latency-driven: expected lifetime.

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16 18 20 22 24

L
a
te

n
c
y
 (

s
)

Lifetime (months)

high power: <20, 3, 0.13>
low power: <20, 1, 0.08>

<28, 97, 5.43>

<28, 41, 2.3>

<52, 76, 7.96>

<52, 181, 18.75>

high TX power
low TX power

(b) Lifetime-driven: achieved
latencies.

Figure 4.14: Deterministic behav-
ior: sample protocol configurations
〈τ(ms), s, T (s)〉 are shown for τmin =
20 ms.

values of high and low transmission power.

Latency-driven discovery. Our goal is to determine
the RUTh configuration that offers the minimum en-
ergy consumption for a maximum, user-specified dis-
covery latency. Hence, we feed our optimizer latencies
from 0.5 to 10 s and the aforementioned values for τmin

and transmission power.

For deterministic discovery with RUTh, the esti-
mated lifetime is depicted in Figure 4.14(a) together
with several protocol configurations 〈τ, s, T 〉 deemed
optimal by our solver for τmin = 20 ms. The chart
shows that, as expected, low transmission power and
higher input latencies yield longer lifetimes. The two
curves are averages of the values τmin ∈ {5, 10, 20} ms,
as this parameter has little impact on the energy con-
sumption. Deviation is marked by error bars, with a
maximum of 18% for high transmission power and a
0.5 s desired latency. For target latencies above 2 s,
deviation drops to less than 1%. Indeed, this is ex-
pected: as the beacon time b (approximately equal to
τ) remains constant, the period of the protocol shrinks
and thus the duty cycle is increased.

We next use the expected lifetime just obtained
for the deterministic discovery behavior as a reference

point for comparing against U-Connect as well as the probabilistic version of RUTh.
Specifically, we plot RD −X/RD, where RD are the values of the deterministic RUTh pro-
tocol and X is either U-Connect or the probabilistic version of RUTh. In the resulting
charts of Figure 4.15, negative values mean that nodes will deplete their batteries faster
than the deterministic case. Note that U-Connect always has higher energy demands,
while reducing the discovery probability offers energy savings.

Our charts also show that certain low latencies cannot be met by U-Connect. This
stems from the radio ramp-up/down constraint outlined earlier, which forces an interval
τmin between consecutive radio activities. Recall from Section 4.2 that the behavior of
U-Connect is dictated by a prime number k: all protocol periods of duration k2 · 250 µs
start with a beacon of k + 1/2 · 250 µs and then every k · 250 µs a receive check is performed.
Between the end of the beacon and the first receive check, there is a period of k − 1/2 · 250 µs
the radio spends in power-off mode. As an example, to guarantee a discovery latency of
1 s, k should be set to 61, and thus the first energy saving duration should last for 7.5 ms.
Such a short interval violates a τmin constraint of 10 ms. In other words, for gaps less than
10 ms, the radio would not be able to turn off, and therefore the U-Connect configuration
is considered invalid.

U-Connect’s use of prime numbers also prevents it from adapting to the beacon trans-
mission power. As the configuration samples in Figure 4.14(a) indicate, at low power
RUTh achieves energy savings by reducing the number of samples s and increasing the

50

Chapter 4. RUTh: Neighbor Discovery Made To Measure

-80
-60
-40
-20

 0
 20

 0 2 4 6 8 10R
e
la

ti
v
e
 l
if
e
ti
m

e
 (

%
)

Latency (s)

invalid U-Connect
configurations

deterministic

U-Connect pmin = 0.9 pmin = 0.8 pmin = 0.7 pmin = 0.6 pmin = 0.5

-80

-60

-40

-20

 0

 20

 0 2 4 6 8 10

R
e
la

ti
v
e
 l
if
e
ti
m

e
 (

%
)

Latency (s)

in
v
a

lid
 U

-C
o

n
n

e
c
t

c
o

n
fi
g

u
ra

ti
o

n
s

deterministic

(a) High power, τmin = 5 ms

-80

-60

-40

-20

 0

 20

 0 2 4 6 8 10
R

e
la

ti
v
e
 l
if
e
ti
m

e
 (

%
)

Latency (s)

in
v
a
lid

 U
-C

o
n
n
e
c
t

c
o
n
fi
g
u
ra

ti
o
n
s

deterministic

(b) High power, τmin = 10 ms

-80

-60

-40

-20

 0

 20

 0 2 4 6 8 10

R
e
la

ti
v
e
 l
if
e
ti
m

e
 (

%
)

Latency (s)

invalid U-Connect
configurations

deterministic

(c) High power, τmin = 20 ms

-80

-60

-40

-20

 0

 20

 0 2 4 6 8 10

R
e
la

ti
v
e

 l
if
e
ti
m

e
 (

%
)

Latency (s)

in
v
a

lid
 U

-C
o

n
n

e
c
t

c
o

n
fi
g

u
ra

ti
o

n
s

deterministic

(d) Low power, τmin = 5 ms

-80

-60

-40

-20

 0

 20

 0 2 4 6 8 10

R
e
la

ti
v
e

 l
if
e
ti
m

e
 (

%
)

Latency (s)

in
v
a
lid

 U
-C

o
n
n
e
c
t

c
o
n
fi
g
u
ra

ti
o
n
s

deterministic

(e) Low power, τmin = 10 ms

-80

-60

-40

-20

 0

 20

 0 2 4 6 8 10
R

e
la

ti
v
e

 l
if
e
ti
m

e
 (

%
)

Latency (s)

invalid U-Connect
configurations

deterministic

(f) Low power, τmin = 20 ms

Figure 4.15: Latency-driven: relative expected lifetime for U-Connect and various RUTh configura-
tions.

beacon length b in such a way that active remains constant. Instead, in U-Connect
the ratio b/T is fixed to k + 1/2k2, thus the beacon length cannot be tuned. The result is
visible by comparing the two rows of Figure 4.15: for high power, the benefit over U-
Connect is 10–20%, while for low power it ranges up to 50%. The distribution of prime
numbers also leaves fewer options for selecting k, resulting in the ruffled behavior of the
U-Connect curve, e.g., the “dip” at L = 4 s. Instead, RUTh enjoys many degrees of
freedom, smoothly adapting lifetime to the desired latency.

Finally, we note that pmin = 0.9 yields small energy savings over deterministic discov-
ery. Further, at times this curve drops below zero, indicating that deterministic discovery
actually spends less energy. To understand why, recall that the probabilistic optimizer
works under the assumption active < T/2+λ, as values above the half-of-period threshold
denote deterministic behavior. Further, for some values of τmin, it is impossible to find a
configuration that guarantees high detection probability during one period, T . Therefore,
to reach the high 0.9 probability by the desired latency L, two periods are sometimes re-
quired, i.e. T = L/2. Because a beacon is transmitted in each period, such configurations
consume more energy. From Figure 4.15, we see that this phenomenon is exacerbated
for larger values of τmin, as these configurations place more constraints on the amount of
activity that can occur within less than half of the period.

Lifetime-driven discovery. We take a similar approach to evaluate RUTh for lifetime-

51

4.7. Evaluation

-80
-60
-40
-20

 0
 20

 0 2 4 6 8 10R
e
la

ti
v
e
 l
if
e
ti
m

e
 (

%
)

Latency (s)

invalid U-Connect
configurations

deterministic

U-Connect pmin = 0.9 pmin = 0.8 pmin = 0.7 pmin = 0.6 pmin = 0.5

-50

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14 16 18 20 22 24

R
e
la

ti
v
e

 l
a
te

n
c
y
 (

%
)

Lifetime (months)

optimal U-Connect
configurations

deterministic

(a) High power, τmin = 5 ms

-50

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14 16 18 20 22 24

R
e
la

ti
v
e

 l
a
te

n
c
y
 (

%
)

Lifetime (months)

optimal U-Connect
configurations

deterministic

(b) High power, τmin = 10 ms

-50

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14 16 18 20 22 24

R
e
la

ti
v
e

 l
a
te

n
c
y
 (

%
)

Lifetime (months)

optimal U-Connect
configurations

deterministic

(c) High power, τmin = 20 ms

-50

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14 16 18 20 22 24

R
e

la
ti
v
e
 l
a
te

n
c
y
 (

%
)

Lifetime (months)

optimal U-Connect
configurations

deterministic

(d) Low power, τmin = 5 ms

-50

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14 16 18 20 22 24

R
e

la
ti
v
e
 l
a
te

n
c
y
 (

%
)

Lifetime (months)

optimal U-Connect
configurations

deterministic

(e) Low power, τmin = 10 ms

-50

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14 16 18 20 22 24

R
e

la
ti
v
e
 l
a
te

n
c
y
 (

%
)

Lifetime (months)

optimal U-Connect
configurations

deterministic

(f) Low power, τmin = 20 ms

Figure 4.16: Lifetime-driven: relative discovery latencies for U-Connect and various RUTh configura-
tions.

driven discovery. We start from the curves that depict the smallest discovery latency
possible for a given lifetime, as shown in Figure 4.14(b). Again, results are averages of
τmin ∈ {5, 10, 20} ms and sample configurations for τmin = 20 ms are provided. τmin has
a larger impact at the beginning of the lifetime scale, up to 41% deviation, than at the
end of scale, where it reduces to 0.1%. However, because latencies are very small at the
beginning of the scale, the absolute value of deviation is also small, and not visible.

To understand why, consider that if shorter lifetimes are desired, a node can afford to
increase its activity by reducing the epoch duration T . However, in every epoch, a node
must broadcast a beacon once and perform at least one receive check. As sampling rate
and beacon duration are both determined by τ , the epoch T (and thus the latency L) has
a lower bound of approximately 2τmin, and thus τmin has more influence on the latency.
The behavior is different when a larger lifetime is desired. In this case, it is preferable
to increase the number s of receive checks, as they are short and thus energy-efficient.
Therefore, the influence of τ over latency decreases to the right of the lifetime scale.

Figure 4.16 compares U-Connect and RUTh with several discovery probabilities against
deterministic RUTh showing, as before, RD−X

RD
. Again, the τmin constraint has a nega-

tive impact on U-Connect. In latency-driven discovery, U-Connect fails to provide valid
configurations for certain latencies. Here, for lifetime-driven discovery, U-Connect config-
urations are valid, but yield very large detection latencies.

52

Chapter 4. RUTh: Neighbor Discovery Made To Measure

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6C
u
m

u
la

ti
v
e
 d

is
c
o

v
e
ry

 p
ro

b
a
b
ili

ty

Time (s)

d
e

s
ir
e

d
 l
a

te
n

c
y

∆L
∆

p

<
2

0
,

4
9

,
2

>
<

2
0

,
1

5
,

1
>

<20, 42, 2>
<20, 36, 2>

<20, 31, 2>
<20, 25, 2>

deterministic
pmin = 0.9
pmin = 0.8
pmin = 0.7
pmin = 0.6
pmin = 0.5

(a) Simulated: RUTh configuration
generated for Λ = λ = 250 µs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6C
u
m

u
la

ti
v
e
 d

is
c
o

v
e
ry

 p
ro

b
a
b
ili

ty
Time (s)

d
e
s
ir
e
d
 l
a
te

n
c
y

<
2

0
,

4
9

,
2

>
<

2
0

,
1

5
,

1
>

<20, 42, 2>
<20, 36, 2>

<20, 31, 2>
<20, 25, 2>

deterministic
pmin = 0.9
pmin = 0.8
pmin = 0.7
pmin = 0.6
pmin = 0.5

(b) Experimental: RUTh
configured as in
Figure 4.17(a),

implementation uses
Λ = 10 ms.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6C
u
m

u
la

ti
v
e
 d

is
c
o

v
e
ry

 p
ro

b
a
b
ili

ty

Time (s)

d
e
s
ir
e
d
 l
a
te

n
c
y

<
1

2
5

,
7

,
2

>
<

6
4

,
5

,
1

>

<109, 8, 2>
<106, 7, 2>

<90, 7, 2>
<86, 6, 2>

deterministic
pmin = 0.9
pmin = 0.8
pmin = 0.7
pmin = 0.6
pmin = 0.5

(c) Experimental: RUTh
configured for Λ = 10 ms,

λ = 1 ms.

Figure 4.17: Discovery probability for τmin = 20 ms, high power. The configuration output 〈τ, s, T 〉 is
shown for each curve.

The prime k that dictates U-Connect’s behavior is again the cause of this phenomenon.
To achieve shorter lifetimes, smaller k values can be used that ultimately shrink both the
protocol period and the discovery latency. We say that the smallest k that meets the
lifetime goals is the optimal U-Connect configuration for that lifetime goal. However, as
shown earlier, k cannot be arbitrarily small because of the constraint imposed by τmin.
Whenever τmin demands the usage of a prime k larger than the optimal value, U-Connect
behaves in a sub-optimal fashion, achieving large detection latencies. For these values,
U-Connect still meets the lifetime goals, but the discovery latency it provides is larger
than in cases where the τmin constraint does not come into play.

Unlike latency-driven discovery, where time constraints between radio activations de-
termined the valid U-Connect configurations, here the transmission power influences where
the optimality line should be set. For U-Connect, lower transmission power means a slight
decrease of k is possible while maintaining the same overall power consumption. There-
fore, smaller latencies are theoretically achievable for larger lifetime goals. Nevertheless,
if the limits on τmin are still in place, the only result of the lower transmission power is
that the optimality line is shifted to the right w.r.t. higher transmission power. To under-
stand why RUTh can only offer large discovery latencies for small lifetime goals, we recall
that when active < T/2 + λ, RUTh works in probabilistic mode. This can be written
as T > 2 (active− λ), which means that the period, and thus the discovery latency, is
lower-bounded by active, which itself is subject to variations of τmin. By switching to
deterministic mode, this constraint no longer exists, leading to faster discoveries.

4.7.2 Impact of Model Assumptions

The model for probabilistic discovery in Section 4.4.2 assumes a contact time γ = 0, i.e.,
contact occurs at the beginning of the epoch of one of the nodes. In reality, this initial
contact occurs randomly, thus this assumption introduces some error in the model. To

53

4.7. Evaluation

-10

-5

 0

 5

 10

 15

 20

 0 2 4 6 8 10

P
ro

b
a
b
ili

ty
 d

e
v
ia

ti
o

n
 (

%
)

Latency (s)

desired probability

pmin = 0.9
pmin = 0.8
pmin = 0.7
pmin = 0.6
pmin = 0.5

Figure 4.18: Probability deviation
of simulation vs. model (∆p in Fig-
ure 4.17(a)) for high power and τmin =
20 ms.

evaluate this aspect, we developed a simulator that,
given a RUTh protocol configuration, produces the
cumulative discovery probability over a large number
(e.g., 1 million) of tests. The simulation results pre-
sented here are of interest mainly to assess the accu-
racy of the RUTh model, therefore U-Connect is no
longer shown.

Figure 4.17(a) shows the simulation results for the
configurations 〈τ, s, T 〉 output by our optimizer for
maximum latency L = 2 s, τmin = 20 ms, high trans-
mission power and various values of pmin. In these
configurations, the optimizer chooses T = 2 s, except
for pmin = 0.9, for which T = 1 s. As with any prob-
abilistic process, our cumulative discovery probability

approaches asymptotically the horizontal 1. Worth noting is the fast evolution: all lines
are above 0.9 probability within 3T . The chart shows also the output for deterministic
discovery where, as expected, contact is always detected within T . In this case, the cu-
mulative probability has a linear behavior because the only source of randomness is the
contact time γ, chosen uniformly at random in [0, T).

The effect of the assumption about γ is that the simulated curves do not intersect the
2 s vertical line exactly at the desired probabilities (Figure 4.17(a)). For some configu-
rations (e.g., pmin = 0.9), the actual discovery occurs with a slightly lower probability,
while for other configurations (e.g., pmin = 0.5) the simulation shows a greater probability
of discovery at 2 s. We consider the error of our model to be the difference between the
simulated curve and the target probability set as input to the solver. A positive error
means that the probability shown through simulation for a given latency is larger than
the desired pmin. This measure is denoted by ∆p on Figure 4.17(a). The dual deviation
in time ∆L is also a measure of error, but because its values are similar to ∆p, we report
only the error measured on the probability axis.

To quantify ∆p we ran simulations for both high and low transmission power, τmin ∈
{5, 10, 20} ms, and target latencies between 0.5 and 10 ms. Figure 4.18 shows a sample
result for the interesting scenario of high power and large τmin. All other plots are anal-
ogous, and not shown for space reasons. In all cases, at low latencies our model yields
higher probabilities than pmin. There is however a point after which the relative error is
constant and slightly below the target, with a maximum deviation of 6.13%. Depend-
ing on the application, this small deviation can either be ignored or used to modify the
constraints on the latency/lifetime goals.

4.7.3 Empirical Evaluation

To validate the previous results using real hardware, we conducted a set of micro-benchmarks
with Telos motes. We analyze the discovery latency i) between a pair of nodes in isolation
ii) with varying neighbor densities.

The results are averages over 1500 repetitions. Each node is controlled by, and reports
results to, a PC connected through a wired channel. The PC selects a random phase

54

Chapter 4. RUTh: Neighbor Discovery Made To Measure

uniformly distributed in [0, T) for all nodes. The nodes execute RUTh for 15 s, recording
all discoveries. The logs are then parsed to determine the effect of a contact, as follows.
For each of the 1500 experiments, a contact time γ is selected uniformly at random in
[T, 2T]. The discovery latency is computed as the difference δ − γ between the contact
time γ and the first detection δ in the log such that δ > γ.

Cumulative discovery probability. To evaluate the discovery latency between two
motes, we re-create experimentally the cumulative discovery probability. In doing this,
we have two conflicting goals. On one hand, we want to compare with the simulated
results, which in turn relate to the analytical ones. These, however, assume a receive
check Λ = 250 µs that, as discussed, is impractical. On the other hand, we want to
show that our implementation, relying on a Λ = 10 ms, meets the latency and probability
targets when configured by the optimizer for this receive check duration.

Therefore, we ran two sets of experiments, whose results are shown in Figure 4.17(b)
and 4.17(c). In both cases, we use the same optimizer requirements as in the simulated
curve in Figure 4.17(a), i.e., latency L = 2 s, τmin = 20 ms, high power and various values
of pmin, including the deterministic case.

In Figure 4.17(b) we configured the optimizer for Λ = λ = 250 µs, obtaining the very
same configuration used in simulation. However, we run it on the implementation with
reliable Λ = 10 ms receive checks. Recall that the receive check duration bears a negligible
effect on discovery probability, which is determined by active, independent of Λ. The
results match closely the simulated ones in Figure 4.17(a), with a very small probability
increase. In deterministic mode, the only challenge is packet loss, negligible in our case.

The experiments in Figure 4.17(c) are instead based on the configuration generated
by the optimizer for Λ = 10 ms. A direct comparison with the previous ones is no
longer possible: as shown in the figure, the configurations output by the optimizer are
different. However, the goal here is to verify if the optimizer matches the same latency
and probability targets when configured for the implementation. The results confirm this,
although the achieved discovery probability always exceeds the target one—from 8.6% for
pmin = 0.5, down to 3.6% for pmin = 0.9. The reason lies in the error of our model, due to
the γ = 0 assumption. Contrary to the configuration we analyzed in Section 4.7.2, where
the model provided an overestimate w.r.t. the simulations in Figure 4.17(a), in this case
we verified through analogous simulations that the model underestimates probability. As
mentioned earlier, this can be easily discovered (and compensated for) by checking the
configuration output by the optimizer against the simulator (whose computation lasts a
few minutes) and, if necessary, by adjusting slightly the latency goals. What is important,
however, is that the probability increase of the experimental curves in Figure 4.17(c)
w.r.t. the simulated ones remains very small (within 3%) as in the previous comparison
between Figure 4.17(b) and 4.17(a). This small (and positive) error is mostly caused by
the imprecision of TinyOS timers and by rounding approximations, and confirms that the
reality of implementation matches the configuration tool chain enabled by our analytical
and simulation results.

Neighbor density. To study the impact of multiple nearby nodes we employ 12 motes, a
relatively high number for our application scenarios, and measure the (average) time for a
randomly-selected mote to discover or be discovered by its neighbors. In this experiment

55

4.7. Evaluation

 0

 2

 4

 6

 8

1 2 3 4 5 6 7 8 9 10 11

A
v
g
.
d
is

c
o
v
e

ry
 l
a
te

n
c
y
 (

s
)

Neighbors discovered

desired latency

b = 20 ms
b = 50 ms

b = 100 ms

Figure 4.19: Neighbor discovery time
for T = 1 s, s = T/2b.

we set T = 1 s, b ∈ {20, 50, 100} ms, and s = T/2b.
The last setting defines this as deterministic behavior
hence, in a perfect world, discovery between all pairs
of nodes should occur within one epoch.

Results in Figure 4.19 show that b = 20 ms en-
ables discovery of all neighbors within the deadline,
and b = 50 ms causes a small delay only for the last
neighbor. When b = 100 ms is used, however, the
discovery of neighbors after the 7th is significantly de-
layed: it takes almost 7 epochs to detect the last neigh-
bor. This is easily explained by considering the node
behavior when channel activity is detected. Before

any beacon transmission, the radio performs a CCA and sends only if the channel is clear.
If not, the node waits for a random period of time, then attempts sending its own beacon.
With a long 100 ms beacon and a relatively short epoch of 1 s, the channel is frequently
busy, and it is not possible for all 12 motes to transmit in each epoch. In general, the
risk for N nodes to find the channel busy is proportional to Nb

T
. The other protocols

in Section 4.2, also relying on beacons, are subject to similar constraints in the case of
dense scenarios. In our case, however, applicative knowledge can be easily used to fur-
ther constrain the optimization problem w.r.t. the maximum beacon length, by imposing
b < bmax . Thus, for instance, in cases where RUTh is used in crowded settings (e.g.,
a group of Alzheimer patients in the nursery) a small bmax should be used, while larger
values can be allowed when nodes are sparse (e.g., in the case of solitary wildlife).

4.7.4 RUTh as a Social Contact Sensor

In this section, we investigate the opportunity of using RUTh as a human social contact
sensor. Our goal is to understand how contacts perceived by humans match contacts
detected by human-borne motes. There are two dimensions of this problem; specifically,
we measure:

• the number of false positives, that is, the number of contacts detected by RUTh

7 3
2
5

4
1
6

2nd floor only ground then
1st floor

movement
direction path

Figure 4.20: Building and node movement sketch

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 3 4 5 6 7

C
o

n
ta

c
t

ti
m

e
 (

s
 ×

 1
0

3
)

Node

true contact
false positive

Figure 4.21: Total duration of con-
tacts for each node.

56

Chapter 4. RUTh: Neighbor Discovery Made To Measure

and not reported by humans, and, dually

• the number of false negatives, that is, the number of contacts reported by humans
and not detected by RUTh.

This experiment summarizes data gathered from 7 volunteers. Each volunteer carried
a mote running RUTh and moved on a predefined path in a three-story building. Unlike
people, motes may incorrectly detect contacts between two bearers located in different
rooms or on different floors; thus, to study the impact of walls, we split the participants
in two groups. Bearers of nodes 1, 2, and 3 first completed five laps of the path in
Figure 4.20 on the ground floor, and then completed other five laps of the same path, but
on the first floor. Bearers of 4, 5, 6, and 7 looped continuously on a similar path on the
second floor. To guarantee that participants meet, some participants moved clockwise,
while other moved counter-clockwise, as indicated by the arrows in Figure 4.20.

report 1
mote 1

report 2
mote 2

report 3
mote 3

report 4
mote 4

report 5
mote 5

report 6
mote 6

report 7
mote 7

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

C
o
n
ta

c
ts

Time (s × 10
3
)

N/A

(a) Node 1.

report 1
mote 1

report 2
mote 2

report 3
mote 3

report 4
mote 4

report 5
mote 5

report 6
mote 6

report 7
mote 7

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

C
o
n
ta

c
ts

Time (s × 10
3
)

N/A

(b) Node 2.

report 1
mote 1

report 2
mote 2

report 3
mote 3

report 4
mote 4

report 5
mote 5

report 6
mote 6

report 7
mote 7

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

C
o
n
ta

c
ts

Time (s × 10
3
)

N/A

(c) Node 3.

report 1
mote 1

report 2
mote 2

report 3
mote 3

report 4
mote 4

report 5
mote 5

report 6
mote 6

report 7
mote 7

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

C
o
n
ta

c
ts

Time (s × 10
3
)

N/A

(d) Node 4.

report 1
mote 1

report 2
mote 2

report 3
mote 3

report 4
mote 4

report 5
mote 5

report 6
mote 6

report 7
mote 7

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

C
o
n
ta

c
ts

Time (s × 10
3
)

N/A

(e) Node 5.

report 1
mote 1

report 2
mote 2

report 3
mote 3

report 4
mote 4

report 5
mote 5

report 6
mote 6

report 7
mote 7

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

C
o
n
ta

c
ts

Time (s × 10
3
)

N/A

(f) Node 6.

report 1
mote 1

report 2
mote 2

report 3
mote 3

report 4
mote 4

report 5
mote 5

report 6
mote 6

report 7
mote 7

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

C
o

n
ta

c
ts

Time (s × 10
3
)

N/A

(g) Node 7.

Figure 4.22: Timeline showing the contacts for each node in the experiment. Contacts recorded by
volunteers are on the horizontal lines called “report”, while contacts recorded by RUTh are on the lines
called “mote”.

57

4.7. Evaluation

Each participant recorded the time when he/she met any other participant. We
matched these records against traces collected from the nodes. The radio of the nodes was
configured to use low transmission power, i.e., -25 dBm. Previous experiments showed
that this power roughly corresponds to a 9 m line-of-sight transmission range. We config-
ured RUTh to achieve 100% detection probability within a 2 s latency. The parameters
corresponding to this configuration are 〈τ, s, T 〉 = 〈167, 5, 2〉.

In Figure 4.21 we plot the total duration each node reports as being in contact with any
other node. We can use this figure to outline the amount of false positives. Some of these
are explained by the paths followed by the volunteers in this experiment. Consider, for
instance, the case of nodes 1 and 2: these have been both traveling in the same direction,
on the same floor. As the two volunteers were not facing each other, they did not record
a contact, although the two motes were in sufficient range to detect a contact.

Figure 4.22 confirms this argument. Here, we illustrate a timeline for each node on
which we mark both the contacts reported by volunteers and those detected by motes. The
former are marked by dots, as participants recorded a single timestamp for each contact2,
while the latter are marked by intervals containing a series of consecutive timestamps that
together form a contact as detected by RUTh. In addition to the false contacts between
nodes 1 and 2, we observe a similar issue in the case of nodes 5 and 7, which also moved
in the same direction on the same floor. Moreover, we observe that i) no contacts were
detected across floors, and ii) most of the contacts recorded by volunteers have also been
detected by RUTh. In fact, the percentage of false negatives out of a total of 160 contacts
recorded by volunteers is only 1.25%.

From this experiment, we conclude that RUTh can be efficiently used as a human
contact sensor.

4.7.5 RUTh as a Proximity Sensor:
Lessons Learned From A Dense Deployment

In the assisted living scenario, we use RUTh to detect when a person carrying a mobile
node is “close” to a hazard tagged by a fixed node. In this section, we describe the expe-
rience we accumulated during an attempt to recreate this scenario in our testbed. When
designing these experiments, we believed that we could use RUTh to obtain approximate
proximity information. From this aspect, this section goes beyond the scope of evaluating
RUTh as a protocol for neighbor discovery. Indeed, ranging is subject to imperfections
of the wireless environment such as interference, collisions, and the non-linearity of the
signal propagation.

As it turned out, the realities of wireless communication have a strong impact on the
number of contacts that can actually be detected. Although we met our goal only partially,
the hereafter described experiments provide valuable insights on the inner-workings of
RUTh. Moreover, they are an excellent opportunity to study the factors affecting the
accuracy of our protocol.

2If a contact is reported by both volunteers, it is marked once on Figure 4.22.

58

Chapter 4. RUTh: Neighbor Discovery Made To Measure

0

1 2

3 4

5 6

7

40

39

37
35

42 43
38

41

32

33

31
30

29 28
34

35
23

22

47
46

45

48

49

44

25
24

18

19
20 21

26
27

10
11

12
15

1716

13

14

1

4
7

8
9

6

350
2

5

1 path checkpoint 40 node

Figure 4.23: Testbed and mobile node path.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

P
D

R

Radio range (m)

high power
low power

Figure 4.24: Histogram of the PDR
function of the distance sender–receiver
for our testbed. Averages over 300 pack-
ets / node, each broadcast in a dedicated
time slot for each node.

fixed node

accurate

virt
ual ra

nge
⇢

�

inaccurate

contact with
mobile node

deviation

mobile path

✓
time spent in range

Figure 4.25: Definition of con-
tacts.

Experiment settings and goals. In our attempt, we use
a testbed consisting of 50 fixed nodes deployed under the
floor of a 60 m × 40 m office building. The nodes of the
testbed play the role of hazard tags, while a person moving
around the testbed plays the role of a patient. The person
loops for about 30 min at normal pace in the vicinity of
the testbed nodes, as sketched in Figure 4.23.

We use a virtual range ρ to define the distance threshold
at which the mobile mote is considered as being “close” to a
fixed mote. We vary ρ to match possible values of interest
in the assisted living scenario. As partially depicted by
Figure 4.25, we distinguish several types of contacts, which ultimately become the metrics
we employ in our assessment:

• the number of contacts between a fixed node and the mobile node detected inside
the virtual range ρ. From the perspective of our application, these are contacts that
are “accurately” detected.

• the number contacts detected outside ρ. These are regarded in our application
as “inaccurate”. For these, we report the distance δ from the virtual range, as
illustrated in Figure 4.25.

• the number of missed contacts, that is, the count of how many times a mobile node
enters the virtual range ρ of a fixed node and no contact is detected. From these,
we exclude the instances in which the mobile nodes passes “too fast” through the
virtual range for RUTh to detect contact, that is, when θ < T in Figure 4.25.

We focus on configurations 〈τ, s, T 〉 optimized for low power (i.e., -25 dBm), as these
are more relevant to the ranges required in the proximity detection problem. We configure
RUTh to achieve 100% of detections within a latency L = 2 s, i.e., we use 〈τ, s, T 〉 =
〈167, 5, 2〉. Nevertheless, to better understand the impact of density and for completeness,

59

4.7. Evaluation

we additionally repeat the experiment with the radio configured in high power mode (i.e.,
-1 dBm).

Characteristics of the testbed. First, we assess the factors of the wireless environment
that RUTh by using only the fixed nodes of the testbed. For simplicity, here we report
only on the experiments that employed high power, which increase density, attaining thus
the worst-case scenario for our testbed and providing more interesting insights. In this
setting, the average neighborhood size N in our testbed contains 13.65 nodes. Channel
contention is high under these conditions: ideally, all nodes in a neighborhood take N×b =
2279.55 ms to broadcast their beacons. Note that even in an ideal world the allotted time
for communication is insufficient, as all beacons must fit in a single epoch T = 2 s; thus,
some contacts are prone to be undetected. Next, we look at this aspect in more detail,
focusing on possible ways to alleviate the problem.

Unfortunately, ground truth cannot be easily established even in the case of our
testbed, due to the factors affecting wireless communication and, in a later case, due
to the human inability to follow a precise path. Therefore, we must compare the results
against a reference curve that is unbiased by the duty-cycle scheme in RUTh. We em-
pirically determine the reference line through an experiment in which nodes broadcast
periodic beacons according to the RUTh schedule but, unlike RUTh, they keep the radio
always on and listen continuously.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

M
is

s
e

d
 c

o
n

ta
c
ts

 (
%

)

Virtual range ρ (m)

reference <167, ∞, 2> on all nodes
default <167, 5, 2> on all nodes
default <167, 5, 2> on half nodes
longer ACTIVE <130, 8, 2>
on all nodes

Figure 4.26: Contacts among fixed
nodes missed when using high power
and configurations 〈τ, s, T 〉.

Figure 4.26 shows the results for 40 min long ex-
periments using high power. We first observe the gen-
eral trend of missing contacts as ρ increases. Note
that, the higher ρ is, the more nodes are included in
the virtual range and the greater the distance between
sender and receiver is. However, in practice message
exchange among these nodes is far from being guar-
anteed, due to the characteristics of the wireless com-
munication. These characteristic can be observed in
Figure 4.24, which shows how the packet delivery ratio
(PDR) drops in our testbed as the distance between
sender and receiver increases. Thus, the limitations
of the wireless communication are more likely to be
observed when expecting a large proximity range ρ.

We analyze the cause for which the number of contacts missed by RUTh (i.e., the
curve for 〈167, 5, 2〉) is comparatively higher w.r.t. the reference line (henceforth denoted
by 〈167,∞, 2〉). To this end, we computed the inter-contact delay, i.e., the average time
elapsed at each node between two consecutive detections of the same node. Ideally, this
should match the epoch T = 2 s. In practice, an inter-contact delay longer than 2 s
indicates that epochs are skewed due to back-offs of the beacons. Indeed, our logs show
that, in the case of the experiment corresponding to the line 〈167, 5, 2〉 in Figure 4.26,
the inter-contact delay is 2096 ms. Comparatively, when repeating the experiment with
low-power, we measure an inter-contact delay smaller by 35 ms. From this, we infer that
the higher density is, the more skewed epochs are and the more contacts escape undetected
as the epochs of sender and listener are no longer synchronized. However, when the radio

60

Chapter 4. RUTh: Neighbor Discovery Made To Measure

is always on as in our reference, nodes can always receive beacons, irrespective of how
long the beacons were delayed. Thus, as observed, deployment density has little impact
on the reference curve.

We further investigate if we can work around the problem by increasing the duration
of the active interval and, at the same time, keep T constant. Thus, we change the
constraints in our optimizer to require a 15% longer than normal active interval, i.e.,
active = 1.15× T/2. We repeat the experiment on the fixed nodes to obtain the line in
Figure 4.26 corresponding to the resulting configuration 〈130, 8, 2〉. Although we notice
an improvement w.r.t. to the case of the configuration 〈167, 5, 2〉, this is not enough. We
infer that compensating density with longer active intervals mitigates contact loss, but
not completely.

Then, we repeat the experiment with half of nodes offline to reduce density. In this
experiment, the average neighborhood size is N = 6.12. Also in this case loss is expected;
indeed, as T > N × b = 1022 > T/2, although now there is enough time to broadcast
beacons, the receiving node may not be awake to receive all beacons. Interestingly, the
results, also shown in Figure 4.26, overlap almost perfectly with the reference line for
small ρ, validating thus that a listening node does receive all beacons from a small subset
of its neighbors. However, a greater ρ covers a larger number of nodes with which contacts
are expected; in practice, not all of these are detected and hence the deviation from the
reference line.

Therefore, to detect all contacts in dense environments, we should i) set an upper

bound for the duration b of beacons (specifically, we set b < bmax
∆
= T/N), and ii) use

longer active intervals to compensate for epoch skew (i.e., active = 1.15× T/2). These
constraints can be embedded in our optimizer to obtain the configuration yielding the
lowest current consumption, respectively the longest lifetime for latency-driven, respec-
tively lifetime-drive neighbor discovery. We re-run the experiment with all nodes active
configured for high power and desired latencies L ∈ {2, 4, 6, 8, 10} s under these two “com-
pensating” constraints. In the results depicted by Figure 4.27 we observe that there are
virtually no missed contacts for ranges ρ < 10; these results are in line with the limits
of wireless communication illustrated by the PDR in Figure 4.24. Nevertheless, this gain

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

M
is

s
e

d
 c

o
n

ta
c
ts

 (
%

)

Virtual range ρ (m)

<167, 5, 2> ("normal")

<127, 8, 2> ("compensated")

<176, 12, 4> ("compensated")

<215, 15, 6> ("compensated")

<225, 17, 8> ("compensated")

<287, 17, 10> ("compensated")

Figure 4.27: Contacts among fixed nodes
missed when using high power, various desired
latencies L = T , and configurations 〈τ, s, T 〉
compensating for epoch skew.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

M
is

s
e

d
 c

o
n

ta
c
ts

 (
%

)

Virtual range ρ (m)

deterministic <167, 5, 2>
pmin=0.9 <90, 7, 1>
pmin=0.8 <109, 8, 2>
pmin=0.7 <106, 7, 2>
pmin=0.6 <90, 7, 2>
pmin=0.5 <86, 6, 2>

Figure 4.28: Contacts among fixed nodes
missed when using high power, a desired la-
tency L = 2 s and configurations 〈τ, s, T 〉 for
probabilistic discovery.

61

4.7. Evaluation

comes with a trade-off in energy consumption; in this respect, our optimizer estimates a
7% increase when comparing the estimated current consumption of the “compensated”
configurations w.r.t. the equivalent non-“compensated” configurations for all values of L
used in the experiment.

Probabilistic discovery. Interestingly, there are cases when probabilistic discovery
achieves a greater number of detected contacts w.r.t. to deterministic discovery in dense
environments. In Figure 4.28 we illustrate the results of an experiment run on all fixed
nodes using high power, no compensation for epoch skew and various probabilities. We
observe that when setting pmin = 0.8 we detect more contacts w.r.t. the case of determin-
istic discovery. This is due to the fact that the duration of the beacon b is smaller and
inherently so is the channel contention. However, for the same desired latency3 L = 2 s,
as expected and as observed in the same figure, the lower pmin is, the greater the number
of missed contacts is. In fact, in our experiment, there is a demarcation line at about
pmin = 0.7 where probabilistic RUTh detects as many contacts as deterministic RUTh;
it does so by using a lower amount of energy consumption and consequently probabilis-
tic discovery may be preferred in a real-world application. For lower probabilities, i.e.,
pmin < 0.7, significantly more contacts are missed.

The mobile node. When experimenting with the mobile node, we use both low power, as
dictated by the requirements of the proximity detection application, and, for completeness,
high power. The average neighborhood size when using low power is 5.44, which is also
close to the reliability limit: consider that in TinyOS back-offs are randomly distributed
between 10 ms and 50 ms. If we add an average of 30 ms to b, even now N × b > T/2 and
thus there is not enough time to receive the beacons of all neighboring nodes.

In Figure 4.29 we plot the percentage of missed contacts. We observe the impact of
the deployment density is more evident in the case of high power: due to the epoch skew,
RUTh loses a monotonically increasing number of contacts with respect to the reference
line which remains rather constant. We also observe that the reference line looses a very
small amount of packets (due to the previous argument). However, the inflection point of
the reference line at which contact losses appear is about ρ = 13 m. Beyond this distance,

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

M
is

s
e

d
 c

o
n

ta
c
ts

 (
%

)

Virtual range ρ (m)

reference <167, ∞, 2> low power
default <167, 5, 2> low power
reference <167, ∞, 2> high power
default <167, 5, 2> high power

Figure 4.29: Missed contacts between
the mobile node and the fixed nodes.

we conclude that the wireless signal attenuates con-
siderably. This is also indicated by the PDR drop for
high power in Figure 4.24 that appears approximately
at the same range.

Differently, the signal attenuation is visible from
the start for the two curves associated to low power
transmissions. From Figure 4.24, we expect a con-
siderable amount of packets to be lost even for small
virtual ranges ρ which is the case, as indicated by Fig-
ure 4.29. Moreover, we also notice that the difference
between RUTh and the reference line remains roughly
constant for all virtual ranges ρ, an indicator that den-

3The optimal configuration that achieves pmin = 0.9 at a desired latency L = 2 s employs a duration of the
epoch T = 1, unlike the configurations for lower pmin that all have T = 2 s. Also, the smaller T is, the more
significant the channel contention is and thus the greater number of missed contacts observed in Figure 4.28 when
RUTh is configured for pmin = 0.9.

62

Chapter 4. RUTh: Neighbor Discovery Made To Measure

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

C
o
n
ta

c
ts

 i
n
s
id

e
 ρ

 (
%

)

Virtual range ρ (m)

ref. <167, ∞, 2> low power
default <167, 5, 2> low power

ref. <167, ∞, 2> high power
default <167, 5, 2> high power

Figure 4.30: Mobile node contacts detected
inside the virtual range.

 0

 2

 4

 6

 8

 10

 0 5 10 15 20

D
is

ta
n
c
e
 δ

 f
ro

m
 ρ

 (
m

)

Virtual range ρ (m)

high power
low power

Figure 4.31: Distance from ρ for 〈τ, s, T 〉 =
〈167, 5, 2〉 measuring δ in Figure 4.25.

sity has a lower impact.
As a general comment, we observe that the numbers reported here are smaller than

these reported in the case of fixed network, i.e., in Figure 4.26. This is mainly due by the
fact that, in Figure 4.29 we exclude the case in which the mobile passes too fast through
the range of a fixed node. This is a subject for further experimentation, for instance, by
demanding the carrier to move at smaller velocities.

Then, we focus only on the contacts that are detected. In Figure 4.30 we show the
ratio between the number of the contacts between fixed nodes and the mobile detected
inside the virtual range ρ and the total number of detected contacts. We observe that
RUTh detects roughly the same amount of accurate contacts as the reference line, both in
the case of low power, but also in the case of high power. Indeed, we expected similarities
to the reference lines, as the breakdown of contacts according to ρ is beyond the control
of any protocol; rather, it is caused only by the properties of the wireless environment.
Even so, when using low power, we observe that RUTh can accurately detect whether
contacts occur within a virtual range ρ = 7 m. Furthermore, as indicated by Figure 4.31,
the distance at which inaccurate contacts occur w.r.t. to the virtual range is small, i.e.,
on average below 2 m for low power and below 8 m for high power.

These preliminary experiments indicate that the density of our testbed negatively im-
pacts contact loss in RUTh. Nevertheless, through a careful planning of the deployment,
RUTh could be employed in practice as proximity sensor when using low power transmis-
sions. As we observed in Figure 4.30, low power has the nice benefit that the proximity
threshold can be more accurately set w.r.t. high power.

4.8 RUTh in Action: The Assisted Living Application

In Chapter 3, we sketched a solution for the assisted living application in which mixture of
fixed and mobile nodes are used to detect proximity and social contacts. In this solution,
all nodes are leveraging on RUTh, although the implementation of beacons and the duty-
cycle scheme is done at a higher level, i.e., using the interfaces provided by our TeenyLime
middleware. In ACube, in addition to sensing contacts, the radio is employed to collect
data along a multi-hop tree. Hereafter, we discuss in detail the integration of RUTh with
the collection protocol that we employ. The goal of this section is to show that a simple

63

4.8. RUTh in Action: The Assisted Living Application

routing structure can be maintained on top of RUTh which arguably employs a rather
aggressive duty-cycle scheme. To this end, in Section 3.1 we detail the operation of the
collection protocol in the presence of RUTh, while in Section 4.8.2 we report results that
we obtained from early experiments in a laboratory testbed.

4.8.1 RUTh and Data Collection

Recall from Section 3.1, that in ACube mobile nodes offload the data to a fixed network
organized as a collection tree. Also, both mobile and fixed nodes are running RUTh. Data
collection from mobile nodes occurs in two steps. First, mobile nodes offload the events
they generate to neighboring fixed nodes. And second, once the events are unloaded, fixed
nodes relay them towards the sink across a multi-hop path. We detail these steps next.

Mobile-To-Fixed Offload. All events generated by mobile nodes are sent in broadcast
and received by any fixed node in the neighborhood. Due to the peculiar operation of
the radio in RUTh, broadcasts must be repeated with a period of T/2, where T is the
neighbor discovery epoch, to ensure that at least one receiver is listening at the time of
the transmission, as depicted by Figure 4.32. The periodic broadcast stops when either
a fixed node acknowledges the transmission, or when a count threshold is reached, after
which the message is dropped.

A

B

T

T

delivery

T/2

delivery
failure

broadcast
listen

Figure 4.32: Periodic broadcast scheme to en-
sure delivery in ACube.

This protocol is prone to creating event du-
plicates, that is, two fixed nodes receive and
relay the same event from a mobile node. One
step we take in this direction is to require all
fixed nodes to wait a short timeout before ac-
knowledging the broadcast of a mobile node.
During the timeout, fixed nodes sniff the chan-
nel for ACKs to the same broadcast4 from other
nodes. If such an ACK is received, the event is
dropped. Also, the duration of the timeout is
inversely proportional to the height in the tree. In result, nodes closer to the root take
precedence in capturing mobile events.

Collection over fixed nodes. Once an event is successfully delivered to a fixed node,
we route it using a protocol previously employed by our group successfully in other de-
ployments (i.e., [16, 17]). In this protocol, the sink periodically rebuilds the collection tree
by flooding the network with a control message. The tree structure is built in such a way
that the path from any node to the root minimizes the end-to-end LQI [1]. Forwarding
reliability is ensured by a simple hop-by-hop recovery scheme, where transmissions are
acknowledged as the events they carry travel upstream.

We adapted the protocol as follows. First, the broadcast of beacons must be repeated
twice with a space between retransmissions of T/2, as per Figure 4.32. We guarantee thus
that any neighboring node is listening at the time when the beacon is broadcast. Second,
all data transmissions are synchronized with the schedule of parents. When broadcasting
tree refresh beacons, node also piggyback information regarding their neighbor discovery

4We uniquely identify each event by a pair (originator node; sequence number).

64

Chapter 4. RUTh: Neighbor Discovery Made To Measure

schedule. Thus, whenever a node changes its parent, it has information on when the parent
is listening and can schedule transmissions accordingly. Finally, as an additional step to
reduce duplicates, all nodes maintain a circular buffer in which they store identifiers of
previously forwarded events; the buffer prevents any forwarding of event duplicates.

4.8.2 Results5

53

64

51
50

52

61

65

60

55

6362

54

S

56
57

1

2

3

4

5

6

sink

fixed node
mobile node

waypoint

1.
3

1.
11

1.98 1.02
1.21 1.6

0.97 0.93

1.
57

1.
93

1.
35

1.
77

2.3 1.98 hops to sink

Figure 4.33: ACube test deployment.

We evaluate RUTh in the context of
ACube using 16 nodes deployed in our labo-
ratory testbed that mimic the environment
of retirement houses, as illustrated in Fig-
ure 4.33. In early experiments, we observed
that motes are sometimes screened by the
body of patients. Therefore, in ACube, as
well as in our testbed, nodes are deployed
in pairs to achieve redundancy in the de-
tection of proximity.

The events reported by the WSN can be
critical, e.g. a “fall down” alarm triggered
by a patient-borne mote, and require the immediate attention of a care giver. Therefore,
we focus on delivery reliability and latency. We additionally assess the network overhead,
which is a measure of energy efficiency and, indirectly, of maintenance costs. All previous
metrics are composed of two measures that can be accumulated to obtain the overall cost:

1. the cost to offload from fixed to neighboring fixed nodes.

2. the cost on fixed nodes to route the events to the sink.

In this evaluation we study each of the costs independently w.r.t. the other.

Mobile-to-fixed Reporting

We evaluate the performance of the mobile-to-fix offload protocol. To this end, we use
a mobile node whose movement is summarized by the path illustrated in Figure 4.33.
Between two consecutive waypoints, the mobile node was carried at normal walking speed;
to each of these waypoints corresponds a motion pause of approximately 30 s. The mobile
nodes generates an event every 5 seconds.

As discussed previously, our focus is on the delivery latency and reliability. To analyze
the former, we measure the round trip time, i.e., the time on a mobile node between
an event is broadcast and an acknowledgment is received back from a fixed nodes. We
use 〈τ, s, T 〉 ∈ {〈100, 5, 1〉, 〈100, 10, 2〉, 〈100, 15, 3〉}, which yield a deterministic discovery
schedule. Because a mobile node is usually in the range of several fixed nodes that may
have complementary schedules, the round-trip time is small, i.e., always smaller than
200 ms. Because of redundancy, we also experienced an insignificant event loss, i.e., only
0.32%.

5The data in this section previously appeared in [21].

65

4.8. RUTh in Action: The Assisted Living Application

One of our concerns was that the repeated broadcast to offload messages to fixed nodes
can lead to a high overhead. In this respect, we counted a merely 2.13 retransmissions
required by a mobile node to offload its events to the static network.

Cost of the Fixed Network

We then evaluate the behavior of the collection tree built on top of RUTh. In this set
of experiments, we did not use events generated by mobile nodes. Instead, we configured
all fixed nodes to generate synthetic events. The measures henceforth reported must be
combined with the cost of the mobile-to-fixed reporting scheme to obtain the overall costs.

Tree collection latency. We expect the delivery latency of our protocol to change as
function of the proximity detection period T and by the number of hops traversed. We ver-
ify this by reconfiguring our deployment with 〈τ, s, T 〉 ∈ {〈100, 5, 1〉, 〈100, 10, 2〉, 〈100, 15, 3〉}.
Then, we setup the network topology to remain unchanged throughout the experiment in
order to know precisely the depth of each fixed node in the collection tree. We measure
delivery latency as the time spent between the generation of the event and the moment
this is delivered to the sink. To accurately measure latency, we connect the sink and the
generating nodes to machines synchronized using NTP [86].

The results are illustrated in Figure 4.35. First, we observe the very small latency of
events generated by nodes one-hop from the sink. This is explained by the fact that the
sink has the radio always on. Instead, the events generated at two hops must pass through
only one intermediary node. We observe that the delivery latency is directly proportional
to T . However, this observation does not stand for longer paths: while latency generally
increases with the number of traversed hops, the latency is not any more proportional to
T due to the several synchronizations parent-child that appear across the longer paths.

Tree collection reliability. We use 〈τ, s, T 〉 = 〈100, 10, 2〉. We initially assumed that
the inactive periods employed by RUTh will exacerbate the reliability of collection. In
this experiments, all fixed nodes generated events with a rate of 1 event every 5 s. In
total, each node generated approximately 70000 events during 95 h of testing, all collected
over a tree rebuilt every 10 s. Note that this traffic profile is unrealistic and is actually a
stress-test for our system. Despite this, during the 95 h stress-test, our protocol managed
to deliver 95.4% of all the events generated by the fixed nodes.

An interesting aspect is how event loss is correlated with the number of hops an event

 0

 50

 100

 150

 200

 250

 300

1 2 3

A
v
e

ra
g
e

 r
o

u
n
d

-t
ri
p
 (

m
s
)

Neighbor discovery epoch T (s)

Figure 4.34: Round-trip for mobile-to-fixed.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

0 1 2 3

A
v
e
ra

g
e
 l
a

te
n
c
y
 (

s
)

Hops traversed

T = 1 s
T = 2 s
T = 3 s

Figure 4.35: Latency function of path length.

66

Chapter 4. RUTh: Neighbor Discovery Made To Measure

 0

 100

 200

 300

 400

 500

 600

0 1 2 3 4
 0

 5

 10

 15

 20

 25
T

o
ta

l
e
v
e
n
ts

 (
×
1
0

3
)

L
o
s
t
e
v
e
n
ts

 (
%

)

Hops traversed

Lost
Total

Figure 4.36: Event loss analysis.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

6
0

6
1

6
2

6
3

6
4

6
5

P
a
c
k
e
ts

 (
×
1
0

3
)

Node ID

Application events
Tree beacons
Forwarded events

Figure 4.37: Network overhead.

must travel to reach the sink. For the indoor scenarios that we target (retirement houses),
these are likely to be small. In fact, as can be seen from Figure 4.36, the majority of events
traverse at maximum 2 hops to reach the sink, and only a negligible amount of packets
traverse 3 or 4 hops. Also from Figure 4.36, we can see that the loss rate increase with
the hop count.

Tree collection overhead. As an indirect measure of the energy efficiency, we distin-
guish between packets based on the type of information they carry. These can be i) the
overhead to maintain the routing structure, represented by beacon employed to refresh
the collection tree, ii) the overhead to route data, represented by events generated by
other nodes and forwarded to the sink, and iii) the actual data, that is, events generated
locally by a node. Figure 4.37 illustrates this breakdown. We can see that under our
stress-test, the tree maintenance cost is negligible as compared to traffic carrying events.

In conclusion, ACube serves as example of a scenario in which we maintain a routing
overlay on top of a RUTh-like duty-cycle scheme. Data exchange is efficient only as
long as the packet sources have information on when the next hop is awake. In our
application, as data flows in one direction, it is sufficient to synchronize the transmissions
of children with the schedule of their parent. However, if no information on the schedule
of the receiver is available, transfer may become twice as expensive, as in the case of the
mobile-to-fixed offload scheme and of the tree refresh rounds.

4.9 Discussion and Outlook

We formulated the neighbor discovery problem as an optimization problem where the
objective, based on the application requirements, is to either minimize current consump-
tion (therefore maximizing lifetime) given a goal in terms of maximum discovery latency
or, dually, to minimize the maximum discovery latency given a goal in terms of lifetime.
We have shown that allowing end-users to express the requirements on latency in proba-
bilistic terms provides not only additional flexibility but also margins of improvement in
achieving the desired goal. This formulation allowed us to devise a protocol that brings
a significant advance over state-of-art neighbor discovery protocols. Our implementation
takes into account low-level characteristics of the mainstream hardware, to ensure that

67

4.9. Discussion and Outlook

the protocol is readily available for use in real-world deployments. We will use RUTh
in two such deployments, concisely described in Section 4.1: a (latency-driven) assisted-
living application concerned with the care of Alzheimer’s patients, and (lifetime-driven)
monitoring of the social behavior of wildlife, specifically roe deer.

68

Chapter 5

The Group Membership Problem1

The need to monitor groups of mobile entities arises in many application contexts. Ex-
amples include the study of the social behavior of humans and wildlife, the shepherding
of livestock, the care giving to people that are not self-sufficient.

Human- or animal-borne wireless devices can be used to detect the joining or leaving
of group members, even in infrastructure-less scenarios. In this work, we apply wireless
sensor networks devices to this problem that has hitherto received little attention. We
analyze three points of the solution space. At one extreme, group membership information
is proactively and collectively maintained by each node in the group. At the other extreme,
the dissemination of group membership updates is triggered reactively by relying on a
lower-level neighbor discovery protocol. In the middle lies a solution borrowing ideas from
the two extremes. We compare our solutions through simulation of synthetic scenarios
and real-world mobility traces of humans.

5.1 Introduction

The miniaturization fostered by wireless sensor network (WSN) enables scenarios where
these tiny, untethered devices are carried by mobile entities. In these applications, the
radio is often used as a sensor, enabling the detection of “contact” (i.e., physical proximity)
among nodes, and in turn the study (or monitoring) of the dynamics of groups of mobile
entities. The goal of this chapter is to design an efficient communication protocol providing
applications with knowledge about who is member of a group at any given time.

Application examples. The research we present here was originally motivated by two
projects we are involved in that, albeit targeting different application domains, share the
common challenge of group monitoring:

• Social care. In the first project, WSNs are used in an Alzheimer’s daycare facility to
monitor the patients’ activities. A concern of the caregivers is the safety of patients
when outside the facility: they need to ensure that patients move together and be
alerted immediately when some patient goes astray. Similar requirements are found
in other contexts, e.g., shepherding or school trips.

1Earlier versions of this chapter appeared in [14, 15].

69

5.1. Introduction

• Wildlife monitoring. In the second project we collaborate with biologists studying
the social behavior of roe deer. Wildlife is studied either through direct observation
or by using localization technologies such as GPS [12]. The former cannot be done
on a large scale and is too invasive (or impractical) for some species. The latter
is energy-hungry, requires a clear sky, and provides only an indirect measure of
interaction: to study social groups [77] biologists need to know which animals spend
time together, while GPS forces them to infer interaction from position traces—often
quite sparse, to save energy.

The group membership problem. We assume that each of the potential group mem-
bers carries a battery-powered WSN device (e.g., a TMote Sky [97]), consisting of a
microcontroller, memory and storage capabilities, and a radio transceiver. In this con-
text, a group is a set of mobile entities that are “in contact” with each other either directly
or indirectly. In other words, it is the set of WSN nodes that are either in wireless range
of each other, or for which a multi-hop path connecting them exists. Our objective is to
identify who is currently part of a given group. The group composition changes over time,
either because existing members leave or new members, possibly previously unknown, join
the group.

Solving the problem when all the nodes are in direct communication among them-
selves, or towards a central node, is simple: it suffices for the WSN nodes to periodically
broadcast a beacon announcing their presence. Otherwise, the problem is considerably
more complex, but the application scenario is significantly richer and less constrained. For
instance, caregivers need not be in direct communication with all patients: it is sufficient
that they are in range of some, and that each patient is in range of at least another one.
Similarly, a flock of animals may stretch over a considerable area, rendering impractical
solutions that are centralized or rely on 1-hop connectivity. Therefore, we focus on a fully
decentralized solution.

Because of mobility, a group may split, or separate groups may merge in a larger
one. Ideally, nodes should learn about changes as soon as they occur. This, however,
is unfeasible in a distributed system, and even more so in the highly dynamic, resource-
constrained scenario we target. Therefore, we ensure instead that the group view of
each node eventually mirrors the physical one. In other words, transient inconsistencies
are allowed to occur, but these must disappear “as soon as” the network topology stops
changing. In practice, we found this requirement to be sufficient, at least in the scenarios
we target.

Finally, applications will use the group membership information differently. For in-
stance, the case where one or more nodes disappear from the node’s group view may
trigger an alarm to the caregiver in the social care scenario, or be simply logged on flash
memory in wildlife monitoring. These aspects are orthogonal to our contribution, and
not mentioned further.

Roadmap and contribution. From our survey of related work in Section 5.2 it appears
that no solution is immediately applicable to the above requirements. In this chapter we
design and compare three protocols. At one extreme, Section 5.3 describes a solution in
which nodes proactively and collectively refresh soft-state group information, based on
vector clocks. At the other extreme, the protocol in Section 5.4, inspired by link state

70

Chapter 5. The Group Membership Problem

routing, reactively triggers the dissemination of group information based on a lower-level
neighbor discovery layer. Finally, the protocol in Section 5.5, inspired by distance vector
routing, attempts to strike a balance between the two.

The protocols we design build upon well-known techniques. Nevertheless, these are
applied to a novel problem in a challenging context—mobile WSNs. Section 5.6 evaluates
and compares these alternatives, implemented in Contiki [30], to determine their feasibility
and tradeoffs. Section 5.7 discuss the problem of group monitoring from the perspective
of RUTh, our neighbor discovery protocol. Finally, Section 5.8 ends the chapter with
brief concluding remarks.

5.2 Related Work

Wireless sensor networks. In a 1-hop environment, the problem of group membership
reduces to the simpler problem of neighbor discovery, already covered in the WSN litera-
ture. The works in [32, 57, 85, 116, 131] carefully schedule the broadcasting of beacons,
the listening on the channel, and the radio power-down to obtain an energy-efficient duty
cycle. We regard these protocols as a stepping stone to solving the group membership
problem in a multi-hop environment.

The problem becomes considerably complex when nodes are to be discovered across
several hops. This is because distinguishing between mobility (i.e., the node is still part of
the group although with different links) and link or node failure is a non-trivial problem,
impossible to solve with only local knowledge [55, 110]. These works suggest the use of
gossiping or restricted flooding as a viable approach. In this chapter, we design dedicated
protocols able to identify whether a moving node remains member of the same group,
even if its links change because of mobility.

Distributed systems and ad-hoc networks. Group membership is a problem long
studied by the distributed systems community [8], although with a slightly different fo-
cus. Indeed, the emphasis is on providing high-level abstractions enabling group com-
munication, and therefore on their semantics and expressiveness in the presence of faulty
processes [118].

In mobile ad hoc networks, somehow closer to our context, the main emphasis has been
on unicast and multicast routing protocols. A notable exception is [102], which addresses
how multi-hop group communication can be kept consistent with node movement. The
authors introduce the concept of “safe distance”, defined as the number of communication
tasks a pair of nodes can complete in a given time and for a given mobility pattern. The
paper extends this concept to multi-hop routes and presents protocols that allow a node
to identify which are the safe groups it can communicate with. In contrast to these works,
our emphasis is not on communication, rather on the simpler problem of providing each
node with an up-to-date view of the current group, in a resource-constrained WSN.

Alternative devices. As we mentioned in the introduction, using the on-board radio
is only one, and arguably the most recent, alternative. GPS has already been applied
to study the interaction patterns of wildlife [12, 56]. However, GPS is energy-hungry:
frequent positions locks do not play well with lightweight batteries. Moreover, GPS is
limited to a clear-sky environment and inappropriate for burrowing animals. To this end,

71

5.3. Using Logical Clocks

RFID based solutions [33] have been designed. However, RFID readers are expensive,
both cost- and energy-wise; the technology is limited to small ranges; and finally, it is
non-trivial to perform truly mobile sensing, as the latter happens only in the range of the,
usually fixed, RFID readers.

In all these solutions, group membership is determined indirectly, typically through
a post-deployment analysis of position traces and contact logs. A fundamental asset of
our approach is that the protocols we describe next empower each node with a run-time
global view of the group membership.

5.3 Using Logical Clocks

Our first protocol is based on a “soft-state” approach. Each node periodically advertises
its presence. After a period when no advertisement is received, the advertising node is
considered missing. We further refer to this solution as Clocks.

Our solution is inspired by vector clocks [84]. Each node maintains i) a local (logical)
clock and ii) an array containing the (logical) clocks of all the nodes currently part of the
group—the vector clock. Every node broadcasts the vector clock periodically with the
same frequency, yet asynchronously. When a message is received, the incoming vector
clock and the local one are merged to preserve only the largest timestamps. However,
in our case, differently from the original formulation, a node’s local clock is incremented
periodically and not when the node receives or sends messages.

Node leaving and joining. To identify a member that left the group, a node compares
its local clock against every entry in the vector clock. If the difference between the local
clock and a vector clock entry crosses a predefined threshold, the corresponding node is
deemed departed and the entry evicted from the vector clock, to save space. When a node
joins the group, its local clock is appended to the vector clock. However, before this, all
local clocks must be realigned.

Managing local clocks. The local clock of a node may accumulate enough offset w.r.t.
those at other nodes to lead the former to incorrectly believe that some of the latter
are departed. This is particularly troublesome for nodes joining with a “fresh”, small
value of the local clock. The problem is solved if clocks reflect absolute time. However,
a time synchronization protocol (e.g., [82]) is not only expensive but also overkill. In our
context, it is sufficient that, upon receiving a vector clock, the local clock is set to the
largest among the clocks in the vector, therefore “realigning” the local clock with the
logical time in the rest of the system.

Message failures. As all nodes broadcast periodically and indefinitely their vector clock,
its delivery is guaranteed to be eventually performed at neighboring nodes.

Clocks has a reasonable memory footprint: it maintains a vector of pairs 〈node ID,
clock〉 that grows linearly with the network size. On the negative side, this entire data
structure must be exchanged periodically. For big networks this may require fragmenta-
tion into multiple packets, increasing overhead. Moreover, vector clocks are exchanged
even in absence of configuration changes, wasting communication. This last observation
motivates the design choices of the next protocol.

72

Chapter 5. The Group Membership Problem

5.4 Using Link State Information

At the other extreme, group membership information can be managed as “hard-state”,
i.e., a node considers the group composition as stable until it receives a message saying
otherwise. In this protocol, called Links, periodic messages to refresh state are not
required, and nodes communicate only upon group configuration changes. To detect
these, nodes rely on a lower-level neighbor discovery service, notifying the presence of
new neighbors or the departure of existing ones. Links is independent of the neighbor
discovery layer: any of the protocols in [32, 57, 85, 116, 131] can be used. Nevertheless,
these generate their own traffic, which must be accounted for in the energy expenditure.
We come back to this issue in Section 5.6, where we take into account the overhead
introduced by Contiki’s neighbor discovery [31] used in our implementation.

We take inspiration from link state routing protocols such as OSPF [92] and build each
node’s group membership view using topology information received from other nodes.
Each node maintains a topology set summarizing all links in the network. Nodes run a
topological sort on this set to determine all reachable nodes, i.e., the group members.
Figure 5.1 illustrates how changes in the topology are discovered and propagate. In the
example we assume nodes are initially connected in a chain and know all network links
(step 1). For now, we also assume reliable links: later in this section we describe how
communication faults are dealt with.

node id

D
radio link

A
{(A,B) (B,C)

(C,D)}

topology set

{(A,B) (B,C)
(C,D)}

C
{(A,B) (B,C)

(C,D)}

B
{(A,B) (B,C)

(C,D)}

DA
{(A,B) (B,C)

(C,D)}
{(A,B) (B,C)

(C,D)}
{(A,B) (B,C)
(C,D)}

{(A,B) (B,C)
(C,D)}

DA
{(A,B) (B,C)
(C,D)}

{(A,B) (B,C)
(C,D)}

C
{(C,D)}

B
{(A,B)}

drop
(B,C)

drop
(B,C)

DA
{(A,B)} {(C,D)}

CB
{(C,D)
 (B,C)}

{(A,B)
 (B,C)}

add (C,D)

add (A,B)
DA

{(A,B)} {(C,D)}

B
{(A,B) (B,C)
(C,D)}

{(A,B) (B,C)
(C,D)}

add
(B,C)
(C,D)

add
(B,C)
(A,B)

message broadcast

neighbor discovery service notification

1

2

3

4

5

step

neighbor discovery service notification

Figure 5.1: Operation of Links.

Node leaving and joining. When-
ever the underlying neighbor discov-
ery layer notifies a neighbor depar-
ture, Links disseminates link informa-
tion. For instance, in step 2 upon the
break of the link between B and C,
both nodes broadcast a link update
〈#sequence, drop, source, neighbor〉.

Upon receiving an update tuple, a
node checks its topology set to iden-
tify links that must be removed, and
waits of a short time interval, under
the assumption that the reconfigura-
tion may have generated additional up-
dates. Then, it packs the performed
topology changes in as few messages as
possible and broadcasts them. Any other receiving node repeats the process. Updates
travel far away from the node that observed the change: in step 3 this allows A to deter-
mine that C and D are no longer reachable, i.e., outside A’s group.

Joining nodes are dealt with in a similar way. When a new neighbor is discovered,
or a previously-dropped link is re-established as in step 4, the link end-points exchange
updates in the form 〈#sequence, add, source, neighbor〉. In the figure B notifies C about
the existence of the link (A,B), allowing C to reconstruct the full topology. After the
buffering interval, nodes re-propagate all changes in their topology set, e.g., in step 5 C

73

5.5. Using Distance Vectors

broadcasts an update containing (A,B) and (B,C).
A node receiving an update may determine that no changes to the topology set are

required. This happens, for instance, in the case where updates about the same links,
triggered by different nodes, are received by the same node through distinct paths. In
this case, the node does not re-propagate the update, therefore avoiding unnecessary
communication.

Message failures. Unlike Clocks, in Links broadcasts are not idempotent and there-
fore cannot be sent repeatedly. Updates are generated and broadcast only once, i.e., when
a change appears in a node’s topology set. Unfortunately, losing an update may lead to
permanent errors. For instance, imagine that the update 〈#sequence, add, A, B〉 in
step 4 of Figure 5.1 is lost. As B will never re-broadcast the update, neither C nor D will
become aware of A’s existence.

To alleviate this problem, we implemented a positive acknowledgment scheme based
on the update sequence numbers, ensuring reliable 1-hop broadcast. A node receiving an
update (e.g., A in step 5) replies with a message containing pairs 〈#sequence, ack〉 to all
updates received in a predefined time window. If the update originator (B in this case)
does not receive an acknowledgment from all of its neighbors in a given time frame, it
repeats the operation for a limited number of times, hoping that the update is eventually
received.

Links enjoys the desirable property that communication is proportional to the number
of group changes. However, the need for reliability comes at a high cost, as described in
Section 5.6. This problem is overcome by the next protocol.

5.5 Using Distance Vectors

Our last protocol, called Dist, is inspired by distance vector routing protocols such as
RIP [48]. Each node maintains a distance vector, i.e., a set of tuples 〈node ID, next hop,
minimum hop count〉 for every other node in the WSN. This information is managed
as hard state, similarly to Links, therefore communication is required only upon group
changes. Moreover, these are detected by an underlying neighbor discovery layer, as we
already described in Section 5.4 for Links.

We rely on the example in Figure 5.2 to illustrate the operation of Dist, initially
assuming reliable links. In step 1 the network is partitioned: A is out of range w.r.t.
the group formed by B, C, and D. Nodes in the latter group have already exchanged
their distance vector, represented as an array for simplicity. For example, the one on B
indicates that this node is 0 hops from itself, 1 hop from C, and 2 hops from D (reachable
through C). The ∞ denotes that A is not a member of B’s group.

Node joining. In step 2, node A approaches the group and the neighbor discovery layer
notifies both A and B accordingly. The two nodes update and exchange their distance
vectors in broadcast. B’s broadcast reaches also C, which identifies A as a new group
member, reachable through B over 2 hops. Next, C updates its own distance vector with
the proper hop count and broadcasts it (step 3), enabling D to discover A.

Node leaving. When neighbor discovery notifies a node that a neighbor is no longer
reachable, the node searches for alternative paths towards the departed node and the

74

Chapter 5. The Group Membership Problem

routes originally including it. If these exist, they include one of the remaining neighbors.
If no alternative is found, the entry is purged from the distance vector. To find out, the
node can either pull the distance vector from its neighbors or cache them locally. In our
implementation, we chose the latter to limit complexity and communication overhead.

next hop for
[A, B, C, D]

D
1

2

distance vector
broadcast

3

A

[0,∞,∞,∞]
[A, -, -, -]

hop count
[∞,2,1,0]
[-,C,C,D]

C

[∞,1,0,1]
[-,B,C,D]

B

[∞,0,1,2]
[-,B,C,C]

DA

[0,1,2,3]
[A,B,B,B]

[∞,2,1,0]
[-,C,C,D]

C

[∞,1,0,1]
[-,B,C,D]

B

[1,0,1,2]
[A,B,C,C]

DA

[0,1,2,3]
[A,B,B,B]

[∞,2,1,0]
[-,C,C,D]

CB

[1,0,1,2]
[A,B,C,C]

[2,1,0,1]
[B,B,C,D]

D
4

A

[0,∞,∞,∞]
[A, -, -, -]

[3,2,1,0]
[C,C,C,D]

C

[2,1,0,1]
[B,B,C,D]

B

[∞,0,1,2]
[-,B,C,C]

D
5

A

[0,∞,∞,∞]
[A, -, -, -]

[3,2,1,0]
[C,C,C,D]

CB

[∞,0,1,2]
[-,B,C,C]

[∞,1,0,1]
[-,B,C,D]

step

Figure 5.2: Operation of Dist.

For instance, upon A’s departure
in step 4, neighbor discovery notifies
A that B is no longer in direct radio
range. As B was A’s only link to C and
D, no alternative paths to these nodes
exists and therefore their entries are
purged from A’s distance vector. Sim-
ilarly, B searches for alternative paths
to A; its only option is a path through
C. Still, this is invalid as B previously
linked A and C. B is able to deter-
mine that the path is unsuitable by in-
specting the next-hop field in the dis-
tance vector. Thus, B correctly purges
A from its distance vector and broad-
casts an update to its neighbors. The update allows C, after searching through the
distance vector of its neighbors, to identify that no viable path to A exists. C prunes A
from its distance vector and broadcasts an update (step 5). Eventually, D also evicts A,
and the network reverts to the state in step 1.

Handling loops. To avoid counting to infinity when loops occur, Dist measures the
hop count to a destination on the shortest path. For instance, in step 3 B discards C’s
broadcast due to its direct link to A, and correctly identifies A at 1 hop. Beyond a
maximum hop count, a node is deemed unreachable.

DA

[0,1,2,1]
[A,B,B,D]

[1,2,1,0]
[A,C,C,D]

CB

[1,0,1,2]
[A,B,C,C]

[2,1,0,1]
[B,B,C,D]

Figure 5.3: Dist: finding alternative paths
over loops.

More interesting is the case of finding alter-
native paths over routing loops. Imagine a ring
configuration as in Figure 5.3. At some point
in time, the link (A,B) fails. According to the
previous reasoning, B advertises an infinite dis-
tance to A, forcing C to discover the alternative
path to A that passes through D. C advertises
the found path further, and thus B identifies A as being still a member of the group.

Message failures. For Dist to work properly, messages containing distance vectors
cannot be lost. An easy solution is to retransmit them periodically, but all advantages
over Clocks would be lost. However, unlike Links where updates are incremental, in
Dist a single retransmission can make up for an earlier loss, restoring a node’s entire
group view. Based on this observation, we employ a negative acknowledgment scheme
that guarantees that nodes eventually update their distance vector in the correct way.

A version number is associated to the distance vector of each node, incremented on
every change and piggybacked on all broadcasts. Each node broadcasts periodically a
digest, that is, a list of pairs 〈node ID, last known version number〉. When another

75

5.6. Evaluation

node receives a pair containing its identifier, it compares the received version number
to its own—the true one. The receiving node is then able to determine gaps in the
sequence, denoting that the sender missed earlier updates. If and only if this is the case,
a rebroadcast of the full distance vector is required to bring the outdated node on par.

5.6 Evaluation

In this section we evaluate and compare our three protocols, implemented in Contiki [30],
and simulated using COOJA [94].

We perform the evaluation in two settings. The first one is a synthetic scenario that
allows us to control precisely the mobility patterns inside groups. The results gathered
in this scenario, described in Section 5.6.1, are then validated in Section 5.6.2 against
simulations where the mobility patterns are instead derived from real-world GPS traces
of humans.

Goals. Our first objective is to assess the impact each protocol bears on the energy bud-
get. In principle, one could use LPL [96] or other duty-cycling mechanisms in conjunction
with our protocols, however biasing the overall energy figures. We decided to avoid this
bias by performing our experiments with the radio always on and without taking into ac-
count the contribution of idle listening. Therefore, we compare protocols in their “purest”
form, by focusing solely on the cost of message exchanges, and consequently by measur-
ing energy consumption indirectly through the total number of bytes transmitted and
received by each node:

energy
∆
= V × (ITX ×

bitsTX

b
+ IRX ×

bitsRX

b
)

For the popular TMote Sky platform we used in our experiments, V = 3 V, ITX = 21 mA,
IRX = 23 mA, and b = 250 kbps [107]. For Links and Dist, our evaluation includes
the traffic generated by the underlying neighbor discovery layer, in our case the one in
Contiki’s RIME stack [31].

Our second objective is to evaluate the protocols’ accuracy, represented by two metrics:
i) the error, i.e., the difference between the reported group size and the actual one— an
instantaneous property whose value changes while protocols are detecting group changes;
ii) the detection latency, i.e., the (average) delay between the group change and the time
at which nodes become aware of it. The two metrics are related: given an initial error
of zero, detection latency can be regarded as the time a protocol takes to bring the error
back to zero after a group change occurs.

Parameters. Key to the configuration of all protocols is the neighbor discovery latency,
i.e., the delay after which a node becomes aware of the arrival or departure of a neighbor,
which in turn may trigger a group membership change. There are two concerns that must
be taken into account, as follows.

First, while discovering a new neighbor is as simple as receiving a beacon from it,
ascertaining a neighbor’s departure is significantly more difficult. Indeed, missing a beacon
from a neighbor can be caused by movement, node crashes, or packet losses. In practice,

76

Chapter 5. The Group Membership Problem

Table 5.1: Protocol parameters.

Description Value
Beaconing period (for neighbor discovery and vector clock
exchange)

b ∈ {5, 10} s

Timeout for declaring a neighbor missing T = 120 s
Radio range 30 m

Clocks
Vector clock element size 2 B

Links
Update tuple size 3 B
Minimum timespan between retransmissions 1.5 s
Maximum retransmissions 5

Dist
Distance vector element size 3 B
Digest retransmission period D ∈ {30, 120} s

neighbor discovery services declare a neighbor missing only after no beacons are received
for a given predefined time interval T . In the discovery service we used [31], T =120 s.

Second, the value of T affects the behavior of Links and Dist, which rely directly
on neighbor discovery. However, in practice the configuration of Clocks is also affected
by T , to ensure that results are comparable. We configured Clocks to identify departed
nodes after the same timeout T = 120 s. Although the latter is managed as logical
time, as described in Section 5.3, this choice strikes the best trade-off between a fair
comparison and practical implementation concerns. We evaluate the impact of this value
in more detail in Section 5.6.1. We also match the vector clock broadcast rate with the
beacon rate of the neighbor discovery service, noted hereafter b. We evaluate scenarios
with b ∈ {5, 10} s.

The Dist protocol has an additional parameter, namely the period D with which the
digests are broadcast in our negative acknowledgment reliability scheme. We evaluate two
instances of Dist, corresponding to D ∈ {30, 120} s. We show the other simulation and
protocol parameters in Table 5.1. The results for a given simulated scenario are averaged
over 40 repetitions.

5.6.1 Synthetic Mobility Patterns

Energy Consumption

We simulate our protocols using a 25-node group moving in a single direction with a
constant velocity (1 m/s) for 3500 s, long enough to retrieve interesting insights about the
protocols’ operation. Figure 5.4 illustrates our synthetic setting. The group is initially
arranged in a grid configuration. Along the way, the group passes through a series of
checkpoints (only one is illustrated). In between two consecutive checkpoints most nodes
keep the same position within the group, except for a given, simulation-controlled number
of nodes that swap positions, e.g., A and B. The swaps take place in between checkpoints,
with the selected nodes moving at 1 m/s towards their target positions, and must complete

77

5.6. Evaluation

START CHECKPOINT STOP
1 m/s 1 m/s

A

B C

D

Figure 5.4: Our synthetic scenario for group movement.

at the destination checkpoint. At a checkpoint, a different set of nodes (e.g., C and D)
are selected and begin swapping positions. Note that, in this scenario the group members
change their positions within the group, but the group does not change its composition,
i.e., no node joins or leaves the group. Indeed, our objective in this section is to analyze
the impact of mobility alone on group maintenance. We analyze joining and leaving nodes
in Section 5.6.1, as this bears a direct impact on the accuracy of our protocols.

Our synthetic scenario allows us to define a simple measure of the churn caused by
mobility, as a combination of number of swaps and the distance between consecutive
checkpoints:

churn
∆
=

number of position swaps

distance between checkpoints
× 100

We setup simulations for all dimensions affecting churn. The first one is the distance be-
tween checkpoints, which we consider to be either 10, 50, or 100 m. The second dimension
is the number of position swaps: we take into consideration groups without swaps and
groups experiencing 1 to 5 swaps between checkpoints. The last dimension we explore
is the network density, which we control through the relationship between the grid unit
(distance between nodes) and the radio range that, as shown in Table 5.1, is fixed to 30 m.
The configurations we simulate are:

• a “sparse” one where the grid unit of 15 m allows nodes to communicate 2 hops
(grid units) away.

• a “dense” one where the grid unit of 8 m allows nodes to communicate 3 hops (grid
units) away.

The combination of all these parameters yields 64 different simulated scenarios per pro-
tocol, each repeated 40 times.

Results. Figure 5.5 compares the protocols for churn = 20, corresponding to 2 posi-
tion swaps every 10 m. In all scenarios, Links is the most energy-hungry among our
protocols, especially in the case of a dense network. Logs show that the culprit for the
high consumption is the acknowledgment scheme ensuring reliable broadcast. In fact,
approximately 40% of the traffic is due to acknowledgments and retransmissions.

Figure 5.5 also shows that the impact of the b parameter is bigger in Clocks than in
Dist. This, however, is expected. In Clocks, b represents the period with which vector
clocks are exchanged, and thus bears a direct influence on traffic, and in turn energy
consumption. Instead, in Dist b is the beacon period used for neighbor discovery, which
is only a fraction of the total traffic: the update and recovery messages in the network

78

Chapter 5. The Group Membership Problem

 0

 0.2

 0.4

 0.6

 0.8

 0 500 1000 1500 2000 2500 3000 3500

E
n
e
rg

y
 (

m
J
)

Time (s)

CLOCKS

LINKS

DIST(30)
DIST(120)

(a) dense network, b = 5 s.

 0

 0.2

 0.4

 0.6

 0.8

 0 500 1000 1500 2000 2500 3000 3500

E
n
e
rg

y
 (

m
J
)

Time (s)

DIST(30)LINKS

CLOCKS DIST(120)

(b) dense network, b = 10 s.

 0

 0.2

 0.4

 0.6

 0.8

 0 500 1000 1500 2000 2500 3000 3500

E
n
e

rg
y
 (

m
J
)

Time (s)

CLOCKS

LINKS

DIST(30)
DIST(120)

(c) sparse network, b = 5 s.

 0

 0.2

 0.4

 0.6

 0.8

 0 500 1000 1500 2000 2500 3000 3500

E
n
e

rg
y
 (

m
J
)

Time (s)

DIST(30)

LINKS
DIST(120)

CLOCKS

(d) sparse network, b = 10 s.

Figure 5.5: Cumulative energy for churn = 20, corresponding to 2 swaps every 10 m.

cannot be directly correlated to changes in the local neighborhood, yielding a reduced
influence of b.

Figure 5.5 also highlights the impact of density on energy consumption. For the dense
scenario, each broadcast (i.e., a neighbor discovery beacon or the transmission of a vector
clock, link update, or distance vector) reaches more nodes and therefore consumes more
battery w.r.t. sparser networks.

We now turn our attention to the impact of churn (i.e., mobility) on energy consump-
tion. Instead of plotting the cumulative energy for all the aforementioned 64 scenarios
covering all parameter combinations, we chose to analyze the slope ∆energy/∆time of the
energy curves (i.e., the power consumed) as a function of churn, as shown in Figure 5.6.
This approach is more concise, and captures effectively the impact of mobility on energy
consumption. These charts report results only for the time interval between 500 and
3500 s, to exclude the initial traffic required to “bootstrap” a network with an empty
group view. Also, note that the “humps” around churn = 10 (evident for Links but
present also in the other protocols) is caused by the non-linearity of our definition of
churn. For instance, churn = 8 may correspond to 4 swaps every 50 m, and churn = 10
to a single swap every 10 m.

The charts in Figure 5.6 show that Links is greatly affected by churn even in a static
dense group, and becomes a viable alternative only for quasi-static groups in the sparse
configuration. In our dense configuration, the energy consumption of Links is dominated
by the reliability scheme, due the increased likelihood of collisions. On the other hand, the

79

5.6. Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50

P
o
w

e
r

(u
W

)

Churn (m
-1

)

DIST(30)
DIST(120)

LINKS
CLOCKS

(a) dense network, b = 5 s.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50

P
o
w

e
r

(u
W

)

Churn (m
-1

)

DIST(30)
DIST(120)

LINKS
CLOCKS

(b) dense network, b = 10 s.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50

P
o

w
e
r

(u
W

)

Churn (m
-1

)

DIST(30)
DIST(120)

LINKS
CLOCKS

(c) sparse network, b = 5 s.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50

P
o

w
e
r

(u
W

)

Churn (m
-1

)

DIST(30)
DIST(120)

LINKS
CLOCKS

(d) sparse network, b = 10 s.

Figure 5.6: Power consumed as a function of churn.

performance of Clocks and Dist is very similar for b = 5 s, where the short periodicity
(of beacons and vector clock exchanges) affects directly the overhead. For b = 10 s,
instead, Dist has an extra overhead caused by the exchange of distance vectors and their
recovery, the latter clearly more marked in the dense scenario.

Error and Detection Latency

As mentioned at the beginning of Section 5.6, detecting node departure is more difficult
than detecting node join. Consequently, we design our scenario around node departures
and use it to measure accuracy. We start from a 25-node network displaced randomly in
a 100×100 m2 area, with a radio range of 30 m. The network bootstraps and identifies
all group members. Then, at 300 s, a number of randomly-selected nodes are suddenly
separated from the rest of the network, creating a new partition. This actually represents
a worst-case w.r.t. the more realistic scenario where nodes move away, instead of being
instantaneously relocated, because in the former case the departure can be discovered
gradually. We perform simulations where 25%, 40%, and 60% of the nodes are separated
from the main group.

Results. Figure 5.7 illustrates the accuracy of our protocols by showing i) how the error
changes over time, and ii) the detection latency, i.e., the time necessary to reconstruct a
correct group view on all nodes. We show only the experiments with b = 10 s, as those
with b = 5 s yield similar results.

Links and Dist both rely on the neighbor discovery layer for detecting the departed

80

Chapter 5. The Group Membership Problem

 0

 10

 20

 30

 40

 50

 60

 300 350 400 450 500

E
rr

o
r

(%
)

Time (s)

latency

propagationdiscovery

CLOCKS

LINKS
DIST(30)

DIST(120)

(a) 25% nodes leave.

 0

 10

 20

 30

 40

 50

 60

 300 350 400 450 500

E
rr

o
r

(%
)

Time (s)

latency

propagationdiscovery

CLOCKS

LINKS
DIST(30)

DIST(120)

(b) 40% nodes leave.

 0

 10

 20

 30

 40

 50

 60

 300 350 400 450 500

E
rr

o
r

(%
)

Time (s)

latency

propagationdiscovery

CLOCKS

LINKS
DIST(30)

DIST(120)

(c) 60% nodes leave.

Figure 5.7: Error and detection latency vs time (b = 10 s).

nodes. Nevertheless, as discussed earlier, this layer declares a neighbor as unavailable
only upon a timeout, whose value in the RIME stack is T = 120 s. This explains the
constant error in the initial part of curves: only at 420 s the nodes, alerted by the neighbor
discovery layer, begin the propagation of information of the group change.

The same timeout is used for Clocks, but in this case there are two interesting
differences: i) in Links and Dist, no action other than local neighbor discovery is taken
until the timeout T expires. Instead, in Clocks the nodes continuously propagate their
vector clocks with a period b < T , therefore actively and continuously cooperating in
reconstructing the global view; ii) recall that in Clocks the (logical) clocks in the network
continuously realign themselves to the largest one. Therefore, it is as if “time runs faster”
for Clocks, reaching the deadline set by T faster than in physical time.

The net effect of the considerations above is that, in all configurations of Figure 5.7,
Clocks is much faster than the other protocols in converging to a consistent group view.
However, this should not be taken as a direct comparison given that, in the absence
of better choices, we use the same T = 120 s for both physical and logical time, and
therefore a direct comparison is somewhat biased. In principle, one could set the value of
T appropriately for Links and Dist, to reduce their initial “waiting time”; indeed we have
simulations for T = 30 s which show a much shorter initial plateau for these protocols.
Still, because of the first consideration above, during this time Clocks actively works
to reconcile the global view: this is an intrinsic property of the protocol that may help
speed up convergence w.r.t. Links and Dist when these use relatively high values of T .
Remember that if T is too small, packet losses are mistaken for neighbor departures.

Figure 5.7 shows another interesting difference between Clocks and the other two
protocols, in terms of how the network converges to the same global view, ultimately
determining the group detection latency. Detection latency is a function of the number of
hops in the network, but the delay at each hop depends on the protocol. In Clocks, the
global view of all nodes is maintained in synchronous steps: as evidenced in the figure,
convergence occurs by an alternation of plateaus (where nodes wait for T to expire) and
bursts of node evictions. Instead, the other two protocols propagate the global information
entirely asynchronously, at a faster pace but with longer tails.

81

5.7. Applying RUTh to Group Membership

5.6.2 Real-world GPS Traces

We now seek validation of the results in our synthetic scenarios through experiments on
real-world GPS traces. We use the CRAWDAD KAIST data [101] representing daily
records of students in a university campus over 3 months. We pick randomly 25 out of
the 92 traces, and scale them into a 300×300 m2 area. We use b = 10 s and a 30 m
radio range. Due to the nature of the traces, the scenario is very challenging because

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000
 0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20
 22

E
n

e
rg

y
 (

m
J
)

N
e
ig

h
b

o
rh

o
o
d
 c

h
a
n
g

e
s

Time (s)

LINKS DIST(30)

DIST(120)
CLOCKS

neighborhood changes

(a) Cumulative energy.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000
 0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20
 22

E
rr

o
r

(%
)

N
e

ig
h
b
o
rh

o
o
d

 c
h
a
n

g
e
s

Time (s)

LINKS
DIST(30)

DIST(120)
CLOCKS

neighborhood changes

(b) Error

Figure 5.8: Experiments with the
real-world GPS traces in [101].

i) nodes are continuously moving, i.e., the system
never stabilizes; ii) nodes move of their own volition,
not as a group: therefore, the ratio of joining and leav-
ing nodes is much higher than in the applications we
target.

The energy consumption is reported in Fig-
ure 5.8(a) along with the average number of neighbor-
hood changes. We notice trends similar to Figure 5.5:
an excessive overhead for Links, similar performance
of Clocks and Dist, a slightly better performance
of Dist (120) due to the lighter recovery traffic.

More interesting is the error, reported in Fig-
ure 5.8(b) along with neighborhood changes. Because
nodes are continuously moving at a high rate the error
never stabilizes at zero, unlike the experiments in Sec-
tion 5.6.1. This is also the reason why the detection
latency is not shown, as it cannot be computed. Nev-
ertheless, the chart is interesting because the three
protocols exhibit very different behaviors. Links is
able to reduce progressively the error and stabilize it
around 10-15%. In contrast, both versions of Dist
cannot keep up with the mobility rate, although they
have the same b and T configuration of Links: their

error appears to grow with time. The best performance is achieved by Clocks, which
keeps the error very close to zero despite the high mobility.

5.7 Applying RUTh to Group Membership

In this section, we discuss the opportunity for integrating RUTh, our neighbor discovery
protocol, with the protocols for monitoring group membership. At first, one can be
tempted to employ RUTh as the foundation of one of the two reactive protocols, i.e., Dist
and Links. Indeed according to their design, these protocols both exploit an underlying
neighbor discovery protocol.

Unfortunately, neither RUTh, nor many state-of-art protocols can immediately be
used as an underlying building block for complex communication demands. The reason
is that most of the neighbor discovery protocols focus on the time during which nodes are
isolated. Consider for instance, the behavior of RUTh and other similar protocols. At
any point in time a node can either i) broadcast a beacon, ii) sample the channel for

82

Chapter 5. The Group Membership Problem

activity, iii) sleep. In this operation, a node can only receive data when it is sampling the
channel. Intuitively, communication is not always possible and thus there is an inherent
limitation on the protocols that can be built on top of neighbor discovery. This is of
particular relevance to the group membership protocols that all exploit broadcasts as, for
broadcasts to succeed, it requires all receiving nodes to be sampling at the same time.

If the higher-level application (e.g., maintenance of group membership information)
requires communication that ultimately leverages on a MAC such as [96]. As most neigh-
bor discovery protocols (and also RUTh) are implemented at the same level as MACs
are, their operation is mutually exclusive. Therefore, once contacts are detected, the ra-
dio operation must be switched from neighbor discovery to MAC mode, although a form
of periodic beacon broadcasts may be still required by protocols such as Links and Dist
to manage one-hop neighborhoods.

Interestingly, as RUTh employs the same receive checks as the LPL MAC layer in
TinyOS, we can view the mode switch as a mere extension of the RUTh intervals in
which nodes are sampling the channel. Consequently, we can apply all the reasoning in
Chapter 4 regarding the optimal detection latency and lifetime. Using the RUTh-specific
notation, the extension of the sampling intervals implies that the duration of active is
equal to the protocol epoch T . With this constraint, we can reason along the same lines
with and modify the problem in Section 4.4.1 to determine the optimal configuration
using the following formalism:

minimize: Q (τ, s)

subject to: active = T

τ ≥ τmin

In the previous problem, we select the configuration of 〈τ, s, T 〉 that guarantees all neigh-
bors to be discovered within a latency L = T , minimizes the energy consumption Q and
sets an additional constraint on the minimum beacon duration τ . The dual of the prob-
lem can also be applied, that is, we can imagine a configuration that trades-off detection
latency to meet constraints on the node lifetime.

5.8 Discussion and Outlook

In this chapter we tackled the problem of monitoring groups of mobile nodes equipped
with WSN devices, a problem that has hitherto received little attention. We presented
and compared three protocols covering a big fraction of the solution space. Our study
indicates that Clocks is resilient to the changes induced by mobility, has comparatively
low energy demands and quick convergence time. Clocks is the protocol of choice if the
sole goal of the network is to monitor groups. However, in many mobile WSN applications
a neighbor discovery service is necessary for other purposes. For instance, in our applica-
tions it is used to detect proximity to hazards or log “contacts” with other mobile nodes.
If this is the case, the Dist protocol allows one to build upon this already-present func-
tionality with promising results: Dist has energy demands comparable to Clocks (and
even lower for slowly-changing groups) and, if properly configured, can achieve similarly

83

5.8. Discussion and Outlook

fast convergence, although this aspect must be studied further. This issue is already on
our research agenda, along with a concrete test of Clocks and Dist in the real-world de-
ployments we concisely discussed in Section 5.1, namely, the care of Alzheimer’s patients,
and the study of the social behavior of roe deer.

84

Chapter 6

Distributed Monitoring of
Application Invariants1

Cyber-physical systems, including wireless sensor networks (WSNs), foster decentraliza-
tion of sense-and-react systems, increasingly pushing the application intelligence inside
the network. Therefore, the task of monitoring the system invariants to ensure safe be-
havior also becomes inherently distributed. In this chapter we present DICE, a system
enabling WSN-based distributed monitoring of global invariants of physical processes.
A DICE invariant is expressed as a first-order logic formula over the state of multiple
sensing/actuating units, e.g., the expected state of actuators based on given sensed envi-
ronmental conditions. The modular design of our system supports two alternatives for the
distributed protocol detecting invariant violations, each targeting scenarios with different
environment and network dynamics. We characterize and compare the two protocols us-
ing large-scale simulations and a real-world testbed. Our results indicate that invariant
violations are detected in a timely and energy-efficient manner. For instance, in a 15-hop
network, violations are detected in less than a second and with only a few packets sent
by each node.

6.1 Introduction

The tight link between computational and environmental elements characterizing Cyber
Physical Systems (CPS) fosters their use both to monitor and to drive physical control
processes [111]. In this context, Wireless Sensor Networks (WSNs) can be used as a
minimally-invasive tool to detect deviations from a specified “safe” behavior. Most often,
this behavior is expressed by global invariants over the state of different computational
units attached to sensors or actuators.

Example scenarios and motivation. Consider a demand-driven building ventilation
system. Although it represents a setting in which nodes are fixed, this scenario represents
a simple example advocating for global invariants. In this system, sensors feed periodic
CO2 and pressure readings to a Heating, Ventilation, and Air-conditioning Controller
(HVAC). This operates fans in the building to maintain the inhabitants’ comfort. The

1An early version of this chapter appeared in [27].

85

6.1. Introduction

relation between the state of sensors and actuators dictated by control laws in the scenario
above can be specified as an invariant:

(I4) When the CO2 readings are above a threshold, there must be at least one
active fan.

Nevertheless, monitoring the correct HVAC operation is subject to further constraints.
For instance, a non-uniform pressure profile in the building may indicate a malfunctioning
HVAC. This condition can be checked as:

(I5) The difference in pressure between any two sampling points must remain
below a threshold.

The invariants in the scenarios above are i) global, i.e., they cannot be evaluated based
on the state of a node alone, and ii) they possibly change over time.

Similar needs for distributed monitoring of global invariants are likely to arise in an
increasing number of application scenarios (e.g., logistics, factory automation, and health-
care [111]). Some of these, such as the cold-chain management application illustrated in
Chapter 3, entail mobile nodes. Currently-used RFID tags only allows tracking the lo-
cation of the item at specific points along the supply chain. WSNs devices may enable
continuous, fine-grained monitoring of the storage conditions, both during transportation
and at warehouses. When traveling, the system shall autonomously monitor invariants
stating, e.g., the correct operation of a refrigeration system in response to different envi-
ronmental conditions. The invariants to monitor may change as a function of the specific
transportation means along the supply chain.

CPS technology, and WSNs in particular, foster increasing degrees of decentralization
in sense-and-react systems. As the application intelligence is increasingly distributed
into the network, and empowered with increasing degrees of autonomy in affecting the
environment, the mechanisms ensuring its correct operation under any circumstance and
coping with various degrees of mobility must also become distributed. This latter vision
motivates our work.

Contribution. We present DICE (“Distributed Invariant CheckEr”), a system to mon-
itor global invariants in a distributed fashion, using WSN nodes. Solving this problem
in general requires global knowledge of the system state [41] and is further complicated
by the resource-scarce nature of WSNs. Therefore, we focus on invariants expressed as
first-order logic formulae whose predicates, quantified over individual nodes, are however
constrained to simple Boolean expressions or linear inequalities. This type of invariants
strikes a balance between practical usefulness and resource limitations.

For this type of invariants, we identify the minimal set of global state elements needed
for evaluation at each node—the local view. Based on this concept, we design, implement,
and evaluate two distributed protocols for monitoring violations in scenarios with different
environment and network dynamics, and with different degrees of redundancy in detection:

• our Flat protocol allows any node to detect invariant violations, achieving increased
failure tolerance against node crashes. It is particularly efficient for monitoring
slowly-changing or mobile processes;

86

Chapter 6. Distributed Monitoring of Application Invariants

• on the contrary, our Tree protocol only allows a subset of nodes to detect invari-
ant violations, but it does so very efficiently even in scenarios with high churn in
application data. It explicitly targets scenarios in which nodes are fixed.

Both solutions realize invariant monitoring efficiently: in a 225-node network, both Flat
and Tree detect violations in less than a second and with only a few packets sent per
node.

Roadmap. Section 6.2 describes the language to specify global invariants. Section 6.3
analyzes the types of invariants we target and defines the local view concept. We first
tackle the problem from the perspective of fixed networks. Specifically, in Section 6.4 we
leverage on the notion of local view to describe the two protocols in the context of static
nodes. Section 6.5 illustrates the DICE tool-chain. Section 6.6 reports quantitatively
on the performance and correctness of the two protocols in static networks, using both
simulations to verify the behavior in large-scale networks and a lab testbed to profile the
traffic patterns using real-world sensed data. Mobility comes back into play in Section 6.7,
where we argue that although Flat can cope with mobility, an integration with one of
the group membership algorithms in Chapter 5 is desired in the case of highly dynamic
networks; in the same section, we additionally report on results obtained while experi-
menting with such an integration on real motes. Section 6.8 contains a concise survey of
related work. Section 6.9 ends the chapter with brief remarks.

6.2 Specifying Invariants

We describe the constructs of the declarative language, inspired by first-order logic, for
specifying invariants in DICE.

Attributes. Physical processes are monitored through WSN nodes, which directly report
either sensed environment data or the state of actuators through attributes. These are
the link between the WSN node and the physical process under control. Each node is
characterized by one or more attributes, each a typed mapping between a name and value.
Different nodes can have different attributes. DICE supports three kinds of attributes.
Constant attributes are set by the programmer and remain unchanged. With reference
to the HVAC scenario,

attribute int type = FAN;

declares an attribute representing the type of node, in this case one controlling a fan.
The value of periodic attributes, instead, is automatically updated by the system at a
programmer-specified rate. For instance,

attribute int co2 every 3;

declares an attribute for a CO2 reading, whose value is refreshed every 3 s. However,
polling the value of slow-changing attributes can be inefficient. Therefore, we also allow
declarations such as

attribute bool isActive on event;

where an update to the active status (e.g., of a fan) is triggered by the control logic,
outside DICE, as discussed in Section 6.5.

87

6.3. Monitoring Invariants: Local View

Invariants. DICE invariants are first-order logic formulae whose variables are WSN
nodes quantified universally or existentially. The @ operator allows one to select which
attribute of a given node is referred to in the invariant. As an example, the invariants in
the introduction can be specified as follows:

invariant I4 {forall m: type@m = CO2 and co2@m > T
-> exists n: type@n = FAN and isActive@n}

invariant I5 {forall m,n: pressure@m - pressure@n <T}

Besides the quantifiers forall and exists, the usual logical operators and, or,
not also apply. Invariants can also refer to a specific node by using its identifier, as in
co2@52. DICE invariants can have an arbitrary number of node variables, limited only
by memory and packet sizes.

Transient violations. Short-term violations are inevitable in some scenarios. For in-
stance, should I4 be applied on a per-room basis, a gathering of people for a scheduled
meeting may trigger a violation before the fan is activated. However, if the HVAC oper-
ates correctly, the CO2 readings should eventually return below T. Using the tolerate
clause, DICE allows to specify transient deviations along two dimensions: time and rep-
etitions. For instance,

invariant I4 {forall m: type@m = CO2 and co2@m > T
-> exists n: type@n = FAN and isActive@n}
tolerate 10 min for 5 times in 24 h;

is a variation of invariant I4 where the CO2 readings are allowed to cross the threshold for
at most 10 minutes, supposedly enough for the HVAC to react. However, this transient
violation should not happen repeatedly, as this may indicate a failure in the control
system. Thus, the invariant also specifies that transient violations are allowed at most
five times per day, the expected frequency at which meetings occur in a room.

6.3 Monitoring Invariants: Local View

Global invariants are specified in DICE as a logical composition of predicates over node
variables, that is:

Q1x1, . . . Qrxr : P1(x1, . . . , xr) ◦ . . . ◦ Ps(x1, . . . , xr)

where Qi ∈ {∀,∃} (1 ≤ i ≤ r), Pj(x1, . . . , xr) (1 ≤ j ≤ s) is a predicate whose truth value
depends on the attributes values at nodes x1, . . . , xr, and ◦ ∈ {∧,∨,→}. We focus on
two types of invariants characteristic of our target applications:

• in Type I invariants, each predicate involves only one node variable. An example
is invariant I4, where the antecedent only involves node m, and the consequent only
deals with node n. Type I invariants can be equivalently written as:

Q1x1 : P1(x1) ◦ . . . ◦Qrxr : Ps(xr), r = s.

• Type II invariants possibly involve multiple node variables, but there is only one
predicate (i.e., s = 1), as in invariant I5 involving both node m and n. Type II
invariants can be equivalently written as:

88

Chapter 6. Distributed Monitoring of Application Invariants

Q1x1, . . . , Qrxr : P (x1, . . . , xr).

In practice, however, undesired deviations from specified behaviors are often ex-
pressed as comparisons against known thresholds [70], as in our motivating scenarios
in Section 6.1. Therefore, we focus on invariants where P (x1, . . . , xr) is a Boolean
predicate or an inequality f(x1, . . . , xr) < T or f(x1, . . . , xr) > T , where f is a linear
function of the attribute values at x1, . . . , xr and T is a numerical constant.

These two types of invariants cover a large fraction of the application landscape for
DICE, including the motivating scenarios in the introduction. Moreover, as evident in
the rest of the chapter, their monitoring already entails a significant degree of complexity.
More sophisticated invariants (e.g., involving aggregates based on values at multiple nodes
or non-linear expressions) are the subject of our ongoing work.

Our goal is to design a solution that detects violations if and only if they occur, as long
as nodes do not fail. Detecting invariant violations is an instance of predicate detection
in distributed systems, which generally requires global knowledge of the system state [41],
and is therefore hard to achieve in the resource-scarce, unreliable setting of WSNs.

In this chapter, we reduce the amount of global information necessary at each node
by properly defining its local view, i.e., the minimum amount of information enabling
local detection of global violations. Next, we describe how the local view is populated
at each node based on the two aforementioned invariant types. Maintenance of the local
view at each node, however, must be complemented by an efficient dissemination of its
relevant changes. This latter aspect, which in our approach is orthogonal to the former,
is discussed in Section 6.4 where we illustrate two distributed protocols striking different
trade-offs w.r.t. the characteristics of the monitored phenomena, the resilience to node
and communication faults, and the fraction of nodes able to detect violations.

6.3.1 Type I Invariants

Intuition. For simpler illustration, consider a slight variation of invariant I4 where only
universal quantifiers are used, i.e.:

(∀m : type@m = CO2 ∧ co2 @m > T)⇒
(∀n : type@n = FAN ⇒ isActive@n)

To detect violations of Type I invariants, we take inspiration from the notion of commu-
nication silence [132]. Every node attached to a CO2 sensor does not send any information
to other nodes as long as its reading is above T . The rest of the system implicitly takes
the “collective silence” of CO2 nodes as an indication that the predicate they monitor
holds true. Similarly, nodes controlling a fan do not send any information as long as the
fans are active, which implicitly indicates that every such node is currently operating the
fan. Therefore, if the entire system remains silent, the invariant is complied with.

Whenever either the CO2 reading drops below T or a fan becomes inactive, the corre-
sponding node notifies this event. Breaking the silence reveals a change in the truth value
of some predicate. Since the two predicates in I4 are joined by implication, the invariant

89

6.3. Monitoring Invariants: Local View

is violated if a notification arrives from a node controlling a fan (i.e., there exists at least
one inactive fan) and CO2 nodes remain silent (i.e., their reading is still above threshold).

Algorithm. The technique above is applicable to any Type I invariant. We use timeouts
to infer if a node monitoring a given predicate remains silent. Consider predicates of the
form ∀xi : Ph(xi). We identify the nodes where Ph is not false because of the constraints
on constant attributes, e.g., a node monitoring type@n = FAN ∧ isActive@n. Every such
node remains silent as long as Ph is true. Then, according to the logical operators con-
necting two predicates ∀xi : Ph(xi) and ∀xj : Pk(xj), a violation is detected when i) the
two predicates are in disjunction and both node xi and xj send a notification; or ii) the
two predicates are in conjunction and either node xi or xj sends a notification. In all
other cases the invariant is complied with.

Existential quantifiers and logical implications are straightforwardly mapped to the
cases above using known transformations of logical formulae. Hence, the local view for
Type I invariants includes only a Boolean flag for every predicate in the invariant. The
flag denotes if, since the last timeout, any node has notified the others that the predicate
it is monitoring is no longer true.

Note that a node remaining silent may also indicate failure of that node. There is no
remedy to this if the failed node is the only one allowing a violation to be detected. This
is unlikely in the scenarios we target, where WSN nodes are expected to be deployed in
large numbers, thus providing redundancy, and the monitored phenomena span significant
portions of space, involving several nodes.

6.3.2 Type II Invariants

Intuition. To detect violations of invariant I5, one should consider all combinations of
pressure readings at any two nodes. This is unnecessary if one identifies the worst-case
combination, i.e., the two nodes corresponding to the highest pressure difference. If this is
below the threshold, then the invariant is complied with, because any other pair of nodes
has a smaller pressure difference. Otherwise, the invariant is violated. In the case of I5,
the highest pressure difference is determined by the two nodes sensing the maximum and
minimum pressure.

Algorithm. The intuition above can be generalized to any Type II invariant. Initially,
let us consider universally quantified invariants ∀x1, . . . , xn : f(x1, . . . , xn) < T . First,
we determine if the attributes at nodes x1, . . . , xn are positively correlated with f , i.e.,
if the evaluation of f increases when the attribute value increases. For instance, in I5
pressure@m is positively correlated. Similarly, pressure@n is negatively correlated, i.e.,
a decrease causes an increase in f . Based on this information, each node builds a local
view containing the network-wide maximum (minimum) values for positively (negatively)
correlated attributes. This is sufficient to determine an invariant violation. The same
technique is straightforwardly applied when the invariant requires f to be above a thresh-
old.

When node variables are existentially quantified, we flip the reasoning. Consider
∀m,∃n : x@m + y@n < T . Given the network-wide maximum of x, this invariant is
satisfied if we can find a node n where x@m+ y@n < T . To determine the worst-case

90

Chapter 6. Distributed Monitoring of Application Invariants

combination of nodes m and n, it is sufficient to identify the network-wide minimum value
for y. If this value is such that x@m + y@n ≥ T when x is maximum, there exists no
other node in the network where the value of y satisfies the invariant, therefore we detect
a violation.

6.4 Local View Dissemination: Protocols

In this section we describe the design of two protocols for efficiently disseminating the
local view updates enabling global invariant evaluation in DICE. Nevertheless, before we
illustrate the protocols details we need to briefly put them in context w.r.t. the architecture
of the DICE run-time, as local view dissemination depends on other system components.

6.4.1 Run-time architecture

local view
manager

updates

evaluation
manager

uses

uses

local
view

invariants

local
attributes

dissemination
manager

sends
updates

receives
updates

reads

network

Figure 6.1: The architecture of the DICE run-time.

Figure 6.1 illustrates the main compo-
nents of the DICE run-time. At the core
is a data structure implementing the lo-
cal view as defined in Section 6.3. For
each attribute, the local view includes
the set of values necessary to the evalua-
tion of the corresponding invariants. Ev-
ery value is associated to a tuple 〈name,
value, source, timestamp〉 that binds the
value to a specific attribute name. The
source and timestamp are used to ensure correct update of the local view. The evalu-
ation manager checks the local view against user-specified invariants, determining their
violations. The local view manager determines the appropriate changes to the local view,
based either on value changes of the local attributes, or updates received through the net-
work. The latter are performed according to the protocol in the dissemination manager.
A single protocol is used to disseminate local view updates, regardless of whether they
belong to Type I or Type II invariants.

Evaluation manager. A change in the local view triggers the evaluation manager to
check if any of the monitored invariant is violated. If the current local view indicates a
violation and the invariant does not include a tolerate clause, the evaluation manager
immediately generates a notification. Otherwise, the evaluation manager starts a timer
with duration equal to the tolerance period. If a subsequent local view change brings the
invariant back to compliance before the timer expires, no violation is notified. Otherwise,
the violation is notified as if it were detected at the end of the tolerance period.

Local view manager. Changes to the local view are determined by the local view
manager and are caused either by a local update (i.e., an attribute value change) or by
a remote update (i.e., attribute value changes coming from the network). In turn, these
changes may require further dissemination of updates. Figure 6.2 exemplifies the interplay
of the local view manager and the dissemination manager, focusing on the local processing
performed by the former on a given node. Here and in the rest of this section we focus

91

6.4. Local View Dissemination: Protocols

attribute
value

local view

9,3
2 network

<9,4>

9,3
2 network

9,3
4 network 9,4

4 network

9,4
4 network 9,4

4 network
<9,2>

9,4
4

9,7
4 network

<9,7>

<9,7>

1b1a

2b2a

3b3a

4b4a network

Figure 6.2: Local view processing for a invariant whose signature requires monitoring two network-wide
maximum. Value changes are shown in bold.

on a sample monitored invariant ∀m,n : x@m+ x@n < T , which requires a local view
including the two network wide-maximum of x. Four cases are possible:

1. a local value update does not affect the current local view (1a). In this case, no
further processing is needed. The local view on the other nodes can indeed remain
the same, and no communication is required (1b);

2. a local value update must replace a value in the local view (2a). In this case, the local
view is updated and propagated to the rest of the network through the dissemination
manager (2b);

3. the values in a local view update from the network do not affect the current local
view (3a). No further processing is required in this case, as the local view remains
unaltered (3b);

4. a local view update from the network carries at least one value that must replace an
entry in the current local view (4a). The new values are merged into the local view
and the latter is disseminated to the other nodes (4b). Note that, in this case, the
network has an inconsistent view on the global maximum, and further dissemination
is required to converge.

Dissemination manager. The rest of this section illustrates two protocols to dissemi-
nate local view updates—i.e., determining how they are propagated inside the “network”
bubbles of Figure 6.2. The Flat protocol, described in Section 6.4.2, is designed to cope
with failure-prone scenarios. In Flat, all nodes can detect violations, achieving increased
reliability through redundancy. The Tree protocol, described in Section 6.4.3, is opti-
mized for scenarios with high variability in the application data. In these scenarios, Tree
significantly reduces the communication overhead w.r.t. Flat, at the expense of limiting
the detection of violations only to a subset of nodes. Finally, Section 6.4.4 describes how
these protocols deal with the challenges posed by asynchronous communication.

92

Chapter 6. Distributed Monitoring of Application Invariants

6.4.2 Flat

step 1

9,6
4

9,6
6

9,6
9

9,6
6

9,6
5

9,6
5

at
tri

bu
te

va
lu

e

local view

9,7
7

9,6
6

9,6
9

9,6
6

9,6
5

9,6
5

A B C

D E F

step 2

9,7
7

9,7
6

9,6
9

9,7
6

9,6
5

9,8
8

step 3

9,8
7

9,8
6

9,8
9

9,8
6

9,8
5

9,8
8

step 4

9,8
7

9,8
6

8,4
4

9,8
6

9,8
5

9,8
8

step 5

9,8
7

8,6
6

8,4
4

9,8
6

9,8
5

8,4
8

step 6

A B C

D E F

A B C

D E F

A B C

D E F

A B C

D E F

A B C

D E F

Figure 6.3: Dissem-
inating local view up-
dates in Flat.

To allow any node to detect violations, all nodes must eventually
agree on the most recent local view. To achieve this, we disseminate
every local view update to the entire network. This functionality re-
sembles well-known dissemination protocols [68, 69]. However, these
are usually designed to propagate data from a single source, one
data at a time. In DICE, every node is a possible source and multi-
ple dissemination processes triggered at different nodes may overlap
in time. This prevents off-the-shelf re-use of existing protocols.

To tackle the problem in our specific scenario, we adapt the po-
lite gossiping technique [68]. The dissemination manager periodically
broadcasts the current local view. It also receives local view updates
from other nodes, storing them in a network cache containing the
last received local view. As long as the network cache is the same as
the local view, the broadcast period is exponentially increased up to
a maximum τh to reduce traffic, as the network has reached conver-
gence. Otherwise, the dissemination manager informs the local view
manager of new data from the network. The local view manager
determines whether the received information should be merged with
the current local view, according to the processing described in Sec-
tion 6.4.1. If so, re-propagation occurs with the broadcast period re-
set to the minimum τl, to speed up dissemination. A node suppresses
the periodic broadcast if at least γ neighbors already broadcast the
same information. τl, τh, and γ are protocol parameters.

Value insertion. We deal with concurrent dissemination processes
from different nodes by merging local view updates as they propa-
gate. Consider Figure 6.3 as an example, again with the monitored
invariant ∀m,n : x@m+ x@n < T . We assume all nodes have the
same local view 〈9, 6〉 in step 1. In step 2, a local value change
at node A causes the propagation of an updated local view, which
reaches node B and D. While these further rebroadcast the update,
the value of x at F jumps to 8, as in step 3. The two updates orig-
inating at A and F “compete” for the propagation. We stop the
propagation of the smaller update from A wherever the larger up-
date from F has already been processed. This would happen at E, if
the update from F is received before those from B or D. As a result,
the larger value overcomes the other, providing eventual consistency
of local views, as in step 4.

Note that, if we were to use “as is” an existing dissemination protocol (e.g., DIP [69])
every node would disseminate either of the two new values in Figure 6.3. Indeed, these
protocols are based on a globally-consistent version number. The dissemination of the two
updates would occur with the same version number. Without the ability to process local
view updates as they propagate, intermediate nodes would not discern which of the two
values should be disseminated. To address inconsistencies, the source of the larger value

93

6.4. Local View Dissemination: Protocols

may eventually recognize that its update did not propagate throughout the network, and
repeat the dissemination. However, this causes higher network overhead.

Value deletion. The above processing is not sufficient for nodes whose state belongs to
the local view. The last two steps of Figure 6.3 illustrate the problem. In step 5, the value
of x at C changes from 9 to 4. Contrary to the previous case, here one of the values in
the local view disappears as a consequence of a state change. In this case, based on local
information, C determines that the new maximum are 8 and 4. If this local view at C,
LVC , were propagated as described above, the system would reach an inconsistent state.
Indeed, B and F would infer from LVC = 〈〈x, 8, F, t4〉, 〈x, 4, C, t5〉〉, and t5 > t4 that the
value of x at C dropped from 9 to 4. However, once this information is merged with
their local views, yielding LVB = LVF = 〈〈x, 8, F, t4〉, 〈x, 6, B, t0〉〉 and rebroadcast, the
receiving A, D, E would obtain no information on the last update at C, and incorrectly
conclude that 〈x, 9, C, t1〉 (t1 > t0) is still valid.

We address the problem by appending an eviction entry to local view updates, en-
abling the removal of stale values. The entry is a tuple 〈attribute, source, timestamp〉
re-propagated at each hop along with the local view update. In our example, the eviction
entry 〈x,C, t5〉 allows nodes to determine that entry 〈x, 9, C, t1〉 is no longer valid, and
eventually converge to 〈〈x, 8, F, t4〉, 〈x, 7, A, t2〉〉.

We use the periodic broadcasts of the current local view also to determine if a node
is unreachable and its state should be evicted. When a node A misses a given number of
broadcasts from a neighbor B contributing to the local view, A assumes that B crashed.
Then, A recomputes its local view and propagates it along with an eviction entry, with the
same structure and processing discussed earlier. In this case, however, the entry 〈∗, B, t〉
causes the eviction of all attribute values provided by the crashed node. A node joining
(or re-joining after failure) starts with an empty local view, eventually made consistent
through the periodic broadcast process.

6.4.3 Tree

In scenarios characterized by high variability in application data, the Flat protocol is
likely to exhibit a high communication overhead. Therefore, in the Tree protocol we
leverage a tree-shaped routing topology to propagate local view updates. Note however
that, unlike in data collection protocols, in our case the root is not physically attached to
a base station. Indeed, the tree overlay is meant only to provide structure to an otherwise
flat network, to improve on communication overhead; further, the root is actually expected
to change, to provide load balancing and therefore increased WSN lifetime.

In Tree, each node pushes updates only upwards, towards the root, rather than
to the entire network. As shown in Section 6.6, with frequent local view updates this
yields a significant reduction in network traffic w.r.t. Flat. On the other hand, with this
technique only the root of the tree is guaranteed to obtain the information necessary to
detect violations. The other nodes may detect violations only whenever the local view
updates determining the violation are generated within their own subtrees.

Value insertion and deletion. Figure 6.4 shows an example of update dissemination in
Tree. The monitored invariant again requires a local view including the two network-wide
maximum. Nodes maintain in their network cache one entry for each of their children, as

94

Chapter 6. Distributed Monitoring of Application Invariants

illustrated for parent A and children B and C in step 1. This entry stores the most recent
local view update from the corresponding child, representative of the state of the subtree
rooted at it. In step 2, a local value change at node B causes a modification to B’s local
view, and the subsequent propagation towards the parent. Propagation occurs after a
short timeout that allows nodes to process local view updates possibly coming from their
own children, further reducing network overhead. Upon receiving the update, A rebuilds
its local view based on the content of the network cache and the local attribute values,
as in step 3, and propagates the update further, as the local view has changed.

7,3

9,27,3

9,6
4

6,3
6

9,2
9

attribute
value

local view
A

B C

6,3 9,2

network

cache

9,6
4

7,3
7

9,2
9

A

B C

6,3 9,2

9,7
4

7,3
7

9,2
9

A

B C

step 1

step 2

step 3

9,7
4

7,3
7

3,2
3

A

B C

7,3 9,2

step 4

3,2

7,4
4

7,3
7

3,2
3

A

B C

step 5

Figure 6.4: Dissem-
inating local view up-
dates in Tree.

The processing for deleting values from the local view is similar.
In step 4, a local attribute value drops at node C. This causes a
local view update at C, and the corresponding propagation towards
the parent A. This again recomputes the local view based on the
new content of the network cache and the local attribute values, as
in step 5, and propagates the update further because of the changes
in the local view.

The key difference, easily seen by comparing Figure 6.3 and 6.4,
is that Tree does not bring convergence of the entire network to
the same local view—quite the opposite. Indeed, local view updates
are directed only towards the root, while in Flat they spread along
arbitrary paths in the network. This difference is key to the im-
provements in communication overhead enjoyed by Tree, which are
however counter-balanced by the fact that only a subset of the nodes
(possibly only the root) is guaranteed to detect violation. Moreover,
the overlay topology used by Tree makes this protocol less robust
in the presence of communication or node failures and induces an un-
even load on nodes. Next, we illustrate the mechanisms we employ
to tackle these issues.

Network cache consistency. Changes in the routing topology,
packet losses, and node failures may render the content of the net-
work cache no longer consistent with the system state. This may
cause both false negatives, e.g., when a local view update reporting
a new maximum is lost, and false positives, e.g., when a maximum
drops and nodes higher in the tree miss the local view update be-
cause of a topology change.

We adopt a soft-state approach to maintain the consistency of
network caches. Each cache entry is associated with an expiration
timeout that causes its removal unless the node responsible for it
refreshes the entry within the timeout. To further improve perfor-
mance in case of changes in the routing topology, upon changing
parent the child node sends an explicit eviction message to the for-
mer parent. If this is still reachable, the message causes the removal
of the child’s cache entry before the timeout expires.

An extreme case of node failure is the crash of the tree root, which is a single point
of failure in Tree. Nevertheless, when the root stops acknowledging packets, the neigh-

95

6.4. Local View Dissemination: Protocols

boring nodes can locally detect the crash and elect a new root, e.g., using existing proce-
dures [37].

Load balancing. In Tree, the local view at every node filters the updates from the
descendants based on aggregate information obtained from the corresponding subtree. As
a result, nodes down in the tree are more likely to be relaying local view updates towards
their parents, as their local views cover the system state to a lesser extent compared to
nodes closer to the root, yielding an uneven load among WSN nodes.

We design a simple load balancing scheme to address this issue. Our scheme rotates
the root role among the nodes to achieve a more even energy consumption. The decision
to rotate is taken based on an estimation of the current energy budget of the network,
as perceived at a given node. We periodically determine the node where this quantity is
maximum, and hand over the root role to it.

To estimate the energy budget of a node n, we periodically compute such value as:

wn(i+ 1) =
1

2
·wn(i) +

1

2
·

∑
m∈Neigh(n) wm(i)

|Neigh(n)| (6.1)

where wn(i) is the energy budget at node n at the current step i and Neigh(n) denotes
the 1-hop neighbors of n. Observe that in Equation 6.1 every node contributes to the
evaluation of wn(i + 1) at every other node, as the formula is recursively applied to the
entire network. We achieve this by periodically exchanging the current value wn(i) with
the nodes in Neigh(n) and computing the next value wn(i + 1) until the metric becomes
stable (i.e., wn(i + 1) = wn(i) ± ε, ε being an approximation constant) or we reach a
maximum number of iterations. Note that each iteration requires only a single broadcast
of the current wn(i) from each node n.

Interestingly, identifying the node with the largest stable value of the metric in Equa-
tion (6.1) can be achieved by reusing the same machinery we use to compute in-network
the global minimum and maximum necessary to monitoring invariants. As a result, the
current root eventually knows whether there exists another node n with a larger wn(i).
If so, it hands over the root role to node n using an eventually-consistent dissemination
protocol similar to [68]. The hand-over message also includes the last sequence number
used by the former root to refresh the routing tree. When node n receives such notifica-
tion, it starts building a new routing tree rooted at itself using a strictly greater sequence
number. Based on this information, every other node in the network recognizes that a
root change has taken place, and stops the propagation of the hand-over message.

6.4.4 Communication Delays

Communication delays may cause specific interleavings of local view updates that cause
either protocol to miss some violations. Figure 6.5(a) illustrates the problem. Say that
updates u1 and u3 yield a state violating the monitored invariant, whereas any other sys-
tem state complies with it. Ideally, nodes A and C would propagate their updates as soon
as they occur. In practice, however, the network stack may cause communication delays,
e.g., because of collision avoidance mechanisms at the MAC layer. The intermediate node
B may then receive the updates in the order u1, u2 and u3. If we used only the most

96

Chapter 6. Distributed Monitoring of Application Invariants

recent update from every node to evaluate the invariant, the system would not detect the
violation.

A

B

C u3

u1 u2

transmission delay

violation

(a)

A

B
C

u3 u4

u1

D

u2
u2

u4

m
ul
ti-
ho
p

m
ul
ti-
ho
p

(b)

A

B u2

u1
time synch.

error

uncertain
violation

(c)

Figure 6.5: History
buffer: motivation and
limitations.

Solution. We tackle the problem above with two combined mech-
anisms: i) a protocol maintaining a consistent ordering among
timestamped local view updates, and ii) a circular buffer (history)
storing recently-received updates, including those that have been
superseded by new ones.

Our timestamp synchronization is inspired by [103], adapted by
neglecting communication and network stack delays. At each hop,
the data is sent along with the timestamp of generation and the
sender’s (physical) clock at send time. At the receiver, the latter
is used to convert the data timestamp to the receiver’s (physical)
clock before inserting the data in the history buffer. With this
information, a node can reconstruct the proper sequence of updates
and detect violations. For instance, B in Figure 6.5(a) is able to
match u3 with u1 stored in its history.

Limitations. This mechanism is effective only if there is at least
one node with access to both u1 and u3, and therefore able to
reconstruct the correct order causing the violation. This is not
always the case in our protocols, which do not guarantee FIFO
ordering on multi-hop paths. Consider Figure 6.5(b), where the
monitored invariant is again violated only in the state following u1

and u3. The violation may go unnoticed if communication delays
and update reordering cause the most recent updates u2 and u4

to supersede u1 and u3 at intermediate nodes B and C. As further re-propagation of
the updates causing the violation is “quenched” at intermediate nodes, it may happen
that no node in the network has enough information to detect the violation. However,
addressing this problem would require either the propagation of the entire history, or
stricter assumptions on communication delays and FIFO ordering—both too expensive
in a WSN setting.

In addition, inaccuracies in timestamp synchronization may produce situations where
given combinations of local states are uncertain [104]. Consider Figure 6.5(c). Assume the
state of B before u2 at physical time t2 combined with the state of A after u1 at physical
time t1 would violate the monitored invariant. If the timestamp synchronization error εTS

is greater than |t2 − t1|, then it is not possible to determine the correct ordering of such
updates when inserting them in the history buffer. Using our timestamp synchronization
protocol, εTS may be as large as 200µs per hop [103], although protocols exist to reduce
εTS to a few µs per hop [82]. In practice, this means that we cannot detect “instantaneous”
violations that exist only for a few hundred milliseconds. However, these violations are not
an issue in the scenarios we target where, as we already mentioned, transient violations
of much longer duration are commonly accepted, and properly specified in DICE using
the tolerate clause.

97

6.5. Implementation

6.5 Implementation

We describe the DICE tool-chain and report about the memory footprint of the run-time
described in Section 6.4. Our prototype targets TinyOS [49], and relies on CTP [44] for
the tree-based forwarding necessary to Tree. Nevertheless, the techniques we described
thus far do not depend on either.

Tool-chain. In our example scenario, invariant I4 instructs DICE to check that the fan
is active under certain conditions. However, the control logic actually operating the fan
runs on the application code of the actuator node, external to DICE. Attributes are the
trait d’union between DICE and the application, enabling the former to become aware
about the status of the latter that is relevant to invariant monitoring.

Figure 6.6 outlines the tool-chain supporting this design. The DICE compiler gen-
erates one nesC interface for each attribute declaration, thus providing the connection
between the source of attribute values and the DICE run-time. The latter accesses the
interface through a compiler-generated component that periodically polls data from it
or, for on event attributes, awaits the signaling of the corresponding events. The at-
tribute interfaces, the components providing these interfaces, the DICE run-time, and the
TinyOS libraries are input to the nesC compiler, which yields the binary image to upload
on the nodes.

attribute
declarations

TinyOS
run-time

DICE
run-time

nesC attribute
implementation

DICE-specific
nesC interfaces

DICE
compiler

nesC
compiler

application
binary image

nesC
application code

(a) Attributes and application.

invariant
definitions

invariant
encoding

& signature
DICE

compiler

(b) Invariants.

Figure 6.6: The DICE tool chain.

Invariant specifications do not re-
quire integration into a binary im-
age. Thus, in principle they can
be changed freely without reprogram-
ming the WSN nodes. As shown
in Figure 6.6(b), the compiler gen-
erates an invariant-specific encoding
and an invariant signature. The for-
mer is essentially the postfix traver-
sal of the invariant, with names re-
placed by numerical identifiers to re-
duce space. The latter indicates the
minimal set of attributes necessary to
evaluate the invariant, as explained
in Section 6.3. This information is
included in the local view and main-

tained by the run-time.

Memory overhead. The DICE system has a modular design, which allows the user to
select which protocol to employ based on system and application constraints.

Table 6.1 shows the code memory used by DICE components. In terms of data memory,
Flat occupies∼1.4 KB, while Tree occupies∼4.2 KB. The larger data memory footprint
required by Tree is caused by the buffers internal to CTP. These values are independent
of the number and nature of the invariant monitored, each contributing an additional
10 B in the local view, 12 B in the network cache, and 14 B in the history buffer. The
invariant specification itself is very compact thanks to the aforementioned encoding; for

98

Chapter 6. Distributed Monitoring of Application Invariants

Component Tree Flat

local view manager 9.8 KB
dissemination manager 7.4 KB 2.9 KB
load balancing 3.2 KB n/a
history buffer 2.2 KB
evaluation manager 6.6 KB

Total 28.7 KB 25.5 KB

Table 6.1: Code memory usage of DICE components.

instance, the properties I4 and I5 in Section 6.2 occupy only 194 B.

6.6 Evaluation

In this section, we evaluate the performance and correctness of our DICE prototype.
Section 6.6.1 focuses on TOSSIM simulations. These allow us to analyze and compare
Flat and Tree by relying on global knowledge of the network state. Moreover, using a
simulator simplifies the assignment of value distributions to network nodes, and enables
us to easily play with different scenarios. Finally, it allows us to analyze relatively large
networks, up to 225 nodes, at the price of a less accurate representation of wireless trans-
mission. Therefore, Section 6.6.2 analyzes data from a real deployment consisting of Telos
motes placed in indoor and outdoor areas of our lab. This serves as a validation of our
simulation results, albeit on a smaller scale, and as a real-world testing of our prototype.

Metrics. We focus on detection latency and communication overhead. As for the former,
we define the global detection latency as the time difference between the instant when a
state change triggering a violation occurs somewhere in the network, and the instant at
which the violation is first detected anywhere in the network. From the application point
of view, this indicates how fast DICE can detect a violation. However, other metrics are
useful to evaluate the “internal” performance of detection. We define the node detection
latency as the time difference between the instant when a state change triggering a viola-
tion occurs somewhere in the network, and the time at which a given node locally detects
the violation. The average value of this metric is an indication of the speed at which
the information necessary to evaluate invariants propagates through the network. Global
and node detection latency are clearly related: the former coincides with the node detec-
tion latency of the first node recognizing the violation, easily computed as the minimum
among all node detection latencies. The node detection latency can be computed only
for those nodes that actually detect the violation—all in Flat, typically only a fraction
in Tree. Therefore, for the latter protocol we also evaluate the detection count, i.e., the
number of nodes that detect the violation, as a measure of the redundancy of detection
in Tree.

To investigate the overhead imposed on a node, we report on the average number of
local view changes per node and the average number of packets sent per node, measured
over the time span between the generation of the state change triggering a violation and
the time at which the last node in the network detects it. These can be regarded as an in-

99

6.6. Evaluation

direct measure of the computational overhead and a direct measure of the communication
overhead, respectively.

Correctness. In DICE, every state change triggers a brief period during which invari-
ants may be incorrectly reported as violated or being complied with. This is the time
required for the update to propagate throughout the network and is assessed as part of
the aforementioned latency metrics.

Instead, our focus is on missed violations and false alarms. These can be generated by
an incomplete propagation due to message loss. However, in Flat the periodic rebroad-
cast guarantees eventual delivery. In Tree, update propagation relies on CTP, which
achieves a message delivery ratio up to 99.9% [44]. Therefore, we do not analyze this
aspect further.

The more interesting case is instead one where an incorrect report about the invariant
is caused by the reordering of updates inside the network, as discussed in Section 6.4.4,
caused by an uneven propagation speed and a high churn in the attribute values. These
conditions may reorder updates and cause indifferently a missed violation or a false alarm.
For simplicity, in our evaluation we use scenarios that generate only the former.

6.6.1 Simulation Experiments

We analyze the behavior of DICE using synthetic distributions of attributes, and evaluate
separately the performance of the update dissemination and the likelihood of missed
violations.

As discussed in Section 6.3, the mechanics of detection depend on the nature of the
invariant being monitored. However, the performance of Type I and Type II invariants
is comparable, as they rely on the same underlying dissemination mechanism; they dif-
fer only in that the former can leverage “collective silence”, minimizing communication
overhead to a great extent. For this reason, in the following we consider only Type II
invariants.

Nodes are arranged in a square grid2, with an inter-node space of 10 m. We analyze
network configurations ranging from 25 nodes to 225 nodes. Unless otherwise noted, in
Tree the root is placed in one of the grid corners. Network connectivity is simulated
using the LinkLayerModel tool in the TinyOS distribution.

We configured Flat and Tree as follows. The polite gossiping employed by the
former uses τl = 200 ms and τh = 4 s as lower and upper bounds of the transmission
period, and γ = 5 as the number of neighbors triggering a message suppression. In Tree,
we use the default CTP parameters of the TinyOS distribution. Moreover, as mentioned
in Section 6.4.3, Tree buffers incoming updates for a small interval, which we set to
200 ms (i.e., same as τl) to ensure that the minimum time an update is buffered at a node
is the same for Flat and Tree. Unless otherwise noted, the results of each experiment
are averaged over 50 repetitions.

2We also ran simulations with randomly-generated topologies. However, the many sources of randomness
(topology, value distribution, timers, etc.) make them much less insightful.

100

Chapter 6. Distributed Monitoring of Application Invariants

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250

A
v
g
.
L
V

 c
h
a
n
g
e

s

Nodes

FLAT k = 2
FLAT k = 6
TREE k = 2
TREE k = 6

(a) Gradient distribution.

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250

A
v
g
.
L
V

 c
h
a
n
g
e

s

Nodes

FLAT k = 2
FLAT k = 6

TREE k = 2
TREE k = 6

(b) Random distribution.

Figure 6.8: Average local view changes per node.

Performance of Update Dissemination

Our protocols are influenced by the complexity of the invariant and specifically by its
signature, determining the number of attribute values that must be present in the nodes’
local views. To capture this aspect we use five invariants, collectively defined as:

∀n1, . . . , nk :
k∑
i=1

x@ni < T, k ∈ {2, 3, 4, 5, 6}

As illustrated in Section 6.3, each invariant requires the local view to contain the k
largest values of the x attribute. To avoid cluttering our charts, in the remainder we show
only the results for the extremes, i.e., for k ∈ {2, 6}.

Figure 6.7: A gra-
dient distribution
for x.

We consider two value distributions for x. The first is a 3-
dimensional gradient (Figure 6.7). This distribution simulates a physi-
cal phenomenon (e.g., a heating source) where the values sensed in the
range [1, 10] are proportional to the inverse of the square of the dis-
tance from a source, placed at the center of the grid. As the grid and
distribution are perfect, we obtain a set of concentric rings of nodes
with the same value for x. In the second distribution, instead, each
node assumes a random value in the range [1, 100]. Albeit somewhat
more artificial, this distribution is interesting in that violations do not
follow a pattern and can happen anywhere in the network.

The simulations are executed as follows. In the initial state i) all nodes hold a value
x = 0; ii) their local view reflects this global state; iii) the overlay used by Tree pro-
tocol is completely built. This initial, stable state is then perturbed with either of the
aforementioned gradient and random distribution. The simulation ends when all nodes
converge again to the same local view containing the new global maximum.

Unless otherwise noted, all simulations in this section are performed by using the setup
above.

Local view changes and packets sent. As shown in Figure 6.8, this metric is slightly
higher in Flat w.r.t. Tree. Indeed, in the latter local view changes are aggregated as
they travel upstream: at a parent node, a local view change from one child (representing

101

6.6. Evaluation

the state of an entire sub-tree rooted at it) may be superseded by a local view from
another child, and result in a single local view change propagated upstream. Instead,
in Flat local view changes propagate in an unstructured fashion: a local view change
may still “quench” another at a given node, but because view changes propagate along
arbitrary paths, the same view change may reach other nodes along a different path and
trigger other view changes.

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

A
v
g

.
p
a
c
k
e
ts

 T
X

Nodes

FLAT k = 2
FLAT k = 6
TREE k = 2
TREE k = 6

(a) Gradient distribution.

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

A
v
g
.
p

a
c
k
e
ts

 T
X

Nodes

FLAT k = 2
FLAT k = 6
TREE k = 2
TREE k = 6

(b) Random distribution.

Figure 6.9: Average number of sent
packets per node.

0

0.2

0.4

0.6

0.8

 4 8 12 16 20

A
v
g

.
p
a
c
k
e

ts
 T

X
 (

×
1
0

3
)

Changes (nodes / min)

TREE
FLAT

Figure 6.10: Communication over-
head vs. update rate.

Looking at local view changes alone, Tree would
appear as the most convenient approach. However, ta-
bles turn when the average number of packets actually
transmitted is considered, as shown in Figure 6.9. The
higher value for Tree is determined by the messages
necessary to maintain the network caches up-to-date
and consistent—therefore, in essence, by the structure
induced by Tree. In contrast, Flat structure-less
dissemination of updates does not bear this overhead.

Impact of update rate. However, this holds only in
the case where the frequency at which the attribute
values change at each node is relatively low. This
is evident in the experiment in Figure 6.10, where
we simulate a 10 × 10 grid monitoring the invari-
ant ∀m,n : x@m + x@n < T . Nodes start from a
random value of attribute x. Periodically, a number
of randomly-selected nodes change their value to ob-
tain the rate on the x-axis, over a simulated time of
2 hours. Intuitively, if the update rate is low, one or
more “sweeps” of the entire network are sufficient in
Flat to inform all nodes about the new local view. If
instead there are many concurrent changes, in Flat
they propagate in an unstructured fashion, each po-
tentially causing a new update and therefore a new
dissemination competing against the others. This ulti-
mately generates a traffic that grows linearly with the
update rate, precisely due to Flat’s inability to aggre-
gate effectively the updates. In contrast, the structure
provided by Tree, detrimental at low update rates,
becomes an asset when the update rate increases: local
view updates can be effectively aggregated in-network
and over subtrees, therefore greatly limiting the in-
crease of traffic.

Detection latency. Figure 6.11 focuses on the average node detection latency. A first
observation is that the relative performance of Flat and Tree is greatly affected by the
distribution of attribute values: the behavior of Tree with the random distribution is
significantly worse than Flat—an order of magnitude in the case of k = 6. Indeed, in
the case of the gradient distribution, the attribute maximum are located at the center of

102

Chapter 6. Distributed Monitoring of Application Invariants

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250

N
o
d
e
 d

e
te

c
ti
o
n
 l
a
te

n
c
y
 (

s
)

Nodes

FLAT k = 2
FLAT k = 6
TREE k = 2
TREE k = 6

(a) Gradient distribution.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250

N
o
d
e
 d

e
te

c
ti
o
n
 l
a
te

n
c
y
 (

s
)

Nodes

FLAT k = 2
FLAT k = 6
TREE k = 2
TREE k = 6

(b) Random distribution.

Figure 6.11: Average node detection latency.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 5 10 15 20 25 30

N
o
d
e
s
 (

%
)

Latency (s)

(a) Tree, gradient distribution

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 0.5 1 1.5 2 2.5 3 3.5 4

N
o
d
e
s
 (

%
)

Latency (s)

(b) Flat, gradient distribution

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 5 10 15 20 25 30

N
o

d
e
s
 (

%
)

Latency (s)

(c) Tree, random distribution

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 0.5 1 1.5 2 2.5 3 3.5 4

N
o

d
e
s
 (

%
)

Latency (s)

(d) Flat, random distribution

Figure 6.12: Detection latency for 225 nodes, k = 2. Values on the x-axis have different scales.

the grid; a violation can be easily detected by neighbors in either protocol. Instead, in
the random distribution the maximum can be anywhere. The significantly higher latency
of Tree is explained by the fact that, in this protocol, i) the likelihood of detection
is higher in nodes that are closer to the root, and ii) the root can be far away from
the nodes contributing to the detection. Instead, in Flat the propagation of maximum
can be thought of as a “bubble”, whose expansion (i.e., caused by the propagation of
local view updates) is not restricted by an overlay as in Tree. As a consequence, the
violation is detected as soon as the “bubbles” corresponding to the attribute maximum
intersect at some node. This not only yields a smaller average node detection latency
w.r.t. Tree, but also a different distribution of the detection latencies at each node, as
shown in Figure 6.12 for both gradient and random distribution. In the case of Flat, the
detection latency at each node resembles a Gaussian distribution, with relatively short
tails. Instead, in Tree the distribution of latency is much more irregular: the nodes that

103

6.6. Evaluation

are closer to the maximum (placed in the middle of the grid) detect the violation with a
latency comparable to the slowest Flat nodes, but others may detect with a latency two
orders of magnitude larger. Moreover, the difference when moving from a gradient to a
random distribution is more marked in Tree than in Flat, especially w.r.t. the tails of
the latency distribution.

In addition to the distribution of attribute values, which in practice is often unknown,
the other parameter affecting the relative performance of the two protocols is the com-
plexity of the monitored invariant, which in our experiments is represented by the value of
k. As k increases, a node requires data from an increasing number of sources to perform
detection. Therefore, the latency increases with k for both Flat and Tree, as shown in
Figure 6.11. However, the impact of this parameter is significantly larger in the latter.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250

G
lo

b
a
l
d
e
te

c
ti
o
n
 l
a
te

n
c
y
 (

s
)

Nodes

FLAT k = 2
FLAT k = 6
TREE k = 2
TREE k = 6

(a) Gradient distribution.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250

G
lo

b
a
l
d
e
te

c
ti
o
n
 l
a

te
n
c
y
 (

s
)

Nodes

FLAT k = 2
FLAT k = 6
TREE k = 2
TREE k = 6

(b) Random distribution.

Figure 6.13: Global detection latency.

Finally, Figure 6.13 shows the global detection la-
tency (i.e., the time to the first detection), while Fig-
ure 6.14 shows the ratio between the average node
detection and the global detection. Under challenging
conditions, such as invariants with high complexity
or scenarios with a random distribution, it is gener-
ally more difficult to detect violations. This causes
the global latency to be higher and closer to the node
latency, as reflected by the low values, and constant
ratio between the two, in Figure 6.14(a) for k = 6
and Figure 6.14(b) for all cases. Otherwise, if the in-
variant is simple or the changes more localized, as in
Figure 6.14(a) for k = 2, the global latency is much
smaller than the node latency, with the structure of
the overlay inducing bigger differences in Tree.

Detection count. Similar arguments explain the
trends of detection count (i.e., the fraction of nodes
that detect violation). As already mentioned in Sec-
tion 6.6, this metric is meaningful only for Tree, as
Flat guarantees eventual detection at all nodes. As
seen in Figure 6.15, the higher the complexity of a
invariant, the lower the detection count. The likeli-
hood of a node performing detection increases closer
to the root, and as k increases the phenomenon is ex-

acerbated. A similar reasoning holds w.r.t. the attribute value distribution: the more
scattered the values triggering a violation, the fewer the nodes that possess all the re-
quired information to enable detection, which explains the lower values for the random
distribution.

Assessing the Risk of Missed Violations

In this work we aim at striking a balance between the desire to detect all violations, and the
reality of distributed computing, aggravated by the resource-constrained scenario defined
by WSNs. In Section 6.4.4 we discussed the compromises we make w.r.t. the potential of

104

Chapter 6. Distributed Monitoring of Application Invariants

 0

 5

 10

 15

 0 50 100 150 200 250

N
o
d
e
/g

lo
b
a
l
d
e
te

c
ti
o
n
 l
a
te

n
c
y

Nodes

FLAT k = 2
FLAT k = 6

TREE k = 2
TREE k = 6

(a) Gradient distribution.

 0

 5

 10

 15

 0 50 100 150 200 250

N
o
d
e
/g

lo
b
a
l
d
e
te

c
ti
o
n
 l
a
te

n
c
y

Nodes

FLAT k = 2
FLAT k = 6
TREE k = 2
TREE k = 6

(b) Random distribution.

Figure 6.14: Ratio between average node detection and global detection latency.

 0

 5

 10

 15

 20

 0 50 100 150 200 250

N
o

d
e
s
 (

%
)

Nodes

k = 2, gradient distr.
k = 2, rand distr.
k = 6, gradient distr.
k = 6, rand distr.

Figure 6.15: Nodes detecting viola-
tions in Tree.

10
5

0
 0 5 10

 0

 5

 10

 15
node Anode B

(a) Initial distribution.

10
5

0
 0 5 10

 0

 5

 10

 15

node A
node B

(b) Final distribution.

Figure 6.16: Distributions to assess the impact
of history size.

missing a violation; here, we evaluate their usefulness. Firstly, we analyze the effectiveness
of the history buffer in preventing missed violations, by reproducing a scenario similar to
Figure 6.5(a). Secondly, we assess how DICE behaves in those situations where history
buffers cannot help, similar to Figure 6.5(b). Finally, we evaluate the impact of node
failures.

History buffers. We assess the extent to which history buffers help avoiding missed
violations by monitoring ∀m,n : x@m+x@n < 28 in a 225-node grid. Nodes are initially
assigned the distribution of x values in Figure 6.16(a), which violates the invariant due
to the two nodes A and B, in opposite corners, with x = 14. After 500 ms (i.e., while
the updates caused by the initial distribution are still propagating) this distribution is
changed into the final one in Figure 6.16(b), which satisfies the invariant. Note that in
both distributions a fraction of the nodes maintains the value of their attribute at x = 0.
The change of distribution in the other nodes, instead, triggers a flood of updates. These
updates are inserted in the history of all nodes, including A in the upper-right corner, on
which we focus our experiment. A is also the root used in the simulations carried out for
Tree. Our goal is to see how A can evaluate the invariant, and detect the violation, by
combining its history with an older state of node B. Indeed, both A and B hold a value
x = 14; however, the rapid change in distribution after only 500 ms occurs before B’s
value propagates all the way to A. The latter node can detect the violation only if its
entry with x = 14 is still available in the history when B’s x = 14 reaches A. Indeed, the

105

6.6. Evaluation

high number of concurrent updates near A may fill A’s history, flushing old entries.

In our experiments, the history size ranges from 25 to 50. For each size, we report the
percentage of violations detected by A over 350 runs. To determine the extent to which
concurrent updates render the history ineffective in preventing missed violations, we use
different sizes for the upper-right triangle of Figure 6.16(a), ranging from 28 to 120 nodes.

 0
 20
 40
 60
 80

 100

25 30 35 40 45 50

V
io

la
ti
o

n
s

m
is

s
e

d
 (

%
)

History size

of nodes
with updates

28
45
66
91
120

Figure 6.17: Impact of history size in Flat.

Interestingly, even with a small his-
tory size of 25 elements, Tree manages to
capture the violations triggered by all up-
dates. The explanation lies in the shape
of the tree topology built by Tree: the
average number of children is 1, and the
maximum is 5. Thus, each node receives
data from a small number of neighbors,

and therefore the risks of filling up the history buffer are lower. This is not valid for
Flat, where a node can overhear packets from several neighbors. However, Figure 6.17
shows that a history of 40 elements is already sufficient to bring the likelihood of missed
violations below 4% in all cases, and a relatively small history of 50 elements guarantees
detection even with a massive amount of updates, where more than half (120 out 225) of
the nodes change their distribution. This confirms that the history buffer is effective in
preventing missed violations.

Update reordering. The previous experiments demonstrates the ability of DICE to re-
construct a violation based on old values contained in the history. However, as mentioned
in Section 6.4.4, this may not be enough when updates are propagated along non-FIFO,
multi-hop paths; this may cause a more recent update to supersede an old one, as shown
in Figure 6.5(b). Situations like these are more likely to happen if the violation persists for
a short time; a long duration implies a re-propagation of updates, and therefore increased
chances that they are received in the right order.

We reproduce these scenarios as follows. We simulate a 225-node grid monitoring
∀m,n : x@m + x@n < 10. The value distribution for x is such that all nodes are placed
on a plateau at x = 1, except for two opposite vertexes at x = 3. As in Figure 6.5(b),
we change simultaneously the value of x on both these vertexes, obtaining short “pulses”
of x = 6 that cause the violation of the invariant. Between pulses, we set x = 3 for 3 s,
during which the updates should propagate throughout the network. This choice yields a
worst-case scenario where the number of hops in between the two vertexes is the largest
possible, which increases the probability of losing updates due to their reordering along
multi-hop paths. For Tree, the root was set to one of the corner nodes other than the
two chosen vertexes. The input to experiments is the duration of the pulses. The output
is the percentage of violations detected globally and per node. These are reported over
50 runs of 5-minute experiments, for a total of more than 3000 pulses simulated.

Figure 6.18 shows the results, distinguishing between the number of violations de-
tected globally and the average of those detected by each node. The significantly better
performance of Flat is determined by its fully decentralized nature: because updates dis-
seminate along multiple, arbitrary paths, although some nodes may miss some violations,
others can catch them. Even when the pulse duration is 400 ms (i.e., twice the lowest

106

Chapter 6. Distributed Monitoring of Application Invariants

 0

 20

 40

 60

 80

 100

.4 .8 1.2 1.6 2 2.4 2.8

V
io

la
ti
o
n
s
 r

e
p
o
rt

e
d
 (

%
)

Pulse duration (s)

per node
global

(a) Tree

 0

 20

 40

 60

 80

 100

.4 .8 1.2 1.6 2 2.4 2.8

V
io

la
ti
o
n
s
 r

e
p
o
rt

e
d
 (

%
)

Pulse duration (s)

per node
global

(b) Flat

Figure 6.18: Detection of fast viola-
tion pulses.

polite gossiping period τl) 40% of the violations are
detected by at least one node. With a pulse duration
of 2 s, more likely to occur in real-world applications,
Flat detects 100% of the violations. The worse per-
formance of Tree is caused by its structure, which not
only forces updates to propagate through predefined
paths, but also yields larger detection latencies, as al-
ready pointed out. Latencies are also the cause for
the lower average detection rate per node. Moreover,
compared to the gradient scenario in Section 6.6.1,
here the maximum are not necessarily close to each
other, therefore latency is higher.

Node failures. The overlay exploited by Tree
makes it more fragile in comparison with Flat’s
structure-less, intrinsically more resilient strategy. To
quantify this aspect, we run experiments compar-
ing the two protocols in the presence of node fail-
ures. On a 10 × 10 grid, we monitor the invariant
∀m,n : x@m + x@n < T . All nodes change their x
to a random value every 2 minutes, over a simulated
time of 2 hours. In Tree, the root was set in one of the grid corners. Every 2 minutes we
crash two random nodes at the worst possible moment, i.e., right in between an attribute
change and its reporting. Crashes are not recovered: the system reaches a point where the
network is partitioned and no detection is possible. In this challenging scenario, Tree
is able to detect violations only in 56% of the induced crashes. Instead, Flat is able to
detect a violation in 84% of the induced crashes, thanks to the inherent resilience of its
dissemination.

Load Balancing in Tree

In Section 6.4.3 we described a load balancing scheme for Tree to mitigate the effect that,
in this protocol, nodes farther from the root bear a bigger fraction of the communication
overhead. To evaluate our scheme, we simulate a network of 100 nodes deployed in a
10 × 10 grid. We monitor the invariant ∀m,n : x@m + x@n < T for 5 simulated days.
We randomly change the value of attribute x at each node every 2 minutes. To quantify
the load, we count the number of bytes transmitted and received at every node, which
approximates the corresponding energy consumption. Figure 6.19(a) shows the case where
no load balancing is performed, and the root remains fixed at coordinates (0,0). The chart
confirms the intuition that nodes far from the root bear a much higher load w.r.t. the
others. Figure 6.19(b) shows, in the same scenario, the effect of changing the root at
the end of each simulated day based on the scheme described in Section 6.4.3. The
relative standard deviation of the load is 175% in Figure 6.19(a), and drops to 43% in
Figure 6.19(b).

107

6.6. Evaluation

 0 1 2 3 4 5 6 7 8 9 0 1
 2 3

 4 5
 6 7

 8 9

L
o
a
d

x

y

L
o
a
d

 0 1 2 3 4 5 6 7 8 9 0 1
 2 3

 4 5
 6 7

 8 9

fixed root

(a) Root is fixed at (0,0).

 0 1 2 3 4 5 6 7 8 9 0 1
 2 3

 4 5
 6 7

 8 9

L
o
a
d

x

y

L
o
a
d

 0 1 2 3 4 5 6 7 8 9 0 1
 2 3

 4 5
 6 7

 8 9

1
st

 root
2

nd
, 4

th
 root

3
rd

 root
5

th
 root

(b) Root is initially at (0,0),
and moves according to our

load balancing scheme.

Figure 6.19: Load distribution in
Tree.

In principle, an even more uniform load could be
achieved by increasing the frequency with which the
metric w is computed, and therefore a new root is
elected. However, this comes at two costs. First,
the overhead of informing the next root of its new
role. In the simulations of Figure 6.19, this averages
to 1.7 packets per node for each hand-off. Second,
the transfer of responsibility to the new root is not
instantaneous. In our simulations, the time elapsed
since the old root relinquished its role until all nodes
join the tree set up by the new root is on average
1.2 s, and depends on the distance between the two
roots. For instance, the transfer from (0,0) to (9,3)
takes longer than the one from (9,3) to (9,9). While
the tree is being reconfigured, packets containing lo-
cal view updates may “wander” in the network; we
counted an average of 0.44 per node during each root
transfer. However, these are not lost: the underly-
ing CTP protocol buffers each received packet at each
hop, enabling their correct re-routing towards the new
root as soon as its tree is set up.

6.6.2 Testbed Experiments

To analyze the traffic patterns and investigate the system behavior over time against
the dynamics of real-world sensed data, we run a number of tests using 17 Telos motes
deployed in a lab environment as shown in Figure 6.20(a). Every node periodically re-
ports statistics to a node connected to a computer. We monitor the invariant ∀m,n :
temp@m − temp@n < 10◦C where temp is the temperature, sampled every 2 s using
the on-board SHT11 sensor. This rate is overkill for a slowly-changing phenomena such
as temperature: we intentionally use it to stress our system. To avoid short-term os-
cillations in temperature values due to sensor inaccuracies, we fed DICE with a moving

outer wall

118 45

103111

119 12

19

2249

15

120

42

114

110
44

51 53

sink

(a) Topology snapshot for Tree.

 0

 20

 40

 60

 80

 100

120114 19 44 42 15 51 22 53 12 45 118119111110 49 103

P
D

R
 (

%
)

Node (packet source)

Node 103
Node 120

(b) Packet delivery ratio for nodes 103 and 120.

Figure 6.20: Laboratory testbed.

108

Chapter 6. Distributed Monitoring of Application Invariants

 20

 40

 60

1
3

:1
9

1
3

:5
0

1
4

:2
1

1
4

:5
4

1
5

:2
5

1
6

:1
2

1
6

:4
5

1
7

:1
6

1
7

:4
7

1
8

:1
8

1
8

:4
9

1
9

:2
1

1
9

:5
2

2
0

:2
3

2
0

:5
6

2
1

:2
7

2
1

:5
8

2
2

:2
9

2
3

:0
1

2
3

:3
2

2
3

:5
9

T
e

m
p

.
(o

C
)

Time

Node 103
Node 120
Node 51

 20

 40

 60

1
0

:5
3

1
1

:2
4

1
1

:5
6

1
2

:2
7

1
2

:5
8

1
3

:2
9

1
4

:0
0

1
4

:3
2

1
5

:0
3

1
5

:3
4

1
6

:0
5

1
6

:3
6

1
7

:0
8

1
7

:3
9

1
8

:1
0

1
8

:4
1

1
9

:1
2

1
9

:4
3

2
0

:1
5

2
0

:4
6

2
1

:1
7

2
1

:4
8

T
e

m
p

.
(o

C
)

Time

Node 103
Node 120
Node 51

 0

 50

 100

 150

1
3

:1
9

1
3

:5
0

1
4

:2
1

1
4

:5
4

1
5

:2
5

1
6

:1
2

1
6

:4
5

1
7

:1
6

1
7

:4
7

1
8

:1
8

1
8

:4
9

1
9

:2
1

1
9

:5
2

2
0

:2
3

2
0

:5
6

2
1

:2
7

2
1

:5
8

2
2

:2
9

2
3

:0
1

2
3

:3
2

2
3

:5
9

A
v
g

.
c
o

u
n

t
Time

Packets TX
LV changes

 0

 50

 100

 150

1
0

:5
3

1
1

:2
4

1
1

:5
6

1
2

:2
7

1
2

:5
8

1
3

:2
9

1
4

:0
0

1
4

:3
2

1
5

:0
3

1
5

:3
4

1
6

:0
5

1
6

:3
6

1
7

:0
8

1
7

:3
9

1
8

:1
0

1
8

:4
1

1
9

:1
2

1
9

:4
3

2
0

:1
5

2
0

:4
6

2
1

:1
7

2
1

:4
8

C
o

u
n

t

Time

Packets TX
LV changes

 0

 50

 100

 150

1
3

:1
9

1
3

:5
0

1
4

:2
1

1
4

:5
4

1
5

:2
5

1
6

:1
2

1
6

:4
5

1
7

:1
6

1
7

:4
7

1
8

:1
8

1
8

:4
9

1
9

:2
1

1
9

:5
2

2
0

:2
3

2
0

:5
6

2
1

:2
7

2
1

:5
8

2
2

:2
9

2
3

:0
1

2
3

:3
2

2
3

:5
9

L
V

 c
h

a
n

g
e

s

Time

Node 103
Node 120

 0

 50

 100

 150

1
0

:5
3

1
1

:2
4

1
1

:5
6

1
2

:2
7

1
2

:5
8

1
3

:2
9

1
4

:0
0

1
4

:3
2

1
5

:0
3

1
5

:3
4

1
6

:0
5

1
6

:3
6

1
7

:0
8

1
7

:3
9

1
8

:1
0

1
8

:4
1

1
9

:1
2

1
9

:4
3

2
0

:1
5

2
0

:4
6

2
1

:1
7

2
1

:4
8

L
V

 c
h

a
n

g
e

s

Time

Node 103
Node 120

 0

 50

 100

 150

1
3

:1
9

1
3

:5
0

1
4

:2
1

1
4

:5
4

1
5

:2
5

1
6

:1
2

1
6

:4
5

1
7

:1
6

1
7

:4
7

1
8

:1
8

1
8

:4
9

1
9

:2
1

1
9

:5
2

2
0

:2
3

2
0

:5
6

2
1

:2
7

2
1

:5
8

2
2

:2
9

2
3

:0
1

2
3

:3
2

2
3

:5
9

P
a

c
k
e

ts
 T

X

Time

Node 103

Node 120

(a) Tree

 0

 50

 100

 150

1
0

:5
3

1
1

:2
4

1
1

:5
6

1
2

:2
7

1
2

:5
8

1
3

:2
9

1
4

:0
0

1
4

:3
2

1
5

:0
3

1
5

:3
4

1
6

:0
5

1
6

:3
6

1
7

:0
8

1
7

:3
9

1
8

:1
0

1
8

:4
1

1
9

:1
2

1
9

:4
3

2
0

:1
5

2
0

:4
6

2
1

:1
7

2
1

:4
8

P
a

c
k
e

ts
 T

X

Time

Node 103

Node 120

(b) Flat

Figure 6.21: Real-world results.

average over the three most recent
readings of temp. We configured
the protocols as mentioned in Sec-
tion 6.6.1, and let the system run for
about 11 hours.

Figure 6.21 illustrates the results
we gathered. The charts in the top
row show the temperature values at
three nodes representative of different
placements, yielding different tem-
perature changes. As shown in Fig-
ure 6.20(a), node 103 is placed in-
doors; its reported temperature value
is relatively constant. Node 120 is in-
stead exposed to direct sunlight; its
readings are greatly influenced by the
time of the day. This and similarly-
placed nodes are more likely to expe-
rience a sudden value change, large
enough (w.r.t. nodes in other areas)
to trigger violations. Finally, node 51
is almost always in shade, therefore
usually reports the lowest tempera-
ture.

The charts in the two center rows
of Figure 6.21 illustrate the system
performance over time, plotting the local view changes and packets sent per node, aggre-
gated over periods of 30 minutes. On average, we observe about one local view change
every 3.75 minutes for Tree and 1.5 minutes for Flat. Therefore, as in our simulations,
the number of local view changes is higher in Flat than in Tree. However, unlike in
simulation, in this case the number of packets is higher than local view changes. The
reason is that temperature changes very slowly, therefore the communication overhead is
dominated by the keep-alive messages in both protocols.

A finer-grained perspective on the system dynamics is illustrated by the charts at
the bottom of Figure 6.21, where we plot the metrics above at two nodes. Node 103
is in the center of the testbed, whereas node 120 is at its fringe. The snapshot of the
routing topology3 for Tree in Figure 6.20(a) shows that node 103 aggregates and reports
data only from indoor nodes, with a relatively constant temperature curve. Additionally,
the path from node 120 towards the sink does not include node 103. Thus, one would
expect this node to have a lower number of local view changes than node 120, which is
instead outdoor and experiencing a temperature increase. Interestingly, this is the case
for Tree but not for Flat. The reason is that in Flat, as the packet delivery ratio in

3The topology is relatively stable, with an average of only 5.70 parent changes per node in the 11-hour
experiment.

109

6.7. DICE on Mobile Nodes

Figure 6.20(b) indicates, node 103 has more good neighbors and therefore more update
sources, hence the higher number of local view updates. Instead, node 120 can receive
updates from few sources, hence its lower number of local view changes.

Finally, the effect of polite gossiping in Flat can be observed by looking at the local
view changes and packets transmitted for nodes 103 and 120. In the case of node 103,
not every update corresponds to a packet transmitted. As this node has a larger number
of neighbors, it is more likely to suppress its broadcast, unlike node 120. For the latter,
in the absence of neighbors communicating redundant data, we can see that the number
of packets transmitted is considerably higher than the number of local view updates.

6.7 DICE on Mobile Nodes

Originally, the DICE system and its underlying protocols were designed for scenarios in
which nodes are fixed. Applications scenarios involving mobile nodes raised our interest
and, consequently, we investigated opportunities of adapting DICE to this new, challeng-
ing environment.

In this respect, previous experiments [22, 23] show that CTP, the protocol empowering
Tree, yields a high message loss when nodes are mobile nodes. Intuitively, the fundamen-
tal cause is that CTP imposes a rigid structure, as every node can only forward data to
its parent. In a mobile environment, a moving parent means a broken link. Consequently,
we dismissed from the start the idea of using Tree on mobile nodes.

Hereafter, we argue that we can take leverage on Flat to address scenarios in which
nodes are mobile. In Section 6.7.1, we claim that the architecture in Figure 6.1 is sufficient
to handle scenarios with limited mobility. If instead the application scenario is highly
dynamic, Flat can take leverage from one of the group monitoring algorithms described
in Chapter 5. We describe this integration in Section 6.7.2. In Section 6.7.3, we provide
a framework which allows one to choose an approach according to the network mobility.
Finally, in Section 6.7.4 we show results from early experiments on mobile WSNs.

6.7.1 Slowly Mobile Scenarios

Flat is not hampered by the need of maintaining a routing structure. In Trickle, the
protocol underlying Flat, data is broadcast to any neighboring node which relays the
data further. From this aspect, the identity of neighbors is irrelevant and thus they can
change at any time. In this section, we show that a pure Flat solution, unchanged w.r.t.
Section 6.4.1, can handle mobility.

Consider the example in Figure 6.22. Here, node C, holding the network-wide max-
imum, relocates to another position in the network. That is, C moves from the neigh-
borhood of B and F (step 1), to the neighborhood of A and D (step 2). In Flat, B
and F rely on C’s periodic broadcasts to identify that C is alive; once the latter relocates
and no more broadcasts are received, nodes B and F deem C disappeared. Thus, in
step 2, nodes B and F remove C’s entry, e.g., 〈x, 9, C, t1〉, from their local view and start
disseminating an eviction 〈x,C, t2〉 with t2 > t1.

110

Chapter 6. Distributed Monitoring of Application Invariants

step 1

9,6
4

9,6
6

9,6
9

9,6
6

9,6
5

9,6
5

at
tri

bu
te

va
lu

e local view
A B C

D E F

step 2

9,6
4

6,-
6

9,6
6

9,6
5

6,5
5

A B

D E F
9,6
9

C

Figure 6.22: Example of
node relocation in Flat.

The eviction leads the network into a transient state where
nodes have an inaccurate view on the global maximum, i.e.,
one which no longer contains 〈x, 9, C, t1〉. However, Trickle
guarantees that the eviction eventually reaches node C and,
once this happens, C will re-endorse itself as the network-wide
maximum by broadcasting a new local view entry 〈x, 9, C, t3〉
where t3 > t2.

According to the protocol in Section 6.4.2, the Trickle
timers are reset to the lower bound τl every time the local
view is updated. Hence, in the scenario depicted in Figure 6.22,
a network-wide traffic peak occurs upon C’s movement. For
sporadic node movements, this peak can be acceptable. How-
ever, all node movements trigger other evictions and, along
with these, resets of the Trickle timers and more traffic peaks.
When node movements are frequent, the solution described
in this section is inefficient. To address frequent movements,
nodes B and F must detect that C is still part of the network in step 2 (Figure 6.22) and
thus avoid the eviction of C and the inherent traffic peaks. In the next section, we show
that this is possible through an integration of DICE with one of the group monitoring
algorithms presented in Chapter 5.

6.7.2 Using Group Monitoring in Dynamic Scenarios

From the previous section, we conclude that the (local) failure detection mechanism in
Flat described in Section 6.4.2 misleads the system into believing that mobile nodes have
departed. In this section, we describe an architecture that integrates DICE with the work
on the group membership problem tackled in Chapter 5. In this integration, the group
membership algorithms play the role of global failure detectors and prevent traffic bursts
in Flat when nodes are mobile. Our focus is on the difference w.r.t. to the original DICE
architecture illustrated in Figure 6.1.

Revisited run-time architecture. Figure 6.23 shows an updated DICE system, con-
strained to use Flat in the dissemination manager and featuring a new component, the
group manager. The latter is essentially an implementation of any of the group monitoring

local view
manager

updates

evaluation
manager

uses

uses

local
view

invariants

local
attributes

dissemination
manager: FLAT

sends
updates

adds entries

reads

network

group
manager

receives
updates

filters
entries

Figure 6.23: Updated DICE architecture integrating Flat and group monitoring.

111

6.7. DICE on Mobile Nodes

protocols described in Chapter 5.
The group manager lies at the same level of the dissemination manager. It exchanges

messages with other nodes to maintain consistent information on the group membership,
i.e., on the other nodes that form a transitively connected set. The local view manager
uses group information to filter entries in the local view as follows:

• When the group manager detects the departure of a node, it sends an eviction
notification to the local view manager. The latter drops all entries from the local
view that belong to the departed node. The updated view is sent to the network
through the dissemination manager. Notice however that neither eviction entries nor
their propagation are needed; using the group manager, all nodes detect departures
from the group without any information from the dissemination manager.

The eviction notification from the group manager updates the local view only if
the departed node contributes to the local view. Otherwise, no update occurs, and
hence Flat remains silent.

• When the local view manager receives an update from the dissemination manager,
it first runs the update through the group manager. This allows the dissemination
manager to determine whether the update originates on a departed node, case in
which the update is dropped.

According to the second rule above, if the broadcast of a discovery beacon belonging
to a new neighbor (used by the group monitoring algorithms) follows the broadcast of
a local view update of the same neighbor (handled by the dissemination manager), any
values belonging to the new neighbor are ignored until the group manager is updated. Al-
though the group view will eventually be updated, we avoid latency penalties by updating
the information on group membership with new discoveries made by the dissemination
manager, as illustrated in Figure 6.23.

Limits of group monitoring. The group manager prevents incorrect evictions from
the local view. This is achieveable only as long as the group membership information is
accurate. Henceforth, we characterize the scenarios in which node mobility affects the
ability of the group monitoring algorithms to provide correct information.

First, we characterize all group monitoring in Chapter 5 protocols using three high-
level parameters, as follows:

• The neighbor discovery time b. This is the time a node takes to detect that a new
node entered its radio range. In practice, it corresponds to the vector clock broadcast
period b for Clocks, while for Links and Dist, it is the beacon period b of the
underlying discovery protocol.

• The departure discovery time T . This is the maximum amount of time to declare
a neighbor missing. In Clocks, T is dictated by a timestamp difference, while in
Links and Dist, T is a characteristic of the underlying neighbor discovery protocol.

• The propagation delay per hop thop. This corresponds to the vector clock broadcast
period in Clocks and to a small buffering timeout in Links and Dist.

112

Chapter 6. Distributed Monitoring of Application Invariants

~v

radio range

N1 N2 N3 N4 N5 N6
M

h

(a) M is first seen by N1.

~v

N1 N2 N3 N4 N5 N6
M

(b) M exits N1’s range. No other nodes
detected its presence so far. N1 starts the

timeout T .

N1 N2 N3 N4 N5 N6

saw M

~v
U ~vM

(c) M is subsequently seen by N6 which
broadcasts an updated traveling at velocity ~vu.

N1 N2 N3 N4 N5 N6

local view update evicting M

~vM

saw M

~v
U

(d) T expires at N1 before the arrival of N6’s
update. N1 evicts M from the local view.

Figure 6.24: Scenario depicting the limitations of the group monitoring algorithms.

We use these parameters in the example scenario sketched in Figure 6.24. Here, a
node M holding an attribute maximum travels at constant velocity ~v and passes through
the range of a number of nodes Ni uniformly located on a line. This is the worst possible
arrangement, as under this arrangement we have the largest network diameter and the
smallest node redundancy. We assume that the distance h between adjacent nodes is
equal to the (idealized) radio range.

In Figure 6.24(a), M is first detected by node N1. From here, M continues its motion
and exits N1’s range. Hence N1 starts the timer to count T . Meanwhile, as depicted
in Figure 6.24(b), M moves in the vicinity of N2 and N3; M does not broadcast any
beacon yet and thus it is not detected by N2 and N3. The next beacon of M occurs in
Figure 6.24(c), when M enters N6’s range. The latter sends a notification traveling at
velocity ~vu. Figure 6.24(d) illustrates the pitfall of this scenario: T can expire on N1

before N6’s update reaches N1. If this is the case, N1 broadcasts an update that evicts
M from the local view.

We claim that this is possible only if M travels at a considerable velocity. To support
our claim, we generalize as follows. We assume that M is detected for the first time by
node N1, and the second time by a node Nk situated k hops from N1 (in Figure 6.24,
k = 6). As Nk detects M after b elapsed since N1’s discovery, we infer the following
relation between M ’s velocity and the hop count k

k =

⌊
b× v
h

⌋
After the second discovery, Nk broadcasts an update that travels at velocity ~vu = h

thop

(Figure 6.24(c)). The condition under which N1 does not evict M from the group is that
Nk’s update reaches N1 before the expiration of T . Thus

k × thop < T

113

6.7. DICE on Mobile Nodes

From the previous two equations, we obtain the velocity threshold vL at which M ’s
movement does not cause an incorrect eviction. This is

vL
∆
=
T × h
b× thop

Theoretically, for velocities smaller than vL, the group membership is reported cor-
rectly at all times. Thus, there are no peaks in Flat traffic and properties are accurately
monitored. In practice, the limit vL is too high to be a challenge, even for reasonable
configurations of the group monitoring algorithms. For instance, in Chapter 5 we tested
Clocks with b = thop = 5 s and T = 30 s. Under this configuration, assuming h = 20 m,
the limit vL = 24 m/s. Intuitively, the protocol is oblivious of a car travelling at 86 km/h.

The above reasoning is valid only in the absence of message loss. If the beacon that
allows Nk to discover M (e.g., N6 in Figure 6.24(c)) is lost, then the next discovery occurs
when M is in the range of N2k. If beacon loss is an isolated event, then M is wrongfully
evicted and a Flat traffic peak occurs. If instead beacon loss is not an isolated event, the
velocity threshold vL decreases proportionally to the packet delivery ratio. For instance,
if every other beacon is lost, the velocity threshold halves, i.e., vL = T ×h

2×b×thop
. We however

do not foresee packet loss to be an issue: [7] shows that motes are able to exchange packets
even when they travel at high velocity.

6.7.3 Choosing a Solution

We argued that unmodified Flat is sufficient to cope with mobile nodes at the expense
of an increased packet overhead. We additionally showed an architecture in which group
monitoring algorithms can be used to mitigate the traffic overhead. In this section, we
compare the unmodified Flat against solutions using two of the group monitoring pro-
tocols described in , i.e., Clocks and Dist. We purposely do not include Links in this
comparison due to its poor performance resulting from the evaluation in Chapter 5.

Moreover, in this section we focus on the traffic overhead of each approach. possible
comparison dimension is the duration of the time window during which DICE is inconsis-
tent. In this respect note that, when using Flat in conjunction with a group membership
protocol, the network is always consistent — assuming the velocity of nodes is lower than
the threshold vL determined in the previous section. Instead, when using a pure Flat so-
lution, the duration of the time window is given by the time took by an incorrect eviction
entry to travel back and forth from the node generating the eviction and the evicted node
(e.g., between nodes B or F and node C in Figure 6.22); this time is at most 2× d× τl,
where d is the network diameter and τl is the lower bound of the Trickle timers that
dictate the propagation velocity of local view updates. Therefore, i) if consistency (and
implicitly accuracy) is the greatest concern, a mixed solution Flat + Clocks or Flat
+ Dist is always preferable, and ii) to help choosing in the case when overhead has the
bigger weight in the choice, we develop the framework that follows.

Assumptions. To evaluate overhead, we develop an analytical framework at the core of
which lies a network of n nodes with a maximum diameter d. In our model, we assume
that a node holding an attribute maximum (not necessarily the same every time) moves

114

Chapter 6. Distributed Monitoring of Application Invariants

periodically from one edge to another edge of the network. We consider that the period
between consecutive movements is a random variable with uniform distribution. This
behavior corresponds to a homogeneous Poisson process; we assume that the rate of the
process is λ. Moreover, we consider that the movement completes before the value of
moving node is evicted from the local view by the node’s former neighbors. We also
assume that each packet has a fixed overhead of 13 B, as per the minimum frame size
in [2].

For simplicity, we consider all nodes are static except those holding an attribute max-
imum. If for the unmodified Flat and Clocks this assumption bears no impact, this
is the best case scenario for Dist, where a reduced mobility implies a reduced overhead.
Next, we show that, despite this simplifying assumption, the integration DICE + Dist
is the most expensive among all three options.

Using simple Flat. As discussed in Section 6.7.1, when using DICE without the
integration with group monitoring, every movement of a maximum holder is followed by
two phases:

1. The former neighbors of the moving node deem it missing. They insert an eviction
entry in the local view, which travels across the network to reach the moving node
in its new position.

2. The moving node detects the inaccurate evictions and disseminates a correcting
update.

In the first phase, the eviction travels across the network between opposite edges.
Thus, according to Corollary 1 in Annex B, approximately lg d+1

√
(d+ 1)! packets are

sent during this time. Because the movement is periodic, the second phase is similar to
a periodic update of the maximum in a static network. Thus, we can apply Corollary 2

to estimate the number of broadcast packets, that is, lg λ−1+τl
2τl

. If the size of a local view

update is |LV |, then the bit rate of Flat is rFlat, where

rFlat = λ× (13 + |LV |)×

phase 1︷ ︸︸ ︷

lg d+1
√

(d+ 1)! +

phase 2︷ ︸︸ ︷
lg
λ−1 + τl

2τl

 (6.2)

Using Clocks with DICE. Clocks entails a periodic broadcast of a vector clock,
irrespective of node mobility. We assume that the broadcast period is b, and the size
of a vector clock element is |vc|. Moreover, although Clocks prevents any local view
update, Flat entails a periodic traffic given by the upper Trickle bound τh. Following
this reasoning, we obtain the bit rate rClocks of the mixed Flat + Clocks solution as

rClocks =

vector clock︷ ︸︸ ︷
13 + n× |vc|

b
+

local view︷ ︸︸ ︷
13 + |LV |

τh
(6.3)

Using Dist with DICE. The neighbor discovery protocol under Dist entails a lightweight
periodic broadcast which we assume to occur with period b. For every movement, there

115

6.7. DICE on Mobile Nodes

Description Notation Value

Network size n 25
Network diameter d 5
Overhead per packet 13 B

Flat
Local view size |LV | 14 B
Lower Trickle bound τl 0.2 s
Upper Trickle bound τh 30 s

Clocks
Vector clock broadcast period b 5 s
Vector clock entry size |vc| 3 B

Dist
Neighbor discovery broadcast period b 5 s
Digest broadcast period D 30 s
Distance vector, digest entry size |dv| 3 B

Table 6.2: Values used in the numerical comparison.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.1 0.2 0.3 0.4 0.5

B
it
 r

a
te

 r
 (

B
/s

)

Relocations of maximum holders λ (s
-1

)

FLAT
CLOCKS
DIST(30)

Figure 6.25: Impact of node mobil-
ity.

will be two updates of the distance vector, one triggered by the former neighbors of the
moving nodes, the other by the new neighbors. Let |dv| denote the size of a distance
vector element. We additionally consider that a digest is broadcast every D, that the
average neighborhood size is n/d, and that each digest entry has size |dv|. Considering
that the Trickle timers reach and remain stable at their upper bound τh, the bit rate of
Dist is rDist, where

rDist =

beacon︷︸︸︷
13

b
+

distance vector︷ ︸︸ ︷
λ× 2 · (13 + n× |dv|) +

digest︷ ︸︸ ︷
13d+ |dv| ·n
D · d

+

local view︷ ︸︸ ︷
13 + |LV |

τh
(6.4)

Numerical comparison. Equations 6.2, 6.3 and 6.4 characterize the packet overhead
in the presence of mobility. Hereafter, we use numerical values to compare the three
solutions; in this respect, we re-use values that were employed in the previous evaluations
of our protocols throughout this thesis. We summarize them in Table 6.2. The results
are illustrated in Figure 6.25 depicting the variance of bit rate of all three solutions with
the mobility of the nodes holding an attribute maximum.

Interestingly, the unmodified Flat solution outperforms a mixed Flat + Dist so-
lution even in the case when node mobility is low. Intuitively, more traffic is needed
to maintain an accurate view on the group membership than the traffic required by the
unmodified Flat to recover from errors induced by mobility. Furthermore, recall the
assumption that only the nodes holding an attribute maximum are mobile. General node
mobility only leads to increased traffic demands on Dist; comparatively, the pure Flat
solution is affected mainly by the mobility of nodes holding a maximum and not by the
general node mobility. Consequently, we consider the complexity of the mixed Flat +
Dist solution unfeasible w.r.t. a pure Flat solution. Instead, when comparing the un-
modified Flat against the mix Flat + Clocks, we observe that, as expected, Flat

116

Chapter 6. Distributed Monitoring of Application Invariants

has lower traffic overhead in the case of low mobility, while the mixture Flat + Clocks
is preferable in the case of highly dynamic scenarios.

6.7.4 Mobile DICE in Action

The previous analysis identified the integration between Clocks and Flat to be the most
efficient solution for monitoring invariants on mobile nodes. In this section, we further
investigate this integration, more specifically, we analyze the behavior of the integration on
real motes. Our goal is to understand the relation between the number of group changes
indicated by Clocks and the packet overhead in DICE. In this respect, we devised two
scenarios, one involving real-world mobility and the second controlled node departures
and joins. In both scenarios, all nodes monitor ∀m,n : temp@m+ temp@n < 60◦C where
temp is the moving average of the temperature computed using 3 samples collected in
the past 6 s. We configured the Trickle timers in Flat with τl = 200 ms and τh = 30 s.
We configured Clocks so that the vector clock exchange occurs with period b = 5 s and
neighbors are declared missing after T = 30 s.

214

8

6

3

22

10 5

15

14

18

16

17

7

27

mobile node

fixed node

Figure 6.26: Deployment of mobile nodes.

Mobile motes. In the first scenario, we de-
ployed 15 nodes in our laboratory, as depicted
by Figure 6.26. 8 of these were carried by the
people in the lab at all times throughout the
day; the remaining 7 were static and ensured
connectivity between rooms. The result is a
group of mobile nodes formed during office
hours. Some of these move, as people often
interacted one with another, and, at times,
some members occasionally leave for breaks,
meetings or other duties, and later re-join the
group. At the end of the office hours, people
were asked to leave on the desk the mote they
carried; from this moment, the network un-
derwent a period during which nodes were static. Albeit mobility in this scenario may
look limited at first, it however mimics the ACube scenario describing the moving group
in Chapter 1. Indeed, churn inside group — the main factor affecting the behavior of
DICE — is perceived in a similar way by the network, irrespective of whether the inertial
system (i.e., the group) is moving or remaining still.

The results, illustrated in Figure 6.27, were collected using two sniffing nodes deployed
in the two main rooms of our laboratory. The first chart shows the number of variations
in the group size as reported by Clocks. At 9:00 we observe an initial peak of 15
group changes corresponding to the system bootstrap. Around 10:30, the WiFi adapter
of one of the laptops severely interfered with the WSN, effectively causing an intermittent
connection between nodes 3, 4, 6 and 7 and the rest of the network. We also observe
a small number of group changes around 22:30 and 2:30 when a number of nodes were
reported missing. These reports can only be incorrect and caused by packet loss as the
building is locked down and no person remains in the building past 22:00.

The second chart in Figure 6.27 shows the packet overhead. As expected, the number

117

6.7. DICE on Mobile Nodes

 0

 5

 10

 15

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 00:00 01:00 02:00 03:00 04:00

G
ro

u
p
 c

h
a
n
g
e
s

Time

 75

 150

 office
arrivals

bootstrap WiFi interference

lunch break

coffee breaks office departures

 0

 20

 40

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 00:00 01:00 02:00 03:00 04:00

P
a
c
k
e
ts

 T
X

Time

 200

 400

 600

Trickle

CLOCKS

 0

 5

 10

 15

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 00:00 01:00 02:00 03:00 04:00

C
o
u
n
t

Time

 250
 500
 750

LV changes
Temperature maxima changes

 20

 22

 24

 26

 28

 30

 32

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 00:00 01:00 02:00 03:00 04:00

T
e
m

p
e
ra

tu
re

 (
o
C

)

Time

Average
Node 6
Node 8

Node 17
Node 21

Figure 6.27: The behavior of DICE with Clocks on mobile nodes. The results show averages over
10 min steps. Note the double scale on the y axis which highlights the peaks for group changes, packets
transmitted, local view and temperature changes.

of packets exchanged (containing vector clocks) by Clocks remains roughly constant
at 120 throughout the experiment. Otherwise, we observe that while some peaks in the
Trickle / Flat traffic corresponding to group changes do exist, these are not as heavy
as compared to the behavior of the network during the night, essentially the time when
nodes remain fix. This is however as expected; recall from Section 6.7.2 that the mobility
of nodes changes the local view (depicted by the third chart) only when one of the nodes
holding an attribute maximum leaves or joins the group.

During the night, when node mobility is no longer present, changes in the attribute
values remained the only source for local view changes and, inherently, packet overhead.
Indeed, changes of the temperature value result in a several peaks in the count of the
transmitted packets and local view changes past 22:00. These persist throughout the
night as in the fourth chart in Figure 6.27 we observe a constant temperature decrease
after 20:00.

Our experiment indicates that DICE experiences the highest amount of traffic overhead
in the presence of group joins or departures; this is the case, for instance, of the coffee
breaks around 16:00. Otherwise, if no changes in the composition of the group occur,
the traffic overhead is comparable to the overhead of a fixed network; in this respect
consider, for example, the difference between the traffic at 15:00 and the traffic late at
night. Moreover, according to the difference between the behavior during the night and
the behavior during the day, changes in the group composition have a higher impact w.r.t.

118

Chapter 6. Distributed Monitoring of Application Invariants

40

39

37
35

42 43
38

41

32

33

31
30
29 28

34
35

23
22

47
46
45

48

49

44

25

Figure 6.28: Testbed for controlled node de-
partures.

 0

 0.2

 0.4

 0.6

 0.8

0.0 0.5 1.0 2.0 3.0

C
h
a

n
g
e
 r

a
te

 (
s

-1
)

Departure rate (min
-1

)

temperature
group size
local view

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0.0 0.5 1.0 2.0 3.0

P
a
c
k
e
t
T

X
 r

a
te

 (
s

-1
)

Departure rate (min
-1

)

CLOCKS
Trickle

Figure 6.29: Results of controlled departures
experiments.

to the changes of attribute values.

Controlled departures. The previous experiment highlighted the big impact of changes
in the group composition of the network overhead. In the second experiment, we focus on
this aspect, specifically, we design a scenario where we can exhibit control on the group
change rate and analyze the resulting traffic. To this end, we used 25 nodes of the testbed
deployed in an office building as per Figure 6.28. In our scenario, nodes join or leave the
network periodically, however, the size of the network remains constant throughout time.
To this end, we simulate departures by periodically turning off the radio on a number
of randomly selected nodes. At every such simulated departure, we re-enable the radio
of the nodes whose departure was previously simulated. In result, we achieve departure
rates of {0, 1/2, 1, 2, 3} per minute4. We repeat this procedure for approximately 1 h.

The results of our experiment are illustrated by the two charts in Figure 6.29. The
chart on the top shows the average change rate for the sensed temperature, group and
local view during the entire experiment. We observe that, as temperature changes are
practically nonexistent, the main cause for local view updates is node departures / joins.
Moreover, as expected, from the chart on the bottom, we notice that the fraction of
transmitted packets due to Clocks is constant and that the number of Trickle / Flat
packets is similar to the number of local view changes.

Interesting however is that the number of local view changes is not proportional to
the number of group changes. This is nonetheless as expected: a local view update is
triggered only when a maximum joins or leaves the group; as in our experiments, the
departing nodes are randomly selected, they do not necessarily hold a maximum and
thus their departure does not reflect into a local view change. Therefore, the difference
between various group change rates is not as pronounced as compared to the case in which
no departure occurs. This reasoning also holds for the packet overhead, depicted by the

4To achieve the rate of 1/2 departures/min, we turn off the radio of 2 nodes every 4 min. For the remainder
rates, we turn off the radio of 2, 4, respectively 6 nodes every 2 min.

119

6.8. Related Work

chart on the bottom.

6.8 Related Work

The problem we tackle with DICE is reminiscent of predicate detection in distributed
systems. In this field, seminal work investigates the detection of stable predicates [20],
whose truth value changes only once in the system lifetime. Our work focuses instead on
unstable predicates [41], that is, predicates whose truth value may change repeatedly. A
particular class of unstable predicates are linear inequalities in the form

∑
i xi > K, similar

to Type II invariants. This class has been studied previously in [115]. In some respect, the
algorithm in this latter work is analogous to ours, e.g., it identifies the largest values of xi
to decide whether the predicate is satisfied. However, the techniques employed by [115]—
and by most literature on distributed predicate detection, including post-mortem analysis
of WSNs [108]—are based on logical time, expensive and hardly applicable at run-time
in WSNs.

In-network aggregation, the technique we employ to reduce traffic and collect network
state, is widely referenced in the WSN literature. Various protocols, network overlays
and summarization techniques have been proposed in this respect [25, 78, 93]. However,
the general goal of these works focuses on data acquisition and traffic optimization, over-
looking issues that are key in monitoring invariants (e.g., the consistency of the gathered
state).

Moreover, declarative approaches have been proposed as programming [91] or debug-
ging [13] abstractions for WSNs. TinyDB [79] is an example of the former, where an
SQL-based, database-like abstraction simplifies querying data from a WSN. In contrast
with TinyDB and similar programming-oriented approaches, which focus on providing
construct to develop the core application functionality, DICE focuses instead on the com-
plementary problem of ensuring that the latter behaves as intended. In this respect,
the work closest to ours is the one on passive distributed assertions (PDA) [104]. As in
our system, programmers specify the correct behavior of programs by using predicates
that can be seen as a combination of Type I and Type II invariants. Nevertheless,
the monitoring process occurs in a centralized manner, by relying on a fixed monitoring
station outside the WSN, and based on global knowledge of the system state. The latter
is acquired by using a secondary WSN deployed alongside the real one that sniffs and
delivers packets to the monitoring station, which in many cases limits practical applica-
bility. Moreover, to the best of our knowledge [91], we are among the first to propose a
programming abstraction that explicitly deals with node mobility.

6.9 Discussion and Outlook

We presented DICE, a system for WSN-based distributed monitoring of global invariants
in physical processes. DICE provides a declarative language to specify invariants and a
run-time support enabling efficient monitoring of their violations. The run-time can be
configured to use either the structure-less Flat protocol or the Tree protocol, which
instead relies on an overlay.

120

Chapter 6. Distributed Monitoring of Application Invariants

Flat provides increased fault tolerance by allowing any node to detect a violation, at
the expense of increased overhead in scenarios with high rates of changes in the monitored
application state. Nevertheless, the nature of Flat permits the operation of DICE on top
of mobile networks. In this respect, a pure Flat solution efficiently addresses networks
in which node mobility is reduced. If however, mobility is complex, it is advisable to use
Flat in conjunction with one of the group membership algorithms described in Chapter 5,
the latter playing the role of a global failure detector.

Instead, Tree provides improved performance for fixed scenarios in which the change
rate of application state is high by structuring and optimizing the dissemination of relevant
state changes, but this very structure makes the approach more complex, as it requires
additional mechanisms to preserve structure in the presence of failures, and limits the
ability to detect violation only to a subset of the nodes.

In perspective, we see this work as a building block for more complex functionality.
We are already working to enable the specification of invariants involving aggregation over
subsets of nodes, e.g., the sensor reading of each node must not deviate too much from the
global average. On the other hand, our approach is naturally complemented by language
constructs and run-time support for enforcing invariants. The combination of the two—
monitoring and enforcement—would provide developers with a full-fledged tool-set for
building sophisticated, fully decentralized, and yet reliable cyber-physical applications.

121

6.9. Discussion and Outlook

122

Part III

Conclusions

Chapter 7

Conclusions and Outlook

Mobile WSNs are emerging as a solution addressing specific application demands such
as the study of the social behavior of humans and wildlife, shepherding, tracking of as-
sets, and environmental monitoring. Additionally, mote mobility can be employed as an
elegant means serving non-functional requirements, e.g., to increase the lifetime of fixed
WSNs. Nevertheless, mobility raises peculiar challenges, as interactions are transient,
disconnections frequent and lifetime constraints more stringent w.r.t. the case of fixed
nodes.

The work in this thesis is application-driven; in our three motivating scenarios —
monitoring of the social behavior of wildlife, assisted living, support of business processes
— we identified three fundamental problems that received little attention in the state-of-
art. These are 1) neighbor discovery, or the problem of identifying the nodes in the radio
range, 2) group membership, or the problem of identifying the transitively connected
nodes, and 3) the problem of monitoring distributed invariants in mobile networks, as
well as in networks where nodes are fixed. Each problem entails a solution that lies at a
different software layer, ranging from the MAC to the application layer.

RUTh, our neighbor discovery protocol executes at the MAC layer. We used an an-
alytical model of the radio transceiver to formulate an optimization problem from two
perspectives. First, we dealt with the detection latency: our goal was to guarantee a
minimal energy consumption and that all neighbors are detected within a given interval.
Dually, we tackled the problem from the perspective of lifetime, where we provide guaran-
tees on the node lifetime while minimizing the time in which neighbors are detected. The
defining feature of our protocol is its probabilistic mode; in this mode, RUTh trades-off
the number of detected contacts for a decreased latency, respectively an increased lifetime.

We designed, implemented and compared three independent solutions to the problem
of group membership using mainstream routing algorithms in computer science. These
solutions cover the design space. At one extreme lies Clocks, a protocol in which nodes
proactively exchange vector clocks to determine the group composition. At the other
extreme lies Links, in which we use link state information to provide nodes with a con-
sistent view on the group membership; in this solution, data is exchanged as a reaction
to changes in the one-hop neighborhood. Finally, we presented Dist, a hybrid solution
in which nodes reactively exchange distance vectors to infer the group composition and
proactively exchange state summaries to recover from possible faults.

125

At the application layer, we provided DICE, a full-fledged solution to the problem of
monitoring global invariants. The first constituent of this solution is a simple language in
which domain experts specify invariants describing the correct behavior of the monitored
processes. The invariants are compiled and dynamically loaded in a network that may be
either fixed or mobile. To address fixed networks, we developed a solution that exploits in-
network aggregation to achieve a minimal overhead and guarantees that at least one node
detects invariant violations. We addressed slowly-mobile networks through a protocol
that provides all nodes with an eventually consistent view on the violation state of the
monitored invariants.

Interestingly, dynamic networks require the integration of all contributions in this
thesis. In particular, node mobility misleads DICE into believing that relocated nodes
are departed. From this perspective, group membership information can be integrated
as a global failure detector in the DICE run-time. In this respect, we identified that
the group monitoring protocol based on vector clocks is the most promising solution as it
entails a fixed amount of traffic irrespective of node mobility. Furthermore, the integration
can in principle reach lower layers. Specifically, we envision a solution in which a mobile
node undergoes two general states, as follows. In the first state, the node is isolated and
the operation of the higher level solutions (e.g., group monitoring, DICE) is suspended;
the node employs RUTh to achieve a maximal energy-efficiency. In the second state, the
node is in contact and thus the operation of the higher level solutions is resumed.

In hindsight, in addition to the extensive evaluation of our contributions in this thesis,
we are looking forward to study the behavior of RUTh, group membership and DICE
in real-world contexts. In particular, we have already developed the full RUTh technical
machinery necessary for domain experts to properly configure the behavior of nodes in
their applications. We showed that our protocol conforms to expectations in our lab-
oratory and in controlled deployments. Nonetheless, preliminary experimentation also
showed that our protocol is limited by the vagaries of wireless communication. If domain
experts are to employ RUTh in their applications, they must be provided with the prin-
cipled tools (e.g., models and empirical results) required to understand the scenarios that
hamper our protocol.

A similar case occurs for our group monitoring algorithms. We determined that among
the three, the link state solution performs the worst. Unfortunately, the choice between
the other two solutions is not so obvious. Further investigation is required to break the
tie between the vector clock and distance vector solutions. To this end, we require more
accurate models of the group dynamics (e.g., for groups of people and animals) w.r.t.
the solutions we resorted to in the absence of a ground truth. Another perspective from
which these protocols can be analyzed and we have not yet considered is the underlying
duty-cycle scheme. Intuition tells us that LPL hinders the reactive solutions, as these
require immediate dissemination of state once neighborhoods change. This is a topic that
we did not include in our evaluation and therefore additional measurements are needed
for a deeper understanding of group membership problem in the context of WSNs.

A push for an integrated architecture containing DICE, group monitoring and RUTh
is an important contribution per se. In this thesis, we approached the problem only from
the perspective of mobility and provided a model that helps understanding which of DICE

126

Chapter 7. Conclusions and Outlook

and an integrated DICE + Clocks is more suitable to address mobility. Despite this, a
number of questions remained open. For instance, we can imagine a study of the interplay
between detection latency and energy efficiency along the lines of RUTh, which provides
an optimal configuration of the parameters in the framework. Moreover, the invariant
specification language can be enriched with invariants involving aggregates over groups
of nodes or with constructs that close the control loop, i.e., by enforcing invariants.

127

128

Part IV

Addendum

Bibliography

[1] The MultiHopLQI protocol. http://www.tinyos.net/tinyos-2.x/tos/lib/net/lqi.
Accessed on 2/2010.

[2] IEEE Standard 802.15.4-2006: Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless Personal Area Networks (WPANs), September 2006.

[3] Allred, J., Hasan, A. B., Panichsakul, S., Pisano, W., Gray, P., Huang, J., Han, R.,
Lawrence, D., and Mohseni, K. SensorFlock: an airborne wireless sensor network of micro-air
vehicles. In Proc. of the Int. Conf. on Embedded Networked Sensor Systems (2007), SenSys, ACM,
pp. 117–129.

[4] Alsalih, W., Hassanein, H., and Akl, S. Placement of multiple mobile data collectors in
wireless sensor networks. Ad Hoc Netw. 8 (June 2010), 378–390.

[5] Ammari, H. M., and Das, S. K. Mission-oriented k-coverage in mobile wireless sensor networks.
In Proc. of the Int. Conf. on Distributed Computing and Networking (2010), ICDCN, Springer-
Verlag, pp. 92–103.

[6] Anastasi, G., Borgia, E., Conti, M., and Gregori, E. A Hybrid Adaptive Protocol for
Reliable Data Delivery in WSNs with Multiple Mobile Sinks. The Computer Journal 54, 2 (2011),
213–229.

[7] Anastasi, G., Conti, M., Gregori, E., Spagoni, C., and Valente, G. Motes Sensor
Networks in Dynamic Scenarios: an Experimental Study for Pervasive Applications in Urban En-
vironments. Int. Journal of Ubiquitous Computing and Intelligence 1 (2006).

[8] Birman, K. P. ISIS: A System for Fault-Tolerant Distributed Computing. Tech. rep., Cornell
University, Ithaca, NY, USA, 1986.

[9] Brookmeyer, R., Johnson, E., Ziegler-Graham, K., and Arrighi, H. M. Forecasting the
global burden of Alzheimer’s disease. Alzheimer’s & Dementia : The Journal of the Alzheimer’s
Association 3, 3 (July 2007), 186–191.

[10] Burrell, J., Brooke, T., and Beckwith, R. Vineyard Computing: Sensor Networks in
Agricultural Production. IEEE Pervasive Computing 3 (January 2004), 38–45.

[11] Butler, Z. J., Corke, P. I., Peterson, R. A., and Rus, D. Virtual Fences for Controlling
Cows. In Proc. of the Int. Conf. on Robotics and Automation (2004), ICRA, IEEE, pp. 4429–4436.

[12] Cagnacci, F., Boitani, L., Powell, R. A., and Boyce, M. S. Animal ecology meets GPS-
based radiotelemetry: a perfect storm of opportunities and challenges. Philosophical Trans. of The
Royal Society Biological Sciences 365, 1550 (2010), 2157–2162.

131

http://www.tinyos.net/tinyos-2.x/tos/lib/net/lqi

BIBLIOGRAPHY

[13] Cao, Q., Abdelzaher, T., Stankovic, J., Whitehouse, K., and Luo, L. Declarative tra-
cepoints: a programmable and application independent debugging system for wireless sensor net-
works. In Proc. of the Int. Conf. on Embedded Network Sensor Systems (2008), SenSys, ACM,
pp. 85–98.

[14] Cattani, M. Group Monitoring in Wireless Sensor Networks. Master’s thesis, Università degli
Studi di Trento. Faculty of Mathematical, Phisical and Natural Sciences, 2010.

[15] Cattani, M., Guna, S., and Picco, G. P. Group monitoring in mobile wireless sensor networks.
In Proc. of the Int. Conf. on Distributed Computing in Sensor Systems (2011), DCOSS, IEEE,
pp. 1–8.

[16] Ceriotti, M., Corra, M., D’Orazio, L., Doriguzzi, R., Facchin, D., Guna, S. T., Jesi,
G. P., Cigno, R. L., Mottola, L., Murphy, A. L., Pescalli, M., Picco, G. P., Pregno-
lato, D., and Torghele, C. Is there light at the ends of the tunnel? Wireless sensor networks
for adaptive lighting in road tunnels. In Proc. of the Int. Conf. on Information Processing in Sensor
Networks (2011), IPSN, IEEE, pp. 187–198.

[17] Ceriotti, M., Mottola, L., Picco, G. P., Murphy, A. L., Guna, S., Corra, M., Pozzi,
M., Zonta, D., and Zanon, P. Monitoring heritage buildings with wireless sensor networks: The
torre aquila deployment. In Proc. of the Int. Conf. on Information Processing in Sensor Networks
(2009), IPSN, IEEE, pp. 277–288.

[18] Chakrabarti, A., Sabharwal, A., and Aazhang, B. Using predictable observer mobility for
power efficient design of sensor networks. In Proc. of the Int. Conf. on Information Processing in
Sensor Networks (2003), IPSN, Springer-Verlag, pp. 129–145.

[19] Chan, H., Perrig, A., and Song, D. Random key predistribution schemes for sensor networks.
In Proc. of the Symp. on Security and Privacy (2003), SP, IEEE, pp. 197–213.

[20] Chandy, K. M., and Lamport, L. Distributed snapshots: determining global states of dis-
tributed systems. ACM Trans. Comput. Syst. 3, 1 (1985), 63–75.

[21] Chini, G. Wireless Sensor Networks for Assisted Living. An advanced monitoring system for fall
detection using WSN. Master’s thesis, Università degli Studi di Trento. Faculty of Mathematical,
Phisical and Natural Sciences, 2010.

[22] Chipara, O., Brooks, C., Bhattacharya, S., Lu, C., Chamberlain, R. D., Roman, G.-
C., and Bailey, T. C. Reliable real-time clinical monitoring using sensor network technology.
In Proc. of the AMIA Annual Symp. (2009), AMIA, American Medical Informatics Association,
pp. 103–107.

[23] Chipara, O., Lu, C., Bailey, T. C., and Roman, G.-C. Reliable clinical monitoring using
wireless sensor networks: experiences in a step-down hospital unit. In Proc. of the Int. Conf. on
Embedded Networked Sensor Systems (2010), SenSys, ACM, pp. 155–168.

[24] Chipcon Tech. CC2420 Datasheet. focus.ti.com/docs/prod/folders/print/cc2420.
html. Accessed on 9/2010.

[25] Considine, J., Li, F., Kollios, G., and Byers, J. Approximate Aggregation Techniques for
Sensor Databases. In Proc. of the Int. Conf. on Data Engineering (2004), ICDE, IEEE, pp. 449–460.

[26] Costa, P., Mottola, L., Murphy, A. L., and Picco, G. P. Programming wireless sen-
sor networks with the TeenyLime middleware. In Proc. of the Int. Conf. on Middleware (2007),
Middleware, Springer-Verlag, pp. 429–449.

132

focus.ti.com/docs/prod/folders/print/cc2420.html
focus.ti.com/docs/prod/folders/print/cc2420.html

BIBLIOGRAPHY

[27] Ş. Gună, Mottola, L., and Picco, G. DICE: Monitoring Global Invariants of Physical Pro-
cesses using Wireless Sensor Networks. (under review) (2011).

[28] Di Francesco, M., Das, S. K., and Anastasi, G. Data Collection in Wireless Sensor Networks
with Mobile Elements: A Survey. ACM Trans. Sen. Netw. 8 (2011), 7:1–7:31.

[29] Doriguzzi Corin, R., Russello, G., and Salvadori, E. TinyKey: A light-weight architecture
for Wireless Sensor Networks securing real-world applications. In Proc. of the Int. Comf. on Wireless
On-Demand Network Systems and Services (2011), WONS, IEEE, pp. 68–75.

[30] Dunkels, A., Gronvall, B., and Voigt, T. Contiki - A Lightweight and Flexible Operating
System for Tiny Networked Sensors. In Proc. of the Int. Conf. on Local Computer Networks (2004),
LCN, IEEE, pp. 455–462.

[31] Dunkels, A., Österlind, F., and He, Z. An Adaptive Communication Architecture for Wireless
Sensor Networks. In Proc. of the Int. Conf. on Embedded Networked Sensor Systems (2007), SenSys,
ACM, pp. 335–349.

[32] Dutta, P., and Culler, D. Practical asynchronous neighbor discovery and rendezvous for
mobile sensing applications. In Proc. of the Int. Conf. on Embedded Network Sensor Systems
(2008), SenSys, ACM, pp. 71–84.

[33] Dyo, V., Ellwood, S. A., Macdonald, D. W., Markham, A., Mascolo, C., Pásztor,
B., Scellato, S., Trigoni, N., Wohlers, R., and Yousef, K. Evolution and sustainability
of a wildlife monitoring sensor network. In Proc. of the Int. Conf. on Embedded Networked Sensor
Systems (2010), SenSys, ACM, pp. 127–140.

[34] Dyo, V., and Mascolo, C. Efficient node discovery in mobile wireless sensor networks. In Proc.
of the Int. Conf. on Distributed Computing in Sensor Systems (2008), DCOSS, Springer-Verlag,
pp. 478–485.

[35] Eisenman, S. B., Miluzzo, E., Lane, N. D., Peterson, R. A., Ahn, G.-S., and Campbell,
A. T. The BikeNet mobile sensing system for cyclist experience mapping. In Proc. of the Int.
Conf. on Embedded Networked Sensor Systems (2007), SenSys, ACM, pp. 87–101.

[36] Faulkner, M., Olson, M., Chandy, R., Krause, J., Chandy, K. M., and Krause, A. The
next big one: Detecting earthquakes and other rare events from community-based sensors. In Proc.
of the Int. Conf. on Information Processing in Sensor Networks (2011), IPSN, IEEE, pp. 13–24.

[37] Frank, C., and Römer, K. Algorithms for generic role assignment in wireless sensor networks. In
Proc. of the Int. Conf. on Embedded networked sensor systems (2005), SenSys, ACM, pp. 230–242.

[38] Gage, D. W. Command control for many-robot systems. Control 10, June (1992), 28–34.

[39] Galassi, M., et al. GNU Scientific Library Reference Manual, 3rd ed. Network Theory Ltd.,
February 2003.

[40] Gandham, S. R., Dawande, M., Prakash, R., and Venkatesan, S. Energy efficient schemes
for wireless sensor networks with multiple mobile base stations. In Global Telecommunications Conf
(2003), GLOBECOM, IEEE, pp. 377–381.

[41] Garg, V. K., and Waldecker, B. Detection of weak unstable predicates in distributed pro-
grams. IEEE Trans. Parallel Distrib. Syst. 5 (March 1994), 299–307.

133

BIBLIOGRAPHY

[42] Ghasemzadeh, H., Loseu, V., and Jafari, R. Collaborative signal processing for action recog-
nition in body sensor networks: a distributed classification algorithm using motion transcripts.
In Proc. of the Int. Conf. on Information Processing in Sensor Networks (2010), IPSN, ACM,
pp. 244–255.

[43] Ghosh, A., and Das, S. Coverage and connectivity issues in wireless sensor networks: A survey.
Pervasive and Mobile Computing 4, 3 (June 2008), 303–334.

[44] Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., and Levis, P. Collection tree protocol.
In Proc. of the Int. Conf. on Embedded Networked Sensor Systems (2009), SenSys, ACM, pp. 1–14.

[45] Grossglauser, M., and Tse, D. N. C. Mobility increases the capacity of ad hoc wireless
networks. IEEE/ACM Trans. Netw. 10 (August 2002), 477–486.

[46] Guha, S., Plarre, K., Lissner, D., Mitra, S., Krishna, B., Dutta, P., and Kumar, S.
AutoWitness: locating and tracking stolen property while tolerating GPS and radio outages. In
Proc. of the Int Conf. on Embedded Networked Sensor Systems (2010), SenSys, ACM, pp. 29–42.

[47] Gupta, P., and Kumar, P. R. The capacity of wireless networks. IEEE Trans. on Information
Theory 46, 2 (Mar. 2000), 388–404.

[48] Hedrick, C. Routing Information Protocol (RIP). RFC 1058, 1988.

[49] Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and Pister, K. System archi-
tecture directions for networked sensors. SIGPLAN Not. 35 (November 2000), 93–104.

[50] Hoppough, S. Shelf life. Forbes (April 24 2006).

[51] Hu, Y.-C., Perrig, A., and Johnson, D. B. Ariadne: a secure on-demand routing protocol for
ad hoc networks. Wirel. Netw. 11 (January 2005), 21–38.

[52] Huang, J.-H., Amjad, S., and Mishra, S. CenWits: a sensor-based loosely coupled search and
rescue system using witnesses. In Proc. of the Int. Conf. on Embedded Networked Sensor Systems
(2005), SenSys, ACM, pp. 180–191.

[53] Hull, B., Bychkovsky, V., Zhang, Y., Chen, K., Goraczko, M., Miu, A., Shih, E.,
Balakrishnan, H., and Madden, S. CarTel: a distributed mobile sensor computing system. In
Proc. of the Int. Conf. on Embedded Networked Sensor Systems (2006), SenSys, ACM, pp. 125–138.

[54] Jain, S., Shah, R. C., Brunette, W., Borriello, G., and Roy, S. Exploiting mobility
for energy efficient data collection in wireless sensor networks. Mob. Netw. Appl. 11 (June 2006),
327–339.

[55] Jhumka, A., and Mottola, L. On Consistent Neighborhood Views in Wireless Sensor Networks.
In Proc. of the Int. Symp. on Reliable Distributed Systems (2009), SRDS, IEEE, pp. 199–208.

[56] Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L. S., and Rubenstein, D. Energy-
efficient computing for wildlife tracking: design tradeoffs and early experiences with ZebraNet.
SIGARCH Comput. Archit. News 30, 5 (2002), 96–107.

[57] Kandhalu, A., Lakshmanan, K., and Ragunathan, R. U-Connect: A low-latency energy-
efficient asynchronous neighbor discovery protocol. In Proc. of the Int. Conf. on Information
Processing in Sensor Networks (2010), IPSN, ACM, pp. 350–361.

[58] Kansal, A., Somasundara, A. A., Jea, D. D., Srivastava, M. B., and Estrin, D. Intel-
ligent fluid infrastructure for embedded networks. In Proc. of the Int. Conf. on Mobile systems,
applications, and services (2004), MobiSys, ACM, pp. 111–124.

134

BIBLIOGRAPHY

[59] Karlof, C., Sastry, N., and Wagner, D. TinySec: a link layer security architecture for wireless
sensor networks. In Proc. of the Int. Conf. on Embedded Networked Sensor Systems (2004), SenSys,
ACM, pp. 162–175.

[60] Kim, D. H., Kim, Y., Estrin, D., and Srivastava, M. B. SensLoc: sensing everyday places
and paths using less energy. In Proc. of the Int. Conf. on Embedded Networked Sensor Systems
(2010), SenSys, ACM, pp. 43–56.

[61] Kim, H. S., Abdelzaher, T. F., and Kwon, W. H. Minimum-energy asynchronous dissem-
ination to mobile sinks in wireless sensor networks. In Proc. of the 1st Int. Conf. on Embedded
Networked Sensor Systems (2003), SenSys, ACM, pp. 193–204.

[62] Klingbeil, L., and Wark, T. A Wireless Sensor Network for Real-Time Indoor Localisation
and Motion Monitoring. In Proc. of the Int. Conf. on Information processing in sensor networks
(2008), IPSN, IEEE, pp. 39–50.

[63] Klugman, J., et al. Human Development Report 2009. Overcoming barriers: Human mobility
and development. Palgrave Macmillan, 2009.

[64] Kothari, N., Gummadi, R., Millstein, T., and Govindan, R. Reliable and efficient program-
ming abstractions for wireless sensor networks. In Proc. of the Conf. on Programming language
design and implementation (2007), PLDI, ACM, pp. 200–210.

[65] Lachenmann, A., Marrón, P. J., Minder, D., and Rothermel, K. Meeting lifetime goals
with energy levels. In Proc. of the Int. Conf. on Embedded Networked Sensor Systems (2007),
SenSys, ACM, pp. 131–144.

[66] Lai, T.-t. T., Chen, Y.-h. T., Huang, P., and Chu, H.-h. PipeProbe: a mobile sensor droplet
for mapping hidden pipeline. In Proc. of the Int. Conf. on Embedded Networked Sensor Systems
(2010), SenSys, ACM, pp. 113–126.

[67] Laibowitz, M., Gips, J., Aylward, R., Pentland, A., and Paradiso, J. A. A sensor network
for social dynamics. In Proc. of the Int. Conf. on Information processing in sensor networks (2006),
IPSN, ACM, pp. 483–491.

[68] Levis, P., Patel, N., Culler, D., and Shenker, S. Trickle: a self-regulating algorithm for
code propagation and maintenance in wireless sensor networks. In Proc. of the Symp. on Networked
Systems Design and Implementation (2004), NSDI, USENIX, pp. 15–28.

[69] Lin, K., and Levis, P. Data Discovery and Dissemination with DIP. In Proc. of the Int. Conf.
on Information processing in sensor networks (2008), IPSN, IEEE.

[70] Lipták, B. Process Control. Butterworth-Heinemann, 1995.

[71] Liu, T., and Martonosi, M. Impala: a middleware system for managing autonomic, parallel
sensor systems. In Proc. of the Symp. on Principles and practice of parallel programming (2003),
PPoPP, ACM, pp. 107–118.

[72] Lorincz, K., Chen, B.-r., Challen, G. W., Chowdhury, A. R., Patel, S., Bonato, P.,
and Welsh, M. Mercury: a wearable sensor network platform for high-fidelity motion analysis. In
Proc. of the Int. Conf. on Embedded Networked Sensor Systems (2009), SenSys, ACM, pp. 183–196.

[73] Lorincz, K., Malan, D. J., Fulford-Jones, T. R. F., Nawoj, A., Clavel, A., Shnayder,
V., Mainland, G., Welsh, M., and Moulton, S. Sensor Networks for Emergency Response:
Challenges and Opportunities. IEEE Pervasive Computing 3, 4 (Oct. 2004), 16–23.

135

BIBLIOGRAPHY

[74] Lu, H., Yang, J., Liu, Z., Lane, N. D., Choudhury, T., and Campbell, A. T. The Jigsaw
continuous sensing engine for mobile phone applications. In Proc. of the Int. Conf. on Embedded
Networked Sensor Systems (2010), SenSys, ACM, pp. 71–84.

[75] Luo, J., and Hubaux, J. Joint mobility and routing for lifetime elongation in wireless sensor
networks. In Proceedings of the Conf. on Computer Communications (2005), Infocom, IEEE,
pp. 1735–1746.

[76] Luo, J., Panchard, J., Piórkowski, M., Grossglauser, M., and pierre Hubaux, J.
Mobiroute: Routing towards a mobile sink for improving lifetime in sensor networks. In Proc.
of the Int. Conf. on Distributed Computing in Sensor Systems (2006), DCOSS, Springer Verlag,
pp. 480–497.

[77] Lusseau, D., and Newman, M. E. J. Identifying the role that individual animals play in their
social network. Proc. R. Soc. London B (Suppl.) 271 (2004).

[78] Madden, S., Franklin, M. J., Hellerstein, J. M., and Hong, W. TAG: a Tiny AGgregation
service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev. 36 (December 2002), 131–146.

[79] Madden, S. R., Franklin, M. J., Hellerstein, J. M., and Hong, W. TinyDB: an acquisi-
tional query processing system for sensor networks. ACM Trans. Database Syst. 30 (March 2005),
122–173.

[80] Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., and Anderson, J. Wireless
sensor networks for habitat monitoring. In Proc. of the Int. workshop on Wireless sensor networks
and applications (2002), WSNA, ACM, pp. 88–97.

[81] Malinowski, M., Moskwa, M., Feldmeier, M., Laibowitz, M., and Paradiso, J. A. Car-
goNet: a low-cost micropower sensor node exploiting quasi-passive wakeup for adaptive asychronous
monitoring of exceptional events. In Proc. of the Int. Conf. on Embedded Networked Sensor Systems
(2007), SenSys, ACM, pp. 145–159.

[82] Maróti, M., Kusy, B., Simon, G., and Lédeczi, A. The flooding time synchronization
protocol. In Proc. of the Int. Conf. on Embedded Networked Sensor Systems (2004), SenSys, ACM,
pp. 39–49.

[83] Martinez, K., Hart, J. K., and Ong, R. Environmental sensor networks. Computer 37
(August 2004), 50–56.

[84] Mattern, F. Virtual time and global states of distributed systems. In Proc. of the Workshop on
Parallel and Distributed Algorithms (1989), Elsevier, pp. 215–226.

[85] McGlynn, M. J., and Borbash, S. A. Birthday protocols for low energy deployment and
flexible neighbor discovery in ad hoc wireless networks. In Proc. of the Int. Symp. on Mobile ad
hoc networking & computing (2001), MobiHoc, ACM, pp. 137–145.

[86] Mills, D. Network Time Protocol (NTP). RFC 958, 1985.

[87] Miluzzo, E., Lane, N. D., Fodor, K., Peterson, R., Lu, H., Musolesi, M., Eisenman,
S. B., Zheng, X., and Campbell, A. T. Sensing meets mobile social networks: the design,
implementation and evaluation of the CenceMe application. In Proc. of the Int. Conf. on Embedded
Network Sensor Systems (2008), SenSys, ACM.

[88] Mohan, P., Padmanabhan, V. N., and Ramjee, R. Nericell: rich monitoring of road and
traffic conditions using mobile smartphones. In Proc. of the Int. Conf. on Embedded Network
Sensor Systems (2008), SenSys, ACM, pp. 323–336.

136

BIBLIOGRAPHY

[89] Molteni, D. Reti di sensori wireless per lo studio dei comportamenti sociali di animali selvatici
(Wireless Sensor Networks for Studying Wildlife Social Behavior). Master’s thesis, Università degli
Studi di Trento. Engineering Faculty, 2010.

[90] Moss, D., and Levis, P. BoX-MACs: Exploiting Physical and Link Layer Boundaries in Low-
Power Networking. Tech. Rep. SING-08-00, Stanford Information Networks Group, 2008.

[91] Mottola, L., and Picco, G. P. Programming wireless sensor networks: Fundamental concepts
and state of the art. ACM Comput. Surv. 43 (April 2011), 19:1–19:51.

[92] Moy, J. Open Shortest Path First (OSPF). RFC 2328, 1998.

[93] Nath, S., Gibbons, P. B., Seshan, S., and Anderson, Z. Synopsis diffusion for robust
aggregation in sensor networks. ACM Trans. Sen. Netw. 4 (April 2008), 7:1–7:40.

[94] Österlind, F., Dunkels, A., Eriksson, J., Finne, N., and Voigt, T. Cross-level sensor
network simulation with COOJA. In Proc. of the Int. Conf. on Local Computer Networks (2006),
LCN, IEEE, pp. 641–648.

[95] Peterson, M. N., Lopez, R. R., Frank, P. A., Peterson, M. J., and Silvy, N. J. Evalu-
ating capture methods for urban white-tailed deer. Wildlife Society Bulletin 31, 4 (2003).

[96] Polastre, J., Hill, J., and Culler, D. Versatile low power media access for wireless sensor
networks. In Proc. of the Int. Conf. on Embedded Networked Sensor Systems (2004), SenSys, ACM,
pp. 95–107.

[97] Polastre, J., Szewczyk, R., and Culler, D. Telos: Enabling ultra-low power wireless re-
search. In Proc. of the Int. Symp. on Information Processing in Sensor Networks (2005), IPSN,
IEEE.

[98] Purohit, A., Sun, Z., Mokaya, F., and Zhang, P. SensorFly: Controlled-mobile sensing
platform for indoor emergency response applications. In Proc. of the Int. Conf. on Information
Processing in Sensor Networks (2011), IPSN, IEEE, pp. 223–234.

[99] Rana, R. K., Chou, C. T., Kanhere, S. S., Bulusu, N., and Hu, W. Ear-phone: an
end-to-end participatory urban noise mapping system. In Proc. of the Int. Conf. on Information
Processing in Sensor Networks (2010), IPSN ’10, ACM, pp. 105–116.

[100] Razvan Musaloiu, E., Liang, C.-J. M., and Terzis, A. Koala: Ultra-Low Power Data
Retrieval in Wireless Sensor. In Proc. of the Int. Conf. on Information Processing in Sensor
Networks (2008), IPSN, IEEE, pp. 421–432.

[101] Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S., and Chong,
S. CRAWDAD trace ncsu/mobilitymodels/gps/kaist (v. 2009-07-23). From
http://crawdad.cs.dartmouth.edu/ncsu/mobilitymodels/GPS/KAIST.

[102] Roman, G.-C., Huang, Q., and Hazemi, A. Consistent group membership in ad hoc networks.
In Proc. of the Int. Conf. on Software Engineering (2001), ICSE, IEEE, pp. 381–388.

[103] Römer, K. Time synchronization in ad hoc networks. In Proc. of the Int. Symp. on Mobile ad
hoc networking & computing (2001), MobiHoc, ACM, pp. 173–182.

[104] Römer, K., and Ma, J. PDA: Passive distributed assertions for sensor networks. In Proc. of the
Int. Conf. on Information Processing in Sensor Networks (2009), IPSN, IEEE, pp. 337–348.

[105] Royer, E. M., and Toh, C.-K. A review of current routing protocols for ad hoc mobile wireless
networks. IEEE Personal Communications 6, 2 (Apr. 1999), 46–55.

137

BIBLIOGRAPHY

[106] Schiele, B., Schmidt, A., Michahelles, F., and Matter, P. Applying wearable sensors to
avalanche rescue: First experiences with a novel avalanche beacon. Computers & Graphics 27, 6
(2003), 839–847.

[107] Sentilla. TMote Sky Datasheet. http://www.sentilla.com/moteiv-transition.html.
Accessed on 1/2011.

[108] Sookoor, T., Hnat, T., Hooimeijer, P., Weimer, W., and Whitehouse, K. Macrode-
bugging: global views of distributed program execution. In Proc. of the 7th Conf. on Embedded
Networked Sensor Systems (SenSys) (2009).

[109] Sorber, J. System support for perpetual mobile tracking. PhD thesis, University of Massachusetts
- Amherst, 2010.

[110] Sridhar, N. Decentralized Local Failure Detection in Dynamic Distributed Systems. In Proc. of
the Symp. on Reliable Distributed Systems (2006), SRDS, IEEE, pp. 143–154.

[111] Stankovic, J. A., Lee, I., Mok, A., and Rajkumar, R. Opportunities and obligations for
physical computing systems. Computer 38 (November 2005), 23–31.

[112] Sugihara, R., and Gupta, R. K. Improving the Data Delivery Latency in Sensor Networks
with Controlled Mobility. In Proc. of the Int. Conf. on Distributed Computing in Sensor Systems
(2008), DCOSS, Springer-Verlag, pp. 386–399.

[113] Thiagarajan, A., Biagioni, J., Gerlich, T., and Eriksson, J. Cooperative transit tracking
using smart-phones. In Proc. of the Int. Conf. on Embedded Networked Sensor Systems (2010),
SenSys, ACM, pp. 85–98.

[114] Tolle, G., Polastre, J., Szewczyk, R., Culler, D., Turner, N., Tu, K., Burgess, S.,
Dawson, T., Buonadonna, P., Gay, D., and Hong, W. A macroscope in the redwoods. In
Proc. of the Int. Conf. on Embedded Networked Sensor Systems (2005), SenSys, ACM, pp. 51–63.

[115] Tomlinson, A. I., and Garg, V. K. Monitoring functions on global states of distributed
programs. J. Parallel Distrib. Comput. 41 (March 1997), 173–189.

[116] Tseng, Y.-C., Hsu, C.-S., and Hsieh, T.-Y. Power-saving protocols for IEEE 802.11-based
multi-hop ad hoc networks. Comput. Netw. 43, 3 (2003), 317–337.

[117] Čapkun, S., Hubaux, J.-P., and Buttyán, L. Mobility helps security in ad hoc networks.
In Proc. of the Int. Symp. on Mobile ad hoc networking & computing (2003), MobiHoc, ACM,
pp. 46–56.

[118] Vitenberg, R., Keidar, I., Chockler, G. V., and Dolev, D. Group communication speci-
fications: A comprehensive study. ACM Computing Surveys 33, 4 (1999).

[119] Wan, C.-Y., Eisenman, S. B., Campbell, A. T., and Crowcroft, J. Siphon: overload
traffic management using multi-radio virtual sinks in sensor networks. In Proc. of the Int. Conf.
on Embedded Networked Sensor Systems (2005), SenSys, ACM, pp. 116–129.

[120] Wang, Z. M., Basagni, S., Melachrinoudis, E., and Petrioli, C. Exploiting Sink Mobility
for Maximizing Sensor Networks Lifetime. In Proc. of the Int. Conf. on System Sciences (2005),
IEEE, p. 287.

[121] Wark, T., Crossman, C., Hu, W., Guo, Y., Valencia, P., Sikka, P., Corke, P., Lee,
C., Henshall, J., Prayaga, K., O’Grady, J., Reed, M., and Fisher, A. The design and
evaluation of a mobile sensor/actuator network for autonomous animal control. In Proc. of the Int.
Conf. on Information processing in sensor networks (2007), IPSN, ACM, pp. 206–215.

138

http://www.sentilla.com/moteiv-transition.html

BIBLIOGRAPHY

[122] Welsh, M., and Mainland, G. Programming sensor networks using abstract regions. In Proc.
of the Symp. on Networked Systems Design and Implementation (2004), NSDI, USENIX, pp. 29 –
42.

[123] Werner-Allen, G., Lorincz, K., Johnson, J., Lees, J., and Welsh, M. Fidelity and yield
in a volcano monitoring sensor network. In Proc. of the Symp. on Operating Systems Design and
Implementation (2006), OSDI, USENIX, pp. 381–396.

[124] Whitehouse, K., Sharp, C., Brewer, E., and Culler, D. Hood: a neighborhood abstraction
for sensor networks. In Proc. of the Int. Conf. on Mobile systems, applications, and services (2004),
MobiSys, ACM, pp. 99–110.

[125] Wood, A., Virone, G., Doan, T., Cao, Q., Selavo, L., Wu, Y., Fang, L., He, Z., Lin,
S., and Stankovic, J. Alarm-net: Wireless sensor networks for assisted-living and residential
monitoring. Tech. rep., 2006.

[126] Yap, K.-K., Srinivasan, V., and Motani, M. MAX: human-centric search of the physical
world. In Proc. of the Int. Conf. on Embedded Networked Sensor Systems (2005), SenSys, ACM,
pp. 166–179.

[127] Ye, F., Luo, H., Cheng, J., Lu, S., and Zhang, L. A two-tier data dissemination model for
large-scale wireless sensor networks. In Proc. of the Int. Conf. on Mobile computing and networking
(2002), MobiCom, ACM, pp. 148–159.

[128] Young, A. D., Ling, M. J., and Arvind, D. K. Distributed estimation of linear acceleration
for improved accuracy in wireless inertial motion capture. In Proc. of the Int. Conf. on Information
Processing in Sensor Networks (2010), IPSN, ACM, pp. 256–267.

[129] Zhang, P., Sadler, C. M., Lyon, S. A., and Martonosi, M. Hardware design experiences
in ZebraNet. In Proc. of the Int. Conf. on Embedded Networked Sensor Systems (2004), SenSys,
ACM, pp. 227–238.

[130] Zhang, Z. Routing in intermittently connected mobile ad hoc networks and delay tolerant net-
works: overview and challenges. IEEE Communications Surveys & Tutorials 8, 1 (Mar. 2006),
24–37.

[131] Zheng, R., Hou, J. C., and Sha, L. Asynchronous wakeup for ad hoc networks. In Proc. of the
Int. Symp. on Mobile ad hoc networking & computing (2003), MobiHoc, ACM, pp. 35–45.

[132] Zhu, Y., and Sivakumar, R. Challenges: communication through silence in wireless sensor
networks. In Proc. of the Int. Conf. on Mobile computing and networking (2005), MobiCom, ACM,
pp. 140–147.

139

BIBLIOGRAPHY

140

Appendix A

The Discovery Probability in RUTh

In this appendix, we compute the probability P [
∨n
i=0 C (i)] that at least one contact is

detected during a time period spanning n consecutive epochs. This appendix serves as
an analytical support for Section 4.4.2. Recall that the main challenge lies in computing
the probability of a x-discovery chain, as illustrated by Figure A.1.

In what follows, we make the simplifying assumption that the contact occurs at time
γ = 0. We then determine the analytical expression of the discovery probability as follows:

1. show that the length of a discovery chain is finite (Lemma 1);

2. use the previous result to express the discovery probability at the end of epoch n as
a recursive function (Theorem 1);

3. the coefficients in the above function are basic probabilities (e.g. P [An ← Bn]).
We determine their associated probability density function (pdf) and then use the
relation P [X ∈ D] =

∫
D
f (x) dx, where f is the pdf of X, to switch to probabilities.

To embed this analytical process in our solver, we rely on the numerical integration
tools in [39].

First, we show that the length of a discovery chain is finite. We state the following

Lemma 1. If active < T/2 + λ, the maximum length of a discovery chain is 2m + 3
where m ∈ N and

m =

⌊
active− 2λ

T + 2λ− 2active

⌋
Proof. If φ < λ, the displacement of B’s schedule w.r.t. A’s own schedule prevents B’s
active interval to span two consecutive epochs of A. Thus, in this case, only 1-discovery
chains are possible. Hereafter, we assume φ ≥ λ.

First, we define a set of helper intervals Im that begin with the end of A’s last receive
check in a random epoch k, and end with the beginning of A’s beacon in epoch k+m+ 1.
Figure A.1 illustrates I1 and I2. As I1 begins in epoch k and ends in epoch k + 2, it is
obvious that this interval must be larger than T , the epoch duration. Similarly, I2 must be
larger than 2T . Generalizing, we obtain Im ≥ mT . This constraint captures the minimal

141

node A

node B

k + 1k k + 2

ACTIVE

T0 2T 3T

I1

I2

J1

J2

Figure A.1: Schedule for a 6-discovery chain. Also shown are the helper intervals Im and Jm.

span of a chain: it ensures that the gap between activity in k and activity in k + 1 + m
is large enough to cover the intermediate m epochs.

To understand the connection between Im and the chain length, we first observe that
a 2-discovery chain (e.g., Ak ← Bk ∧ Bk ← Ak+1 in Figure A.1) is always possible. In
fact, it expands in only two consecutive epochs and, therefore, it is not subject to the
previous constraint. Moreover, each increment of m adds two discoveries to the chain: I1

adds Ak+1 ← Bk+1 ∧ Bk+1 ← Ak+2, and so on. Therefore, Im determines, through the
aforementioned constraint, the minimal span of a discovery chain of length (2 + 2m).

We now determine instead the maximal span of Im. Let us consider the conditions
under which a 4-discovery chain can occur, associated to I1 in Figure A.1. Depending
on the schedule, various values are possible for I1. However, it is easy to see (e.g., in
Figure A.1) that its maximum value occurs when the active intervals overlap only for the
minimum amount of time λ necessary to enable discovery, i.e., max (I1) = 3active− 4λ.
Similarly, for a 6-discovery chain, we have max (I2) = 5active − 6λ. Therefore, we
generalize to a discovery chain of length 2 + 2m, for which

max (Im) = (2m+ 1) active− 2 (m+ 1)λ

This result, combined with Im ≥ mT , yields the upper bound

m ≤
⌊

active− 2λ

T + 2λ− 2active

⌋
(A.1)

where we use the floor operator because m ∈ N.
Thus far, we considered only the intervals Im, defined w.r.t. A’s schedule. Similar

considerations, however, hold for B’s schedule. As shown in Figure A.1, we can define a
set of intervals Jm, beginning with the end of B’s last receive check in epoch k. Observe
that B’s behavior is symmetric to A’s and therefore max (Jm) = max (Im). Nevertheless,
the intervals Jm are shifted to the right w.r.t. the intervals Im because of the phase φ.
Therefore, much like a 2-discovery chain is always possible for A, a 3-discovery chain is
always possible for B. Therefore, (3 + 2m) is the maximal length of a discovery chain for
B, where m is given by Equation A.1.

This result allows us to compute the discovery probability during epoch n by con-
sidering only a limited number of past epochs. Before enunciating our main result, we
introduce the following notation for a discovery chain. If X ∈ {A,B}, we define iDXn as
the i-discovery chain that ends with the discovery that occurs during the transmission of

142

Chapter A. The Discovery Probability in RUTh

X’s n-th beacon. For instance, Figure A.1 depicts the chain 6DAk+2
. 1-discovery chains

are equivalent to a single discovery event, e.g., An ← Bn ≡ 1DBn .

Theorem 1. If active < T/2, then the discovery probability P [
∨n
i=0 C (i)] is a recursive

function defined as:

f (n)
∆
= g (n) + P [Bn ← An] · (1− f (n− 1))

+
∑m

i=0 (1− f (n− i− 1)) ·P [2i+1DBn]

+
∑m

i=1 (g (n− i)− 1) ·P [2iDBn]

where g (n) is a helper function defined as:

g (n)
∆
= f (n− 1) + P [An ← Bn−1] · (1− g (n− 1))

+
∑m

i=1 P [2iDAn] · (f (n− i− 1)− 1)

+
∑m

i=0 P [2i+1DAn] · (1− g (n− i))

and the value of m is obtained from Lemma 1.

Proof. Despite their complex expressions, the functions above are derived through the
simple repeated application of the fundamental relation P [A ∨B] = P [A] + P [B] −
P [A ∧B]. For instance, we start by expanding P [

∨n
i=0 C (i)] into

P [C (n)] + P
[∨n−1

i=0 C (i)
]
− P

[
C (n) ∧∨n−1

i=0 C (i)
]

Here, the second term is P
[∨n−1

i=0 C (i)
]

= f (n− 1), the first term in g (n). Moreover,
since we measure time by using A’s schedule as reference, and φ > 0, A’s epoch n can
only overlap with B’s epochs n− 1 or n. Therefore C (n), the event representing contact,
can be expressed as the combination of the individual events in these epochs:

C (n) ≡ An ← Bn ∨Bn ← An ∨ An ← Bn−1 ∨Bn−1 ← An

Note how terms of C (n) appear in various positions in f (n) and g (n). The remaining
terms of these functions, that is, chains longer than 1, derive from conjunctions such as
C (n) ∧∨n−1

i=0 C (i).
From now on, the recursive expansion of the union adds new terms to the conjunction,

resulting in ever-increasing chains. Recursion ends when the maximum chain length
dictated by Lemma 1 is reached. Next, we provide the details of these calculations.

Premises. It is obvious that if either one of An ← Bn or Bn ← An holds, then a contact
occurs in slot n. In addition, as we count epochs as seen by A, a contact can possibly be
triggered by B’s activity in its epoch n− 1. That is, if one of An ← Bn−1 or Bn−1 ← An
holds, then a contact occurs in slot n. Notice that because the phase φ ≥ 0, then there is
no overlap between A’s n-th epoch and B’s n+ 1 epoch.

Let Dn ∆
= An ← Bn ∨ Bn ← An. With this notation, we summarize the previous

discussion as:
C (n)

∆
= Dn ∨ An ← Bn−1 ∨Bn−1 ← An

143

Now, let f (n)
∆
= P [

∨n
i=0 C (i)]. We expand C (n) in the union and then we apply the

relation P [X ∨ Y] = P [X] + P [Y]− P [X ∧ Y] to obtain:

f (n) = P
[
Dn ∨ An ← Bn−1 ∨Bn−1 ← An ∨

∨n−1
i=0 C (i)

]
= p1 + P [An ← Bn]− p2 (A.2)

where P [X] = p1, P [Y] = P [An ← Bn] and P [X ∧ Y] = p2:

p1
∆
= P

[
Bn ← An ∨ An ← Bn−1 ∨Bn−1 ← An ∨

∨n−1
i=0 C (i)

]
p2

∆
= P

[(
Bn−1 ← An ∨

∨n−1
i=0 C (i)

)
∧ An ← Bn

]
(A.3)

Notice that p2 replaces the term P [X ∧ Y] in the expansion of the union P [X ∨ Y].
Also, there was a shortcut we took in the expression of p2 above: we dropped the terms
Bn ← An and An ← Bn−1 that would normally appear in p2, as these are incompatible
with An ← Bn:

• P [An ← Bn ∧Bn ← An] = 0, as only one of these events is possible at the same
time.

• P [An ← Bn ∧ An ← Bn−1] = 0, as during an epoch a node cannot receive two bea-
cons sent by the same node.

Proof roadmap. We reached a state where we have two expressions, p1 and p2. To
prove Theorem 1, we must simplify them until we find a recursive connection between
them. This connection will consists of the function f (n) and the helper function g (n).

Step 1 (finding p1). We expand p1 first. We start by expanding the logical disjunction
in the expression of p1 appearing immediately after Bn ← An. We obtain:

p1 = g (n) + P [Bn ← An]−
−P

[
Bn ← An ∧

(
An ← Bn−1 ∨Bn−1 ← An ∨

∨n−1
i=0 C (i)

)]
where

g (n)
∆
= P

[
An ← Bn−1 ∨Bn−1 ← An ∨

∨n−1
i=0 C (i)

]
(A.4)

Notice that in the last term of p1:

• P [Bn ← An ∧ An ← Bn−1] = 0. This can be proved by contradiction. For instance,
assume An ← Bn−1 stands, that is, in epoch n node A received B’s n− 1-th beacon.
If Bn ← An was also true, this would imply that B in epoch n would receive A’s
n-th beacon. In other words, B’s listen in the n-th epoch occurs before A’s n-th
beacon, which also occurs before B’s n− 1-th epoch. Hence, the contradiction.

• P [Bn ← An ∧Bn−1 ← An] = 0 because A’s n-th beacon can only be received once
by node B.

• the indexes in
∨n−1
i=0 C (i) stop at n−1, thus the union

∨n−1
i=0 C (i) is independent from

Bn ← An.

144

Chapter A. The Discovery Probability in RUTh

Armed with the previous observations, we simplify p1 to:

p1 = g (n) + P [Bn ← An]− f (n− 1) ·P [Bn ← An]

Step 2 (finding p2). At this point, p1 cannot be reduced further, although much of the
difficulty has been passed on g (n). First, we simplify p2 defined in (A.3), the focus on
g (n), defined in (A.4).

We use the chain notation and we factorize the unions in (A.3) to obtain:

p2 = P
[(
Bn−1 ← An ∨

(∨n−1
i=0 C (i)

))
∧ An ← Bn

]
= f (n− 1) ·P [An ← Bn] + P

[
2DBn

]
− p3 (A.5)

where p3
∆
= P

[∨n−1
i=0 C (i) ∧2 DBn

]
.

Notice that normally C (n− 1) contains a term Bn−1 ← An−1. This is however incom-
patible with the chain 2DBn (the same reasoning as per the simplification of p1 can be
applied). Thus we drop this term and further expand the disjunction to obtain:

p3 = g (n− 1) ·P
[

2DBn

]
+ P

[
3DBn

]
− p4

where:

p4
∆
= P

[(
Bn−2 ← An−1 ∨

∨n−2
i=0 C (i)

)
∧3 DBn

]
= f (n− 2) ·P

[
3DBn

]
+ P

[
4DBn

]
− p5

Recall that An ← Bn ≡1 DBn to observe the similarities between the above identity
and (A.5). Namely, there is a pattern involving the call to f (n) and the chain probabilities.
In p4, we define p5 as:

p5
∆
= g (n− 2) ·P

[
4DBn

]
+ P

[
5DBn

]
− p6

where:
p6

∆
= f (n− 3) ·P

[
5DBn

]
+ P

[
6DBn

]
− p7

Notice that the pattern keeps repeating. It will do so until we reach a chain that has
probability 0 according to Lemma 1.

Step 3 (the helper function g (n)). We are currently in the state where we can infer
a recursive formula for p2. Next, we focus on the remaining objective, i.e., finding an
expression for g (n). We factorize (A.4) and transform it to obtain:

g (n) = P
[
An ← Bn−1 ∨

(
Bn−1 ← An ∨

∨n−1
i=0 C (i)

)]
= p9 + P [An ← Bn−1]− p8

where p9
∆
= P

[
Bn−1 ← An ∨

∨n−1
i=0 C (i)

]
and, because of the incompatibility between

An ← Bn−1 and Bn−1 ← An, p8
∆
= P

[∨n−1
i=0 C (i) ∧ An ← Bn−1

]
.

In p8, we expand C (n− 1) and drop the resulting incompatible terms. We obtain:

p8 = g (n− 1) ·P [An ← Bn−1]

145

We have found a formula for p8. We still have to work on p9. It is immediate that:

p9 = f (n− 1) + P [Bn−1 ← An]− p10

where p10
∆
= P

[∨n−1
i=0 C (i) ∧1 DAn

]
. Next, we expand C (n− 1) to obtain:

p10 = g (n− 1) ·P
[

1DAn

]
+ P

[
2DAn

]
− p11

We continue recursively:

p11
∆
= f (n− 2) ·P

[
2DAn

]
+ P

[
3DAn

]
− p12

p12
∆
= g (n− 2) ·P

[
3DAn

]
+ P

[
4DAn

]
− p13

p13
∆
= f (n− 3) ·P

[
4DAn

]
+ P

[
5DAn

]
− p14

. . .

In conclusion. The recursion continues up to the moment when the chains in the
equation become long enough for Lemma 1 to dictate that their probability is 0. At that
point, by replacing all previous expressions in (A.2), we conclude the proof.

To compute f (n), we must compute the probability of basic discovery events, e.g.,
P [An ← Bn]. However:

• From probability theory, if X and Y are two random variables with pdf fX and fY ,
respectively, the joint pdf X + Y is the convolution of the individual ones:

fX+Y (t) = (fX ∗ fY) (t)
∆
=

∫
R
fX (ξ) · fY (t− ξ) dξ

• The pdf of the difference X − Y can be expressed, using the operator ◦ to simplify
expressions, as:

fX−Y (t) = (fX ◦ fY) (t)
∆
=

∫
R
fX (ξ) · fY (t+ ξ) dξ

Armed with this knowledge, we state the following

Lemma 2. If αn and βn are random variables with uniform distribution in the interval
[0, T − active), and the phase difference has uniform distribution in [0, T), then for
n ≥ 1 the pdf-s of P [An ← Bn] and P [Bn ← An] are:

fAn←Bn (z) = fBn←An (z) = (fφ ∗ fβn ◦ fαn) (z)

Proof. Discovery An ← Bn occurs when the beginning of B’s active interval falls in A’s
active interval, after the beacon and before the last possible minimum overlap λ. Formally:{

φ+ βn ≥ αn + τ

φ+ βn ≤ αn + active− λ (A.6)

146

Chapter A. The Discovery Probability in RUTh

Let us define Z
∆
= φ + βn − αn and fZ as the associated pdf. Based on the previous

considerations, we can derive:

fZ (z) = (fφ ∗ fβn ◦ fαn) (z)

From the definition of Z and Equation (A.6), the event An ← Bn is equivalent to
the event Z ∈ [τ ; active− λ]. Therefore, they share the same pdf: fAn←Bn = fZ .
A similar reasoning holds for the event Bn ← An. By imposing constraints similar to
Equation (A.6), we obtain that this event is equivalent to Z ∈ [λ− active;−τ], and
therefore fBn←An = fZ .

This lemma allows us to compute the probabilities by integrating the corresponding
pdf-s:

P [An ← Bn] =

∫ active−λ

τ

fZ (z) dz

P [Bn ← An] =

∫ −τ
λ−active

fZ (z) dz

A last lemma provides the machinery to compute the probability of an entire chain,
e.g., P [iDXn]. To this end, we first identify the probability density chain, and then we
use numerical integration tools to compute the chain probability. Key to the process is
the following

Lemma 3. The joint density function of chains 2kDAn, 2k+1DAn, 2kDBn, and 2k+1DBn are
the functions f2kDAn

: R2k → R, f2k+1DAn
: R2k−1 → R, f2kDBn

: R2k → R, respectively

f2k+1DBn
: R2k−1 → R given by the following recursive formulas:

f2kDAn
(X) = f2k−1DAn

(X1:2k−1) · f1

(∑2k
i=1 (xi)

)
f2k+1DAn

(X) = f2kDAn
(X1:2k) · f2

(∑2k−1
i=1 xi

)
f2kDBn

(X) = f2k−1DBn
(X1:2k+1) · f3

(∑2k
i=1 (xi)

)
f2k+1DBn

(X) = f2kDBn
(X1:2k) · f4

(∑2k+1
i=1 xi

)
where f1, f2, f3, respectively f4 are densities built using the “∗” and “◦” operators, xi are
elements of vector X, while X1:i is a vector consisting of the first i elements of X.

Proof. We only give the proof for the chain 2kDAn , as for the other chains we have a
similar reasoning. For this chain, we exclude the case when k = 0.

First, remember that this chain is a shortcut notation for

2kDAn ≡ Bn−1 ← An ∧ An−1 ← Bn−1 ∧ . . . ∧ An−k ← Bn−k

We associate a random variable to each of the elementary events, similarly to Lemma 2,
that ultimately decides the probability for that event. For instance, to Bn−1 ← An, we
associate

X1
∆
= φ+ βn−1 − αn

147

The probability of the chain can be expressed the joint probability of the elementary
probabilities in the chain. For instance, one such elementary probability is Bn−1 ← An
which, similarly to Lemma 2, can be further represented as:

P [Bn−1 ← An] = P [X1 ∈ [λ− on;−τ]]

For the rest of elementary events in the chain, we define:

X2
∆
= φ+ βn−1 − αn−1

...

X2k
∆
= φ+ βn−k − αn−k

Notice that the probability of the chain is the probability that all the above are true,
i.e.:

P
[

2kDAn

]
= P [X1 ∈ [λ− on;−τ] ,X2 ∈ [τ ; on− λ] , . . .]

Consequently, we have the identity between the probability distribution functions
f2kDAn

= fX1,...,X2k
, where the latter is the joint distribution of X1, . . ., X2k. This can

be further exploited as:

fX1,...,X2k
(X) = fX1,...,X2k−1

(X1:2k−1) ·
· fX2k|X1,...,X2k−1

(x2k|X1 = x1, . . . ,X2k−1 = x2k−1)

Here, fX1,...,X2k−1
is in fact f2k−1DAn

. Moreover, if we define f1
∆
= fX2k|X1,...,X2k−1

, we obtain
that f2kDAn

= f2k−1DAn
· f1. The first term, i.e., f2k−1DAn

, is part of the recursion step,
as part of the hypothesis of this lemma. Thus, we turn our efforts towards finding an
expression for f1.

To this end, we introduce another variable Y defined as Y
∆
=
∑2k

i=1 Xi. Notice that the
event “X2k takes x2k conditional upon X1 = x1, . . . ,X2k−1 = x2k−1” is the equivalent of

the event “Y takes
∑2k

i=1 x2i”. Thus, the following holds:

fX2k|X1,...,X2k−1
(x2k|X1 = x1, . . .) = fY

(∑2k
i=1 xi

)
From probability theory we know that the pdf of the sum consisting of independent

variables is the convolution of the variables’ pdf. Consequently, given the definition of Y,
the following stands:

fY = fX1 ∗ fX2 ∗ . . . ∗ fX2k

Here, each of fXi can be further expended using the “∗ and “◦” operators, e.g., fX1 =
fφ ∗ fβn−1 ◦ fαn . By transitivity, the formula above also applies to f1, concluding thus our
proof.

We can now integrate numerically to compute the probabilities associated to each
chain. For instance:

P
[

2kDAn

]
=

on−λ∫
−τ

τ∫
on−λ

. . .

τ∫
on−λ

fADAn−k
n (X) dX

148

Appendix B

Traffic Overhead in DICE

This section is an analytical framework supporting statements we make throughout Sec-
tion 6.7. The main result in this section is Theorem 2. The theorem sets an lower bound
for the average number of packets transmitted during a given time frame (counting from
when a new maximum appears). We further refine this theorem in two corollaries, one
describing the latency with which all the nodes in the network converge on the same
view, the other describing the minimum amount of traffic when the attribute maximum
is periodically updated.

N0N1N2Nd

Figure B.1: The reference network
topology used throughout this section.
N0 is the node where the maximum ap-
pears.

Assumptions. The framework works on the follow-
ing simplifying assumptions, necessary to make the
problem tractable:

1. Communication is ideal, that is, it occurs with-
out packet loss and without delays in the net-
work stack.

2. The network already converged and the Trickle
timers reached the maximum bound τh by the
time the new maximum appears.

3. All nodes are at most d hops away from the node
where the maximum appears. We further as-
sume that the network topology is symmetrical
w.r.t. to the node where the maximum appears.

Hereafter, we denote with N0 the node where the
maximum appears, and with Ni a node located i hops
from N0. The reference topology is illustrated in Fig-
ure B.1.

Theorem 2. The lower bound for the average number of packets sent by all nodes in an
interval t since the updated of the maximum is a function md (t) where

md (t) = lg

d+1

√∏d
i=0 (t− (i− 1) · τl)

τl

149

Proof. Recall that in Trickle broadcasts are scheduled in a geometric sequence with scale
factor τl and common ratio 2. That is, the first broadcast occurs at τl, the second at
τl + 2τl, the third at τl + 2τl + 22τl, and so on. Therefore, in an interval no longer than t,
the source of the update N0 broadcasts an integer number of packets n0 such that

n0−1∑
i=0

2i · τl ≤ t

The packet with number n0 + 1 is sent after t. Trickle timers increase exponentially, thus
we have

t <

n0∑
i=0

2i · τl =
(
2n0+1 − 1

)
· τl (B.1)

From the previous equation, we infer that

lg
t+ τl
2τl

< n0

To compute the average, we need to determine how many packets are sent by each
node. In this respect, we generalize the above inequality as follows. The update reaches
nodes N1, N2, . . ., Nd with a latency of τl, 2τl, . . ., respectively dτl. Therefore, the
interval during which we count packets “shortens” for each node with a period equal
to the previous latency. That is, N1 has a period of t − τl during which it broadcasts
packets corresponding to the maximum update, N2 has a period of t − 2 · τl, and so on.
We generalize Equation B.1 considering that a node Nj, where 0 ≤ j ≤ d, broadcasts nj
packets such that

t− j · τl <
nj∑
i=0

2i · τl =
(
2nj+1 − 1

)
· τl

from which we deduce that

lg
t− (j − 1) · τl

2τl
< nj

We now compute the average number of packets n. First, recall that the network is
symmetrical, that is, from the perspective of node N0, it has the same topology in all
directions. Therefore, the traffic is expected to be the same irrespective of the direction,
and therefore we can average only on the nodes Nj to obtain the network average n:

n =
d∑
j=0

nj
d+ 1

>
1

d+ 1
·

d∑
j=0

lg
t− (j − 1) · τl

2τl

> lg

d+1

√∏d
j=0 (t− (j − 1) · τl)

2τl

which concludes our proof.

150

Chapter B. Traffic Overhead in DICE

N0's 1st change

N0's broadcast

1st change reaches Nj

Nj's broadcast⌧l

N0's 2nd change
2nd change reaches Nj

broadcast previous
change

broadcast current
change

��1

Figure B.2: Sample timeline showing broadcasts by nodes N0 and Nj = 3 consequence of periodic
maximum appearances.

An immediate consequence of the above theorem is the following

Corollary 1. Nodes transmit on average at least lg d+1
√

(d+ 1)! packets by the time the
update of node N0 reaches the network fringe, i.e., node Nd.

Proof. The proof follows immediately if we consider that the latency at which Nd is
updated is d × τl (each traversed hop bears a penalty of τl) and compute md (d× τl)
according to Theorem 2.

We assume that the occurrence of new attribute maximum can be modeled using a
Poisson process, which accurately models natural phenomena, but also human behavior.
This approach allows us to characterize the network overhead in time, that is, given a
maximum update rate, we can infer the number of packets sent per unit of time. In
the following, we further assume that a new maximum appears before the Trickle timers
reached their upper bound τh. Note that this is a relatively high occurrence of the new
maximum values.

Formally, if λ is the maximum update rate, then a new maximum appears with a
period λ−1. Moreover, the upper bound of the Trickle timers is τh. Considering that the
trickle timers are scheduled in geometric sequence, it takes no longer than 2 · τh − 1 to
reach the upper bound. Given the previous assumption, the inequality λ−1 < 2 · τh − 1
holds. With this, we enunciate the following

Corollary 2. If the appearance of new attribute maximum can be modeled as a Poisson

process with rate λ, and if λ−1 < 2 · τh−1, then nodes transmit on average at least lg λ−1+τl
2τl

packets between two consecutive occurrence of a new maximum.

Proof. Using the same reasoning as per Theorem 2, the source of the updates, i.e.,
node N0, broadcasts n0 packets such that

lg
λ−1 + τl

2τl
< n0

We claim that the above inequality holds for all nodes Nj. To justify our claim,
consider the timeline depicted by Figure B.2. Here, we illustrate two maximum changes
that occur on node N0, evenly spaced by the duration λ−1 (dictated by our modeling of
the phenomenon as a Poisson process). Notice that the first update takes j × τl to reach
node Nj, located j hops from N0. Moreover, the second update takes an equal amount

151

of time to reach Nj. Consequently, while the second update is propagating towards Nj,
the later node is still propagating the first update. In result, the transmission schedule of
Nj is the same as the one of node N0, only that it is shifted in time with j × τl. Thus,
Nj sends the same amount of packets as N0 does. As this is valid for any node Nj, the
minimum bound on the average is dictated by the inequality above.

The minimum packet rates follows immediately by multiplying λ with the lower bound
set forth by Corollary 2.

152

	Abstract
	Acknowledgments
	Multumiri
	Introduction
	Goals and Motivating Scenarios
	Contribution
	Thesis Outline

	I Background
	Mobile Wireless Sensor Networks
	Why Mobile Wireless Sensor Networks?
	Mobile WSN Applications
	Improving the Performance of Static Networks

	Networks with Mobile Nodes
	Challenges of Mobile Wireless Sensor Networks
	Networking With Mobile Nodes
	Application Development

	Discussion and Outlook

	Application Scenarios
	Assisted Living: The ACube Project
	Scenario and Requirements
	Solution Overview

	Study of Wildlife Social Behavior
	Scenario and Requirements
	Solution Overview

	Supporting Business Processes
	Discussion and Outlook

	II Technical Contribution
	RUTh: Neighbor Discovery Made To Measure
	Introduction
	Related Work
	Overview and Assumptions
	Latency-driven Discovery
	Deterministic Discovery
	Probabilistic Discovery

	Lifetime-driven Discovery
	Implementation
	Evaluation
	Analytical Study
	Impact of Model Assumptions
	Empirical Evaluation
	RUTh as a Social Contact Sensor
	RUTh as a Proximity Sensor: Lessons Learned From A Dense Deployment

	RUTh in Action: The Assisted Living Application
	RUTh and Data Collection
	Results

	Discussion and Outlook

	The Group Membership Problem
	Introduction
	Related Work
	Using Logical Clocks
	Using Link State Information
	Using Distance Vectors
	Evaluation
	Synthetic Mobility Patterns
	Real-world GPS Traces

	Applying RUTh to Group Membership
	Discussion and Outlook

	Distributed Monitoring of Application Invariants
	Introduction
	Specifying Invariants
	Monitoring Invariants: Local View
	Type I Invariants
	Type II Invariants

	Local View Dissemination: Protocols
	Run-time architecture
	Flat
	Tree
	Communication Delays

	Implementation
	Evaluation
	Simulation Experiments
	Testbed Experiments

	DICE on Mobile Nodes
	Slowly Mobile Scenarios
	Using Group Monitoring in Dynamic Scenarios
	Choosing a Solution
	Mobile DICE in Action

	Related Work
	Discussion and Outlook

	III Conclusions
	Conclusions and Outlook

	IV Addendum
	Bibliography
	The Discovery Probability in RUTh
	Traffic Overhead in DICE

