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1 GENERALINTRODUCTION

The development of computational models duringldises decades has revolutionized the scientific
research in psychological sciences. The idea toetnamhnition is not new; more than forty years
ago, in fact, Neisser (1967) provided a definitadrcognitive psychology characterizing people as
dynamic information-processing systems whose mewarations might be described in
computational terms. Computational models are Usdalscribed as having many advantages over
representing the theory about cognition asrbal modé€l (Jacobs & Grainger, 1994). Any attempt
to develop a computational model requires indeedpteteness since a program will not run unless
the theory is fully specified. Moreover, expressary theory in computational terms immediately
reveals many ways in which that theory may be irglete or underspecified. Once the theory is
complete and the program is executable, the adgfaihe theory can be tested by simulations.
The comparison of the human behaviour and the hetwaof the computer program in carrying out
the cognitive activity of interest is a straightf@rd and powerful way to test the validity of our
scientific accounts. A theory has in fact to befisigint, thus offering an explanation of all the
relevant empirical phenomena. Mismatching betweemdn behaviour and the behaviour of the
computational model often revels ways in which tt@ory is incorrect thus suggesting how it can
be reformulated in order to eliminate those misimadéc Other times the mismatches are so
fundamental that modelling leads to theory refotati
As in other cognitive fields, the interest in cortgiional modelling is evident in

psycholinguistic and, in particular, in the reséaoo reading aloud. Reading, defined as the ability
to generate a phonological code from print, hashbeegely studied over the last century in
cognitive psychology as evidenced by numerous stiepapers and specialist journals, national
and international conferences and founding of siesefocusing on reading and reading
impairments. One of the major aims of these rebearbas been to explain the complex cognitive
processes involved in reading with the final gdalletermining a complete theory of reading aloud
and visual word recognition. Nevertheless, althotliggse studies have resulted in a remarkable
accumulation of knowledge and computational modeigsual word recognition and reading aloud
have been recently presented (e.g., Coltheart]drR&strry, Langdon, & Ziegler, 2001; Grainger &
Jacobs, 1996; McClelland & Rumelhart, 1981; Pefrggler, & Zorzi, 2007), the reading process is

still not fully understood.



The aim of the current thesis is to expand the erurunderstanding of visual word
recognition in healthy skilled readers and to iptet this evidence within a computational account.
We in fact believe that the cognitive processemtidrest cannot be understood without a strong
theoretical framework and that computational madeglis a highly valuable approach. The final
goal of this activity will be to evaluate cascademcessing generally assumed in visual word
recognition by referring to recent empirical daf@ring the need of a different interpretation.(i.e
thresholded processing).

This thesis focus on the Dual-Route Cascaded (DR@jel of reading aloud and visual
word recognition (Coltheart et al., 2001). The DR®del has been chosen as the referential
computational model in my thesis for several reaséiirst, this thesis aims to evaluate cascaded
processing, one of the main assumptions withirDR€ framework. Second, the DRC model is not
restricted to the simulation of English data inttha Italian version of the model has been recently
developed (Mulatti, 2005; Mulatti & Job, 2003a; Mtil & Job, 2004). Finally, there is a large
agreement within the scientific community in recagmng the DRC model (one of) the most
successful computational model(s) of reading, sftice set of phenomena that the DRC model can
simulate is much larger than the set that any otharent computational model of reading aloud
can simulaté (Coltheart et al., 2001, p. 251).

1.1 Computational models of reading and visual word reggnition

A computational model is defined aa ‘tomputer program that is capable of performing th
cognitive task of interest and does so by usingtex¢éhe same information-processing procedures
as are specified in a theory of how people carrythis cognitive activity(Coltheart et al., 2001, p.
204). There are basically two approaches to gememhputational models.

One of them is to develop connectionist modelsufhoa learning algorithm like the back
propagation (e.g., Plaut, McClelland, Seidenbergaiterson, 1996). Computational models of this
type are usually based on a network with threerfagieput units, hidden units, output units) and a
random value is initially assigned to the networnmection weights. These values are then
adjusted during the training in such a way to mibkeeresponse for each stimulus more and more
close to the correct response.

A possible disadvantage of this type of modelsa tt could be very difficult to discover

the functional architecture of a trained network.other words, it is rarely clear how the trained



network has been structured by the learning algoriand, thus, it is often not understandable how
the model is actually working in performing thelktdtshas learned.

Another approach consists in pre-specifying thectional architecture of the model, rather
than relying on learning algorithms to do thisthis approach, even if the functional architecigre
specified by the modeller, some form of learningoathm may be used to set the strength of the
connections between the pre-specified levels oathkitecture.

The computational model that will be analyzed iis tinesis — the DRC model — has been

developed by applying this latest method. Only #uproach will be considered in this dissertation.

1.1.1 Cascaded and thresholded processing

Many different mental operations are usually inedlvin cognitive activities, even in the most
automatized. As a consequence, when one want tlyzangerformance in a task involving
information processing, this is typically decompbseto a set of separated sub-processes. When
modelling cognition, different levels of processitgyresponding to the different mental operations
are thus assumed and implemented in the system.

The functional architecture of highly successfomputational models of reading (e.g.,
Coltheart et al., 2001; McClelland & Rumelhart, 19®erry et al., 2007) consists of different
levels" of processing that get activated when a lettémngsis presented. In general, the levels in the
reading system are domain-specific: each levelahapecific function and different levels have
different functions. Also, the levels are hieracetly organized, so that every level forms a
representation of the input at a different levelabktraction. Each level assumed in the model
usually consists of a number of processing unitsn@mes), which accumulate information in the
form of activation; units of the different levelsramunicates with several others (either at the same
or at a different level of processing) and commation proceeds through the different levels via a
spreading activation mechanism.

The notion of word perception as taking place imie@rarchical information-processing
system isn’'t new and, also in the past, it has lsbmocated by several researchers interested in
word perception (e.g., Adams, 1979; Estes, 1978nskon & McClelland, 1980; LaBerge &
Samuels, 1974; McClelland, 1976). Regardless isftdday widely accepted that multiple levels of
representation are involved in visual word recagnitthe organization of these levels is otherwise

controversial. In particular, it is still not cleaow communication proceeds through the different

! The termmoduleas referring to a domain-specific cognitive preieg system is also used (e.g., Coltheart, 1999:
Coltheart et al., 2001).
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levels assumed in the reading system and thus, gemwerally, how information is processed in

visual word recognition. In computational termsg ffroblem concerns the implementation of the

activation function spreading through the differlaviels of processing assumed in the model.
Specifically, two major accounts have been propdsethis context. These accounts are

schematically represented in Figure 1.
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Figure 1 The events that occur between the presentatiarstimulus and the
execution of a response, according to the disstatge model and to the cascaded
model. Arrows represent the transfer of informafimm one level to the subsequent
one and shading is used to indicate when a préagessvork; the blackening of the
arrows indicates the degree to which the signgieesented
by the arrows reflect the stimulus in input
(McClelland, 1979, p. 290, Figure 1).

One hypothesis is that performance may be repreddnt a model in which sub-processes are
identified as successive temporal stages, eachhafhwoccupies a separate interval of time. This
idea dates back to Sternberg (1969), who propds&dnhiany mental processes occur in discrete
series, one beginning when another ends. In madtials assume this type of processing (e.g.,
Morton, 1969), activation does not propagate fodmdurough the levels until processing within a

level has reached some threshold (i.e., threshgideckssing). Usually, activation is only passed

on to the later stages after processing is endekleirearlier level. This means that the processing



going on in any level does not begin to affect segbent levels at an early point in processing;
conversely, none of the processes can begin hetibteceding process is completed.

An alternative to thresholded processing is thévaiion propagates in a cascaded fashion
in the system. McClelland (1976; 1979) proposedt tmental processes are cascaded, thus
overlapping in time. According to this account,ragess does not begin when the previous one is
ended; on the contrary, information is transferbetiveen the different levels of processing all of
the time. As a consequence, each sub-process isyftem is continuously active and its output
always available for processing in the subsequargl$; the activation of a particular processing
unit in a certain level of the network would thusrease with time (up to some asymptotic value),
depending on the strength of the input to it. Indels that operate by cascaded processing (e.g.,
Coltheart et al., 2001; McClelland & Rumelhart, 19&ere is not threshold within the levels and,
as soon as activation accumulates in a level rdagfs immediately to the adjacent one. This means
that activation accumulates downstream in the systathout waiting for processing completion in
the early levels.

The different activation propagation modalities atdsed above are alternative hypothesis
and, usually, models implement either cascadedegsig or thresholded processing. Despite
cascaded processing is assumed in the most congmatlatccounts of visible language, which
approach modelling cognition better fits the enwalievidence is not yet fully determined in
theories of visual word recognition.

In the following paragraphs | will focus on two nedsl of visual word recognition, the first
assuming thresholded processing (i.e. Libgogenmodel), the other assuming cascaded processing
(i.e., the Interactive Activation model); both thecounts are central in the development of the

Dual-Route Cascaded model of reading.

1.1.2 The Logogen model

The logogen model isn't a computational model of language psstng, but rather a theory
expressed by the box-and-arrow notation

Morton (1969) based his theorizing on the concépt mental lexicon, which he described
as a system of knowledge about word forms. He nedeto this level akbgogensystem. Another

type of lexicon was assumed in his theory, which system of knowledge about word meaning

2 This notation will be used to represent the compennal models described later in this chapter:diierent levels
assumed in the theory are represented by diffdreres, whereas the arrows between these boxesseeprthe
connections assumed in the theory between theslevel
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(i.e., a cognitive system). THegogensystem is a set of elements calledogens one for each
word in the model’s vocabulariogogensare evidence-collecting devices with thresholddErnce

is collected from visual or auditory input and whée amount of evidence collected by a word’s
logogenexceeds thdbgogers threshold, information about that word in thgiive system (i.e.,
the word meaning) also becomes available as amsspn the response buffer. The more frequent a
word, the less evidence is needed to reach thehbid because eattgogenhas a resting level of
activation whose value is proportional to the fremey of occurrence in the language of that
logogens word.

An inputlogogensystem, responsible for word recognition, and atput logogensystem,
responsible for word production, are assumed imbdel. The inpulogogensystem consists of a
visual inputlogogensystem, responsible of written word recognitiond af an auditory input
logogensystem, responsible of spoken word recognitioe {(derton, 1979). Similarly, the output
logogensystem consists of an outgagogensystem for speaking and of an outfmgogensystem
for writing (see Morton, 1980). Finally, graphemesspeme and acoustic-phoneme routes are
assumed in the model (see Morton, 1980) in ordendke it able to process nonwords (i.e., strings
of letters without a meaning).

The differentlogogensystems assumed in the model proposed by Mortostitate the
levels of processing assumed in the DRC model. "ewevhereas thiogogenmodel theorized
both spoken and written language, the DRC modelisent applied to visual word recognition
only. Importantly, the evolution of tHegogenmodel has been entirely data driecomplexities
were added in order to explain the empirical rastiiat a previous and simplest version of model
could not explain. Hence, the complex form of tfe@®model, which was inherited from the final

version of thdogogenmodel, is motivated by a series of empirical firgh.

% Besides other empirical phenomena, ldgogenmodel has been proposed to explain empirical datained in the
repetition priming paradigm. Some studies (e.garka & Morton, 1983; Winnick & Daniel, 1970) showdtht the
cross-modal repetition priming occurs in two sulsat tasks such as picture naming and reading aolydwhen the
interval between the two tasks is very short. Famtiore, it has been shown that hearing a spoked domprime the
subsequent recognition of its printed form onlyhaiery short intervals between prime and targeés€hdata suggest,
from one hand, that the input and the output lexéchave to be separated and, from the other, Watseparated
systems, one for speaking and the other for writamg required. Without a similar distinction asgenodal priming as
those described above would be in fact expected esh long inter-trial interval. Moreover, the tixtion between
the different systems is supported by a large deabgnitive-neuropsychological data. For exampiethe condition
known as word-meaning deft, printed words can beetstood but spoken words cannot even if hearirafexjuate
(Bramwell, 1897; Howard & Franklin, 1988), and tte¥erse holds for pure alexia, a condition in wigploken words
can be recognized but printed words cannot, evength vision is adequate (Déjerine, 1982; Colthek®88). This
double-dissociation clearly suggests that two ifpuicons, one for printed and one for spoken wogrde needed.
Furthermore, some people suffering of brain danfege an impairment of the ability to produce spokemds with
relatively intact writing and spelling (Lhermitte Rerouesné, 1974), and other people have an impatrof writing
and spelling with relatively intact ability to proce spoken words (Basso, Taborelli, & Vignolo, 197%his double-
dissociation clearly suggest a similar organizatbthe output lexicon, with an output lexicon puathg spoken words
and another producing written words. For a furttieatment about the existence of different lexiconghe human
language-processing system see Coltheart (2004).
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1.1.3 The Interactive Activation model

The first computational model of reading is knows Hteractive Activation (IA) model
(McClelland & Rumelhart, 1981).

The IA model has been developed by its modelletis the main purpose to account for the
word superiority effect; this effect is attributemlReicher (1969), who showed that perception of a
letter is facilitate when it is presented in thatext of a word than when it is presented in a oamd
sequence of lettér

The different mental computations involved in visuerd recognition are represented in
the IA model as involving three hierarchically angaed purpose-specific levels of processing: the
visual feature level, the letter level and the wenckl.

The general architecture of the 1A model is repméset in Figure 2.

©

E — LExcitatory connections

'H I — Inhibitory connections

VISUAL INPUT

Figure 2.The processing system involved in visual word gadtion
(McClelland & Rumelhart, 1982, p. 379, Figure 2).

There is a strong similarity between the 1A modad shelogogenmodel. The 1A model can be in
fact consideredd hierarchical, nonlinear, logogen model (...) wigedback between levels and
inhibitory interactions among logogens at the sdevel’ (McClelland & Rumelhart, 1981, p. 388).
The main difference between tlegyogenmodeland the 1A model is that the units assumed in the

latter model are not thresholded devices addfgegensassumed in the former. Instead, activation

* This effect is well-established in researches isnal word recognition. Before Reicher, previousearchers showed
the word superiority effect in tachistoscopic preadon conditions (see Huey, 1908 and Neissery 186 reviews).

The problem of these studies, however, was thatffleet was obtained during whole reports of ad! kbtters presented
and, since these reports were subjected to guebirgs and forgetting for longer stimuli, it wastlear whether the
context in which a letter was presented influertbedprocess of perception itself rather than pestgptual processes.
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is assumed to spread through the different levels ¢ascaded fashion. This means, for one hand,
that the IA model is spatially parallel within tlsame level and, from the other, that it involves
processes that operate simultaneously at sevéialeadht levels. Crucially, perception is intended t
be an interactive process in the IA model: there laottom-up processing (i.e., feed-forward
connections) and top-down processing (i.e., feddbaonections) that work simultaneously and in
conjunction, jointly determining what we percei\Moreover, the communication in the system
consists of both excitatory and inhibitory messageitatory messages increase the activation
level of their recipients, while it is decreased ibhibitory messages. Furthermore, intra-level
inhibitory loops are assumed in the model and sk a kind of lateral inhibition in which
incompatible units at the same level compete edudro

In each level, for every relevant unit in the systen entity called node is assumed. Thus,
there is a node for each word the model knows,thatk is a node for each letter in each letter
position within a four-letter stririg Since the nodes are organized into levels, theravord level
nodes and letter level nodes. Each node has coongdb a number of other nodes: if two nodes
suggest each other’s existence, then the connedbietaveen them are excitatory; on the opposite, if
the two nodes are inconsistent with one anothen the relationship is inhibitory. The amount of
excitation and inhibition that each node sendsiéodthers is proportional to its activation, i.earm
active nodes send more activation than less aaiekes. Each node has a momentary activation
value and is said to be active when this valueostwe. In the absence of inputs from other nodes,
all the nodes are assumed to decay back to anvieatate (i.e., to an activation value at or below
zero). The resting value differs from node to nadd is determined by the frequency of activation
of the node over the long term.

Connections may occur within levels or between @aha levels, but there are no
connections between non-adjacent levels. Connextwithin the word level are mutually
inhibitory, since only one word can occur at ang @tace at any one time. Connections within the
letter level are similarly organized. Connectioesneen the word level and the letter level may be
either inhibitory or excitatory, depending on whestlthe letter is a part of the word in that specifi
letter position.

Consider now what happens when an input reachesytttem. When a stimulus is presented
certain visual features are extracted and a sfadfire inputs is thus made available to the system
The visual features are assumed to be binary imibael: thus, either the presence or the absence
of a particular feature can be detected. The aaiivammediately spreads to the letter level: lette

nodes that contain the extracted features areasetiwhereas letter nodes that do not contain those

® The computational version of the IA model implensefour-letter strings only.
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features are inhibited. The letter nodes, in tbagin to send activation to those words that cantai
that letter in that particular position; also, edetter node inhibits those nodes representing svord
that do not contain that letter in that particufasition. Within the letter level, each node
representing a letter in a particular position litisi all the nodes representing different lettarthie
same position. As the word level nodes become gctiach word node starts to compete with all
the others. In addition, each active word node sdaddback activation to the letter nodes. If the
input features are similar to the features thamfar particular set of letters and those letters are
consistent with the letters forming the word that been activated, the positive feedback in the
system will converge on the appropriate set ottsteind on the appropriate word. Otherwise, the
active units inhibit each other and it might bet tha single set of letters or single word will abta

enough activation to dominate the others.

NN e e

LS IR NN

Figure 3.A few of the neighbours of the node for the leti®r
in the first position in a word and their intercections
(McClelland & Rumelhart, 1981, p. 380, Figure 3).

Computational simulations performed by McClellamd &umelhart (1981) clearly showed that the
IA model is able to account for the word supenpégtfect (Reicher, 1969). In particular, this effec
is due to the interactive-activation between thedaand the letter levels assumed in the model.
Once a set of features is made available to theersyand the letters consistent with those features

have been activated, activation spreads to the vewel. When the stimulus in input is a word, a

9



node representing that word is activated and,nm, tit will send activation back to the letter nede
Letter nodes that are consistent with the activated! will be excited, whereas letter nodes that ar
inconsistent with that word will be inhibited. Thiseans that the feedback from the word level
assists target letter recognition by contributicgvation to the appropriate nodes and inhibition t
the inconsistent nodes at the letter level. Oncti@rary, when the stimulus in input is not a word,
there is not feedback from the word level; henlee létter nodes receive activation from the feature
level only and the identification of the corredtde will be slower and less accurate.

Despite the origin of the IA model, the word supsty effect is not the only evidence that
it is able to explain. On the contrary, this modeirectly accounts for various findings of several
experiments in word perception (see McClelland &feihart, 1981, for a detailed treatment). To
date, the 1A model has not been refuted. This efasen has been critical for the development of
the subsequent DRC model. In science, a new thglooyld account for all the crucial effects
explained by the previous generation of the saraerthor by other competitive theories, plus some
new empirical data. This may be easily achievednbiuding a previous theory in a new model.
According to the principle of nested incrementaldeltng, in fact, ‘a new model should be related
or include at least its own direct predecess@acobs & Grainger, 1994, p. 1329). Followingsthi
principle, a generalization of the IA model hasrbéecluded by Coltheart et al. (2001) in their
Dual-Route Cascaded model of reading.

1.2 The Dual-Route Cascaded model

The Dual-Route Cascaded model (Coltheart et aQ1P® based on traditional dual-route theories
of reading aloud (e.g., Morton & Patterson, 198@),aas said, has evolved from Morton’s (1969)
logogen model and McClelland and Rumelhart's (1981) irtBve activation (IA) model of
performance in perception task.

The DRC model adopts the architecture of ihgogenmodel but avoids its theoretical
commitment to the idea that the system operatesrdiog to thdogogenprinciple; in other words,
the assumption that the mental lexicon is compaoas$e@dformation-gathering devices with threshold
is refuted. Instead, the central assumption of IRC model is that activation propagates in a
cascaded fashion through the different levels ot@ssing; also, as in the IA model, interactive
activation is assumed so that, as soon as theaetiigtion in an early stage, it flows on to later

stages and, having activated a subsequent lewaoitfeeds back to previous ones.
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The overall architecture of the DRC model is repnésd in Figure 4.
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Figure 4.The Dual-Route Cascaded model of visual word reitiog and reading aloud.
(Coltheart et al., 2001, p. 214, Figure 7).

Two procedures to generate the phonology of arlstteng are assumed in the model, the lexical
route and the non-lexical route. Each route is amsed of a number of levels containing set of units
interacting each other through excitation (i.ee, éietivation of a unit contributes to the activatal
other units) or inhibition (i.e., the activation afunit makes more difficult the activation of athe
units). The units represent the smallest individsyahbolic parts of the model, such as words and
letters. Within the same level units interact eatier only through lateral inhibition. Adjacent

levels communicate fully in both directions in betkcitatory and inhibitory ways

® There are three exceptions here: first, the caiorebetween the feature and the letter levelsilg m one direction
(i.e., from features to letters) as in the IA modetcond, the communication between the orthogcaphd the
phonological lexicons is only excitatory; thirdethon-lexical route is feed-forward only.
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The first two levels assumed in the model (i.eg thature level and the letter level) are
common to the two routes. In the model, featurdyaigis spatially parallel and feeds forward to
the letter level which processing is again spatigkirallel. This portion of the DRC model is a
generalization of the IA model. The only differermetween the two models is that whereas the 1A
model applied to four-letters words only, its DR€sion applies to words of any length up to eight
letters. Hence, the visual feature level consisteight different subsets representing the eight
possible input positions; each subset consistsndividual features that are set to on or off
depending on whether that specific visual properfyart of the letter in that specific position.eTh
letter level also consists of eight different subsend each subset contains units representing the
entire set of letters that can occur (i.e., 2&lstin the English alphabet) plus one unit forklank
letter. Lateral inhibition occurs at this level,thin but not between each of the eight subsets. The
later inhibition will assure that only one lettescoirs at any one place at any one time. The output
from the letter level feeds both the lexical ane tlon-lexical routes.

The lexical route consists of two interconnectedclens: the orthographic lexicon contains
a single node (lexical entry) for each uniquelylisgeword the model knowsthe phonological
lexicon contains a single node for each uniquebnsiing word the model knows.

The non-lexical route consists of a grapheme-pheneorrespondence (i.e., GPC) rules
system and works serially along the string of lstt&he GPC rules have been chosen on purely
statistical grounds (i.e., for any grapheme, thengime assigned to it was the phoneme most
commonly associated with that grapheme in the gdinglish monosyllables that contain that
grapheme). Single-letter, multi-letter and contsemsitive rules are used for translating graphemes
into phonemes.

The output from both these routes activates then@me system which is where the final
pronunciation is produced. The phoneme units andasi organized to the letter units, except that
each of the eight subset contains units for thenpimes that can occur (i.e., 43 in the English
language) plus an unit for the blank phoneme. Rroiation occurs when all the phonemes of the
letter string have been activated to some criteobsatisfaction in the phoneme system. The DRC
model operates over time units called cycles aedhtimber of cycles it takes to reach criterion is
considered a measure of the DRC model’s respotesecias.

Given the dual-route architecture, the phonologiwadle of a string of letters visually
presented can be generated in two different wagimihe DRC model by employing the lexical or

the non-lexical route.

" Only English mono-syllabic words are actually @ned in the orthographic lexicon of the DRC modélese words
are the 7,981 units of the CELEX database (Baay®penbrock, & van Rijn, 1993).
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The pronunciation of the words in the orthograpleixicon is generated by the lexical
route®; this is a parallel procedure that retrieves tHele-word phonology from stored lexical
representation. When a word reaches the systeturéeanits activate the letter units (in parallel
across letter position), which in turn activate dsm the orthographic lexicon. The word units that
have been activated activate the letter units gedlback and the phonological lexicon via feed-
forward connections; finally, activation in the plodogical lexicon feeds back to the orthographic
lexicon and feeds forward to the phoneme systemadictg word’s phonemes (in parallel across all
phoneme positions), thus allowing the pronunciatbthat word. A central feature of the lexical
route is that units in the orthographic lexicon &meguency-sensitive: the activation of high-
frequency words raises more quickly that the atitwaof low-frequency words. To achieve this
effect, a constant value is associated with eadh ionthe lexicon. In languages with shallow
orthographies, the lexical route is necessary &ol ieregular (or exception) words, i.e. words that
disobey to the rules relating graphemes to theinpnciatior.

The non-lexical route is a serial procedure thimwa the model to read nonwords through
the letter-by-letter conversion — from left to righ of each grapheme into the corresponding
phoneme following language-specific correspondemutes. This route works as follow. Visual
features and letter units are activated just ab wié lexical route. Then the GPC route operates
after a number of cycles. The set of rules is $etaintil an appropriate rule is found to convieet t
first letter to a phoneme and that phoneme unthephoneme system receives some activation.
The next letter become then available to the GR@efband the correct rule to translate that letter
into the right phoneme is searched. Once all ttterkeare matched, pronunciation can occur.

Both the lexical and non-lexical routes are assutoexperate simultaneously — in parallel —
on each stimulus. This means that when a lettegsits presented to the system, activation from the
feature units reaches the letter level and in bath the orthographic lexicon and the GPC system.
From one hand, cascaded processing from the ogpbgrlexicon eventually leads to a build-up of
activation in the phoneme system (which also fdemtk to the previous levels); at the same time,
the GPC system contributes activation to the ph@negstem. This feature allows the model to

8 The lexical non-semantic route is described hérdexical semantic route is also assumed in the ehoout a
semantic module is not yet implemented in its cotaianal version.

° The distinction between regular and exception wdsdimportant in studying word-recognition in laages with
inconsistent orthography like English. In languagé inconsistent orthography, the grapheme-torgimoe mappings
are quite irregular; on the contrary, language$ witore transparent orthographies like Italian draracterized by
consistent grapheme-to-phoneme mappings.

19 A new letter becomes available to the GPC router af constant number of cycles in the versiorhefDRC model
originally described by Coltheart et al. (2001).the last computational version of the model (itke DRC 1.2),
instead, the route moves on the next letter wherritiht-most phoneme set that was excited by th€ @te on the
previous cycle contains a phoneme with an actindgoel that meets or exceeds a critical value.
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account for effects due to the influence of the-fexncal procedure in word reading, such as the
regularity effect (Seidenberg, Waters, Barnes, &eérdaus, 1984; Taraban & McClelland, 1987)
or the position of the irregularity effect (Ras8e Coltheart, 1999), and the effects due to the
influence of the lexical route on nonword readisiggh as the pseudohomophone effect (McCann &
Besner, 1987; Reynolds & Besner, 2005; Seidenb&tgrson, MacDonald, & Plaut, 1996; Taft &
Russell, 1992), the neighbourhood size (N) effstt@ann & Besner, 1987) or the position of the
diverging letter effect (Mulatti, Peressotti, & J@907).

A substantial amount of empirical data showed bifeskreaders both in reading aloud and
in lexical decision tasks, as well as a varietypelhaviours exhibited by patients with various form
of acquired dyslexia, are presently accounted fidr@rrectly simulated by the DRC computational
model (see Coltheart et al., 2001, for a more Betaliscussion). Although subsequent works have
revealed potential limit$, to date it is perhaps the most successful cortipntd model of reading

today available in literature.

1.3 On the cascaded processing: some empirical data

The assumption of cascaded processing is centréhanDRC model but also in many other
frameworks of reading aloud; computational accouwftsisible language processing are in fact

almost invariable cascaded and often engagedenaictive-activation between the various levels of

™ One of the major problems of the DRC model is,dgample, the simulation of the effects dependingtmulus
body (i.e., for a monosyllabic letter string, itsdy is the sequence of letters from its first voteethe end) such as the
consistencyeffect (e.g., Andrews & Scarratt, 1998; Glushko/9;9Jared, 1997, 2002) or the body neighborhoodyto
N) effect (e.g., Brown, 1987; Forster & Taft, 19%red, McRae, & Seidenberg, 1990). The consisteffegt is the
following: body consistent stimuli (i.e., stimulihich body has the same pronunciation in all thedsaontaining that
body) are read faster than body inconsistent stitnal, stimuli which body has at least two diffat pronunciations in
the set of words containing that body). The bodg#féct is the following: stimuli comprising bodiésat appear more
frequently (e.g.eep are read aloud faster than stimuli comprisingibé®that appear more rarelg&p. The DRC fails
to simulate consistency effects (see for exampled)®2002) because its computational version doesnolude body
representations. However, to overcome this probieis,currently considered the possibility to dstably-rime rules to
the model’'s non-lexical route, as suggested byeRsith and Morton (1985). To date, both the consisteand the
body-N effects are actually correctly simulatedtby Connectionist Dual Process (CDP+) model (Petrgl., 2007), a
model which overall architecture is very similartiat of the DRC model, as both rely on a lexical an a non-lexical
route to name the stimuli. In both the models,|&xécal route is a symbolic localist interactivetigation network with
activation propagating in a cascaded fashion, basedcClelland and Rumelhart's (1981) IA model. Timain
difference between the DRC model and the CDP+ moelgdrds the way the non-lexical route works. Wasgrthe
DRC'’s non-lexical route applies serially rules ofrespondence between graphemes and phonemesDieInon-
lexical route is a two layers associative netwdrk. (without hidden units) trained to learn the miag between
orthography and phonology and equipped with a lsgramhemic parsing: during training, the CDP+ nloum-lexical
route acquires body-rime representations and théehie thus sensible to the effects depending onusiis’ bodies
proprieties. Similarly, the consistency effectimmglated by parallel distributed processing (PD®dels (e.g., Harm &
Seidenberg, 1999; Plaut, et al., 1996; Seidenbengclelland, 1989) that use learning algorithm iscdver the
relationship between spelling and sound.
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processing. This is mainly because a certain nummberell-established empirical findings strongly
support cascaded processing in visual word recognit

Besides several data may be certainly relevanthis ¢ontext, cascaded processing in
reading is mostly implicated by a number of effestowing lexical influence when reading
nonwords. Suppose that processing is thresholdddrdaormation is processed in serial discrete
stages in the reading system; if so, when a nonwgpilesented in a reading task, no entry in the
orthographic lexicon will reach the threshold areh¢e no information will emerge from the
lexicon. This wouldn't explain, for example, whymords inconsistent with real words (e lieaf
cf. dea) yield longer reading latencies than nonwords.{@&gr) that are not inconsistent with real
words (Glushko, 1979).

In addition, such a thresholded processing is irgatible with numerous findings showing
that the lexical route also influences the compamadf phonology of the nonwords that have to be
read (e.g., Rosson, 1983). This is evident, fomgxa, in the so called pseudohomophone effect
(e.g., McCann & Besner, 1987); this effect consistsseudohomophone nonwords (i.e., nonwords
which pronunciation matched the pronunciation ofeaisting word; e.g.tfraxs cf. trackg being
read faster than control non-pseudohomophone nasierg. prax).

Further and strong evidence in favour of cascadextessing emerges from findings
showing the effects of the orthographic neighboadhsize (N) in reading. The index N is defined
as the number of words that can be created froimreg f letters by replacing a single letter at a
time (Coltheart, Davelaar, Jonasson, & Besner, L19a@r example, orthographic neighbours of
word arecord, ford, lord, ward, wood, wore, work, worm, \WwoEmpirical evidence shows that the
size of the orthographic neighbourhood influenassding latencies (e.g., Andrews, 1997, 1989;
McCann & Besner, 1987; Job, Peressotti, & CusinB98; Peereman & Content, 1995). In skilled
readers, words with many neighbours are read atoace quickly than those with few or no
neighbours; moreover, it has been largely showatlibnword reading is facilitate by a large N.
The principal explanation of these effects is thaty arise from activation within the lexical route
(e.g., Andrews, 1997; Coltheart et al., 1977; Gadtth et al., 2001). Hence, the effects due to the
orthographic neighbourhood in nonword reading can dxplained only assuming cascaded
activation in the reading system. More specificaltiie N effect clearly suggests that the
orthographic neighbours of a visually presentetktedtring are sufficiently activated to influence
the computation of the phonology of the nonword ttes to be read. Clearly, this activation would
be completely prevented by assuming a thresholddmet the different levels of processing.

Despite a substantial amount of data supportingcackesi processing clearly exists,

empirical results contrasting this assumption Hasen recently documented. These data have been
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principally obtained in reading aloud experimentaraining the effect of the psycholinguistic
variable of interest when factorially combined wilie manipulation of stimulus quality in the task.

1.3.1 Factorial manipulations of variables: focusing on smulus quality

Factorial experiments in which a factor affectihg trate of processing (e.g., stimulus quality) is
varied in conjunction with another factor (e.g., rd/drequency, semantic priming, repetition
priming, etc.) in reading tasks have been usedha last decades to evaluate different non-
computational accounts of visual word recognitierg(, Balota & Abrams, 1995; Besner & Smith,
1992; Besner & Swan, 1982; Borowsky & Besner, 1998yer, Schvaneveldt, & Ruddy, 1975;
Plourde & Besner, 1997; Stolz & Neely, 1995). Vesgently, a certain number of works used this
same approach to test the validity of computationatels of reading (e.g., Besner & O’Malley,
2009; Besner, O’'Malley, & Robidoux, 2010; BesnerR®berts, 2003; Blais & Besner, 2007;
O’Malley & Besner, 2008; O’Malley, Reynolds, & Be=mn 2007; Reynolds & Besner, 2004). To
date, the most of these studies directly focushetual-Route Cascaded framework.

When only a single factor is manipulated in experniis, the results can often be explained
in a variety of different ways. In other words, matompeting explanations — and several different
(computational) models — may be equally accuraexpiaining a main effect. However, when two
factors are jointly manipulated, the data pattermuch more complex and it might help to falsify
some of the various accounts. In particular, thenimdation of two different factors sometimes
produces additive effects and sometimes producesractions (i.e., either underadditive or
overadditive effects) on response latencies. Hefaotorial manipulation of different variables is
considered an useful toll in testing the validitytleoretical and computational accounts and a
powerful investigation to distinguish between coftitpe theories.

Factorial manipulations in reading studies may ina the psycholinguistic variable of
interest being manipulated together with a facftecéing the rate of processing. Usually, the latte
factor is the stimulus quality (or SQ), a perceptnariable affecting early processing in visual dvor
recognition. A common technique to manipulate shirawuality in experiments is by reducing the
contrast between the visually presented stimulusthe background (e.g., Borowsky & Besner,
1993} The typical finding obtained in these tasks it treading latencies increase for degraded
stimuli. Importantly, stimulus quality is considdran useful second manipulation for testing the

12 Al the studies presented in this thesis as welhe most of the studies in literature that wélldited used contrast to
manipulate SQ. However, other techniques to redtiomilus quality have also been documented. Fomple SQ can
be reduced by presenting low-pass filtered stir@agiin Fiset, Arguin & Fiset, 2006) or by alterngtia mask and the
letter string (as in Yap & Balota, 2007).
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validity of computational accounts of reading bessit can be simulated in most computational
models. Typically, degradation is implemented bydifying the connection weights at one or more
levels; specifically to the DRC model, degradati®msually simulated by reducing the weights of
the excitatory and inhibitory connections that datgithe communication from visual feature to
letter units. This manipulation would reduce thte raf activation gain at the perceptual level and
responses will be thus slower for degraded thamrlar stimuli. Various simulations documented,
in fact, that DRC model’'s responses are delayatieasonnection weights between the feature and
the letter levels are reduced, thus miming thecefié degradation obtained for humans.

Strong evidence against cascaded processing hasréperted in a number of different
studies using the factorial manipulations descriabdve. In this dissertation, the most critical
results will be discussed. In particular, this thesill focus on the studies that have examined the

effects of SQ when factorially combined with:
1. letter string length when reading nonwords alouesfir & Roberts, 2003);

2. orthographic neighbourhood size (N) when readingwuwds aloud (Reynolds &
Besner, 2004);

3. word frequency when reading aloud (O’Malley & Besrg908);

4. lexicality when reading aloud (Besner & O’Malley)@®; Besner et al, 2010; O’Malley
& Besner, 2008).

These studies will be examined in details in th&t rehapters of this thesis. At this step it is
sufficient to note that SQ and the other varialaleenhbeen shown to exert additive effects on skilled
readers’ latencies in all the experiments reporbdve. In other words, the effects of the
psycholinguistic variables manipulated in thesedist (e.g., letter string length, orthographic
neighbourhood size, word frequency, lexicality) éidoeen shown to have the same amplitude for
stimuli presented in a clear (i.e., non-degradem)di¢ion and for stimuli presented in reduced
contrast in the human performance.

Critically, interactions between the two factore an the contrary simulated by the DRC
model, i.e. the amplitude of the effect of lettgirg length/orthographic neighbourhood size/word
frequency/lexicality is significantly different fazlear and degraded stimuli in the DRC model's
simulations. These interactions would be causethéycascaded activation assumed in the model.
In fact, since processing is cascaded, a chantheirate of activation in early processing unitse(d
to stimulus degradation) will change the rate ofivation downstream in the model. As a

consequence, SQ will likely to interact with vatedbaffecting the subsequent levels of processing
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assumed in the reading system like letter strimgtle, orthographic neighbourhood size, word

frequency and lexicality.

1.3.2 Introducing a threshold in the reading system

The experiments described above provide significamgmatches between the DRC model’s
performance and the human behaviour; criticallgséhmismatches have been interpreted as caused
by the cascaded activation assumed in this framlew® a consequence, the previous data contrast
not only the DRC model but rather the same ideaabtivation proceeds in a cascaded fashion in
the reading system.

Additive effects between variables are easily @rpld within a thresholded framework by
postulating that those variables affect differ@viels of processing in the system. Sternberg (1969)
following Donders (1868-1869), noted that one c#enapt to study the component processes
implicated in performance by using reaction timatadand that additional assumptions about their
temporal relations can be made by observing theenpatof results produced by factorial
manipulations; in particular, one can use expertaignanipulations that are assumed to selectively
influence specific levels of processing to studyatvtevels are affected by other manipulations.
Within discrete stage models assuming thresholdeacegsing, the assumption that one
experimental manipulation influences the duratiboree level and another manipulation influences
the duration of another level leads to the conolushat the two factors will have additive effects
on reaction times; on the contrary, factors thdluence the duration of the same level will
generally interact with one another. If we adopscealed models, however, this logic is only
partially correct. In cascaded models, activatiooppgates through the levels continuously, i.e.
activation reaches a subsequent |defbreprocessing in a previous level is ended. This mdaat
the effects of a factor is not resolved within teeel it affects; rather, the effect of a factoraat
early level would influence processing downstrearthe system. This implies, from one hand, that
factors interacting with one another could well ibBuencing different processes in a cascaded
system and, from the other, that cascaded activdteween different levels of processing is not
easily reconciled with evidence showing additiveeets between factors affecting those levels. It
follows that the easier way to explain additiveeets of factors is by assuming a threshold between
the levels of processing which these factors affadtitive effects are hardly explained within a
cascaded framework especially when that framewts assumes interactive activation between

the different levels of processing, as in the DR@el. In these circumstances, in fact, the efféct o
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experimental manipulations influencing a specifiogess in the system not only cascades to the
subsequent levels through feed-forward connectiouisit also feeds back to the previous ones.

When factorial manipulations of psycholinguisticrighles and stimulus quality are
considered within the Dual-Route Cascaded framewbek previsions are the following. Cascaded
activation assumed in the model will cause a végialfecting the rate of processing in early units
(e.g., SQ) to affect the model beyond the percépdual (i.e., the effect of SQ is not resolvechat
early stage but rather affects processing downstri@athe system); in turn, interactive activation
will determine factors affecting later processedeed their effects back to previous levels, thus
having an effect on earlier factors. As a consegaee8Q will likely to interact in the DRC model
with variables affecting subsequent levels of pssoey assumed in the system. As said, the DRC
model produces in fact interactions of SQ withdetstring length, orthographic neighbourhood
size, word frequency and lexicality, inconsistentiyh the empirical data. In order to eliminate the
mismatches with the human performance, a refornomaif the DRC model has been pointed out
(e.g., Besner & Roberts, 2003; Blais & Besner, 200Malley & Besner, 2008; Reynolds &
Besner, 2004). Even if partially different interfagons have been proposed to explain the different
findings, all these solutions generally agree asritical point: thresholding the letter level rathe
than allowing it to cascade provides a simple veagllow the DRC model to fit the additive effects
produced by human readers.

From a theoretical perspective, in fact, SQ is acqmual variable influencing the
recognizability of letters and degradation wouldgmot affect the model beyond the letter level,
when the letter level is thresholded, the effeat ttu degradation would be resolved within early
levels of processing. This would prevent interattidetween variables affecting the perceptual
level (e.g., SQ) and variables affecting the subseglevels of the model (e.g., letter string léngt
neighbourhood size, word frequency and lexicalithys allowing the DRC model to explain the
additivities that have been documented. Furthermtirie proposal is not a merely theoretical
account. Instead, simulation works confirm thatngiag the model in this way is successful in that
the DRC model so modified correctly simulates tiditave effects of SQ and 1) letter string length
in nonwords reading 2) orthographic neighbourhoatt sn nonwords reading and 3) word
frequency in reading, consistently with the empiritata (see Besner, Reynolds, & Chang, 2603)

This solution assumes, however, that at least ggoeesses in the reading system occur in
discrete series, one beginning only when the ptesvends; in other words, information processing

13 The authors didn’t attempt, however, to demonstrmahether implementing the letter level as thredlwould
allow the DRC model to simulate all the effectsttitg current version does simulate. In adherendié principle of
nested modelling, instead, any novel account (grmaodification of an old model) should be showetkab reproduce
all the effects that its previous version was ablsimulate.
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in visual word recognition would be thresholded|east at the level processing letters. Clearly, a
whole change of the DRC model is intrinsic in garsposal and accepting this modification would

more generally mean to reject the idea of cascpdsukssing per se.

1.4 Goals and outline of the thesis

The current thesis aims to investigate cascadeckepsing in visual word recognition by testing the
predictions of the Dual-Route Cascaded model adingaaloud. Despite widespread acceptance of
the idea that visual language processing is cadc¢dtliere are circumstances in which such an
account is not easy reconciled with the data predusy skilled readers. In particular, recent
experiments involving factorial manipulations susgfge that the information processing implicated
in visual word recognition might be at least pdististhresholded. Information processing will be
evaluated by referring to these studies; more fipalty, the discussion of the previous resultsl wil
be supported by the presentation of new empirieéh abtained either in Italian or in English
reading aloud tasks as well as by DRC model’'s strairis.

Specifically, the thesis is structured as followheTstudies reported in the first chapters
(Chapter 2 to 5) focus on factorial manipulatiommonword reading; the main aim of these studies
will be to define whether the experiments in wh&® is manipulated together with a second factor
(e.g., letter string length and orthographic nemirhood size) in nonword reading tasks can be
explained by considering a variable reflecting Wisual similarity between the different letters of
the alphabet, namely the Total Letter Confusabilliye experiments reported in the last chapters
(Chapter 6 and 7) will instead focus on factori@nipulations in reading as a function of the type
of stimuli presented in the task; in Chapter 6 é¢ffects of factors affecting the recognisability of
letters (e.g., SQ and Total Letter Confusability)l we analyzed when jointly manipulated with
lexical factors (e.g., word frequency and lexigalithe effects due to list composition in degraded
presentation will be directly assessed in Chapt@iheé implications of these findings for theorids o

visual word recognition and computational modelseaiding will be discussed.
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2 LENGTH AND ORTHOGRAPHIC NEIGHBORHOOD
SIZE IN NONWORD READING

In this chapter the joint effects of letter strileggth and neighbourhood size (N; Coltheart et al,
1997) will be analyzed when reading nonwords aldumbse effects are particularly relevant for the
present purposes given their manipulation in madtiér experiments involving degradation. The
aim of the study presented in this chapter is tyae the joint effects of letter string length axid

in nonword reading when the stimuli are presented non-degraded (i.e., clear) condition. These
effects will be interpreted within the DRC frameaWwdhat assumes two routes — a lexical and a
non-lexical procedure — operating simultaneouslyeanh stimulus. In this study we explored a
prediction the model makes with respect to nonweadling and that directly follows from its dual-
route architecture and cascaded processing: thgyephic neighbourhood size effect should
increase as letter length increases. The resutteeaxperiment are consistent with this prediction

2.1 Introduction

The DRC model of visual word recognition and regdadoud appeals to two procedures to
generate the phonology of a letter string: thedaixroute and the non-lexical route. The lexical
route is a parallel procedure that retrieves theoledword phonology from stored lexical
representation and allows the model to read iraggubrds. The non-lexical route converts serially,
letter by letter (from left to right) each graphenmto the corresponding phoneme following
language-specific correspondence rules; this reuimecessary for nonword reading.

Regardless the characteristics of the stimulus Wleether it is a regular or an irregular
word, or a nonword) both the procedures are hinednustimulus presentation. Also, both the
procedures are assumed to work simultaneouslyparallel—- on the stimulus.

The N effect in nonword reading (e.g., McCann & s 1987) is of specific interest for
the current purposes. The effect is the followimgnword reading times decrease as the number of
its orthographic neighbors increases. Within theCDRamework, the N effect is accounted for by

postulating cascaded processing along connectidmst tallows nonwords to activate
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orthographically similar words in the orthographiexicon. This activation spreads to the
corresponding phonological representations in thenplogical lexicon, which in turn send
activation to the phonemic units in the phonemiéfdyu Since the orthographic neighbours of a
nonword and a nonword itself usually share manynghtes, phonemic activation generated by the
lexical routine, paired with correct nonlexical pessing, positively contributes to the assembling
of the nonword phonology; in other words, the pHogiwal representations activated by the
orthographic neighbours prime the phonemes in llmm@me system (Coltheart et al., 2001; but see
Reynolds & Besner 2002) Thus, according to the DRC model, the N effeatonword reading is
an effect due to the lexical route, which is a pohae that works in parallel on the stimulus.
However, the DRC relies on the non-lexical routineread nonwords, which is a procedure that
works serially. This leads to a prediction: theestf the effect of N should increase as the length
(i.e., number of letters) of the nonword increagesthe number of letters in a nonword increases,
the time required to the non-lexical route to re#ioh last rightmost letter and activate the last
phoneme increases as well. The longer the increlasme, the longer the lexical route works on
the stimulus. Thus, the longer is the increaseiroé,t the stronger the lexical route primes the
neighbour’'s phonemes and facilitates nonword readin

In the experiment reported below we tested thisliption. To this end we collected data
from Italian skilled readers presenting short amagl nonwords without orthographic neighbours
and short and long nonwords with one or more orntdgaigic neighbours. We also performed a
simulation with the Italian version of the DRC mbd@&lulatti, 2005; Mulatti & Job, 2003a). We
expected both humans and the DRC model to shoa:main effect of neighbourhood size, b) a
main effect of letter length, and c) an interactlmetween the two factors such that items with

neighbours show a smaller length effect with respethe items without neighbours.

2.2 Method

Participants. Eighteen students at the Universita degli StudPaiova who had Italian as
their first language and normal or corrected-toamalr vision participated as part of their courses

requirement.

14 As will be discussed in Chapter 5, another accexplaining the effect of N because of the intdvachctivation
between the orthographic lexicon and the letteelldas been proposed within the DRC framework. Heaweit is
important to note that the prediction of the DRCdelotested in the present study does not changediegs of the
view adopted to explain the effect of N since bathounts assume that it arises within the lexiwale.
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Design The experiment consisted of a 2 X 2 within-subgiesign with N (zero-N vs. one-
or-more N) and Length (short vs. long items) asafiac

Materials. A total of 112 orthographically legal disyllamonwords were used in an Italian
reading aloud task (these stimuli can be seenanAgipendix, section A). These consisted of 56
nonwords that had no neighbours and 56 nonwordshtdch one or more neighbours. Within each
group of nonwords, there were 28 stimuli at eactwof levels of length (short vs. long). Iltems that
were 5 letters in length represented the shortthemgndition; items that were 7 letters long
represented the long length condition. Short amg lsonwords were balanced with respect to the
initial phoneme. In addition, for nonwords with glebours (i.e. nonwords derived by changing one
letter of an Italian word, provided the initial pfeme of that word remained intact), short and long
items were balanced in terms of baseword frequéBc¥ vs. 3.8 occurrences per million, t<1),
baseword neighbourhood size (2.2 vs. 2.1, t<l)wood neighbourhood size (1.2 vs. 1.2, t<1,
range: 1-3), nonword neighbourhood frequency (%63:2, t<1) and the position of the letter
changed (3.4 vs. 3.4, t<1; see Mulatti et al., 3007

Apparatus. The experiment took place in a sound attenuateddamdlit room. Stimuli
presentation and data recording were controlleddfware developed in E-prime and running on a
personal computer. Stimuli were presented centradlyblack lower-case letters on a white
background. The display was synchronized with tbeeen refresh cycle. Subjects’ naming
responses were detected via a microphone conneceedoice-key. Participants sat in front of the
computer screen and the microphone was placedlgiiredront of but slightly below the subjects’
face, so as not to obstruct screen view. Respa@isady was timed from stimulus onset to voice

key activation, which also terminated the display.

Procedure Participants were tested individually. They werstructed to read each letter
string aloud as quickly and accurately as possthky were informed that a letter string would be a
pronounceable nonword. Each trial began with atifixapoint (+) presented for 500 ms; then, the
display went blank for 100 ms. Immediately aftex #timulus appeared and remained on the screen
until a response was registered by the voice-ke¥ sc elapsed. The inter-trial-interval was set to
2 sec. Stimuli were presented in six different peegandom orders across participants. A practice
session preceded the experimental session andstamhsif 12 items presented at each subject in a
random order. The experimenter coded the pronuaniatror as triggering (i.e. voice key failure),

lexicalization and articulation fault.
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2.3 Results

Articulation errors (11%) and apparatus failure2¥) were excluded from the analysis of reaction
times (RTs); also, apparatus failures were excldd®d the analysis of accuracy. Correct RTs were
submitted to the Van Selst and Jolicoeur (1994nrtring procedur®, which excluded an
additional 1.3% of the data. Mean naming latenare$ percentages of accuracy scores — according

to conditions — are reported in Table 1.

Orthographic Neighborhood

Zero-N One-or-more-N Diff
Length RTs %E RTs %E RTs %E
Long 696 15 645 10 51 5
Short 637 13 626 8 11 5
Diff. 59 2 19 2

Table 1 Mean reaction times (RTs) and percentages of €Efb)
according to conditions.

ANOVAs with N (zero-N vs. one-or-more-N) and Lenggort vs. long items) as repeated factors
for the participant analysis (F1) and as indepenhdaators for the item analysis (F2) were

conducted on RTs and accuracy.

RTs. Analysis showed a main effect of N, F1(1, 17)0: MSE= 830, p < .001, F2(1, 108)
= 13,MSE= 3118, p < .001, a main effect of Length, F1(1), #16,MSE= 1688, p < .005, F2(1,
108) = 16 MSE= 3118, p <.001, and, crucially, a significantnatction, F1(1, 17) = MSE= 746,

p =.007, F2(1, 108) = MISE= 3118, p < .05, due to the fact that — as predibiethe DRC model
— the size of the length effect is smaller for tteans with neighbours with respect to the items

without neighbours.

Accuracy. Analysis showed a main effect of N, F1(1, 17).£, MSE= .006, p < .05, F2(1,
108) = 4,MSE= .014, p < .05, whereas neither the effect of teng1(1,17) = 1.7, p > .2, F2<1,

nor the interaction, Fs < 1, proved significant.

15 van Selst and Jolicoeur (1994) proposed a recardata trimming procedure in which the criteriont-ofi for
outliers removal is established by the sample isiz=|ach condition for each subject. This methodthesadvantage to
avoid problems due to sample size on outliers aktdn.
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2.4 Simulation

The Italian version of the DRC model (Mulatti & JaB003a) resorts to a vocabulary of Italian
monosyllabic and paroxytone disyllabic words (ivqrds stressed on the second last syllable)
since both are pronounced without reference toasapgmental information. The architecture of
the DRC and the parameter set governing lexical momtlexical processing are those of the
English version (Coltheart et al., 2001). There@B82 units in the orthographic input lexicon, and
6,372 units in the phonological output lexicon.iAshe English version, the non-lexical route uses
single-letter (e.g.p to /p/), multi-letter (e.g.¢chto /k/), and context-sensitive (e.g[i] to /4/) rules
for translating graphemes into phonemes. The moateéctly pronounces the whole set of items in
its lexicon, and simulates the regularity effecsatved with loan words (Mulatti, 2005; Mulatti &
Job, 2003b; Schereer, 1987; Ziegler, Perry, & @alth 2000) and the effect due to the position of
the diverging letter in nonword reading (Mulattiagt, 2007).

The set of nonwords used with the participants masthrough the Italian version of the
DRC model. We chose to use the parameter set Hoaisathe model to correctly simulate the
neighbourhood size effects in reading aloud (seéh€art et al., 2001, p. 224). The model did not
make any error. Mean cycles to criterion are reggbih Table 2.

Orthographic Neighborhood

Zero-N  One-or-more-N Diff.
Length Cycles Cycles Cycles
Long 187 144 43
Short 154 132 22
Diff. 33 12

Table 2 Mean cycles according to conditions.

An ANOVA with N and Length as independent factoraswconducted on cycles. The DRC
behaviour mimed that of humans. Analysis showedam reffect of N, F(1, 108) = 94, p < .001, a
main effect of Length, F(1, 108) = 45, p < .001d ansignificant interaction, F(1, 108) = 10, p <
.001, imputable to the size of the length effeahpesmaller for the items with neighbours than for

the items without neighbours.

25



2.5 Discussion

The experiment evidenced three different resultsoarectly simulated by the DRC model.

First, nonwords with neighbours are read fasten thanwords without neighbours. In the
literature, this result is referred to as the Neseffect (e.g., McCann & Besner, 1987; see also
Arduino & Burani, 2004). As mentioned in the intumtion, within the DRC framework the N
effect arises from activation in the orthograpregiton that feeds forward to the phonological
lexicon and primes the phonemes in the phonemeryst

Second, we found a length effect: short nonwordsr@ad aloud faster than long nonwords.
This result is consistent with that of Weekes ()9%ho presented his participants with words and
nonwords of three, four, five, and six letters feading aloud. He found a main effect of letter
length, a main effect of lexicality (i.e., wordsack faster than nonwords), and a significant
interaction due to the fact that whereas nonwohdsved a length effect, words showed no length
effect (however, see Balota, Cortese, Sergent-Ndrs&pieler, & Yap, 2004). Within the dual
route framework, the lexicality by length interactireceives the following explanation: nonwords
are assembled from letters one by one, hence cpasiength effect, whereas words are retrieved
from the lexicon as a whole, through a parallecpss, hence preventing/attenuating serial effects.

Third, the size of the length effect depends up@nsize of N: nonwords without neighbours
exhibit a stronger length effect than nonwords waitie or more neighbours. Within the dual route
theory, this interaction is easily explained. lh@word has one or more orthographic neighbours,
their orthographic and phonological representatiegsive activation from the stimulus. Activation
grows over time. Nonlexical processing proceed®idiy letter, and therefore longer nonwords
require more time to be assembled. Thus, whilegesiag longer nonwords, the activation in the
lexical route grows for a longer interval of timeaching higher levels. Since the activation of the
lexical route positively contribute to the assemdplof the nonword’s phonology, longer nonwords
are more facilitated by their neighbouring wordartishorter nonwords.

To conclude, a prediction of the DRC model has bé¢ested through empirical
investigation. The results of our experiment aneststent with this prediction and are all correctly
simulated by the Italian version of the DRC moddie interaction between the letter string length
and the orthographic neighbourhood size (N) thatbeen obtained is particularly relevant for the
definition of a computational model of visual waetognition and reading aloud. This interaction
strongly supports a cascaded model with a duakratuthitecture, comprising a route working in

parallel and another working serially, as assumedtie DRC framework.
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3 TOTAL LETTER CONFUSABILITY IN DEGRADED
NONWORD READING

In this chapter the studies providing strong evi#emgainst cascaded processing in nonword
reading will be considered. As pointed out in thiiedduction, these experiments typically consist of
a factorial manipulation involving stimulus degréida. A new variable that might play a role when
stimuli are degraded — the Total Letter Confusgb{ITLC) — will be introduced. Since the letters
comprising the stimulus in input are hardly ideetf when stimuli are degraded, the visual
similarity between the different letters might uéhce letter identification. In fact, some letters
the alphabet are perceptively similar to othertetst(e.g., E and F) whereas other letters are not
(e.g., Z and J); similar letters might be thus csefl more likely than other less-similar letters
when the string is presented in reduced contrastnéasure of letter similarity — or letter
confusability — could hence be a relevant factocdasider in researches analyzing the effects of
stimulus degradation on speeded nonword readinge $Ine might expect more similar/confusable
letters to suffer more when degraded than lesdaittonfusable letters.

3.1 Introduction

Any pair of letters has a visual similarity thandae defined by the number of features that the two
letters have in common. The idea that lettersa@egtified by their constituent part — their feature

is not new and it has been proposed over 50 yeagosbg Selfridge (1959); in his model, the
Pandemonium, letter identification was achievecdigyarchically organized layers of features and
letter detectors. More recently, numerous researghevided convincing evidence in support of
this account (see Grainger, Rey, & Dufau, 2008afoeview).

Letter similarity is sometimes referred to as lettenfusability. The greater the visual
similarity between two letters is, in fact, the mdikely will observers be to confuse one of these
letters with the other. Measures of letter confugglare empirically generated. Typically, isoldte
letters are presented in data-limited conditiong.(ebrief exposure and/or low contrast and/or

masking) and participants are asked to report tesemted letter. Error rates (e.g., reporting Frwhe
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E was presented) will give a measure of letter asalbility between pairs of letters (e.g., Gilmore,
Hersh, Caramazza, & Griffin, 1979; Loomis, 1982whsend, 1971; Van Der Heijden, Malhas, &
Van Den Roovaart, 1984). For any given letter, cene average that letter’'s confusabilities with the
remaining 25 letters of the alphabet to obtain asuee of that particular letter's confusability (LC

In addition, for any given string of letters, on@nccompute its overall confusability (Total Letter
Confusability, or TLC) as the sum of the confuséibs of the individual letters in the string. High
TLC letter strings will be thus strings of lettemsostly composed of high-confusable letters,
whereas low TLC letter strings will be strings eftérs mostly composed of low-confusable letters.
Moreover, the mean of the confusabilities of thehs in the string (Mean Letter Confusability) can
be calculated.

It seems to us that LC could be an important fatboconsider in experiments involving
degraded presentation of letter strings. When dtimmguality is manipulated and stimuli are
degraded (usually by reducing the contrast betwhenstimulus and the background) the letter
comprising the string in input are difficult to ikéy and the visual similarity between letters g
thus influence letter identification. The letternbasability could hence be a relevant factor to
consider in researches analyzing the effects ofultis degradation on speeded nonword reading in
skilled readers, since degradation could haveomgér effect on nonword reading when LC is high
than when it is low. In other words, it might be tbase that more similar/confusable letters suffer
more when degraded than less similar/confusabtiersetlf our hypothesis is plausible, it might be
therefore important to match TLC across conditiamghe kind of experiments involving the
factorial manipulation of SQ that refute cascadext@ssing, a possibility which the authors did not
consider in these studies.

The importance of letter similarity in visual worécognition is not totally new. The
involvement of LC in reading emerged in fact froecent findings showing that this variable
influences the performance of patients with purexial, also known as letter-by-letter (LBL)
reading (e.g., Arguin & Bub, 2005; Arguin, Fiset,Bb, 2002; Fiset, Arguin, Bub, Humphreys, &
Riddoch, 2005; Fiset, Arguin, & McCabe, 2006). Tteficit is associated with a damage affecting
the left fusiform gyrus — a region in the tempogwipital cortex — or the fibres conducting visual
information to this region (e.g., Beversdorf, Réte] Rhodes, & Reeves, 1997; Binder & Mohr,
1992; Damasio & Damasio, 1983; Dejerine, 1892). Tin@in behavioural feature of patients
affecting from LBL dyslexia is very slow readingarhcterized by an abnormally large word length
effect. In other words, LBL patients usually shoWingar increase in the time required to recognize
a word as a function of the number of letters ihpases (see, e.g., Patterson & Kay, 1982); several

studies reported that, depending on the patieattithe required to read a word can increase from
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500 ms to several seconds for each additionalrlettéhe stimulus. On the contrary, unimpaired
skilled readers read words of different length atibstantially invariant rate (Weeks, 1997). These
data have been typically interpreted by suggestiagwhereas skilled readers are able to recognize
several letters simultaneously, LBL patients has& this ability and instead decode words as a
sequence of isolated letters, without any acceasspuatially parallel process.

Recent findings clearly showed that the visual Eirty among letters has a central role in
LBL readers performance. In normal condition, agdMength increases, so does the sum of the
confusabilities of the constituent letters; an effef word length may be thus due to the TLC (that
is usually higher for longer letter strings) ratitban to the number of letters in the stimulus.
Consistent with this interpretation, Fiset et 20F5) demonstrated, in fact, that the word length
effect usually showed by LBL dyslexic patients gigears when TLC is balanced across word
length, i.e. when the short and the long wordseesl in the task are matched in terms of TLC.
These results have been interpreted by suggestatgLBL reading is due to a visual encoding
impairment affecting letter recognition and thatCT affects reading performance by modulating the
signal-to-noise ratio at the level of letter idénétion, a ratio that is abnormally low in LBL
dyslexic readers. This finding also falsified thiassical view explaining the pure alexia as a
condition characterized by the absence of parpitmtessing, since the abolition of the word length
effect under the appropriate condition providesdemnce for residual parallel letter processing in
these patients, even if this processing is highbcsptible of the negative impact of LC.

Furthermore, previous studies documented that, easek C has an effect for LBL dyslexic
patients, this variable does not influence the biela of neurologically intact readers in standard
viewing condition (e.g., Arguin et al., 2002; Fisatguin, & Fiset, 2006). Nevertheless, we suggest
that LC might have an effect on skilled readersfquerance when contrast is reduced. Partial
support to this interpretation comes from findimgysving that the word length effect showed by
LBL dyslexic patients can be reproduced in skiledders when the stimuli are degraded in the task
(Fiset, Arguin, & Fiset, 2006; see also Fiset, ®bss Blais, & Arguin, 2006); the authors
suggested that the visual impairment affectingeteteécognition in LBL reading would be in fact
simulated in normal readers by reducing the stisigality. As a consequence, since LC has a role
in LBL readers performance and the LBL impairmeah doe simulated in normal readers by
reducing stimulus quality, the effect of LC miglgdome significant for skilled readers in degraded
condition.

The goal of the present study has been to teshyipisthesis. In particular, our experiment is
directed to determine whether the letter confugigbiias a role for unimpaired subjects when

reading nonwords. To this end we collected datenfekilled Italian readers by presenting high-
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TLC nonwords and low-TLC nonwords both in clear aw®jraded conditions. The hypothesis is
that the effect of degradation would be largertigh-TLC nonwords than for low-TLC nonwords.

3.2 Method

Participants. Thirty students at the Universita degli StudPdidova who had Italian as their

first language and normal or corrected-to-normsilovi participated as volunteers.

Design The experiment consisted of a 2x2 within-subjedésign with Total Letter
Confusability (TLC; low TLC vs. high TLC) and stitus quality (SQ; clear vs. degraded
conditions) as factors.

Materials. A total of 100 seven letter nonwords was seleatedtimuli (these stimuli can be
seen in the Appendix, section B). They were allnptosnceable. Also, none of the nonwords had
either orthographic or phonological neighbours. Sehstimuli were divided into two groups of 50
nonwords according with their TLC (high vs. low)etter confusability was determined by
averaging empirical letter-confusion matrices aledi in previous studies (Gilmore et al., 1979;
Loomis, 1982; Townsend, 1971; Van Der Heijden et #9843} the TLC was calculated as the
sum of the confusabilities of the letters compugsihe string. Mean TLC values were 2.6 and 3.7
(t(98) = 20.3, p < .001) for the nonwords belongtogthe low-TLC and high-TLC conditions
respectively. The low TLC nonwords were dividedoitévo groups of 25 nonwords balanced in
terms of mean TLC values (2.6 vs. 2.6, tdbWwTLCa andlowTLCh Similarly, the high TLC
nonwords were divided into two groups of 25 nonvgdodlanced for mean TLC values (3.7 vs. 3.7,
t<1), highTLCaandhighTLCh LowTLCag lowTLCh highTLCag andhighTLCbwere balanced in
terms of initial phoneme. These four lists wereated to counterbalance high and low TLC stimuli
with SQ across participants: each participant s@vstbnuli clear (25 low and 25 high in terms of
TLC) and 50 stimuli degraded (25 low and 25 higlienms of TLC). The assignment of stimuli to
the four conditions was counterbalanced acrosscpants, i.e. if participant X salewTLCaand
highTLCa stimuli clear andlowTLCb and highTLCb stimuli degraded, participant X+1 saw
lowTLCbandhighTLCbstimuli clear andowTLCaandhighTLCastimuli degraded.

1% From the averaged confusion matrix, the diagoaaltieen removed (see Arguin, et al., 2002) antl@heector has
been computed by summing up the letter-by-letterficsion values. The LC values ranged from .27 dietf) to .71
(letter B), with an average of .48.
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Apparatus. The experiment took place in a sound attenuateb dam lit room. Stimuli
presentation and data recording were controlleddfware developed in E-prime and running on a
personal computer. The display was synchronizedh Wit screen refresh cycle. Stimuli were
presented centrally in upper-case letters in 18tpoourier New font on a black background (RGB
values; 0, 0, 0). Clear stimuli were displayed initer (RGB values: 65, 65, 65); degraded stimuli
were displayed in grey (RGB values: 8, 8, 7). Rasps were collected via a microphone connected
to a voice-key assembly. Response latency was tfinoed stimulus onset to voice key activation,

which also terminated the display.

Procedure. Participants were tested individually and satronf of the computer screen.

They were instructed to read each letter stringdikas quickly as possible, and to minimize errors;
they were informed that the stimulus would be anptmceable nonword. Subjects were then
presented with 12 practical trials. Each trial begath a 500 ms presentation of a fixation point at
the centre of the computer screen followed by a@8Qresentation of a blank. Immediately after
the stimulus appeared and remained on the scrddraussponse was registered by the voice key
or 3 sec elapsed. The inter-trial-interval wastse&? sec. Stimuli were presented in a random order
for each participant. The experimenter coded tlomyanciation as correct if the pronunciation obey
to the standard grapheme-phoneme rules, voicedieyd or articulation error.

3.3 Results

Pronunciation errors (10.6%) and apparatus fail(#e38%) were removed prior to reaction times
analysis. Correct reaction times were submittedht Van Selst and Jolicoeur’'s (1994) outlier
removal procedure. Outliers (1.3%) were removedrpio RTs analysis. Mean RTs according to
conditions and percentages of error are reportdcite 3.

Stimulus Quality

Degraded Clear
TLC RTs %E RTs %E
High 1189 17 874 6
Low 1125 18 871 7
Diff. 64 -1 3 -1

Table 3 Mean reaction times (RTs) and percentages of &&)
according to conditions.
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In the ANOVA for the participants (F1) TLC and SQne repeated factors. In the ANOVA for
items (F2) TLC was an independent factors and SQan&peated factor.

RTs. Analysis showed a main effect of SQ, F1(1, 33R89MSE = 29575, p < .001, F2(1,
98) = 1001.4, MSE = 4242, p < .001, and a maincefs® TLC, F1(1, 33) = 12.3, MSE = 3069, p <
.001, F2(1, 98) = 4.4, MSE = 8585, p < .05. Howeube two effects were qualified by a
significant interaction, F1(1, 33) = 8.7, MSE = 33} p < .01, F2(1, 98) = 6.8, MSE = 4242, p <
.01. Paired comparisons — by participants (t1) @andems (t2) — revealed that whereas the effect of
TLC was significant when the stimuli were degradé@33) = 3.6, p <.001, t2(98) = 2.8, p < .01, it

was not significant when the stimuli were cleax tk.

Accuracy. Whereas the main effect of SQ proved significkf{1, 33) = 83.5, MSE = .006,
p < .001, F2(1, 98) = 47.7, MSE = .016, p < .00&ither the effect of TLC, Fs <1, nor the
interaction, F1(1, 33) = 2.1, MSE = .003, p > .F2(1, 98) = 1.3, MSE = .016, p > .2, were

significant.

3.4 Discussion

This study was directed to analyze the effect tiEteconfusability in nonword reading, a variable
defined as the visual similarity between letterivair by shared features. Our experiment clearly
showed that nonword reading is influenced by ledierilarity in particular experimental conditions.
In fact, the results obtained proved the letterfusability role in nonword reading when stimuli are
presented in low contrast (i.e., degraded conditibmstead, letter confusability doesn't affect
nonword reading when stimuli are presented in stethdiewing condition (i.e., clear condition).

More specifically, when the Total Letter Confusébi(i.e., the sum of the confusabilities of
the letters in the string) and SQ are jointly mafaped in a nonword reading task, a significant
interaction between the two factors is obtainedhwhe effect of degradation being larger for the
high-confusable that for the low-confusable strinftetters. As hypothesized, high-TLC nonwords
are thus harmed by stimulus degradation more thanlLC nonwords.

This result has at least two important implicasiofor the research on visual word
recognition and reading aloud.

First, the role of TLC has been largely documentetdBL dyslexia (e.g., Arguin & Bub,
2005; Arguin, et al., 2002; Fiset, et al., 2005)h&N the visual impairment affecting word
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recognition that characterizes this disorder isutated in normal readers through stimulus
degradation (see Fiset, Arguin & Fiset, 2006), tHEHIC has an effect on skilled readers
performance. A variable affecting LBL dyslexics’hawiour has been thus shown to influence
unimpaired skilled readers in particular experiraénonditions.

Second, our findings have important implications the researches using factorial
manipulations to analyze information processingigual word recognition. As said, recent studies
involving the manipulation of SQ together with amat factor in nonword reading tasks (e.g.,
Besner & Roberts, 2003; Reynolds & Besner, 2004)ehprovided strong evidence against
cascaded processing. In particular, these studiggested that information processing in the
reading system might be thresholded at least articplar level when reading nonwords. We argue
that these data might be due to a confounding WitE and that any threshold in the reading
system would be instead needed. In fact, if theedatonfusability plays a role when stimuli are
degraded, then any study that involves a manipuadf SQ should take this factor into account. In
particular, the effect of degradation is shown ¢ostronger for high-confusable letter strings than
for low-confusable letter strings; this means tifatie stimuli in the experiments involving SQ are
not controlled for TLC, the results obtained cobkl due to a counfounding with this variable.
Consider, for example, the additive effects of 3@ ketter string length that have been reported by
Besner and Roberts (2003). The TLC is not contolte in this study. This means that, as letter
string length increases, so does the TLC, i.e.esitC is calculated as the sum of the
confusabilities of the letters in the string iikely to increase as the number of letters ingtrang
increases. Thus, part of the increased RTs fordidgraded long nonwords compared to the
degraded short nonwords obtained in this studydcbave been due to the increased TLC rather
than to the increased length. If so, the additiffeces that have been observed might be due to a
counfounding with this variable: if short and longnwords would be matched on TLC, then the
true result could be an interaction, with the dffe€ SQ being larger for short than for long
nonwords, as predicted by the DRC model. This Hygmits has been tested in the study reported in
the next chapter.

3.4.1 Computational modelling

The basic assumption of computational modellinpad computational accounts are sensitive to the
same variables that humans are sensitive to. Inptheent experiment we showed that letter
confusability influences skilled readers performamt particular experimental conditions. Hence,
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since human readers are sensitive to letter cobilitga(at least for degraded stimuli), we must
require the DRC model to be too.

The confusability between letters depends on Etgmilarity that, in turn, depends on the
letters’ font and casé This means that the LC for human readers midgferdirom the LC for the
DRC model. As said, LC for human readers is emglisicobtained. But what about the LC for
computational models? Since letter similarity inmfan reading is driven by shared features, we
argue that LC may be calculated in computationallet®as the proportion of visual features that
two letters have in common, by considering the fami case that have been implemented in that
specific model. Specifically to the DRC, it derivibe first levels of processing from the 1A model
(McClelland & Rumelhart, 1981) that assumes theemmase font produced by Rumelhart (1970)
and Rumelhart and Siple (1974). This font is ilatd in Figure 5.

ABCIEFGHT
JKLMNOPGR
STUVWXYZ

rit

by the simulation program on which the IA model #&mel DRC model are based
(McClelland & Rumelhart, 1982, p. 383, Figure 4).

In the Rumelhart-Siple font there are 14 line segevhich can be used to represent any letter.
Different letters are represented by different stb®f these 14 lines. Hence, one can measure the
confusability between any two letters in the foeed to represent letters in the DRC model as the
proportion of the 14 features used to code letidmnsh the two letters share. Consider, for example,
the letters E and F. These letters have 12 featareemmon; since the total number of features
(present or absent) each letter has is 14, thafusability will be 12/14 = .857.

7 Letter confusability values used in all the expenits reported in this thesis have been determiyedveraging
empirical letter-confusion matrices obtained inviwas studies (Gilmore et al., 1979; Loomis, 1988wnsend, 1971;
Van Der Heijden et al., 1984). These experimentpleyed upper-case stimuli but the fonts used wetealways the
same; however, the correlation among the matrisealways quite high and this could be interpretedagpartial
independence of confusion from font in these stdiven the theoretical importance of the font wB&) is reduced,
however, the same font (i.e., 18-point Courier New)l case (i.e., upper-case) have been used theaixperiments
involving degradation presented in this thesis.
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For any pair of letters in the DRC model’s fonthaasure of confusability of that pair can
be obtained; hence, one can measure the averafiesabitity for each DRC letter (DRC-LC), and
hence calculate the DRC-TLC for any letter string.

Is the DRC model sensitive to the TLC? Unfortungteghe DRC model in its actual
formulation is unable to simulate the effect of Th@tained for skilled readers. In fact, when two
sets of nonwords differing in terms of DRC-TLC aua& through the computational version of the
model under the degraded condition, any effecttduhis variable is obtained. There are, however,
two features of the DRC model that may play a moldetermining this unsuccessful result.

Critical in this context is the feed-forward contiea from the visual feature level to the
letter level. There are two parameters in the DR@leh controlling this connection, one that
regulates the activation of the letters which héwve visual features in input and another that
determines the inhibition of the letters that hawe those features. Since letter confusability is
driven by shared features in the model, the vatfidisese parameters are certainly important for the
simulation of any effect involving letter confusktlyi Currently, the parameter that regulates the
inhibition between visual feature and letter ungismuch higher (i.e., 30 times greater) than the
parameter that regulates their excitatforThis means that just one mismatching feature will
completely block activation of similar letters. Asconsequence, any effect due to letter similarity
won't be simulated by the DRC model implementingsth default values.

The other important parameter for the simulatiotetier confusability effects is the Letter-
Lateral-Inhibition. This parameter determines thieibition that each letter at the letter level send
to the competitive letters. In the model, when téefereceives activation, it should inhibit all the
other letters and, through this mechanism of latehabition, the system would gradually converge
on a single unit that corresponds to the targétrleCurrently, the value of this parameter is zero
this means that different letters cannot inhibdreather in the model and multiple letters actwati
will therefore only interfere. To simulate any effedue to letter confusability, lateral inhibition
between different letters is instead required.

Clearly, the current values of the parameters destrabove are inadequate and do not
allow the present computational version of the DiR@del to reproduce any effect due to letter
similarity. However, one does not have to adherhése values. It might seem indeed peculiar that
the inhibition between feature and letter unit8@stimes greater than the excitation between these
two levels; more likely, these values should be shene. Moreover, letter-lateral inhibition is

assumed in the model without be actually implen&néece the value of the parameter regulating

18 Precisely the default values of these parameters in the DR@eimare .15 for the feature-to-letter inhibitiondan
.005 for the feature-to-letter excitation.
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this inhibition is zero: hence, a change of thikigas clearly justified (and perhaps needed) feom
theoretical point of view. Moreover, the valuestttitee DRC model actually implements for these
parameters have been inherited from its progentioe, IA model (see Table 1, p. 387 of
McClelland & Rumelhart, 1981); to the best of omowledge, however, this precise setting is not
required by any empirical data.

To conclude, we argue that our empirical finding@mne a change of the values of some
parameters assumed in the DRC model, i.e. the paeasnregulating the connections between the
feature and the letter units and the parameterlaggg the lateral inhibition within the letter
level*®. According to the principle of nested modellingstts a plausible way to proceed, as long as
the model so modified will be still able to reproduthe pattern of results that its actual
computational version does simulate.

Importantly, our results require not only the DRGdual, but more generally every
computational model of reading to simulate the @ffedue to letter similarity when stimuli are
degraded. Clearly, this is a challenge that shdaddtaken into account by future works on

computational modelling of the reading process.

3.4.2 Conclusion

A variable playing a role for letter-by-letter dggic patients — the Total Letter Confusability -sha
been shown to influence skilled nonword reading nviseémuli are degraded. This finding has
important implications for researches on visual dvoecognition: since high-TLC stimuli are
harmed by stimulus degradation more than low-TL{si, then any study that involves a

manipulation of SQ should take the TLC into account

191 will hark back on this issue in the final chapté this thesis.
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4 STIMULUS QUALITY AND LETTER STRING
LENGTH IN NONWORD READING

In this chapter the joint effects of stimulus qtyalnd letter string length in nonword reading will
be analyzed. Besner and Roberts (2003) reportédwhareas these factors have additive effects on
readers’ latencies in a nonword reading task, theract in simulations of the DRC model. The
authors suggested that the DRC model would onlghlide to capture the additivity of length and
degradation by a radical change to the model, nathe¢sholding the output of the letter level.

We argue that the results reported by Besner anmbi®0(2003) may be instead due to a
confounding involving a variable representing letsamilarity — the Total Letter Confusability
(TLC). Since TLC plays a role in degraded nonwoehding, then any study involving a
manipulation of SQ should match TLC across conagid-ollowing this hypothesis, we will show
that SQ and letter string length interact in thadmeg task when short and long nonwords are

matched for TLC. Implications for models of vismadrd recognition will be discussed.

4.1 Introduction

Skilled readers’ latencies to nonwords increase otwmcally as the number of letters increases
(e.q., Weekes, 1997), thus suggesting that pritraisslated into sound serially along the string of
letters when reading nonwords. This assumptiomimdral in the DRC model of reading. According
to the DRC model, in fact, nonwords are read thihotng non-lexical route, a serial procedure that,
using language-specific correspondence rules, ctsnaach grapheme into the corresponding
phoneme from left to right. As the number of leftar a nonword increases, the time required to the
non-lexical route to reach the rightmost letter antivate the last phoneme increases as well. The
effect of letter string length in nonword readirsgimdeed correctly simulated by the DRC model
(e.g., see simulations reported in Chapter 2).

The effect of letter string length when jointly mulated with stimulus quality has been
recently analyzed (Besner & Roberts, 2003). Thd gbthis study was to determine whether the

effect due to letter string length in nonword readichanges in function of the stimuli being
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presented in a clear condition or in reduced csht@ritically, additive effects of the two variasl
have been reported on reading latencies, i.e.ffaet®f letter string length has the same ampétud
regardless of the levels of SQ.

Moreover, Besner and Roberts (2003) attemptednboilate these effects with the DRC
model. Critically, SQ and letter string length irteted in this simulatidfl, with the effect of letter
length being larger for clear than for degradedwmnds. In other words, slowing the rate of
processing affected short nonwords more than lamgvords in the DRC model's performance.
This seemingly counterintuitive result is explainai straightforward way by the model. As said, the
DRC model engages serial processing for nonwordimga Thus, when the rate of processing is
slowed down by reducing SQ, the first phoneme eflétter string is delayed. However, the delay
associated with the start of activation of eachitamithl phoneme decreases as the number of letter
increases. In fact, activation is continuously aculated during phonemic processing and, since
reading longer nonwords requires more time, adtwagrows more for longer letter strings. Given
that pronunciation does not start until all phonemeach threshold, the delay produced by stimulus
degradation is reduced for longer letter strings.

Critically, the pattern of results reported by Bexsand Roberts (2003) showed a qualitative
difference between the behaviour of human skilksmblers and the simulations of the DRC model.
According to the authors these data would call domodification to the way the DRC model
processes along the non-lexical route. In particullae authors suggested that the interaction
between SQ and nonword length can be eliminatetidegholding the output of a level somewhere
in the model but reflecting early processing, éigher the visual feature level or the letter levid
the authors correctly observed, if the visual featlevel would be thresholded, then the
manipulation of processing rate will not affect tinigg beyond the feature level. As a consequence,
several well-established two-way interactions isual word recognition would not be explained by
such an hypothesis. For example, a threshold stetael would be inconsistent with the interaction
of SQ and repetition of words (i.e., words preseénter the first time are more affected by
degradation than words presented for the secorg) tinat has been shown both in lexical decision
(Besner & Swan, 1982) and in reading (Blais & Bes@807); in a similar way, such a threshold
would not explain the interaction of SQ and sentapitiming (i.e., the effect of semantic priming is
larger when the word is degraded compared with wihés clear) also obtained both in lexical
decision and reading tasks (e.g., Besner & Smi#921 Borowsky & Besner, 1993; Ferguson,
Robidoux, & Besner, 2009; Meyer, et al., 1975; £®INeely, 1995).

2 As said, stimulus quality is usually simulatedciomputational models by modifying the connectiorights so to
reduce the processing rate in early levels. Spadifi, Besner and Roberts implemented degradatidthe DRC model
by reducing the connections between the featurdtantktter units by 40%.
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A different possibility is to threshold the outpoft the letter level. In fact, the interaction
between SQ and letter string length in nonword irepckeflects the effect of cascaded processing at
the letter level, followed by serial processing wheanslating letters into phonemes. If the letter
level is thresholded, then the effect of reducedidus contrast would not affect the model beyond
the letter level and, given that the nonword lengffect arises from the subsequent serial
assignment of phoneme to grapheme, the joint affe€tSQ and letter string length would be
additive on reading latencies. Computational sitmtas showed indeed this is the case (see Besner
et al., 2003). The authors also proposed that hbidsg the letter level would resolve other
problems as well: such a modification would in maar explain the additive effects on reading
latencies of SQ and orthographic neighbourhoodsf{kp (Reynolds & Besner, 2004; but see Blais
& Besner, 2007) and of SQ and word frequency (Olda& Besner, 2008}.

Moreover, the authors suggested that the lettezl lesould be thresholded only before it
activates the non-lexical route and it instead adss to the lexical route. In other words, whereas
the grapheme-phoneme conversion process wouldthatad by the output of the letter level in a
thresholded fashion, the lexical route would bevated by cascaded letter level processing (see
also Blais & Besner, 2007). Given the interacticévation between the orthographic lexicon and
the letter level assumed in the model remains tintats account is consistent with the interactions
observed between SQ and word repetition (e.g.sBaBesner, 2007), between SQ and semantic
priming (e.g., Ferguson et al., 2009) and betwe®@na8d word frequency when the reading task
comprises only words (O’Malley & Besner, 2008; Y&jBalota, 2007).

Clearly, adding a threshold at the letter level nset accept that information processing in
the reading system is — at least at one level otgssing — discrete and serially organized
(Sternberg, 1969; see also Sternberg, 1998). Accpthis proposal therefore requires a radical
change of the DRC model, e.g. the C in DRC shoeldimandoned since C stands for cascaded and
not thresholded. More generally, the idea itsedt ihnformation processing in the reading system is
cascaded would be refuted.

We argue that a different interpretation of thesid¥ and Roberts’ (2003) results can be
proposed by considering the Total Letter Confudgb{or TLC). The letter confusability is, as
demonstrated in the previous chapter, a measuréettdr similarity which effects become
significant in degraded reading. In particulahats been shown that the more confusable a letter is
to the other letters of the alphabet, the strorigereffect of degradation will be on that letter’s
identification. As a consequence, any study invajvidegraded nonword reading should take this

measure into account.

2 These issues will be further discussed, respegtiireChapter 5 and in Chapter 6.
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Critically, Besner and Roberts (2003) didn’t matieir stimuli for TLC. Hence, since TLC
usually increases as letter length increases, ssunaption is that the long nonwords used in their
experiment had higher TLC values than their shonwords. Moreover, an analysis on the stimuli
used by the authors confirms this interpretatidmei experiment used lowercase letters and, to the
best of our knowledge, there is only one publisbedfusion matrix for lowercase letters, that of
Courrieu, Farioli, and Grainger (2004). Our anaysi the material used in the Besner and Roberts’
(2003) experiment indicated that their long nonvgdndd a much higher mean TLC than their short
nonwords (551.7 vs. 376.8; t(62) = 13.9, p < .00Merefore part of the increased RTs for the
degraded long nonwords compared to the degraded sbowords could have been due to the
increased TLC rather than to the increased lerfgflo, then matching the long and short nonwords
on TLC would reduce the difference in RTs betwdendegraded long nonwords and the degraded
short nonwords; that would reduce the slope ofi¢hgth effect in the degraded condition, so that
the effects of degradation and length would no éorige additive. Instead, the length effect would
be smaller for degraded than for clear stimuli: ¢khis the effect to be expected from the DRC
model.

The experiment reported below was directed to ttéstpossibility by matching short and
long nonwords on TLC, thus eliminating the confomgddue to this variable. A condition in which
TLC was not controlled has been also introduce@pticate the Besner and Roberts’ (2003) study.

4.2 Method

Participants. Thirty students at the Universita degli Studifdento who had Italian as their

first language and normal or corrected-to-normsilovi participated as volunteers.

Design The experiment consisted of a 2x2x2 within-sutsjedesign with Total Letter
Confusability (TLC; balanced vs. unbalanced coodg), length (short vs. long items), and

stimulus quality (SQ; clear vs. degraded condifj@ssfactors.

Materials. A total of 120 pronounceable nonwords was sete(iteese stimuli can be seen
in the Appendix, section C). The nonwords had meitrthographic nor phonological neighbdars

22 Note that nonwords with an orthographic neighbothsize of 2 were used in the Besner and Rob&@§3) study;
the authors, however, interpreted the effects nbthias caused by a purely nonlexical processingcehéhe use of
nonwords without neighbours in our experiment.
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The nonwords were divided into two groups of 6@nsti belonging to two levels of Total Letter
Confusability (balanced vs. unbalanced condition®jthin each group there were 30 stimuli at
each of two levels of length (short vs. long) matttior their initial phoneme. Items that were 5
letters in length represented the short length itiangl items that were 7 letters long represente t
long length condition. Short and long nonwords waakanced in terms of TLC (2.69 vs. 2.69, t<1)
in the balanced condition and significantly différéor this factor (2.17 vs. 3.43, t(58) = 19.2,
p<.001) in the unbalanced condition. Letter corifilgg has been determined from previous
empirical letter-confusion matrices (Gilmore et &B79; Loomis, 1982; Townsend, 1971; Van Der
Heijden et al., 1984). The TLC was calculated &shm of the confusabilities of all letters in an
item. Finally, at each of two levels of length, fhihle items were presented in the clear condition
and the other half in the degraded condition. Itevese counterbalanced across levels of stimulus
quality in such a way that half the subjects sawiratividual item under the clear (degraded)

condition and the remaining subjects saw that itewcher the degraded (clear) condition.

Apparatus and Procedure The same apparatus and procedure of the expérieorted

in Chapter 3 have been used.

4.3 Results

Pronunciation errors (10.5%) and apparatus fail(t8s9%) were removed prior to reaction times
analysis. Correct reaction times were submittedht Van Selst and Jolicoeur’'s (1994) outlier
removal procedure. Outliers (2.7%) were removedrpio RTs analysis. Mean RTs according to

conditions and percentages of error are reportdclie 4.

Total Letter Confusability

Balanced Unbalanced
Stimulus Quality Stimulus Quality
Clear Degraded Clear Degraded
Length RTs %E RTs %E RTs %E RTs %E
Long 806 13 859 19 789 15 877 17
Short 687 6 768 9 681 8 747 10
Diff. 119 7 91 10 108 7 130 7

Table 4 Mean reaction times (RTs) and percentages of €&&&) according to conditions.
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In the ANOVA for the participants (F1) TLC, SQ, aheéngth were repeated factors. In the
ANOVA for items (F2) TLC and Length were indepentiarttors, SQ was a repeated factor.

RTs. Analysis showed a main effect of Length, F1(1, 2954.9, MSE = 4839, p < .001,
F2(1, 232) = 166.9, MSE = 4490, p <.001, and anreffect of SQ, F1(1, 29) = 70.1, MSE = 4452,
p <.001, F2(1, 232) = 74, MSE = 4490, p < .001.irAthe Besner and Roberts’ (2003) study, SQ
and Length do not interact, Fs < 1. However, thredhways interaction among TLC, SQ, and
Length proved significant, F1(1, 29) = 10.4, MSB44, p < .005, F2(1, 232) = 6.3, MSE = 4490, p
< .05. When TLC is controlled for across lengtte tngth effect for degraded stimuli is smaller
than the length effect for clear stimuli (91 vs91ihs, respectively); whereas when TLC is left
uncontrolled, the length effect for degraded stinmbigger than the length effect for clear stimul

(130 vs. 108 ms, respectively).

Errors. Only the main effects of SQ, F1(1, 29) = 6.2, MSH=2, p < .05, F2(1, 232) = 5.4,
MSE=.014, p < .05, and Length, F1(1, 29) = 31.8,BM9102, p < .001, F2(1, 232) = 23.3,
MSE=.014, p < .001, proved significant.

4.4 Discussion

This study showed three principal results.

First, long nonwords are read slower than shorivwods. This effect is well-established in
reading researches (e.g., Weekes, 1997). In the DR®@el this effect is explained because
nonwords are assembled letter-by-letter (fromttefight) by the non-lexical route.

Second, we found an effect of degradation, dudecdfact that clear stimuli are read aloud
faster than degraded stimuli. This result is dudegradation slowing the rate of processing in the
reading system. In the DRC, a reduction in SQ iplémented by reducing the weights of the
connections between the feature and the lettes:uthie effect of stimulus quality is correctly
simulate by the DRC model (see, e.qg., Besner & Rep2003).

Third and most important, the three ways interaxcbetween SQ, length and TLC proved
significant. In particular, we showed that when Tis@ontrolled for across length, the length effect
for degraded stimuli is smaller than the lengtreetfffor clear stimuli. Instead, when TLC is left

uncontrolled, the length effect for degraded stinmlarger than the length effect for clear stimul
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We therefore conclude that the additivity of degtaxh and nonword length reported by Besner
and Roberts (2003) occurred because of a confogrmitween TLC and length, and that when this
confounding is removed the two factors interacthwie length effect being smaller for degraded
stimuli than for clear stimuli, a result which, &esner and Roberts (2003) showed, is also
simulated by the DRC model.

4.4.1 Computational modelling

An issue concerning computational modelling remdiawever to be resolved. Even it were true
that the additivity of degradation and length oledrin human reading by Besner and Roberts
(2003) occurred because of a confounding betwedd dmd length, the DRC model ought still to
have been able to simulate it, because it is sigptmsbe sensitive to the same variables that human
readers are sensitive to. So the requirement lieaDRC model be able to produce an additivity of
degradation and length with the Besner and Robstiteuli has not been avoided.

As said in the previous chapter, a first problensimulating letter confusability effects
might regards how TLC is calculated. In fact, th@ for human readers with the font and case used
by Besner and Roberts (2003) may differ from LCtfee DRC model with the font and case used
by this model. Hence, if the DRC model does notdpoe additivity of degradation and length
when the Besner and Roberts’ stimuli are used,nthght be because, for the DRC’s font, there is
no difference in TLC between the short and the langwords used by Besner and Roberts and
hence no confounding of length with TLC. However,amalysis on the stimuli used by Besner and
Roberts (2003) turns out that the DRC-TLC is sigaifitly higher for the long items than for the
short items (3.22 vs. 2.23; t(62) = 13.5, p < .004¢d in this study. Hence, the confounding of
length with TLC is significant for the DRC model &8 human readers and the additive effects
reported by Besner and Roberts (2003) should bredty simulated by the model.

In the previous chapter we identified two paransetadrthe DRC model that are certainly
involved in any effect depending on letter confuligb As said, the actual values of these
parameters are not adequate and, as a conseqtlen&@RC model cannot simulate the effect due
to TLC we showed in human reading; moreover, theCDRodel in its actual setting won't
reproduce any result that depend on this variable task will be therefore to find the right
manipulation of these parameters that shows adgtitf SQ and letter string length when TLC is
confounded with letter length but also an inte@actbetween the two factors with smaller length
effect for degraded than for clear stimuli when TisOmatched across length. Only if both these

results are obtained the DRC model can be considrrecessful.
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This issue will be further discussed in the finaapter of this thesis, where a few attempts
of simulation in this direction will be successfufiresented.

4.4.2 Letter's position encoding: evaluating a theoretichaccount

Besides the issues here discussed, the reseaestadyzing the joint effects of SQ and letter string
length might be useful to evaluate a novel thecaétiramework proposed to explain how the
position of a letter within a string is encodede tBequential Encoding Regulated Inputs to
Oscillations within Letter units (SERIOL) model (\tfirey, 2001).

Computational models of visual word recognitiorethespecific assumptions about how
letter position is encoded. In the DRC model, foaraple, different sets of letter units exist foclea
string position. In other words there are, in theded, separate units that represent the Iétiarthe
first position, the letteA in the second position and so on (see also Catth€artis, Atkins, &
Haller, 1993; McClelland & Rumelhart, 1981; WhitpeBerndt, & Reggia, 1996). Thus, for
example, the wordRTis encoded in the model by activatiAgn the first subseRR in the second
subset and in the third subset. This organization certaingyréinds a high degree of redundancy
since a representation of each letter in each Iplessosition is required

An alternative neurobiologically plausible theocatiframework assuming serial processing
—the SERIOL model — has been recently proposaddount for letter position encoding.

Briefly, the first level assumed in the model, th@nal level, correspond to the earliest level
of visual processing. Units at this level corregpém pixel and are topographically organized with
respect to external stimuli. The representatiothefstring in input is split across the hemispheres
so that the left visual field (LVF) is processed the right hemisphere (RH), whereas the right
visual field (RVF) is processed by the left hemesggh(LH). In the physical retina visual acuity
decreases with increasing angle from the fixatiomfp(due to the decreasing concentration of
cones); in a similar way, the activation of theirrat units in the model — the acuity gradient —
decreases as distance from fixation increasesadhiey gradient is thus symmetric across fixation,
with decreasing activation from the fovea to peeiph i.e. the acuity gradient increases form the
first letter to the fixation (i.e., in the LVF/RHyhereas it decreases from fixation to the lasetett
(i.e., in the RVF/LH).

Z Alterative accounts are also available. For examl reduce redundancy it has been proposed #eat @it may
represent not only the letter but also its positiothe string, e.gARTwould be represented By 1, R-2 T-3. However,
it is unclear how this tagging could be realizeglirysiological terms. Or else, it has been sugdesiat the basic units
may be groups of ordered letters such as trigraherahan single letter (Seidenberg & McClellan889; see also
Mozer, 1987), e.g. the worRTwould be coded asAR ART, RT_, (where _ represents a word boundary).
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At the subsequent feature level, the acuity gradeoonverted into an activation pattern —
the spatial gradient — that decreases acrossttiee $&ring from left to right. Therefore, the séopf
the LVF/RH acuity gradient is in the opposite diree as required for spatial gradient, while the
slope of the RLF/LH acuity gradient is in the sadieection. Thus, in the LVF/RH, the acuity
gradient slope must be inverted as it activatesrigtfeatures; in contrast, the acuity gradieapsl
can be maintained as features are activated ilRWH&LH. As a result, processing at the feature
level differs across hemisphere. This hemispheeeiip processing is assumed to be learned
during reading acquisition, probably in responsattentional mechanisms. In particular, excitation
from the retinal level to the feature level is ased to be strong in the LVF/RH. This allows the
first letter's features to reach a high level otiation in the LVF/RH even if it's far from
fixation®®. Also, strong directional lateral inhibition comtiens within the feature level are
assumed in the LVF/RH such that each feature ohibits units to its right so strongly to invereth
slope of the gradient. On the contrary, excitatang lateral inhibition connections are weaker in
the RVF/LH because the slope of the acuity gradeatready in the correct direction. In addition,
LVF/RH features inhibit the RVF/LH features, bringi the activation of the latter lower than
activation of the former. The two parts of spathdient are finally combined through inter-
hemispheric callosal transfer creating an activaggeadient decreasing from the first letter to the
last letter.

At the next level, the letter level, the spatiadjent induces a temporal firing pattern across
letter units. Specifically, due to the location djemt, the letter node representing the lettehin t
first position receives the highest level of exdty input, the second receives the next highest
amount, and so on. Letter nodes receiving the Bigleeels of input will fire first because reach
threshold before the others; also, lateral infobitensures that only one letter node fires at a.tim
Hence, in the SERIOL model, letter's position ipresented by the precise timing of firing of a
letter node relative to the other letter nodes.

Finally, a bigram level and a word level are alssumed in the model. However, their
description is superfluous for the present purposes

The length effect is simply accounted for in theRBBL model, given that letters are
serially decoded. In particular, the length effeciuld be due to the fact that longer strings are
presented farer on the left side of fixation thharter strings; for letters on the left side ofafibon
the natural acuity gradient (i.e., visibility dednag from the fovea to periphery) must be reversed

by strong excitation and left-to-right later inHibh assumed in the LVF/RH. Specifically, through

2 This assumption is consistent with empirical dgttawing that perceptibility of initial letters doest decrease as
distance from fixation in the LVF/RH; on the comirait does decrease in the RLV/LH, where activatfoom the
retinal level is lower (Estes, Allemeyer, & Red£9,76).
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the directional later inhibition, each feature Iits the units to its right so strongly to invehnet
slope of acuity gradient. Critically, inhibitorypant increases as letter-position increases, because
more and more features will send inhibition frore teft. As consequence of this mechanism, the
LVF/RH spatial gradient becomes more and more imwat as the number of letters on the left size
of fixation increases; hence, activation will belueed across letter-position delaying letter fairin
for longer string and increasing the amount of tireguired for the network to reach criterion,
hence producing a length effect.

As consequence of the logic described above, tngtHeeffect depends on spatial gradient
formation in the LVF/RH. Consistently with this plietion, many studies showed that the length
effect is obtained for stimuli parafoveally presshin the LVF but it disappears when the stimuli
are presented in the RVF (e.g., Bouma, 1973; EY®ung, & Anderson, 1988; Melville, 1957;
Young & Ellis, 1985). In fact, the perceptual spanhe LVF is four letters (Rayner, 1975); thus, in
LVF parafoveal presentation, the letters of a Istxqng are not maximal activated by their features
because bottom-up input is lower than for centration. In addition, strong lateral inhibition fro
the first letter has a large effect on the secardtithird letter, because of their low level of baott
up input. Due the lower activation of the initigtters and the increasing activation levels of the
final letters (due to acuity increasing near figa)i lateral inhibition would thus fail to create a
smoothly decreasing spatial gradient. On the contim RVF/LH parafoveal presentation, the
spatial gradient remains smoothly decreasing becaus based on the acuity gradient. Moreover,
Whitney and Lavidor (2004) showed that the lendfieat obtained in the LVF was annulled by
increasing ¥ and & letter contrast (in 4 and 6 letter long words) reas the same manipulation
made the effect appearing in the RVF. The idehas increasing " and & letter contrast would
increase bottom-up input of these letters, heneaticry a smooth gradient in the LVF/RH that,
facilitating longer strings, would cancel the ldmgiffect. Conversely, the application of the same
pattern in the RVF/LH should create a length efthat to disruption of a previously smooth spatial
gradient.

We argue that the SERIOL model also makes clestigiions regarding the joint effects of
SQ and letter string length. As said, the lengtbafis due to an attentional pattern that revetises
natural visibility gradient by increasing the baottap input of the left part of the string. Since SQ
influences the amount of bottom up input, stimdkrsggth and degradation exert their effects — at
least in part — at the same level in the SERIOL ehddence, the model predicts that SQ and letter
string length interact, with the length effect lggilarger for degraded than for clear stimuli. In
particular, reducing stimulus contrast will cauke production of a non-linear spatial gradient,

which will slow long letter strings more than shtatter strings. In degraded presentation, in fact,
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the letters in the LVF won’'t be maximal activateg their features given the reduced bottom up
input. As a consequence, lateral inhibition frone first letter will have a large effect on the
subsequent letters at the left of fixation (becanfstheir low level of activation), thus creating a
non-linear spatial gradient. Since inhibitory inpotreases as letter-position increases (because
more and more features send inhibition from th® life spatial gradient will become more and
more non-linear as the number of letters in thegincreases. Hence, the effect of degradatioh wil
be stronger for long letter strings compared tatsletter strings.

Critically, the results expected by the SERIOL mloare opposite to the predictions of the
DRC model. In fact, the effect of letter stringdéim is predicted to be larger for degraded than for
clear stimuli by the SERIOL model; instead, thegkbneffect is expected to be smaller for degraded
than for clear stimuli according to the DRC modsaiucially, the results obtained in our experiment
showed an interaction consistent with what expedigdthe DRC model, thus falsifying the
prediction of the SERIOL model. Our finding mayrdfere be relevant also to distinguish between
these different accounts.

To conclude, the results we obtained are incongistéh a novel theoretical framework of
how the position of a letter within a string is eded, the SERIOL model. This theory models
visual word recognition from the retinal level teetlexicon and has been developed in order to be
consistent not only with psychological studies &lsb with current theories of neural computation
and physiology. Despite our results falsified tleRBOL model, we believe that the development of
neurobiologically plausible accounts is certaimeresting and might be promising for the future

development of researches in visual word recognitio

4.4.3 Conclusion

Besner and Roberts (2003) carried out an experimergpeeded nonword reading in which they
varied two factors: nonword length, and whethemstus presentation was clear or degraded. In
their data, these two factors had additive effectsnonword reading latencies. They reported that
the DRC computational model of reading did not ecily simulate this additivity. When the same

nonwords were presented to the DRC model for regadamd degradation was simulated by

reducing the strength of the excitatory and inbilyitconnections from visual features to letters,
length and degradation interacted: the DRC modatesncies showed a smaller effect of length

when the nonwords were degraded than when theyalese Besner and Roberts (2003) suggested
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that the DRC model would only be able to captuee ddditivity of length and degradation by a
radical change to the model, i.e. thresholdingatput of the letter level to the non-lexical raute
We demonstrated instead that this additivity is doea counfounding with the Total Letter
Confusability, a variable that we showed to be Ined in reading when stimuli are degraded (see
Chapter 3). In fact, when TLC is controlled for @ss letter string length, the length effect for
degraded stimuli is smaller than the length effectclear stimuli, as predicted by the DRC model.
As a consequence, the results obtained by BesigeRabherts (2003) do not require a threshold in
the reading system; instead, the results expecgfedabcaded processing are obtained under the

appropriate experimental condition.
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5 STIMULUS QUALITY AND ORTHOGRAPHIC
NEIGHBOURHOOD SIZE IN NONWORD READING

In this chapter, the neighbourhood size (N; Colthe&a al., 1977) effect will be analyzed when
nonwords are presented both in a clear conditiahiara degraded condition in a reading aloud
task. This type of manipulation is interesting irsual word recognition and reading aloud
researches at least for two reasons. Fist, thepulation of stimulus quality in combination with
other factors has been used within discrete stageuats to delineate the processing sequence in
reading; in particular, it has been suggested ttatjoint manipulation of SQ and N might have
important implications in determining the locustleé N effect in reading. Second, previous studies
(e.g., Reynolds & Besner, 2004) analyzing the jeiifécts of SQ and N both in skilled readers and
in the DRC computational model reported that, wagr8Q and N exert additive effects on skilled
readers latencies, the two factors interact in DR@&lel simulations, with the effect of SQ being
smaller for high-N nonwords than for low-N nonwardlse results observed for human readers
appear therefore to be inconsistent with cascadeckpsing assumed in the model and a threshold
at the letter level has been proposed as a solution

The aim of the present study is, from one handesb the hypothesis of a threshold in the
reading system and, from the other, to providehrevidence regarding the locus of the N effect

in nonword reading.

5.1 Introduction

An important question in reading researches is ndreind how lexical knowledge affects nonword
reading. One approach to answering this questiovolves examining the orthographic
neighbourhood density (N; Coltheart et al., 197af), effect arising from activation within the
lexical route (e.g., Andrews, 1997; Coltheart et 4077, 2001; Reynolds & Besner, 2004).
Regardless of many studies provided strong eviden&avour of the N effect in nonword reading
(e.g., Andrews, 1989; McCann & Besner, 1987; Peare& Content, 1995; Sears, Hino, &

Lupker, 1995), the locus at which this effect agisethe reading system is still not clearly define
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One hypothesis is that the N effect arises earlyprocessing, through the interactive
activation between the orthographic lexicon andl#teer units (Andrews, 1989; see also Sears et
al., 1995). According to this interpretation, te&ital entries corresponding to the neighbourfef t
stimulus in input would be activated in the lexicand in turn would facilitate target letters’
identification through the feedback activation frtme orthographic lexicon to the letter level.

A second account is in favour of a late locus:Nheffect would be due to the feed-forward
connections from the orthographic lexicon to theorpdlogical lexicon (Peereman & Content,
1995). The N effect would thus arise in readingdose the orthographic lexical knowledge feeds
forward to later phonological processes, thus ifatihg the computation of phonology.

The issue concerning the locus of the N effectlieses investigated within the DRC model.
Despite Coltheart et al. (2001) initially suggestbdt the effect of N occurs late in the reading
system, Reynolds and Besner (2002) demonstratéthéva are both an early locus and a late locus
of the N effect in the DRC model when reading nordso The authors performed several
simulations through the DRC model proving that fgsacal route can influence nonword reading
both through the interactive activation between ldteer units and the orthographic lexicon and
through the feed-forward connections from the agthphic lexicon and the phoneme system. In
fact, the DRC model still produces the effect off\honword reading when lesioned eliminating
the connections into and out of the phonologicaiclen, i.e. the only lexical contribution to
performance when reading nonwords arises from ¢ledldfack between the orthographic lexicon
and the letter units (i.e., early locus). In aduditithe DRC model still produces a robust N effect
when the feedback connections to the letter unédesioned so that the only lexical contribution t
nonword reading arises from the feed-forward cotioes to the phoneme system (i.e., late locus).

Nevertheless, the previous investigations didrérity whether skilled readers are affected
by N at an early level or at a late level when negehonwords aloud.

Reynolds and Besner (2004) suggested to analyzesthie by jointly manipulating N and
stimulus quality in the task. The authors assumefdgt that the effect of a reduction in SQ occurs
early in processing and that factors that intevattt SQ would arise somewhat early in the reading
system, whereas factors that are additive with $Qlavhave their effect latet Hence, according
to this interpretation, an interaction between $@Q B would support an early locus of the N effect,

whereas additive effects of the two factors wowdccbnsistent with a late locus: since the empirical

% According to the authors this would be the simipleay to understand the following findings: 1. S@daword

frequency have additive effects on RTs (e.g., BaftAbrams, 1995; Borowsky & Besner, 1993) 2. S@riacts with

semantic and repetition priming (e.g., Besner & t8ml992; Borowsky & Besner, 1993) 3. Semantic eaktition

priming interact with word frequency (e.g., Becke®,/9; Visser & Besner, 2001). However, since axtdons between
SQ and word frequency have also been documenteshiing (e.g., O'Malley & Besner, 2008; Yap & Balp2007),

we argue that one should be cautious to come itmiasconclusion.
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investigation reported that SQ and N exert addigfiects on nonword reading latencies, the
authors concluded a late account of the N effectskilled readers. However, this interpretation
clearly requires that at least some processesirg are discrete and serially organized.

To date, the fact that orthographic neighbourhoed fis effect late in processing is
suggested also by multiple experiments reportedRieynolds and Besner (2006) using the
psychological refractory period (PRP) paradigmthe PRP paradigm (see Pashler, 1994) subjects
perform two speeded tasks (Task 1 and Task 2) mexsen close succession and are typically
instructed to answer to Task 1 first. The intetv@iween the two tasks (stimulus onset asynchrony,
or SOA) is manipulated and the typical finding he tso called PRP effect, i.e. as SOA decreases,
the time to respond to Task 2 increases. Many t$isdie.g., Pashler, 1984; Welford, 1952) ascribe
this delay to both tasks using the same limed-agpattention mechanism, or central attention (see
Johnston, McCann, & Remington, 1995): if Task 2urezs the same process of Task 1, it is
functionally postponed until that process becomesilable®. According to this logic, the PRP
effect would have straightforward consequence terd@ning whether processes involved in Task
2 occur before, during, or after the bottleneck.eWfask 1 and Task 2 overlap temporally and
subjects are instructed to respond to Task 1 béfask 2, Task 2 would be postponed; if a factor
manipulated in Task 2 occurs prior the processotfdneck, then the effect of this factor should be
partially absorbed into the slack created by Tasprd@essing waiting for central attention to
become available. Hence, the effect of the factanipulated in Task 2 will be underadditive with
decreasing SOA, i.e. the effect of the factor malaijed in Task 2 will be smaller or absent at
shorter SOA (but see Besner, Reynolds, & O’'Mall@p09). On the contrary, if a factor
manipulated in Task 2 affects a process that oasitiner during or after the bottleneck, it will leav
additive effects with SOA, i.e. the size of theeeffproduced by the factor manipulated in Task 2
will not be modulated by the length of the SOA. Téwperiments conducted by Reynolds and
Besner (2006) employed a tone identification tasksk 1) followed by a reading aloud task (Task
2); an underadditive interaction between long-tegpetition priming’ and SOA has been observed
when reading aloud in Task 2, thus suggestingrédfatesentations in the orthographic lexicon are
activated prior the bottleneck; in contrast, additeffects of N and SOA were obtained, suggesting
that N has its effect at or after the bottlenec&cdrding to the authors, these findings would imply

that N has its effect late in processing, i.e.réfte activation of entries in the orthographicidéex.

% Theoretical variants also exist: these accountemgdly assume that some processes share capatitgdn Task 1
and 2 rather than an all-or-none bottleneck (&lgvon & Miller, 2002).

27 Long-term repetition priming refers to faster peniance for repeated items relative to novel iterer lags greater
than 100 intervening items. Since it is observedaords but not for nonwords, it is not affecteddiange in case and
it interacts with word frequency (i.e., the efféxtiarger for low-frequency words than for higheteency words), the
long-term repetition priming effect is consideredaffect lexical encoding.
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The conclusion that N has a late effect in the huperformance is clearly conflicting with
the account proposed within the DRC framework. lemtinconsistencies emerged from the
analysis of the joint effects of SQ and N in the®RRodel (see Reynolds & Besner, 2004). In fact,
when SQ and N are jointly manipulated in the DRCdelsimulations, the two factors interact,
with the effect of stimulus degradation signifidgntarger for low-N stimuli than for high-N
stimuli. This interaction has been interpreted bggesting that N has an early effect in the DRC
model; however, given the assumption that an e=ffgct also affects processing downstream in a
cascaded model as the DRC, this result is alsastens with a later effect.

In this study we focus on the joint manipulationS$p and N in a reading aloud task. This
issue is central for the rationale of the presbasis given the critical mismatch between human
readers performance and DRC model simulationshsitbeen documented. In particular, whereas
SQ and N are shown to exert additive effects ondmiRTs, they interact in the DRC model
simulations, with the effect of SQ smaller for highstimuli.

In the DRC model, this result is caused by therauigve activation between the letter level
and the orthographic lexicon. As said, degradaisoimplemented by reducing the weights of the
connections between the feature and the lettetdeas a consequence, reducing SQ slows down
the rate at which activation accrues at the létteel. When the nonword in input has orthographic
neighbours, the corresponding lexical entries dlactivated in the orthographic lexicon and, in
turn, activation feeds back to the letter levelother words, the lexical entries correspondinth&o
orthographic neighbours of the nonword in inputdsantivation back to the target letters, partially
compensating for the effect of degradation. Theayléh processing due to the reduction of SQ
would be thus reduced as the number of orthogramighbours of a nonword increases.

In order to make the DRC model able to reprodueepidttern of observed data, Reynolds
and Besner (2004) suggested to add a threshola détter level: a threshold at this level would in
fact prevent the interactive activation between ldteer level and the orthographic lexicon thus
rendering the effects of SQ and N additive. We arduowever, that a threshold at the letter level is
not a plausible account in this context. In oradeexplain the additive effects of SQ and N, in fact
one need to assume that the output of the letied Ie thresholded before it activates the lexical
route. This hypothesis is clearly inconsistent witkvious empirical data, such as the interaction
between SQ and repetition (Blais & Besner, 200 the interaction between SQ and semantic
priming (Ferguson et al., 2009) that have beenidtawhen reading words.

The aim of the present study is to further testhizpothesis of a threshold in the reading
system. In particular, the joint effects of SQ addhave been analyzed by using a particular

manipulation of this latter variable. In the expeent reported by Reynolds and Besner (2004) the
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variable N has been manipulated by varying the rermob orthographic neighbours, i.e. nonwords
with few neighbours (low-N nonwords: mean = 2.9%) § 1.31) and nonword with many
neighbours (high-N nonwords: mean = 12.75, SD §)2h&ve been presented in the task. However,
both the two types of stimuli would produce inténae activation between the orthographic lexicon
and the letter level in the DRC model (even if ithaoretically different amount). It follows that,
according to the model, the effect of degradatiaulel be reduced both for the low-N nonwords
and for the high-N nonwords used in this task. Asboasequence, this may be not the adequate
manipulation to analyze the joint effects of SQ ahith nonword reading.

We argue that the effects of SQ and N can be aedlyz order to determine whether the
presence/absence of orthographic neighbours makeslifference on stimulus degradation. In
other words, the question here is whether havitigographic neighbours would facilitate degraded
nonword reading compared to the condition in whiohwords have no neighbours. The prevision
of the DRC model we want to test is that lexicabwitedge should reduce the effect of degradation
in nonword reading. To this end, the joint effeofsSQ and N have been analyzed in a reading
aloud task on English skilled readers and in DRCdehcsimulations by presenting zero-N
nonwords and many-N nonwords (matched in termsotélTLetter Confusability) either in clear or
in degraded conditions. According to the DRC modaljnteraction between SQ and N should be
obtained, with the effect of SQ being smaller fany-N nonwords than for zero-N nonwords.

The ultimate goal of the present experiment ise&i the hypothesis of a threshold: if the
letter level is thresholded, then the effects of &@ N should be additive in this experiment. In
fact, a threshold at the letter level would prewvet interactive activation between the letter leve
and the orthographic lexicon and the presence/abseinorthographic neighbours should not play
any role on stimulus degradation. In addition,Hartevidence regarding the locus of the N effect in
reading will be provided; the interpretation propddy Reynolds and Besner (2004) is in fact valid
only assuming that processing at the letter lemalysis is thresholded. More in general, the data
sustaining a late account of the N effect for skilireaders generally assume that processing in
reading occurs in (at least partially) serial sgage

5.2 Method

Participants. Twenty students at the Macquarie University whd Eaglish as their first

language and normal or corrected-to-normal visianigipated as part of their courses requirement.
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Design The experiment consisted of a 2x2 within-subjeetsign with N (zero-N vs. many-
N nonwords) and stimulus quality (SQ; clear vs.rddgd conditions) as factors.

Material . A total of 160 orthographically legal monosyllabionwords with five letters in
length have been used (these stimuli can be sete iAppendix, section D). Nonwords have been
derived from the ARC Nonwords Database (Rastlefikigion, & Coltheart, 2002) so to avoid
pseudohomophonedshe items belong to two groups of 80 stimuli repregsg the zero-N
condition and the many-N condition. Zero-N nonwovesre nonwords without any orthographic
neighbour, whereas high-N nonwords had an avera@e’d orthographic neighbours (range: 7-10;
neighbourhood mean frequency: 36.9 occurrencemplesn). Zero-N and many-N nonwords were
balanced in terms of TLC (2.38 vs. 2.38, t<1; LQuea have been determined by averaging
empirical letter-confusion matrices for upper-césiers; Gilmore et al., 1979; Loomis, 1982;
Townsend, 1971; Van Der Heijden, et al., 1984) amchber of whammies (1.01 vs. 1.06, t<1; see
Rastle & Coltheart, 1998). At each of the two lsvef N, two lists of 40 nonwords have been
created (list A and list B) in order to assign hbE items to the clear condition and the othei tioal
the degraded condition. The many-N nonwords werkanioad for N (7.75 vs. 7.75, t<1),
neighbourhood mean frequency (35.7 vs. 38.2, t¥L; (2.38 vs. 2.38, t<1), and number of
whammies (1.1 vs. 1; t = 1.1, n.s.) across theselists. The zero-N nonwords were balanced in
terms of TLC (2.38 vs. 2.38, t<1) and number of mhaes (1 vs. 1; t <1) across the two lists.
Finally, the initial phoneme was matched in therfoells. Each participant saw 80 stimuli clear (40
zero-N nonwords and 40 many-N nonwords) and 80udtidegraded (40 zero-N nonwords and 40
many-N nonwords). The assignment of stimuli to filnér conditions was counterbalanced across
participants, in such a way that half the subjeats the items of the list A under the clear cooditi
and the items of the list B under the degraded itiondwhereas the remaining subjects saw the

items of the list A under the degraded conditiod #re items of the list B under the clear condition

Apparatus. The experiment took place in a sound attenuateb dam lit room. Stimuli
presentation and data recording were controlledMDX software and running on a personal
computer. RTs and errors were determined by usihgckvocal softwareThe display was
synchronized with the screen refresh cycle. Stiwelie presented centrally in upper-case letters in
the 18-point Courier New font on a black backgrau@ar stimuli were displayed in white (RGB
values: 85,85,85); degraded stimuli were displayedrey (RGB values: 5,5,5). Responses were
collected via a microphone connected to a voicedssgmbly. Response latencies were timed from

stimulus onset to voice key activation, which dksoninated the display.
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Procedure Participants were tested individually and sdtamt of a computer screen. They
were instructed to read each letter string alouduaskly as possible and to minimize errors. A 18
items practice session preceded the experimentdiose Each trial began with a 500 ms
presentation of a fixation point at the centre loé tcomputer screen followed by a 200 ms
presentation of a blank. Immediately after the stum appeared and remained on the screen until a
response was registered by the voice key or 3lapsed. Stimuli were presented in a random order
for each participant. Responses were coded offineorrect or incorrect by the experimenter using
CheckVocal software. The experimenter determined R3ing the waveform recorded by this
software in order to reduce measurement error ggsdcwith voice key timing and correct for

mistrial (i.e., voice key failure).

5.3 Results

Pronunciation errors (11,3%) were removed prioretction times analysis. Correct reaction times
were submitted to the Van Selst and Jolicoeur'®4)rimming procedure. Outliers (1.5%) were
removed prior to RTs analysis. Mean RTs accordmgdnditions and percentages of error are

reported in Table 5.

Stimulus quality

Clear Degraded Diff.
Orthographic Neighborhood RT E% RT E% RT E%
Zero-N 717 12 993 17 276 5
Many-N 659 6 892 11 233 5
Diff. 58 6 101 6

Table 5 Mean reaction times (RTs) and percentages of €&&&) according to conditions.

In the ANOVA for the participants (F1) N and SQ weepeated factors. In the ANOVA for items
(F2) N was an independent factor and SQ was a teghéactor.

RTs. Analysis showed a main effect of N, F1(1, 19) =38MSE = 1416, p < .001, F2(1,
158) = 29.7, MSE = 20663, p < .001, and a maincefi¢ SQ, F1(1, 19) = 113.6, MSE = 11395, p <
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.001, F2(1, 158) = 1043, MSE = 5126, p < .001. @Giy; the two effects were qualified by a
significant interaction, F1(1, 19) = 13.6, MSE =990p < .005, F2(1, 158) = 8.1, MSE = 5126, p =

.005, with the effect of degradation larger for #@eo-N nonwords than for the many-N nonwords.

Accuracy. Analysis showed a main effect of N, F1(1, 19) =12MSE = .003, p < .001,
F2(1, 158) = 11.3, MSE = .023, p = .001, and a neéfiect of SQ, F1(1, 19) = 13.1, MSE = .004, p
<.005, F2(1, 158) = 18.4, MSE = .010, p < .001wewer, the interaction between the two factors

was not significant, Fs<1.

5.4 Simulation

The set of nonwords used with participants wasthuough two different computational versions of
the DRC model.

In the first simulation the version of the DRC mbgeesented in th@sychological Review
2001 (Coltheart et al., 2001) — that we call DRC-PRas been used. This version of the model has
been employed since the simulations reported byn8ldg and Besner (2002; 2004) have been
performed by using the DRC-PR.

In the second simulation the currently public vensof the DRC model — the DRC 1.2 — has
been used.

5.4.1 DRC-PR

The items were run through the DRC-PR under bothcthar and the degraded condition. In the
degraded condition the weights between featuredeiteis were reduced by 40% (as in Reynolds
& Besner, 2004); specifically, the feature-to-letexcitation parameter was reduced to .003,
whereas the feature-to-letter inhibition parametas reduced to .09.

The model made 9 lexicalization errors (CRAME, CREASCROSE, PROPE, PROME,
DRAVE, FLATE, SLIPE, CRYBE) and therefore thesantewere discarded from the analyses.

8 Both the versions of the DRC model are downloaglaftom the DRC web site athttp:/
www.maccs.mg.edu.au/~ssaunder/DRT#e differences between the two versions are désmmented on the web
site. Following the principle of nested modellitige DRC 1.2 has been tested to ensure that is leaphleproducing
all the effects that the DRC-PR could simulate; @ooer, there are data from experiments with Magbeset Priming
which can be simulated by the DRC 1.2 but not lgyDIRC-PR (see Mousikou, Coltheart, Saunders, & 26@0).
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Mean cycles to criterion are reported in Table 6.

Stimulus quality
Clear Degraded Diff.

Orthographic Neighborhood Cycles Cycles Cycles

Zero-N 168 182 14
Many-N 158 170 12
Diff. 10 12

Table 6 Mean cycles according to conditions

An ANOVA with SQ as repeated factor and N as indeleat factor was conducted on cycles. The
DRC-PR behaviour mimed that of humans. Analysisagiba main effect of N, F(1, 149) = 16.7,

MSE = 494.4, p < .001, a main effect of SQ, F(19)14 1773.9, MSE = 7.4, p < .001, and a
significant interaction, F(1, 149) = 53.7, MSE 4,7p < .01, imputable to the size of the SQ effect
being smaller for the items with many-N than fog ttems with zero-N.

542 DRC1.2

The items were run through the DRC 1.2 under bughctear and the degraded condition. As in the
previous simulation, the weights between features latters have been reduced by 40% in the
degraded condition.

The parameter set of the DRC 1.2 has been modifiedder to allow the model to correctly
simulate the neighbourhood size effects in nonwaading. In particular, the parameter that
regulates inhibition from letters to words is cutig very high in the DRC 1.2 (specifically, it s&t
to .48). The highest this parameter is, the ledsttar string can excite potentially supportive
neighbours; as a consequence, with the curreneyaven when the input letter string is just a
single letter different from some real word, thérgim the orthographic lexicon for that word won'’t
be activated. The consequence is the inabilitthefrhodel to correctly simulate the effects due to
the orthographic neighbourhood in reading. Henbe, talue of the letter-to-word inhibition
parameter has been reduced both in the clear atiteidegraded condition in order to allow the

model to correctly simulate these effétts

2 The Letter-to-OrthographicLexicon-Inhibition pareter has been set to .435, which is the defaultevaked in the
DRC-PR. Coltheart et al. (2001) suggested to furtbduce this parameter to .350 in order to colyesitnulate the
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The model did not make any error. Mean cycles iteroon are reported in Table 7.

Stimulus quality

Clear Degradec Diff.

Orthographic Neighborhood Cycles Cycles Cycles

Zero-N 138 165 27
Many-N 132 157 25
Diff. 6 8

Table 7 Mean cycles according to conditions.

An ANOVA with SQ as repeated factor and N as indeleat factor was conducted on cycles. The
DRC 1.2 behaviour mimed that of humans. Analysmasd a main effect of N, F(1, 158) = 72.9,

MSE =51, p <.001, a main effect of SQ, F(1, 158883.5, MSE = 6.2, p <.001, and a significant
interaction, F(1, 158) = 14.4, MSE = 6.2, p < .00k size of the effect of SQ is smaller for many-

N nonwords than for zero-N nonwords.

5.5 Discussion

The experiment evidenced three different results;aarectly reproduced in the simulations of the
DRC model (both the DRC-PR and the DRC 1.2 vergions

First, nonwords with neighbours are named fastan thonwords without neighbours. This
result is known as the N effect (McCann & Besn&87). Both the Italian (see Chapter 2) and the
English versions of the DRC model correctly simeilthtis effect.

Second, we found an effect of SQ: clear stimuliregel aloud faster than degraded stimuli.
This effect is correctly simulated by the DRC moalen the strength of the connections between
the feature and the letter units is reduced to kitauthe degraded condition. Specifically, a
reduction of SQ has been simulated in the DRC mbygeimplementing the manipulation used by

effects of N in word reading. However, we didn’euhis value since it would have produced a veyrgeerformance
in reading nonwords. Moreover, it has been shovan ttie value .350 is indeed necessary to allowDiRE model to
correctly simulate the effect of the phonologicaldaorthographic neighborhood in word reading (seelai,
Reynolds, & Besner, 2006); however, different pHogial and orthographic neighborhood effects Hagen obtained
in nonword reading (see Reynolds, Mulatti, & Besr2006) and this further reduction is not requifed these
simulations.
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Reynolds and Besner (2004), i.e. a reduction ofateghts of the connections between the feature
and the letter units by 40%.

Third, the size of the SQ effect depends upon the of N: the effect of degradation is
smaller for nonwords with many-N than for nonwowishout orthographic neighbours. In other
words, zero-N nonwords are harmed by stimulus a@lgi@an more than many-N nonwords. This
result is explained within the dual-route accouwtthe interactive activation between the letter
level and the orthographic lexicon. When a nonwwiith orthographic neighbours is presented to
the system, its neighbours will be activated inléheécon and, in turn, activation will spread teth
later stages. At the same time, the orthographicda will activate the letter level via feedback
connections, thus contributing activation to thegeéh letters and partially compensating for the
delay produced by stimulus degradation. On theraontthere is no feedback from the lexicon
when the nonword in input has no orthographic nsigins and the effect of degradation is thus
stronger for these stimuli. Clearly, such an intBos cannot be explained by assuming a threshold
at the letter level. A threshold at the letter lew@uld in fact prevent the interactive activation
between this level and the orthographic lexicomdee the interaction between SQ and N (zero-N
vs. many-N) would be eliminated and additive eSeaitthe two variables would be expected.

Our results may have important implications for kheus of the N effect in reading. The
interaction between SQ and N obtained in our expanmt is in fact consistent with an early locus,
thus indicating that at least part of the N effimut skilled readers arises through the interactive
activation between the orthographic lexical unitgl #éhe letter units. Nevertheless, our results are
also consistent with a late account. An interacbhetween SQ and N would in fact be incompatible
with a late locus of the N effect only assumingtlé¢ast partially) thresholded system in which the
effect due to degradation is resolved early in essing. According to Reynolds and Besner (2004)
this would be the case given the additive effe€tS@ and nonword letter length in reading (Besner
& Roberts, 2003) and the additive effects of SQ waodd frequency in lexical decision tasks (e.qg.,
Balota & Abrams, 1995; Borowsky & Besner, 1997)edé results would in fact demonstrate that
the effect of degradation is resolved prior to plogical processing and, indeed, prior to the ¢ffec
of word frequency. Conversely, we showed in Chagtdrat SQ and letter string length interact in
nonword reading under the appropriate experimeasaatitions; moreover, as we will discuss in
details in the next chapter, interactions betwe®rafd word frequency have been also documented
in reading (see O’Malley & Besner, 2008; Yap & Balo2007). Hence, it seems to us that there is
not convincing evidence indicating that the effettdegradation is resolved early in the reading
system; more likely, SQ influences processing ddras, according to the cascaded assumption.

If we adopt a model in which processing operatea agascaded fashion, factors that interact with
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one another could have their effects at the sawel lef processing as well as be influencing
different processes; as a consequence, an intandmitween SQ and N would not uniquely suggest
that N has its effect early in the reading systarmthis result will be also consistent with a later
effect.

In general, we suggest that the early-locus andlateslocus accounts are not alterative
hypotheses. Lexical knowledge may in fact influesk#led readers when reading nonwords both
through the interactive activation between theetetinits and the orthographic lexicon and through
the feed-forward connections from the orthograplagicon to the phoneme system. This
interpretation is also consistent with the simolatof the N effect within the DRC framework (see
Reynolds & Besner, 2002).

Clearly, an issue remains however to be explaivéay additive effects of SQ and N (low-
N vs. high-N) are obtained by Reynolds and Besk@04), whereas an interaction between SQ and
N (zero-N vs. many-N) is found in our experiment?

It could be possible that these apparently incomsisresults depend on the different
manipulation of the orthographic neighbourhood .sinefact, the effect of N is likely to be non-
linear, i.e. the larger N is, the smaller the dffef increasing the number of orthographic
neighbours will be. This means that the biggestifice may be obtained when N is manipulated
between 0 and 1, the next biggest effect when iNasipulated between 1 and 2, and so on. If that
is so, then it will be best always to include a ND =ondition in experiments manipulating this
variable. Moreover, it might be possible that ewbe low-N nonwords in the experiment of
Reynolds and Besner (2004) provided a large enaungbunt of feedback from the orthographic
lexicon to the letter level to help counter thefidiflties in letter identification caused by
degradation. Hence, the effect due to the reduaiastimulus quality may be reduced both for the
low-N nonwords and for the high-N nonwords in thetudy. It might be therefore possible that
what really makes a difference on the effect duestimulus degradation is having or not
orthographic neighbours, rather than a differenddeir amount.

Nevertheless, the DRC model still fails to simultite results obtained with human readers.
In fact, since the DRC model is suppose to mimehtimaan performance, then it should reproduce
the additivity between SQ and N (low-N vs. manyiNat has been observed. In other words, if
different effects between SQ and N are obtaineceni@ipg on the particular manipulation of the
variable N, then the DRC model should be able nwukite the whole pattern of results caused by
these manipulations. Clearly, further work is nekde this context in order to investigate these

issues.
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An explanation that appears to us being promissipy considering the Total Letter
Confusability (TLC), a variable that — as demortstlan Chapter 3 — influences nonwords reading
when the stimuli are degraded in the task. In paldr, we argue that the additive effects between
SQ and N obtained by Reynolds and Besner (2004htnbg due to a confounding with this
variable and that when this confounding is remottesl true result could be an interaction, as
predicted by the DRC model.

In the previous chapter we demonstrated a confoigngith TLC in the study involving the
manipulation of letter string length in degradedhword reading. However, while the relationship
between length and TLC was clearly reasonable §iece longer nonwords have more letters, one
might expect that the TLC is higher for long nondsthan for short nonwords), the role of this
variable is not obvious in this context. Nevertkslean analysis performed on the stimuli used in
the Reynolds and Besner’'s (2004) experiment indgcéttat the TLC was significantly higher for
the high-N nonwords than for the low-N nonwordsdusethis study, 410 vs. 406.7; t(82) = 2.326,
p =.022°

The hypothesis of a confounding between N and Td.@wus plausible. The effects of SQ
and N might result additive in the Reynolds and riges (2004) study because the partial
compensation of the SQ effect due to the largersemnof orthographic neighbours was masked by
the higher confusability values associated to iga-N nonwords. In other words, since the high-N
nonwords had higher TLC values than the low-N nawnlwaised in this study, the former stimuli
might be delayed more in degraded presentationgehethe true interaction between SQ and N
would not emerge. We argue that if the high-N arellow-N nonwords would be matched on the
TLC, then the effect of degradation could be smddie high-N nonwords than for low-N nonwords
and the true result could be thus the interactredlipted by the DRC model.

Further experiments with skilled readers are cleadlled for. For example, one way to
determine the plausibility of our hypothesis isrbpning an experiment in which the effects of SQ
and N are analyzed when high-N and low-N nonwordsnaatched for TLC. If our hypothesis is
plausible, we expect an interaction between SQ Mngbw-N vs. high-N) in this experimental
condition. Instead, the additive effects obtained Reynolds and Besner (2004) should be
replicated when the high-N nonwords are choserodmatve higher confusability values than the
low-N nonwords used in the task.

To conclude, the studies analyzing the joint effexf SQ and N (low-N vs. high-N) showed
a critical mismatch between the DRC model simuretiand the human readers performance. A

threshold at the letter level has been proposexdear to eliminate this mismatch. Our experiment

% The Reynolds and Besner's (2004) experiment usedrcase letters. LC has been thus derived fronCtherieu et
al.’s (2004) confusion matrix for lowercase letters
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clearly shows that a threshold at the letter lesen inadequate solution since SQ and N interact
when the presence/absence of nonwords’ orthograpéighbours is jointly manipulated with
stimulus degradation in the reading task. Despiteroexplanations are possible, we argue that a
confounding with the TLC might explain the additigffects that have been previously observed.
Clearly, further empirical investigation is neededhis context in order to define whether and how
the different results obtained in these studies caesed by the TLC or rather depend on the
different manipulation of the variable N.

Moreover, another interesting issue might be tdyaeahe effect of N size and degradation
in word reading. In fact, at least two hypothesas loe formulated here. From one hand, SQ and N
might interact, with the N effect being larger ttegraded than for clear stimuli; following a simila
argument to the one previously described for nodgiothe feedback from the lexicon may in fact
help target letter recognition in word reading,smaducing the effect of degradation more strongly
when N is high than when it is low. From the othand, the interaction between N and SQ might
be reverse, with the N effect being larger in thearcthan in degraded condition. The effect of
degradation in word reading may in fact be strorageN increases, since degrading the letters of a
word that has many neighbors could enhance theé ééwencertainty about the correct answer and

thus increases the response latency.
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6 TOTAL LETTER CONFUSABILITY AND
LEXICALITY IN DEGRADED READING

Inconsistent results with the DRC model's cascadsdumption have been obtained also in
experiments involving factorial manipulations afratlus degradation and a lexical variable such as
word frequency and lexicality.

The joint effects of SQ and word frequency havenbaegely analyzed in lexical decision,
where the two effects have been reported to beaiaede.g., Balota & Abrams, 1995; Borowsky &
Besner, 1993; O’'Malley et al., 2007; Plourde & Bmsrl997; Yap & Balota, 2007; Yap, Balota,
Tse, & Besner, 2008). However, O’'Malley et al. (2Pp@nd Yap and Balota (2007) also reported
interaction of stimulus quality and word frequengyreading aloud. O’Malley and Besner (2008)
concluded that the different results obtained iesthtasks may be due to the presence/absence of
nonwords; more specifically, the two factors woirteract when only words are presented in the
task (e.g., reading aloud), whereas they wouldteaditive effects when nonwords are part of the
stimulus set (e.g., lexical decision). This intetption has been confirmed in further reading aloud
experiments. O’Malley and Besner (2008) showedaat, that when only words were presented in
the reading task, the effects of SQ and word frequénteracted, with the effect of SQ being larger
for low-frequency words than for high-frequency d&r However, when also nonwords were
included within the experimental stimuli, word fremcy and SQ exerted additive effects on
reading latencies. Importantly, the effect of ledity has also been analyzed when jointly
manipulated with stimulus contrast: the two varatthave been reported to exert additive effects on
skilled readers latencies in several different issigBesner & O’Malley, 2009; Besner et al., 2010;
O’Malley & Besner, 2008); of course, this manipidatalso implies the presence of both words
and nonwords in the task.

Critically, the additivities of SQ and a lexicalnable (i.e., word frequency and lexicality)
are inconsistent with models operating in a pucalgcaded fashion. In order to explain these results
O’Malley and Besner (2008) proposed that readerghtnswitch from cascaded processing to
thresholded processing as a function of the expariat context (i.e., lexicalization hypothesis). In
particular, they suggested that the letter levalildide thresholded when both words and nonwords
are presented in the reading task whereas, whetisthis composed of words only, processing

would flow in a purely cascaded fashion. The presamdy aims to test this hypothesis.

63



6.1 Introduction

Computational models of reading aloud and visuafdmecognition usually implement either
cascaded processing — as in the DRC model (Cottbeal., 2001) — or thresholded processing — as
in the logogenmodel (Morton, 1969). However, O’Malley and Besit2008) recently proposed
that readers might switch from cascaded procedsirigresholded processing as a function of the
experimental context.

O’'Malley and Besner (2008) called their proposat tthexicalization hypothesis”. This
account specifically states as follow: when theegixpental list of a reading aloud task includes
both words and nonwords, participants would thrikhlee output of the letter level to prevent
lexical capture of nonwords; when the list is cosgmb of words only, processing would flow in a
purely cascaded fashion. To note, nonwords withagtaphic neighbours are implicated here.

In a cascaded model as the DRC, lexical capturdtmgfact occur when the stimulus is
degraded: a nonword may activate a word form remtesion enough to be erroneously read as the
word instead of the nonword. O’Malley and Besnguad that a threshold at the letter level would
prevent (or, at least, reduce the frequency oficécaptures: only once the letters comprising the
stimulus are unambiguously identified will activati be passed on to later stages, and so the
possibility of erroneously selecting a word givenamword is reduced or eliminated.

O’Malley and Besner (2008) developed their lexization hypothesis to explain data they
obtained in reading aloud experiments. In theseeexynts, when the experiment’s stimuli
consisted solely of words, the variables SQ andiviraguency (high-frequency vs. low-frequency)
interacted: the effect of stimulus quality was &rgvhen frequency was lower. This result is not
new (O’Malley et al., 2007; Yap & Balota, 2007) aisdoredicted by cascaded models such as the
DRC (see Reynolds & Besner, 2004, for simulatiorwever, O’Malley and Besner (2008) also
found that when an experiment’s stimuli includedhbwords and nonwords (with orthographic
neighbours), word frequency and SQ had additivecedf on reading aloud latencies. Moreover,
additive effects of SQ and lexicality (words vs.nmmrds) have been largely documented in
literature (Besner & O’Malley, 2009; Besner et &0Q10; O’'Malley & Besner, 2008). These
additivities are inconsistent with models operatimg purely cascaded fashion. In contrast, if we
assume, as O’Malley and Besner suggest, that wieestimuli consist of both words and nonwords
the letter level is thresholded (to avoid lexicaptres of nonwords), then the result is easily
accounted for: the idea is that since SQ affecks ghrceptual levels and lexicality and word

frequency affect the subsequent lexical level, dhoéding the letter level prevents interaction
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between those two stages, rendering the effec®Qoénd lexical-level variables (i.e., lexicalitydan
word frequency) additive.

We argue that a threshold at the letter level mightnot an adequate solution. In fact,
reducing letter contrast has its effect at thealiseature analysis level because a visual featilte
take longer to resolve when its contrast with thekiground is low. It seems in fact unarguable that
the processing level at which SQ has a direct efeaot the letter level but the (earlier) visual
feature level.

If one wanted to investigate whether there is ashwold specifically at the letter level (as it
has been suggested) then one should investigatthevhe variable whose direct effect is at that
level has additive effects with a lexical variableeh as lexicality or word frequency. We argue that
a similar variable could be the Total Letter Comhiity (or TLC): increasing the Total Letter
Confusability has its effect at the letter levetdese when a letter has high confusability it will
activate other letters — the confusable ones -haddtter level, introducing competition between
letters which will slow the rise of activation ¢fe correct letter at that level.

The aim of the work reported here was to test élxecalization hypothesis. This hypothesis
makes the general prediction that when both wordk reonwords are present in a reading aloud
task and stimuli are degraded (i.e., lexical captomay occur), the letter level will always be
thresholded, and so any variable which affectsofperation of the letter level will have additive
effects with any variable that affects the operatib the orthographic-lexicon level. With a reading
aloud task we orthogonally manipulated a variabé tvould have an effect at the letter level (i.e.,
the TLC) and a variable that would have an effé¢ha orthographic-lexical level (i.e., lexicality:
word vs. nonword). There were both words and nods/ar our experiment and all the stimuli have
been presented in reduced contrast, so all theitemmsl postulated by the lexicality hypothesis are
met. The lexicalization hypothesis thus predictt tALC and lexicality will have additive effects
on reading aloud latencies.

Before proceeding an issue has to be analyzedodfisvand nonwords are not matched on
TLC, an apparent interaction between degradatiah lexicality might instead be an interaction
between degradation and letter confusability, whcluld require a completely different theoretical
interpretation. It is important therefore to deteren whether either of the stimulus variables
manipulated by O’Malley and Besner (2008) — namelgyd frequency and lexicality — were
confounded with TLC. Their experiments used lowsecketters and the Courrieu et al.’s (2004)
confusion matrix for lowercase letters has thusnbesed; our analyses of the materials used by
O’Malley and Besner (2008) indicated that the higgguency and low-frequency words they used
in their Experiments 1 and 2 did no differ in TL&nd nor did the high-frequency and low-
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frequency words they used in their Experiment 3. M¢® found that there were no differences in
TLC between words and nonwords in any of their expents. So their pattern of results did not
arise because of any confounding with TLC in thedterials.

Nevertheless, it remains the case that accordintpeolexicalization hypothesis, when a
stimulus list comprises words and nonwords, theddevel gets thresholded. If the letter level is
thresholded, it follows that TLC should affect botlords and nonwords equally, and so the
lexicalization hypothesis predicts additive effectsTLC and lexicality in these circumstances. An

interaction of TLC with lexicality would be henceigence against the lexicalization hypothesis.

6.2 Method

Participants. Twenty students at the Universita degli StudPddova who had Italian as

their first language and normal or corrected-toamairvision participated as volunteers.

Design The experiment consisted of a 2x2 within-subgkedign with lexicality (words vs.
nonwords) and Total Letter Confusability (TLC; IGWkC vs. high TLC) as factors.

Materials. A set of 160 upper-case stimuli with five lettémslength was selected (these
stimuli can be seen in the Appendix, section E)s®et was composed of 80 disyllabic Italian
words and 80 disyllabic nonwords. Words were all lofv written frequency (mean: 16.7
occurrences per million). The nonwords were allnpranceable and were derived from words by
changing one letter provided the initial phonemehait word remained intact; the words used to
derive the nonwords had a mean written frequeneylai to that of the words used as stimuli,
namely 18.5 occurrences per million. Letter confilggt was determined from empirical letter-
confusion matrices obtained in previous studiedn{@ie et al., 1979; Loomis, 1982; Townsend,
1971; Van Der Heijden et al., 1984). TLC was olgdirby summing the confusabilities of
individual letters in the string. Forty words weskassified as having high TLC (mean: 2.6) and
forty as having low TLC (mean: 1.9; t(78) = 23, p081). High and low TLC words were balanced
in terms of written frequency (16.9 vs. 16.5; tdength in number of letters, and neighbourhood
size (6.5 vs. 6.5). Forty nonwords were classifisdhaving high TLC (mean: 2.6) and forty as
having low TLC (mean: 1.9; t(78) = 25, p < .001)ghand low TLC nonwords were balanced in
terms of baseword frequency (19.1 vs. 17.9; t<éjgimbourhood size (4.4 vs. 4.4; t<1), length in
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number of letters, and the position of the letteanged to derive the nonword from the baseword (3
vs. 3; t<1; see Mulatti et al., 2007). The phonalabonsets of the stimuli were matched across

conditions.

Apparatus. The experiment took place in a sound attenuateddamly lit room. Stimuli
presentation and data recording were controlleddfware developed in E-prime and running on a
personal computer. The display was synchronizedh wie screen refresh cycle. Stimuli were
presented centrally in upper-case letters on &lackground (RGB values: 0, 0, 0). The stimuli
were displayed in the 18-point Courier New fontl thle stimuli were displayed in degraded mode
(RGB values: 8, 8, 7). Responses were collectedaviaicrophone connected to a voice-key
assembly. Response latency was timed from stimoihs®t to voice key activation, which also

terminated the display.

Procedure Participants were tested individually. They safront of the computer screen
and the microphone was placed directly in fronbaif slightly below the subjects’ face, so as not to
obstruct screen view. Participants were instruthed when a letter string appeared on the screen,
their task was to pronounce it as quickly and amtely as possible. They were informed that the
stimuli could be either a word or a nonword. Sutgegere then presented with 12 practice trials.
The 160 experimental stimuli followed the practgmssion after a short pause. Each trial began
with a 500 ms presentation of a fixation pointfa tentre of the computer screen followed by a
200 ms presentation of a blank screen. Immediatiedy the stimulus appeared and remained on the
screen until a response was registered by the kelg®r 3 sec elapsed. The inter-trial-interval was
set to 2 sec. Stimuli were presented in a randaerpi.e. the variables of Lexicality and Total
Letter Confusability were randomized, not block&tle experimenter coded the pronunciation as
correct on the basis of the standard set of ltafjeapheme-phoneme rules, voice key triggering

failure, lexicalization error or articulation error

6.3 Results

Correct reaction times were submitted to the ValstSand Jolicoeur's (1994) outlier removal
procedure. Outliers (1.5 %) were removed prioreaction times analysis. Mean reaction times and

percentages of error are reported in Table 8.
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Words Nonwords Diff.
TLC RT %E RT %E RT %E
High 713 6.4 814 10.9 101 4.5
Low 709 8.2 765 10.2 56 2.0
Diff. 4 -1.8 49 g

Table 8 Reaction times (RTs) and percentages of error) @Eording to
conditions

ANOVAs were conducted for reaction times and errdfsr the participant analysis (F1, t1),
Lexicality (words vs. nonwords) and TLC (high vew) were treated as repeated factors. For the
item analysis (F2, t2), Lexicality and TLC weredted as independent factors.

RTs. The analysis revealed a main effect of Lexicali¥(1, 19) = 24.7, MSE = 4940, p <
.001, F2(1, 156) = 57.3, MSE = 3951, p < .001, amdain effect of TLC, F1(1, 19) = 13.1, MSE =
1060, p < .005, F2(1, 156) = 6.3, MSE = 3951, p5 However, the main effects were qualified by
a significant interaction, F1(1, 19) = 12.7, MSE®8, p < .005, F2(1, 156) = 6.7, MSE = 3951, p <
.001. Paired comparisons revealed that whereasaftg€ts nonwords so that low TLC nonwords
are read faster than high TLC nonwords, t1(19)4; @< .001, t2(78) = 3.3, p < .005, TLC does not
affect word reading, ts < 1.

Accuracy. The main effect of Lexicality proved significamy participants but not by items,
F1(1, 19) = 14.3, MSE = .002, p < .005, F2(1, 15®.9, MSE = .015, p = .091. Neither the main
effect of TLC, Fs < 1, nor the interaction, F1(B) = 1.1, MSE = .003, p > .3, F2 < 1, were

significant.

6.4 Discussion

Our results demonstrated that whereas TLC affeotsword reading, it does not affect word
reading. In other words, a variable having its efi@ the letter level interacts with a variablatth
has an effect at the lexical level. This resulttcadicts the lexicalization hypothesis which preslic

additivity of these factors when both words andwards are present in the experiment and stimuli
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are degraded. This means that the letter levebisahvays thresholded when the criterion for the
presence of a threshold postulated by the lex@atdin hypothesis is met.

However, an issue remains to be explained. Whyfaxter which affects the recognizability
of letters (i.e., SQ, manipulated by varying lettentrast) has additive effects with a variabld tha
operates at the lexical level, whereas anotheoffaghich also affects the recognizability of lester
(i.e., Total Letter Confusability) interacts withvariable that operates at the lexical level?

We propose that this is because although both raadiuence letter recognizability, they
have their effects at different levels. Reducingelecontrast has its effect at the visual feature
analysis level because a visual feature will takegér to be identified when its contrast with the
background is low. Instead, increasing the TLC itmgffect at the subsequent letter identification
level because when a letter has high confusaliilityll activate other letters that will competettvi
the correct letter within the letter level.

The interaction of TLC and lexicality is easilyenpreted within an IA framework. When a
letter is highly confusable with other letterswitl activate at the letter level the representasiof
these other letters (as well as its own represenjatand so there will be competition at the lette
level, which will slow processing. If the stimulis a word, the target letter receives both feed-
forward activation from the visual features of gtenulus and feedback activation from the lexical
representation of the stimulus. The feedback from lexicon assists target letter recognition by
contributing activation to the letter detectors floe correct letters and inhibition to the compgtin
letter detectors, and so could compensate fomtieeference produced by the competing non-target
letters. If the stimulus is a nonword, there isfeedback from the lexicon: target letters receive
activation from the visual feature level only artig suffer more from the activation of the
competing, similar non-target letters. Given tha feedback from the lexical level to the letter
level will be stronger for high-frequency than fomw-frequency words, there should also be an
interaction between word frequency and TLC, a mtezh worth testing.

What about the additivity of a variable affectingetvisual feature level (i.e., stimulus
contrast) and a variable affecting the lexical I€ie., word frequency or lexicality)?

A possible explanation occurs by considering thieots due to list composition. In fact, in
the experiments presented by O’'Malley and Besn@dgp, stimulus quality and word frequency
interacted when only words were presented, withetfiect of stimulus quality being smaller for
high-frequency words (see also Yap & Balota, 206iQwever, the two variables exerted additive
effects on reading latencies when words and nonsvawete mixed together in the task. Moreover,
the additive effects obtained between SQ and lé®icaso imply the presence of both words and

nonwords in the task. List composition is thus¢hecial variability in these experiments.
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The route emphasis account has been proposed er todexplain the effect of list
composition in the context of the dual-route frarngkv(e.g., Coltheart & Rastle, 1994). The basic
idea of the route emphasis account is that reactmrkl strategically adjust the extent to which
pronunciation performance relies on the lexical andthe non-lexical routes as a function of the
type of stimuli presented in the task. For instamdeen only nonwords are present in the task, one
might expect more emphasis on the non-lexical rarid an attenuation of the lexical route;
conversely, when only words are present, the neicdéroute would be de-emphasized, increasing
the reliance of the lexical route.

Our hypothesis is based on this idea. We propasetiie balance between the two routes
could favour the lexical route over the non-lexicaite more strongly when only words are present
than when words are mixed with nonwords. A simdaiategy could be justified by the fact that
lexical capture of nonwords would be reduced winenléxical route is de-emphasized.

To date, in DRC model there is not feedback fromIditer level to the feature level. This
trait was inherit from the McClelland and Rumeltsar{1981) IA model and is justified by the fact
that a visual feature can be only turned on bystitaulus in input. Assuming feedback at this level
would in fact mean to allow the pattern of featuregresenting the external input to be modified
top-down by the activation of functional units e tsubsequent levels. Instead, visual features can
be clearly activated bottom-up only; in a similaaywy there would be no reason to turn a visual
feature off once it has been activated. As a carmstg, the feedback from the orthographic
lexicon does not reach the feature level (whereh@Qits effect), but rather the letter level. This
means that the effect of lexical variables is omglirect on SQ. In particular, the effect of
degradation is transmitted at the letter level gitke feed-forward activation form features to
letters; moreover, given the interactive activatlmetween the letter level and the orthographic
lexicon, the activation from the lexical level feeldack to the letter level: as a consequence the
feedback from the lexicon will act on degradatiotyaontributing activation at the letter level.

Our interpretation of the previous results is d®¥fe When only words are present in the
task, the lexical route would be favoured over riba-lexical route more strongly as compared to
the condition in which words are mixed with nonwgrtlence, the feedback from the lexicon could
be fast enough to partially compensate for thecetié degradation (acting at the letter level)he t
former condition. SQ and word frequency would timisract when only words are presented in the
task. However, when words and nonwords are mixgdther, the lexical route would be weaker
and the activation from the lexicon may thus rettah letter level later, without producing any
effect on degradation. SQ and word frequency wbeldhus additive, as well as SQ and lexicality

would be additive, when words and nonwords are chtrgether in the reading task.
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Since TLC has its effect at a different and subsatidevel (i.e., the letter level), the
feedback from the orthographic lexicon acts diseotl this variable; as a consequence, even when
the lexical route is slower, the activation frome tkexicon would compensate for the delay
associated with high confusability. In other worthke emphasis on the functional routes would be
less critical when the factorial manipulation inved TLC because the orthographic lexicon feeds
activation back to the letter level, which is theoqess also affected by this factor. As a
consequence, TLC interacts with lexical variabkeg.( lexicality) when words and nonwords are
mixed together in the task.

It seems to us that the dual-route emphasis acanfuligt composition effects in reading
may thus provide a straightforward explanation fué tesults obtained in reading experiments
involving factorial manipulations of stimulus dedation and lexical variables as well as of the

results presented in our study.

6.4.1 List composition effects: alternative accounts

To date, an alternative account explaining list position effects in reading has been proposed and
it can be discussed in this context: the time-gdte account (e.g., Chateau & Lupker, 2003;
Kinoshita & Lupker, 2003; Lupker, Brown & Colombt997; Taylor & Lupker, 2001).

According to this theory readers establish a timieron for when articulation should start.
The moment in time when participants release thpaese would be displaced as a function of the
difficulty of the material they are exposed to, iae with difficult items, early with easier itam
Importantly, the criterion would be set to a pasitappropriate for the entire block of stimuli iret
task and the main effect would be thus an homogéniz of the RTs, i.e. when easy and difficult
stimuli are mixed together, the response to diffislow stimuli would be faster whereas the
response to easy/fast stimuli would be slower coethdo when easy and difficult stimuli are
presented in separated lists. Hence, when nonvasedadded in the reading task as O’Malley and
Besner (2008) did, one should control for theseat$f Specifically to this study, a condition in
which only clear and degraded (high-frequency andfrequency) words are presented in the task
is compared with a condition where clear and deggatbnwords have been added. Clear nonwords
should not produce any confounding according totithe-criterion account because their RTs are
collocated in a position that is more or less imtediate with respect to the other stimuli in thekta
i.e. clear nonwords are slower than clear wordsféster than degraded words. Adding degraded
nonwords could instead constitute a confoundingesthese stimuli are the slowest in the task. As a

consequence, adding degraded nonwords could rémelé&Ts to fast stimuli slower. Hence, high-
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frequency words (i.e., the fast stimuli in the daskuld be delayed by the presence of nonwords
more than low-frequency words (i.e., the slow stintuthe task). The additive effects of SQ and
word frequency obtained when words and nonwordsn@red in the task might be due to this
delay. Specifically, such an hypothesis would eixplde results obtained as due to a similar
confounding if degraded high-frequency words wob&l delayed by the presence of nonwords
more than degraded low-frequency words. Howevearcstimuli are faster than degraded stimuli
and adding nonwords should thus influence, if aingthclear (i.e., not degraded) high-frequency
words. This means that if the potential confoundimguld be removed, the RTs to clear high-
frequency words would be, according to the timésadon, faster than how reported by O’Malley
and Besner (2008) when the task consists of bottdsvand nonwords; as a consequence, the
frequency effect would result being larger in theac than in the degraded presentation. Clearly,
this interaction would be in the opposite directiorthe one reported in the only word condition.
Hence, hypothesizing a problem in list composiborthe basis of the time-criterion account would
not explain the actual pattern of results.

Moreover, an alternative way to interpret list carsition extending the time-criterion idea
has been recently proposed by Kwantes and Marm@@¥7). The authors suggested to simulate
the effects of list composition in the DRC model ignipulating the reading aloud criterion, a
mechanism controlling the level of activation thais to be reached in each phonemic slot of the
phonemic buffer before articulation can start. Whbkis parameter is set high the criterion is
reached later and, therefore, reading latencieslavged down. This change, however, not only
determines the beginning of reading times but alfects the way in which lexical activation
contributes to the process of phonological assenihlthe model, when a lexical unit receives
activation, it inhibits all the other units withitne lexicon and on successive processing cycles,
through the mechanism of lateral inhibition, theteyn gradually converges on a single unit that
corresponds to the target stimulus. Therefore, wthenresponse criterion is set low and naming
latencies are short, several lexical units (i.kymits that share some letters and phonemestivgh
target) are activated, even if not very stronglyd d@hey all contribute to the assembly of target
phonology; according to the authors participantsid@se a General Activation Strategy (or GAS).
In contrast, when the response criterion is seh,hagtivation becomes less diffuse and the
contribution of single lexical units increases; tppants would employ a Specific Activation
Strategy (or SAS). Of course, the probability ofetving frequency effects increases in this latter
condition. It seems to us plausible to assume tt&atSAS would be used when only words are
presented in the task, whereas the GAS would beufad when words are mixed to honwords in

the type of experiments reported above. In faceneas waiting for the identification of the correct
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lexical unit may be an useful strategy to use wielly words are presented, the general activation
of entries in the lexicon could facilitate readimgre than the specific activation of a single lekic
entry when half of the stimuli presented in th&tae nonwords. Furthermore, since the probability
to observe an effect due to word frequency incieasben the SAS is used, it might be
hypothesized that, when only words are presentedeiriask, the frequency effect would be larger
in degraded than in clear presentation: since aobin would rise more quickly for high-frequency
words than for low-frequency words, the effect efgchdation would be smaller for the former
stimuli. Instead, since the GAS is less sensitivéekical variables, the amplitude of the effect of
degradation might be insensitive to word frequenbgn words are mixed with nonwords.

To date, this hypothesis is somehow similar to eéxplanation given by the dual-route
emphasis account. Both these hypotheses, in fesir@e the contribution of the lexical route being
stronger in the only word condition. Neverthelessgemains to be defined whether the joint effects
of SQ and lexicality as well as the joint effectsTeC and lexicality may be explained by assuming
the use of the GAS in mixed lists; for examplendy be suggested that when activation is diffused
in the lexicon, the feedback activation could hawmeeffect only on variables directly affecting the

letter level. Additional empirical activities witle necessary to further analyze this issue.

6.4.2 Computational modelling

An additional topic regards the simulation of thmp#ical findings. In the previous sections we
concluded that, even if other explanations are gggshpossible, the route emphasis account of list
composition effects in reading is a plausible framek to explain the whole pattern of data. The
simulations of the results obtained by O’Malley aBdsner (2008) might be thus possible by
manipulating the strength of the lexical and nonédal routes of the DRC model.

A first issue is determining how the functional tesiof the model should be manipulated in
order to simulate human performance. In our thezkeéxplanation we suggested that the balance
between the two routines would favour the lexicalte over the non-lexical route more strongly
when only words are present in the task than whemlsvare randomly mixed with nonwords. This
balancing, however, might be achieved in the DRCdehoby using several different
implementations: for example, one might choose tanipulate the lexical route, either
strengthening it in pure condition or weakeningnitmixed condition; otherwise, the manipulation
may be on the non-lexical route. It seems to usriany different options might in fact be equally
adequate in this context. In order to resolve ig8se it will be necessary to direct investigateatvh

strategy participants use in these experimentatliions and hence to further analyze the effects
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due to list composition in degraded reading. Thislve the goal of the experiment reported in the
next chapter; this study will be useful also tothier distinguish between the different accounts
proposed to explain list composition effects indiag. More in general, our working assumption is
that, if particular effects due to list compositiexist in degraded reading, the interpretationhef t
results obtained in the context of factorial matapons of SQ and lexical variables should take
these effects into account.

Besides the simulation of the effects due to TL€baliscussed in the previous chapters, a
further problem concerns how SQ is implementechen@RC model. In fact, whereas SQ affects
the feature level analysis, degradation is simdlatethe model by reducing the strength of the
connections between the feature and the letters.uititfollows that the way SQ is actually
implemented in the model does not accurately reflee effects this variable has for humans. The
relevance of this issue is crucial in this contgirte the pattern of empirical findings may in fact
depend on the specific level of processing at wii€h(and TLC) has its effect.

We argue that SQ should be implemented in a difteray in the model, i.e. by influencing
activation of the feature units. As it will be dissed in details in the final chapter of this thesiis
may be realized as follow. At present, a visualueain the DRC model can be either on or off, i.e.
it can take either the value 1 or O, respectivélye idea might be to allow a visual feature to
accumulate activation over time (i.e., taking evartermediate value between 0 and 1) as a
function of the quality of the stimulus in inputerce, whereas under normal visibility conditions a
feature unit will be fully activated as the stimsilis presented, it will be only partially activated
when the stimulus is degraded; because of the dedqaroperty of the model, less activated units

will reduce the rate of activation downstream ie flystem, thus producing slower responses.

6.4.3 Conclusion

This study aimed to evaluate the lexicalization dilapsis, stating that the letter level might be
thresholded in particular experimental conditio®Malley & Besner, 2008). The results we
obtained falsified this account by showing thataaiable having an effect at the letter level (i.e.,
TLC) interacts with a variable that has an effadha lexical level (i.e., lexicality) when stimuh

the task are degraded. Despite other explanatienperhaps possible, we suggest that the whole
pattern of data obtained when a factor influen¢hegrecognizability of letters (i.e., SQ and TLE) i
manipulated together with a lexical variable (iveard frequency and lexicality) can be explained

by a dual-route emphasis account of list compasiidects in reading.
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/ LIST COMPOSITION EFFECTS IN DEGRADED
READING

In the present chapter the effects due to list asmion in degraded reading will be analyzed. The
effects due to the type of stimuli presented inttek have been largely studied in reading aloud
researches. Nevertheless, to the best of our kuagw|eany published study has directly analyzed
this issue when stimuli are degraded in the tasle fEsearch presented here aims to compare the
reading performance to degraded English (regulanydsr and to degraded nonwords when
presented in separated pure lists with the perfocedo the same stimuli when they are mixed
together in the reading task. Our data will be uksed within the accounts traditionally proposed to

explain list composition effects in reading.

7.1 Introduction

Whether and how humans can exert strategic comtr@ading tasks is a matter of debate in visual
word recognition researches. For fluent readeis]ing appears to be an extremely automatized
process. However, strategic processes engaged adinge performance have been largely
documented in studies analyzing the effects dubdaomposition of the list of stimuli in the task
(e.g., Chateau & Lupker, 2003; Coltheart & Rasti#94; Kang, Balota, & Yap, 2009; Kinoshita &
Lupker, 2003, 2007; Kinoshita, Lupker, & Rastle020 Lupker et al., 1997; Monsell, Patterson,
Graham, Hughes, & Milroy, 1992; Rastle & Colthedr®99; Tabossi & Laghi, 1992; Zevin &
Balota, 2000). As a consequence, at least sometaspiethe reading process must be strategically
controlled by skilled readers.

The issue about strategic control in reading han hesually studied in terms of dual-route
frameworks (e.g., Coltheart, 1978; Patterson & Mioyt1985, Coltheart et al., 2001), typically the
DRC model. According to dual-route theories thaw tavo ways to produce a phonological code.
One way involves assembling a pronunciation baselinowledge of spelling-to-sound mapping;
this strategy can be successfully used whenevespgéiing-to-sound mapping of the letter string in

input follows the standard rule of the language. (regular words) and it is necessary for nonword
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reading. The other route involves accessing a &xepresentation and retrieving the associated
phonological code; this way can only be used fadmg letter strings that have a lexical
representation (i.e., words) and must assume ardorirole when words are irregular. Regardless
of the characteristics of the input, both the rewiee assumed to work in parallel on each stimulus.
List composition effects are explained within dualte models of reading by assuming that readers
can selectively emphasized or de-emphasize thaeibatghe two routes as a function of the type of
stimuli presented in the task.

An alternative account of list composition effeatsreading has been however proposed
(e.g., Chateau & Lupker, 2003; Kinoshita & Lupk2003; Lupker et al., 1997), namely the time-
criterion. This account relies on the idea thatleza do not always initiate articulation as soon as
possible; instead, skilled readers would set aildlextime-criterion (or deadline) for when
articulation should start. Importantly, the positio time at which the criterion is set would deghen
on the type of stimuli presented in the task, teuplaining the effects due to list composition
obtained in reading aloud researches.

Despite several attempts to distinguish between tilve frameworks exist, these
investigations have not yielded conclusive resuittgact, an extremely complex pattern of data has
been obtained in these studies. A resume of thareaipgfindings is clearly far from the goals of
the present dissertation; however, what is critioathis context is that whereas some of these
studies reported evidence in favor of the routelems framework (e.g., Coltheart & Rastle, 1994;
Kang et al., 2009) the results obtained in somerostudies have been interpreted within a time-
criterion account (e.g., Chateau & Lupker, 2003ydshita & Lupker, 2003; Lupker et al., 1997).
As a consequence, there is a certain agreememngidering the two hypotheses as not mutually
exclusive; in other words, it could be that chanigethe relative emphasis of a particular reading
pathway and changes in the placement of a timerwit jointly influence pronunciation
performance. Hence, the two theories are todayideresl valuable approaches in interpreting list
composition effects in reading.

To date, even if list composition found a largeeirest in researches on visual word
recognition, these studies have been generallyictest to the investigation of these effects in
standard viewing conditions. To the best of ouniiedge, in fact, any published study has directly
analyzed list composition effects in degraded mgdiAs discussed in the previous chapter,
however, previous experiments involving the marapah of a lexical variable under both the clear
and the degraded presentation showed a differeterpaof results (i.e., interaction vs. additive
effects) depending on the type of stimuli presentethe task (e.g., Besner & O’Malley, 2009;
Besner et al.,, 2010; O’Malley & Besner, 2008). Muwer, in the previous chapter, we also
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suggested that these findings may be explained bgua-route emphasis account of list
composition effects in reading.

Clearly, a direct investigation of the effects doelist composition when the stimuli are
degraded in the reading task is required. In padic in order to clarify the previous issues, one
need to analyze reading performance to degradedsweoinen they are solely presented in the task
by comparing performance to the same stimuli wHesy tare randomly mixed with degraded
nonwords. Degradation may in fact determine pddrceffects of list composition in reading; if
this will be the case, then these effects shoulthken into account in any experiment involving a
reduction of stimulus quality and modifying the qaesition of the list of stimuli.

This was the goal of the experiment reported belawparticular, the present study aims to
compare the responses to (regular) words and nalswahen presented in pure list with the
responses to the same stimuli when presented ngadher, when all the stimuli are degraded in

the task. Specifically, three different conditidresse been compared in the experiment:
a. acondition in which only degraded words were pne=gin the reading task;
b. a condition in which only degraded nonwords weespnted in the reading task;

c. a condition in which degraded words and degradedvoads (i.e., the same stimuli

used in condition a e b) were randomly mixed inrdading task.

The three conditions have been alternated betweeticipants, so that each subject performed
either the conditiona (words only) and (nonwords only) or the condition (words mixed with
nonwords). As a consequence, each item has begrongaonce by each participant (i.e., either in
the pure condition or in the mixed condition). Maver, also the order of the conditiceaandb has
been alternated between participants performingasie with pure lists of stimuli.

7.2 Method

Participants. Twenty-four students at the Macquarie Universityo had English as their

first language and normal or corrected-to-normsilovi participated as volunteers.

Design Lexicality (words vs. nonwords) has been maniadavithin subjects, whereas list

composition (Condition: pure vs. mixed lists) hagit manipulated between subjects.
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Material . A total of 160 stimuli were used (these items bbarseen in the Appendix, section
F). They consisted of 80 regular monosyllabic Estglivords and 80 legal monosyllabic nonwords
with five letters in length. The two groups weretam@d in terms of phonological onset. The
nonwords have been derived by changing a lettandEnglish regular word maintaining its initial
phoneme. The words and the basewords which the araisvwwere derived from were balanced for
frequency (20.3 vs. 21.4 occurrences per millieri) t orthographic neighbourhood size (4.6 vs.
4.5, t<1) and neighbourhood frequency (183 vs. 12Y). Moreover, words and nonwords were
balanced in terms of neighbourhood size (4.6 V&.t41), neighbourhood frequency (183 vs. 124,
t=1.4, n.s.) and TLE (2.4 vs. 2.4, t=1.2, n.s.). Pure and mixed coonitias well as the order of
presentation of the two pure lists have been atethbetween participants, so that 1/3 the subjects
read the only word block as the first list and dméy nonword block as the second list, another 1/3
read the only nonword block as the first list ahd bnly word block as the second list and the

remaining subjects performed the reading aloud itadluding both words and nonwords.

Apparatus. The experiment took place in a sound attenuatetl dam lit room. Stimuli
presentation and data recording were controlledMDX software and running on a personal
computer. The display was synchronized with theetrrefresh cycle. Stimuli were presented
centrally in upper-case letters in the 18-point @@uNew font. All the stimuli were displayed in
grey (RGB values: 3,3,2) on a black background (R@RBes: 0,0,0). Responses were collected via
a microphone connected to a voice key assemblypdRse latencies were timed from stimulus

onset to voice key activation, which also termidatee display.

Procedure Participants were tested individually and sdtamt of a computer screen. They
were informed about the type of stimuli presentethe task and instructed to read each lettergstrin
aloud as quickly as possible minimizing errors. le&@al began with a 500 ms presentation of a
fixation point at the centre of the computer scrédlowed by a 200 ms presentation of a blank.
Immediately after the stimulus appeared and rendaomethe screen until a response was registered
by the voice key or 3 sec elapsed. Stimuli weresgmeed in a different random order for each
participant. In mixed block stimuli order was catiied so to have the same number of words and
nonwords within each group of ten stimuli. Respsnsere coded offline as correct or incorrect by
the experimenter using CheckVocal software; theesrpenter determined RTs using the
waveform recorded by this software in order to mdarrors associated with voice key timing and

correct for mistrial (i.e., voice key failure).

31 LC was determined from empirical letter-confusimatrices obtained in previous studies (Gilmore let 979;
Loomis, 1982; Townsend, 1971; Van Der Heijden gt1£184).
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7.3 Results

An analysis based on linear mixed effects modelljpge Baayen, 2008; Baayen, Davidson, &
Bates, 2008) has been performed in this study.

Mixed models extend the idea of traditional lineegression analysis that attempts to find
out whether the distribution of a certain variaflesponse or dependent variable) can be, to a
certain extent, predicted by a combination of atheariables (explanatory or independent
variables), and how the latter ones are affectirggformer. The relationship between variables is
modelled by fitting a linear equation to observathdon the assumption that the dependent variable
is given by the weighted sum of the explanatoryades, plus some random noise. In the classical
linear regression analysis only factors represgrttie so called fixed effects are incorporate & th
model. Fixed effects are repeatable factors, winngans that the set of possible levels for that
factor is fixed and that each of these levels aangpeated. Usually, fixed factors correspond ¢o th
variables that are directly manipulated in an eixpent. However, items and subjects are normally
not repeatable. Items and subjects are sampledmapdfrom the population of stimuli and
participants and replicating the experiment wousdially involve selecting other items and other
participants. This type of factors is called randeffiects because their levels are randomly sampled
from a much larger population. Mixed models are atgavhich incorporate both fixed and random
effects. Random effects are assumed to be norrdasiigbuted with unknown variance, which will
be estimated from the data; as Baayen (2008) statdle fixed effects factors are modeled by
means of contrasts, random effects are modelecaadom variables with a mean of zero and
unknown variance (...) In mixed models, the standardation associated with random effects are
parameters that are estimated, just as the coeftisi for the fixed effects are parameter that are
estimated”(p. 264).

Mixed modelling is particularly useful in psychdmistic experiments in that allows to fit a
linear equation to observed data by estimating dehio which the random effects for subjects and
items are jointly analyzed. Hence, mixed models oiégr a more powerful statistical analysis than
traditional ANOVAs and be extremely useful espdgiakhen the variables (e.g., the factor
representing list composition — condition: pure msxed lists — in the present experiment) need to
be manipulated between subjects. Another advantdgmixed modelling as compared to the
traditional ANOVA is that other variables (i.e.,ctars that are not directly manipulated by the
experimenter) can be added in the model in orderawimize the variance explained.

Linear mixed effects models are implemented witle4nfBates, Maechler, & Dai, 2008)
and languageR (Baayen, 2008) packages in R develuprore team (2007).
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Three different analyses have been performed botboorect reaction times and on errors
data. A further analysis has been directed to aeadyrestricted set of errors, i.e. lexicalization.

7.3.1 Analysis on list composition in function of lexicaty

The first analysis was directed to analyze thecefdé the variable Condition (pure vs. mixed lists)
for the words and nonwords in the experiment. Meas according to conditions and percentages

of error are reported in Table 9.

Nonwords Words Diff.
Condition RTs %E RTs %E RTs %E
Pure 812 28.1 720 5.6 92 22.5
Mixed 748 18.3 671 3.6 77 14.7
Diff. 64 9.8 49 2

Table 9 Mean reaction times (RTs) and percentages of €¥6&)
according to conditions.

RTs. First, we define a modemn) with participants and items as random factorenliwe
define a second modem@ by adding to modeml the factor trial-number (i.e., a factor
representing the order in which the items have Ipgesented in the experiment) as fixed factor. A
formal comparison ofmlandm2 (namely, a log-likelihood test) showed a significanprovement
in the model’s fit, Chi2(1) = 9.9, p < .001. Sintems have been presented in a different random
order to each subject, the order of presentation Imae affected each subject differently; we thus
decide to allow the slope of the effect of triaMary across subjects. To this purpose we centreed t
data and created a third modei3 on them by adding tm2 the by-subject random slope for trial
(the correlation parameter hasn’t been aded formal comparison between2 andm3showed a
significant improvement in the model's fit, Chi2@)128.9, p < .001. In a subsequent moded) (
we added Lexicality as fixed factor. A formal compan of m3 and m4 showed a significant
improvement in the model’s fit, Chi2(1) = 53.7, p.801. Then, we updatech4 by adding

Condition as a fixed factor but the increase inrtlaglel’s fit was not significant, Chi2(1) = 1.4>p

32 A separated formal comparison between the modils and without the correlation parameter indicatiest the
model’s fit doesn’t improve when the correlatiorrgraeter is added, which suggests that it is noessary in the
model (see Baayen, 2008, p. 276).
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.24. However, a further modem@ has been tested by adding to the moddlthe interaction
between the two fixed factors (i.e., Lexicality a@dndition). A formal comparison oh4 andm6
showed a significant improvement in the model’s@hi2(2) = 8.9, p = .01.

A further analysis was performed aon6 to test the fixed factors effects. The effect of
Lexicality was significant |t| = 6.1, pMCMC < .00%ith words read faster than nonwords.
Critically, the effect of Condition proved signifint, |t| = 1.5, pMCMC: .05, with items in the
mixed list read faster than items in the pure kairthermore, the two factors were qualified by a
significant interaction, |t| = 2.8, pMCMC < .001litlwthe effect of Condition larger for nonwords
than for words.

Accuracy. First, we define a modeh) with participants and items as random factors.
Then, we define a second modaP) by adding to moded1 the factor trial-number as fixed factor
but the model’s fit was not significantly improvedhi2(1) = 1.16, p > .28. However, a third model
(a3) has been created by centring the data and addiad) the by-subject random slope for trial
(the correlation parameter has not been addedyriddl comparison betweerl anda3 showed a
significant improvement in the model's fit, Chi22%9.3, p < .001. In a subsequent modd) (ve
added Lexicality as fixed factor. A formal compansof a3 and a4 showed a significant
improvement in the model’s fit, Chi2(1) = 42.6, p001. Then, we updated the modélby adding
Condition as fixed factor and the increase in traletis fit was marginally significant, Chi2(1) =
3.4, p > .066. A further modeh®) has been tested by adding to maakékhe interaction between
the two fixed factors (i.e., Lexicality and Condit). A formal comparison a5 anda6 showed an
improvement in the model’s fit, Chi2(1) = 7.1, p&4.

A further analysis was performed @b to test the fixed factors effects. The effect of
Lexicality was significant |t| = 5.3, pMCMC < .00Wjth words more accurate than nonwords.
Critically, the effect of Condition proved signiéiot, |t| = 2.7, pMCMC < .01, with items in the
mixed list read more accurately than items in theefist. The two factors were qualified by a
significant interaction, |t| = 2.7, pMCMC < .01,tlwithe effect of Condition larger for nonwords

than for words.

To conclude, the analysis on RTs showed a maiwctaffelexicality (i.e., words are read faster than
nonwords), a main effect of Condition (i.e., stimalthe mixed list are read faster than stimuli in
the pure list) and a significant interaction betwélee two factors (i.e., the effect of Condition is
larger for nonwords than for words). The analysieaor rates is consistent with the RTs analysis,

showing more accurate responses for the stimulthvare read faster.
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The interaction between Condition and Lexicalitgtthas been obtained indicates that the effect of
Condition is larger for nonwords than for wordsa& the main effect of Condition is significant, it
follows that the difference between the pure aredrttixed lists must be significant for nonwords.
Therefore there is no need to test the effect ofidBimn for the nonwords by themsel¥&s
However, one can’t conclude from these results adrebr not there is a significant effect of
Condition for words. Hence, the effect of Conditjast for words has been tested. We first define a
model restricted to words only with participantslaiems as random factoreX). Then, we add to
model w1l trial-number as fixed factor, but a formal compan ofwl and w2 showed that the
model’s fit didn’t significantly improve, Chi2(1) £.6, p >.21. In a third model we updated by
centring the data and adding the by-subject randiope for trial (without adding the correlation
parameter). A formal comparison betweei and w3 showed a significant improvement in the
model's fit, Chi2(2) = 6, p = .05. In a subsequantlel (v4) we added Condition as fixed factor but
the increase in the model’s fit was not significadhi2(1) = .64, p = .42, thus suggesting that the
effect of Condition is not significant for words.

7.3.2 Analysis on the order of presentation in pure lists

A separated analysis has been performed to detenvtiether the order in which the pure lists have
been presented (words first vs. nonwords first) enady difference. For this purpose a subset of
data corresponding to the RTs in the pure condibaty has been extracted. Mean RTs and

percentages of error are reported in Table 10.

Nonwords Words Diff.
Order RTs %E RTs %E RTs %E
First presented list 826 27 736 5.6 90 21.4
Second presented list 797 29.2 703 5.6 94 23.6
Diff. 29 2.2 33 0

Table 10 Mean reaction times (RTs) and percentages of &6&) for Order and Lexicality.

% However, when this issue is directly investigati, analysis shows that the effect of Conditiondssignificant for
nonwords. In the analysis we first define a mo@stnicted to nonwords only with participants arehis as random
factors wl); then, we add to modaelwl trial-number as fixed factor. However, a formahmarison ofnwl andnw2
showed that the model’s fit didn't significantly pmove, Chi2(1) = .62, p >.43. In a third model wedatednw?2 by
adding the by-subject random slope for trial (arfak comparison indicated that the correlation pa&temis necessary)
and a formal comparison betwemn2 andnw3 showed a significant improvement in the modet;sGhi2(3) = 8.2, p <
.05. Finally we add, in a subsequent mode{), Condition as fixed factor but the increase ia thodel’s fit was not
significant, Chi2(1) = 1.5, p = .21, thus suggegtimat the factor Condition has no significant effefor nonwords.
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RTs. Following a similar procedure to the one expldime the previous analysis we first
define a modeldl) with participants and items as random factorsenltwe add to modell trial-
number as fixed factor. The formal comparisorobfando2 showed a significant improvement in
the model’s fit, Chi2(1) = 17, p < .001. In a thimbdel we updated2 by centring the data and
adding the by-subject random slope for trial (tloerelation parameter has not been added). A
formal comparison betweea®? ando3 showed a significant improvement in the modet;Ghi2(1)
= 110.1, p < .001. In a subsequent model) (we added Lexicality as fixed factor. A formal
comparison 0b3 ando4 showed a significant improvement in the modeks@hi2(1) = 51.3, p <
.001. Then, we define a fifth model5) by adding Order as a fixed factor. A formal commgan
showed that the model’s fit significantly improveshi2(1) = 4.6, p < .05. We finally add the
interaction between Lexicality and Order but theréase in the model’s fit was not significant,
Chi2(1) = 0, p = 1, thus suggesting that the irtigoa has no significant effects. A further anadysi
was performed o5 to test the fixed factors effects. The effect ekicality was significant [t| =
7.4, pMCMC < .001, with words read faster than nords. Also, the effect of Order proved
significant, [t| = 1.5, pMCMC < .05, with the seddrst read faster than the first list.

Accuracy. First, we define a modehd@l) with participants and items as random factors.
Then, we define a second modab® by adding to modebal the factor trial-number as fixed
factor but the model’s fit was not significantly pnoved, Chi2(1) = 2, p > .15. However, a third
model @o3 has been created by centring the data and addiagl the by-subject random slope
for trial (the correlation parameter has not bedded). A formal comparison betweaal andao3
showed a significant improvement in the model's@hi2(2) = 39.8, p < .001. In a subsequent
model @o4) we added Lexicality as fixed factor. A formal goanison ofao3 andao4 showed a
significant improvement in the model’s fit, Chi2@)45.3, p < .001. Then, we define a fifth model
(a0H by adding Order as fixed factor, but a formal pamson showed that the model’s fit didn’t
significantly improve, Chi2(1) = .67, p > .41. Wadlly add the interaction between Lexicality and
Order but the increase in the model’s fit was ngmificant, Chi2(2) = .66, p = .71. This analysis
thus suggests that neither the effect of Ordertm®interaction between Order and Lexicality have

significant effects on error data.

In conclusion, the main effect of Order that emsrge the RTs analysis is not surprising:
participants read faster the stimuli that are preskas a second list for effect of practice wité t
task. Since there is no interaction involving Ordbe data can be collapsed across this factor and

hence the factor Condition has just has two leyrlse and mixed.
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7.3.3 Analysis on word frequency

A separated analysis has been performed in ordandlyze the effect of word frequency.

First, a correlation between the RTs to words dwelr tfrequency have been calculated:
critically, the correlation proved significant wherrds are presented in pure list, r (80) = -.382,
< .05, but not when they are presented in mixedrli80) = -.07, n.s.

In mixed models analysis a subset of data corralpgnto the words only has been
extracted from the data. Furthermore, word frequeimas been analyzed by adding a variable

containing the specific frequency values in the etod

RTs. As in the previous analysis, we first createdratial model 1) with participants and
items as random factors. Then, we add to mddlatrial-number as fixed factor but a formal
comparison ofl andf2 showed that the model’s fit doesn’t improve siguaiftly, Chi2(1) = 1.6, p
> .20. However, a third mod€f3) has been created by addingdhe random by-subject slope for
trial (without the correlation parameter) and cewgtrthe data. A formal comparison fif andf3
showed a significant improvement in the model’'s@hi2(1) = 5.7, p < .05. In a subsequent model
(f4) we added Frequency as fixed factor. A formal cangon off3 andf4 showed a significant
improvement in the model’s fit, Chi2(1) = 5.5, p.65. Then, Condition as fixed factor has been
added but the model’s fit was not significantly noyed, Chi2(1) = .65, p > .42. Finally, we created
another model f6) by adding the interaction between Frequency amchd@ion. A formal
comparison of4 andf6 showed a significant improvement in the modets@ihi2(2) = 8.5, p < .05.

A further analysis performed of® showed that the interaction between Frequency and
Condition proved significant, |t| = 7.4, pMCMC.005, with the effect of Frequency significant in
the pure blocks, |t| = 2.8, pMCMC < .005, but mothie mixed blocks, t < 1.

Accuracy. First, we define a modehfl) with participants and items as random factors.
Then, we define a second modafd) by adding to mode&dfl the factor trial-number as fixed factor
but the model’s fit was not significantly improve@hi2(1) = .24, p > .62. Furthermore, a third
model @f3) has been created by centring the data and adllefd the by-subject random slope for
trial (the correlation parameter was not necessany)a formal comparison betweafil and af3
didn’t show a significant improvement in the mosldit, Chi2(2) = .24, p > .88. In a subsequent
model @f4) we added Frequency as fixed factor. A formal cangon ofafl andaf4 didn’t show a
significant improvement in the model’s fit, Chi2@)1.7, p > .19. Finally, we defined a fifth model

(af5) by adding the interaction between Lexicality &wdquency but the increase in the model’s fit
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was not significant, Chi2(3) = 4.5, p > .21. Thisalsis thus suggests that neither the effect of
Frequency, nor the interaction between FrequendylLaxicality have significant effects on error

rates.

Moreover, the joint effects of word frequency ahd order in which the words have been presented
in pure blocks (i.e. first list vs. second listyeabeen analyzed in order to define whether theceff
of frequency was modulated by the words being tist ¥s. the second presented list. For this

purpose a set of data corresponding to words iptine condition only has been extracted.

RTs. An initial model {ol) with participants and items as random factorsbeen created.
Then, we creatdo2 by adding to modefol trial-number as fixed factor. However, a formal
comparison ofol andfo2 showed that the model’s fit doesn’t improve sigmaifitly, Chi2(1) = .13,
p > .72. A third modelf¢3) has been created by adding’tiahe random by-subject slope for trial
(without the correlation parameter) and centring tata. A formal comparison &1 and fo3
showed a significant improvement in the model’'s@hi2(1) = 10.4, p < .005. We then created the
model fo4 by adding Frequency as fixed factor. A formal canmgon offo3 andfo4 showed a
significant improvement in the model’s fit, Chi2(%)7.8, p < .01. In moddb5 the fixed factor
Order has been added but the model’s fit was mtifssantly improved, Chi2(1) = .21, p > .65.
Finally, a model fo6) has been created by addingftd the interaction between Frequency and
Order, but a formal comparison ff4 andfo6 showed that the model's fit was not significantly
improved, Chi2(2) = 3.5, p > .17. This analysisgesgjs that neither the main effect of Order nor

the interaction between Order and Frequency hayefisiant effects in the analysis.

Accuracy. We define a modeklfol) with participants and items as random factorsenlTh
we define a second modelf¢2) by adding to modehfol the factor trial-number as fixed factor.
However, the model’s fit was not significantly inoped, Chi2(1) = 0, p = 1. Furthermore, a third
model @f3) was created by adding &bl the by-subject random slope for trial and centtimg data
(the correlation parameter was not necessary) lbotnaal comparison betweefl andaf3 didn’t
show a significant improvement in the model's @hi2(2) = .04, p > .98. In a subsequent model
(af4) we added Frequency as fixed factor but a fornsahmarison ofafl andaf4 didn’t show a
significant improvement in the model’s fit, Chi2(%)2.2, p > .14. Finally, we define a fifth model
(af5) by adding the interaction between Frequency artCbut the increase in the model’s fit was
not significant, Chi2(3) = 2.1, p > .54. This arsdythus suggests that neither the effect of
Frequency, nor the interaction between FrequendyCader have significant effects on error rates.
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To conclude, the analysis on RTs shows a main teffe€requency and a significant interaction
between Condition and Frequency, indicating thatrnehs the effect of word frequency is
significant in the pure blocks it is not in the mikblocks. This datum is consistent with the result
obtained in the correlation analysis. Regardingdive effects of Frequency and Order, the analysis
showed that there is not interaction between thwseeffects; we thus conclude that the effect of
frequency has the same amplitude when words arempied as the first list and when they are

presented as the second list in the pure condition.

7.3.4 Analysis on lexicalization errors

A total of 14.9% of the data has been coded agsimahe experiment. Of these errors, 38% were
fluent nonword errors and 45% were fluent word exrdhe remaining 17% were non-fluent
mistakes. We argue that it might be interestingeédorm a separate analysis on the fluent word
errors (i.e., lexicalization errors), since theyghtigive important information in the context atli
composition effects in reading.

Percentages of lexicalizations according to coodgiare reported in Table 11.

Condition Nonword Word Diff.
Pure 13.6 2.2 11.4
Mixed 5.9 0.6 5.3
Diff. 7.7 1.6

Table 11 Percentages of lexicalization errors accordingotaditions.

In the analysis, we first define a modkix() with participants and items as random factorenrh
we define a second modétX2 by adding to moddex1 the factor trial-number as fixed factor but
the model’s fit was not significantly improved, Qi) = 1.9, p > .16. However, a third model
(lex3) has been created by centring the data and adidiegl the by-subject random slope for trial
(the correlation parameter has not been added)rrAdl comparison betwedex1 andlex3 showed

a significant improvement in the model's fit, CHip€ 15.6, p < .001. In a subsequent mobi4)
we added Lexicality as fixed factor. A formal compan of lex3 andlex4 showed a significant
improvement in the model’s fit, Chi2(1) = 25.7, p.801l. Then, we updateléx4 by adding
Condition as fixed factor and the increase in tloglet's fit was significant, Chi2(1) = 6.5, p < .05.

A further model kex6) has been tested by adding the interaction betweetwo fixed factors and a
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formal comparison showed an improvement in the w®di, Chi2(1) = 5.5, p < .05. A further
analysis was performed dex6 to test the fixed factors effects. The effect @xicality was
significant, [t| = 3.6, pMCMC < .001, with words moaccurate than nonwords. Critically, the
effect of Condition proved significant, |t| = 3gMCMC < .005, with items in the mixed list read
more accurately than items in the pure list. Furtitege, the two factors were qualified by a
significant interaction, |t| = 2.4, pMCMC < .05,tlwithe effect of Condition larger for nonwords

than for words.

To conclude, the same pattern obtained for the evis@t of error rates is obtained when
lexicalization errors are separately analyzed. ldestimuli are more accurate (and there are less

lexicalizations) in the condition in which they aesad faster.

7.4 Discussion

The results of the present experiment can be suineasas follow.
1. Degraded words are read faster than degraded ndawoth in mixed and in pure blocks.

2. When words and nonwords are degraded, stimuliead faster when mixed together than

when presented in a pure list.
3. The mixed-list advantage is larger for nonwordstfex words.

4, Nonwords are read less accurately than words. Mise@re more accurate than pure list.

The effect of list composition is larger for nonwsrthan for words in the analysis of errors.

5. The word frequency correlation with RTs is sigrafit when words are presented in pure
lists but not when they are mixed with nonwordsaddlition, the effect of word frequency is
significant in pure but not in mixed lists. In otheords, frequency exerts an effect only
when words are solely presented in the task.

The probably most interesting result obtained iis texperiment is that reading latencies to
degraded stimuli are faster when words and nonwarelsnixed together in the task that when they
are presented in separate pure lists. Howeveissae iremains to be clarified. Whereas the mixed-
block advantage is significant for nonwords, it rdidprove significant for words in the mixed
models analysis. We argue, however, that thisrlasult might be due to a lack of statistical

power. In fact, when the effect of condition is lgmad for the nonwords themselves, it didn’t prove
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significant as well. Since this is inconsistenthwiihe other results (i.e., a main effect of Cowditi
and a significant interaction between Condition dmkicality) that could be an issue of low
statistical power. Hence one needs to be cautiousoncluding that there is not an effect of
Condition with words. More evidence in favor ofigrsficant effect of list compaosition for words is
obtained in the ANOVA for items that shows fast@isRn the mixed than in pure lists, F(1,156) =
103.6, MSE = 2298, p < .001, and that this effedignificant both for words, t(79) = 7.6, p < .001
and for nonwords, t(77) = 7.1, p < .001. Even iftHer investigation is certainly needed, one can
conclude from these results that RTs to words atecartainly faster in the pure list. Hence, if
anything, words are read faster when mixed withwaods that when solely presented in the task.
In the following sections the pattern of resultatthas been obtained will be discussed in the
context of the two theories traditionally propogedexplain list composition effects in reading, i.e
the route emphasis account and the time-critermownt; moreover, a third interpretation — the

lexical checking — will be considered.

7.4.1 The route emphasis account

A way to interpret the results that have been obtdiis by considering the effects due to word
frequency. Our analysis reveals that the corretatibword frequency with RTs proved significant
when words are presented in pure list but not vtheg are mixed with nonwords. In addition and
consistently with this result, the frequency effpaived significant in pure block but not in mixed
block when analyzed with mixed modelling. Puttiragdther, these data suggest that a lexical
variable such as word frequency exerts its effethé pure but not in the mixed lists.

This conclusion has important implications in ipt@ting our results within a dual-route
emphasis account. According to this theory, in,fagaders would selectively emphasize or de-
emphasize the output of one of the two routes. &ffext of frequency would be explained either
assuming that the lexical route is weaker in th&eahilist, or hypothesizing that the non-lexical
route is stronger in the mixed list. However, ¢ tlexical route would be weaker in the mixed kst,
pure-block advantage for words should have beeereed. Instead, if anything, words are read
faster in the mixed than in the pure lists in oxpeximent. Consider now the second hypothesis,
that is the non-lexical route being stronger in thiged list. Since both the routes can be used to
read regular words, the emphasis on the non-lexocaé in the mixed list could help word reading.
Moreover, the mixed-block advantage obtained fawwirds is easily explained within this account

because nonwords would be read faster and moreagecwhen the non-lexical route is stronger.
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Finally, the mixed-block advantage has been shanmetlarger for nonwords than for words: this
result is simply accounted for, since the non-lakioute is particularly important in nonword
reading.

To summarize, all the results obtained in our expent are explained by assuming that the
non-lexical route becomes stronger in the mixed Tike pattern of data is thus accounted for by a
dual-route model as the DRC through a plausibledatd-driven explanation.

7.4.2 The time-criterion account

According to the time criterion account, the momientime when participants release the response
would be displaced as a function of the difficudfythe stimuli they are exposed to: early with easy
items, late with difficult items. Moreover, whensgaand difficult stimuli are mixed together in the
task, the criterion would be set at a position thantermediate to the position used for the fast
slow stimuli when presented in pure list. This nseé#mat the responses to slow stimuli would be
faster in mixed block than in pure block whereas riassponses to fast stimuli would be slower in
mixed block than in pure block. In our experimerdrds are read faster than nonwords in pure
block: this means that words can be considerededtsy (fast) items and nonwords the difficult
(slow) stimuli. Consistently with our results, thiene-criterion account predicts faster RTs to
nonwords when they are mixed with words than iregalock. In addition, since the criterion is set
to a position appropriate for the entire block dimslli and the main effect is thus an
homogenization of the RTs, the larger lexicalitieef in pure than in mixed blocks as well as the
larger frequency effect in pure than in mixed beke consistent with this hypothesis. However,
the results we obtained for words cannot be reteshavith this account: according to the time-
criterion, in fact, fast stimuli (i.e., words) sHdube read faster in pure block than when mixedhwit
slower stimuli (i.e. nonwords). This predictiorcigarly inconsistent with our experimental data.
Extending the time-criterion account to dual-roft@meworks, Kwantes and Marmurek
(2007) proposed that a manipulation of the readahmud criterion not only determines the
beginning of articulation but also affects how muetormation from the lexicon is used to create
pronunciation. Specifically, when the responseedon is set low and naming latencies are short,
the General Activation Strategy (or GAS) would Isedr all the lexical entries that are similar to
the target string in both spelling and sound cbnte to reading. In contrast, when the response
criterion is set high, the Specific Activation S&gy (or SAS) would be used since activation

becomes less diffuse and pronunciation will beearilargely by its matching representation in the
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orthographic and/or phonological lexicons. Follogvihis interpretation, one might assume that the
GAS is used in mixed block whereas the SAS is prefein pure block, since the precise
identification of the target lexical unit would lbess useful when half the stimuli are nonwords.
Hence, reading latencies will be faster under t&s@han under the SAS, thus producing faster
RTs in mixed list. However, an opposite patterreabr rated’ would also be expected for words
since these stimuli should be more accurate whsimgle lexical unit is activated in the lexicon
(i.e., pure list). Instead, this is not the caseoum experiment. Moreover, since the response to
nonwords should not depend on how much lexicalrmé&dion is used to generate pronunciation,

the pattern of results for nonwords is not clearigdicted by this account.

7.4.3 The lexical checking account

Another account, the lexical checking, may be ratgvin this context. This theory has been
proposed by Lupker et al. (1997; see also Kinoshitaipker, 2007 and Kinoshita et al., 2004) to
explain the mixed block advantage they found fer-foequency irregular words and the pure-block
advantage obtained for high-frequency irregulardsavhen both the types of word are presented in
pure block or mixed with nonwords. As Lupker et @997) comment, the idea is that as the
articulatory code builds up, readers can choosedasult an output lexicon to determine whether
the phonological-code-generation process matchesde in their lexicoh(p. 584). Of course, this
strategy is more useful when frequency is low. Adogy to the authors, this strategy would be
invoked in pure blocks since participants must e shat the articulatory code they produce is a
word code; on the contrary, it is invoked less ofte mixed blocks because half the stimuli are
nonwords.

Even if regular words have been used in our exparimwe argue that a similar strategy
could be plausibly used when the stimulus quabtyeduced, since the letters that compose the
string are not easily identified when degraded. Wbhaly words are present, readers could thus
choose to consul the phonological output in ordeddtermine whether it matches a code in their
lexicon. On the contrary, this strategy would nethelpful in mixed blocks because half the stimuli

are nonwords. To date, this account is hence vieryas to the one previously discussed. Since a

3 Error rates distribution is relevant also regagdihe time criterion-account as originally propaskdparticular, an
additional effect of naming slow stimuli more rdgidnd naming fast stimuli more slowly should beipeocal changes
in error rates (Strayer & Kramer, 1994): when slstimuli are named more rapidly, numerically largeror rates
should be observed, whereas naming fast stimulerstowly should lead neither a decrease nor anawggnent in
accuracy. However, our data showed an oppositerpatin fact, in our experiment, the slowest stinfiué., nonwords)
are clearly more accurate in the condition in whiaky are read faster (i.e., mixed block).
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further operation is needed when words are soledggnted, RTs would be slower. This hypothesis
is thus consistent with RTs to words faster in rdikst. Furthermore, since this strategy would be
particularly useful when frequency is low, one ntigkpect the mixed-block advantage being larger
for low-frequency words than for high-frequency dmyra prediction that match our empirical data.

However, this account doesn’t predict anything abmanword data, thus being unable to
explain the mixed-block advantage we obtainedtesé stimuli. Also, the error rates distribution is
inconsistent with this hypothesis. According to tleical checking account, in fact, a numerically
larger error rate is expected for words in mixesdsli Since readers would not consult an output
lexicon in mixed block, errors in word reading sliblbe more frequent than in pure blocks.
Critically, the data obtained in our experimentrdianeet this prediction.

7.4.4 Simulation

In the previous sections we argued that the resbitained in our experiment might be explained
thought the route emphasis account by assumingttiegahon-lexical route becomes stronger in
mixed lists. In this section DRC model simulatiai®cted to test this hypothesis will be present.

The items used in the experiment were run through DRC 1.2 under the degraded
condition. To simulate the reduction in stimulusitast the strength of the connections between
features and letters has been reduced by 40%. flepygj the feature-to-letter excitation was
reduced to .003, whereas the feature-to-lettebitibh was reduced to .09.

First, a simulation in which only a reduction imnatlus quality was implemented has been
performed. This data would simulate the pure comdibf our experiment. The model did not
produce any errors. Mean cycles to criterion apered in Table 12 (Pure Condition).

Then a series of simulations have been performexidar to determine how the strength of
the non-lexical route could be manipulated to sateilthe mixed condition. In the DRC 1.2 the
operations of the non-lexical route are regulatgdhoee parameters, namely the GPC-Phoneme-
Excitation, the GPC-Critical-Phonology and the GBGset.

The GPC-Phoneme-Excitation determines the amountaativation that reaches the
phonemic buffer from the GPC system: higher lee¢lactivation determine a stronger influence of
the non-lexical route on pronunciation. As a consege, the higher this value is, the major the
strength of the non-lexical route.

The GPC-Critical-Phonology controls the level ofiaation that has to be reached in each

phoneme unit before the GPC route moves on the le&er of the string. In other words, this
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parameter regulates the speed in which the nowgdexoute moves from left to right along the
string of letters; the higher this value is, theaker the non-lexical route

Finally, the GPC-Onset determines how many cycfess ¢ghe perceptual processing (i.e.,
feature and letter levels analysis) the non-lexioate starts to operate; the higher this valuées,
weaker the non-lexical route.

Our simulations suggested that the mixed-bloclaathge obtained in our experiment can in
fact be simulated by the DRC model by increasing $trength of the non-lexical route. In
particular, mean cycles to words and nonwords aogrpssively lower as either the parameter
GPC-Phoneme-Excitation is increased or the param@&C-Critical-Phonology is reduced.
However, the parameter that seems to have a mal@rim determining this effect is the GPC-
Phoneme-Excitation, rather than the GPC-Criticalitiogy. As a consequence, we will present
the data we obtained by manipulating the formeapater. In particular, in our simulation the
GPC-Phoneme-Excitation has been increased fronuatault value of .051 to .1 in order to
simulate the mixed condition of our experiment. Thedel did not produce any errors. Mean

cycles to criterion are reported in Table 12 (Mixaohdition).

Nonwords Words Diff.
Condition Cycles Cycles Cycles
Pure 166.5 78.7 87.8
Mixed 114.2 70 44.2
Diff. 52.3 8.7

Table 12 Mean cycles for Condition and Lexicality

An ANOVA with Condition as repeated factor and Laatity as independent factor was conducted
on cycles. The DRC behaviour mimed that of humanslysis showed a main effect of Condition,
F(1, 158) = 22831, MSE = 3.3, p <.001, a mainctfté Lexicality, F(1, 158) = 26567, MSE = 13,
p < .001, and a significant interaction, F(1, 158)1622, MSE = 3.3, p < .001, imputable to the
size of the effect of Condition being larger fommmrds than for words. Paired comparisons reveal
that the effect of Condition (pure vs. mixed lisis)significant both for words, t(79) = 61.7, p <
.001, and for nonwords, t(79) = 138.2, p < .00kdAlthe effect of Lexicality is significant both in
the pure block, t(158) = 161.6, p <.001, and mnhixed block, t(158) = 130.7, p < .001.

% This parameter has been introduced in the newarsion of the DRC model and substitutes the pammestiled
GPC-Interletter-Interval assumed in the versioithef model originally presented (the DRC-PR) whitdoaontrolled
the left-to-right movement of the non-lexical rauspecifically, the GPC-Interletter-Interval corted after how many
processing cycles the GPC system moves on thdettetin the string.
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A separate analysis has been performed in ordanatyze the effect of word frequency. In this
analysis the words have been median-split on frecyuéo create two groups balanced on all the
other relevant psycholinguistic variabi®s

Mean cycles to criterion are reported in Table 13.

Low-Frequency High-Frequency  Diff.

Condition Cycles Cycles Cycles
Pure 80.6 76.9 3.7
Mixed 71.4 68.6 2.8
Diff. 9.2 8.3

Table 13 Mean cycles for Condition and Frequency.

An ANOVA with Condition as repeated factor and krency as independent factor has been
performed. The DRC 1.2 behaviour mimed that of msnanalysis showed a main effect of

Condition, F(1, 78) = 4385, MSE = .698, p < .00Inain effect of Frequency, F(1, 78) = 117.8,

MSE = 3.5, p <.001, and a significant interactib(t,, 78) = 12.9, MSE = .698, p = .001, imputable
to the size of the word frequency effect being $enah the mixed than in the pure blodks

Summarizing, when stimulus contrast is manipuldigdeducing the strength of the connections
between the feature and the letter units and tleagondition is simulated by increasing the GPC-

Phoneme-Excitation parameter, the following resaftsobtained in the simulation of the DRC 1.2

model:

1. words are read faster than nonwords, both in the @ad in the mixed blocks;
2. words are read faster in mixed than in pure blocks;

3. nonwords are read faster in mixed than in pureksioc

4. the mixed-list advantage is larger for nonwordstfea words;

% The 80 words used in the experiment have beemletivinto two groups of 40 stimuli balanced for ogtaphic
neighbourhood size (4.5 vs. 4.8, t<1) and neighhood frequency (141 vs. 226, t=1.16, n.s.), ondainimg low-
frequency words (mean: 2.8; range: 0.6-5.8) anather including high-frequency words (mean: 37a8ige: 6-112).

37 Differently from human performance, the effectfrefquency is significant both in pure block, t(2810.2, p < .001,
and in mixed block, t(78) = 9.7, p < .001, in thR©® model’'s simulation. However, consistently witlr @xperimental
data, it is easily demonstrable that both the femgy and the lexicality effects are progressivelguced as the non-
lexical route becomes more and more strong by @sing the value of the GPC-Phoneme-Excitation patamWe
argue this is an important argument in favour afiaterpretation.
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5. the frequency effect is larger in pure than in rdikéocks.

In conclusion, all the results obtained in our expent are correctly simulated by the DRC model
by increasing the strength of the non-lexical rantmixed condition.

7.4.5 Conclusion

Our experiment showed that in degraded conditi@dirg latencies are faster when words and
nonwords are mixed together than when they areepted in pure lists. Whereas this effect is

significant for nonwords, the mixed-block advantégewords needs to be further investigated. We
argue that the effects of list composition obtaimediegraded nonword reading can be explained
through a route emphasis account by assuminghbatdn-lexical route becomes stronger in mixed
lists. Consistently with this interpretation, DR®@del's simulations have been shown to reproduce
the whole pattern of data when the non-lexical@datmade stronger by increasing the parameter
regulating the GPC-Phoneme-Excitation.

Moreover, following the rationale of the presenedis, the results obtained in this
experiment have important implications for the asdgroposed in the previous chapter. In fact, in
Chapter 6, we suggested that the whole pattern atd @btained in reading experiments
manipulating a factor influencing the recognizapibf letters (i.e., SQ and TLC) together with a
lexical variable (i.e., lexicality and word frequs®m may be accounted for by the DRC model
assuming that the balance between the two routesifa the lexical route over the non-lexical
route more strongly when only words are presentethé task than when words are randomly
mixed with nonwords. This balancing may in fact sists in the non-lexical route being stronger in
mixed list, as suggested in the present experimenén the non-lexical route is emphasized, in
fact, the response mostly depends on this routatendffect of the lexical route will be weaker.

This account is also consistent with the generahithat readers might exert strategic
control on the non-lexical route rather than onlthacal route (see, e.g., Herdman, 1992; Paap &
Noel, 1991). In fact, whereas processing on théc#xoute is based on direct and automatic
association between orthographic forms and theimplogies, the non-lexical route involves the
assembly of phonological segments and it presunraojyires more resources. Hence, it would be
the non-lexical route, rather than the lexical eptibat is strategically emphasized or de-emphdsize
in the task. On the contrary, the lexical route lddoe highly automatized and less susceptible to

strategic influences.
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Regardless of the fact that an explanation in $epindual-route framework is possible, the
pattern of results obtained in this experiment i@siaomehow very puzzling. If we think that what
subjects do is to have one set of parameters ipuhe condition (call this s&f) and a different set
of parameters in the mixed condition (call this ¥gtthen our results suggested that $a$ not
optimal and seY is better (both in speed and accuracy of perfoo@panrhus, why didn’t subjects
use the seY both in pure and in mixed conditions? In other agrif the balancing between the
two routes used in mixed condition is the optimedtegy, why isn’t it used also in the pure list? O
course, our study is just a first attempt to amallygt composition effects in degraded reading and
this and other issues need to be further analyzed.

Despite further researches are certainly needesl, ptittern of results we obtained is
interesting and the explanations investigated aoeniszing. New effects of list composition in
reading have in fact been documented when stimmaeldagraded in the task. Moreover, important
implications for the studies manipulating stimutpsality together with another variable in function
of the type of stimuli presented in the task hagerbpointed out. Future researches in this dinectio
will provide further knowledge on visual word recdiipn and reading aloud when stimuli are

presented in not-optimal visibility conditions.
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8 GENERAL DISCUSSION

A number of highly successful computational modefisreading implement multiple levels of
representation that get activated when a lettergsts presented. A central feature of these models
is that activation is usually assumed to spread cascaded fashion across the different levels of
processing. In systems that operate by cascadedgsing, there are no thresholds within levels
and, as soon as even a small amount of activatiaedumulated in an early stage, this flows on to
later levels.

Despite cascaded processing in visual word redognils commonly accepted, recent
experiments with skilled readers involving the npaétion of a factor affecting the rate of
processing (i.e., stimulus quality) in conjunctieith another variable produced results that are not
easily reconciled with this account. Critically,scaded processing has been evaluated in these
studies by referring to the DRC model, perhapatbet successful computational model of reading
aloud and visual word recognition.

One of the most relevant results in this contex heen obtained by Besner and Roberts
(2003). The authors showed that the letter lenfjitieand the effect of SQ are additive in nonword
reading tasks, so that the length effect has theesamplitude regardless of the level of SQ. On the
contrary, an interaction of the two factors, witle iength effect smaller for degraded than forrclea
stimuli, is obtained in the DRC model’s simulatigkccording to the model, in fact, activation is
continuously accumulated during phonemic procesaidy since reading longer nonword requires
more time, activation should grow more for longstdr strings; therefore, the delay produced by a
degraded stimulus should be partially reduceddogér nonwords. To allow the DRC model to fit
with the empirical results, Besner and Roberts 82@6e also Blais & Besner, 2007) have proposed
to change the cascaded assumption so that activatald spread in a thresholded fashion for the
non-lexical route. In particular, they proposedheshold the output of the letter level, sintfetie
letter-level module does not pass activation to dhegppheme-phoneme conversion process until a
threshold is reached, the interaction in the siniolas (...) would likely not occur. Instead, adeti
effects of processing rate and letter length wdnddexpectéd(Besner & Roberts, 2003, p. 403).

Moreover, Reynolds and Besner (2004) analyzed dimt effects of SQ and orthographic
neighbourhood size (N) on nonword reading in bdilesl readers and in the DRC computational
model. The authors reported that, while N and S@rteadditive effects on skilled readers’

latencies, these factors interact in the DRC meaeullations, with the effect of SQ being smaller
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for high-N nonwords than for low-N nonwords. Thisteraction is caused by the interactive

activation between the letter level and the orthpbic lexicon assumed in the model: since
processing is cascaded, the lexical entries carrelpg to the orthographic neighbours of the
nonword in input are activated and in turn feedvatibn back to the letter level; the effect of

degradation would be thus reduced as the numbewrtbbgraphic neighbours of a nonword

increases. The results reported by Reynolds anddB€2004) appear therefore to be inconsistent
with cascaded processing and a threshold at ttex level has been proposed; differently from the
previous hypothesis, however, also the lexicaleaubuld be activated by the output of the letter
level analysis in a thresholded fashion.

Inconsistent evidence with the DRC model’s cascadstimption has been obtained also in
word reading. O’Malley and Besner (2008) showed thlaen only words were presented in the
task, the effects of SQ and word frequency intedcivith the effect of SQ larger for low-
frequency words than for high-frequency words; tieisult is consistent with a cascaded account.
However, when also nonwords were included withim éperimental stimuli, word frequency and
SQ exerted additive effects on reading latencidss Tatter result is inconsistent with models
operating in a purely cascaded fashion. In addit®@Q and lexicality have been shown to exert
additive effects on skilled readers’ latencies (Res& O’Malley, 2009; Besner et al., 2010;
O’Malley & Besner, 2008), further contrasting ca$ea processing. The authors referred again to a
threshold at the letter level in order to expldigit results. Specifically, it has been proposed th
readers might switch from cascaded processing resliolded processing as a function of the
experimental context (i.e., lexicalization hypotisgsin particular, when stimuli are degraded and
words and nonwords are mixed together in the faakjcipants would threshold the output of the
letter level to prevent lexical capture of nonwgrdstead, when the experimental list is composed
of words only, processing would flow in a purelyscaded fashion. Lexical capture might in fact
occur in the DRC model when stimuli are degradedesia nonword may activate a lexical entry
enough to be erroneously read as the word instedteanonword. A threshold at the letter level
should prevent lexical captures because activationld pass to later stages only once the letters
comprising the stimulus have been uniquely idesdifithus the likelihood of erroneously selecting
a word given a nonword is reduced or eliminated.

To date, when the letter level is implemented asstiolded in the DRC model, the additive
effects of SQ and letter string length and of S@ &nin nonword reading as well as the additive
effects of SQ and word frequency would be in famtectly simulated by the model (see Besner et

al., 2003), thus proving that this modificatiorsigccessful.
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We argue that hypothesizing thresholded processintpe letter level is not an account
without issues. Empirical data inconsistent wits throposal have been in fact documented; for
example, in order to explain the additive effedt$@ and N, one need to assume that the model is
thresholded before it activates the lexical rothé account is clearly inconsistent with empirical
data indicating that SQ and repetition interact(8I& Besner, 2007) as well as SQ and semantic
priming interact (e.g., Ferguson et al., 2009) wheading words. More generally, it has not been
yet demonstrated whether implementing the lettezllas thresholded would allow the DRC model
to simulate all the effects that its current comagional version does simulate: in science, any new
theory should instead be demonstrated able to at¢ouall the results that a previous theory (or a
previous version of the same theory) was able tpla@gx plus some other empirical data.
Furthermore, a whole change of the DRC model’'samest nature is intrinsic in this proposal. This
solution assumes, in fact, that at least some sewethe reading system are discrete and serially
organized and that information processing is astlgrrtially thresholded. As a consequence,
accepting this modification would mean to rejecé tholution of cascaded processing today

widespread accepted in researches on visual woodjnéion.

8.1 Review of the main findings

The main goal of the researches presented in Ha@sig has been to test the hypothesis of a
threshold in the reading system. Following the inatlof the final section of Chapter 1, | will
summarize the main results that have been presentéide previous chapters. | will start by
summarizing the findings obtained in nonword regdasks (Chapter 2 to 5); then, I will focus on
the results obtained in reading tasks manipulatiegcomposition of the list of stimuli (Chapter 6
and 7).

8.1.1 Factorial manipulations in nonword reading

The joint effects of letter string length and oghaphic neighbourhood size (N) have been analyzed
in the first experiment reported in this thesis #@ter 2) in clear (i.e., non-degraded) presentation
by employing an Italian nonword reading task. Télewvance of this experiment for the purposes of

the present thesis is evident in that both letrémglength and N have been shown to exert adslitiv
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effects with SQ in nonword reading (see Besner &dts, 2003, and Reynolds & Besner, 2004,
respectively); critically, these results have begarpreted as evidence against cascaded processing
in the reading system. In our experiment, an ictesa between letter string length and
orthographic neighbourhood size (N) has been obdaithus supporting a cascaded model with a
dual route architecture like the DRC. These resksin fact incompatible with the postulation of a
threshold in the reading system: the interactiotwben length and N in nonword reading can be
explained only assuming that the (parallel) lexicalte determines, together with the (serial) non-
lexical route, the pronunciation of the nonwordimput; crucially, lexical influence in nonword
reading is a strong evidence in favour of cascguledessing.

In Chapter 3, the effect of a variable alreadyedah researches on letter-by-letter dyslexia,
the Total Letter Confusability (TLC), has been gmal following the assumption that, when
stimuli are degraded, the letters are difficultidentify and their visual similarity could hence
become important. The role of the TLC has beensassefor Italian skilled readers when reading
clear and degraded nonwords. The results obtamedri experiment indicated that TLC influences
healthy readers’ performance when stimuli are dimgtaThis finding has relevant implications for
reading researches analyzing the effect of psyeoistic variables when jointly manipulated with
stimulus quality. Since high-LC letters suffer mavken degraded than low-LC letters, TLC is an
important factor to consider in experiments invotyidegraded presentation of letter strings, a
possibility which the authors did not consider ie\pous studies.

Following the result described above, the expemimeported in Chapter 4 was directed to
analyze whether the additive effects of SQ ane@iedtring length reported by Besner and Roberts
(2003) in nonword reading may depend on a confauynhtlietween TLC and letter string length. In
the experiment reported by Besner and Roberts §2008%ct, TLC was not controlled; since TLC
typically increases as letter length increasellibws that the long letter strings used in thisdy
had higher confusability values than the shorefestrings. Moreover, the data we obtained in the
experiment demonstrated that this confounding i¢act responsible of the additive effects that
have been previously observed. More specificallgemvthe short and the long nonwords used in
the task are matched for TLC, the effect of SQ ltesmaller for longer nonwords, as predicted by
cascaded processing; instead, when the TLC isitefontrolled, the opposite pattern of results has
been obtained. In other words, the interaction betwSQ and letter string length that is simulated
by the DRC model is in fact obtained for human ezadinder the adequate experimental conditions
(i.e., when short and long stimuli are matchedarms of TLC). Clearly, this finding strongly
sustains cascaded processing in reading: a simtknaction would be in fact totally prevented by

postulating a threshold at the letter level, thustiadicting our results.
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In Chapter 5 we focused on the joint effects of &@ orthographic neighborhood size (N)
in nonword reading. Reynolds and Besner (2004)indtathat low-N and high-N nonwords were
harmed by stimulus degradation to the same exberdrder to explain this additivity within the
DRC model, a threshold at the letter level has be@posed; however, this account is clearly
inconsistent with previous well-established date(Blais & Besner, 2007; Ferguson et al., 2009).
In order to further test this hypothesis we perfedman English nonword reading task by
manipulating two factors: stimulus quality and wiest nonwords have or not orthographic
neighbors. The previous results may in fact betdube particular manipulation of the variable N
since both low-N and high-N nonwords would detemnimeractive activation between letter units
and the lexicon that in turn would reduce the eftéalegradation. Consistently with our prediction,
an interaction between SQ and N (zero-N vs. manids) been obtained in our study. Clearly, this
result is explained only by assuming cascadedantee activation in the reading system. On the
contrary, if there would be a threshold at theeletevel, the presence/absence of orthographic
neighbors should not play any role on stimulus dégtion and the two effects should be thus
additive, contrary to our empirical data. Moreovan, interpretation of the additivity previously
obtained in terms of a confounding with TLC hasrbpeoposed in this chapter. This interpretation
is partially supported by the analysis on the maltersed in the Reynolds and Besner’s (2004)
experiment: since their high-N nonwords had higleenfusability values than their low-N
nonwords, the effect of degradation for high-N stintcould be in fact smaller than how reported
and the true result could be thus an interactiotwden the two variables. Clearly, further
investigation is needed in order to define whethese results are in fact caused by TLC or rather
depend on the different manipulation of the vaeall

In conclusion, all the results obtained in thespeeixments require activation to spread in a
cascaded fashion in the reading system, thus dgnlyenhypothesis of a threshold at the letter level
Moreover, we argue that the additivities of SQ amdther factor obtained in previous nonword
reading tasks would be due to a confounding witliC Bind that when this confounding is removed
the true results would be the interactions predittg cascaded processing. Even if further work is

needed in this context, the data obtained so fggest this may be in fact the case.

8.1.2 Factorial manipulations in reading tasks as a funabn of list composition

The factorial manipulations of SQ and lexical vaks in function of the presence/absence of

nonwords in the task have been taken into accau@thiapter 6. Previous studies showed that the
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joint effects of SQ and a lexical variable (e.garafrequency) are modulated by the composition
of the list of stimuli in the task: more specifigalthe factors would interact when only words are
presented but their effects would be additive wpanicipants read both words and nonwords (e.qg.,
O’Malley & Besner, 2008). The pattern of findingstained in this context has been explained in
previous literature by hypothesizing that when dekicapture may occur (i.e., the task comprises
both words and nonwords and stimuli are degradéd) letter level is thresholded (i.e.,
lexicalization hypothesis). The main aim of ourdstuvas to test this hypothesis. We argue, in fact,
that SQ may be not an adequate manipulation tontkether the letter level is thresholded since
this variable affects the feature level analysis. (inot the letter level): instead, if one wamtgetst
whether there is a threshold specifically at théetelevel, then a variable directly affecting this
level should be considered. To this purpose we pudaied Total Letter Confusability (i.e., a
variable that affects the letter level) and lexigalithin an Italian reading aloud task wheretak
stimuli were degraded. According to the lexical@at hypothesis the letter level should be
thresholded in these experimental conditions amtd@dditive effects between the two factors are
expected. Critically, TLC and lexicality insteadaract in our experiment: whereas TLC affects
degraded nonword reading, it does not affect degtadbrd reading. We hence concluded that the
letter level is not always thresholded when the dd@mms postulated by the lexicalization
hypothesis are met, thus confuting this account;then contrary, our finding strongly supports
cascaded processing in the reading system. A nasrergl conclusion that emerges from this study
is the following: TLC may be an useful second matdpon (alternative to SQ) in factorial
experiments in that it allows to directly test wieat processing is thresholded specifically at the
letter level analysis, as it has been typicallyposed.

Since TLC does not affect word reading, it follothat the additivities obtained in these
studies cannot depend on this variable: a diffenaterpretation of these results is hence needed.
Specifically, we argue that these data may dependhe strategic control that readers exert in
reading as a function of the type of stimuli préednn the task. This argument depends upon the
claim that list composition has an effect in degdeading, an hypothesis that has been tested in
Chapter 7. In particular, in our last experimendrag and nonwords were presented either in pure
lists or mixed together in an English reading aloask; critically, all the stimuli were degraded.
Using mixed modelling analysis, we showed that glinvere read faster and more accurately when
randomly mixed in the task than when presentedepasated pure lists. These data have been
interpreted through a dual-route emphasis accopstiggesting that the non-lexical route becomes
stronger in mixed condition: since words in our exment were regular, in fact, the lexical route

could help both word and nonword reading. Consiktenth this interpretation, the simulation of
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these results with the DRC model mimed the humafopeance when the mixed condition is
reproduced by strengthening the non-lexical rodagardless of that, however, participants seem to
behave in an extremely irrational way in this expent; in particular, since the strategy used when
words and nonwords are randomly mixed in the tagiptimal, it is not clear why subjects did not
do the same also when words and nonwords are peelsenseparated pure lists. In other words,
even if our results can be interpreted within aotbgcal framework, it is instead not clear why
participants would perform the task in such a wayswering this question will be an interesting
challenge for feature researches.

Nevertheless, following the previous reasoning, rdgilts obtained in Chapter 7 prove the
existence of particular effects of list compositiatnen stimuli are degraded in the task. As a
consequence, these effects have to be taken imtoumic by experiments involving factorial
manipulations of SQ which also varied the typetohsli presented within the experimental list. In
particular, we suggest that the additivities olgdimvhen SQ is manipulated together with a lexical
factor in tasks comprising both words and nonwardsy be explained by referring to a route
emphasis account of list composition effects irdieg also, the solution proposed to explain the
mixed-block advantage obtained in Chapter 7 (e ,non-lexical route is emphasized when words
and nonword are mixed in the task) is — at leasnfa theoretical point of view — adequate also to
explain the whole pattern of data obtained in kil of studies. Note that we are not necessarily
suggesting that what participants did is exactly shme in these experiments: there is, in fact, a
main difference between our task in which all thiensli were degraded and previous studies
manipulating SQ where half the stimuli were clead ghe other half degraded in the task; rather,
we argue that participants may strategically cdnine balance of the two functional routes in
function of list composition in a particular way &@rh (at least part of) the stimuli in the task are
degraded.

In conclusion, we showed that postulating threddolprocessing in the reading system is
not an adequate solution in that this account israoonciled with our empirical findings. In
alternative, we suggest that the data obtainecgbipfially manipulating SQ and a lexical factor in
function of list composition may depend on thetsgac emphasis that readers give to the lexical
and to the non-lexical routes while reading in cese to the type of stimuli presented in the task.
study directed to analyze list composition effectdegraded reading partially supported this
interpretation. Even if additional work is neededftirther investigate this issue and to define
whether the solution proposed is adequate to irdethe whole pattern of empirical findings, the

data collected so far strongly sustain a dual-rfraimework assuming cascaded processing.
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8.2 Interpretation within the Dual-Route Cascaded model

In this section, | will focus on the discussiontioé results (either additivity or interaction) abtd
when SQ is factorially manipulated with anotheriatlle by referring to the Dual-Route Cascaded
model of reading. Table 14 provides a summary efdata at present published in this context as

well as of the results presented in this thesfamation of the type of stimuli presented in thekia

Stimulus quality

Lexical / Non-
lexical factor Pure list Pure list Mixed list
(words only) (nonwords only) (words and nonwords)
Additive effects
(Besner & Roberts, 2003)
Letter length Interaction(Chapter 4)
SQ effect larger for short
than for longer items
Additive effects
(Reynolds & Besner, 2004)
Neighbourhood  smmmmmmmmmmomemomsemseomeooeo
density Interaction(Chapter 5)
SQ effect larger for zero-N
than for many-N items
Interaction o
Additive effects
Word SQ effect larger for low- ~ (O'Malley & Besner,
frequency frequency words 2008)
(O’'Malley & Besner, 2008)
Lexicalit Additive effects
y - - (e.g., Besner et al. 2010)
Interaction
Semantic SQ effect larger for
priming unrelated vs. related target -
(e.g., Ferguson et al., 2009)
Interaction
for exception words
Repetition Additive effects
for nonwords
(Blais & Besner, 2007)
Interaction
Reqularit SQ effect larger for regular Additive effects
9 y than for exception words - (Besner et al., 2010)

(Besner et al., 2010)

Table 14 Results of experiments involving the factorialmpalation of SQ and various lexical and
non-lexical factors when reading aloud as a fumatiblist composition.
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We argue that all the data reported in the previabte are consistent with a cascaded framework
and can be in particular interpreted within the DiRGdel.

Consider first the experiments analyzing the j@iffiécts of SQ and another variable (letter
string length and N) in nonword reading. As saig, @ssumption is that the additivities previously
observed (Besner & Roberts, 2003; Reynolds & Bes2@04) are due to a confounding with the
TLC, a variable that is involved in reading whemmstli are degraded (see Chapter 3); we also
hypothesized that when this confounding is remottesl results are consistent with the DRC
model’s predictions. Even if further empirical wagkneeded, the results obtained so far strongly
corroborate this interpretation. In particular, dditive effects of SQ and letter string length in
nonwords reading depend indeed on a confounding WitC and when this confounding is
removed the two factors interact with the effecS@ being smaller for longer nonwords (Chapter
4), a result that is clearly predicted by the DR@del. Moreover, we suggest that a similar
confounding could also explain the additivity of &@d N that has been documented; whether this
hypothesis is valid remains to be demonstrate, évidre analysis on the stimuli that have been
used provides partial support to this interpretatimportantly, we showed that SQ and N interact
when nonwords with and without orthographic neigifsdbalanced in terms of TLC are presented
in the task (Chapter 5), perfectly matching the DR@lel’s interpretation.

Consider now the pattern of effects that SQ has Vekical variables in function of the
presence/absence of nonwords in the task. In tissedation we directly focused on the joint
effects of SQ and word frequency/lexicality (Chagdp In general, we argue that these data can be
explained within the DRC model by referring to aiteo emphasis account of list composition
effects in reading. Following the results obtaimedChapter 7, we specifically proposed that the
non-lexical route may be emphasized in mixed lishpared to when words are solely presented in
the task. As a consequence, the lexical route whalte a weaker effect on pronunciation when
nonwords are present than when they are not.

The interpretation of the previous results witlie DRC framework would be as follow.
Since degradation affects the feature level amglysitivation from the orthographic lexicon acts
indirectly on this variable: in fact, since there ao connections in the model from the lettethi® t
feature units, the feedback from the lexicon camehan effect on SQ only acting at the level of
letter identification. When only words are presentethe task, the feedback from the lexicon may
have an effect on the letter level relatively eahlying the process that allows pronunciation, thus
reducing the effect of degradation. In other worsisce the lexical route is relatively fast as
compared to the non-lexical route, the former rmtmay have an important role in demining

pronunciation performance: hence, an interactioexisected between SQ and a lexical variable
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such as word frequency when only words are presamthe contrary, when words and nonwords
are mixed together, the non-lexical route wouldstrengthened. It follows that responses mostly
depend on this route and the feedback from thecdeximay thus have a later effect on
pronunciation, thus being unable to act on degradaSQ and word frequency would be thus
additive when words and nonwords are randomly mirdte task; moreover, the effect of SQ will
be additive also with lexicality. Further suppartthis interpretation is obtained by considering th
simulations reported in Chapter 7: here the effe€taiord frequency and lexicality were in fact
reduced by strengthening the non-lexical route.

In Chapter 6 we also demonstrated that TLC andcddixy interact when words and
nonwords are randomly mixed in the task and allstiv@uli are degraded. We argue that also this
effect is consistent with the previous hypothelisparticular, this interaction would be explained
because TLC affects a different level of processimitereas the effect of SQ is at the feature level,
TLC has its effect at the subsequent level of tattentification. As a consequence, the feedback
from the lexicon acts directly on TLC and its effeould arise early enough in pronunciation also
when words and nonwords are mixed in the task:d@h€ and lexicality interact.

As reported in Table 14 at least three other tesare relevant in this context. One of them
is the interaction between SQ and semantic prinming/ord reading: as said, this interaction is
perfectly predicted by the DRC model and it is ¢stent with its cascaded assumption; hence, this
result does not require to be further discussedvdyer, other two results (i.e., the joint effects o
repetition, SQ and lexicality and the joint effeadé SQ and regularity) need additional
consideration. For the sake of completeness, taggeriments will be discussed in details in the
next section.

Moreover, even if the previous findings could aldxplained within a cascaded framework,
the DRC model is not yet been demonstrated ablsirtmlate the whole pattern of data. As
discussed in the previous chapters this is prifigigiue to two major computational issues: 1) the
actual version of the model is unable to reprodaocg effect due to TLC 2) SQ may be not
correctly implemented in the model. These issudida@iexamined in details in section 8.4.

8.3 Future studies

A few results reported in previous literature hae¢ been directly analyzed in this dissertation and

hence need to be assessed in future researchearticular it will be necessary to define whether
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these results require thresholded processingtassibeen suggested or rather may be explained in
some alternative ways.

First, consider the joint effects of SQ and repmtiin reading (Blais & Besner, 2007). The
effect of repetition consists in words and nonwareksd faster after a single repetition in the task
(e.g. Scarborough, Cortese & Scarborough, 1997 &lfiect is traditionally explained as follow:
for words, the lexical entries would retain a highexel of activation when they are repeated than
when they are not (see, e.g., Coltheart et al.1 @0Astead, for nonwords, the benefit of repetitio
would arise when the phonological code is trandlat® an articulatory code (see, e.g., Seidenberg
et al., 1996). Blais and Besner (2007) reportedl wieereas the two factors interact for exception
words so that the effect of repetition was largerdegraded than for clear words (a result that, as
said, is perfectly consistent with the DRC moda&scaded assumption), the two factors were
additive in nonword reading. This finding has béggically interpreted as evidence in favour of an
account assuming that activation from the letterelleis cascaded to the lexical route, but
thresholded to the non-lexical route. We argudgesns, that the pattern of data can be explained by
referring to a dual-route account of list compaositieffects in reading. As said, irregular words
were mixed with nonwords in the experiment; so wght expect, for example, that the reliance of
the non-lexical route is reduced so to increasecdéxcontribution in reading (that would be
necessary to correctly read irregular words); heheeinteraction between SQ and repetition for
words. Instead, since the non-lexical route wowdddb-emphasized in the task, repetition may not
influence nonword reading; if this were true we htigxpect, for example, an interaction between
SQ and repetition in nonword reading when nonwosale solely presented in the task.
Nevertheless, the crucial point is that there kelyi no need to claim the need of a threshold to
explain these data since list composition is obslpimplicated in these results.

Consider now the joint effects of stimulus quabtyd regularity in reading aloud, recently
examined by Besner et al. (2010). The effect olil@ity emerges in languages with inconsistent
orthographies like English and consists in sloveading of exception words than regular words
(e.g., Seidenberg et al., 1984; Taraban & McClelld@®87). More specifically, skilled readers are
slower to read aloud words likgint and have because they are exception to the typical relation
between spelling and sound in which _INT is proremghas irmintand _AVE is pronounced as in
cave (see Roberts, Rastle, Coltheart & Besner, 20038)the DRC framework this effect is
explained in terms of competition at the phonemeellein fact, the lexical and the non-lexical
routes would activate different phonemes in theecak an exception word whereas both the
routines would activate the same set of phonemesnwhe word is regular. Hence, when an

exception word is presented to be read, the ouspuhe lexical route, which drives the correct
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pronunciation, would be slowed in the phonemic &ulifecause of competition from the non-lexical
route (which produces a regularization of the ipp&esner et al. (2010) reported that when
regularity is factorially manipulated with SQ, theo factors interact when only words were
presented in the task. However, the effect of digjran was reported to be smaller for irregular
than for regular words in their study. Criticallthis effect is inconsistent with the DRC model,
which simulates the opposite pattern, characterlpedhe effect of degradation being larger for
irregular than for regular words. Moreover, the tfeators have been shown to exert additive
effects on skilled readers latencies when wordsrevimixed with nonwords in the task, thus
providing — according to the authors — evidencdarsgjaascaded processing in reading. Besner et
al. (2010) explained their results as follow. Theeraction obtained when only words were present
would depend on the fact that degradation influsrtbe non-lexical route more strongly than the
lexical route. The authors showed, in fact, thad thteraction is correctly simulated by the DRC
model when the strength of the non-lexical route vealuced in degraded condition. Moreover, the
additivity obtained when words and nonwords werelocenly mixed in the task has been explained
by referring again to the lexicalization hypothesis. processing would be thresholded when both
words and nonwords are presented in the task.

We argue that the pattern of results obtainedig1gtudy could be interpreted by referring,
once again, to list composition effects in degradedding. First, we note that the effect of
degradation is indeed likely to be stronger for nlo@-lexical route than for the lexical route i th
DRC model. This would be due to the fact that, e/tiiie lexical route consists of both feedback
and feed-forward connections, there is no feedirathe non-lexical route; hence, part of the delay
due to degradation would be partially reduced lerlexical route given feedback activation. A few
preliminary simulations partially support this hypesis. In these simulations, regular words were
presented to the DRC model and the lexical andhtimelexical routes were alternatively lesioned;
it emerged that the effect of degradation for ragwords was larger when the lexical route was
switched off than when the non-lexical route wastdved off; hence, it could be inferred from
these data that the effect of SQ is indeed strofagyehe non-lexical route than for the lexical t®u
Moreover, we argue that the balance between therdwies needs to be manipulate to reproduce
these results. In fact, an interaction (inversth&d simulated by the DRC) is obtained by Besner et
al. (2010) when (regular and irregular) words wenesented in the task: since also irregular words
were present, one might expect, for example, tlxécdé contribution being stronger in pure
condition; this means either that the lexical rastemphasized or that the non-lexical route is de-
emphasized. Consider this second hypothesis: thelexical route — which suffers more from

degradation — might be weaker in pure list. We arthat a similar account might explain the
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interpretation proposed by Besner et al. (2010ctyhas the authors demonstrated, allows the DRC
model to reproduce the data empirically obtaine@nvbnly words are present in the task. If our

hypothesis is plausible, then the additivity of & regularity obtained when also nonwords are
presented will be easily explained by assumingsistently with the proposal expressed in Chapter
6 of this thesis, that the non-lexical route becesteonger when words and nonwords are randomly
mixed in the task compared to when only words aesgnt. So a new job for the feature is to asses
these issues through experimental investigatiorgtwdhclear, however, is that these data are not a

priori against cascaded processing in reading.

8.4 Computational issues

As said, the simulation of the empirical data witlihe DRC model depends upon two principal
computational issues.

The first concerns the Total Letter Confusabilgyice TLC has an effect for human readers,
computational models of reading need to simulageeftects. Hence, we need to reproduce the
effect of this variable as well as the patternesiults that depends on TLC in the DRC model.

A second problem regards the simulation of stimdiegradation. Whereas this variable has
been largely implemented in computational modelseaiding we argue that a different solution

may be needed at least within the DRC.

8.4.1 Simulating the effect of TLC. A few preliminary results

The Total Letter Confusability is a variable whiefiect in reading has been recently assessed. The
role of this variable in performance of patientieetied by pure alexia has been demonstrated, for
example, by Fiset et al. (2005). In this dissestative also showed that unimpaired readers
performance is affected by the TLC in degraded euredion: in fact, skilled readers’ latencies
increase as the TLC of degraded letter stringseas®s (Chapter 3). Moreover, evidence of
sensitivity of human readers to letter confusapildr degraded stimuli emerged in the data of the
experiment reported in Chapter 4. the correlatibesveen TLC and RTs with letter length
partialled out are in fact significant in this expgent for degraded stimuli, r = .182, p = .048¢ bu

not for clear stimuli, r = -.007, p = .94, consigtg with the previous finding.
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Since human readers are sensitive to letter cobifitpawe must require computational
accounts of reading to be too. In this section wWeaxamine this issue for the DRC model. In fact,
if sensitivity to TLC is to be used to simulatetiie DRC model the additivities of degradation with
other variables in nonword reading, then the DRGlehavill have to be sensitive to TLC, and this
is required more generally because human readeseasitive to this property of nonwords.

As said, there is no effect of TLC in the DRC ralodith the current parameters. This is not
surprising; the absence of an effect of TLC octgsause the inhibition from feature to letter units
is so high relative to their excitation (i.e., .188. .005), a consequence of which is that just one
mismatching feature will completely block activatiof similar letters. As said, the default values
for the Feature-to-Letter Inhibition and Featurd-giter Excitation parameters were inherited from
the IA model and we don’t have to adhere to thenfatt, there is not any reason to assume that the
inhibition between feature and letter units is Bles greater than their excitation. Why shouldn’t
these parameters be the same?

So we investigated what happens when they are thadgame in the newest DRC model’s
version (the DRC 1.2), by setting both parameietté value of .005.

When the most confusable letter in DRC’s font e kbiterO — is run with this parameter
change, it does activate multiple letters: afteprbécessing cycles, there are 17 different letters
activated when the input @ (the most active letter beir@itself). When the least DRC-confusable
letter X is run, there are 4 different letters activatedpbgcessing cycle 5 (the most active letter
beingX itself).

What role does this confusability effect have omword reading? We used the high-TLC
nonwordCOLF (DRC-TLC = 2.7) and the low-TLC nonwoBIDT (DRC-TLC = 2.1). With the
parameter change and degradation (i.e., FLI = FLB0O8), both the nonwords were read aloud in
162 processing cycles; this means that there ieffext of TLC here, even though many more
incorrect letters are activated IGOLF than byBIDT (because of the parameter change). It is
obvious why there is no TLC effect. Multiple legeaactivation will only interfere if they can inhibi
the correct letter; instead, the default value eftér-Lateral-Inhibition being used here is zero.
Hence we introduced a second parameter exchangecbgasing the value of the parameter
regulating the lateral inhibition at the letter éé¥rom zero to .008. Now the high-TLC nonword
COLF was read in 182 cycles and the low-TLC nonwBI®T in 178 cycles; that is, there’'s a
substantial effect of TLC (4 cycles). Moreover stlgffect has been obtained when stimuli were
degraded in the simulation; nevertheless, in adegraded condition (i.e., FLI = FLE = .005) the
low-TLC nonwordBIDT was read in 146 cycles and the high-TLC nonw@@LF in 148 cycles;
that is, the effect of TLC is much smaller (2 cggleThis means that the effect of TLC is larger
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when stimuli are degraded than when they are cteasistently with our empirical data (Chapter
3). As a consequence, the effect of TLC can beectyr simulated by the DRC model when the
parameters described above are adequately mamgulat

Now the task is to demonstrate that this way ofutating TLC in the DRC model also
shows the pattern of results for length and dedm@aavhen TLC is confounded with letter length
and when TLC is matched across length. In factnaetvevere true that the additivity of degradation
and length observed in human reading by Besner Rwioerts (2003) occurred because of a
confounding between TLC and length, the DRC motklrave to be able to simulate this effect,
because it is supposed to be sensitive to the ganables that human readers are sensitive to.

To this purpose, we run the Besner and Robert®93p8timuli by applying the parameter
modification proposed above in order to make thel@hsensitive to TLC. As said, short and long
nonwords were not matched in terms of TLC in theri®e and Roberts’ (2003) experiment: the
longer nonwords used in this study had higher Tlalli@s than the shorter nonwords. Moreover,
the same is true when the DRC-TLC is considereackleTLC is not matched across letter string
length neither for humans nor for the DRC modehis condition.

Mean cycles to criterion are reported in Table 15.

Stimulus Quality
Clear Degraded Diff.

Length Cycles Cycles Cycles
Long 157 191.2 34.2
Short 146.9 180.5 33.6
Diff. 10.1 10.7

Table 15 Mean cycles for the Besner and Roberts’ (2003)
stimuli (TLC confounded across length).

Here the effect of letter string length is not mudifferent for clear and degraded stimuli,
consistently with the additivity reported by Besiaeid Roberts (2003). Analysis showed that — if
anything — the length effect is smaller for cldaart for degraded stimdffj F(1,62) = 3.8, MSE =
.829, p = .057, consistently to what we found in @xperiment (Chapter 4).

3 Even it were true that the longer nonwords haggdt TLC values than the shorter nonwords in thenBe and
Roberts’ (2003) study both for human readers andhfe DRC model, the specific values of TLC for tama clearly
differ from the specific DRC-TLC values for thesénmali. As a consequence, it is not surprising ttfeg results
obtained in this simulation only partially reproéutie empirical data documented by the authors.
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Now we need to show that when short and long nodsvare matched on TLC, there is an
interaction between SQ and letter string lengtthiite length effect smaller for degraded stimuli.
In order to test this prediction we need to creatpecific set of stimuli, so to have short andylon
nonwords matched on the DRC-TLC values. We woulchi&ed to choose nonwords that were 3,
4, 5 and 6 letters long with TLC matched acrossfdle conditions, but this is not possible with
DRC model’s letter confusabilities. The differenoetween the highest and lowest confusability
values is not large enough to have equal TLC ftettgr and 6 letter strings. So we used 3 and 4
letter nonwords matched on TLC, and separately b Gtetter nonwords matched on TLC; 32
items for each of the 4 cells matched for theitiahphoneme have been selected.
Mean cycles to criterion are reported in Table 46 ia Table 17.

Stimulus Quality

Clear Degraded Diff.

Length Cycles Cycles Cycles

4 |letters 144.4 175.9 31.5

3 letters 142.2 175.5 33.3
2.2 0.4

Table 16 Mean cycles for 3 and 4 letter nonwords
matched on TLC in function of SQ.

Stimulus Quality
Clear Degraded Diff.

Length Cycles Cycles Cycles

6 letters 156.1 189.6 33.5

5 letters 153.8 189.2 35.4
2.3 0.4

Table 17 Mean cycles for 5 and 6 letter nonwords
matched on TLC in function of SQ.

When short and long nonwords are matched in tefd.G, the effect of degradation is smaller
for degraded than for clear stimuli. Analysis shdveehighly significant interaction between SQ
and letter string length both for 3 and 4 lettenwords, F(1,62) = 23.1, MSE = 1.3, p < .001, and
for 5 and 6 letter nonwords, F(1,62) = 9.8, MSB29, p < .005.
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To summarize, we showed that the DRC model peyfeefiroduces the patter of empirical data by
adjusting the values of the parameters that reguleg model’'s sensitivity to letter similarity. In
particular, when the parameter that regulates théition between the features and the letters is
reduced so to match the value of the parameterlaigy their excitation and letter lateral
inhibition is implemented in the model (consistgntith the theoretical assumption), the following
results are obtained:

1. both human readers and the DRC model show an effediC, which is larger when

stimuli are degraded than when stimuli are clear;

2. both human readers and the DRC model show an ati@nebetween degradation and length
on nonword reading, with the length effect smaliterdegraded than for clear stimuli when
TLC is matched across the different values of naaMength;

3. both human readers and the DRC model show adgitfithe effects of degradation and
length on nonword reading RTs (or a smaller eft@ckength for clear than for degraded
stimuli) when TLC is confounded with length.

Our preliminary work thus suggests that the DRC ehagl successful in predicting and simulating
the results depending on TLC. Now a job for theifeits to see whether the DRC 1.2 with the new
parameter setting can simulate all the effectsithatctual version and the previous versions could
Moreover, now that we have a way of simulating Téfiects, it could be possible to simulate
letter-by-letter reading with the DRC model and particular to simulate the various results
depending on this variable.

Obviously, a further challenge for feature reseascWill be also determining whether and
how computational models of reading (besides theCDRodel) can simulate the effects due to

letter confusability as well as the patter of resdepending on this variable.

8.4.2 Is degradation correctly implemented? A different poposal

It is largely assumed that degradation can be imefged in the DRC model by reducing the
connection weights between the feature and therleihits. However, stimulus quality should
instead affect the rate of activation gain at tieual feature level, sincevisually degrading the
stimulus will have the effect of lowering the dffemess of the stimulus in activating all of the
relevant feature detector{McClelland, 1979, p. 292).
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Hence, we argue that SQ is actually not correatigiemented in the DRC model.

As said, in the current computational version ef todel, a visual feature can be only on or
off; as a consequence, the activation accrualeatahture level cannot be affected by degradation.
If it were possible to slow the rate of processaighe visual feature level, it would be only by
adding a constant of time to performance. Simutaiio fact begins when all the feature units
reached an activation of 1.0; feature units arepked and reach an activation of 1.0 in one cycle.
In real life, however, the activation in these anitill not go from 0 to 1.0 instantaneously busthi
process will take a certain time. A way to implemdegradation in the DRC model might thus be
by delaying the time that feature units need tochiethreshold. However, the effect of this
manipulation will be simply to add a time constaotperformance. Hence, the model will be
incapable of producing anything else than addiéiffects of SQ and a second factor affecting one
of the subsequent levels assumed in the modele Simeractive effects of these types of variables
have been instead largely documented (e.qg., BldBegner, 2007; Ferguson et al., 2009alley
& Besner, 2008; Yap & Balota, 2007; our resultsortgd in Chapter 4 and 5) this cannot be an
adequate solution.

Given that activation is cascaded in the model, (aechange in rate of activation in early
processing units will change the rate of activatdownstream), it has been proposed that a
reduction of activation at the feature level may rhedelled by reducing the weights of the
connections between the feature and the lettes.uinitother words, the effect of a reduction in the
asymptotic level of activation of the feature unitay be reproduced by reducing the rate at which
activation accrues at the letter level. Hence, aldafion is actually implemented in the DRC model
by reducing the parameters regulating excitatiash iahibition form the features to the letters.dt i
clear, however, that this solution has been redquisethe current computational architecture of the
model; nevertheless, this implementation doeseftgat any theoretical issue nor the effect that SQ
has on human performance.

We argue that a more adequate implementation nmaaypdssible by changing the
computational version of the DRC model as follove. #aid,“individual features (...) are set to on
or off (1 or 0)” (Coltheart et al., 2001, p. 213) in the currentgoaon and this organization was
inherit from the progenitor of the DRC, the IA mgdes McClelland and Rumelhart (1981) stated,
in fact, “It is assumed that features are binary and that ea® extract either the presence or the
absence of a particular visual featur@j. 381).In short, the feature level is actually not casdade
but rather thresholded. This organization, howeieused purely for convenience and doesn't rely
on any specific theoretical assumption. On theremyt cascaded processing is assumed to occur in

the system. Hence, the idea might be to allow atttm to cascade from the visual feature level to
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the subsequent letter level. This might be obtaibgdallowing a visual feature to accumulate
activation continuously up to its asymptotic valtiee same solution that is actually implemented in
the other levels of the model; in other words,\edton in each feature unit would grow over time
in the continuum 0-1.0 and the level of activatiora precise moment in time would depend on the
qguality of the stimulus in input, following the assption that the rate at which activation rises at
the feature level depends on SQ, i.e. activatieasrifaster for clear stimuli, slower for degraded
stimuli. As a consequence, whereas features camesmy to clear letters will be fully activated
when the stimulus is presented, features correspgrid degraded letters will be only partially
activated by the stimulus in input; in turn, degrddetters will be less activated than clear lstter
and responses will be thus slower for degradeerlsttings.

We argue that modifying the model in this way na#lgw the simulation of the effects that
SQ and TLC have with lexical variables. We arguefaict, that the pattern of results obtained in
this context may depend on the different levelpmicessing at which these variables have their
effects; specifically, we suggested that the adtigs of SQ and word frequency/lexicality obtained
when words and nonwords were mixed in the taskdcoepend on the indirect effects that the
activation from the orthographic lexicon has ont8€t, in turn, would depend on the fact that there
is no feedback from the letter to the feature ur@early, implementing degradation within the
feature level will be necessary to correctly sinrithese effects. Moreover, we argue that such an
implementation has to be realized in the DRC maabelonly to allow it to correctly simulate the
effect of SQ, but also to fully implement the mdsletheoretical commitment to cascaded

processing.

8.5 Thinking to a threshold

Before coming to a general conclusion, a few panetsd to be further discussed.

As largely asserted in this dissertation, our adarly deny the hypothesis of thresholded
processing at the letter level of the DRC modelk iBuhere a threshold in any other level assumed
in the model? In general we argue it is not. Howewensider how the response is usually
generated by participants in a reading task. TYlgican reaction time experiments, subjects are
instructed to respond as rapidly as possible maintaa high level of accuracy. How do subjects
decide that the time has come to initiate a resp¢sse McClelland, 1979, p. 304)? In traditional

discrete stage models, it is relatively easy toeustdnd when participants would release they
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responses since the output of processing is albtning and becomes thus available at some
particular instant in time: after that time, thareat response can be executed; before it, subjects
would simply have to guess. However, in terms acaded accounts, there is no a specific instant
in time before which responding would be at chaaod after which it would be correct, since
activation continuously increases in processingsugradually leveling off at some maximal level.
In such a situation, what does the instructiore&pond as rapidly and accurately as possible mean?
One possibility is that participants set an impld®adline consistent with a low enough error rate
(Ollman, 1977); this strategy, however, would nqgtlain why RTs differ for different experimental
conditions, even when the items representing theaditions are mixed within the same block of
trials. An alternative is that subjects adopt ativaton criterion and respond when activation in a
response unit reaches a level that is sufficiernsure an acceptably low error rate (Grice, 1968).
A similar solution is implemented in the DRC modigl:fact ‘the model is considered to have
determined the pronunciation of a monosyllabicelestring when it has been activated (to some
criterion of satisfaction) all of the phonemes wdttletter string (Coltheart et al., 2001, p. 217); in
other words, pronunciation occurs in the DRC maaleén all the phonemes reach a threshold.
However, activation flows in a cascaded fashiomugh the reading system and this mechanism
only allows the execution of responses.

A related issue regards the DRC model's non-lexrcaite and, in particular, how the
(serial) movement from left to right is implemeniadhe model. In the last computational version
of the model (i.e., the DRC 1.2), the non-lexiaalte moves on the next letter when the currently
being activated phoneme reaches a critical levelctif/ation: evidently this could be described as
thresholding the phoneme level. Again, this dogsmean that processing is strictly thresholded,
but rather that a thresholded mechanism is impléedem the model in order to represent the
spatially serial processing assumed within the lleaical route.

To conclude, we argue that processing in the rgasiyistem is cascaded but a thresholded
solution is implemented at the phoneme level of fRC model 1) to allow pronunciation 2) to
implement the serial movement of the non-lexicakeo

The second issue we need to point out can be esqatess follow: is thresholded processing
needed to explain additive effects of variables?hWwidiscrete stage models, additive effects of
variables are easily explained by assuming thasetheariables influence different levels of
processing; an interaction between variables wandtead mean that those variables affect the
same level of processing. Conversely, this logiesdoot apply to cascaded models: in fact, if
activation cascades through the levels, also viesaaffecting different levels of processing can

interact one another. It follows that, whereas daat manipulations may provide useful
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information to delineate processing sequence idimgaaccording to discrete stage models, this
interpretation is not longer valid within casca@deadounts.

Besides this crucial issue, a question remainseaddéalt with: can additive effects of
variables be explained within a cascaded framew®H® topic is extremely relevant in researches
on visual word recognition: in fact, if only intetéons are predicted by cascaded processing, then
this account has probably to be rejected; it wdoddindeed unrealistic to assume that factors
manipulated in the task can only interact with anether. To better understand this point assume
an experiment in which two variables affecting e@iéint levels of processing are jointly
manipulated: call these variables A and B and asghiat A influences an earlier process than B. In
a cascaded model, the effect of the variable Aotsresolved within the level which A affects; on
the contrary, the effect of the variable A will luénce processing downstream in the system. We
argue, however, that this does not necessarily nie@nA and B interact: the variable A could
simply have an effect on performance (affectingcpssing downstream in the system) without
interacting with the effect of the variable B. Ither words, we suggest that the effect of an early
factor may cascade to the subsequent levels okepsoty still being additive with the effects of
variables operating at those levels. The situattwwever, is likely to change when cascaded
models also assume interactive activation. In tleg®@mstances, in fact, not only the effect of A
cascades to the level influenced by the variableus,the effect of B also feeds back to the level
affected by A, since feedback from a later levaitdbutes activation at the earlier levels, the two
variables are likely to interact.

To summarize, we are inclined to believe that aded processing is consistent with
additive effects of variables, whereas cascadedetsodhich also assume interactive activation
may not be able to reproduce these effects. Whetieinterpretation is valid remains to be fully
determined. It seems to us, however, that the tesligcussed in the present dissertation provide
partial support to this interpretation. Some of iteractions we reported are in fact explained in
terms of feedback activation rather than by cast@decessing per ¥ in many circumstances the
two factors interact because the variable havitajex effect has a role on the earlier variable. To
use an example, consider the interaction betweemrglQorthographic neighbourhood size (N) in
nonword reading (see Chapter 5): it is not justabee the delay in processing caused by
degradation cascades to the lexical level thaetfext of N increases in degraded reading; rather,
the feedback from the lexicon contributes activatan the letter level thus reducing the effect of
degradation for nonwords with orthographic neighs@and hence producing a larger effect of N in

degraded condition.

% Interactive activation makes of course sense witlyin cascaded frameworks. In discrete stage nsodteffact, there
would be not any effect if activation feeds baaknfrlater levels to a level which processing isadyeended.
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If our reasoning is plausible, it follows that evprocessing may in fact be cascaded in
visual word recognition, perhaps not all the levdlprocessing assumed in the reading system may
communicate with one another through feedback adiores. At this purpose consider, for
example, the DRC model: as said, there is no feddivathe model from the letter to the feature
units. We suggested in this dissertation that dhganization may indeed be crucial to explain the
additivities of SQ and lexical variables observduew words and nonwords are mixed in the task
(see Chapter 6). Regardless of our specific praptisa feature could in fact allow the DRC model
to account for additive effects of a variable iefiecing the visual feature analysis (e.g., SQ) and
some other factors influencing later processes.otimfately, it has been not yet determined
whether the whole patter of data could be simulsétga similar architecture. It seems to us to be
critical, however, that additive effects of variabldocumented in previous literature always involve
degradation as one of those variables; in othedsydo the best of our knowledge, additive effects
have never been reported when the factors mangaliatthe task affect levels of processing which
are subsequent to the visual feature analysis.eBtly] this may be a strong argument in favour of
our account. Clearly, defining how visual word rgoition needs to be modelled in order to
reproduce additive and interactive effects of fetwill be a critical issue for future researches.

Finally, it has to be noted that cascaded and eliscstage models are not the solely
available accounts. On the contrary, an intermedgaisition also exists, even if computational
models of reading and visual word recognition higpécally ignored this idea.

Consider first the following question: what do wean, exactly, with cascaded processing?
Assuming cascaded processing does not mean to a@sthan subjects are able to identify, for
example, the letters in a stimulus without the Itestithe feature analysis; as a consequence, the
logical requirement of the task itself requiresttha least some of the processes involved in
performance occur in a strict succession. Cascpaszessing more likely means to reject the idea
of traditional discrete stage models that one camepbof processing must be completed before a
second can start; hence, according to cascadedisnesien when a process depends on the output
of another process, the later one will steforethe previous is completely ended. In order to have
a better understanding of this point, considerftreulation suggested by Norman and Bobrow
(1975). The authors hypothesized that the outp@ach process could be a set of quantities, each
one indicating the degree of confidence that onéhef several possible conclusions about the
stimulus in input is correct. For example, at sonstant in time, the output of the feature analysis
might indicate a 20% chance that there is a véiiiva on the left of the pattern in input and a 5%
chance that there is a horizontal line across tigglley a bit later, the same outputs might indicate

values of 35% and 60%. According to cascaded psougsthe outputs from the feature level are
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always available and the process of letter idexatiion would be using this changing information
over time.

Now, imagine to apply this same logic to threshdldeocessing. In traditional stage
models, a threshold is reached in a processingaman activation in that unit reaches its maximum
value, which means that information processing ooy in that unit is completely ended; to
exemplify, according to traditional discrete stagedels, activation would be passed to the letter
level when the output of the feature analysis iatdis a 100% chance that the stimulus in input has
those visual features. As said, several empiriesh d@ontrasting this hypothesis exist. A different
interpretation is however possible by assuming thatthreshold does not reflect the maximum
value of activation in the processing units; ratlaesimilar thresholded mechanism may be set to an
amount of activation that is considered satisfactorthat unit: once this critical level is reached
then activation would flow to the subsequent lened purely cascaded fashion. In other words, it is
possible that processing occurring at an earlyl legeds to collect a certain amount of information
about the stimulus in input before cascading tolzssquent level. Using the previous example, it
could be that activation is passed on to the lééeel only when the output of the feature level
analysis indicates with a certain chance (say, 8@) the presence of some visual features in
input. A possible reason for a similar organizatioay be a principle of cognitive ergonomic; one
may argue, in fact, that there would be no reasomass information on to latter stages when the
degree of confidence about some characteristitseostimulus in input is very low: such a strategy
would be in fact highly demanding in terms of cadiye resources and perhaps counter-productive
for performance. Whether this proposal fits the eivgd evidence needs to be evaluated. It seems
to us, however, that such an account could beaggbktforward solution to reproduce additive and
interactive effects of variables, perhaps beingakdvalternative to a purely cascaded account. It
may be hence interesting to implement a similaormition processing modality in future

computational modelling of visual word recognitiand reading aloud.

8.6 General conclusion

The assumption of cascaded processing is centtaki®dRC model and in many other models of
language processing following the work by McCletlaand Rumelhart (1981). Previous simulation
works, considered in the light of results from k&dl readers, demonstrated that the assumption of

cascaded processing is problematic. These studieduded that, since the DRC model fails to
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account for the effects showed by human readersqitires a modification; in general, a threshold
at the letter level has been introduced as a caatipotl solution that would allow the model to
simulate the empirical data obtained by varyingnstus quality in conjunction with lexical and

non-lexical factors in reading aloud tasks.

The main goal of the empirical activities reported this thesis has been to test the
hypothesis of thresholded processing in the readiystem. First of all, we collected empirical
evidence demonstrating that processing in readamg tb be cascaded. Moreover, we gave an
explanation of the previous apparently problemagsults. From one hand, we showed that the
additivities of SQ and another variable observednonword reading arose because of a
confounding with the Total Letter Confusabilityyariable that is involved in reading of degraded
letter strings; also, we demonstrated that the DiR®@el can in fact simulate these empirical data
simply adjusting the values of a few parametertringulate its sensibility to letter similarity.dm
the other hand, we argue that the additivities @féd lexical variables obtained when words and
nonwords are randomly mixed in the task can beagx@tl by considering list composition effects
in degraded reading; we also suggested that dagradshould be differently implemented in the
DRC model in order to attempt the simulation ofséheesults. In short, we demonstrated that the
additivities previously reported do not necessacigim the need of a threshold in the reading
system; on the contrary, these data can be explé@penodelling reading with a dual-route account
assuming cascaded processing.

As a consequence, the answer to the critical questivestigated in this thesisdees the
Dual-Route Cascaded model require a thresfelds clearlyNo. Rather, the computational version
of the model needs to be only partially modifiedarder to reproduce the effects due to letter
confusability and to correctly implement stimuliegdadation. More generally, the data obtained so
far indicate that there is likely to be no thresleal processing in the reading system; factorial
manipulations of factors will be extremely usefufarther analyze this issue.

Finally, practical and theoretical implicationstbe empirical work presented in this thesis
are evident. From one hand, our data showed tkeaDBC model of reading does not require any
radical modification involving its cascaded natureom the other hand, the researches that have
been presented sustain a cascaded framework actbent that — (at least) at present — better

models the cognitive processes underling readiogdshnd visual word recognition.
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APPENDIX

A. Nonword set Chapter 2

One or more orthographic neighbours

Zero orthographic neighbours

Short Long Short Long
nonword baseword nonword  baseword nonword nonword
beceo becco buocche brocche bluva bruchio
bluco bruco breglia briglia bovre braighe
burpo burro bleccia breccia bunpo bleuche
cavua cavia chiozza chiazza bupio buospio
cedlo cedro cenghia cinghia buppi biucche
ceflo ceffo cioccio ciuccio crasa chirria
catra cetra creccio cruccio cufli chiuspo
cluva clava chiusco chiosco cusbo crausco
cubra cobra cheatta chiatta dripo drussio
felfa felpa friccia freccia fafre friofro
fiulo fiala foschio fischio fluco freusio
fraca frana frantia frangia gedre geresco
gemua gemma giungra giungla geflo gelagri
gerfa gerla giustra giostra gnasa gnattro
ghito ghiro ghionda ghianda groze grompio
gnolo gnomo gnaffio graffio liplo luorlio
gurme germe gruglia griglia lumio liospuo
melfa melma manvria mandria luofa luostia
milpa milza muccheo mucchio meluo miorfio
mucua mucca muscheo muschio nurio neucche
murlo merlo mucchia macchia nuzao nerghio
piuba piuma piccheo picchio pivvo praschi
piuba piuma piustra piastra quoso quochia
siupe siepe strullo strillo sfepo sproghi
sludo scudo spiuzzo spruzzo soplo strisso
sviva stiva svrazzo sprazzo tiafi trippio
tipre tigre truglia triglia vreva vregghi
vesba vespa voschio vischio zatro zianglo
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B.

Nonword set Chapter 3

List B
Low TLC High TLV Low TLC High TLV
DAVIUTA DEBEFIO DUCAZIA DOBERSO
DILICUA DISULMA DUTILIA DROSORO
DIVILIA DEMEBRO DUZIALA DABENEO
DIZILVA DREBENO DILCAVA DEBREMO
FAVULIA FEBERMO FOSPATA FEBARIA
FIVATUA FEBLECA FULIVUA FREBANO
FILICUA FRESUBO FURZICA FOBARGO
GACUVIA GABENIA GARITIA GORIBIO
GALALIA GRONERO GULATIA GOBERSO
GAVACUA GOBREMO GATICUA GOMEBEO
OCAVITA OBEMINO OPICUVA OMEGANO
OCILIVA OBIMATO OTIRIVA OMESIBA
OCIVATA OFORIBO ovicucCl OPOBINA
OLILICI OLEBERA OVATULA OBEREFO
PALIVUA PURIBIO PLIVAVI PORUTIA
PLATIVA PRISICO PATUZIA PEBERIO
RAVICUA REBRESO RILIZIA REMERMO
SANELIA SANEBRO SICULIA STIPOBA
SACUVIA SCUBELA STICUCA SEMOFRO
SUCIZIA SEBERNO SAZILIA SEBREMO
SLUCAVA SBEMERO SCUVALA SOMEBIE
TOLTOVA TERADIO TUCAZIA TREMEFO
TRISIPA TRESENO TICUVIA TINAIGO
VILACUA VEBRESO VUCITRA VENORSO
VOZILIA VREBEMO VAVILIA VEMERSO
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C.

Nonword set Chapter 4

TLC balanced

TLC not balanced

Short Long
DEFEO DIVILIA
DROME DUZIALA
FEQUE FLICUAI
FODRO FOSPATA
FOQUE FURZICA
GEDRE GIARTIA
GHEBE GACUVIA
GHEMO GHIVILA
GNEBE GNALPIA
GNESO GNAUCIA
OBBEO oLILICI
OBOBE OTRIVIA
OBROE OPICUVA
ONEBO OCILIVA
ONENA OLAGHIA
ORIRO OLICHEA
OSEBO OCAVITA
OVEGO OCIVATA
OZEMO ovicucl
PEMIO PLIATIA
PEQUO PLIVAVI
POBEO PLAUVIA
SEFLO SUCIZIA
SESME SANELIA
SIOFO SAVICUA
SMEBO SCULVIA
SVABE STICUCA
TEOBA TUCAZIA
TIBBO TUOGLIA
TREBE TRISPIA

Short Long
DUCAO DISULMA
DRIPO DEBEFIO
FAFRE FREUSIO
FLUCO FEBARIA
FLUPA FEBLECA
GEFLO GIORBIO
GHEIA GABENIA
GHEDO GHIRAMA
GNEVA GNOMPIO
GNALA GNEBRUO
OPPUA OMESBAI
OCACE OFROBIO
ORCAO OLEBREA
OCITA OBEMINO
ODADO OPROGHI
ODALO ONERCHI
OZICA OPOBINA
OTIDO OMEGANO
OZICA OBIMATO
PUFLI PREISCO
PILVO PUORTIA
POCAO PIURBIO
SOFLA SANEREO
SuUsIO SOMEBIE
SOPLO SEBENEO
SUMIO SCUBLEA
SFEPO STIPOBA
TIAFI TINAGIO
TIMMA TREGLIO
TISBO TEARDIO
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D.

132

Nonword set Chapter 5

List A List B
Many-N  Zero-N Many-N Zero-N
BLAVE BLIRP BLICK BLICH
CHACK CHYTH CHARP CHYLE
CLECK CRAUN CLOSS CLIGH
CREAT CRIRR CRAFE CRYLE
DATCH DRICH DRAVE DRURP
FRICK FLIFE FLATE FLAUB
GAINT GHAIF GATCH GHISC
GIGHT GLITH GLEAT GLYME
GLAVE GLIEK GRINT GRULE
PETCH PLAFF PAUNT PLECH
PLAME PLARM PLARE PLAUB
PRITE PLOAM POUTH PLIVE
POTCH PLUTT PRIPE PLYTH
PRIVE PRAIF PLINK PRAUT
SLIPE SKAUK SAUNT SLIEN
SCORT  SCROU SCALL SLIER
SPOOP  SLIRM SLINE SPAPH
SLOUT SPYTH SPOOT SPLEA
TATCH TRARC TOUTH TRURL
TRIVE TWAUL TRAVE TROAR
BINCH BLIFE BLANE BLERF
CHASS CHERF CHONE CHYBE
CRAME CRYBE CRASE CRERF
CROSE  CRARN CREET COOSH
DORSE  DREWT DREAK DRIRR
FRESS FLEBB FOUSE FLENE
GOUSE  GHIRM GRABE GHYTH
GRAGE  GRERG GRARE GRIGH
GRAME  GRURK GRASH GRERF
PENCH PLEEM POOSE PRAUB
PORSE PLERB POUSE PLEWN
PROME  PRERG PROSS PRECH
PRINE PRETE PROPE PREUM
PROWN  PROCH PRIBE PRURB
STAFE  SKOAM SEAVE SKURR
SPAME SLEFF SMORE SKASS
STOOK SLERG STABE SLESE
STASE SLUBE STORN SLOMB
TORSE TEECE TOUSE TRURR
TRUSH  TWOAR TRIME TROAM




E. Word and nonword sets Chapter 6

Word Nonword

Low TLC High TLC Low TLC High TLC
BALIA BENDA BILZO BERCA
CELLA CENNO CITRA CESBO
CLAVA CREMA CLARO CRENE
COCCO COSMO CALSA CABRO
COLPA COBRA COLVO CONFE
DANZA DENTE DILCE DERDO
DITTA DOSSO DIACO DREGO
FALCO FORNO FILPA FENTE
FALDA FARRO FLOCA FRONA
FIALA FIENO FIAVA FIEBA
FIATO FIORE FILCO FIRBA
FOLLA FONTE FUTTA FOSBA
GARZA GAMBO GUTTO GUMMA
GAZZA GONNA GOLCO GREDO
GIOIA GEMMA GIUCO GEBIO
LACCA LEMBO LADLO LEBRE
MAZZA MAMMA MAPIA MEFFA
MOLLA MERLO MITUA MIEBE
MUCCA MANGO MILGA MANBA
MULTA MENTA MALCA MENZO
PACCO PENNA PINIA PONNA
PALCO PERNO PAUCO PERTO
PANCA PRETE PISCA PONBE
PULCE PLEBE PALDA PONNO
RAZZA RENNA RATIO RENTA
RICCO ROSPO RUCCA RASSA
RULLO ROMBO RULTA RISMO
SALTO SASSO SALCA SEBIA
STIVA SIEPE SAITA SUOMA
SUOLA SUONO SCAPA SMAGO
TACCO TONNO TITTO TARSO
TALPA TORTO TALGA TARBA
TAPPO TOSSE TALTO TONGO
TARLO TORBA TROLA TREVE
TASCA TRENO TOITA TIBRE
TEDIO TONFO TUFLO TUOMO
TAZZA TORRE TITIA TENBA
VALLE VERME VITTA VEMBO
VASCA VESTE VALTO VESBA
VILLA VENTO VILPE VEBRO
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F.  Word and nonword sets Chapter 7

WORD NONWORD (baseword) WORD NONWORD (baseword)
BADGE BAIME (baize) LEASH LERGE (ledge)
BEACH BEART (beard) LUNCH LAMPH (lymph)
BATCH BENTH (bench) MIRTH MORSH (marsh)
BEAST BERCH (beech) MOOSE MOURD (mound)
BLAZE BLAVE (blade) NERVE NARSE (nurse)
BLISS BROCK (block) NIECE NATCH (notch)
BLOOM BLEAM (bream) PEACE POTCH (patch)
BRIDE BRACK (brick) PEACH PHOSE (phone)
BRINK BROOL (broom) PIECE PUTCH (pitch)
CHAIR CHERT (chest) PLANE PLONT (plant)
CHURN CHERK (cheek) PLUME POUTH (pouch)
CHICK CHISS (chess) PRAWN PRASK (prank)
CLOAK CLATH (cloth) PRIZE PRIVE (pride)
CLOCK CRINE (crime) PLANK PLAVE (plate)
CLEFT CLOID (cloud) QUEEN QUERT (quest)
CLOWN CLOME (clove) QUILL QUIRT (quilt)
CREED CLEAM (cream) RANCH REAGN (reign)
COUCH CANCH (conch) RHYME ROACK (roach)
COAST CRUCK (crack) SAUCE SCASE (scare)
CRASH CREEB (creek) SCARF SCODE (score)
CROWD CRAWN (crown) SCOOP SCOKE (scope)
DREAM DRISS (dress) SCOUT SCREP (scrap)
FARCE FLITH (faith) SHADE SHASE (shame)
FIRTH FROOR (floor) SHANK SHORK (shark)
FIGHT FLUVE (flute) SHAPE SHEST (sheet)
FLAKE FLAVE (flame) SHAWL SHECK (shack)
FLAIR FLINK (flank) SHEAF SHERN (sheen)
FLINT FLOKE (fluke) SHORE SHICK (shock)
FOUNT FORVE (force) SHIRT SHELT (shelf)
FRAME FROUD (fraud) SHRUB SHOST (shout)
GLOBE GLASE (glade) SKILL SLIRT (skirt)
GLOSS GLOUM (gloom) SLASH SLONG (slang)
GOOSE GRAFE (grape) SNACK SNACE (snake)
GRAPH GLEED (greed) SPORT SPOUN (spoon)
GUEST GRODE (grove) SPIKE SPIME (spice)
GUILT GRILE (guile) SPATE SNAVE (snare)
HORSE HEASH (heath) TRICE TRIMP (trump)
HOUND HANCH (hunch) TRAIN TRUCH (truck)
JAUNT JAICE (juice) VALVE VARGE (verge)
LARCH LOTCH (latch) WITCH WHAME (whale)
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