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1 GENERAL INTRODUCTION 

 

 

 

The development of computational models during the lasts decades has revolutionized the scientific 

research in psychological sciences. The idea to model cognition is not new; more than forty years 

ago, in fact, Neisser (1967) provided a definition of cognitive psychology characterizing people as 

dynamic information-processing systems whose mental operations might be described in 

computational terms. Computational models are usually described as having many advantages over 

representing the theory about cognition as “verbal model” (Jacobs & Grainger, 1994). Any attempt 

to develop a computational model requires indeed completeness since a program will not run unless 

the theory is fully specified. Moreover, expressing any theory in computational terms immediately 

reveals many ways in which that theory may be incomplete or underspecified. Once the theory is 

complete and the program is executable, the adequacy of the theory can be tested by simulations. 

The comparison of the human behaviour and the behaviour of the computer program in carrying out 

the cognitive activity of interest is a straightforward and powerful way to test the validity of our 

scientific accounts. A theory has in fact to be sufficient, thus offering an explanation of all the 

relevant empirical phenomena. Mismatching between human behaviour and the behaviour of the 

computational model often revels ways in which the theory is incorrect thus suggesting how it can 

be reformulated in order to eliminate those mismatches. Other times the mismatches are so 

fundamental that modelling leads to theory refutation.  

As in other cognitive fields, the interest in computational modelling is evident in 

psycholinguistic and, in particular, in the research on reading aloud. Reading, defined as the ability 

to generate a phonological code from print, has been largely studied over the last century in 

cognitive psychology as evidenced by numerous scientific papers and specialist journals, national 

and international conferences and founding of societies focusing on reading and reading 

impairments. One of the major aims of these researches has been to explain the complex cognitive 

processes involved in reading with the final goal of determining a complete theory of reading aloud 

and visual word recognition. Nevertheless, although these studies have resulted in a remarkable 

accumulation of knowledge and computational models of visual word recognition and reading aloud 

have been recently presented (e.g., Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; Grainger & 

Jacobs, 1996; McClelland & Rumelhart, 1981; Perry, Ziegler, & Zorzi, 2007), the reading process is 

still not fully understood.  
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The aim of the current thesis is to expand the current understanding of visual word 

recognition in healthy skilled readers and to interpret this evidence within a computational account. 

We in fact believe that the cognitive processes of interest cannot be understood without a strong 

theoretical framework and that computational modelling is a highly valuable approach. The final 

goal of this activity will be to evaluate cascaded processing generally assumed in visual word 

recognition by referring to recent empirical data claiming the need of a different interpretation (i.e., 

thresholded processing).  

This thesis focus on the Dual-Route Cascaded (DRC) model of reading aloud and visual 

word recognition (Coltheart et al., 2001). The DRC model has been chosen as the referential 

computational model in my thesis for several reasons. First, this thesis aims to evaluate cascaded 

processing, one of the main assumptions within the DRC framework. Second, the DRC model is not 

restricted to the simulation of English data in that an Italian version of the model has been recently 

developed (Mulatti, 2005; Mulatti & Job, 2003a; Mulatti & Job, 2004). Finally, there is a large 

agreement within the scientific community in recognizing the DRC model (one of) the most 

successful computational model(s) of reading, since “the set of phenomena that the DRC model can 

simulate is much larger than the set that any other current computational model of reading aloud 

can simulate” (Coltheart et al., 2001, p. 251).  

 

 

1.1 Computational models of reading and visual word recognition 

 

A computational model is defined as “a computer program that is capable of performing the 

cognitive task of interest and does so by using exactly the same information-processing procedures 

as are specified in a theory of how people carry out this cognitive activity” (Coltheart et al., 2001, p. 

204). There are basically two approaches to generate computational models.  

One of them is to develop connectionist models through a learning algorithm like the back 

propagation (e.g., Plaut, McClelland, Seidenberg, & Patterson, 1996). Computational models of this 

type are usually based on a network with three layers (input units, hidden units, output units) and a 

random value is initially assigned to the network connection weights. These values are then 

adjusted during the training in such a way to make the response for each stimulus more and more 

close to the correct response.  

A possible disadvantage of this type of models is that it could be very difficult to discover 

the functional architecture of a trained network. In other words, it is rarely clear how the trained 
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network has been structured by the learning algorithm and, thus, it is often not understandable how 

the model is actually working in performing the task it has learned.  

Another approach consists in pre-specifying the functional architecture of the model, rather 

than relying on learning algorithms to do this. In this approach, even if the functional architecture is 

specified by the modeller, some form of learning algorithm may be used to set the strength of the 

connections between the pre-specified levels of the architecture. 

The computational model that will be analyzed in this thesis – the DRC model – has been 

developed by applying this latest method. Only this approach will be considered in this dissertation. 

 

1.1.1 Cascaded and thresholded processing 

 

Many different mental operations are usually involved in cognitive activities, even in the most 

automatized. As a consequence, when one want to analyze performance in a task involving 

information processing, this is typically decomposed into a set of separated sub-processes. When 

modelling cognition, different levels of processing corresponding to the different mental operations 

are thus assumed and implemented in the system. 

 The functional architecture of highly successful computational models of reading (e.g., 

Coltheart et al., 2001; McClelland & Rumelhart, 1981; Perry et al., 2007) consists of different 

levels1 of processing that get activated when a letter string is presented. In general, the levels in the 

reading system are domain-specific: each level has a specific function and different levels have 

different functions. Also, the levels are hierarchically organized, so that every level forms a 

representation of the input at a different level of abstraction. Each level assumed in the model 

usually consists of a number of processing units (or nodes), which accumulate information in the 

form of activation; units of the different levels communicates with several others (either at the same 

or at a different level of processing) and communication proceeds through the different levels via a 

spreading activation mechanism. 

The notion of word perception as taking place in a hierarchical information-processing 

system isn’t new and, also in the past, it has been advocated by several researchers interested in 

word perception (e.g., Adams, 1979; Estes, 1975; Johnston & McClelland, 1980; LaBerge & 

Samuels, 1974; McClelland, 1976). Regardless of it is today widely accepted that multiple levels of 

representation are involved in visual word recognition, the organization of these levels is otherwise 

controversial. In particular, it is still not clear how communication proceeds through the different 

                                                 
1 The term module as referring to a domain-specific cognitive processing system is also used (e.g., Coltheart, 1999; 
Coltheart et al., 2001). 
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levels assumed in the reading system and thus, more generally, how information is processed in 

visual word recognition. In computational terms, the problem concerns the implementation of the 

activation function spreading through the different levels of processing assumed in the model. 

Specifically, two major accounts have been proposed in this context. These accounts are 

schematically represented in Figure 1. 

 

 

 
Figure 1. The events that occur between the presentation of a stimulus and the 

execution of a response, according to the discrete stage model and to the cascaded 
model. Arrows represent the transfer of information from one level to the subsequent 
one and shading is used to indicate when a process is at work; the blackening of the 

arrows indicates the degree to which the signals represented  
by the arrows reflect the stimulus in input 

(McClelland, 1979, p. 290, Figure 1). 
 

 

One hypothesis is that performance may be represented by a model in which sub-processes are 

identified as successive temporal stages, each of which occupies a separate interval of time. This 

idea dates back to Sternberg (1969), who proposed that many mental processes occur in discrete 

series, one beginning when another ends. In models that assume this type of processing (e.g., 

Morton, 1969), activation does not propagate forward through the levels until processing within a 

level has reached some threshold (i.e., thresholded processing). Usually, activation is only passed 

on to the later stages after processing is ended in the earlier level. This means that the processing 
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going on in any level does not begin to affect subsequent levels at an early point in processing; 

conversely, none of the processes can begin until the preceding process is completed.  

An alternative to thresholded processing is that activation propagates in a cascaded fashion 

in the system. McClelland (1976; 1979) proposed that mental processes are cascaded, thus 

overlapping in time. According to this account, a process does not begin when the previous one is 

ended; on the contrary, information is transferred between the different levels of processing all of 

the time. As a consequence, each sub-process in the system is continuously active and its output 

always available for processing in the subsequent levels; the activation of a particular processing 

unit in a certain level of the network would thus increase with time (up to some asymptotic value), 

depending on the strength of the input to it. In models that operate by cascaded processing (e.g., 

Coltheart et al., 2001; McClelland & Rumelhart, 1981) there is not threshold within the levels and, 

as soon as activation accumulates in a level, it spreads immediately to the adjacent one. This means 

that activation accumulates downstream in the system, without waiting for processing completion in 

the early levels.  

The different activation propagation modalities described above are alternative hypothesis 

and, usually, models implement either cascaded processing or thresholded processing. Despite 

cascaded processing is assumed in the most computational accounts of visible language, which 

approach modelling cognition better fits the empirical evidence is not yet fully determined in 

theories of visual word recognition.  

In the following paragraphs I will focus on two models of visual word recognition, the first 

assuming thresholded processing (i.e., the Logogen model), the other assuming cascaded processing 

(i.e., the Interactive Activation model); both the accounts are central in the development of the 

Dual-Route Cascaded model of reading. 

 

1.1.2 The Logogen model 

 
The logogen model isn’t a computational model of language processing, but rather a theory 

expressed by the box-and-arrow notation2.  

Morton (1969) based his theorizing on the concept of a mental lexicon, which he described 

as a system of knowledge about word forms. He referred to this level as logogen system. Another 

type of lexicon was assumed in his theory, which is a system of knowledge about word meaning 

                                                 
2 This notation will be used to represent the computational models described later in this chapter: the different levels 
assumed in the theory are represented by different boxes, whereas the arrows between these boxes represent the 
connections assumed in the theory between the levels. 
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(i.e., a cognitive system). The logogen system is a set of elements called logogens, one for each 

word in the model’s vocabulary. Logogens are evidence-collecting devices with threshold. Evidence 

is collected from visual or auditory input and when the amount of evidence collected by a word’s 

logogen exceeds that logogen’s threshold, information about that word in the cognitive system (i.e., 

the word meaning) also becomes available as a response in the response buffer. The more frequent a 

word, the less evidence is needed to reach the threshold, because each logogen has a resting level of 

activation whose value is proportional to the frequency of occurrence in the language of that 

logogen’s word. 

An input logogen system, responsible for word recognition, and an output logogen system, 

responsible for word production, are assumed in the model. The input logogen system consists of a 

visual input logogen system, responsible of written word recognition, and of an auditory input 

logogen system, responsible of spoken word recognition (see Morton, 1979). Similarly, the output 

logogen system consists of an output logogen system for speaking and of an output logogen system 

for writing (see Morton, 1980). Finally, grapheme-phoneme and acoustic-phoneme routes are 

assumed in the model (see Morton, 1980) in order to make it able to process nonwords (i.e., strings 

of letters without a meaning). 

The different logogen systems assumed in the model proposed by Morton constitute the 

levels of processing assumed in the DRC model. However, whereas the logogen model theorized 

both spoken and written language, the DRC model is current applied to visual word recognition 

only. Importantly, the evolution of the logogen model has been entirely data driven3: complexities 

were added in order to explain the empirical results that a previous and simplest version of model 

could not explain. Hence, the complex form of the DRC model, which was inherited from the final 

version of the logogen model, is motivated by a series of empirical findings.  

                                                 
3 Besides other empirical phenomena, the logogen model has been proposed to explain empirical data obtained in the 
repetition priming paradigm. Some studies (e.g., Clarke & Morton, 1983; Winnick & Daniel, 1970) showed that the 
cross-modal repetition priming occurs in two subsequent tasks such as picture naming and reading aloud only when the 
interval between the two tasks is very short. Furthermore, it has been shown that hearing a spoken word do prime the 
subsequent recognition of its printed form only with very short intervals between prime and target. These data suggest, 
from one hand, that the input and the output lexicons have to be separated and, from the other, that two separated 
systems, one for speaking and the other for writing, are required. Without a similar distinction a cross-modal priming as 
those described above would be in fact expected even with long inter-trial interval. Moreover, the distinction between 
the different systems is supported by a large deal of cognitive-neuropsychological data. For example, in the condition 
known as word-meaning deft, printed words can be understood but spoken words cannot even if hearing is adequate 
(Bramwell, 1897; Howard & Franklin, 1988), and the reverse holds for pure alexia, a condition in which spoken words 
can be recognized but printed words cannot, even though vision is adequate (Déjerine, 1982; Coltheart, 1998). This 
double-dissociation clearly suggests that two input lexicons, one for printed and one for spoken words, are needed. 
Furthermore, some people suffering of brain damage have an impairment of the ability to produce spoken words with 
relatively intact writing and spelling (Lhermitte & Derouesné, 1974), and other people have an impairment of writing 
and spelling with relatively intact ability to produce spoken words (Basso, Taborelli, & Vignolo, 1978). This double-
dissociation clearly suggest a similar organization of the output lexicon, with an output lexicon producing spoken words 
and another producing written words. For a further treatment about the existence of different lexicons in the human 
language-processing system see Coltheart (2004). 
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1.1.3 The Interactive Activation model 

 

The first computational model of reading is known as Interactive Activation (IA) model 

(McClelland & Rumelhart, 1981). 

 The IA model has been developed by its modellers with the main purpose to account for the 

word superiority effect; this effect is attributed to Reicher (1969), who showed that perception of a 

letter is facilitate when it is presented in the context of a word than when it is presented in a random 

sequence of letter4.  

The different mental computations involved in visual word recognition are represented in 

the IA model as involving three hierarchically organized purpose-specific levels of processing: the 

visual feature level, the letter level and the word level.  

The general architecture of the IA model is represented in Figure 2. 

 

Figure 2. The processing system involved in visual word recognition 
 (McClelland & Rumelhart, 1982, p. 379, Figure 2). 

 

 

There is a strong similarity between the IA model and the logogen model. The IA model can be in 

fact considered “a hierarchical, nonlinear, logogen model (...) with feedback between levels and 

inhibitory interactions among logogens at the same level” (McClelland & Rumelhart, 1981, p. 388). 

The main difference between the logogen model and the IA model is that the units assumed in the 

latter model are not thresholded devices as the logogens assumed in the former. Instead, activation 

                                                 
4 This effect is well-established in researches on visual word recognition. Before Reicher, previous researchers showed 
the word superiority effect in tachistoscopic presentation conditions (see Huey, 1908 and Neisser, 1967, for reviews). 
The problem of these studies, however, was that the effect was obtained during whole reports of all the letters presented 
and, since these reports were subjected to guessing biases and forgetting for longer stimuli, it wasn’t clear whether the 
context in which a letter was presented influenced the process of perception itself rather than post-perceptual processes. 
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is assumed to spread through the different levels in a cascaded fashion. This means, for one hand, 

that the IA model is spatially parallel within the same level and, from the other, that it involves 

processes that operate simultaneously at several different levels. Crucially, perception is intended to 

be an interactive process in the IA model: there are bottom-up processing (i.e., feed-forward 

connections) and top-down processing (i.e., feedback connections) that work simultaneously and in 

conjunction, jointly determining what we perceive. Moreover, the communication in the system 

consists of both excitatory and inhibitory messages: excitatory messages increase the activation 

level of their recipients, while it is decreased by inhibitory messages. Furthermore, intra-level 

inhibitory loops are assumed in the model and represent a kind of lateral inhibition in which 

incompatible units at the same level compete each other.  

In each level, for every relevant unit in the system an entity called node is assumed. Thus, 

there is a node for each word the model knows, and there is a node for each letter in each letter 

position within a four-letter string5. Since the nodes are organized into levels, there are word level 

nodes and letter level nodes. Each node has connections to a number of other nodes: if two nodes 

suggest each other’s existence, then the connections between them are excitatory; on the opposite, if 

the two nodes are inconsistent with one another, then the relationship is inhibitory. The amount of 

excitation and inhibition that each node sends to the others is proportional to its activation, i.e. more 

active nodes send more activation than less active nodes. Each node has a momentary activation 

value and is said to be active when this value is positive. In the absence of inputs from other nodes, 

all the nodes are assumed to decay back to an inactive state (i.e., to an activation value at or below 

zero). The resting value differs from node to node and is determined by the frequency of activation 

of the node over the long term.  

Connections may occur within levels or between adjacent levels, but there are no 

connections between non-adjacent levels. Connections within the word level are mutually 

inhibitory, since only one word can occur at any one place at any one time. Connections within the 

letter level are similarly organized. Connections between the word level and the letter level may be 

either inhibitory or excitatory, depending on whether the letter is a part of the word in that specific 

letter position.  

Consider now what happens when an input reaches the system. When a stimulus is presented 

certain visual features are extracted and a set of feature inputs is thus made available to the system. 

The visual features are assumed to be binary in the model: thus, either the presence or the absence 

of a particular feature can be detected. The activation immediately spreads to the letter level: letter 

nodes that contain the extracted features are activated whereas letter nodes that do not contain those 

                                                 
5  The computational version of the IA model implements four-letter strings only. 
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features are inhibited. The letter nodes, in turn, begin to send activation to those words that contain 

that letter in that particular position; also, each letter node inhibits those nodes representing words 

that do not contain that letter in that particular position. Within the letter level, each node 

representing a letter in a particular position inhibits all the nodes representing different letters in the 

same position. As the word level nodes become active, each word node starts to compete with all 

the others. In addition, each active word node sends feedback activation to the letter nodes. If the 

input features are similar to the features that form a particular set of letters and those letters are 

consistent with the letters forming the word that has been activated, the positive feedback in the 

system will converge on the appropriate set of letters and on the appropriate word. Otherwise, the 

active units inhibit each other and it might be that no single set of letters or single word will obtain 

enough activation to dominate the others. 

 

 

 
Figure 3. A few of the neighbours of the node for the letter “T”  

in the first position in a word and their interconnections 
(McClelland & Rumelhart, 1981, p. 380, Figure 3). 

 

 

Computational simulations performed by McClelland and Rumelhart (1981) clearly showed that the 

IA model is able to account for the word superiority effect (Reicher, 1969). In particular, this effect 

is due to the interactive-activation between the word and the letter levels assumed in the model. 

Once a set of features is made available to the system and the letters consistent with those features 

have been activated, activation spreads to the word level. When the stimulus in input is a word, a 
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node representing that word is activated and, in turn, it will send activation back to the letter nodes. 

Letter nodes that are consistent with the activated word will be excited, whereas letter nodes that are 

inconsistent with that word will be inhibited. This means that the feedback from the word level 

assists target letter recognition by contributing activation to the appropriate nodes and inhibition to 

the inconsistent nodes at the letter level. On the contrary, when the stimulus in input is not a word, 

there is not feedback from the word level; hence, the letter nodes receive activation from the feature 

level only and the identification of the correct letter will be slower and less accurate.  

Despite the origin of the IA model, the word superiority effect is not the only evidence that 

it is able to explain. On the contrary, this model correctly accounts for various findings of several 

experiments in word perception (see McClelland & Rumelhart, 1981, for a detailed treatment). To 

date, the IA model has not been refuted. This observation has been critical for the development of 

the subsequent DRC model. In science, a new theory should account for all the crucial effects 

explained by the previous generation of the same theory or by other competitive theories, plus some 

new empirical data. This may be easily achieved by including a previous theory in a new model. 

According to the principle of nested incremental modelling, in fact, “a new model should be related 

or include at least its own direct predecessor” (Jacobs & Grainger, 1994, p. 1329). Following this 

principle, a generalization of the IA model has been included by Coltheart et al. (2001) in their 

Dual-Route Cascaded model of reading. 

 

 

1.2 The Dual-Route Cascaded model 

 

The Dual-Route Cascaded model (Coltheart et al., 2001) is based on traditional dual-route theories 

of reading aloud (e.g., Morton & Patterson, 1980) and, as said, has evolved from Morton’s (1969) 

logogen model and McClelland and Rumelhart’s (1981) interactive activation (IA) model of 

performance in perception task.  

The DRC model adopts the architecture of the logogen model but avoids its theoretical 

commitment to the idea that the system operates according to the logogen principle; in other words, 

the assumption that the mental lexicon is composed of information-gathering devices with threshold 

is refuted. Instead, the central assumption of the DRC model is that activation propagates in a 

cascaded fashion through the different levels of processing; also, as in the IA model, interactive 

activation is assumed so that, as soon as there is activation in an early stage, it flows on to later 

stages and, having activated a subsequent level, it also feeds back to previous ones. 
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The overall architecture of the DRC model is represented in Figure 4.  

 
 

Figure 4. The Dual-Route Cascaded model of visual word recognition and reading aloud. 
 (Coltheart et al., 2001, p. 214, Figure 7). 

 

 

Two procedures to generate the phonology of a letter string are assumed in the model, the lexical 

route and the non-lexical route. Each route is composed of a number of levels containing set of units 

interacting each other through excitation (i.e., the activation of a unit contributes to the activation of 

other units) or inhibition (i.e., the activation of a unit makes more difficult the activation of other 

units). The units represent the smallest individual symbolic parts of the model, such as words and 

letters. Within the same level units interact each other only through lateral inhibition. Adjacent 

levels communicate fully in both directions in both excitatory and inhibitory ways6.  

                                                 
6 There are three exceptions here: first, the connection between the feature and the letter levels is only in one direction 
(i.e., from features to letters) as in the IA model; second, the communication between the orthographic and the 
phonological lexicons is only excitatory; third, the non-lexical route is feed-forward only. 
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The first two levels assumed in the model (i.e., the feature level and the letter level) are 

common to the two routes. In the model, feature analysis is spatially parallel and feeds forward to 

the letter level which processing is again spatially parallel. This portion of the DRC model is a 

generalization of the IA model. The only difference between the two models is that whereas the IA 

model applied to four-letters words only, its DRC version applies to words of any length up to eight 

letters. Hence, the visual feature level consists of eight different subsets representing the eight 

possible input positions; each subset consists of individual features that are set to on or off 

depending on whether that specific visual property is part of the letter in that specific position. The 

letter level also consists of eight different subsets and each subset contains units representing the 

entire set of letters that can occur (i.e., 26 letters in the English alphabet) plus one unit for the blank 

letter. Lateral inhibition occurs at this level, within but not between each of the eight subsets. The 

later inhibition will assure that only one letter occurs at any one place at any one time. The output 

from the letter level feeds both the lexical and the non-lexical routes.  

The lexical route consists of two interconnected lexicons: the orthographic lexicon contains 

a single node (lexical entry) for each uniquely spelled word the model knows7; the phonological 

lexicon contains a single node for each uniquely sounding word the model knows.  

The non-lexical route consists of a grapheme-phoneme correspondence (i.e., GPC) rules 

system and works serially along the string of letters. The GPC rules have been chosen on purely 

statistical grounds (i.e., for any grapheme, the phoneme assigned to it was the phoneme most 

commonly associated with that grapheme in the set of English monosyllables that contain that 

grapheme). Single-letter, multi-letter and context-sensitive rules are used for translating graphemes 

into phonemes.  

The output from both these routes activates the phoneme system which is where the final 

pronunciation is produced. The phoneme units are similar organized to the letter units, except that 

each of the eight subset contains units for the phonemes that can occur (i.e., 43 in the English 

language) plus an unit for the blank phoneme. Pronunciation occurs when all the phonemes of the 

letter string have been activated to some criterion of satisfaction in the phoneme system. The DRC 

model operates over time units called cycles and the number of cycles it takes to reach criterion is 

considered a measure of the DRC model’s response latencies. 

Given the dual-route architecture, the phonological code of a string of letters visually 

presented can be generated in two different ways within the DRC model by employing the lexical or 

the non-lexical route.  

                                                 
7 Only English mono-syllabic words are actually contained in the orthographic lexicon of the DRC model. These words 
are the 7,981 units of the CELEX database (Baayen, Piepenbrock, & van Rijn, 1993). 
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The pronunciation of the words in the orthographic lexicon is generated by the lexical 

route8; this is a parallel procedure that retrieves the whole-word phonology from stored lexical 

representation. When a word reaches the system, feature units activate the letter units (in parallel 

across letter position), which in turn activate words in the orthographic lexicon. The word units that 

have been activated activate the letter units via feedback and the phonological lexicon via feed-

forward connections; finally, activation in the phonological lexicon feeds back to the orthographic 

lexicon and feeds forward to the phoneme system activating word’s phonemes (in parallel across all 

phoneme positions), thus allowing the pronunciation of that word. A central feature of the lexical 

route is that units in the orthographic lexicon are frequency-sensitive: the activation of high-

frequency words raises more quickly that the activation of low-frequency words. To achieve this 

effect, a constant value is associated with each unit in the lexicon. In languages with shallow 

orthographies, the lexical route is necessary to read irregular (or exception) words, i.e. words that 

disobey to the rules relating graphemes to their pronunciation9.  

The non-lexical route is a serial procedure that allows the model to read nonwords through 

the letter-by-letter conversion – from left to right – of each grapheme into the corresponding 

phoneme following language-specific correspondence rules. This route works as follow. Visual 

features and letter units are activated just as with the lexical route. Then the GPC route operates 

after a number of cycles. The set of rules is searched until an appropriate rule is found to convert the 

first letter to a phoneme and that phoneme unit in the phoneme system receives some activation. 

The next letter become then available to the GPC route10 and the correct rule to translate that letter 

into the right phoneme is searched. Once all the letters are matched, pronunciation can occur. 

Both the lexical and non-lexical routes are assumed to operate simultaneously – in parallel –  

on each stimulus. This means that when a letter string is presented to the system, activation from the 

feature units reaches the letter level and in turn both the orthographic lexicon and the GPC system. 

From one hand, cascaded processing from the orthographic lexicon eventually leads to a build-up of 

activation in the phoneme system (which also feeds back to the previous levels); at the same time, 

the GPC system contributes activation to the phoneme system. This feature allows the model to 

                                                 
8 The lexical non-semantic route is described here. A lexical semantic route is also assumed in the model, but a 
semantic module is not yet implemented in its computational version.  
 
9 The distinction between regular and exception words is important in studying word-recognition in languages with 
inconsistent orthography like English. In languages with inconsistent orthography, the grapheme-to-phoneme mappings 
are quite irregular; on the contrary, languages with more transparent orthographies like Italian are characterized by 
consistent grapheme-to-phoneme mappings. 
 
10 A new letter becomes available to the GPC route after a constant number of cycles in the version of the DRC model 
originally described by Coltheart et al. (2001). In the last computational version of the model (i.e., the DRC 1.2), 
instead, the route moves on the next letter when the right-most phoneme set that was excited by the GPC route on the 
previous cycle contains a phoneme with an activation level that meets or exceeds a critical value. 
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account for effects due to the influence of the non-lexical procedure in word reading, such as the 

regularity effect (Seidenberg, Waters, Barnes, & Tanenhaus, 1984; Taraban & McClelland, 1987) 

or the position of the irregularity effect (Rastle & Coltheart, 1999), and the effects due to the 

influence of the lexical route on nonword reading, such as the pseudohomophone effect (McCann & 

Besner, 1987; Reynolds & Besner, 2005; Seidenberg, Peterson, MacDonald, & Plaut, 1996; Taft & 

Russell, 1992), the neighbourhood size (N) effect (McCann & Besner, 1987) or the position of the 

diverging letter effect (Mulatti, Peressotti, & Job, 2007). 

A substantial amount of empirical data showed by skilled readers both in reading aloud and 

in lexical decision tasks, as well as a variety of behaviours exhibited by patients with various form 

of acquired dyslexia, are presently accounted for and correctly simulated by the DRC computational 

model (see Coltheart et al., 2001, for a more detailed discussion). Although subsequent works have 

revealed potential limits11, to date it is perhaps the most successful computational model of reading 

today available in literature. 

 

 

1.3 On the cascaded processing: some empirical data 

 

The assumption of cascaded processing is central in the DRC model but also in many other 

frameworks of reading aloud; computational accounts of visible language processing are in fact 

almost invariable cascaded and often engaged in interactive-activation between the various levels of 

                                                 
11 One of the major problems of the DRC model is, for example, the simulation of the effects depending on stimulus 
body (i.e., for a monosyllabic letter string, its body is the sequence of letters from its first vowel to the end) such as the 
consistency effect (e.g., Andrews & Scarratt, 1998; Glushko, 1979; Jared, 1997, 2002) or the body neighborhood (body-
N) effect (e.g., Brown, 1987; Forster & Taft, 1994; Jared, McRae, & Seidenberg, 1990). The consistency effect is the 
following: body consistent stimuli (i.e., stimuli which body has the same pronunciation in all the words containing that 
body) are read faster than body inconsistent stimuli (i.e., stimuli which body has at least two different pronunciations in 
the set of words containing that body). The body-N effect is the following: stimuli comprising bodies that appear more 
frequently (e.g. -eep) are read aloud faster than stimuli comprising bodies that appear more rarely (-eap). The DRC fails 
to simulate consistency effects (see for example Jared, 2002) because its computational version does not include body 
representations. However, to overcome this problem, it is currently considered the possibility to add body-rime rules to 
the model’s non-lexical route, as suggested by Patterson and Morton (1985). To date, both the consistency and the 
body-N effects are actually correctly simulated by the Connectionist Dual Process (CDP+) model (Perry et al., 2007), a 
model which overall architecture is very similar to that of the DRC model, as both rely on a lexical and on a non-lexical 
route to name the stimuli. In both the models, the lexical route is a symbolic localist interactive-activation network with 
activation propagating in a cascaded fashion, based on McClelland and Rumelhart’s (1981) IA model. The main 
difference between the DRC model and the CDP+ model regards the way the non-lexical route works. Whereas the 
DRC’s non-lexical route applies serially rules of correspondence between graphemes and phonemes, the CDP+’s non-
lexical route is a two layers associative network (i.e. without hidden units) trained to learn the mapping between 
orthography and phonology and equipped with a serial graphemic parsing: during training, the CDP+ model non-lexical 
route acquires body-rime representations and the model is thus sensible to the effects depending on stimulus’ bodies 
proprieties. Similarly, the consistency effect is simulated by parallel distributed processing (PDP) models (e.g., Harm & 
Seidenberg, 1999; Plaut, et al., 1996; Seidenberg & McClelland, 1989) that use learning algorithm to discover the 
relationship between spelling and sound.  
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processing. This is mainly because a certain number of well-established empirical findings strongly 

support cascaded processing in visual word recognition.  

Besides several data may be certainly relevant in this context, cascaded processing in 

reading is mostly implicated by a number of effects showing lexical influence when reading 

nonwords. Suppose that processing is thresholded and information is processed in serial discrete 

stages in the reading system; if so, when a nonword is presented in a reading task, no entry in the 

orthographic lexicon will reach the threshold and hence no information will emerge from the 

lexicon. This wouldn't explain, for example, why nonwords inconsistent with real words (e.g., heaf; 

cf. deaf) yield longer reading latencies than nonwords (e.g., hean) that are not inconsistent with real 

words (Glushko, 1979).  

In addition, such a thresholded processing is incompatible with numerous findings showing 

that the lexical route also influences the computation of phonology of the nonwords that have to be 

read (e.g., Rosson, 1983). This is evident, for example, in the so called pseudohomophone effect 

(e.g., McCann & Besner, 1987); this effect consists in pseudohomophone nonwords (i.e., nonwords 

which pronunciation matched the pronunciation of an existing word; e.g., traxs; cf. tracks) being 

read faster than control non-pseudohomophone nonwords (e.g., prax). 

Further and strong evidence in favour of cascaded processing emerges from findings 

showing the effects of the orthographic neighbourhood size (N) in reading. The index N is defined 

as the number of words that can be created from a string of letters by replacing a single letter at a 

time (Coltheart, Davelaar, Jonasson, & Besner, 1977). For example, orthographic neighbours of 

word are cord, ford, lord, ward, wood, wore, work, worm, worn. Empirical evidence shows that the 

size of the orthographic neighbourhood influences reading latencies (e.g., Andrews, 1997, 1989; 

McCann & Besner, 1987; Job, Peressotti, & Cusinato, 1998; Peereman & Content, 1995). In skilled 

readers, words with many neighbours are read aloud more quickly than those with few or no 

neighbours; moreover, it has been largely showed that nonword reading is facilitate by a large N. 

The principal explanation of these effects is that they arise from activation within the lexical route 

(e.g., Andrews, 1997; Coltheart et al., 1977; Coltheart et al., 2001). Hence, the effects due to the 

orthographic neighbourhood in nonword reading can be explained only assuming cascaded 

activation in the reading system. More specifically, the N effect clearly suggests that the 

orthographic neighbours of a visually presented letter string are sufficiently activated to influence 

the computation of the phonology of the nonword that has to be read. Clearly, this activation would 

be completely prevented by assuming a threshold between the different levels of processing. 

Despite a substantial amount of data supporting cascaded processing clearly exists, 

empirical results contrasting this assumption have been recently documented. These data have been 
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principally obtained in reading aloud experiments examining the effect of the psycholinguistic 

variable of interest when factorially combined with the manipulation of stimulus quality in the task. 

 

1.3.1 Factorial manipulations of variables: focusing on stimulus quality 

 

Factorial experiments in which a factor affecting the rate of processing (e.g., stimulus quality) is 

varied in conjunction with another factor (e.g., word frequency, semantic priming, repetition 

priming, etc.) in reading tasks have been used in the last decades to evaluate different non-

computational accounts of visual word recognition (e.g., Balota & Abrams, 1995;  Besner & Smith, 

1992; Besner & Swan, 1982; Borowsky & Besner, 1993; Meyer, Schvaneveldt, & Ruddy, 1975; 

Plourde & Besner, 1997; Stolz & Neely, 1995). Very recently, a certain number of works used this 

same approach to test the validity of computational models of reading (e.g., Besner & O’Malley, 

2009; Besner, O’Malley, & Robidoux, 2010; Besner & Roberts, 2003; Blais & Besner, 2007; 

O’Malley & Besner, 2008; O’Malley, Reynolds, & Besner, 2007; Reynolds & Besner, 2004). To 

date, the most of these studies directly focus on the Dual-Route Cascaded framework. 

When only a single factor is manipulated in experiments, the results can often be explained 

in a variety of different ways. In other words, many competing explanations – and several different 

(computational) models – may be equally accurate in explaining a main effect. However, when two 

factors are jointly manipulated, the data pattern is much more complex and it might help to falsify 

some of the various accounts. In particular, the manipulation of two different factors sometimes 

produces additive effects and sometimes produces interactions (i.e., either underadditive or 

overadditive effects) on response latencies. Hence, factorial manipulation of different variables is 

considered an useful toll in testing the validity of theoretical and computational accounts and a 

powerful investigation to distinguish between competitive theories. 

Factorial manipulations in reading studies may consist in the psycholinguistic variable of 

interest being manipulated together with a factor affecting the rate of processing. Usually, the latter 

factor is the stimulus quality (or SQ), a perceptive variable affecting early processing in visual word 

recognition. A common technique to manipulate stimulus quality in experiments is by reducing the 

contrast between the visually presented stimulus and the background (e.g., Borowsky & Besner, 

1993)12. The typical finding obtained in these tasks is that reading latencies increase for degraded 

stimuli. Importantly, stimulus quality is considered an useful second manipulation for testing the 
                                                 
12 All the studies presented in this thesis as well as the most of the studies in literature that will be cited used contrast to 
manipulate SQ. However, other techniques to reduce stimulus quality have also been documented. For example, SQ can 
be reduced by presenting low-pass filtered stimuli (as in Fiset, Arguin & Fiset, 2006) or by alternating a mask and the 
letter string (as in Yap & Balota, 2007). 
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validity of computational accounts of reading because it can be simulated in most computational 

models. Typically, degradation is implemented by modifying the connection weights at one or more 

levels; specifically to the DRC model, degradation is usually simulated by reducing the weights of 

the excitatory and inhibitory connections that regulate the communication from visual feature to 

letter units. This manipulation would reduce the rate of activation gain at the perceptual level and 

responses will be thus slower for degraded than for clear stimuli. Various simulations documented, 

in fact, that DRC model’s responses are delayed as the connection weights between the feature and 

the letter levels are reduced, thus miming the effect of degradation obtained for humans. 

Strong evidence against cascaded processing has been reported in a number of different 

studies using the factorial manipulations described above. In this dissertation, the most critical 

results will be discussed. In particular, this thesis will focus on the studies that have examined the 

effects of SQ when factorially combined with: 

1. letter string length when reading nonwords aloud (Besner & Roberts, 2003);  

2. orthographic neighbourhood size (N) when reading nonwords aloud (Reynolds & 

Besner, 2004);  

3. word frequency when reading aloud (O’Malley & Besner, 2008); 

4. lexicality when reading aloud (Besner & O’Malley, 2009; Besner et al, 2010; O’Malley 

& Besner, 2008). 

These studies will be examined in details in the next chapters of this thesis. At this step it is 

sufficient to note that SQ and the other variable have been shown to exert additive effects on skilled 

readers’ latencies in all the experiments reported above. In other words, the effects of the 

psycholinguistic variables manipulated in these studies (e.g., letter string length, orthographic 

neighbourhood size, word frequency, lexicality) have been shown to have the same amplitude for 

stimuli presented in a clear (i.e., non-degraded) condition and for stimuli presented in reduced 

contrast in the human performance.  

 Critically, interactions between the two factors are on the contrary simulated by the DRC 

model, i.e. the amplitude of the effect of letter string length/orthographic neighbourhood size/word 

frequency/lexicality is significantly different for clear and degraded stimuli in the DRC model’s 

simulations. These interactions would be caused by the cascaded activation assumed in the model. 

In fact, since processing is cascaded, a change in the rate of activation in early processing units (due 

to stimulus degradation) will change the rate of activation downstream in the model. As a 

consequence, SQ will likely to interact with variables affecting the subsequent levels of processing 



  18 

assumed in the reading system like letter string length, orthographic neighbourhood size, word 

frequency and lexicality.  

 

1.3.2 Introducing a threshold in the reading system 

 

The experiments described above provide significant mismatches between the DRC model’s 

performance and the human behaviour; critically, these mismatches have been interpreted as caused 

by the cascaded activation assumed in this framework. As a consequence, the previous data contrast 

not only the DRC model but rather the same idea that activation proceeds in a cascaded fashion in 

the reading system. 

Additive effects between variables are easily explained within a thresholded framework by 

postulating that those variables affect different levels of processing in the system. Sternberg (1969), 

following Donders (1868-1869), noted that one can attempt to study the component processes 

implicated in performance by using reaction times data and that additional assumptions about their 

temporal relations can be made by observing the pattern of results produced by factorial 

manipulations; in particular, one can use experimental manipulations that are assumed to selectively 

influence specific levels of processing to study what levels are affected by other manipulations. 

Within discrete stage models assuming thresholded processing, the assumption that one 

experimental manipulation influences the duration of one level and another manipulation influences 

the duration of another level leads to the conclusion that the two factors will have additive effects 

on reaction times; on the contrary, factors that influence the duration of the same level will 

generally interact with one another. If we adopt cascaded models, however, this logic is only 

partially correct. In cascaded models, activation propagates through the levels continuously, i.e. 

activation reaches a subsequent level before processing in a previous level is ended. This means that 

the effects of a factor is not resolved within the level it affects; rather, the effect of a factor at an 

early level would influence processing downstream in the system. This implies, from one hand, that 

factors interacting with one another could well be influencing different processes in a cascaded 

system and, from the other, that cascaded activation between different levels of processing is not 

easily reconciled with evidence showing additive effects between factors affecting those levels. It 

follows that the easier way to explain additive effects of factors is by assuming a threshold between 

the levels of processing which these factors affect. Additive effects are hardly explained within a 

cascaded framework especially when that framework also assumes interactive activation between 

the different levels of processing, as in the DRC model. In these circumstances, in fact, the effect of 
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experimental manipulations influencing a specific process in the system not only cascades to the 

subsequent levels through feed-forward connections, but it also feeds back to the previous ones. 

When factorial manipulations of psycholinguistic variables and stimulus quality are 

considered within the Dual-Route Cascaded framework, the previsions are the following. Cascaded 

activation assumed in the model will cause a variable affecting the rate of processing in early units 

(e.g., SQ) to affect the model beyond the perceptual level (i.e., the effect of SQ is not resolved at an 

early stage but rather affects processing downstream in the system); in turn, interactive activation 

will determine factors affecting later processes to feed their effects back to previous levels, thus 

having an effect on earlier factors. As a consequence, SQ will likely to interact in the DRC model 

with variables affecting subsequent levels of processing assumed in the system. As said, the DRC 

model produces in fact interactions of SQ with letter string length, orthographic neighbourhood 

size, word frequency and lexicality, inconsistently with the empirical data. In order to eliminate the 

mismatches with the human performance, a reformulation of the DRC model has been pointed out 

(e.g., Besner & Roberts, 2003; Blais & Besner, 2007; O’Malley & Besner, 2008; Reynolds & 

Besner, 2004). Even if partially different interpretations have been proposed to explain the different 

findings, all these solutions generally agree on a critical point: thresholding the letter level rather 

than allowing it to cascade provides a simple way to allow the DRC model to fit the additive effects 

produced by human readers. 

From a theoretical perspective, in fact, SQ is a perceptual variable influencing the 

recognizability of letters and degradation would thus not affect the model beyond the letter level; 

when the letter level is thresholded, the effect due to degradation would be resolved within early 

levels of processing. This would prevent interactions between variables affecting the perceptual 

level (e.g., SQ) and variables affecting the subsequent levels of the model (e.g., letter string length, 

neighbourhood size, word frequency and lexicality), thus allowing the DRC model to explain the 

additivities that have been documented. Furthermore, this proposal is not a merely theoretical 

account. Instead, simulation works confirm that changing the model in this way is successful in that 

the DRC model so modified correctly simulates the additive effects of SQ and 1) letter string length 

in nonwords reading 2) orthographic neighbourhood size in nonwords reading and 3) word 

frequency in reading, consistently with the empirical data (see Besner, Reynolds, & Chang, 2003)13.  

This solution assumes, however, that at least some processes in the reading system occur in 

discrete series, one beginning only when the previous ends; in other words, information processing 

                                                 
13 The authors didn’t attempt, however, to demonstrate whether implementing the letter level as thresholded would 
allow the DRC model to simulate all the effects that its current version does simulate. In adherence to the principle of 
nested modelling, instead, any novel account (or any modification of an old model) should be showed able to reproduce 
all the effects that its previous version was able to simulate. 
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in visual word recognition would be thresholded, at least at the level processing letters. Clearly, a 

whole change of the DRC model is intrinsic in this proposal and accepting this modification would 

more generally mean to reject the idea of cascaded processing per se. 

 

 

1.4 Goals and outline of the thesis 

 

The current thesis aims to investigate cascaded processing in visual word recognition by testing the 

predictions of the Dual-Route Cascaded model of reading aloud. Despite widespread acceptance of 

the idea that visual language processing is cascaded, there are circumstances in which such an 

account is not easy reconciled with the data produced by skilled readers. In particular, recent 

experiments involving factorial manipulations suggested that the information processing implicated 

in visual word recognition might be at least partially thresholded. Information processing will be 

evaluated by referring to these studies; more specifically, the discussion of the previous results will 

be supported by the presentation of new empirical data obtained either in Italian or in English 

reading aloud tasks as well as by DRC model’s simulations.  

Specifically, the thesis is structured as follow. The studies reported in the first chapters 

(Chapter 2 to 5) focus on factorial manipulations in nonword reading; the main aim of these studies 

will be to define whether the experiments in which SQ is manipulated together with a second factor 

(e.g., letter string length and orthographic neighbourhood size) in nonword reading tasks can be 

explained by considering a variable reflecting the visual similarity between the different letters of 

the alphabet, namely the Total Letter Confusability. The experiments reported in the last chapters 

(Chapter 6 and 7) will instead focus on factorial manipulations in reading as a function of the type 

of stimuli presented in the task; in Chapter 6 the effects of factors affecting the recognisability of 

letters (e.g., SQ and Total Letter Confusability) will be analyzed when jointly manipulated with 

lexical factors (e.g., word frequency and lexicality); the effects due to list composition in degraded 

presentation will be directly assessed in Chapter 7. The implications of these findings for theories of 

visual word recognition and computational models of reading will be discussed. 
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2 LENGTH AND ORTHOGRAPHIC NEIGHBORHOOD 

SIZE IN NONWORD READING 

 

 

 

In this chapter the joint effects of letter string length and neighbourhood size (N; Coltheart et al, 

1997) will be analyzed when reading nonwords aloud. These effects are particularly relevant for the 

present purposes given their manipulation in multifactor experiments involving degradation. The 

aim of the study presented in this chapter is to analyze the joint effects of letter string length and N 

in nonword reading when the stimuli are presented in a non-degraded (i.e., clear) condition. These 

effects will be interpreted  within the DRC framework that assumes two routes – a lexical and a 

non-lexical procedure – operating simultaneously on each stimulus. In this study we explored a 

prediction the model makes with respect to nonword reading and that directly follows from its dual-

route architecture and cascaded processing: the orthographic neighbourhood size effect should 

increase as letter length increases. The results of the experiment are consistent with this prediction. 

 

 

2.1 Introduction 

 

The DRC model of visual word recognition and reading aloud appeals to two procedures to 

generate the phonology of a letter string: the lexical route and the non-lexical route. The lexical 

route is a parallel procedure that retrieves the whole-word phonology from stored lexical 

representation and allows the model to read irregular words. The non-lexical route converts serially, 

letter by letter (from left to right) each grapheme into the corresponding phoneme following 

language-specific correspondence rules; this routine is necessary for nonword reading. 

Regardless the characteristics of the stimulus (i.e. whether it is a regular or an irregular 

word, or a nonword) both the procedures are hired upon stimulus presentation. Also, both the 

procedures are assumed to work simultaneously – in parallel – on the stimulus. 

The N effect in nonword reading (e.g., McCann & Besner, 1987) is of specific interest for 

the current purposes. The effect is the following: nonword reading times decrease as the number of 

its orthographic neighbors increases. Within the DRC framework, the N effect is accounted for by 

postulating cascaded processing along connections that allows nonwords to activate 
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orthographically similar words in the orthographic lexicon. This activation spreads to the 

corresponding phonological representations in the phonological lexicon, which in turn send 

activation to the phonemic units in the phonemic buffer. Since the orthographic neighbours of a 

nonword and a nonword itself usually share many phonemes, phonemic activation generated by the 

lexical routine, paired with correct nonlexical processing, positively contributes to the assembling 

of the nonword phonology; in other words, the phonological representations activated by the 

orthographic neighbours prime the phonemes in the phoneme system (Coltheart et al., 2001; but see 

Reynolds & Besner 2002)14. Thus, according to the DRC model, the N effect in nonword reading is 

an effect due to the lexical route, which is a procedure that works in parallel on the stimulus. 

However, the DRC relies on the non-lexical routine to read nonwords, which is a procedure that 

works serially. This leads to a prediction: the size of the effect of N should increase as the length 

(i.e., number of letters) of the nonword increases. As the number of letters in a nonword increases, 

the time required to the non-lexical route to reach the last rightmost letter and activate the last 

phoneme increases as well. The longer the increase of time, the longer the lexical route works on 

the stimulus. Thus, the longer is the increase of time, the stronger the lexical route primes the 

neighbour’s phonemes and facilitates nonword reading. 

In the experiment reported below we tested this prediction. To this end we collected data 

from Italian skilled readers presenting short and long nonwords without orthographic neighbours 

and short and long nonwords with one or more orthographic neighbours. We also performed a 

simulation with the Italian version of the DRC model (Mulatti, 2005; Mulatti & Job, 2003a). We 

expected both humans and the DRC model to show: a) a main effect of neighbourhood size, b) a 

main effect of letter length, and c) an interaction between the two factors such that items with 

neighbours show a smaller length effect with respect to the items without neighbours. 

  

 

2.2 Method 

 

Participants. Eighteen students at the Università degli Studi di Padova who had Italian as 

their first language and normal or corrected-to-normal vision participated as part of their courses 

requirement.  

                                                 
14 As will be discussed in Chapter 5, another account explaining the effect of N because of the interactive activation 
between the orthographic lexicon and the letter level has been proposed within the DRC framework. However, it is 
important to note that the prediction of the DRC model tested in the present study does not change regardless of the 
view adopted to explain the effect of N since both accounts assume that it arises within the lexical route. 
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Design. The experiment consisted of a 2 X 2 within-subject design with N (zero-N vs. one-

or-more N) and Length (short vs. long items) as factors. 

 

Materials. A total of 112 orthographically legal disyllabic nonwords were used in an Italian 

reading aloud task (these stimuli can be seen in the Appendix, section A). These consisted of 56 

nonwords that had no neighbours and 56 nonwords that had one or more neighbours. Within each 

group of nonwords, there were 28 stimuli at each of two levels of length (short vs. long). Items that 

were 5 letters in length represented the short length condition; items that were 7 letters long 

represented the long length condition. Short and long nonwords were balanced with respect to the 

initial phoneme. In addition, for nonwords with neighbours (i.e. nonwords derived by changing one 

letter of an Italian word, provided the initial phoneme of that word remained intact), short and long 

items were balanced in terms of baseword frequency (3.7 vs. 3.8 occurrences per million, t<1), 

baseword neighbourhood size (2.2 vs. 2.1, t<1), nonword neighbourhood size (1.2 vs. 1.2, t<1; 

range: 1-3), nonword neighbourhood frequency (3.6 vs. 3.2, t<1) and the position of the letter 

changed (3.4 vs. 3.4, t<1; see Mulatti et al., 2007). 

 

Apparatus. The experiment took place in a sound attenuated and dim lit room. Stimuli 

presentation and data recording were controlled by software developed in E-prime and running on a 

personal computer. Stimuli were presented centrally in black lower-case letters on a white 

background. The display was synchronized with the screen refresh cycle. Subjects’ naming 

responses were detected via a microphone connected to a voice-key. Participants sat in front of the 

computer screen and the microphone was placed directly in front of but slightly below the subjects’ 

face, so as not to obstruct screen view. Response latency was timed from stimulus onset to voice 

key activation, which also terminated the display. 

 

Procedure. Participants were tested individually. They were instructed to read each letter 

string aloud as quickly and accurately as possible; they were informed that a letter string would be a 

pronounceable nonword. Each trial began with a fixation point (+) presented for 500 ms; then, the 

display went blank for 100 ms. Immediately after the stimulus appeared and remained on the screen 

until a response was registered by the voice-key or 3 sec elapsed. The inter-trial-interval was set to 

2 sec. Stimuli were presented in six different pseudorandom orders across participants. A practice 

session preceded the experimental session and consisted of 12 items presented at each subject in a 

random order. The experimenter coded the pronunciation error as triggering (i.e. voice key failure), 

lexicalization and articulation fault. 
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2.3 Results 

 

Articulation errors (11%) and apparatus failures (4.2%) were excluded from the analysis of reaction 

times (RTs); also, apparatus failures were excluded from the analysis of accuracy. Correct RTs were 

submitted to the Van Selst and Jolicoeur (1994) trimming procedure15, which excluded an 

additional 1.3% of the data. Mean naming latencies and percentages of accuracy scores – according 

to conditions – are reported in Table 1.  

 

 
Orthographic Neighborhood    

 
Zero-N One-or-more-N Diff 

Length RTs %E RTs %E RTs %E 

Long 696 15 645 10 51 5 

Short 637 13 626 8 11 5 

Diff. 59 2 19 2 
  

 
Table 1. Mean reaction times (RTs) and percentages of error (E%)  

according to conditions. 
 

 

ANOVAs with N (zero-N vs. one-or-more-N) and Length (short vs. long items) as repeated factors 

for the participant analysis (F1) and as independent factors for the item analysis (F2) were 

conducted on RTs and accuracy. 

 

RTs. Analysis showed a main effect of N, F1(1, 17) = 20, MSE = 830, p < .001, F2(1, 108) 

= 13, MSE = 3118, p < .001, a main effect of Length, F1(1, 17) = 16, MSE = 1688, p < .005, F2(1, 

108) = 16, MSE = 3118, p < .001, and, crucially, a significant interaction, F1(1, 17) = 9, MSE = 746, 

p = .007, F2(1, 108) = 4, MSE = 3118, p < .05, due to the fact that – as predicted by the DRC model 

– the size of the length effect is smaller for the items with neighbours with respect to the items 

without neighbours. 

 

Accuracy. Analysis showed a main effect of N, F1(1, 17) = 6.1, MSE = .006, p < .05, F2(1, 

108) = 4, MSE = .014, p < .05, whereas neither the effect of Length, F1(1,17) = 1.7, p > .2, F2<1, 

nor the interaction, Fs < 1, proved significant. 

                                                 
15 Van Selst and Jolicoeur (1994) proposed a recursive data trimming procedure in which the criterion cut-off for 
outliers removal is established by the sample size in each condition for each subject. This method has the advantage to 
avoid problems due to sample size on outliers elimination. 
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2.4 Simulation 

 

The Italian version of the DRC model (Mulatti & Job, 2003a) resorts to a vocabulary of Italian 

monosyllabic and paroxytone disyllabic words (i.e., words stressed on the second last syllable) 

since both are pronounced without reference to supra-segmental information. The architecture of 

the DRC and the parameter set governing lexical and non-lexical processing are those of the 

English version (Coltheart et al., 2001). There are 6,382 units in the orthographic input lexicon, and 

6,372 units in the phonological output lexicon. As in the English version, the non-lexical route uses 

single-letter (e.g., p to /p/), multi-letter (e.g., ch to /k/), and context-sensitive (e.g., c[i]  to /t∫/) rules 

for translating graphemes into phonemes. The model correctly pronounces the whole set of items in 

its lexicon, and simulates the regularity effect observed with loan words (Mulatti, 2005; Mulatti & 

Job, 2003b; Schereer, 1987; Ziegler, Perry, & Coltheart, 2000) and the effect due to the position of 

the diverging letter in nonword reading (Mulatti et al., 2007). 

The set of nonwords used with the participants was run through the Italian version of the 

DRC model. We chose to use the parameter set that allows the model to correctly simulate the 

neighbourhood size effects in reading aloud (see Coltheart et al., 2001, p. 224). The model did not 

make any error. Mean cycles to criterion are reported in Table 2.  

 

 
Orthographic Neighborhood 

 

 
Zero-N One-or-more-N Diff. 

Length Cycles Cycles Cycles 

Long 187 144 43 
Short 154 132 22 

Diff. 33 12 
 

 
Table 2. Mean cycles according to conditions. 

 

 

An ANOVA with N and Length as independent factors was conducted on cycles. The DRC 

behaviour mimed that of humans. Analysis showed a main effect of N, F(1, 108) = 94, p < .001, a 

main effect of Length, F(1, 108) = 45, p < .001, and a significant interaction, F(1, 108) = 10, p < 

.001, imputable to the size of the length effect being smaller for the items with neighbours than for 

the items without neighbours. 
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2.5  Discussion 

 

The experiment evidenced three different results, all correctly simulated by the DRC model. 

First, nonwords with neighbours are read faster than nonwords without neighbours. In the 

literature, this result is referred to as the N size effect (e.g., McCann & Besner, 1987; see also 

Arduino & Burani, 2004). As mentioned in the introduction, within the DRC framework the N 

effect arises from activation in the orthographic lexicon that feeds forward to the phonological 

lexicon and primes the phonemes in the phoneme system. 

Second, we found a length effect: short nonwords are read aloud faster than long nonwords. 

This result is consistent with that of Weekes (1997), who presented his participants with words and 

nonwords of three, four, five, and six letters for reading aloud. He found a main effect of letter 

length, a main effect of lexicality (i.e., words read faster than nonwords), and a significant 

interaction due to the fact that whereas nonwords showed a length effect, words showed no length 

effect (however, see Balota, Cortese, Sergent-Marshall, Spieler, & Yap, 2004). Within the dual 

route framework, the lexicality by length interaction receives the following explanation: nonwords 

are assembled from letters one by one, hence causing a length effect, whereas words are retrieved 

from the lexicon as a whole, through a parallel process, hence preventing/attenuating serial effects. 

Third, the size of the length effect depends upon the size of N: nonwords without neighbours 

exhibit a stronger length effect than nonwords with one or more neighbours. Within the dual route 

theory, this interaction is easily explained. If a nonword has one or more orthographic neighbours, 

their orthographic and phonological representations receive activation from the stimulus. Activation 

grows over time. Nonlexical processing proceeds letter by letter, and therefore longer nonwords 

require more time to be assembled. Thus, while processing longer nonwords, the activation in the 

lexical route grows for a longer interval of time reaching higher levels. Since the activation of the 

lexical route positively contribute to the assembling of the nonword’s phonology, longer nonwords 

are more facilitated by their neighbouring words than shorter nonwords. 

To conclude, a prediction of the DRC model has been tested through empirical 

investigation. The results of our experiment are consistent with this prediction and are all correctly 

simulated by the Italian version of the DRC model. The interaction between the letter string length 

and the orthographic neighbourhood size (N) that has been obtained is particularly relevant for the 

definition of a computational model of visual word recognition and reading aloud. This interaction 

strongly supports a cascaded model with a dual route architecture, comprising a route working in 

parallel and another working serially, as assumed in the DRC framework.  
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3 TOTAL LETTER CONFUSABILITY IN DEGRADED 

NONWORD READING 

 

 

 

In this chapter the studies providing strong evidence against cascaded processing in nonword 

reading will be considered. As pointed out in the introduction, these experiments typically consist of 

a factorial manipulation involving stimulus degradation. A new variable that might play a role when 

stimuli are degraded – the Total Letter Confusability (TLC) – will be introduced. Since the letters 

comprising the stimulus in input are hardly identified when stimuli are degraded, the visual 

similarity between the different letters might influence letter identification. In fact, some letters in 

the alphabet are perceptively similar to others letters (e.g., E and F) whereas other letters are not 

(e.g., Z and J); similar letters might be thus confused more likely than other less-similar letters 

when the string is presented in reduced contrast. A measure of letter similarity – or letter 

confusability – could hence be a relevant factor to consider in researches analyzing the effects of 

stimulus degradation on speeded nonword reading, since one might expect more similar/confusable 

letters to suffer more when degraded than less similar/confusable letters. 

 

 

3.1 Introduction 

 

Any pair of letters has a visual similarity that can be defined by the number of features that the two 

letters have in common. The idea that letters are identified by their constituent part – their features –  

is not new and it has been proposed over 50 years ago by Selfridge (1959); in his model, the 

Pandemonium, letter identification was achieved by hierarchically organized layers of features and 

letter detectors. More recently, numerous researches provided convincing evidence in support of 

this account (see Grainger, Rey, & Dufau, 2008, for a review).  

Letter similarity is sometimes referred to as letter confusability. The greater the visual 

similarity between two letters is, in fact, the more likely will observers be to confuse one of these 

letters with the other. Measures of letter confusability are empirically generated. Typically, isolated 

letters are presented in data-limited conditions (e.g., brief exposure and/or low contrast and/or 

masking) and participants are asked to report the presented letter. Error rates (e.g., reporting F when 
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E was presented) will give a measure of letter confusability between pairs of letters (e.g., Gilmore, 

Hersh, Caramazza, & Griffin, 1979; Loomis, 1982; Townsend, 1971; Van Der Heijden, Malhas, & 

Van Den Roovaart, 1984). For any given letter, one can average that letter’s confusabilities with the 

remaining 25 letters of the alphabet to obtain a measure of that particular letter’s confusability (LC). 

In addition, for any given string of letters, one can compute its overall confusability (Total Letter 

Confusability, or TLC) as the sum of the confusabilities of the individual letters in the string. High 

TLC letter strings will be thus strings of letters mostly composed of high-confusable letters, 

whereas low TLC letter strings will be strings of letters mostly composed of low-confusable letters. 

Moreover, the mean of the confusabilities of the letters in the string (Mean Letter Confusability) can 

be calculated.  

It seems to us that LC could be an important factor to consider in experiments involving 

degraded presentation of letter strings. When stimulus quality is manipulated and stimuli are 

degraded (usually by reducing the contrast between the stimulus and the background) the letter 

comprising the string in input are difficult to identify and the visual similarity between letters might 

thus influence letter identification. The letter confusability could hence be a relevant factor to 

consider in researches analyzing the effects of stimulus degradation on speeded nonword reading in 

skilled readers, since degradation could have a stronger effect on nonword reading when LC is high 

than when it is low. In other words, it might be the case that more similar/confusable letters suffer 

more when degraded than less similar/confusable letters. If our hypothesis is plausible, it might be 

therefore important to match TLC across conditions in the kind of experiments involving the 

factorial manipulation of SQ that refute cascaded processing, a possibility which the authors did not 

consider in these studies.  

The importance of letter similarity in visual word recognition is not totally new. The 

involvement of LC in reading emerged in fact from recent findings showing that this variable 

influences the performance of patients with pure alexia, also known as letter-by-letter (LBL) 

reading (e.g., Arguin & Bub, 2005; Arguin, Fiset, & Bub, 2002; Fiset, Arguin, Bub, Humphreys, & 

Riddoch, 2005; Fiset, Arguin, & McCabe, 2006). This deficit is associated with a damage affecting 

the left fusiform gyrus – a region in the temporo-occipital cortex – or the fibres conducting visual 

information to this region (e.g., Beversdorf, Ratcliffe, Rhodes, & Reeves, 1997; Binder & Mohr, 

1992; Damasio & Damasio, 1983; Dejerine, 1892). The main behavioural feature of patients 

affecting from LBL dyslexia is very slow reading characterized by an abnormally large word length 

effect. In other words, LBL patients usually show a linear increase in the time required to recognize 

a word as a function of the number of letters it comprises (see, e.g., Patterson & Kay, 1982); several 

studies reported that, depending on the patient, the time required to read a word can increase from 
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500 ms to several seconds for each additional letter in the stimulus. On the contrary, unimpaired 

skilled readers read words of different length at a substantially invariant rate (Weeks, 1997). These 

data have been typically interpreted by suggesting that whereas skilled readers are able to recognize 

several letters simultaneously, LBL patients have lost this ability and instead decode words as a 

sequence of isolated letters, without any access to a spatially parallel process.  

Recent findings clearly showed that the visual similarity among letters has a central role in 

LBL readers performance. In normal condition, as word length increases, so does the sum of the 

confusabilities of the constituent letters; an effect of word length may be thus due to the TLC (that 

is usually higher for longer letter strings) rather than to the number of letters in the stimulus. 

Consistent with this interpretation, Fiset et al. (2005) demonstrated, in fact, that the word length 

effect usually showed by LBL dyslexic patients disappears when TLC is balanced across word 

length, i.e. when the short and the long words presented in the task are matched in terms of TLC. 

These results have been interpreted by suggesting that LBL reading is due to a visual encoding 

impairment affecting letter recognition and that TLC affects reading performance by modulating the 

signal-to-noise ratio at the level of letter identification, a ratio that is abnormally low in LBL 

dyslexic readers. This finding also falsified the classical view explaining the pure alexia as a 

condition characterized by the absence of parallel processing, since the abolition of the word length 

effect under the appropriate condition provides evidence for residual parallel letter processing in 

these patients, even if this processing is highly susceptible of the negative impact of LC.  

Furthermore, previous studies documented that, whereas LC has an effect for LBL dyslexic 

patients, this variable does not influence the behaviour of neurologically intact readers in standard 

viewing condition (e.g., Arguin et al., 2002; Fiset, Arguin, & Fiset, 2006). Nevertheless, we suggest 

that LC might have an effect on skilled readers performance when contrast is reduced. Partial 

support to this interpretation comes from findings proving that the word length effect showed by 

LBL dyslexic patients can be reproduced in skilled readers when the stimuli are degraded in the task 

(Fiset, Arguin, & Fiset, 2006; see also Fiset, Gosselin, Blais, & Arguin, 2006); the authors 

suggested that the visual impairment affecting letter recognition in LBL reading would be in fact 

simulated in normal readers by reducing the stimulus quality. As a consequence, since LC has a role 

in LBL readers performance and the LBL impairment can be simulated in normal readers by 

reducing stimulus quality, the effect of LC might become significant for skilled readers in degraded 

condition.  

The goal of the present study has been to test this hypothesis. In particular, our experiment is 

directed to determine whether the letter confusability has a role for unimpaired subjects when 

reading nonwords. To this end we collected data from skilled Italian readers by presenting high-
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TLC nonwords and low-TLC nonwords both in clear and degraded conditions. The hypothesis is 

that the effect of degradation would be larger for high-TLC nonwords than for low-TLC nonwords. 

 

 

3.2 Method 

 

Participants. Thirty students at the Università degli Studi di Padova who had Italian as their 

first language and normal or corrected-to-normal vision participated as volunteers. 

 

Design. The experiment consisted of a 2x2 within-subjects design with Total Letter 

Confusability (TLC; low TLC vs. high TLC) and stimulus quality (SQ; clear vs. degraded 

conditions) as factors. 

 

Materials. A total of 100 seven letter nonwords was selected as stimuli (these stimuli can be 

seen in the Appendix, section B). They were all pronounceable. Also, none of the nonwords had 

either orthographic or phonological neighbours. These stimuli were divided into two groups of 50 

nonwords according with their TLC (high vs. low). Letter confusability was determined by 

averaging empirical letter-confusion matrices obtained in previous studies (Gilmore et al., 1979; 

Loomis, 1982; Townsend, 1971; Van Der Heijden et al., 1984)16; the TLC was calculated as the 

sum of the confusabilities of the letters comprising the string. Mean TLC values were 2.6 and 3.7 

(t(98) = 20.3, p < .001) for the nonwords belonging to the low-TLC and high-TLC conditions 

respectively. The low TLC nonwords were divided into two groups of 25 nonwords balanced in 

terms of mean TLC values (2.6 vs. 2.6, t<1), lowTLCa and lowTLCb. Similarly, the high TLC 

nonwords were divided into two groups of 25 nonwords balanced for mean TLC values (3.7 vs. 3.7, 

t<1), highTLCa and highTLCb. LowTLCa, lowTLCb, highTLCa, and highTLCb were balanced in 

terms of initial phoneme. These four lists were created to counterbalance high and low TLC stimuli 

with SQ across participants: each participant saw 50 stimuli clear (25 low and 25 high in terms of 

TLC) and 50 stimuli degraded (25 low and 25 high in terms of TLC). The assignment of stimuli to 

the four conditions was counterbalanced across participants, i.e. if participant X saw lowTLCa and 

highTLCa stimuli clear and lowTLCb and highTLCb stimuli degraded, participant X+1 saw 

lowTLCb and highTLCb stimuli clear and lowTLCa and highTLCa stimuli degraded. 

                                                 
16 From the averaged confusion matrix, the diagonal has been removed (see Arguin, et al., 2002) and the LC vector has 
been computed by summing up the letter-by-letter confusion values. The LC values ranged from .27 (letter L) to .71 
(letter B), with an average of .48. 



  31

Apparatus. The experiment took place in a sound attenuated and dim lit room. Stimuli 

presentation and data recording were controlled by software developed in E-prime and running on a 

personal computer. The display was synchronized with the screen refresh cycle. Stimuli were 

presented centrally in upper-case letters in 18-point Courier New font on a black background (RGB 

values; 0, 0, 0). Clear stimuli were displayed in white (RGB values: 65, 65, 65); degraded stimuli 

were displayed in grey (RGB values: 8, 8, 7). Responses were collected via a microphone connected 

to a voice-key assembly. Response latency was timed from stimulus onset to voice key activation, 

which also terminated the display. 

 

Procedure. Participants were tested individually and sat in front of the computer screen. 

They were instructed to read each letter string aloud as quickly as possible, and to minimize errors; 

they were informed that the stimulus would be a pronounceable nonword. Subjects were then 

presented with 12 practical trials. Each trial began with a 500 ms presentation of a fixation point at 

the centre of the computer screen followed by a 200 ms presentation of a blank. Immediately after 

the stimulus appeared and remained on the screen until a response was registered by the voice key 

or 3 sec elapsed. The inter-trial-interval was set to 2 sec. Stimuli were presented in a random order 

for each participant. The experimenter coded the pronunciation as correct if the pronunciation obey 

to the standard grapheme-phoneme rules, voice key failure or articulation error. 

 

 

3.3 Results 

 

Pronunciation errors (10.6%) and apparatus failures (4.98%) were removed prior to reaction times 

analysis. Correct reaction times were submitted to the Van Selst and Jolicoeur’s (1994) outlier 

removal procedure. Outliers (1.3%) were removed prior to RTs analysis. Mean RTs according to 

conditions and percentages of error are reported in Table 3. 

 

 

Stimulus Quality 

Degraded 
 

Clear 

TLC RTs %E 
 

RTs %E 

High 1189 17   874 6 
Low 1125 18 

 

871 7 

Diff. 64 -1   3 -1 
 

Table 3. Mean reaction times (RTs) and percentages of error (%E) 
according to conditions. 
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In the ANOVA for the participants (F1) TLC and SQ were repeated factors. In the ANOVA for 

items (F2) TLC was an independent factors and SQ was a repeated factor.  

 

RTs. Analysis showed a main effect of SQ, F1(1, 33) = 92.8, MSE = 29575, p < .001, F2(1, 

98) = 1001.4, MSE = 4242, p < .001, and a main effect of TLC, F1(1, 33) = 12.3, MSE = 3069, p < 

.001, F2(1, 98) = 4.4, MSE = 8585, p < .05. However, the two effects were qualified by a 

significant interaction, F1(1, 33) = 8.7, MSE = 3543.9, p < .01, F2(1, 98) = 6.8, MSE = 4242, p < 

.01. Paired comparisons – by participants (t1) and by items (t2) – revealed that whereas the effect of 

TLC was significant when the stimuli were degraded, t1(33) = 3.6, p < .001, t2(98) = 2.8, p < .01, it 

was not significant when the stimuli were clear, ts < 1.  

 

Accuracy. Whereas the main effect of SQ proved significant, F1(1, 33) = 83.5, MSE = .006, 

p < .001, F2(1, 98) = 47.7, MSE = .016, p < .001, neither the effect of TLC, Fs <1, nor the 

interaction, F1(1, 33) = 2.1, MSE = .003, p > .15, F2(1, 98) = 1.3, MSE = .016, p > .2, were 

significant.  

 

 

3.4 Discussion 

 
This study was directed to analyze the effect of letter confusability in nonword reading, a variable 

defined as the visual similarity between letters driven by shared features. Our experiment clearly 

showed that nonword reading is influenced by letter similarity in particular experimental conditions. 

In fact, the results obtained proved the letter confusability role in nonword reading when stimuli are 

presented in low contrast (i.e., degraded condition). Instead, letter confusability doesn’t affect 

nonword reading when stimuli are presented in standard viewing condition (i.e., clear condition).  

More specifically, when the Total Letter Confusability (i.e., the sum of the confusabilities of 

the letters in the string) and SQ are jointly manipulated in a nonword reading task, a significant 

interaction between the two factors is obtained, with the effect of degradation being larger for the 

high-confusable that for the low-confusable strings of letters. As hypothesized, high-TLC nonwords 

are thus harmed by stimulus degradation more than low-TLC nonwords.  

 This result has at least two important implications for the research on visual word 

recognition and reading aloud. 

 First, the role of TLC has been largely documented in LBL dyslexia (e.g., Arguin & Bub, 

2005; Arguin, et al., 2002; Fiset, et al., 2005). When the visual impairment affecting word 



  33

recognition that characterizes this disorder is simulated in normal readers through stimulus 

degradation (see Fiset, Arguin & Fiset, 2006), then TLC has an effect on skilled readers 

performance. A variable affecting LBL dyslexics’ behaviour has been thus shown to influence 

unimpaired skilled readers in particular experimental conditions. 

Second, our findings have important implications for the researches using factorial 

manipulations to analyze information processing in visual word recognition. As said, recent studies 

involving the manipulation of SQ together with another factor in nonword reading tasks (e.g., 

Besner & Roberts, 2003; Reynolds & Besner, 2004) have provided strong evidence against 

cascaded processing. In particular, these studies suggested that information processing in the 

reading system might be thresholded at least in a particular level when reading nonwords. We argue 

that these data might be due to a confounding with TLC and that any threshold in the reading 

system would be instead needed. In fact, if the letter confusability plays a role when stimuli are 

degraded, then any study that involves a manipulation of SQ should take this factor into account. In 

particular, the effect of degradation is shown to be stronger for high-confusable letter strings than 

for low-confusable letter strings; this means that, if the stimuli in the experiments involving SQ are 

not controlled for TLC, the results obtained could be due to a counfounding with this variable. 

Consider, for example, the additive effects of SQ and letter string length that have been reported by 

Besner and Roberts (2003). The TLC is not controlled for in this study. This means that, as letter 

string length increases, so does the TLC, i.e. since TLC is calculated as the sum of the 

confusabilities of the letters in the string it is likely to increase as the number of letters in the string 

increases. Thus, part of the increased RTs for the degraded long nonwords compared to the 

degraded short nonwords obtained in this study could have been due to the increased TLC rather 

than to the increased length. If so, the additive effects that have been observed might be due to a 

counfounding with this variable: if short and long nonwords would be matched on TLC, then the 

true result could be an interaction, with the effect of SQ being larger for short than for long 

nonwords, as predicted by the DRC model. This hypothesis has been tested in the study reported in 

the next chapter.  

 

3.4.1 Computational modelling 
 

The basic assumption of computational modelling is that computational accounts are sensitive to the 

same variables that humans are sensitive to. In the present experiment we showed that letter 

confusability influences skilled readers performance in particular experimental conditions. Hence, 
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since human readers are sensitive to letter confusability (at least for degraded stimuli), we must 

require the DRC model to be too.  

The confusability between letters depends on letters’ similarity that, in turn, depends on the 

letters’ font and case17. This means that the LC for human readers might differ from the LC for the 

DRC model. As said, LC for human readers is empirically obtained. But what about the LC for 

computational models? Since letter similarity in human reading is driven by shared features, we 

argue that LC may be calculated in computational models as the proportion of visual features that 

two letters have in common, by considering the font and case that have been implemented in that 

specific model. Specifically to the DRC, it derives the first levels of processing from the IA model 

(McClelland & Rumelhart, 1981) that assumes the upper-case font produced by Rumelhart (1970) 

and Rumelhart and Siple (1974). This font is illustrated in Figure 5.  

 

 

Figure 5. The features used to construct the letters and the letters in the font assumed 
by the simulation program on which the IA model and the DRC model are based 

 (McClelland & Rumelhart, 1982, p. 383, Figure 4). 
 

 

In the Rumelhart-Siple font there are 14 line segments which can be used to represent any letter. 

Different letters are represented by different subsets of these 14 lines. Hence, one can measure the 

confusability between any two letters in the font used to represent letters in the DRC model as the 

proportion of the 14 features used to code letters which the two letters share. Consider, for example, 

the letters E and F. These letters have 12 features in common; since the total number of features 

(present or absent) each letter has is 14, their confusability will be 12/14 = .857.  

                                                 
17 Letter confusability values used in all the experiments reported in this thesis have been determined by averaging 
empirical letter-confusion matrices obtained in previous studies (Gilmore et al., 1979; Loomis, 1982; Townsend, 1971; 
Van Der Heijden et al., 1984). These experiments employed upper-case stimuli but the fonts used were not always the 
same; however, the correlation among the matrices is always quite high and this could be interpreted as a partial 
independence of confusion from font in these studies. Given the theoretical importance of the font when SQ is reduced, 
however, the same font (i.e., 18-point Courier New) and case (i.e., upper-case) have been used in all the experiments 
involving degradation presented in this thesis. 
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For any pair of letters in the DRC model’s font, a measure of confusability of that pair can 

be obtained; hence, one can measure the average confusability for each DRC letter (DRC-LC), and 

hence calculate the DRC-TLC for any letter string. 

Is the DRC model sensitive to the TLC? Unfortunately, the DRC model in its actual 

formulation is unable to simulate the effect of TLC obtained for skilled readers. In fact, when two 

sets of nonwords differing in terms of DRC-TLC are run through the computational version of the 

model under the degraded condition, any effect due to this variable is obtained. There are, however, 

two features of the DRC model that may play a role in determining this unsuccessful result. 

Critical in this context is the feed-forward connection from the visual feature level to the 

letter level. There are two parameters in the DRC model controlling this connection, one that 

regulates the activation of the letters which have the visual features in input and another that 

determines the inhibition of the letters that have not those features. Since letter confusability is 

driven by shared features in the model, the values of these parameters are certainly important for the 

simulation of any effect involving letter confusability. Currently, the parameter that regulates the 

inhibition between visual feature and letter units is much higher (i.e., 30 times greater) than the 

parameter that regulates their excitation18. This means that just one mismatching feature will 

completely block activation of similar letters. As a consequence, any effect due to letter similarity 

won’t be simulated by the DRC model implementing these default values. 

The other important parameter for the simulation of letter confusability effects is the Letter-

Lateral-Inhibition. This parameter determines the inhibition that each letter at the letter level sends 

to the competitive letters. In the model, when a letter receives activation, it should inhibit all the 

other letters and, through this mechanism of lateral inhibition, the system would gradually converge 

on a single unit that corresponds to the target letter. Currently, the value of this parameter is zero: 

this means that different letters cannot inhibit each other in the model and multiple letters activation 

will therefore only interfere. To simulate any effect due to letter confusability, lateral inhibition 

between different letters is instead required. 

Clearly, the current values of the parameters described above are inadequate and do not 

allow the present computational version of the DRC model to reproduce any effect due to letter 

similarity. However, one does not have to adhere to these values. It might seem indeed peculiar that 

the inhibition between feature and letter units is 30 times greater than the excitation between these 

two levels; more likely, these values should be the same. Moreover, letter-lateral inhibition is 

assumed in the model without be actually implemented, since the value of the parameter regulating 

                                                 
18 Precisely, the default values of these parameters in the DRC model are .15 for the feature-to-letter inhibition and 
.005 for the feature-to-letter excitation. 
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this inhibition is zero: hence, a change of this value is clearly justified (and perhaps needed) from a 

theoretical point of view. Moreover, the values that the DRC model actually implements for these 

parameters have been inherited from its progenitor, the IA model (see Table 1, p. 387 of 

McClelland & Rumelhart, 1981); to the best of our knowledge, however, this precise setting is not 

required by any empirical data.  

To conclude, we argue that our empirical findings claim a change of the values of some 

parameters assumed in the DRC model, i.e. the parameters regulating the connections between the 

feature and the letter units and the parameter regulating the lateral inhibition within the letter 

level19. According to the principle of nested modelling this is a plausible way to proceed, as long as 

the model so modified will be still able to reproduce the pattern of results that its actual 

computational version does simulate.  

Importantly, our results require not only the DRC model, but more generally every 

computational model of reading to simulate the effects due to letter similarity when stimuli are 

degraded. Clearly, this is a challenge that should be taken into account by future works on 

computational modelling of the reading process. 

 

3.4.2 Conclusion 
 

A variable playing a role for letter-by-letter dyslexic patients – the Total Letter Confusability – has 

been shown to influence skilled nonword reading when stimuli are degraded. This finding has 

important implications for researches on visual word recognition: since high-TLC stimuli are 

harmed by stimulus degradation more than low-TLC stimuli, then any study that involves a 

manipulation of SQ should take the TLC into account. 

                                                 
19 I will hark back on this issue in the final chapter of this thesis. 
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4 STIMULUS QUALITY AND LETTER STRING 

LENGTH  IN NONWORD READING 

 

 

 

In this chapter the joint effects of stimulus quality and letter string length in nonword reading will 

be analyzed. Besner and Roberts (2003) reported that, whereas these factors have additive effects on 

readers’ latencies in a nonword reading task, they interact in simulations of the DRC model. The 

authors suggested that the DRC model would only be able to capture the additivity of length and 

degradation by a radical change to the model, namely thresholding the output of the letter level.  

We argue that the results reported by Besner and Roberts (2003) may be instead due to a 

confounding involving a variable representing letter similarity – the Total Letter Confusability 

(TLC). Since TLC plays a role in degraded nonword reading, then any study involving a 

manipulation of SQ should match TLC across conditions. Following this hypothesis, we will show 

that SQ and letter string length interact in the reading task when short and long nonwords are 

matched for TLC. Implications for models of visual word recognition will be discussed. 

 

 

4.1 Introduction 

 

Skilled readers’ latencies to nonwords increase monotonically as the number of letters increases 

(e.g., Weekes, 1997), thus suggesting that print is translated into sound serially along the string of 

letters when reading nonwords. This assumption is central in the DRC model of reading. According 

to the DRC model, in fact, nonwords are read through the non-lexical route, a serial procedure that, 

using language-specific correspondence rules, converts each grapheme into the corresponding 

phoneme from left to right. As the number of letters in a nonword increases, the time required to the 

non-lexical route to reach the rightmost letter and activate the last phoneme increases as well. The 

effect of letter string length in nonword reading is indeed correctly simulated by the DRC model 

(e.g., see simulations reported in Chapter 2). 

 The effect of letter string length when jointly manipulated with stimulus quality has been 

recently analyzed (Besner & Roberts, 2003). The goal of this study was to determine whether the 

effect due to letter string length in nonword reading changes in function of the stimuli being 
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presented in a clear condition or in reduced contrast. Critically, additive effects of the two variables 

have been reported on reading latencies, i.e. the effect of letter string length has the same amplitude 

regardless of the levels of SQ.  

 Moreover, Besner and Roberts (2003) attempted to simulate these effects with the DRC 

model. Critically, SQ and letter string length interacted in this simulation20, with the effect of letter 

length being larger for clear than for degraded nonwords. In other words, slowing the rate of 

processing affected short nonwords more than long nonwords in the DRC model’s performance. 

This seemingly counterintuitive result is explain in a straightforward way by the model. As said, the 

DRC model engages serial processing for nonword reading. Thus, when the rate of processing is 

slowed down by reducing SQ, the first phoneme of the letter string is delayed. However, the delay 

associated with the start of activation of each additional phoneme decreases as the number of letter 

increases. In fact, activation is continuously accumulated during phonemic processing and, since 

reading longer nonwords requires more time, activation grows more for longer letter strings. Given 

that pronunciation does not start until all phonemes reach threshold, the delay produced by stimulus 

degradation is reduced for longer letter strings. 

Critically, the pattern of results reported by Besner and Roberts (2003) showed a qualitative 

difference between the behaviour of human skilled readers and the simulations of the DRC model. 

According to the authors these data would call for a modification to the way the DRC model 

processes along the non-lexical route. In particular, the authors suggested that the interaction 

between SQ and nonword length can be eliminated by thresholding the output of a level somewhere 

in the model but reflecting early processing, i.e. either the visual feature level or the letter level. As 

the authors correctly observed, if the visual feature level would be thresholded, then the 

manipulation of processing rate will not affect anything beyond the feature level. As a consequence, 

several well-established two-way interactions in visual word recognition would not be explained by 

such an hypothesis. For example, a threshold at this level would be inconsistent with the interaction 

of SQ and repetition of words (i.e., words presented for the first time are more affected by 

degradation than words presented for the second time) that has been shown both in lexical decision 

(Besner & Swan, 1982) and in reading (Blais & Besner, 2007); in a similar way, such a threshold 

would not explain the interaction of SQ and semantic priming (i.e., the effect of semantic priming is 

larger when the word is degraded compared with when it is clear) also obtained both in lexical 

decision and reading tasks (e.g., Besner & Smith, 1992; Borowsky & Besner, 1993; Ferguson, 

Robidoux, & Besner, 2009; Meyer, et al., 1975; Stolz & Neely, 1995).  

                                                 
20 As said, stimulus quality is usually simulated in computational models by modifying the connection weights so to 
reduce the processing rate in early levels. Specifically, Besner and Roberts implemented degradation in the DRC model 
by reducing the connections between the feature and the letter units by 40%. 
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A different possibility is to threshold the output of the letter level. In fact, the interaction 

between SQ and letter string length in nonword reading reflects the effect of cascaded processing at 

the letter level, followed by serial processing when translating letters into phonemes. If the letter 

level is thresholded, then the effect of reduced stimulus contrast would not affect the model beyond 

the letter level and, given that the nonword length effect arises from the subsequent serial 

assignment of phoneme to grapheme, the joint effects of SQ and letter string length would be 

additive on reading latencies. Computational simulations showed indeed this is the case (see Besner 

et al., 2003). The authors also proposed that thresholding the letter level would resolve other 

problems as well: such a modification would in particular explain the additive effects on reading 

latencies of SQ and orthographic neighbourhood (N) size (Reynolds & Besner, 2004; but see Blais 

& Besner, 2007) and of SQ and word frequency (O’Malley & Besner, 2008)21. 

Moreover, the authors suggested that the letter level would be thresholded only before it 

activates the non-lexical route and it instead cascades to the lexical route. In other words, whereas 

the grapheme-phoneme conversion process would be activated by the output of the letter level in a 

thresholded fashion, the lexical route would be activated by cascaded letter level processing (see 

also Blais & Besner, 2007). Given the interactive-activation between the orthographic lexicon and 

the letter level assumed in the model remains intact, this account is consistent with the interactions 

observed between SQ and word repetition (e.g., Blais & Besner, 2007), between SQ and semantic 

priming (e.g., Ferguson et al., 2009) and between SQ and word frequency when the reading task 

comprises only words (O’Malley & Besner, 2008; Yap & Balota, 2007).  

Clearly, adding a threshold at the letter level means to accept that information processing in 

the reading system is – at least at one level of processing – discrete and serially organized 

(Sternberg, 1969; see also Sternberg, 1998). Accepting this proposal therefore requires a radical 

change of the DRC model, e.g. the C in DRC should be abandoned since C stands for cascaded and 

not thresholded. More generally, the idea itself that information processing in the reading system is 

cascaded would be refuted. 

 We argue that a different interpretation of the Besner and Roberts’ (2003) results can be 

proposed by considering the Total Letter Confusability (or TLC). The letter confusability is, as 

demonstrated in the previous chapter, a measure of letter similarity which effects become 

significant in degraded reading. In particular, it has been shown that the more confusable a letter is 

to the other letters of the alphabet, the stronger the effect of degradation will be on that letter’s 

identification. As a consequence, any study involving degraded nonword reading should take this 

measure into account. 

                                                 
21 These issues will be further discussed, respectively, in Chapter 5 and in Chapter 6. 
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 Critically, Besner and Roberts (2003) didn’t match their stimuli for TLC. Hence, since TLC 

usually increases as letter length increases, our assumption is that the long nonwords used in their 

experiment had higher TLC values than their short nonwords. Moreover, an analysis on the stimuli 

used by the authors confirms this interpretation. Their experiment used lowercase letters and, to the 

best of our knowledge, there is only one published confusion matrix for lowercase letters, that of 

Courrieu, Farioli, and Grainger (2004). Our analysis of the material used in the Besner and Roberts’ 

(2003) experiment indicated that their long nonwords had a much higher mean TLC than their short 

nonwords (551.7 vs. 376.8; t(62) = 13.9, p < .001). Therefore part of the increased RTs for the 

degraded long nonwords compared to the degraded short nonwords could have been due to the 

increased TLC rather than to the increased length. If so, then matching the long and short nonwords 

on TLC would reduce the difference in RTs between the degraded long nonwords and the degraded 

short nonwords; that would reduce the slope of the length effect in the degraded condition, so that 

the effects of degradation and length would no longer be additive. Instead, the length effect would 

be smaller for degraded than for clear stimuli: which is the effect to be expected from the DRC 

model.  

The experiment reported below was directed to test this possibility by matching short and 

long nonwords on TLC, thus eliminating the confounding due to this variable. A condition in which 

TLC was not controlled has been also introduced to replicate the Besner and Roberts’ (2003) study. 

 

 

4.2 Method 

 

Participants. Thirty students at the Università degli Studi di Trento who had Italian as their 

first language and normal or corrected-to-normal vision participated as volunteers. 

 

Design. The experiment consisted of a 2x2x2 within-subjects design with Total Letter 

Confusability (TLC; balanced vs. unbalanced conditions), length (short vs. long items), and 

stimulus quality (SQ; clear vs. degraded conditions) as factors. 

 

Materials. A total of 120 pronounceable nonwords was selected (these stimuli can be seen 

in the Appendix, section C). The nonwords had neither orthographic nor phonological neighbours22. 

                                                 
22 Note that nonwords with an orthographic neighborhood size of 2 were used in the Besner and Roberts’ (2003) study; 
the authors, however, interpreted the effects obtained as caused by a purely nonlexical processing: hence the use of 
nonwords without neighbours in our experiment. 
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The nonwords were divided into two groups of 60 stimuli belonging to two levels of Total Letter 

Confusability (balanced vs. unbalanced conditions). Within each group there were 30 stimuli at 

each of two levels of length (short vs. long) matched for their initial phoneme. Items that were 5 

letters in length represented the short length condition; items that were 7 letters long represented the 

long length condition. Short and long nonwords were balanced in terms of TLC (2.69 vs. 2.69, t<1) 

in the balanced condition and significantly differed for this factor (2.17 vs. 3.43, t(58) = 19.2, 

p<.001) in the unbalanced condition. Letter confusability has been determined from previous 

empirical letter-confusion matrices (Gilmore et al., 1979; Loomis, 1982; Townsend, 1971; Van Der 

Heijden et al., 1984). The TLC was calculated as the sum of the confusabilities of all letters in an 

item. Finally, at each of two levels of length, half the items were presented in the clear condition 

and the other half in the degraded condition. Items were counterbalanced across levels of stimulus 

quality in such a way that half the subjects saw an individual item under the clear (degraded) 

condition and the remaining subjects saw that item under the degraded (clear) condition. 

 

Apparatus and Procedure. The same apparatus and procedure of the experiment reported 

in Chapter 3 have been used. 

 

 

4.3 Results 

 

Pronunciation errors (10.5%) and apparatus failures (12.9%) were removed prior to reaction times 

analysis. Correct reaction times were submitted to the Van Selst and Jolicoeur’s (1994) outlier 

removal procedure. Outliers (2.7%) were removed prior to RTs analysis. Mean RTs according to 

conditions and percentages of error are reported in Table 4. 

 

  
Total Letter Confusability 

Balanced 
 

Unbalanced 

  
Stimulus Quality 

 
Stimulus Quality 

  
Clear 

 
Degraded 

 
Clear 

 
Degraded 

Length RTs   %E   RTs   %E   RTs   %E   RTs   %E 

Long 
 

806 
 

13 
 

859 
 

19 
 

789 
 

15 
 

877 
 

17 

Short   687   6   768   9   681   8   747   10 

Diff. 
 

119 
 

7 
 

91 
 

10 
 

108 
 

7 
 

130 
 

7 
 

Table 4. Mean reaction times (RTs) and percentages of error (%E) according to conditions. 



  42 

In the ANOVA for the participants (F1) TLC, SQ, and Length were repeated factors. In the 

ANOVA for items (F2) TLC and Length were independent factors, SQ was a repeated factor.  

 

RTs. Analysis showed a main effect of Length, F1(1, 29) = 154.9, MSE = 4839, p < .001, 

F2(1, 232) = 166.9, MSE = 4490, p < .001, and a main effect of SQ, F1(1, 29) = 70.1, MSE = 4452, 

p < .001, F2(1, 232) = 74, MSE = 4490, p < .001. As in the Besner and Roberts’ (2003) study, SQ 

and Length do not interact, Fs < 1. However, the three ways interaction among TLC, SQ, and 

Length proved significant, F1(1, 29) = 10.4, MSE = 844, p < .005, F2(1, 232) = 6.3, MSE = 4490, p 

< .05. When TLC is controlled for across length, the length effect for degraded stimuli is smaller 

than the length effect for clear stimuli (91 vs. 119 ms, respectively); whereas when TLC is left 

uncontrolled, the length effect for degraded stimuli is bigger than the length effect for clear stimuli 

(130 vs. 108 ms, respectively). 

 

Errors . Only the main effects of SQ, F1(1, 29) = 6.2, MSE=.012, p < .05, F2(1, 232) = 5.4, 

MSE=.014, p < .05, and Length, F1(1, 29) = 31.8, MSE=.0102, p < .001, F2(1, 232) = 23.3, 

MSE=.014, p < .001, proved significant.  

 

 

4.4 Discussion 

 

This study showed three principal results. 

First, long nonwords are read slower than short nonwords. This effect is well-established in 

reading researches (e.g., Weekes, 1997). In the DRC model this effect is explained because 

nonwords are assembled letter-by-letter (from left to right) by the non-lexical route.  

Second, we found an effect of degradation, due to the fact that clear stimuli are read aloud 

faster than degraded stimuli. This result is due to degradation slowing the rate of processing in the 

reading system. In the DRC, a reduction in SQ is implemented by reducing the weights of the 

connections between the feature and the letter units: the effect of stimulus quality is correctly 

simulate by the DRC model (see, e.g., Besner & Roberts, 2003). 

Third and most important, the three ways interaction between SQ, length and TLC proved 

significant. In particular, we showed that when TLC is controlled for across length, the length effect 

for degraded stimuli is smaller than the length effect for clear stimuli. Instead, when TLC is left 

uncontrolled, the length effect for degraded stimuli is larger than the length effect for clear stimuli. 
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We therefore conclude that the additivity of degradation and nonword length reported by Besner 

and Roberts (2003) occurred because of a confounding between TLC and length, and that when this 

confounding is removed the two factors interact, with the length effect being smaller for degraded 

stimuli than for clear stimuli, a result which, as Besner and Roberts (2003) showed, is also 

simulated by the DRC model.  

  

4.4.1 Computational modelling 
 

An issue concerning computational modelling remains however to be resolved. Even it were true 

that the additivity of degradation and length observed in human reading by Besner and Roberts 

(2003) occurred because of a confounding between TLC and length, the DRC model ought still to 

have been able to simulate it, because it is supposed to be sensitive to the same variables that human 

readers are sensitive to. So the requirement that the DRC model be able to produce an additivity of 

degradation and length with the Besner and Roberts’ stimuli has not been avoided. 

As said in the previous chapter, a first problem in simulating letter confusability effects 

might regards how TLC is calculated. In fact, the LC for human readers with the font and case used 

by Besner and Roberts (2003) may differ from LC for the DRC model with the font and case used 

by this model. Hence, if the DRC model does not produce additivity of degradation and length 

when the Besner and Roberts’ stimuli are used, this might be because, for the DRC’s font, there is 

no difference in TLC between the short and the long nonwords used by Besner and Roberts and 

hence no confounding of length with TLC. However, an analysis on the stimuli used by Besner and 

Roberts (2003) turns out that the DRC-TLC is significantly higher for the long items than for the 

short items (3.22 vs. 2.23; t(62) = 13.5, p < .001) used in this study. Hence, the confounding of 

length with TLC is significant for the DRC model as for human readers and the additive effects 

reported by Besner and Roberts (2003) should be correctly simulated by the model. 

In the previous chapter we identified two parameters of the DRC model that are certainly 

involved in any effect depending on letter confusability. As said, the actual values of these 

parameters are not adequate and, as a consequence, the DRC model cannot simulate the effect due 

to TLC we showed in human reading; moreover, the DRC model in its actual setting won’t 

reproduce any result that depend on this variable. The task will be therefore to find the right 

manipulation of these parameters that shows additivity of SQ and letter string length when TLC is 

confounded with letter length but also an interaction between the two factors with smaller length 

effect for degraded than for clear stimuli when TLC is matched across length. Only if both these 

results are obtained the DRC model can be considered successful. 
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This issue will be further discussed in the final chapter of this thesis, where a few attempts 

of simulation in this direction will be successfully presented. 

 

4.4.2 Letter’s position encoding: evaluating a theoretical account 

 

Besides the issues here discussed, the researchers analyzing the joint effects of SQ and letter string 

length might be useful to evaluate a novel theoretical framework proposed to explain how the 

position of a letter within a string is encoded, the Sequential Encoding Regulated Inputs to 

Oscillations within Letter units (SERIOL) model (Whitney, 2001). 

 Computational models of visual word recognition need specific assumptions about how 

letter position is encoded. In the DRC model, for example, different sets of letter units exist for each 

string position. In other words there are, in the model, separate units that represent the letter A in the 

first position, the letter A in the second position and so on (see also Coltheart, Curtis, Atkins, & 

Haller, 1993; McClelland & Rumelhart, 1981; Whitney, Berndt, & Reggia, 1996). Thus, for 

example, the word ART is encoded in the model by activating A in the first subset, R in the second 

subset and T in the third subset. This organization certainly demands a high degree of redundancy 

since a representation of each letter in each possible position is required23.  

An alternative neurobiologically plausible theoretical framework assuming serial processing 

– the SERIOL model – has been recently proposed to account for letter position encoding. 

Briefly, the first level assumed in the model, the retinal level, correspond to the earliest level 

of visual processing. Units at this level correspond to pixel and are topographically organized with 

respect to external stimuli. The representation of the string in input is split across the hemispheres, 

so that the left visual field (LVF) is processed by the right hemisphere (RH), whereas the right 

visual field (RVF) is processed by the left hemisphere (LH). In the physical retina visual acuity 

decreases with increasing angle from the fixation point (due to the decreasing concentration of 

cones); in a similar way, the activation of the retinal units in the model – the acuity gradient – 

decreases as distance from fixation increases. The acuity gradient is thus symmetric across fixation, 

with decreasing activation from the fovea to periphery, i.e. the acuity gradient increases form the 

first letter to the fixation (i.e., in the LVF/RH) whereas it decreases from fixation to the last letter 

(i.e., in the RVF/LH).  

                                                 
23 Alterative accounts are also available. For example, to reduce redundancy it has been proposed that each unit may 
represent not only the letter but also its position in the string, e.g. ART would be represented by A-1, R-2, T-3. However, 
it is unclear how this tagging could be realized in physiological terms. Or else, it has been suggested that the basic units 
may be groups of ordered letters such as trigram rather than single letter (Seidenberg & McClelland, 1989; see also 
Mozer, 1987), e.g. the word ART would be coded as _AR, ART, RT_, (where _ represents a word boundary). 
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At the subsequent feature level, the acuity gradient is converted into an activation pattern – 

the spatial gradient – that decreases across the letter string from left to right. Therefore, the slope of 

the LVF/RH acuity gradient is in the opposite direction as required for spatial gradient, while the 

slope of the RLF/LH acuity gradient is in the same direction. Thus, in the LVF/RH, the acuity 

gradient slope must be inverted as it activates letters’ features; in contrast, the acuity gradient slope 

can be maintained as features are activated in the RVF/LH. As a result, processing at the feature 

level differs across hemisphere. This hemisphere-specific processing is assumed to be learned 

during reading acquisition, probably in response to attentional mechanisms. In particular, excitation 

from the retinal level to the feature level is assumed to be strong in the LVF/RH. This allows the 

first letter’s features to reach a high level of activation in the LVF/RH even if it’s far from 

fixation24. Also, strong directional lateral inhibition connections within the feature level are 

assumed in the LVF/RH such that each feature unit inhibits units to its right so strongly to invert the 

slope of the gradient. On the contrary, excitatory and lateral inhibition connections are weaker in 

the RVF/LH because the slope of the acuity gradient is already in the correct direction. In addition, 

LVF/RH features inhibit the RVF/LH features, bringing the activation of the latter lower than 

activation of the former. The two parts of spatial gradient are finally combined through inter-

hemispheric callosal transfer creating an activation gradient decreasing from the first letter to the 

last letter. 

At the next level, the letter level, the spatial gradient induces a temporal firing pattern across 

letter units. Specifically, due to the location gradient, the letter node representing the letter in the 

first position receives the highest level of excitatory input, the second receives the next highest 

amount, and so on. Letter nodes receiving the highest levels of input will fire first because reach 

threshold before the others; also, lateral inhibition ensures that only one letter node fires at a time. 

Hence, in the SERIOL model, letter’s position is represented by the precise timing of firing of a 

letter node relative to the other letter nodes. 

Finally, a bigram level and a word level are also assumed in the model. However, their 

description is superfluous for the present purposes. 

The length effect is simply accounted for in the SERIOL model, given that letters are 

serially decoded. In particular, the length effect would be due to the fact that longer strings are 

presented farer on the left side of fixation than shorter strings; for letters on the left side of fixation 

the natural acuity gradient (i.e., visibility degrading from the fovea to periphery) must be reversed 

by strong excitation and left-to-right later inhibition assumed in the LVF/RH. Specifically, through 

                                                 
24 This assumption is consistent with empirical data showing that perceptibility of initial letters does not decrease as 
distance from fixation in the LVF/RH; on the contrary, it does decrease in the RLV/LH, where activation from the 
retinal level is lower (Estes, Allemeyer, & Reder, 1976). 
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the directional later inhibition, each feature inhibits the units to its right so strongly to invert the 

slope of acuity gradient. Critically, inhibitory input increases as letter-position increases, because 

more and more features will send inhibition from the left. As consequence of this mechanism, the 

LVF/RH spatial gradient becomes more and more non-linear as the number of letters on the left size 

of fixation increases; hence, activation will be reduced across letter-position delaying letter fairing 

for longer string and increasing the amount of time required for the network to reach criterion, 

hence producing a length effect.  

As consequence of the logic described above, the length effect depends on spatial gradient 

formation in the LVF/RH. Consistently with this prediction, many studies showed that the length 

effect is obtained for stimuli parafoveally presented in the LVF but it disappears when the stimuli 

are presented in the RVF (e.g., Bouma, 1973; Ellis, Young, & Anderson, 1988; Melville, 1957; 

Young & Ellis, 1985). In fact, the perceptual span in the LVF is four letters (Rayner, 1975); thus, in 

LVF parafoveal presentation, the letters of a long string are not maximal activated by their features 

because bottom-up input is lower than for central fixation. In addition, strong lateral inhibition from 

the first letter has a large effect on the second and third letter, because of their low level of bottom-

up input. Due the lower activation of the initial letters and the increasing activation levels of the 

final letters (due to acuity increasing near fixation), lateral inhibition would thus fail to create a 

smoothly decreasing spatial gradient. On the contrary, in RVF/LH parafoveal presentation, the 

spatial gradient remains smoothly decreasing because it is based on the acuity gradient. Moreover, 

Whitney and Lavidor (2004) showed that the length effect obtained in the LVF was annulled by 

increasing 2nd and 3rd letter contrast (in 4 and 6 letter long words) whereas the same manipulation 

made the effect appearing in the RVF. The idea is that increasing 2nd and 3rd letter contrast would 

increase bottom-up input of these letters, hence creating a smooth gradient in the LVF/RH that, 

facilitating longer strings, would cancel the length effect. Conversely, the application of the same 

pattern in the RVF/LH should create a length effect due to disruption of a previously smooth spatial 

gradient. 

 We argue that the SERIOL model also makes clear predictions regarding the joint effects of 

SQ and letter string length. As said, the length effect is due to an attentional pattern that reverses the 

natural visibility gradient by increasing the bottom up input of the left part of the string. Since SQ 

influences the amount of bottom up input, stimulus length and degradation exert their effects – at 

least in part – at the same level in the SERIOL model. Hence, the model predicts that SQ and letter 

string length interact, with the length effect being larger for degraded than for clear stimuli. In 

particular, reducing stimulus contrast will cause the production of a non-linear spatial gradient, 

which will slow long letter strings more than short letter strings. In degraded presentation, in fact, 
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the letters in the LVF won’t be maximal activated by their features given the reduced bottom up 

input. As a consequence, lateral inhibition from the first letter will have a large effect on the 

subsequent letters at the left of fixation (because of their low level of activation), thus creating a 

non-linear spatial gradient. Since inhibitory input increases as letter-position increases (because 

more and more features send inhibition from the left) the spatial gradient will become more and 

more non-linear as the number of letters in the string increases. Hence, the effect of degradation will 

be stronger for long letter strings compared to short letter strings. 

 Critically, the results expected by the SERIOL model are opposite to the predictions of the 

DRC model. In fact, the effect of letter string length is predicted to be larger for degraded than for 

clear stimuli by the SERIOL model; instead, the length effect is expected to be smaller for degraded 

than for clear stimuli according to the DRC model. Crucially, the results obtained in our experiment 

showed an interaction consistent with what expected by the DRC model, thus falsifying the 

prediction of the SERIOL model. Our finding may therefore be relevant also to distinguish between 

these different accounts. 

To conclude, the results we obtained are inconsistent with a novel theoretical framework of 

how the position of a letter within a string is encoded, the SERIOL model. This theory models 

visual word recognition from the retinal level to the lexicon and has been developed in order to be 

consistent not only with psychological studies but also with current theories of neural computation 

and physiology. Despite our results falsified the SERIOL model, we believe that the development of 

neurobiologically plausible accounts is certainly interesting and might be promising for the future 

development of researches in visual word recognition.  

 

 

4.4.3 Conclusion 

 

Besner and Roberts (2003) carried out an experiment on speeded nonword reading in which they 

varied two factors: nonword length, and whether stimulus presentation was clear or degraded. In 

their data, these two factors had additive effects on nonword reading latencies. They reported that 

the DRC computational model of reading did not correctly simulate this additivity. When the same 

nonwords were presented to the DRC model for reading, and degradation was simulated by 

reducing the strength of the excitatory and inhibitory connections from visual features to letters, 

length and degradation interacted: the DRC model’s latencies showed a smaller effect of length 

when the nonwords were degraded than when they were clear. Besner and Roberts (2003) suggested 
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that the DRC model would only be able to capture the additivity of length and degradation by a 

radical change to the model, i.e. thresholding the output of the letter level to the non-lexical route. 

We demonstrated instead that this additivity is due to a counfounding with the Total Letter 

Confusability, a variable that we showed to be involved in reading when stimuli are degraded (see 

Chapter 3). In fact, when TLC is controlled for across letter string length, the length effect for 

degraded stimuli is smaller than the length effect for clear stimuli, as predicted by the DRC model. 

As a consequence, the results obtained by Besner and Roberts (2003) do not require a threshold in 

the reading system; instead, the results expected by cascaded processing are obtained under the 

appropriate experimental condition. 
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5 STIMULUS QUALITY AND ORTHOGRAPHIC 

NEIGHBOURHOOD SIZE IN NONWORD READING 

 

 

 

In this chapter, the neighbourhood size (N; Coltheart et al., 1977) effect will be analyzed when 

nonwords are presented both in a clear condition and in a degraded condition in a reading aloud 

task. This type of manipulation is interesting in visual word recognition and reading aloud 

researches at least for two reasons. Fist, the manipulation of stimulus quality in combination with 

other factors has been used within discrete stage accounts to delineate the processing sequence in 

reading; in particular, it has been suggested that the joint manipulation of SQ and N might have 

important implications in determining the locus of the N effect in reading. Second, previous studies 

(e.g., Reynolds & Besner, 2004) analyzing the joint effects of SQ and N both in skilled readers and 

in the DRC computational model reported that, whereas SQ and N exert additive effects on skilled 

readers latencies, the two factors interact in DRC model simulations, with the effect of SQ being 

smaller for high-N nonwords than for low-N nonwords; the results observed for human readers 

appear therefore to be inconsistent with cascaded processing assumed in the model and a threshold 

at the letter level has been proposed as a solution.  

The aim of the present study is, from one hand, to test the hypothesis of a threshold in the 

reading system and, from the other, to provide further evidence regarding the locus of the N effect 

in nonword reading. 

 

 

5.1 Introduction 

 

An important question in reading researches is whether and how lexical knowledge affects nonword 

reading. One approach to answering this question involves examining the orthographic 

neighbourhood density (N; Coltheart et al., 1977), an effect arising from activation within the 

lexical route (e.g., Andrews, 1997; Coltheart et al., 1977, 2001; Reynolds & Besner, 2004). 

Regardless of many studies provided strong evidence in favour of the N effect in nonword reading 

(e.g., Andrews, 1989; McCann & Besner, 1987; Peereman & Content, 1995; Sears, Hino, & 

Lupker, 1995), the locus at which this effect arises in the reading system is still not clearly defined. 
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One hypothesis is that the N effect arises early in processing, through the interactive 

activation between the orthographic lexicon and the letter units (Andrews, 1989; see also Sears et 

al., 1995). According to this interpretation, the lexical entries corresponding to the neighbours of the 

stimulus in input would be activated in the lexicon and in turn would facilitate target letters’ 

identification through the feedback activation from the orthographic lexicon to the letter level.  

A second account is in favour of a late locus: the N effect would be due to the feed-forward 

connections from the orthographic lexicon to the phonological lexicon (Peereman & Content, 

1995). The N effect would thus arise in reading because the orthographic lexical knowledge feeds 

forward to later phonological processes, thus facilitating the computation of phonology. 

The issue concerning the locus of the N effect has been investigated within the DRC model. 

Despite Coltheart et al. (2001) initially suggested that the effect of N occurs late in the reading 

system, Reynolds and Besner (2002) demonstrated that there are both an early locus and a late locus 

of the N effect in the DRC model when reading nonwords. The authors performed several 

simulations through the DRC model proving that the lexical route can influence nonword reading 

both through the interactive activation between the letter units and the orthographic lexicon and 

through the feed-forward connections from the orthographic lexicon and the phoneme system. In 

fact, the DRC model still produces the effect of N in nonword reading when lesioned eliminating 

the connections into and out of the phonological lexicon, i.e. the only lexical contribution to 

performance when reading nonwords arises from the feedback between the orthographic lexicon 

and the letter units (i.e., early locus). In addition, the DRC model still produces a robust N effect 

when the feedback connections to the letter units are lesioned so that the only lexical contribution to 

nonword reading arises from the feed-forward connections to the phoneme system (i.e., late locus).  

Nevertheless, the previous investigations didn’t clarify whether skilled readers are affected 

by N at an early level or at a late level when reading nonwords aloud.  

Reynolds and Besner (2004) suggested to analyze this issue by jointly manipulating N and 

stimulus quality in the task. The authors assumed in fact that the effect of a reduction in SQ occurs 

early in processing and that factors that interact with SQ would arise somewhat early in the reading 

system, whereas factors that are additive with SQ would have their effect later25. Hence, according 

to this interpretation, an interaction between SQ and N would support an early locus of the N effect, 

whereas additive effects of the two factors would be consistent with a late locus: since the empirical 

                                                 
25 According to the authors this would be the simplest way to understand the following findings: 1. SQ and word 
frequency have additive effects on RTs (e.g., Balota & Abrams, 1995; Borowsky & Besner, 1993) 2. SQ interacts with 
semantic and repetition priming (e.g., Besner & Smith, 1992; Borowsky & Besner, 1993) 3. Semantic and repetition 
priming interact with word frequency (e.g., Becker, 1979; Visser & Besner, 2001). However, since interactions between 
SQ and word frequency have also been documented in reading (e.g., O’Malley & Besner, 2008; Yap & Balota, 2007), 
we argue that one should be cautious to come to a similar conclusion. 
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investigation reported that SQ and N exert additive effects on nonword reading latencies, the 

authors concluded a late account of the N effect for skilled readers. However, this interpretation 

clearly requires that at least some processes in reading are discrete and serially organized. 

To date, the fact that orthographic neighbourhood has its effect late in processing is 

suggested also by multiple experiments reported by Reynolds and Besner (2006) using the 

psychological refractory period (PRP) paradigm. In the PRP paradigm (see Pashler, 1994) subjects 

perform two speeded tasks (Task 1 and Task 2) presented in close succession and are typically 

instructed to answer to Task 1 first. The interval between the two tasks (stimulus onset asynchrony, 

or SOA) is manipulated and the typical finding is the so called PRP effect, i.e. as SOA decreases, 

the time to respond to Task 2 increases. Many theorists (e.g., Pashler, 1984; Welford, 1952) ascribe 

this delay to both tasks using the same limed-capacity attention mechanism, or central attention (see 

Johnston, McCann, & Remington, 1995): if Task 2 requires the same process of Task 1, it is 

functionally postponed until that process becomes available26. According to this logic, the PRP 

effect would have straightforward consequence in determining whether processes involved in Task 

2 occur before, during, or after the bottleneck. When Task 1 and Task 2 overlap temporally and 

subjects are instructed to respond to Task 1 before Task 2, Task 2 would be postponed; if a factor 

manipulated in Task 2 occurs prior the processing bottleneck, then the effect of this factor should be 

partially absorbed into the slack created by Task 2 processing waiting for central attention to 

become available. Hence, the effect of the factor manipulated in Task 2 will be underadditive with 

decreasing SOA, i.e. the effect of the factor manipulated in Task 2 will be smaller or absent at 

shorter SOA (but see Besner, Reynolds, & O’Malley, 2009). On the contrary, if a factor 

manipulated in Task 2 affects a process that occurs either during or after the bottleneck, it will have 

additive effects with SOA, i.e. the size of the effect produced by the factor manipulated in Task 2 

will not be modulated by the length of the SOA. The experiments conducted by Reynolds and 

Besner (2006) employed a tone identification task (Task 1) followed by a reading aloud task (Task 

2); an underadditive interaction between long-term repetition priming27 and SOA has been observed 

when reading aloud in Task 2, thus suggesting that representations in the orthographic lexicon are 

activated prior the bottleneck; in contrast, additive effects of N and SOA were obtained, suggesting 

that N has its effect at or after the bottleneck. According to the authors, these findings would imply 

that N has its effect late in processing, i.e. after the activation of entries in the orthographic lexicon. 

                                                 
26 Theoretical variants also exist: these accounts generally assume that some processes share capacity between Task 1 
and 2 rather than an all-or-none bottleneck (e.g., Navon & Miller, 2002). 
 
27 Long-term repetition priming refers to faster performance for repeated items relative to novel items over lags greater 
than 100 intervening items. Since it is observed for words but not for nonwords, it is not affected by change in case and 
it interacts with word frequency (i.e., the effect is larger for low-frequency words than for high-frequency words), the 
long-term repetition priming effect is considered to affect lexical encoding. 
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The conclusion that N has a late effect in the human performance is clearly conflicting with 

the account proposed within the DRC framework. Further inconsistencies emerged from the 

analysis of the joint effects of SQ and N in the DRC model (see Reynolds & Besner, 2004). In fact, 

when SQ and N are jointly manipulated in the DRC model simulations, the two factors interact, 

with the effect of stimulus degradation significantly larger for low-N stimuli than for high-N 

stimuli. This interaction has been interpreted by suggesting that N has an early effect in the DRC 

model; however, given the assumption that an early effect also affects processing downstream in a 

cascaded model as the DRC, this result is also consistent with a later effect. 

In this study we focus on the joint manipulation of SQ and N in a reading aloud task. This 

issue is central for the rationale of the present thesis given the critical mismatch between human 

readers performance and DRC model simulations that has been documented. In particular, whereas 

SQ and N are shown to exert additive effects on human RTs, they interact in the DRC model 

simulations, with the effect of SQ smaller for high-N stimuli.  

In the DRC model, this result is caused by the interactive activation between the letter level 

and the orthographic lexicon. As said, degradation is implemented by reducing the weights of the 

connections between the feature and the letter levels; as a consequence, reducing SQ slows down 

the rate at which activation accrues at the letter level. When the nonword in input has orthographic 

neighbours, the corresponding lexical entries will be activated in the orthographic lexicon and, in 

turn, activation feeds back to the letter level. In other words, the lexical entries corresponding to the 

orthographic neighbours of the nonword in input send activation back to the target letters, partially 

compensating for the effect of degradation. The delay in processing due to the reduction of SQ 

would be thus reduced as the number of orthographic neighbours of a nonword increases.  

In order to make the DRC model able to reproduce the pattern of observed data, Reynolds 

and Besner (2004) suggested to add a threshold at the letter level: a threshold at this level would in 

fact prevent the interactive activation between the letter level and the orthographic lexicon thus 

rendering the effects of SQ and N additive. We argue, however, that a threshold at the letter level is 

not a plausible account in this context. In order to explain the additive effects of SQ and N, in fact, 

one need to assume that the output of the letter level is thresholded before it activates the lexical 

route. This hypothesis is clearly inconsistent with previous empirical data, such as the interaction 

between SQ and repetition (Blais & Besner, 2007) and the interaction between SQ and semantic 

priming (Ferguson et al., 2009) that have been obtained when reading words.  

The aim of the present study is to further test the hypothesis of a threshold in the reading 

system. In particular, the joint effects of SQ and N have been analyzed by using a particular 

manipulation of this latter variable. In the experiment reported by Reynolds and Besner (2004) the 
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variable N has been manipulated by varying the number of orthographic neighbours, i.e. nonwords 

with few neighbours (low-N nonwords: mean = 2.95, SD = 1.31) and nonword with many 

neighbours (high-N nonwords: mean = 12.75, SD = 2.30) have been presented in the task. However, 

both the two types of stimuli would produce interactive activation between the orthographic lexicon 

and the letter level in the DRC model (even if in a theoretically different amount). It follows that, 

according to the model, the effect of degradation would be reduced both for the low-N nonwords 

and for the high-N nonwords used in this task. As a consequence, this may be not the adequate 

manipulation to analyze the joint effects of SQ and N in nonword reading. 

We argue that the effects of SQ and N can be analyzed in order to determine whether the 

presence/absence of orthographic neighbours makes any difference on stimulus degradation. In 

other words, the question here is whether having orthographic neighbours would facilitate degraded 

nonword reading compared to the condition in which nonwords have no neighbours. The prevision 

of the DRC model we want to test is that lexical knowledge should reduce the effect of degradation 

in nonword reading. To this end, the joint effects of SQ and N have been analyzed in a reading 

aloud task on English skilled readers and in DRC model simulations by presenting zero-N 

nonwords and many-N nonwords (matched in terms of Total Letter Confusability) either in clear or 

in degraded conditions. According to the DRC model, an interaction between SQ and N should be 

obtained, with the effect of SQ being smaller for many-N nonwords than for zero-N nonwords.  

The ultimate goal of the present experiment is to test the hypothesis of a threshold: if the 

letter level is thresholded, then the effects of SQ and N should be additive in this experiment. In 

fact, a threshold at the letter level would prevent the interactive activation between the letter level 

and the orthographic lexicon and the presence/absence of orthographic neighbours should not play 

any role on stimulus degradation. In addition, further evidence regarding the locus of the N effect in 

reading will be provided; the interpretation proposed by Reynolds and Besner (2004) is in fact valid 

only assuming that processing at the letter level analysis is thresholded. More in general, the data 

sustaining a late account of the N effect for skilled readers generally assume that processing in 

reading occurs in (at least partially) serial stages. 

 

 

5.2 Method 

 

Participants. Twenty students at the Macquarie University who had English as their first 

language and normal or corrected-to-normal vision participated as part of their courses requirement. 
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Design. The experiment consisted of a 2x2 within-subjects design with N (zero-N vs. many-

N nonwords) and stimulus quality (SQ; clear vs. degraded conditions) as factors. 

 

Material . A total of 160 orthographically legal monosyllabic nonwords with five letters in 

length have been used (these stimuli can be seen in the Appendix, section D). Nonwords have been 

derived from the ARC Nonwords Database (Rastle, Harrington, & Coltheart, 2002) so to avoid 

pseudohomophones. The items belong to two groups of 80 stimuli representing the zero-N 

condition and the many-N condition. Zero-N nonwords were nonwords without any orthographic 

neighbour, whereas high-N nonwords had an average of 7.75 orthographic neighbours (range: 7-10; 

neighbourhood mean frequency: 36.9 occurrences per million). Zero-N and many-N nonwords were 

balanced in terms of TLC (2.38 vs. 2.38, t<1; LC values have been determined by averaging 

empirical letter-confusion matrices for upper-case letters; Gilmore et al., 1979; Loomis, 1982; 

Townsend, 1971; Van Der Heijden, et al., 1984) and number of whammies (1.01 vs. 1.06, t<1; see 

Rastle & Coltheart, 1998). At each of the two levels of N, two lists of 40 nonwords have been 

created (list A and list B) in order to assign half the items to the clear condition and the other half to 

the degraded condition. The many-N nonwords were balanced for N (7.75 vs. 7.75, t<1), 

neighbourhood mean frequency (35.7 vs. 38.2, t<1), TLC (2.38 vs. 2.38, t<1), and number of 

whammies (1.1 vs. 1; t = 1.1, n.s.) across these two lists. The zero-N nonwords were balanced in 

terms of TLC (2.38 vs. 2.38, t<1) and number of whammies (1 vs. 1; t <1) across the two lists. 

Finally, the initial phoneme was matched in the four cells. Each participant saw 80 stimuli clear (40 

zero-N nonwords and 40 many-N nonwords) and 80 stimuli degraded (40 zero-N nonwords and 40 

many-N nonwords). The assignment of stimuli to the four conditions was counterbalanced across 

participants, in such a way that half the subjects saw the items of the list A under the clear condition 

and the items of the list B under the degraded condition whereas the remaining subjects saw the 

items of the list A under the degraded condition and the items of the list B under the clear condition. 

 

Apparatus. The experiment took place in a sound attenuated and dim lit room. Stimuli 

presentation and data recording were controlled by DMDX software and running on a personal 

computer. RTs and errors were determined by using CheckVocal software. The display was 

synchronized with the screen refresh cycle. Stimuli were presented centrally in upper-case letters in 

the 18-point Courier New font on a black background. Clear stimuli were displayed in white (RGB 

values: 85,85,85); degraded stimuli were displayed in grey (RGB values: 5,5,5). Responses were 

collected via a microphone connected to a voice key assembly. Response latencies were timed from 

stimulus onset to voice key activation, which also terminated the display. 
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Procedure. Participants were tested individually and sat in front of a computer screen. They 

were instructed to read each letter string aloud as quickly as possible and to minimize errors. A 18 

items practice session preceded the experimental session. Each trial began with a 500 ms 

presentation of a fixation point at the centre of the computer screen followed by a 200 ms 

presentation of a blank. Immediately after the stimulus appeared and remained on the screen until a 

response was registered by the voice key or 3 sec elapsed. Stimuli were presented in a random order 

for each participant. Responses were coded offline as correct or incorrect by the experimenter using 

CheckVocal software. The experimenter determined RTs using the waveform recorded by this 

software in order to reduce measurement error associated with voice key timing and correct for 

mistrial (i.e., voice key failure). 

 

 

5.3 Results 

 

Pronunciation errors (11,3%) were removed prior to reaction times analysis. Correct reaction times 

were submitted to the Van Selst and Jolicoeur’s (1994) trimming procedure. Outliers (1.5%) were 

removed prior to RTs analysis. Mean RTs according to conditions and percentages of error are 

reported in Table 5. 

 

 Stimulus quality   

 
Clear Degraded Diff. 

Orthographic Neighborhood RT E% RT E% RT E% 

Zero-N 717 12 993 17 276 5 

Many-N 659 6 892 11 233 5 

Diff. 58 6 101 6 
  

 
Table 5. Mean reaction times (RTs) and percentages of error (%E) according to conditions. 

 

 

In the ANOVA for the participants (F1) N and SQ were repeated factors. In the ANOVA for items 

(F2) N was an independent factor and SQ was a repeated factor.  

 

RTs. Analysis showed a main effect of N, F1(1, 19) = 89.3, MSE = 1416, p < .001, F2(1, 

158) = 29.7, MSE = 20663, p < .001, and a main effect of SQ, F1(1, 19) = 113.6, MSE = 11395, p < 
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.001, F2(1, 158) = 1043, MSE = 5126, p < .001. Crucially, the two effects were qualified by a 

significant interaction, F1(1, 19) = 13.6, MSE = 9093, p < .005, F2(1, 158) = 8.1, MSE = 5126, p = 

.005, with the effect of degradation larger for the zero-N nonwords than for the many-N nonwords. 

 

Accuracy. Analysis showed a main effect of N, F1(1, 19) = 21.1, MSE = .003, p < .001, 

F2(1, 158) = 11.3, MSE = .023, p = .001, and a main effect of SQ, F1(1, 19) = 13.1, MSE = .004, p 

< .005, F2(1, 158) = 18.4, MSE = .010, p < .001. However, the interaction between the two factors 

was not significant, Fs<1. 

 

 

5.4 Simulation 

 

The set of nonwords used with participants was run through two different computational versions of 

the DRC model.  

In the first simulation the version of the DRC model presented in the Psychological Review 

2001 (Coltheart et al., 2001) – that we call DRC-PR – has been used. This version of the model has 

been employed since the simulations reported by Reynolds and Besner (2002; 2004) have been 

performed by using the DRC-PR. 

In the second simulation the currently public version of the DRC model – the DRC 1.2 – has 

been used28.  

 

5.4.1 DRC-PR 

 

The items were run through the DRC-PR under both the clear and the degraded condition. In the 

degraded condition the weights between features and letters were reduced by 40% (as in Reynolds 

& Besner, 2004); specifically, the feature-to-letter excitation parameter was reduced to .003, 

whereas the feature-to-letter inhibition parameter was reduced to .09.  

The model made 9 lexicalization errors (CRAME, CRASE, CROSE, PROPE, PROME, 

DRAVE, FLATE, SLIPE, CRYBE) and therefore these items were discarded from the analyses.  

                                                 
28 Both the versions of the DRC model are downloadable from the DRC web site at http:// 
www.maccs.mq.edu.au/~ssaunder/DRC/. The differences between the two versions are also documented on the web 
site. Following the principle of nested modelling, the DRC 1.2 has been tested to ensure that is capable of reproducing 
all the effects that the DRC-PR could simulate; moreover, there are data from experiments with Masked Onset Priming 
which can be simulated by the DRC 1.2 but not by the DRC-PR (see Mousikou, Coltheart, Saunders, & Yen, 2010). 



  57

Mean cycles to criterion are reported in Table 6.  

 

 
Stimulus quality 

 

 
Clear Degraded Diff. 

Orthographic Neighborhood Cycles Cycles Cycles 

Zero-N 168 182 14 
Many-N 158 170 12 

Diff. 10 12 
 

 
Table 6. Mean cycles according to conditions. 

 

 

An ANOVA with SQ as repeated factor and N as independent factor was conducted on cycles. The 

DRC-PR behaviour mimed that of humans. Analysis showed a main effect of N, F(1, 149) = 16.7, 

MSE = 494.4, p < .001, a main effect of SQ, F(1, 149) = 1773.9, MSE = 7.4, p < .001, and a 

significant interaction, F(1, 149) = 53.7, MSE = 7.4, p < .01, imputable to the size of the SQ effect 

being smaller for the items with many-N than for the items with zero-N. 

 

5.4.2 DRC 1.2 

 

The items were run through the DRC 1.2 under both the clear and the degraded condition. As in the 

previous simulation, the weights between features and letters have been reduced by 40% in the 

degraded condition. 

The parameter set of the DRC 1.2 has been modified in order to allow the model to correctly 

simulate the neighbourhood size effects in nonword reading. In particular, the parameter that 

regulates inhibition from letters to words is currently very high in the DRC 1.2 (specifically, it is set 

to .48). The highest this parameter is, the less a letter string can excite potentially supportive 

neighbours; as a consequence, with the current value, even when the input letter string is just a 

single letter different from some real word, the entry in the orthographic lexicon for that word won’t 

be activated. The consequence is the inability of the model to correctly simulate the effects due to 

the orthographic neighbourhood in reading. Hence, the value of the letter-to-word inhibition 

parameter has been reduced both in the clear and in the degraded condition in order to allow the 

model to correctly simulate these effects29.  

                                                 
29 The Letter-to-OrthographicLexicon-Inhibition parameter has been set to .435, which is the default value used in the 
DRC-PR. Coltheart et al. (2001) suggested to further reduce this parameter to .350 in order to correctly simulate the 
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The model did not make any error. Mean cycles to criterion are reported in Table 7.  

 

 
Stimulus quality 

 

 
Clear Degraded Diff. 

Orthographic Neighborhood Cycles Cycles Cycles 

Zero-N 138 165 27 

Many-N 132 157 25 

Diff. 6 8 
 

 
Table 7. Mean cycles according to conditions. 

 

 

An ANOVA with SQ as repeated factor and N as independent factor was conducted on cycles. The 

DRC 1.2 behaviour mimed that of humans. Analysis showed a main effect of N, F(1, 158) = 72.9, 

MSE = 51, p < .001, a main effect of SQ, F(1, 158) = 8883.5, MSE = 6.2, p < .001, and a significant 

interaction, F(1, 158) = 14.4, MSE = 6.2, p < .001: the size of the effect of SQ is smaller for many-

N nonwords than for zero-N nonwords. 

 

 

5.5 Discussion 

 

The experiment evidenced three different results, all correctly reproduced in the simulations of the 

DRC model (both the DRC-PR and the DRC 1.2 versions). 

First, nonwords with neighbours are named faster than nonwords without neighbours. This 

result is known as the N effect (McCann & Besner, 1987). Both the Italian (see Chapter 2) and the 

English versions of the DRC model correctly simulate this effect. 

Second, we found an effect of SQ: clear stimuli are read aloud faster than degraded stimuli. 

This effect is correctly simulated by the DRC model when the strength of the connections between 

the feature and the letter units is reduced to simulate the degraded condition. Specifically, a 

reduction of SQ has been simulated in the DRC model by implementing the manipulation used by 

                                                                                                                                                                  
effects of N in word reading. However, we didn’t use this value since it would have produced a very poor performance 
in reading nonwords. Moreover, it has been shown that the value .350 is indeed necessary to allow the DRC model to 
correctly simulate the effect of the phonological and orthographic neighborhood in word reading (see Mulatti, 
Reynolds, & Besner, 2006); however, different phonological and orthographic neighborhood effects have been obtained 
in nonword reading (see Reynolds, Mulatti, & Besner, 2006) and this further reduction is not required for these 
simulations. 
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Reynolds and Besner (2004), i.e. a reduction of the weights of the connections between the feature 

and the letter units by 40%. 

Third, the size of the SQ effect depends upon the size of N: the effect of degradation is 

smaller for nonwords with many-N than for nonwords without orthographic neighbours. In other 

words, zero-N nonwords are harmed by stimulus degradation more than many-N nonwords. This 

result is explained within the dual-route account by the interactive activation between the letter 

level and the orthographic lexicon. When a nonword with orthographic neighbours is presented to 

the system, its neighbours will be activated in the lexicon and, in turn, activation will spread to the 

later stages. At the same time, the orthographic lexicon will activate the letter level via feedback 

connections, thus contributing activation to the target letters and partially compensating for the 

delay produced by stimulus degradation. On the contrary, there is no feedback from the lexicon 

when the nonword in input has no orthographic neighbours and the effect of degradation is thus 

stronger for these stimuli. Clearly, such an interaction cannot be explained by assuming a threshold 

at the letter level. A threshold at the letter level would in fact prevent the interactive activation 

between this level and the orthographic lexicon; hence, the interaction between SQ and N (zero-N 

vs. many-N) would be eliminated and additive effects of the two variables would be expected.  

Our results may have important implications for the locus of the N effect in reading. The 

interaction between SQ and N obtained in our experiment is in fact consistent with an early locus, 

thus indicating that at least part of the N effect for skilled readers arises through the interactive 

activation between the orthographic lexical units and the letter units. Nevertheless, our results are 

also consistent with a late account. An interaction between SQ and N would in fact be incompatible 

with a late locus of the N effect only assuming a (at least partially) thresholded system in which the 

effect due to degradation is resolved early in processing. According to Reynolds and Besner (2004) 

this would be the case given the additive effects of SQ and nonword letter length in reading (Besner 

& Roberts, 2003) and the additive effects of SQ and word frequency in lexical decision tasks (e.g., 

Balota & Abrams, 1995; Borowsky & Besner, 1997); these results would in fact demonstrate that 

the effect of degradation is resolved prior to phonological processing and, indeed, prior to the effect 

of word frequency. Conversely, we showed in Chapter 4 that SQ and letter string length interact in 

nonword reading under the appropriate experimental conditions; moreover, as we will discuss in 

details in the next chapter, interactions between SQ and word frequency have been also documented 

in reading (see O’Malley & Besner, 2008; Yap & Balota, 2007). Hence, it seems to us that there is 

not convincing evidence indicating that the effect of degradation is resolved early in the reading 

system; more likely, SQ influences processing downstream, according to the cascaded assumption. 

If we adopt a model in which processing operates in a cascaded fashion, factors that interact with 
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one another could have their effects at the same level of processing as well as be influencing 

different processes; as a consequence, an interaction between SQ and N would not uniquely suggest 

that N has its effect early in the reading system but this result will be also consistent with a later 

effect.  

In general, we suggest that the early-locus and the late-locus accounts are not alterative 

hypotheses. Lexical knowledge may in fact influence skilled readers when reading nonwords both 

through the interactive activation between the letter units and the orthographic lexicon and through 

the feed-forward connections from the orthographic lexicon to the phoneme system. This 

interpretation is also consistent with the simulation of the N effect within the DRC framework (see 

Reynolds & Besner, 2002). 

Clearly, an issue remains however to be explained. Why additive effects of SQ and N (low-

N vs. high-N) are obtained by Reynolds and Besner (2004), whereas an interaction between SQ and 

N (zero-N vs. many-N) is found in our experiment?  

It could be possible that these apparently inconsistent results depend on the different 

manipulation of the orthographic neighbourhood size. In fact, the effect of N is likely to be non- 

linear, i.e. the larger N is, the smaller the effect of increasing the number of orthographic 

neighbours will be. This means that the biggest N effect may be obtained when N is manipulated 

between 0 and 1, the next biggest effect when N is manipulated between 1 and 2, and so on. If that 

is so, then it will be best always to include a N = 0 condition in experiments manipulating this 

variable. Moreover, it might be possible that even the low-N nonwords in the experiment of 

Reynolds and Besner (2004) provided a large enough amount of feedback from the orthographic 

lexicon to the letter level to help counter the difficulties in letter identification caused by 

degradation. Hence, the effect due to the reduction of stimulus quality may be reduced both for the 

low-N nonwords and for the high-N nonwords in their study. It might be therefore possible that 

what really makes a difference on the effect due to stimulus degradation is having or not 

orthographic neighbours, rather than a difference in their amount. 

Nevertheless, the DRC model still fails to simulate the results obtained with human readers. 

In fact, since the DRC model is suppose to mime the human performance, then it should reproduce 

the additivity between SQ and N (low-N vs. many-N) that has been observed. In other words, if 

different effects between SQ and N are obtained depending on the particular manipulation of the 

variable N, then the DRC model should be able to simulate the whole pattern of results caused by 

these manipulations. Clearly, further work is needed in this context in order to investigate these 

issues.  
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An explanation that appears to us being promising is by considering the Total Letter 

Confusability (TLC), a variable that – as demonstrated in Chapter 3 – influences nonwords reading 

when the stimuli are degraded in the task. In particular, we argue that the additive effects between 

SQ and N obtained by Reynolds and Besner (2004) might be due to a confounding with this 

variable and that when this confounding is removed the true result could be an interaction, as 

predicted by the DRC model.  

In the previous chapter we demonstrated a confounding with TLC in the study involving the 

manipulation of letter string length in degraded nonword reading. However, while the relationship 

between length and TLC was clearly reasonable (i.e., since longer nonwords have more letters, one 

might expect that the TLC is higher for long nonwords than for short nonwords), the role of this 

variable is not obvious in this context. Nevertheless, an analysis performed on the stimuli used in 

the Reynolds and Besner’s (2004) experiment indicates that the TLC was significantly higher for 

the high-N nonwords than for the low-N nonwords used in this study, 410 vs. 406.7; t(82) = 2.326, 

p = .02230. 

The hypothesis of a confounding between N and TLC is thus plausible. The effects of SQ 

and N might result additive in the Reynolds and Besner’s (2004) study because the partial 

compensation of the SQ effect due to the larger amount of orthographic neighbours was masked by 

the higher confusability values associated to the high-N nonwords. In other words, since the high-N 

nonwords had higher TLC values than the low-N nonwords used in this study, the former stimuli 

might be delayed more in degraded presentation; hence, the true interaction between SQ and N 

would not emerge. We argue that if the high-N and the low-N nonwords would be matched on the 

TLC, then the effect of degradation could be smaller for high-N nonwords than for low-N nonwords 

and the true result could be thus the interaction predicted by the DRC model. 

Further experiments with skilled readers are clearly called for. For example, one way to 

determine the plausibility of our hypothesis is by running an experiment in which the effects of SQ 

and N are analyzed when high-N and low-N nonwords are matched for TLC. If our hypothesis is 

plausible, we expect an interaction between SQ and N (low-N vs. high-N) in this experimental 

condition. Instead, the additive effects obtained by Reynolds and Besner (2004) should be 

replicated when the high-N nonwords are chosen so to have higher confusability values than the 

low-N nonwords used in the task. 

 To conclude, the studies analyzing the joint effects of SQ and N (low-N vs. high-N) showed 

a critical mismatch between the DRC model simulations and the human readers performance. A 

threshold at the letter level has been proposed in order to eliminate this mismatch. Our experiment 
                                                 
30 The Reynolds and Besner’s (2004) experiment used lowercase letters. LC has been thus derived from the Courrieu et 
al.’s (2004) confusion matrix for lowercase letters. 
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clearly shows that a threshold at the letter level is an inadequate solution since SQ and N interact 

when the presence/absence of nonwords’ orthographic neighbours is jointly manipulated with 

stimulus degradation in the reading task. Despite other explanations are possible, we argue that a 

confounding with the TLC might explain the additive effects that have been previously observed. 

Clearly, further empirical investigation is needed in this context in order to define whether and how 

the different results obtained in these studies are caused by the TLC or rather depend on the 

different manipulation of the variable N.  

Moreover, another interesting issue might be to analyze the effect of N size and degradation 

in word reading. In fact, at least two hypotheses can be formulated here. From one hand, SQ and N 

might interact, with the N effect being larger for degraded than for clear stimuli; following a similar 

argument to the one previously described for nonwords, the feedback from the lexicon may in fact 

help target letter recognition in word reading, thus reducing the effect of degradation more strongly 

when N is high than when it is low. From the other hand, the interaction between N and SQ might 

be reverse, with the N effect being larger in the clear than in degraded condition. The effect of 

degradation in word reading may in fact be stronger as N increases, since degrading the letters of a 

word that has many neighbors could enhance the level of uncertainty about the correct answer and 

thus increases the response latency. 
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6 TOTAL LETTER CONFUSABILITY AND 

LEXICALITY IN DEGRADED READING 

 

 

 

Inconsistent results with the DRC model’s cascaded assumption have been obtained also in 

experiments involving factorial manipulations of stimulus degradation and a lexical variable such as 

word frequency and lexicality.  

The joint effects of SQ and word frequency have been largely analyzed in lexical decision, 

where the two effects have been reported to be additive (e.g., Balota & Abrams, 1995; Borowsky & 

Besner, 1993; O’Malley et al., 2007; Plourde & Besner, 1997; Yap & Balota, 2007; Yap, Balota, 

Tse, & Besner, 2008). However, O’Malley et al. (2007) and Yap and Balota (2007) also reported 

interaction of stimulus quality and word frequency in reading aloud. O’Malley and Besner (2008) 

concluded that the different results obtained in these tasks may be due to the presence/absence of 

nonwords; more specifically, the two factors would interact when only words are presented in the 

task (e.g., reading aloud), whereas they would exert additive effects when nonwords are part of the 

stimulus set (e.g., lexical decision). This interpretation has been confirmed in further reading aloud 

experiments. O’Malley and Besner (2008) showed, in fact, that when only words were presented in 

the reading task, the effects of SQ and word frequency interacted, with the effect of SQ being larger 

for low-frequency words than for high-frequency words. However, when also nonwords were 

included within the experimental stimuli, word frequency and SQ exerted additive effects on 

reading latencies. Importantly, the effect of lexicality has also been analyzed when jointly 

manipulated with stimulus contrast: the two variables have been reported to exert additive effects on 

skilled readers latencies in several different studies (Besner & O’Malley, 2009; Besner et al., 2010; 

O’Malley & Besner, 2008); of course, this manipulation also implies the presence of both words 

and nonwords in the task. 

Critically, the additivities of SQ and a lexical variable (i.e., word frequency and lexicality) 

are inconsistent with models operating in a purely cascaded fashion. In order to explain these results 

O’Malley and Besner (2008) proposed that readers might switch from cascaded processing to 

thresholded processing as a function of the experimental context (i.e., lexicalization hypothesis). In 

particular, they suggested that the letter level would be thresholded when both words and nonwords 

are presented in the reading task whereas, when the list is composed of words only, processing 

would flow in a purely cascaded fashion. The present study aims to test this hypothesis. 
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6.1 Introduction 

 

Computational models of reading aloud and visual word recognition usually implement either 

cascaded processing – as in the DRC model (Coltheart et al., 2001) – or thresholded processing – as 

in the logogen model (Morton, 1969). However, O’Malley and Besner (2008) recently proposed 

that readers might switch from cascaded processing to thresholded processing as a function of the 

experimental context.  

O’Malley and Besner (2008) called their proposal the “lexicalization hypothesis”. This 

account specifically states as follow: when the experimental list of a reading aloud task includes 

both words and nonwords, participants would threshold the output of the letter level to prevent 

lexical capture of nonwords; when the list is composed of words only, processing would flow in a 

purely cascaded fashion. To note, nonwords with orthographic neighbours are implicated here. 

In a cascaded model as the DRC, lexical capture might in fact occur when the stimulus is 

degraded: a nonword may activate a word form representation enough to be erroneously read as the 

word instead of the nonword. O’Malley and Besner argued that a threshold at the letter level would 

prevent (or, at least, reduce the frequency of) lexical captures: only once the letters comprising the 

stimulus are unambiguously identified will activation be passed on to later stages, and so the 

possibility of erroneously selecting a word given a nonword is reduced or eliminated.  

O’Malley and Besner (2008) developed their lexicalization hypothesis to explain data they 

obtained in reading aloud experiments. In these experiments, when the experiment’s stimuli 

consisted solely of words, the variables SQ and word frequency (high-frequency vs. low-frequency) 

interacted: the effect of stimulus quality was larger when frequency was lower. This result is not 

new (O’Malley et al., 2007; Yap & Balota, 2007) and is predicted by cascaded models such as the 

DRC (see Reynolds & Besner, 2004, for simulations). However, O’Malley and Besner (2008) also 

found that when an experiment’s stimuli included both words and nonwords (with orthographic 

neighbours), word frequency and SQ had additive effects on reading aloud latencies. Moreover, 

additive effects of SQ and lexicality (words vs. nonwords) have been largely documented in 

literature (Besner & O’Malley, 2009; Besner et al., 2010; O’Malley & Besner, 2008). These 

additivities are inconsistent with models operating in a purely cascaded fashion. In contrast, if we 

assume, as O’Malley and Besner suggest, that when the stimuli consist of both words and nonwords 

the letter level is thresholded (to avoid lexical captures of nonwords), then the result is easily 

accounted for: the idea is that since SQ affects the perceptual levels and lexicality and word 

frequency affect the subsequent lexical level, thresholding the letter level prevents interaction 
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between those two stages, rendering the effects of SQ and lexical-level variables (i.e., lexicality and 

word frequency) additive.  

We argue that a threshold at the letter level might be not an adequate solution. In fact, 

reducing letter contrast has its effect at the visual feature analysis level because a visual feature will 

take longer to resolve when its contrast with the background is low. It seems in fact unarguable that 

the processing level at which SQ has a direct effect is not the letter level but the (earlier) visual 

feature level.  

If one wanted to investigate whether there is a threshold specifically at the letter level (as it 

has been suggested) then one should investigate whether a variable whose direct effect is at that 

level has additive effects with a lexical variable such as lexicality or word frequency. We argue that 

a similar variable could be the Total Letter Confusability (or TLC): increasing the Total Letter 

Confusability has its effect at the letter level because when a letter has high confusability it will 

activate other letters – the confusable ones – at the letter level, introducing competition between 

letters which will slow the rise of activation of the correct letter at that level.  

The aim of the work reported here was to test the lexicalization hypothesis. This hypothesis 

makes the general prediction that when both words and nonwords are present in a reading aloud 

task and stimuli are degraded (i.e., lexical capture may occur), the letter level will always be 

thresholded, and so any variable which affects the operation of the letter level will have additive 

effects with any variable that affects the operation of the orthographic-lexicon level. With a reading 

aloud task we orthogonally manipulated a variable that would have an effect at the letter level (i.e., 

the TLC) and a variable that would have an effect at the orthographic-lexical level (i.e., lexicality: 

word vs. nonword). There were both words and nonwords in our experiment and all the stimuli have 

been presented in reduced contrast, so all the conditions postulated by the lexicality hypothesis are 

met. The lexicalization hypothesis thus predicts that TLC and lexicality will have additive effects 

on reading aloud latencies. 

Before proceeding an issue has to be analyzed. If words and nonwords are not matched on 

TLC, an apparent interaction between degradation and lexicality might instead be an interaction 

between degradation and letter confusability, which would require a completely different theoretical 

interpretation. It is important therefore to determine whether either of the stimulus variables 

manipulated by O’Malley and Besner (2008) – namely, word frequency and lexicality – were 

confounded with TLC. Their experiments used lowercase letters and the Courrieu et al.’s (2004) 

confusion matrix for lowercase letters has thus been used; our analyses of the materials used by 

O’Malley and Besner (2008) indicated that the high-frequency and low-frequency words they used 

in their Experiments 1 and 2 did no differ in TLC, and nor did the high-frequency and low-
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frequency words they used in their Experiment 3. We also found that there were no differences in 

TLC between words and nonwords in any of their experiments. So their pattern of results did not 

arise because of any confounding with TLC in their materials. 

Nevertheless, it remains the case that according to the lexicalization hypothesis, when a 

stimulus list comprises words and nonwords, the letter level gets thresholded. If the letter level is 

thresholded, it follows that TLC should affect both words and nonwords equally, and so the 

lexicalization hypothesis predicts additive effects of TLC and lexicality in these circumstances. An 

interaction of TLC with lexicality would be hence evidence against the lexicalization hypothesis. 

 

 

6.2 Method 

 

Participants. Twenty students at the Università degli Studi di Padova who had Italian as 

their first language and normal or corrected-to-normal vision participated as volunteers.  

 

Design. The experiment consisted of a 2x2 within-subject design with lexicality (words vs. 

nonwords) and Total Letter Confusability (TLC; low TLC vs. high TLC) as factors.  

 

Materials. A set of 160 upper-case stimuli with five letters in length was selected (these 

stimuli can be seen in the Appendix, section E). This set was composed of 80 disyllabic Italian 

words and 80 disyllabic nonwords. Words were all of low written frequency (mean: 16.7 

occurrences per million). The nonwords were all pronounceable and were derived from words by 

changing one letter provided the initial phoneme of that word remained intact; the words used to 

derive the nonwords had a mean written frequency similar to that of the words used as stimuli, 

namely 18.5 occurrences per million. Letter confusability was determined from empirical letter-

confusion matrices obtained in previous studies (Gilmore et al., 1979; Loomis, 1982; Townsend, 

1971; Van Der Heijden et al., 1984). TLC was obtained by summing the confusabilities of 

individual letters in the string. Forty words were classified as having high TLC (mean: 2.6) and 

forty as having low TLC (mean: 1.9; t(78) = 23, p < .001). High and low TLC words were balanced 

in terms of written frequency (16.9 vs. 16.5; t<1), length in number of letters, and neighbourhood 

size (6.5 vs. 6.5). Forty nonwords were classified as having high TLC (mean: 2.6) and forty as 

having low TLC (mean: 1.9; t(78) = 25, p < .001). High and low TLC nonwords were balanced in 

terms of baseword frequency (19.1 vs. 17.9; t<1), neighbourhood size (4.4 vs. 4.4; t<1), length in 
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number of letters, and the position of the letter changed to derive the nonword from the baseword (3 

vs. 3; t<1; see Mulatti et al., 2007). The phonological onsets of the stimuli were matched across 

conditions.   

 

Apparatus. The experiment took place in a sound attenuated and dimly lit room. Stimuli 

presentation and data recording were controlled by software developed in E-prime and running on a 

personal computer. The display was synchronized with the screen refresh cycle. Stimuli were 

presented centrally in upper-case letters on a black background (RGB values: 0, 0, 0). The stimuli 

were displayed in the 18-point Courier New font. All the stimuli were displayed in degraded mode 

(RGB values: 8, 8, 7). Responses were collected via a microphone connected to a voice-key 

assembly. Response latency was timed from stimulus onset to voice key activation, which also 

terminated the display. 

 

Procedure. Participants were tested individually. They sat in front of the computer screen 

and the microphone was placed directly in front of but slightly below the subjects’ face, so as not to 

obstruct screen view. Participants were instructed that when a letter string appeared on the screen, 

their task was to pronounce it as quickly and accurately as possible. They were informed that the 

stimuli could be either a word or a nonword. Subjects were then presented with 12 practice trials. 

The 160 experimental stimuli followed the practice session after a short pause. Each trial began 

with a 500 ms presentation of a fixation point at the centre of the computer screen followed by a 

200 ms presentation of a blank screen. Immediately after the stimulus appeared and remained on the 

screen until a response was registered by the voice key or 3 sec elapsed. The inter-trial-interval was 

set to 2 sec. Stimuli were presented in a random order, i.e. the variables of Lexicality and Total 

Letter Confusability were randomized, not blocked. The experimenter coded the pronunciation as 

correct on the basis of the standard set of Italian grapheme-phoneme rules, voice key triggering 

failure, lexicalization error or articulation error. 

 

 

6.3 Results 

 

Correct reaction times were submitted to the Van Selst and Jolicoeur’s (1994) outlier removal 

procedure. Outliers (1.5 %) were removed prior to reaction times analysis. Mean reaction times and 

percentages of error are reported in Table 8. 
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Words Nonwords Diff. 

TLC RT %E RT %E RT %E 

High 713 6.4 814 10.9 101 4.5 

Low 709 8.2 765 10.2 56 2.0 

Diff. 4 -1.8 49 .7 
  

 
Table 8. Reaction times (RTs) and percentages of error (%E) according to 

conditions. 
 

 

ANOVAs were conducted for reaction times and errors. For the participant analysis (F1, t1), 

Lexicality (words vs. nonwords) and TLC (high vs. low) were treated as repeated factors. For the 

item analysis (F2, t2), Lexicality and TLC were treated as independent factors.  

 

RTs. The analysis revealed a main effect of Lexicality, F1(1, 19) = 24.7, MSE = 4940, p < 

.001, F2(1, 156) = 57.3, MSE = 3951, p < .001, and a main effect of TLC, F1(1, 19) = 13.1, MSE = 

1060, p < .005, F2(1, 156) = 6.3, MSE = 3951, p < .05. However, the main effects were qualified by 

a significant interaction, F1(1, 19) = 12.7, MSE = 798, p < .005, F2(1, 156) = 6.7, MSE = 3951, p < 

.001. Paired comparisons revealed that whereas TLC affects nonwords so that low TLC nonwords 

are read faster than high TLC nonwords, t1(19) = 4.4, p < .001, t2(78) = 3.3, p < .005, TLC does not 

affect word reading, ts < 1. 

 

Accuracy. The main effect of Lexicality proved significant by participants but not by items, 

F1(1, 19) = 14.3, MSE = .002, p < .005, F2(1, 156) = 2.9, MSE = .015, p = .091. Neither the main 

effect of TLC, Fs < 1, nor the interaction, F1(1, 19) = 1.1, MSE = .003, p > .3, F2 < 1, were 

significant. 

 

 

6.4 Discussion 

 

Our results demonstrated that whereas TLC affects nonword reading, it does not affect word 

reading. In other words, a variable having its effect at the letter level interacts with a variable that 

has an effect at the lexical level. This result contradicts the lexicalization hypothesis which predicts 

additivity of these factors when both words and nonwords are present in the experiment and stimuli 
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are degraded. This means that the letter level is not always thresholded when the criterion for the 

presence of a threshold postulated by the lexicalization hypothesis is met. 

 However, an issue remains to be explained. Why one factor which affects the recognizability 

of letters (i.e., SQ, manipulated by varying letter contrast) has additive effects with a variable that 

operates at the lexical level, whereas another factor which also affects the recognizability of letters 

(i.e., Total Letter Confusability) interacts with a variable that operates at the lexical level? 

We propose that this is because although both factors influence letter recognizability, they 

have their effects at different levels. Reducing letter contrast has its effect at the visual feature 

analysis level because a visual feature will take longer to be identified when its contrast with the 

background is low. Instead, increasing the TLC has its effect at the subsequent letter identification 

level because when a letter has high confusability it will activate other letters that will compete with 

the correct letter within the letter level.  

The interaction of TLC and lexicality is easily interpreted within an IA framework. When a 

letter is highly confusable with other letters, it will activate at the letter level the representations of 

these other letters (as well as its own representation), and so there will be competition at the letter 

level, which will slow processing. If the stimulus is a word, the target letter receives both feed-

forward activation from the visual features of the stimulus and feedback activation from the lexical 

representation of the stimulus. The feedback from the lexicon assists target letter recognition by 

contributing activation to the letter detectors for the correct letters and inhibition to the competing 

letter detectors, and so could compensate for the interference produced by the competing non-target 

letters. If the stimulus is a nonword, there is no feedback from the lexicon: target letters receive 

activation from the visual feature level only and thus suffer more from the activation of the 

competing, similar non-target letters. Given that the feedback from the lexical level to the letter 

level will be stronger for high-frequency than for low-frequency words, there should also be an 

interaction between word frequency and TLC, a prediction worth testing. 

What about the additivity of a variable affecting the visual feature level (i.e., stimulus 

contrast) and a variable affecting the lexical level (i.e., word frequency or lexicality)?  

A possible explanation occurs by considering the effects due to list composition. In fact, in 

the experiments presented by O’Malley and Besner (2008), stimulus quality and word frequency 

interacted when only words were presented, with the effect of stimulus quality being smaller for 

high-frequency words (see also Yap & Balota, 2007). However, the two variables exerted additive 

effects on reading latencies when words and nonwords were mixed together in the task. Moreover, 

the additive effects obtained between SQ and lexicality also imply the presence of both words and 

nonwords in the task. List composition is thus the crucial variability in these experiments.  
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The route emphasis account has been proposed in order to explain the effect of list 

composition in the context of the dual-route framework (e.g., Coltheart & Rastle, 1994). The basic 

idea of the route emphasis account is that readers could strategically adjust the extent to which 

pronunciation performance relies on the lexical and on the non-lexical routes as a function of the 

type of stimuli presented in the task. For instance, when only nonwords are present in the task, one 

might expect more emphasis on the non-lexical route and an attenuation of the lexical route; 

conversely, when only words are present, the non-lexical route would be de-emphasized, increasing 

the reliance of the lexical route. 

Our hypothesis is based on this idea. We propose that the balance between the two routes 

could favour the lexical route over the non-lexical route more strongly when only words are present 

than when words are mixed with nonwords. A similar strategy could be justified by the fact that 

lexical capture of nonwords would be reduced when the lexical route is de-emphasized. 

To date, in DRC model there is not feedback from the letter level to the feature level. This 

trait was inherit from the McClelland and Rumelhart’s  (1981) IA model and is justified by the fact 

that a visual feature can be only turned on by the stimulus in input. Assuming feedback at this level 

would in fact mean to allow the pattern of features representing the external input to be modified 

top-down by the activation of functional units at the subsequent levels. Instead, visual features can 

be clearly activated bottom-up only; in a similar way, there would be no reason to turn a visual 

feature off once it has been activated. As a consequence, the feedback from the orthographic 

lexicon does not reach the feature level (where SQ has its effect), but rather the letter level. This 

means that the effect of lexical variables is only indirect on SQ. In particular, the effect of 

degradation is transmitted at the letter level given the feed-forward activation form features to 

letters; moreover, given the interactive activation between the letter level and the orthographic 

lexicon, the activation from the lexical level feeds back to the letter level: as a consequence the 

feedback from the lexicon will act on degradation only contributing activation at the letter level. 

Our interpretation of the previous results is as follow. When only words are present in the 

task, the lexical route would be favoured over the non-lexical route more strongly as compared to 

the condition in which words are mixed with nonwords; hence, the feedback from the lexicon could 

be fast enough to partially compensate for the effect of degradation (acting at the letter level) in the 

former condition. SQ and word frequency would thus interact when only words are presented in the 

task. However, when words and nonwords are mixed together, the lexical route would be weaker 

and the activation from the lexicon may thus reach the letter level later, without producing any 

effect on degradation. SQ and word frequency would be thus additive, as well as SQ and lexicality 

would be additive, when words and nonwords are mixed together in the reading task. 
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Since TLC has its effect at a different and subsequent level (i.e., the letter level), the 

feedback from the orthographic lexicon acts directly on this variable; as a consequence, even when 

the lexical route is slower, the activation from the lexicon would compensate for the delay 

associated with high confusability. In other words, the emphasis on the functional routes would be 

less critical when the factorial manipulation involves TLC because the orthographic lexicon feeds 

activation back to the letter level, which is the process also affected by this factor. As a 

consequence, TLC interacts with lexical variables (e.g., lexicality) when words and nonwords are 

mixed together in the task. 

It seems to us that the dual-route emphasis account of list composition effects in reading 

may thus provide a straightforward explanation of the results obtained in reading experiments 

involving factorial manipulations of stimulus degradation and lexical variables as well as of the 

results presented in our study. 

 

6.4.1 List composition effects: alternative accounts 
 

To date, an alternative account explaining list composition effects in reading has been proposed and 

it can be discussed in this context: the time-criterion account (e.g., Chateau & Lupker, 2003; 

Kinoshita & Lupker, 2003; Lupker, Brown & Colombo, 1997; Taylor & Lupker, 2001). 

According to this theory readers establish a time criterion for when articulation should start. 

The moment in time when participants release the response would be displaced as a function of the 

difficulty of the material they are exposed to, i.e. late with difficult items, early with easier items. 

Importantly, the criterion would be set to a position appropriate for the entire block of stimuli in the 

task and the main effect would be thus an homogenization of the RTs, i.e. when easy and difficult 

stimuli are mixed together, the response to difficult/slow stimuli would be faster whereas the 

response to easy/fast stimuli would be slower compared to when easy and difficult stimuli are 

presented in separated lists. Hence, when nonwords are added in the reading task as O’Malley and 

Besner (2008) did, one should control for these effects. Specifically to this study, a condition in 

which only clear and degraded (high-frequency and low-frequency) words are presented in the task 

is compared with a condition where clear and degraded nonwords have been added. Clear nonwords 

should not produce any confounding according to the time-criterion account because their RTs are 

collocated in a position that is more or less intermediate with respect to the other stimuli in the task, 

i.e. clear nonwords are slower than clear words but faster than degraded words. Adding degraded 

nonwords could instead constitute a confounding since these stimuli are the slowest in the task. As a 

consequence, adding degraded nonwords could render the RTs to fast stimuli slower. Hence, high-
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frequency words (i.e., the fast stimuli in the task) could be delayed by the presence of nonwords 

more than low-frequency words (i.e., the slow stimuli in the task). The additive effects of SQ and 

word frequency obtained when words and nonwords are mixed in the task might be due to this 

delay. Specifically, such an hypothesis would explain the results obtained as due to a similar 

confounding if degraded high-frequency words would be delayed by the presence of nonwords 

more than degraded low-frequency words. However, clear stimuli are faster than degraded stimuli 

and adding nonwords should thus influence, if anything, clear (i.e., not degraded) high-frequency 

words. This means that if the potential confounding would be removed, the RTs to clear high-

frequency words would be, according to the time-criterion, faster than how reported by O’Malley 

and Besner (2008) when the task consists of both words and nonwords; as a consequence, the 

frequency effect would result being larger in the clear than in the degraded presentation. Clearly, 

this interaction would be in the opposite direction to the one reported in the only word condition. 

Hence, hypothesizing a problem in list composition on the basis of the time-criterion account would 

not explain the actual pattern of results. 

Moreover, an alternative way to interpret list composition extending the time-criterion idea 

has been recently proposed by Kwantes and Marmurek (2007). The authors suggested to simulate 

the effects of list composition in the DRC model by manipulating the reading aloud criterion, a 

mechanism controlling the level of activation that has to be reached in each phonemic slot of the 

phonemic buffer before articulation can start. When this parameter is set high the criterion is 

reached later and, therefore, reading latencies are slowed down. This change, however, not only 

determines the beginning of reading times but also affects the way in which lexical activation 

contributes to the process of phonological assembly. In the model, when a lexical unit receives 

activation, it inhibits all the other units within the lexicon and on successive processing cycles, 

through the mechanism of lateral inhibition, the system gradually converges on a single unit that 

corresponds to the target stimulus. Therefore, when the response criterion is set low and naming 

latencies are short, several lexical units (i.e., all units that share some letters and phonemes with the 

target) are activated, even if not very strongly, and they all contribute to the assembly of target 

phonology; according to the authors participants would use a General Activation Strategy (or GAS). 

In contrast, when the response criterion is set high, activation becomes less diffuse and the 

contribution of single lexical units increases; participants would employ a Specific Activation 

Strategy (or SAS). Of course, the probability of observing frequency effects increases in this latter 

condition. It seems to us plausible to assume that the SAS would be used when only words are 

presented in the task, whereas the GAS would be favoured when words are mixed to nonwords in 

the type of experiments reported above. In fact, whereas waiting for the identification of the correct 
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lexical unit may be an useful strategy to use when only words are presented, the general activation 

of entries in the lexicon could facilitate reading more than the specific activation of a single lexical 

entry when half of the stimuli presented in the task are nonwords. Furthermore, since the probability 

to observe an effect due to word frequency increases when the SAS is used, it might be 

hypothesized that, when only words are presented in the task, the frequency effect would be larger 

in degraded than in clear presentation: since activation would rise more quickly for high-frequency 

words than for low-frequency words, the effect of degradation would be smaller for the former 

stimuli. Instead, since the GAS is less sensitive to lexical variables, the amplitude of the effect of 

degradation might be insensitive to word frequency when words are mixed with nonwords.  

To date, this hypothesis is somehow similar to the explanation given by the dual-route 

emphasis account. Both these hypotheses, in fact, assume the contribution of the lexical route being 

stronger in the only word condition. Nevertheless, it remains to be defined whether the joint effects 

of SQ and lexicality as well as the joint effects of TLC and lexicality may be explained by assuming 

the use of the GAS in mixed lists; for example, it may be suggested that when activation is diffused 

in the lexicon, the feedback activation could have an effect only on variables directly affecting the 

letter level. Additional empirical activities will be necessary to further analyze this issue. 

 

6.4.2 Computational modelling 
 

An additional topic regards the simulation of the empirical findings. In the previous sections we 

concluded that, even if other explanations are perhaps possible, the route emphasis account of list 

composition effects in reading is a plausible framework to explain the whole pattern of data. The 

simulations of the results obtained by O’Malley and Besner (2008) might be thus possible by 

manipulating the strength of the lexical and non-lexical routes of the DRC model. 

A first issue is determining how the functional routes of the model should be manipulated in 

order to simulate human performance. In our theoretical explanation we suggested that the balance 

between the two routines would favour the lexical route over the non-lexical route more strongly 

when only words are present in the task than when words are randomly mixed with nonwords. This 

balancing, however, might be achieved in the DRC model by using several different 

implementations: for example, one might choose to manipulate the lexical route, either 

strengthening it in pure condition or weakening it in mixed condition; otherwise, the manipulation 

may be on the non-lexical route. It seems to us that many different options might in fact be equally 

adequate in this context. In order to resolve this issue it will be necessary to direct investigate what 

strategy participants use in these experimental conditions and hence to further analyze the effects 
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due to list composition in degraded reading. This will be the goal of the experiment reported in the 

next chapter; this study will be useful also to further distinguish between the different accounts 

proposed to explain list composition effects in reading. More in general, our working assumption is 

that, if particular effects due to list composition exist in degraded reading, the interpretation of the 

results obtained in the context of factorial manipulations of SQ and lexical variables should take 

these effects into account. 

Besides the simulation of the effects due to TLC also discussed in the previous chapters, a 

further problem concerns how SQ is implemented in the DRC model. In fact, whereas SQ affects 

the feature level analysis, degradation is simulated in the model by reducing the strength of the 

connections between the feature and the letter units. It follows that the way SQ is actually 

implemented in the model does not accurately reflect the effects this variable has for humans. The 

relevance of this issue is crucial in this context since the pattern of empirical findings may in fact 

depend on the specific level of processing at which SQ (and TLC) has its effect. 

We argue that SQ should be implemented in a different way in the model, i.e. by influencing 

activation of the feature units. As it will be discussed in details in the final chapter of this thesis, this 

may be realized as follow. At present, a visual feature in the DRC model can be either on or off, i.e. 

it can take either the value 1 or 0, respectively. The idea might be to allow a visual feature to 

accumulate activation over time (i.e., taking every intermediate value between 0 and 1) as a 

function of the quality of the stimulus in input; hence, whereas under normal visibility conditions a 

feature unit will be fully activated as the stimulus is presented, it will be only partially activated 

when the stimulus is degraded; because of the cascaded property of the model, less activated units 

will reduce the rate of activation downstream in the system, thus producing slower responses. 

 

6.4.3 Conclusion 

 

This study aimed to evaluate the lexicalization hypothesis, stating that the letter level might be 

thresholded in particular experimental conditions (O’Malley & Besner, 2008). The results we 

obtained falsified this account by showing that a variable having an effect at the letter level (i.e., 

TLC) interacts with a variable that has an effect at the lexical level (i.e., lexicality) when stimuli in 

the task are degraded. Despite other explanations are perhaps possible, we suggest that the whole 

pattern of data obtained when a factor influencing the recognizability of letters (i.e., SQ and TLC) is 

manipulated together with a lexical variable (i.e., word frequency and lexicality) can be explained 

by a dual-route emphasis account of list composition effects in reading. 
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7 LIST COMPOSITION EFFECTS IN DEGRADED 

READING 

 

 

 

In the present chapter the effects due to list composition in degraded reading will be analyzed. The 

effects due to the type of stimuli presented in the task have been largely studied in reading aloud 

researches. Nevertheless, to the best of our knowledge, any published study has directly analyzed 

this issue when stimuli are degraded in the task. The research presented here aims to compare the 

reading performance to degraded English (regular) words and to degraded nonwords when 

presented in separated pure lists with the performance to the same stimuli when they are mixed 

together in the reading task. Our data will be discussed within the accounts traditionally proposed to 

explain list composition effects in reading. 

 

 

7.1 Introduction 

 

Whether and how humans can exert strategic control in reading tasks is a matter of debate in visual 

word recognition researches. For fluent readers, reading appears to be an extremely automatized 

process. However, strategic processes engaged in reading performance have been largely 

documented in studies analyzing the effects due to the composition of the list of stimuli in the task 

(e.g., Chateau & Lupker, 2003; Coltheart & Rastle, 1994; Kang, Balota, & Yap, 2009; Kinoshita & 

Lupker, 2003, 2007; Kinoshita, Lupker, & Rastle, 2004; Lupker et al., 1997; Monsell, Patterson, 

Graham, Hughes, & Milroy, 1992; Rastle & Coltheart, 1999; Tabossi & Laghi, 1992; Zevin & 

Balota, 2000). As a consequence, at least some aspects of the reading process must be strategically 

controlled by skilled readers.  

The issue about strategic control in reading has been usually studied in terms of dual-route 

frameworks (e.g., Coltheart, 1978; Patterson & Morton, 1985, Coltheart et al., 2001), typically the 

DRC model. According to dual-route theories there are two ways to produce a phonological code. 

One way involves assembling a pronunciation based on knowledge of spelling-to-sound mapping; 

this strategy can be successfully used whenever the spelling-to-sound mapping of the letter string in 

input follows the standard rule of the language (i.e., regular words) and it is necessary for nonword 
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reading. The other route involves accessing a lexical representation and retrieving the associated 

phonological code; this way can only be used for reading letter strings that have a lexical 

representation (i.e., words) and must assume a dominant role when words are irregular. Regardless 

of the characteristics of the input, both the routes are assumed to work in parallel on each stimulus. 

List composition effects are explained within dual-route models of reading by assuming that readers 

can selectively emphasized or de-emphasize the output of the two routes as a function of the type of 

stimuli presented in the task. 

An alternative account of list composition effects in reading has been however proposed 

(e.g., Chateau & Lupker, 2003; Kinoshita & Lupker, 2003; Lupker et al., 1997), namely the time-

criterion. This account relies on the idea that readers do not always initiate articulation as soon as 

possible; instead, skilled readers would set a flexible time-criterion (or deadline) for when 

articulation should start. Importantly, the position in time at which the criterion is set would depend 

on the type of stimuli presented in the task, thus explaining the effects due to list composition 

obtained in reading aloud researches. 

Despite several attempts to distinguish between the two frameworks exist, these 

investigations have not yielded conclusive results. In fact, an extremely complex pattern of data has 

been obtained in these studies. A resume of the empirical findings is clearly far from the goals of 

the present dissertation; however, what is critical in this context is that whereas some of these 

studies reported evidence in favor of the route emphasis framework (e.g., Coltheart & Rastle, 1994; 

Kang et al., 2009) the results obtained in some other studies have been interpreted within a time-

criterion account (e.g., Chateau & Lupker, 2003; Kinoshita & Lupker, 2003; Lupker et al., 1997). 

As a consequence, there is a certain agreement in considering the two hypotheses as not mutually 

exclusive; in other words, it could be that changes in the relative emphasis of a particular reading 

pathway and changes in the placement of a time-criterion jointly influence pronunciation 

performance. Hence, the two theories are today considered valuable approaches in interpreting list 

composition effects in reading. 

To date, even if list composition found a large interest in researches on visual word 

recognition, these studies have been generally restricted to the investigation of these effects in 

standard viewing conditions. To the best of our knowledge, in fact, any published study has directly 

analyzed list composition effects in degraded reading. As discussed in the previous chapter, 

however, previous experiments involving the manipulation of a lexical variable under both the clear 

and the degraded presentation showed a different pattern of results (i.e., interaction vs. additive 

effects) depending on the type of stimuli presented in the task (e.g., Besner & O’Malley, 2009; 

Besner et al., 2010; O’Malley & Besner, 2008). Moreover, in the previous chapter, we also 
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suggested that these findings may be explained by a dual-route emphasis account of list 

composition effects in reading. 

Clearly, a direct investigation of the effects due to list composition when the stimuli are 

degraded in the reading task is required. In particular, in order to clarify the previous issues, one 

need to analyze reading performance to degraded words when they are solely presented in the task 

by comparing performance to the same stimuli when they are randomly mixed with degraded 

nonwords. Degradation may in fact determine particular effects of list composition in reading; if 

this will be the case, then these effects should be taken into account in any experiment involving a 

reduction of stimulus quality and modifying the composition of the list of stimuli. 

This was the goal of the experiment reported below. In particular, the present study aims to 

compare the responses to (regular) words and nonwords when presented in pure list with the 

responses to the same stimuli when presented mixed together, when all the stimuli are degraded in 

the task. Specifically, three different conditions have been compared in the experiment: 

a. a condition in which only degraded words were presented in the reading task;  

b. a condition in which only degraded nonwords were presented in the reading task;  

c. a condition in which degraded words and degraded nonwords (i.e., the same stimuli 

used in condition a e b) were randomly mixed in the reading task. 

The three conditions have been alternated between participants, so that each subject performed 

either the conditions a (words only) and b (nonwords only) or the condition c (words mixed with 

nonwords). As a consequence, each item has been read only once by each participant (i.e., either in 

the pure condition or in the mixed condition). Moreover, also the order of the conditions a and b has 

been alternated between participants performing the task with pure lists of stimuli. 

 

 

7.2 Method 

 

Participants. Twenty-four students at the Macquarie University who had English as their 

first language and normal or corrected-to-normal vision participated as volunteers.  

 

Design. Lexicality (words vs. nonwords) has been manipulated within subjects, whereas list 

composition (Condition: pure vs. mixed lists) has been manipulated between subjects. 
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Material . A total of 160 stimuli were used (these items can be seen in the Appendix, section 

F). They consisted of 80 regular monosyllabic English words and 80 legal monosyllabic nonwords 

with five letters in length. The two groups were matched in terms of phonological onset. The 

nonwords have been derived by changing a letter of an English regular word maintaining its initial 

phoneme. The words and the basewords which the nonwords were derived from were balanced for 

frequency (20.3 vs. 21.4 occurrences per million, t<1), orthographic neighbourhood size (4.6 vs. 

4.5, t<1) and neighbourhood frequency (183 vs. 127, t<1). Moreover, words and nonwords were 

balanced in terms of neighbourhood size (4.6 vs. 4.4, t<1), neighbourhood frequency (183 vs. 124, 

t=1.4, n.s.) and TLC31 (2.4 vs. 2.4, t=1.2, n.s.). Pure and mixed conditions as well as the order of 

presentation of the two pure lists have been alternated between participants, so that 1/3 the subjects 

read the only word block as the first list and the only nonword block as the second list, another 1/3 

read the only nonword block as the first list and the only word block as the second list and the 

remaining subjects performed the reading aloud task including both words and nonwords. 

 

Apparatus. The experiment took place in a sound attenuated and dim lit room. Stimuli 

presentation and data recording were controlled by DMDX software and running on a personal 

computer. The display was synchronized with the screen refresh cycle. Stimuli were presented 

centrally in upper-case letters in the 18-point Courier New font. All the stimuli were displayed in 

grey (RGB values: 3,3,2) on a black background (RGB values: 0,0,0). Responses were collected via 

a microphone connected to a voice key assembly. Response latencies were timed from stimulus 

onset to voice key activation, which also terminated the display. 

 

Procedure. Participants were tested individually and sat in front of a computer screen. They 

were informed about the type of stimuli presented in the task and instructed to read each letter string 

aloud as quickly as possible minimizing errors. Each trial began with a 500 ms presentation of a 

fixation point at the centre of the computer screen followed by a 200 ms presentation of a blank. 

Immediately after the stimulus appeared and remained on the screen until a response was registered 

by the voice key or 3 sec elapsed. Stimuli were presented in a different random order for each 

participant. In mixed block stimuli order was controlled so to have the same number of words and 

nonwords within each group of ten stimuli. Responses were coded offline as correct or incorrect by 

the experimenter using CheckVocal software; the experimenter determined RTs using the 

waveform recorded by this software in order to reduce errors associated with voice key timing and 

correct for mistrial (i.e., voice key failure). 
                                                 
31 LC was determined from empirical letter-confusion matrices obtained in previous studies (Gilmore et al., 1979; 
Loomis, 1982; Townsend, 1971; Van Der Heijden et al., 1984). 
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7.3 Results 

 

An analysis based on linear mixed effects modelling (see Baayen, 2008; Baayen, Davidson, & 

Bates, 2008) has been performed in this study.  

Mixed models extend the idea of traditional linear regression analysis that attempts to find 

out whether the distribution of a certain variable (response or dependent variable) can be, to a 

certain extent, predicted by a combination of others variables (explanatory or independent 

variables), and how the latter ones are affecting the former. The relationship between variables is 

modelled by fitting a linear equation to observed data on the assumption that the dependent variable 

is given by the weighted sum of the explanatory variables, plus some random noise. In the classical 

linear regression analysis only factors representing the so called fixed effects are incorporate in the 

model. Fixed effects are repeatable factors, which means that the set of possible levels for that 

factor is fixed and that each of these levels can be repeated. Usually, fixed factors correspond to the 

variables that are directly manipulated in an experiment. However, items and subjects are normally 

not repeatable. Items and subjects are sampled randomly from the population of stimuli and 

participants and replicating the experiment would usually involve selecting other items and other 

participants. This type of factors is called random effects because their levels are randomly sampled 

from a much larger population. Mixed models are models which incorporate both fixed and random 

effects. Random effects are assumed to be normally distributed with unknown variance, which will 

be estimated from the data; as Baayen (2008) states “While fixed effects factors are modeled by 

means of contrasts, random effects are modeled as random variables with a mean of zero and 

unknown variance (…) In mixed models, the standard deviation associated with random effects are 

parameters that are estimated, just as the coefficients for the fixed effects are parameter that are 

estimated” (p. 264). 

Mixed modelling is particularly useful in psycholinguistic experiments in that allows to fit a 

linear equation to observed data by estimating a model in which the random effects for subjects and 

items are jointly analyzed. Hence, mixed models may offer a more powerful statistical analysis than 

traditional ANOVAs and be extremely useful especially when the variables (e.g., the factor 

representing list composition – condition: pure vs. mixed lists – in the present experiment) need to 

be manipulated between subjects. Another advantage of mixed modelling as compared to the 

traditional ANOVA is that other variables (i.e., factors that are not directly manipulated by the 

experimenter) can be added in the model in order to maximize the variance explained.  

Linear mixed effects models are implemented with lme4 (Bates, Maechler, & Dai, 2008) 

and languageR (Baayen, 2008) packages in R development core team (2007).  
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Three different analyses have been performed both on correct reaction times and on errors 

data. A further analysis has been directed to analyze a restricted set of errors, i.e. lexicalization. 

 

7.3.1 Analysis on list composition in function of lexicality 

 

The first analysis was directed to analyze the effect of the variable Condition (pure vs. mixed lists) 

for the words and nonwords in the experiment. Mean RTs according to conditions and percentages 

of error are reported in Table 9. 

 

 
Nonwords Words Diff. 

Condition RTs %E RTs %E RTs %E 

Pure 812 28.1 720 5.6 92 22.5 
Mixed 748 18.3 671 3.6 77 14.7 

Diff. 64 9.8 49 2 
  

 
Table 9. Mean reaction times (RTs) and percentages of error (%E) 

according to conditions. 
 

 

RTs. First, we define a model (m1) with participants and items as random factors. Then, we 

define a second model (m2) by adding to model m1 the factor trial-number (i.e., a factor 

representing the order in which the items have been presented in the experiment) as fixed factor. A 

formal comparison of m1 and m2 (namely, a log-likelihood test) showed a significant improvement 

in the model’s fit, Chi2(1) = 9.9, p < .001. Since items have been presented in a different random 

order to each subject, the order of presentation may have affected each subject differently; we thus 

decide to allow the slope of the effect of trial to vary across subjects. To this purpose we centred the 

data and created a third model (m3) on them by adding to m2 the by-subject random slope for trial 

(the correlation parameter hasn’t been added32). A formal comparison between m2 and m3 showed a 

significant improvement in the model's fit, Chi2(1) = 128.9, p < .001. In a subsequent model (m4) 

we added Lexicality as fixed factor. A formal comparison of m3 and m4 showed a significant 

improvement in the model’s fit, Chi2(1) = 53.7, p < .001. Then, we updated m4 by adding 

Condition as a fixed factor but the increase in the model’s fit was not significant, Chi2(1) = 1.4, p > 

                                                 
32 A separated formal comparison between the models with and without the correlation parameter indicated that the 
model’s fit doesn’t improve when the correlation parameter is added, which suggests that it is not necessary in the 
model (see Baayen, 2008, p. 276). 
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.24. However, a further model (m6) has been tested by adding to the model m4 the interaction 

between the two fixed factors (i.e., Lexicality and Condition). A formal comparison of m4 and m6 

showed a significant improvement in the model’s fit, Chi2(2) = 8.9, p = .01. 

A further analysis was performed on m6 to test the fixed factors effects. The effect of 

Lexicality was significant |t| = 6.1, pMCMC < .001, with words read faster than nonwords. 

Critically, the effect of Condition proved significant, |t| = 1.5, pMCMC ≈ .05, with items in the 

mixed list read faster than items in the pure list. Furthermore, the two factors were qualified by a 

significant interaction, |t| = 2.8, pMCMC < .001, with the effect of Condition larger for nonwords 

than for words. 

 

Accuracy. First, we define a model (a1) with participants and items as random factors. 

Then, we define a second model (a2) by adding to model a1 the factor trial-number as fixed factor 

but the model’s fit was not significantly improved, Chi2(1) = 1.16, p > .28. However, a third model 

(a3) has been created by centring the data and adding to a1 the by-subject random slope for trial 

(the correlation parameter has not been added). A formal comparison between a1 and a3 showed a 

significant improvement in the model's fit, Chi2(2) = 49.3, p < .001. In a subsequent model (a4) we 

added Lexicality as fixed factor. A formal comparison of a3 and a4 showed a significant 

improvement in the model’s fit, Chi2(1) = 42.6, p < .001. Then, we updated the model a4 by adding 

Condition as fixed factor and the increase in the model’s fit was marginally significant, Chi2(1) = 

3.4, p > .066. A further model (a6) has been tested by adding to model a4 the interaction between 

the two fixed factors (i.e., Lexicality and Condition). A formal comparison of a5 and a6 showed an 

improvement in the model’s fit, Chi2(1) = 7.1, p < .01. 

A further analysis was performed on a6 to test the fixed factors effects. The effect of 

Lexicality was significant |t| = 5.3, pMCMC < .001, with words more accurate than nonwords. 

Critically, the effect of Condition proved significant, |t| = 2.7, pMCMC < .01, with items in the 

mixed list read more accurately than items in the pure list. The two factors were qualified by a 

significant interaction, |t| = 2.7, pMCMC < .01, with the effect of Condition larger for nonwords 

than for words. 

 

To conclude, the analysis on RTs showed a main effect of Lexicality (i.e., words are read faster than 

nonwords), a main effect of Condition (i.e., stimuli in the mixed list are read faster than stimuli in 

the pure list) and a significant interaction between the two factors (i.e., the effect of Condition is 

larger for nonwords than for words). The analysis on error rates is consistent with the RTs analysis, 

showing more accurate responses for the stimuli which are read faster. 
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The interaction between Condition and Lexicality that has been obtained indicates that the effect of 

Condition is larger for nonwords than for words. Since the main effect of Condition is significant, it 

follows that the difference between the pure and the mixed lists must be significant for nonwords. 

Therefore there is no need to test the effect of Condition for the nonwords by themselves33. 

However, one can’t conclude from these results whether or not there is a significant effect of 

Condition for words. Hence, the effect of Condition just for words has been tested. We first define a 

model restricted to words only with participants and items as random factors (w1). Then, we add to 

model w1 trial-number as fixed factor, but a formal comparison of w1 and w2 showed that the 

model’s fit didn’t significantly improve, Chi2(1) = 1.6, p >.21. In a third model we updated w2 by 

centring the data and adding the by-subject random slope for trial (without adding the correlation 

parameter). A formal comparison between w2 and w3 showed a significant improvement in the 

model's fit, Chi2(2) = 6, p = .05. In a subsequent model (w4) we added Condition as fixed factor but 

the increase in the model’s fit was not significant, Chi2(1) = .64, p = .42, thus suggesting that the 

effect of Condition is not significant for words. 

 

7.3.2 Analysis on the order of presentation in pure lists 

 

A separated analysis has been performed to determine whether the order in which the pure lists have 

been presented (words first vs. nonwords first) made any difference. For this purpose a subset of 

data corresponding to the RTs in the pure condition only has been extracted. Mean RTs and 

percentages of error are reported in Table 10. 

 

 
Nonwords Words Diff. 

Order RTs %E RTs %E RTs %E 

First presented list 826 27 736 5.6 90 21.4 

Second presented list 797 29.2 703 5.6 94 23.6 

Diff. 29 -2.2 33 0 
  

 
Table 10. Mean reaction times (RTs) and percentages of error (%E) for Order and Lexicality. 

                                                 
33 However, when this issue is directly investigated, the analysis shows that the effect of Condition is not significant for 
nonwords. In the analysis we first define a model restricted to nonwords only with participants and items as random 
factors (nw1); then, we add to model nw1 trial-number as fixed factor. However, a formal comparison of nw1 and nw2 
showed that the model’s fit didn’t significantly improve, Chi2(1) = .62, p >.43. In a third model we updated nw2 by 
adding the by-subject random slope for trial (a formal comparison indicated that the correlation parameter is necessary) 
and a formal comparison between nw2 and nw3 showed a significant improvement in the model's fit, Chi2(3) = 8.2, p < 
.05. Finally we add, in a subsequent model (mw4), Condition as fixed factor but the increase in the model’s fit was not 
significant, Chi2(1) = 1.5, p = .21, thus suggesting that the factor Condition has no significant effects for nonwords.  
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RTs. Following a similar procedure to the one explained in the previous analysis we first 

define a model (o1) with participants and items as random factors. Then, we add to model o1 trial-

number as fixed factor. The formal comparison of o1 and o2 showed a significant improvement in 

the model’s fit, Chi2(1) = 17, p < .001. In a third model we updated o2 by centring the data and 

adding the by-subject random slope for trial (the correlation parameter has not been added). A 

formal comparison between o2 and o3 showed a significant improvement in the model's fit, Chi2(1) 

= 110.1, p < .001. In a subsequent model (o4) we added Lexicality as fixed factor. A formal 

comparison of o3 and o4 showed a significant improvement in the model’s fit, Chi2(1) = 51.3, p < 

.001. Then, we define a fifth model (o5) by adding Order as a fixed factor. A formal comparison 

showed that the model’s fit significantly improves, Chi2(1) = 4.6, p < .05. We finally add the 

interaction between Lexicality and Order but the increase in the model’s fit was not significant, 

Chi2(1) = 0, p = 1, thus suggesting that the interaction has no significant effects. A further analysis 

was performed on o5 to test the fixed factors effects. The effect of Lexicality was significant |t| = 

7.4, pMCMC < .001, with words read faster than nonwords. Also, the effect of Order proved 

significant, |t| = 1.5, pMCMC < .05, with the second list read faster than the first list. 

 

Accuracy. First, we define a model (ao1) with participants and items as random factors. 

Then, we define a second model (ao2) by adding to model oa1 the factor trial-number as fixed 

factor but the model’s fit was not significantly improved, Chi2(1) = 2, p > .15. However, a third 

model (ao3) has been created by centring the data and adding to ao1 the by-subject random slope 

for trial (the correlation parameter has not been added). A formal comparison between ao1 and ao3 

showed a significant improvement in the model's fit, Chi2(2) = 39.8, p < .001. In a subsequent 

model (ao4) we added Lexicality as fixed factor. A formal comparison of ao3 and ao4 showed a 

significant improvement in the model’s fit, Chi2(1) = 45.3, p < .001. Then, we define a fifth model 

(ao5) by adding Order as fixed factor, but a formal comparison showed that the model’s fit didn’t 

significantly improve, Chi2(1) = .67, p > .41. We finally add the interaction between Lexicality and 

Order but the increase in the model’s fit was not significant, Chi2(2) = .66, p = .71. This analysis 

thus suggests that neither the effect of Order, nor the interaction between Order and Lexicality have 

significant effects on error data.  

 

In conclusion, the main effect of Order that emerges in the RTs analysis is not surprising: 

participants read faster the stimuli that are presented as a second list for effect of practice with the 

task. Since there is no interaction involving Order, the data can be collapsed across this factor and 

hence the factor Condition has just has two levels, pure and mixed. 
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7.3.3 Analysis on word frequency 

 

A separated analysis has been performed in order to analyze the effect of word frequency. 

First, a correlation between the RTs to words and their frequency have been calculated: 

critically, the correlation proved significant when words are presented in pure list, r (80) = -.282, p 

< .05, but not when they are presented in mixed list, r (80) = -.07, n.s.  

In mixed models analysis a subset of data corresponding to the words only has been 

extracted from the data. Furthermore, word frequency has been analyzed by adding a variable 

containing the specific frequency values in the model. 

 

RTs. As in the previous analysis, we first created an initial model (f1) with participants and 

items as random factors. Then, we add to model f1 trial-number as fixed factor but a formal 

comparison of f1 and f2 showed that the model’s fit doesn’t improve significantly, Chi2(1) = 1.6, p 

> .20. However, a third model (f3) has been created by adding to f1 the random by-subject slope for 

trial (without the correlation parameter) and centring the data. A formal comparison of f1 and f3 

showed a significant improvement in the model’s fit, Chi2(1) = 5.7, p < .05. In a subsequent model 

(f4) we added Frequency as fixed factor. A formal comparison of f3 and f4 showed a significant 

improvement in the model’s fit, Chi2(1) = 5.5, p < .05. Then, Condition as fixed factor has been 

added but the model’s fit was not significantly improved, Chi2(1) = .65, p > .42. Finally, we created 

another model (f6) by adding the interaction between Frequency and Condition. A formal 

comparison of f4 and f6 showed a significant improvement in the model’s fit, Chi2(2) = 8.5, p < .05.  

A further analysis performed on f6 showed that the interaction between Frequency and 

Condition proved significant, |t| = 7.4, pMCMC ≈ .005, with the effect of Frequency significant in 

the pure blocks, |t| = 2.8, pMCMC < .005, but not in the mixed blocks, t < 1. 

 

Accuracy. First, we define a model (af1) with participants and items as random factors. 

Then, we define a second model (af2) by adding to model af1 the factor trial-number as fixed factor 

but the model’s fit was not significantly improved, Chi2(1) = .24, p > .62. Furthermore, a third 

model (af3) has been created by centring the data and adding to af1 the by-subject random slope for 

trial (the correlation parameter was not necessary) but a formal comparison between af1 and af3 

didn’t show a significant improvement in the model's fit, Chi2(2) = .24, p > .88. In a subsequent 

model (af4) we added Frequency as fixed factor. A formal comparison of af1 and af4 didn’t show a 

significant improvement in the model’s fit, Chi2(1) = 1.7, p > .19. Finally, we defined a fifth model 

(af5) by adding the interaction between Lexicality and Frequency but the increase in the model’s fit 
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was not significant, Chi2(3) = 4.5, p > .21. This analysis thus suggests that neither the effect of 

Frequency, nor the interaction between Frequency and Lexicality have significant effects on error 

rates.  

 

Moreover, the joint effects of word frequency and the order in which the words have been presented 

in pure blocks (i.e. first list vs. second list) have been analyzed in order to define whether the effect 

of frequency was modulated by the words being the first vs. the second presented list. For this 

purpose a set of data corresponding to words in the pure condition only has been extracted.  

 

RTs. An initial model (fo1) with participants and items as random factors has been created. 

Then, we create fo2 by adding to model fo1 trial-number as fixed factor. However, a formal 

comparison of fo1 and fo2 showed that the model’s fit doesn’t improve significantly, Chi2(1) = .13, 

p > .72. A third model (fo3) has been created by adding to f1 the random by-subject slope for trial 

(without the correlation parameter) and centring the data. A formal comparison of fo1 and fo3 

showed a significant improvement in the model’s fit, Chi2(1) = 10.4, p < .005. We then created the 

model fo4 by adding Frequency as fixed factor. A formal comparison of fo3 and fo4 showed a 

significant improvement in the model’s fit, Chi2(1) = 7.8, p < .01. In model fo5 the fixed factor 

Order has been added but the model’s fit was not significantly improved, Chi2(1) = .21, p > .65. 

Finally, a model (fo6) has been created by adding to fo4 the interaction between Frequency and 

Order, but a formal comparison of fo4 and fo6 showed that the model’s fit was not significantly 

improved, Chi2(2) = 3.5, p > .17. This analysis suggests that neither the main effect of Order nor 

the interaction between Order and Frequency have significant effects in the analysis. 

 

Accuracy. We define a model (afo1) with participants and items as random factors. Then, 

we define a second model (afo2) by adding to model afo1 the factor trial-number as fixed factor. 

However, the model’s fit was not significantly improved, Chi2(1) = 0, p = 1. Furthermore, a third 

model (af3) was created by adding to af1 the by-subject random slope for trial and centring the data 

(the correlation parameter was not necessary) but a formal comparison between af1 and af3 didn’t 

show a significant improvement in the model's fit, Chi2(2) = .04, p > .98. In a subsequent model 

(af4) we added Frequency as fixed factor but a formal comparison of af1 and af4 didn’t show a 

significant improvement in the model’s fit, Chi2(1) = 2.2, p > .14. Finally, we define a fifth model 

(af5) by adding the interaction between Frequency and Order but the increase in the model’s fit was 

not significant, Chi2(3) = 2.1, p > .54. This analysis thus suggests that neither the effect of 

Frequency, nor the interaction between Frequency and Order have significant effects on error rates.  
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To conclude, the analysis on RTs shows a main effect of Frequency and a significant interaction 

between Condition and Frequency, indicating that whereas the effect of word frequency is 

significant in the pure blocks it is not in the mixed blocks. This datum is consistent with the results 

obtained in the correlation analysis. Regarding the joint effects of Frequency and Order, the analysis 

showed that there is not interaction between these two effects; we thus conclude that the effect of 

frequency has the same amplitude when words are presented as the first list and when they are 

presented as the second list in the pure condition. 

 

7.3.4 Analysis on lexicalization errors 

 

A total of 14.9% of the data has been coded as errors in the experiment. Of these errors, 38% were 

fluent nonword errors and 45% were fluent word errors; the remaining 17% were non-fluent 

mistakes. We argue that it might be interesting to perform a separate analysis on the fluent word 

errors (i.e., lexicalization errors), since they might give important information in the context of list 

composition effects in reading.  

Percentages of lexicalizations according to conditions are reported in Table 11. 

 

Condition Nonword Word Diff. 

Pure 13.6 2.2 11.4 
Mixed 5.9 0.6 5.3 

Diff. 7.7 1.6 
 

 
Table 11. Percentages of lexicalization errors according to conditions. 

 

 

In the analysis, we first define a model (lex1) with participants and items as random factors. Then, 

we define a second model (lex2) by adding to model lex1 the factor trial-number as fixed factor but 

the model’s fit was not significantly improved, Chi2(1) = 1.9, p > .16. However, a third model 

(lex3) has been created by centring the data and adding to lex1 the by-subject random slope for trial 

(the correlation parameter has not been added). A formal comparison between lex1 and lex3 showed 

a significant improvement in the model's fit, Chi2(1) = 15.6, p < .001. In a subsequent model (lex4) 

we added Lexicality as fixed factor. A formal comparison of lex3 and lex4 showed a significant 

improvement in the model’s fit, Chi2(1) = 25.7, p < .001. Then, we updated lex4 by adding 

Condition as fixed factor and the increase in the model’s fit was significant, Chi2(1) = 6.5, p < .05. 

A further model (lex6) has been tested by adding the interaction between the two fixed factors and a 
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formal comparison showed an improvement in the model’s fit, Chi2(1) = 5.5, p < .05. A further 

analysis was performed on lex6 to test the fixed factors effects. The effect of Lexicality was 

significant, |t| = 3.6, pMCMC < .001, with words more accurate than nonwords. Critically, the 

effect of Condition proved significant, |t| = 3.4, pMCMC < .005, with items in the mixed list read 

more accurately than items in the pure list. Furthermore, the two factors were qualified by a 

significant interaction, |t| = 2.4, pMCMC < .05, with the effect of Condition larger for nonwords 

than for words. 

 

To conclude, the same pattern obtained for the whole set of error rates is obtained when 

lexicalization errors are separately analyzed. Hence, stimuli are more accurate (and there are less 

lexicalizations) in the condition in which they are read faster. 

 

 

7.4 Discussion 

 

The results of the present experiment can be summarized as follow. 

1. Degraded words are read faster than degraded nonwords both in mixed and in pure blocks. 

2. When words and nonwords are degraded, stimuli are read faster when mixed together than 

when presented in a pure list.  

3. The mixed-list advantage is larger for nonwords than for words.  

4. Nonwords are read less accurately than words. Mixed list are more accurate than pure list. 

The effect of list composition is larger for nonwords than for words in the analysis of errors. 

5. The word frequency correlation with RTs is significant when words are presented in pure 

lists but not when they are mixed with nonwords; in addition, the effect of word frequency is 

significant in pure but not in mixed lists. In other words, frequency exerts an effect only 

when words are solely presented in the task. 

The probably most interesting result obtained in this experiment is that reading latencies to 

degraded stimuli are faster when words and nonwords are mixed together in the task that when they 

are presented in separate pure lists. However, an issue remains to be clarified. Whereas the mixed-

block advantage is significant for nonwords, it didn’t prove significant for words in the mixed 

models analysis. We argue, however, that this latter result might be due to a lack of statistical 

power. In fact, when the effect of condition is analyzed for the nonwords themselves, it didn’t prove 
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significant as well. Since this is inconsistent with the other results (i.e., a main effect of Condition 

and a significant interaction between Condition and Lexicality) that could be an issue of low 

statistical power. Hence one needs to be cautious in concluding that there is not an effect of 

Condition with words. More evidence in favor of a significant effect of list composition for words is 

obtained in the ANOVA for items that shows faster RTs in the mixed than in pure lists, F(1,156) = 

103.6, MSE = 2298, p < .001, and that this effect is significant both for words, t(79) = 7.6, p < .001, 

and for nonwords, t(77) = 7.1, p < .001. Even if further investigation is certainly needed, one can 

conclude from these results that RTs to words are not certainly faster in the pure list. Hence, if 

anything, words are read faster when mixed with nonwords that when solely presented in the task.  

In the following sections the pattern of results that has been obtained will be discussed in the 

context of the two theories traditionally proposed to explain list composition effects in reading, i.e. 

the route emphasis account and the time-criterion account; moreover, a third interpretation – the 

lexical checking – will be considered. 

 

7.4.1 The route emphasis account 

 

A way to interpret the results that have been obtained is by considering the effects due to word 

frequency. Our analysis reveals that the correlation of word frequency with RTs proved significant 

when words are presented in pure list but not when they are mixed with nonwords. In addition and 

consistently with this result, the frequency effect proved significant in pure block but not in mixed 

block when analyzed with mixed modelling. Putting together, these data suggest that a lexical 

variable such as word frequency exerts its effect in the pure but not in the mixed lists.  

This conclusion has important implications in interpreting our results within a dual-route 

emphasis account. According to this theory, in fact, readers would selectively emphasize or de-

emphasize the output of one of the two routes. The effect of frequency would be explained either 

assuming that the lexical route is weaker in the mixed list, or hypothesizing that the non-lexical 

route is stronger in the mixed list. However, if the lexical route would be weaker in the mixed list, a 

pure-block advantage for words should have been observed. Instead, if anything, words are read 

faster in the mixed than in the pure lists in our experiment. Consider now the second hypothesis, 

that is the non-lexical route being stronger in the mixed list. Since both the routes can be used to 

read regular words, the emphasis on the non-lexical route in the mixed list could help word reading. 

Moreover, the mixed-block advantage obtained for nonwords is easily explained within this account 

because nonwords would be read faster and more accurate when the non-lexical route is stronger. 
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Finally, the mixed-block advantage has been shown to be larger for nonwords than for words: this 

result is simply accounted for, since the non-lexical route is particularly important in nonword 

reading.  

To summarize, all the results obtained in our experiment are explained by assuming that the 

non-lexical route becomes stronger in the mixed list. The pattern of data is thus accounted for by a 

dual-route model as the DRC through a plausible and data-driven explanation. 

 

7.4.2 The time-criterion account 

 

According to the time criterion account, the moment in time when participants release the response 

would be displaced as a function of the difficulty of the stimuli they are exposed to: early with easy 

items, late with difficult items. Moreover, when easy and difficult stimuli are mixed together in the 

task, the criterion would be set at a position that is intermediate to the position used for the fast and 

slow stimuli when presented in pure list. This means that the responses to slow stimuli would be 

faster in mixed block than in pure block whereas the responses to fast stimuli would be slower in 

mixed block than in pure block. In our experiment words are read faster than nonwords in pure 

block: this means that words can be considered the easy (fast) items and nonwords the difficult 

(slow) stimuli. Consistently with our results, the time-criterion account predicts faster RTs to 

nonwords when they are mixed with words than in pure block. In addition, since the criterion is set 

to a position appropriate for the entire block of stimuli and the main effect is thus an 

homogenization of the RTs, the larger lexicality effect in pure than in mixed blocks as well as the 

larger frequency effect in pure than in mixed blocks are consistent with this hypothesis. However, 

the results we obtained for words cannot be reconciled with this account: according to the time-

criterion, in fact, fast stimuli (i.e., words) should be read faster in pure block than when mixed with 

slower stimuli (i.e. nonwords). This prediction is clearly inconsistent with our experimental data. 

Extending the time-criterion account to dual-route frameworks, Kwantes and Marmurek 

(2007) proposed that a manipulation of the reading aloud criterion not only determines the 

beginning of articulation but also affects how much information from the lexicon is used to create 

pronunciation. Specifically, when the response criterion is set low and naming latencies are short, 

the General Activation Strategy (or GAS) would be used: all the lexical entries that are similar to 

the target string in both spelling and sound contribute to reading. In contrast, when the response 

criterion is set high, the Specific Activation Strategy (or SAS) would be used since activation 

becomes less diffuse and pronunciation will be driven largely by its matching representation in the 
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orthographic and/or phonological lexicons. Following this interpretation, one might assume that the 

GAS is used in mixed block whereas the SAS is preferred in pure block, since the precise 

identification of the target lexical unit would be less useful when half the stimuli are nonwords. 

Hence, reading latencies will be faster under the GAS than under the SAS, thus producing faster 

RTs in mixed list. However, an opposite pattern of error rates34 would also be expected for words 

since these stimuli should be more accurate when a single lexical unit is activated in the lexicon 

(i.e., pure list). Instead, this is not the case in our experiment. Moreover, since the response to 

nonwords should not depend on how much lexical information is used to generate pronunciation, 

the pattern of results for nonwords is not clearly predicted by this account.  

 

7.4.3 The lexical checking account 

 

Another account, the lexical checking, may be relevant in this context. This theory has been 

proposed by Lupker et al. (1997; see also Kinoshita & Lupker, 2007 and Kinoshita et al., 2004) to 

explain the mixed block advantage they found for low-frequency irregular words and the pure-block 

advantage obtained for high-frequency irregular words when both the types of word are presented in 

pure block or mixed with nonwords. As Lupker et al. (1997) comment, “the idea is that as the 

articulatory code builds up, readers can choose to consult an output lexicon to determine whether 

the phonological-code-generation process matches a code in their lexicon” (p. 584). Of course, this 

strategy is more useful when frequency is low. According to the authors, this strategy would be 

invoked in pure blocks since participants must be sure that the articulatory code they produce is a 

word code; on the contrary, it is invoked less often in mixed blocks because half the stimuli are 

nonwords.  

Even if regular words have been used in our experiment, we argue that a similar strategy 

could be plausibly used when the stimulus quality is reduced, since the letters that compose the 

string are not easily identified when degraded. When only words are present, readers could thus 

choose to consul the phonological output in order to determine whether it matches a code in their 

lexicon. On the contrary, this strategy would not be helpful in mixed blocks because half the stimuli 

are nonwords. To date, this account is hence very similar to the one previously discussed. Since a 

                                                 
34 Error rates distribution is relevant also regarding the time criterion-account as originally proposed. In particular, an 
additional effect of naming slow stimuli more rapidly and naming fast stimuli more slowly should be reciprocal changes 
in error rates (Strayer & Kramer, 1994): when slow stimuli are named more rapidly, numerically larger error rates 
should be observed, whereas naming fast stimuli more slowly should lead neither a decrease nor an improvement in 
accuracy. However, our data showed an opposite pattern. In fact, in our experiment, the slowest stimuli (i.e., nonwords) 
are clearly more accurate in the condition in which they are read faster (i.e., mixed block). 
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further operation is needed when words are solely presented, RTs would be slower. This hypothesis 

is thus consistent with RTs to words faster in mixed list. Furthermore, since this strategy would be 

particularly useful when frequency is low, one might expect the mixed-block advantage being larger 

for low-frequency words than for high-frequency words, a prediction that match our empirical data.  

However, this account doesn’t predict anything about nonword data, thus being unable to 

explain the mixed-block advantage we obtained for these stimuli. Also, the error rates distribution is 

inconsistent with this hypothesis. According to the lexical checking account, in fact, a numerically 

larger error rate is expected for words in mixed lists. Since readers would not consult an output 

lexicon in mixed block, errors in word reading should be more frequent than in pure blocks. 

Critically, the data obtained in our experiment didn’t meet this prediction.  

 

7.4.4 Simulation 

 

In the previous sections we argued that the results obtained in our experiment might be explained 

thought the route emphasis account by assuming that the non-lexical route becomes stronger in 

mixed lists. In this section DRC model simulations directed to test this hypothesis will be present. 

The items used in the experiment were run through the DRC 1.2 under the degraded 

condition. To simulate the reduction in stimulus contrast the strength of the connections between 

features and letters has been reduced by 40%. Specifically, the feature-to-letter excitation was 

reduced to .003, whereas the feature-to-letter inhibition was reduced to .09. 

First, a simulation in which only a reduction in stimulus quality was implemented has been 

performed. This data would simulate the pure condition of our experiment. The model did not 

produce any errors. Mean cycles to criterion are reported in Table 12 (Pure Condition). 

Then a series of simulations have been performed in order to determine how the strength of 

the non-lexical route could be manipulated to simulate the mixed condition. In the DRC 1.2 the 

operations of the non-lexical route are regulated by three parameters, namely the GPC-Phoneme-

Excitation, the GPC-Critical-Phonology and the GPC-Onset.  

The GPC-Phoneme-Excitation determines the amount of activation that reaches the 

phonemic buffer from the GPC system: higher levels of activation determine a stronger influence of 

the non-lexical route on pronunciation. As a consequence, the higher this value is, the major the 

strength of the non-lexical route.  

The GPC-Critical-Phonology controls the level of activation that has to be reached in each 

phoneme unit before the GPC route moves on the next letter of the string. In other words, this 
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parameter regulates the speed in which the non-lexical route moves from left to right along the 

string of letters; the higher this value is, the weaker the non-lexical route35.  

Finally, the GPC-Onset determines how many cycles after the perceptual processing (i.e., 

feature and letter levels analysis) the non-lexical route starts to operate; the higher this value is, the 

weaker the non-lexical route.  

 Our simulations suggested that the mixed-block advantage obtained in our experiment can in 

fact be simulated by the DRC model by increasing the strength of the non-lexical route. In 

particular, mean cycles to words and nonwords are progressively lower as either the parameter 

GPC-Phoneme-Excitation is increased or the parameter GPC-Critical-Phonology is reduced. 

However, the parameter that seems to have a major role in determining this effect is the GPC-

Phoneme-Excitation, rather than the GPC-Critical-Phonology. As a consequence, we will present 

the data we obtained by manipulating the former parameter. In particular, in our simulation the 

GPC-Phoneme-Excitation has been increased from its default value of .051 to .1 in order to 

simulate the mixed condition of our experiment. The model did not produce any errors. Mean 

cycles to criterion are reported in Table 12 (Mixed Condition).  

 

 
Nonwords Words Diff. 

Condition Cycles Cycles Cycles 

Pure 166.5 78.7 87.8 
Mixed 114.2 70 44.2 

Diff. 52.3 8.7 
 

 
Table 12. Mean cycles for Condition and Lexicality. 

 

 

An ANOVA with Condition as repeated factor and Lexicality as independent factor was conducted 

on cycles. The DRC behaviour mimed that of humans. Analysis showed a main effect of Condition, 

F(1, 158) = 22831, MSE = 3.3, p < .001, a main effect of Lexicality, F(1, 158) = 26567, MSE = 13, 

p < .001, and a significant interaction, F(1, 158) = 11622, MSE = 3.3, p < .001, imputable to the 

size of the effect of Condition being larger for nonwords than for words. Paired comparisons reveal 

that the effect of Condition (pure vs. mixed lists) is significant both for words, t(79) = 61.7, p < 

.001, and for nonwords, t(79) = 138.2, p < .001. Also, the effect of Lexicality is significant both in 

the pure block, t(158) = 161.6, p < .001, and in the mixed block, t(158) = 130.7, p < .001.  

                                                 
35 This parameter has been introduced in the newest version of the DRC model and substitutes the parameter called 
GPC-Interletter-Interval assumed in the version of the model originally presented (the DRC-PR) which also controlled 
the left-to-right movement of the non-lexical route; specifically, the GPC-Interletter-Interval controlled after how many 
processing cycles the GPC system moves on the next letter in the string. 
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A separate analysis has been performed in order to analyze the effect of word frequency. In this 

analysis the words have been median-split on frequency to create two groups balanced on all the 

other relevant psycholinguistic variables36.  

Mean cycles to criterion are reported in Table 13. 

 

 Low-Frequency High-Frequency Diff. 

Condition Cycles Cycles Cycles 

Pure 80.6 76.9 3.7 

Mixed 71.4 68.6 2.8 

Diff. 9.2 8.3 
 

 
Table 13. Mean cycles for Condition and Frequency. 

 

 

An ANOVA with Condition as repeated factor and Frequency as independent factor has been 

performed. The DRC 1.2 behaviour mimed that of humans. Analysis showed a main effect of 

Condition, F(1, 78) = 4385, MSE = .698, p < .001, a main effect of Frequency, F(1, 78) = 117.8, 

MSE = 3.5, p < .001, and a significant interaction, F(1, 78) = 12.9, MSE = .698, p = .001, imputable 

to the size of the word frequency effect being smaller in the mixed than in the pure blocks37.  

 

Summarizing, when stimulus contrast is manipulated by reducing the strength of the connections 

between the feature and the letter units and the mixed condition is simulated by increasing the GPC-

Phoneme-Excitation parameter, the following results are obtained in the simulation of the DRC 1.2 

model: 

1. words are read faster than nonwords, both in the pure and in the mixed blocks; 

2. words are read faster in mixed than in pure blocks; 

3. nonwords are read faster in mixed than in pure blocks; 

4. the mixed-list advantage is larger for nonwords than for words; 

                                                 
36 The 80 words used in the experiment have been divided into two groups of 40 stimuli balanced for orthographic 
neighbourhood size (4.5 vs. 4.8, t<1) and neighbourhood frequency (141 vs. 226, t=1.16, n.s.), one containing low-
frequency words (mean: 2.8; range: 0.6-5.8) and the other including high-frequency words (mean: 37.8; range: 6-112). 
  
37 Differently from human performance, the effect of frequency is significant both in pure block, t(78) = 10.2, p < .001, 
and in mixed block, t(78) = 9.7, p < .001, in the DRC model’s simulation. However, consistently with our experimental 
data, it is easily demonstrable that both the frequency and the lexicality effects are progressively reduced as the non-
lexical route becomes more and more strong by increasing the value of the GPC-Phoneme-Excitation parameter. We 
argue this is an important argument in favour of our interpretation. 
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5. the frequency effect is larger in pure than in mixed blocks.  

In conclusion, all the results obtained in our experiment are correctly simulated by the DRC model 

by increasing the strength of the non-lexical route in mixed condition. 

 

7.4.5 Conclusion 

 

Our experiment showed that in degraded condition reading latencies are faster when words and 

nonwords are mixed together than when they are presented in pure lists. Whereas this effect is 

significant for nonwords, the mixed-block advantage for words needs to be further investigated. We 

argue that the effects of list composition obtained in degraded nonword reading can be explained 

through a route emphasis account by assuming that the non-lexical route becomes stronger in mixed 

lists. Consistently with this interpretation, DRC model’s simulations have been shown to reproduce 

the whole pattern of data when the non-lexical route is made stronger by increasing the parameter 

regulating the GPC-Phoneme-Excitation. 

Moreover, following the rationale of the present thesis, the results obtained in this 

experiment have important implications for the account proposed in the previous chapter. In fact, in 

Chapter 6, we suggested that the whole pattern of data obtained in reading experiments 

manipulating a factor influencing the recognizability of letters (i.e., SQ and TLC) together with a 

lexical variable (i.e., lexicality and word frequency) may be accounted for by the DRC model 

assuming that the balance between the two routes favours the lexical route over the non-lexical 

route more strongly when only words are presented in the task than when words are randomly 

mixed with nonwords. This balancing may in fact consists in the non-lexical route being stronger in 

mixed list, as suggested in the present experiment: when the non-lexical route is emphasized, in 

fact, the response mostly depends on this route and the effect of the lexical route will be weaker.  

This account is also consistent with the general idea that readers might exert strategic 

control on the non-lexical route rather than on the lexical route (see, e.g., Herdman, 1992; Paap & 

Noel, 1991). In fact, whereas processing on the lexical route is based on direct and automatic 

association between orthographic forms and their phonologies, the non-lexical route involves the 

assembly of phonological segments and it presumably requires more resources. Hence, it would be 

the non-lexical route, rather than the lexical route, that is strategically emphasized or de-emphasized 

in the task. On the contrary, the lexical route would be highly automatized and less susceptible to 

strategic influences.  
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 Regardless of the fact that an explanation in terms of dual-route framework is possible, the 

pattern of results obtained in this experiment remains somehow very puzzling. If we think that what 

subjects do is to have one set of parameters in the pure condition (call this set X) and a different set 

of parameters in the mixed condition (call this set Y), then our results suggested that set X is not 

optimal and set Y is better (both in speed and accuracy of performance). Thus, why didn’t subjects 

use the set Y  both in pure and in mixed conditions? In other words, if the balancing between the 

two routes used in mixed condition is the optimal strategy, why isn’t it used also in the pure list? Of 

course, our study is just a first attempt to analyze list composition effects in degraded reading and 

this and other issues need to be further analyzed.  

Despite further researches are certainly needed, the pattern of results we obtained is 

interesting and the explanations investigated are promising. New effects of list composition in 

reading have in fact been documented when stimuli are degraded in the task. Moreover, important 

implications for the studies manipulating stimulus quality together with another variable in function 

of the type of stimuli presented in the task have been pointed out. Future researches in this direction 

will provide further knowledge on visual word recognition and reading aloud when stimuli are 

presented in not-optimal visibility conditions. 
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8 GENERAL DISCUSSION 
 

 

 

A number of highly successful computational models of reading implement multiple levels of 

representation that get activated when a letter string is presented. A central feature of these models 

is that activation is usually assumed to spread in a cascaded fashion across the different levels of 

processing. In systems that operate by cascaded processing, there are no thresholds within levels 

and, as soon as even a small amount of activation is accumulated in an early stage, this flows on to 

later levels.  

Despite cascaded processing in visual word recognition is commonly accepted, recent 

experiments with skilled readers involving the manipulation of a factor affecting the rate of 

processing (i.e., stimulus quality) in conjunction with another variable produced results that are not 

easily reconciled with this account. Critically, cascaded processing has been evaluated in these 

studies by referring to the DRC model, perhaps the most successful computational model of reading 

aloud and visual word recognition. 

One of the most relevant results in this context has been obtained by Besner and Roberts 

(2003). The authors showed that the letter length effect and the effect of SQ are additive in nonword 

reading tasks, so that the length effect has the same amplitude regardless of the level of SQ. On the 

contrary, an interaction of the two factors, with the length effect smaller for degraded than for clear 

stimuli, is obtained in the DRC model’s simulation. According to the model, in fact, activation is 

continuously accumulated during phonemic processing and, since reading longer nonword requires 

more time, activation should grow more for longer letter strings; therefore, the delay produced by a 

degraded stimulus should be partially reduced for longer nonwords. To allow the DRC model to fit 

with the empirical results, Besner and Roberts (2003; see also Blais & Besner, 2007) have proposed 

to change the cascaded assumption so that activation would spread in a thresholded fashion for the 

non-lexical route. In particular, they proposed to threshold the output of the letter level, since “If the 

letter-level module does not pass activation to the grapheme-phoneme conversion process until a 

threshold is reached, the interaction in the simulations (...) would likely not occur. Instead, additive 

effects of processing rate and letter length would be expected” (Besner & Roberts, 2003, p. 403).  

Moreover, Reynolds and Besner (2004) analyzed the joint effects of SQ and orthographic 

neighbourhood size (N) on nonword reading in both skilled readers and in the DRC computational 

model. The authors reported that, while N and SQ exert additive effects on skilled readers’ 

latencies, these factors interact in the DRC model simulations, with the effect of SQ being smaller 
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for high-N nonwords than for low-N nonwords. This interaction is caused by the interactive 

activation between the letter level and the orthographic lexicon assumed in the model: since 

processing is cascaded, the lexical entries corresponding to the orthographic neighbours of the 

nonword in input are activated and in turn feed activation back to the letter level; the effect of 

degradation would be thus reduced as the number of orthographic neighbours of a nonword 

increases. The results reported by Reynolds and Besner (2004) appear therefore to be inconsistent 

with cascaded processing and a threshold at the letter level has been proposed; differently from the 

previous hypothesis, however, also the lexical route would be activated by the output of the letter 

level analysis in a thresholded fashion. 

Inconsistent evidence with the DRC model’s cascaded assumption has been obtained also in 

word reading. O’Malley and Besner (2008) showed that when only words were presented in the 

task, the effects of SQ and word frequency interacted, with the effect of SQ larger for low-

frequency words than for high-frequency words; this result is consistent with a cascaded account. 

However, when also nonwords were included within the experimental stimuli, word frequency and 

SQ exerted additive effects on reading latencies. This latter result is inconsistent with models 

operating in a purely cascaded fashion. In addition, SQ and lexicality have been shown to exert 

additive effects on skilled readers’ latencies (Besner & O’Malley, 2009; Besner et al., 2010; 

O’Malley & Besner, 2008), further contrasting cascaded processing. The authors referred again to a 

threshold at the letter level in order to explain their results. Specifically, it has been proposed that 

readers might switch from cascaded processing to thresholded processing as a function of the 

experimental context (i.e., lexicalization hypothesis). In particular, when stimuli are degraded and 

words and nonwords are mixed together in the task, participants would threshold the output of the 

letter level to prevent lexical capture of nonwords; instead, when the experimental list is composed 

of words only, processing would flow in a purely cascaded fashion. Lexical capture might in fact 

occur in the DRC model when stimuli are degraded since a nonword may activate a lexical entry 

enough to be erroneously read as the word instead of the nonword. A threshold at the letter level 

should prevent lexical captures because activation would pass to later stages only once the letters 

comprising the stimulus have been uniquely identified: thus the likelihood of erroneously selecting 

a word given a nonword is reduced or eliminated. 

To date, when the letter level is implemented as thresholded in the DRC model, the additive 

effects of SQ and letter string length and of SQ and N in nonword reading as well as the additive 

effects of SQ and word frequency would be in fact correctly simulated by the model (see Besner et 

al., 2003), thus proving that this modification is successful. 
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We argue that hypothesizing thresholded processing at the letter level is not an account 

without issues. Empirical data inconsistent with this proposal have been in fact documented; for 

example, in order to explain the additive effects of SQ and N, one need to assume that the model is 

thresholded before it activates the lexical route; this account is clearly inconsistent with empirical 

data indicating that SQ and repetition interact (Blais & Besner, 2007) as well as SQ and semantic 

priming interact (e.g., Ferguson et al., 2009) when reading words. More generally, it has not been 

yet demonstrated whether implementing the letter level as thresholded would allow the DRC model 

to simulate all the effects that its current computational version does simulate: in science, any new 

theory should instead be demonstrated able to account for all the results that a previous theory (or a 

previous version of the same theory) was able to explain, plus some other empirical data. 

Furthermore, a whole change of the DRC model’s cascaded nature is intrinsic in this proposal. This 

solution assumes, in fact, that at least some levels in the reading system are discrete and serially 

organized and that information processing is at least partially thresholded. As a consequence, 

accepting this modification would mean to reject the solution of cascaded processing today 

widespread accepted in researches on visual word recognition.  

 

 

8.1 Review of the main findings 

 

The main goal of the researches presented in this thesis has been to test the hypothesis of a 

threshold in the reading system. Following the outline of the final section of Chapter 1, I will 

summarize the main results that have been presented in the previous chapters. I will start by 

summarizing the findings obtained in nonword reading tasks (Chapter 2 to 5); then, I will focus on 

the results obtained in reading tasks manipulating the composition of the list of stimuli (Chapter 6 

and 7). 

 

8.1.1 Factorial manipulations in nonword reading 

 

The joint effects of letter string length and orthographic neighbourhood size (N) have been analyzed 

in the first experiment reported in this thesis (Chapter 2) in clear (i.e., non-degraded) presentation 

by employing an Italian nonword reading task. The relevance of this experiment for the purposes of 

the present thesis is evident in that both letter string length and N have been shown to exert additive 
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effects with SQ in nonword reading (see Besner & Roberts, 2003, and Reynolds & Besner, 2004, 

respectively); critically, these results have been interpreted as evidence against cascaded processing 

in the reading system. In our experiment, an interaction between letter string length and 

orthographic neighbourhood size (N) has been obtained, thus supporting a cascaded model with a 

dual route architecture like the DRC. These results are in fact incompatible with the postulation of a 

threshold in the reading system: the interaction between length and N in nonword reading can be 

explained only assuming that the (parallel) lexical route determines, together with the (serial) non-

lexical route, the pronunciation of the nonword in input; crucially, lexical influence in nonword 

reading is a strong evidence in favour of cascaded processing. 

 In Chapter 3, the effect of a variable already noted in researches on letter-by-letter dyslexia, 

the Total Letter Confusability (TLC), has been analyzed following the assumption that, when 

stimuli are degraded, the letters are difficult to identify and their visual similarity could hence 

become important. The role of the TLC has been assessed for Italian skilled readers when reading 

clear and degraded nonwords. The results obtained in our experiment indicated that TLC influences 

healthy readers’ performance when stimuli are degraded. This finding has relevant implications for 

reading researches analyzing the effect of psycholinguistic variables when jointly manipulated with 

stimulus quality. Since high-LC letters suffer more when degraded than low-LC letters, TLC is an 

important factor to consider in experiments involving degraded presentation of letter strings, a 

possibility which the authors did not consider in previous studies.  

 Following the result described above, the experiment reported in Chapter 4 was directed to 

analyze whether the additive effects of SQ and letter string length reported by Besner and Roberts 

(2003) in nonword reading may depend on a confounding between TLC and letter string length. In 

the experiment reported by Besner and Roberts (2003), in fact, TLC was not controlled; since TLC 

typically increases as letter length increases, it follows that the long letter strings used in this study 

had higher confusability values than the short letter strings. Moreover, the data we obtained in the 

experiment demonstrated that this confounding is in fact responsible of the additive effects that 

have been previously observed. More specifically, when the short and the long nonwords used in 

the task are matched for TLC, the effect of SQ results smaller for longer nonwords, as predicted by 

cascaded processing; instead, when the TLC is left uncontrolled, the opposite pattern of results has 

been obtained. In other words, the interaction between SQ and letter string length that is simulated 

by the DRC model is in fact obtained for human readers under the adequate experimental conditions 

(i.e., when short and long stimuli are matched in terms of TLC). Clearly, this finding strongly 

sustains cascaded processing in reading: a similar interaction would be in fact totally prevented by 

postulating a threshold at the letter level, thus contradicting our results. 
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In Chapter 5 we focused on the joint effects of SQ and orthographic neighborhood size (N) 

in nonword reading. Reynolds and Besner (2004) obtained that low-N and high-N nonwords were 

harmed by stimulus degradation to the same extent. In order to explain this additivity within the 

DRC model, a threshold at the letter level has been proposed; however, this account is clearly 

inconsistent with previous well-established data (see, Blais & Besner, 2007; Ferguson et al., 2009). 

In order to further test this hypothesis we performed an English nonword reading task by 

manipulating two factors: stimulus quality and whether nonwords have or not orthographic 

neighbors. The previous results may in fact be due to the particular manipulation of the variable N 

since both low-N and high-N nonwords would determine interactive activation between letter units 

and the lexicon that in turn would reduce the effect of degradation. Consistently with our prediction, 

an interaction between SQ and N (zero-N vs. many-N) has been obtained in our study. Clearly, this 

result is explained only by assuming cascaded interactive activation in the reading system. On the 

contrary, if there would be a threshold at the letter level, the presence/absence of orthographic 

neighbors should not play any role on stimulus degradation and the two effects should be thus 

additive, contrary to our empirical data. Moreover, an interpretation of the additivity previously 

obtained in terms of a confounding with TLC has been proposed in this chapter. This interpretation 

is partially supported by the analysis on the material used in the Reynolds and Besner’s (2004) 

experiment: since their high-N nonwords had higher confusability values than their low-N 

nonwords, the effect of degradation for high-N stimuli could be in fact smaller than how reported 

and the true result could be thus an interaction between the two variables. Clearly, further 

investigation is needed in order to define whether these results are in fact caused by TLC or rather 

depend on the different manipulation of the variable N.  

In conclusion, all the results obtained in these experiments require activation to spread in a 

cascaded fashion in the reading system, thus denying the hypothesis of a threshold at the letter level. 

Moreover, we argue that the additivities of SQ and another factor obtained in previous nonword 

reading tasks would be due to a confounding with TLC and that when this confounding is removed 

the true results would be the interactions predicted by cascaded processing. Even if further work is 

needed in this context, the data obtained so far suggest this may be in fact the case.  

 

8.1.2 Factorial manipulations in reading tasks as a function of list composition 

 

The factorial manipulations of SQ and lexical variables in function of the presence/absence of 

nonwords in the task have been taken into account in Chapter 6. Previous studies showed that the 



  102 

joint effects of SQ and a lexical variable (e.g., word frequency) are modulated by the composition 

of the list of stimuli in the task: more specifically, the factors would interact when only words are 

presented but their effects would be additive when participants read both words and nonwords (e.g., 

O’Malley & Besner, 2008). The pattern of findings obtained in this context has been explained in 

previous literature by hypothesizing that when lexical capture may occur (i.e., the task comprises 

both words and nonwords and stimuli are degraded) the letter level is thresholded (i.e., 

lexicalization hypothesis). The main aim of our study was to test this hypothesis. We argue, in fact, 

that SQ may be not an adequate manipulation to test whether the letter level is thresholded since 

this variable affects the feature level analysis (i.e., not the letter level): instead, if one wants to test 

whether there is a threshold specifically at the letter level, then a variable directly affecting this 

level should be considered. To this purpose we manipulated Total Letter Confusability (i.e., a 

variable that affects the letter level) and lexicality within an Italian reading aloud task where all the 

stimuli were degraded. According to the lexicalization hypothesis the letter level should be 

thresholded in these experimental conditions and hence additive effects between the two factors are 

expected. Critically, TLC and lexicality instead interact in our experiment: whereas TLC affects 

degraded nonword reading, it does not affect degraded word reading. We hence concluded that the 

letter level is not always thresholded when the conditions postulated by the lexicalization 

hypothesis are met, thus confuting this account; on the contrary, our finding strongly supports 

cascaded processing in the reading system. A more general conclusion that emerges from this study 

is the following: TLC may be an useful second manipulation (alternative to SQ) in factorial 

experiments in that it allows to directly test whether processing is thresholded specifically at the 

letter level analysis, as it has been typically proposed. 

Since TLC does not affect word reading, it follows that the additivities obtained in these 

studies cannot depend on this variable: a different interpretation of these results is hence needed. 

Specifically, we argue that these data may depend on the strategic control that readers exert in 

reading as a function of the type of stimuli presented in the task. This argument depends upon the 

claim that list composition has an effect in degraded reading, an hypothesis that has been tested in 

Chapter 7. In particular, in our last experiment, words and nonwords were presented either in pure 

lists or mixed together in an English reading aloud task; critically, all the stimuli were degraded. 

Using mixed modelling analysis, we showed that stimuli were read faster and more accurately when 

randomly mixed in the task than when presented in separated pure lists. These data have been 

interpreted through a dual-route emphasis account by suggesting that the non-lexical route becomes 

stronger in mixed condition: since words in our experiment were regular, in fact, the lexical route 

could help both word and nonword reading. Consistently with this interpretation, the simulation of 
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these results with the DRC model mimed the human performance when the mixed condition is 

reproduced by strengthening the non-lexical route. Regardless of that, however, participants seem to 

behave in an extremely irrational way in this experiment; in particular, since the strategy used when 

words and nonwords are randomly mixed in the task is optimal, it is not clear why subjects did not 

do the same also when words and nonwords are presented in separated pure lists. In other words, 

even if our results can be interpreted within a theoretical framework, it is instead not clear why 

participants would perform the task in such a way: answering this question will be an interesting 

challenge for feature researches.  

Nevertheless, following the previous reasoning, the results obtained in Chapter 7 prove the 

existence of particular effects of list composition when stimuli are degraded in the task. As a 

consequence, these effects have to be taken into account by experiments involving factorial 

manipulations of SQ which also varied the type of stimuli presented within the experimental list. In 

particular, we suggest that the additivities obtained when SQ is manipulated together with a lexical 

factor in tasks comprising both words and nonwords may be explained by referring to a route 

emphasis account of list composition effects in reading; also, the solution proposed to explain the 

mixed-block advantage obtained in Chapter 7 (i.e., the non-lexical route is emphasized when words 

and nonword are mixed in the task) is – at least from a theoretical point of view – adequate also to 

explain the whole pattern of data obtained in this kind of studies. Note that we are not necessarily 

suggesting that what participants did is exactly the same in these experiments: there is, in fact, a 

main difference between our task in which all the stimuli were degraded and previous studies 

manipulating SQ where half the stimuli were clear and the other half degraded in the task; rather, 

we argue that participants may strategically control the balance of the two functional routes in 

function of list composition in a particular way when (at least part of) the stimuli in the task are 

degraded.  

 In conclusion, we showed that postulating thresholded processing in the reading system is 

not an adequate solution in that this account is not reconciled with our empirical findings. In 

alternative, we suggest that the data obtained by factorially manipulating SQ and a lexical factor in 

function of list composition may depend on the strategic emphasis that readers give to the lexical 

and to the non-lexical routes while reading in response to the type of stimuli presented in the task. A 

study directed to analyze list composition effect in degraded reading partially supported this 

interpretation. Even if additional work is needed to further investigate this issue and to define 

whether the solution proposed is adequate to interpret the whole pattern of empirical findings, the 

data collected so far strongly sustain a dual-route framework assuming cascaded processing. 
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8.2 Interpretation within the Dual-Route Cascaded model  

 

In this section, I will focus on the discussion of the results (either additivity or interaction) obtained 

when SQ is factorially manipulated with another variable by referring to the Dual-Route Cascaded 

model of reading. Table 14 provides a summary of the data at present published in this context as 

well as of the results presented in this thesis in function of the type of stimuli presented in the task. 

 

Lexical / Non-
lexical factor 

Stimulus quality 

Pure list 
(words only) 

Pure list 
(nonwords only) 

Mixed list 
(words and nonwords) 

Letter length  

Additive effects 
(Besner & Roberts, 2003) 

 Interaction (Chapter 4) 
SQ effect larger for short 

than for longer items 

Neighbourhood 
density 

 

Additive effects 
(Reynolds & Besner, 2004) 

 Interaction (Chapter 5) 
SQ effect larger for zero-N 

than for many-N items 

Word 
frequency 

Interaction 
SQ effect larger for low-

frequency words 
(O’Malley & Besner, 2008) 

_ 
Additive effects 

(O’Malley & Besner, 
2008) 

Lexicality _ _ 
Additive effects 

(e.g., Besner et al. 2010) 

Semantic 
priming 

Interaction 
SQ effect larger for 

unrelated vs. related target 
(e.g., Ferguson et al., 2009) 

_  

Repetition   

Interaction 
for exception words 

Additive effects 
for nonwords 

(Blais & Besner, 2007) 

Regularity 

Interaction 
SQ effect larger for regular 
than for exception words 

(Besner et al., 2010) 

_ 
Additive effects 

(Besner et al., 2010) 

 
Table 14. Results of experiments involving the factorial manipulation of SQ and various lexical and  

non-lexical factors when reading aloud as a function of list composition. 
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We argue that all the data reported in the previous table are consistent with a cascaded framework 

and can be in particular interpreted within the DRC model. 

Consider first the experiments analyzing the joint effects of SQ and another variable (letter 

string length and N) in nonword reading. As said, our assumption is that the additivities previously 

observed (Besner & Roberts, 2003; Reynolds & Besner, 2004) are due to a confounding with the 

TLC, a variable that is involved in reading when stimuli are degraded (see Chapter 3); we also 

hypothesized that when this confounding is removed the results are consistent with the DRC 

model’s predictions. Even if further empirical work is needed, the results obtained so far strongly 

corroborate this interpretation. In particular, the additive effects of SQ and letter string length in 

nonwords reading depend indeed on a confounding with TLC and when this confounding is 

removed the two factors interact with the effect of SQ being smaller for longer nonwords (Chapter 

4), a result that is clearly predicted by the DRC model. Moreover, we suggest that a similar 

confounding could also explain the additivity of SQ and N that has been documented; whether this 

hypothesis is valid remains to be demonstrate, even if the analysis on the stimuli that have been 

used provides partial support to this interpretation. Importantly, we showed that SQ and N interact 

when nonwords with and without orthographic neighbours balanced in terms of TLC are presented 

in the task (Chapter 5), perfectly matching the DRC model’s interpretation.  

Consider now the pattern of effects that SQ has with lexical variables in function of the 

presence/absence of nonwords in the task. In this dissertation we directly focused on the joint 

effects of SQ and word frequency/lexicality (Chapter 6). In general, we argue that these data can be 

explained within the DRC model by referring to a route emphasis account of list composition 

effects in reading. Following the results obtained in Chapter 7, we specifically proposed that the 

non-lexical route may be emphasized in mixed list compared to when words are solely presented in 

the task. As a consequence, the lexical route would have a weaker effect on pronunciation when 

nonwords are present than when they are not.  

The interpretation of the previous results within the DRC framework would be as follow.  

Since degradation affects the feature level analysis, activation from the orthographic lexicon acts 

indirectly on this variable: in fact, since there are no connections in the model from the letter to the 

feature units, the feedback from the lexicon can have an effect on SQ only acting at the level of 

letter identification. When only words are presented in the task, the feedback from the lexicon may 

have an effect on the letter level relatively early during the process that allows pronunciation, thus 

reducing the effect of degradation. In other words, since the lexical route is relatively fast as 

compared to the non-lexical route, the former routine may have an important role in demining 

pronunciation performance: hence, an interaction is expected between SQ and a lexical variable 
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such as word frequency when only words are present. On the contrary, when words and nonwords 

are mixed together, the non-lexical route would be strengthened. It follows that responses mostly 

depend on this route and the feedback from the lexicon may thus have a later effect on 

pronunciation, thus being unable to act on degradation; SQ and word frequency would be thus 

additive when words and nonwords are randomly mixed in the task; moreover, the effect of SQ will 

be additive also with lexicality. Further support to this interpretation is obtained by considering the 

simulations reported in Chapter 7: here the effects of word frequency and lexicality were in fact 

reduced by strengthening the non-lexical route. 

In Chapter 6 we also demonstrated that TLC and lexicality interact when words and 

nonwords are randomly mixed in the task and all the stimuli are degraded. We argue that also this 

effect is consistent with the previous hypothesis. In particular, this interaction would be explained 

because TLC affects a different level of processing: whereas the effect of SQ is at the feature level, 

TLC has its effect at the subsequent level of letter identification. As a consequence, the feedback 

from the lexicon acts directly on TLC and its effect could arise early enough in pronunciation also 

when words and nonwords are mixed in the task: hence TLC and lexicality interact.  

 As reported in Table 14 at least three other results are relevant in this context. One of them 

is the interaction between SQ and semantic priming in word reading: as said, this interaction is 

perfectly predicted by the DRC model and it is consistent with its cascaded assumption; hence, this 

result does not require to be further discussed. However, other two results (i.e., the joint effects of 

repetition, SQ and lexicality and the joint effects of SQ and regularity) need additional 

consideration. For the sake of completeness, these experiments will be discussed in details in the 

next section. 

Moreover, even if the previous findings could all be explained within a cascaded framework, 

the DRC model is not yet been demonstrated able to simulate the whole pattern of data. As 

discussed in the previous chapters this is principally due to two major computational issues: 1) the 

actual version of the model is unable to reproduce any effect due to TLC 2) SQ may be not 

correctly implemented in the model. These issues will be examined in details in section 8.4. 

 

 

8.3 Future studies  

 

A few results reported in previous literature have not been directly analyzed in this dissertation and 

hence need to be assessed in future researches. In particular it will be necessary to define whether 
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these results require thresholded processing as it has been suggested or rather may be explained in 

some alternative ways. 

First, consider the joint effects of SQ and repetition in reading (Blais & Besner, 2007). The 

effect of repetition consists in words and nonwords read faster after a single repetition in the task 

(e.g. Scarborough, Cortese & Scarborough, 1997). This effect is traditionally explained as follow: 

for words, the lexical entries would retain a higher level of activation when they are repeated than 

when they are not (see, e.g., Coltheart et al., 2001); instead, for nonwords, the benefit of repetition 

would arise when the phonological code is translated into an articulatory code (see, e.g., Seidenberg 

et al., 1996). Blais and Besner (2007) reported that whereas the two factors interact for exception 

words so that the effect of repetition was larger for degraded than for clear words (a result that, as 

said, is perfectly consistent with the DRC model’s cascaded assumption), the two factors were 

additive in nonword reading. This finding has been typically interpreted as evidence in favour of an 

account assuming that activation from the letter level is cascaded to the lexical route, but 

thresholded to the non-lexical route. We argue, instead, that the pattern of data can be explained by 

referring to a dual-route account of list composition effects in reading. As said, irregular words 

were mixed with nonwords in the experiment; so one might expect, for example, that the reliance of 

the non-lexical route is reduced so to increase lexical contribution in reading (that would be 

necessary to correctly read irregular words); hence the interaction between SQ and repetition for 

words. Instead, since the non-lexical route would be de-emphasized in the task, repetition may not 

influence nonword reading; if this were true we might expect, for example, an interaction between 

SQ and repetition in nonword reading when nonwords are solely presented in the task. 

Nevertheless, the crucial point is that there is likely no need to claim the need of a threshold to 

explain these data since list composition is obviously implicated in these results. 

Consider now the joint effects of stimulus quality and regularity in reading aloud, recently 

examined by Besner et al. (2010). The effect of regularity emerges in languages with inconsistent 

orthographies like English and consists in slower reading of exception words than regular words 

(e.g., Seidenberg et al., 1984; Taraban & McClelland, 1987). More specifically, skilled readers are 

slower to read aloud words like pint and have because they are exception to the typical relation 

between spelling and sound in which _INT is pronounced as in mint and _AVE is pronounced as in 

cave (see Roberts, Rastle, Coltheart & Besner, 2003). In the DRC framework this effect is 

explained in terms of competition at the phoneme level; in fact, the lexical and the non-lexical 

routes would activate different phonemes in the case of an exception word whereas both the 

routines would activate the same set of phonemes when the word is regular. Hence, when an 

exception word is presented to be read, the output of the lexical route, which drives the correct 
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pronunciation, would be slowed in the phonemic buffer because of competition from the non-lexical 

route (which produces a regularization of the input). Besner et al. (2010) reported that when 

regularity is factorially manipulated with SQ, the two factors interact when only words were 

presented in the task. However, the effect of degradation was reported to be smaller for irregular 

than for regular words in their study. Critically, this effect is inconsistent with the DRC model, 

which simulates the opposite pattern, characterized by the effect of degradation being larger for 

irregular than for regular words. Moreover, the two factors have been shown to exert additive 

effects on skilled readers latencies when words where mixed with nonwords in the task, thus 

providing – according to the authors – evidence against cascaded processing in reading. Besner et 

al. (2010) explained their results as follow. The interaction obtained when only words were present 

would depend on the fact that degradation influences the non-lexical route more strongly than the 

lexical route. The authors showed, in fact, that this interaction is correctly simulated by the DRC 

model when the strength of the non-lexical route was reduced in degraded condition. Moreover, the 

additivity obtained when words and nonwords were randomly mixed in the task has been explained 

by referring again to the lexicalization hypothesis, i.e. processing would be thresholded when both 

words and nonwords are presented in the task. 

We argue that the pattern of results obtained in this study could be interpreted by referring, 

once again, to list composition effects in degraded reading. First, we note that the effect of 

degradation is indeed likely to be stronger for the non-lexical route than for the lexical route in the 

DRC model. This would be due to the fact that, while the lexical route consists of both feedback 

and feed-forward connections, there is no feedback in the non-lexical route; hence, part of the delay 

due to degradation would be partially reduced for the lexical route given feedback activation. A few 

preliminary simulations partially support this hypothesis. In these simulations, regular words were 

presented to the DRC model and the lexical and the non-lexical routes were alternatively lesioned; 

it emerged that the effect of degradation for regular words was larger when the lexical route was 

switched off than when the non-lexical route was switched off; hence, it could be inferred from 

these data that the effect of SQ is indeed stronger for the non-lexical route than for the lexical route. 

Moreover, we argue that the balance between the two routes needs to be manipulate to reproduce 

these results. In fact, an interaction (inverse to that simulated by the DRC) is obtained by Besner et 

al. (2010) when (regular and irregular) words were presented in the task: since also irregular words 

were present, one might expect, for example, the lexical contribution being stronger in pure 

condition; this means either that the lexical route is emphasized or that the non-lexical route is de-

emphasized. Consider this second hypothesis: the non-lexical route – which suffers more from 

degradation – might be weaker in pure list. We argue that a similar account might explain the 
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interpretation proposed by Besner et al. (2010) which, as the authors demonstrated, allows the DRC 

model to reproduce the data empirically obtained when only words are present in the task. If our 

hypothesis is plausible, then the additivity of SQ and regularity obtained when also nonwords are 

presented will be easily explained by assuming, consistently with the proposal expressed in Chapter 

6 of this thesis, that the non-lexical route becomes stronger when words and nonwords are randomly 

mixed in the task compared to when only words are present. So a new job for the feature is to asses 

these issues through experimental investigation; what is clear, however, is that these data are not a 

priori against cascaded processing in reading. 

 

  

8.4 Computational issues 

 

As said, the simulation of the empirical data within the DRC model depends upon two principal 

computational issues. 

The first concerns the Total Letter Confusability: since TLC has an effect for human readers, 

computational models of reading need to simulate its effects. Hence, we need to reproduce the 

effect of this variable as well as the pattern of results that depends on TLC in the DRC model. 

A second problem regards the simulation of stimulus degradation. Whereas this variable has 

been largely implemented in computational models of reading we argue that a different solution 

may be needed at least within the DRC.  

 

8.4.1 Simulating the effect of TLC. A few preliminary results 

 

The Total Letter Confusability is a variable which effect in reading has been recently assessed. The 

role of this variable in performance of patients affected by pure alexia has been demonstrated, for 

example, by Fiset et al. (2005). In this dissertation we also showed that unimpaired readers 

performance is affected by the TLC in degraded presentation: in fact, skilled readers’ latencies 

increase as the TLC of degraded letter strings increases (Chapter 3). Moreover, evidence of 

sensitivity of human readers to letter confusability for degraded stimuli emerged in the data of the 

experiment reported in Chapter 4: the correlations between TLC and RTs with letter length 

partialled out are in fact significant in this experiment for degraded stimuli, r = .182, p = .048, but 

not for clear stimuli, r = -.007, p = .94, consistently with the previous finding. 



  110 

Since human readers are sensitive to letter confusability we must require computational 

accounts of reading to be too. In this section we will examine this issue for the DRC model. In fact, 

if sensitivity to TLC is to be used to simulate in the DRC model the additivities of degradation with 

other variables in nonword reading, then the DRC model will have to be sensitive to TLC, and this 

is required more generally because human readers are sensitive to this property of nonwords. 

  As said, there is no effect of TLC in the DRC model with the current parameters. This is not 

surprising; the absence of an effect of TLC occurs because the inhibition from feature to letter units 

is so high relative to their excitation (i.e., .150 vs. .005), a consequence of which is that just one 

mismatching feature will completely block activation of similar letters. As said, the default values 

for the Feature-to-Letter Inhibition and Feature-to-Letter Excitation parameters were inherited from 

the IA model and we don’t have to adhere to them. In fact, there is not any reason to assume that the 

inhibition between feature and letter units is 30 times greater than their excitation. Why shouldn’t 

these parameters be the same?  

 So we investigated what happens when they are made the same in the newest DRC model’s 

version (the DRC 1.2), by setting both parameters to the value of .005.   

 When the most confusable letter in DRC’s font – the letter O – is run with this parameter 

change, it does activate multiple letters: after 5 processing cycles, there are 17 different letters 

activated when the input is O (the most active letter being O itself). When the least DRC-confusable 

letter X is run, there are 4 different letters activated by processing cycle 5 (the most active letter 

being X itself). 

What role does this confusability effect have on nonword reading? We used the high-TLC 

nonword COLF (DRC-TLC = 2.7) and the low-TLC nonword BIDT (DRC-TLC = 2.1). With the 

parameter change and degradation (i.e., FLI = FLE = .003), both the nonwords were read aloud in 

162 processing cycles; this means that there is no effect of TLC here, even though many more 

incorrect letters are activated by COLF than by BIDT (because of the parameter change). It is 

obvious why there is no TLC effect. Multiple letters activation will only interfere if they can inhibit 

the correct letter; instead, the default value of Letter-Lateral-Inhibition being used here is zero. 

Hence we introduced a second parameter exchange by increasing the value of the parameter 

regulating the lateral inhibition at the letter level from zero to .008. Now the high-TLC nonword 

COLF was read in 182 cycles and the low-TLC nonword BIDT in 178 cycles; that is, there’s a 

substantial effect of TLC (4 cycles). Moreover, this effect has been obtained when stimuli were 

degraded in the simulation; nevertheless, in a non-degraded condition (i.e., FLI = FLE = .005) the 

low-TLC nonword BIDT was read in 146 cycles and the high-TLC nonword COLF in 148 cycles; 

that is, the effect of TLC is much smaller (2 cycles). This means that the effect of TLC is larger 
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when stimuli are degraded than when they are clear, consistently with our empirical data (Chapter 

3). As a consequence, the effect of TLC can be correctly simulated by the DRC model when the 

parameters described above are adequately manipulated.  

Now the task is to demonstrate that this way of simulating TLC in the DRC model also 

shows the pattern of results for length and degradation when TLC is confounded with letter length 

and when TLC is matched across length. In fact, even it were true that the additivity of degradation 

and length observed in human reading by Besner and Roberts (2003) occurred because of a 

confounding between TLC and length, the DRC model still have to be able to simulate this effect, 

because it is supposed to be sensitive to the same variables that human readers are sensitive to.  

To this purpose, we run the Besner and Roberts’ (2003) stimuli by applying the parameter 

modification proposed above in order to make the model sensitive to TLC. As said, short and long 

nonwords were not matched in terms of TLC in the Besner and Roberts’ (2003) experiment: the 

longer nonwords used in this study had higher TLC values than the shorter nonwords. Moreover, 

the same is true when the DRC-TLC is considered. Hence, TLC is not matched across letter string 

length neither for humans nor for the DRC model in this condition.  

Mean cycles to criterion are reported in Table 15. 

 

 
Stimulus Quality 

 

 
Clear Degraded Diff. 

Length Cycles Cycles Cycles 

Long 157 191.2 34.2 

Short 146.9 180.5 33.6 

Diff. 10.1 10.7 
 

 
Table 15. Mean cycles for the Besner and Roberts’ (2003) 

stimuli (TLC confounded across length). 
 

 

Here the effect of letter string length is not much different for clear and degraded stimuli, 

consistently with the additivity reported by Besner and Roberts (2003). Analysis showed that – if 

anything – the length effect is smaller for clear than for degraded stimuli38, F(1,62) = 3.8, MSE = 

.829, p = .057, consistently to what we found in our experiment (Chapter 4). 

                                                 
38 Even it were true that the longer nonwords have higher TLC values than the shorter nonwords in the Besner and 
Roberts’ (2003) study both for human readers and for the DRC model, the specific values of TLC for humans clearly 
differ from the specific DRC-TLC values for these stimuli. As a consequence, it is not surprising that the results 
obtained in this simulation only partially reproduce the empirical data documented by the authors. 
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Now we need to show that when short and long nonwords are matched on TLC, there is an 

interaction between SQ and letter string length with the length effect smaller for degraded stimuli. 

In order to test this prediction we need to create a specific set of stimuli, so to have short and long 

nonwords matched on the DRC-TLC values. We would have liked to choose nonwords that were 3, 

4, 5 and 6 letters long with TLC matched across the four conditions, but this is not possible with 

DRC model’s letter confusabilities. The difference between the highest and lowest confusability 

values is not large enough to have equal TLC for 3 letter and 6 letter strings. So we used 3 and 4 

letter nonwords matched on TLC, and separately 5 and 6 letter nonwords matched on TLC; 32 

items for each of the 4 cells matched for their initial phoneme have been selected.  

Mean cycles to criterion are reported in Table 16 and in Table 17. 

  

 

 
Stimulus Quality 

 

 
Clear Degraded Diff. 

Length Cycles Cycles Cycles 

4 letters 144.4 175.9 31.5 

3 letters 142.2 175.5 33.3 

 
2.2 0.4 

 
 

Table 16. Mean cycles for 3 and 4 letter nonwords 
matched on TLC in function of SQ. 

 

 

 
Stimulus Quality 

 

 
Clear Degraded Diff. 

Length Cycles Cycles Cycles 

6 letters 156.1 189.6 33.5 

5 letters 153.8 189.2 35.4 

 
2.3 0.4 

 
 

Table 17. Mean cycles for 5 and 6 letter nonwords 
matched on TLC in function of SQ. 

 

 

When short and long nonwords are matched in terms of TLC, the effect of degradation is smaller 

for degraded than for clear stimuli. Analysis showed a highly significant interaction between SQ 

and letter string length both for 3 and 4 letter nonwords, F(1,62) = 23.1, MSE = 1.3, p < .001, and 

for 5 and 6 letter nonwords, F(1,62) = 9.8, MSE = .829, p < .005.  
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To summarize, we showed that the DRC model perfectly reproduces the patter of empirical data by 

adjusting the values of the parameters that regulate the model’s sensitivity to letter similarity. In 

particular, when the parameter that regulates the inhibition between the features and the letters is 

reduced so to match the value of the parameter regulating their excitation and letter lateral 

inhibition is implemented in the model (consistently with the theoretical assumption), the following 

results are obtained: 

1. both human readers and the DRC model show an effect of TLC, which is larger when 

stimuli are degraded than when stimuli are clear;  

2. both human readers and the DRC model show an interaction between degradation and length 

on nonword reading, with the length effect smaller for degraded than for clear stimuli when 

TLC is matched across the different values of nonword length;  

3. both human readers and the DRC model show additivity of the effects of degradation and 

length on nonword reading RTs (or a smaller effect of length for clear than for degraded 

stimuli) when TLC is confounded with length.  

Our preliminary work thus suggests that the DRC model is successful in predicting and simulating 

the results depending on TLC. Now a job for the future is to see whether the DRC 1.2 with the new 

parameter setting can simulate all the effects that its actual version and the previous versions could. 

Moreover, now that we have a way of simulating TLC effects, it could be possible to simulate 

letter-by-letter reading with the DRC model and in particular to simulate the various results 

depending on this variable.  

Obviously, a further challenge for feature researches will be also determining whether and 

how computational models of reading (besides the DRC model) can simulate the effects due to 

letter confusability as well as the patter of results depending on this variable. 

 

8.4.2 Is degradation correctly implemented? A different proposal 

 

It is largely assumed that degradation can be implemented in the DRC model by reducing the 

connection weights between the feature and the letter units. However, stimulus quality should 

instead affect the rate of activation gain at the visual feature level, since “Visually degrading the 

stimulus will have the effect of lowering the effectiveness of the stimulus in activating all of the 

relevant feature detectors” (McClelland, 1979, p. 292).  
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Hence, we argue that SQ is actually not correctly implemented in the DRC model.  

As said, in the current computational version of the model, a visual feature can be only on or 

off; as a consequence, the activation accrual at the feature level cannot be affected by degradation. 

If it were possible to slow the rate of processing at the visual feature level, it would be only by 

adding a constant of time to performance. Simulation in fact begins when all the feature units 

reached an activation of 1.0; feature units are clamped and reach an activation of 1.0 in one cycle. 

In real life, however, the activation in these units will not go from 0 to 1.0 instantaneously but this 

process will take a certain time. A way to implement degradation in the DRC model might thus be 

by delaying the time that feature units need to reach threshold. However, the effect of this 

manipulation will be simply to add a time constant to performance. Hence, the model will be 

incapable of producing anything else than additive effects of SQ and a second factor affecting one 

of the subsequent levels assumed in the model. Since interactive effects of these types of variables 

have been instead largely documented (e.g., Blais & Besner, 2007; Ferguson et al., 2009; O’Malley 

& Besner, 2008; Yap & Balota, 2007; our results reported in Chapter 4 and 5) this cannot be an 

adequate solution.  

Given that activation is cascaded in the model (i.e., a change in rate of activation in early 

processing units will change the rate of activation downstream), it has been proposed that a 

reduction of activation at the feature level may be modelled by reducing the weights of the 

connections between the feature and the letter units. In other words, the effect of a reduction in the 

asymptotic level of activation of the feature units may be reproduced by reducing the rate at which 

activation accrues at the letter level. Hence, degradation is actually implemented in the DRC model 

by reducing the parameters regulating excitation and inhibition form the features to the letters. It is 

clear, however, that this solution has been required by the current computational architecture of the 

model; nevertheless, this implementation does not reflect any theoretical issue nor the effect that SQ 

has on human performance. 

 We argue that a more adequate implementation may be possible by changing the 

computational version of the DRC model as follow. As said, “individual features (...) are set to on 

or off (1 or 0)” (Coltheart et al., 2001, p. 213) in the current program and this organization was 

inherit from the progenitor of the DRC, the IA model; as McClelland and Rumelhart (1981) stated, 

in fact, “It is assumed that features are binary and that we can extract either the presence or the 

absence of a particular visual feature” (p. 381). In short, the feature level is actually not cascaded, 

but rather thresholded. This organization, however, is used purely for convenience and doesn’t rely 

on any specific theoretical assumption. On the contrary, cascaded processing is assumed to occur in 

the system. Hence, the idea might be to allow activation to cascade from the visual feature level to 
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the subsequent letter level. This might be obtained by allowing a visual feature to accumulate 

activation continuously up to its asymptotic value, the same solution that is actually implemented in 

the other levels of the model; in other words, activation in each feature unit would grow over time 

in the continuum 0-1.0 and the level of activation in a precise moment in time would depend on the 

quality of the stimulus in input, following the assumption that the rate at which activation rises at 

the feature level depends on SQ, i.e. activation rises faster for clear stimuli, slower for degraded 

stimuli. As a consequence, whereas features corresponding to clear letters will be fully activated 

when the stimulus is presented, features corresponding to degraded letters will be only partially 

activated by the stimulus in input; in turn, degraded letters will be less activated than clear letters 

and responses will be thus slower for degraded letter strings. 

 We argue that modifying the model in this way may allow the simulation of the effects that 

SQ and TLC have with lexical variables. We argue, in fact, that the pattern of results obtained in 

this context may depend on the different levels of processing at which these variables have their 

effects; specifically, we suggested that the additivities of SQ and word frequency/lexicality obtained 

when words and nonwords were mixed in the task could depend on the indirect effects that the 

activation from the orthographic lexicon has on SQ that, in turn, would depend on the fact that there 

is no feedback from the letter to the feature units. Clearly, implementing degradation within the 

feature level will be necessary to correctly simulate these effects. Moreover, we argue that such an 

implementation has to be realized in the DRC model not only to allow it to correctly simulate the 

effect of SQ, but also to fully implement the model’s theoretical commitment to cascaded 

processing.  

 

 

8.5 Thinking to a threshold 

 

Before coming to a general conclusion, a few points need to be further discussed. 

As largely asserted in this dissertation, our data clearly deny the hypothesis of thresholded 

processing at the letter level of the DRC model. But is there a threshold in any other level assumed 

in the model? In general we argue it is not. However, consider how the response is usually 

generated by participants in a reading task. Typically, in reaction time experiments, subjects are 

instructed to respond as rapidly as possible maintaining a high level of accuracy. How do subjects 

decide that the time has come to initiate a response (see McClelland, 1979, p. 304)? In traditional 

discrete stage models, it is relatively easy to understand when participants would release they 
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responses since the output of processing is all-or-nothing and becomes thus available at some 

particular instant in time: after that time, the correct response can be executed; before it, subjects 

would simply have to guess. However, in terms of cascaded accounts, there is no a specific instant 

in time before which responding would be at chance and after which it would be correct, since 

activation continuously increases in processing units gradually leveling off at some maximal level. 

In such a situation, what does the instruction to respond as rapidly and accurately as possible mean? 

One possibility is that participants set an implicit deadline consistent with a low enough error rate 

(Ollman, 1977); this strategy, however, would not explain why RTs differ for different experimental 

conditions, even when the items representing these conditions are mixed within the same block of 

trials. An alternative is that subjects adopt an activation criterion and respond when activation in a 

response unit reaches a level that is sufficient to ensure an acceptably low error rate (Grice, 1968). 

A similar solution is implemented in the DRC model: in fact “the model is considered to have 

determined the pronunciation of a monosyllabic letter string when it has been activated (to some 

criterion of satisfaction) all of the phonemes of that letter string” (Coltheart et al., 2001, p. 217); in 

other words, pronunciation occurs in the DRC model when all the phonemes reach a threshold. 

However, activation flows in a cascaded fashion through the reading system and this mechanism 

only allows the execution of responses.  

A related issue regards the DRC model’s non-lexical route and, in particular, how the 

(serial) movement from left to right is implemented in the model. In the last computational version 

of the model (i.e., the DRC 1.2), the non-lexical route moves on the next letter when the currently 

being activated phoneme reaches a critical level of activation: evidently this could be described as 

thresholding the phoneme level. Again, this does not mean that processing is strictly thresholded, 

but rather that a thresholded mechanism is implemented in the model in order to represent the 

spatially serial processing assumed within the non-lexical route.  

To conclude, we argue that processing in the reading system is cascaded but a thresholded 

solution is implemented at the phoneme level of the DRC model 1) to allow pronunciation 2) to 

implement the serial movement of the non-lexical route. 

The second issue we need to point out can be expressed as follow: is thresholded processing 

needed to explain additive effects of variables? Within discrete stage models, additive effects of 

variables are easily explained by assuming that those variables influence different levels of 

processing; an interaction between variables would instead mean that those variables affect the 

same level of processing. Conversely, this logic does not apply to cascaded models: in fact, if 

activation cascades through the levels, also variables affecting different levels of processing can 

interact one another. It follows that, whereas factorial manipulations may provide useful 
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information to delineate processing sequence in reading according to discrete stage models, this 

interpretation is not longer valid within cascaded accounts.  

Besides this crucial issue, a question remains to be dealt with: can additive effects of 

variables be explained within a cascaded framework? This topic is extremely relevant in researches 

on visual word recognition: in fact, if only interactions are predicted by cascaded processing, then 

this account has probably to be rejected; it would be indeed unrealistic to assume that factors 

manipulated in the task can only interact with one another. To better understand this point assume 

an experiment in which two variables affecting different levels of processing are jointly 

manipulated: call these variables A and B and assume that A influences an earlier process than B. In 

a cascaded model, the effect of the variable A is not resolved within the level which A affects; on 

the contrary, the effect of the variable A will influence processing downstream in the system. We 

argue, however, that this does not necessarily mean that A and B interact: the variable A could 

simply have an effect on performance (affecting processing downstream in the system) without 

interacting with the effect of the variable B. In other words, we suggest that the effect of an early 

factor may cascade to the subsequent levels of processing still being additive with the effects of 

variables operating at those levels. The situation, however, is likely to change when cascaded 

models also assume interactive activation. In these circumstances, in fact, not only the effect of A 

cascades to the level influenced by the variable B, but the effect of B also feeds back to the level 

affected by A; since feedback from a later level contributes activation at the earlier levels, the two 

variables are likely to interact.  

 To summarize, we are inclined to believe that cascaded processing is consistent with 

additive effects of variables, whereas cascaded models which also assume interactive activation 

may not be able to reproduce these effects. Whether this interpretation is valid remains to be fully 

determined. It seems to us, however, that the results discussed in the present dissertation provide 

partial support to this interpretation. Some of the interactions we reported are in fact explained in 

terms of feedback activation rather than by cascaded processing per se39: in many circumstances the 

two factors interact because the variable having a later effect has a role on the earlier variable. To 

use an example, consider the interaction between SQ and orthographic neighbourhood size (N) in 

nonword reading (see Chapter 5): it is not just because the delay in processing caused by 

degradation cascades to the lexical level that the effect of N increases in degraded reading; rather, 

the feedback from the lexicon contributes activation at the letter level thus reducing the effect of 

degradation for nonwords with orthographic neighbours and hence producing a larger effect of N in 

degraded condition. 
                                                 
39 Interactive activation makes of course sense only within cascaded frameworks. In discrete stage models, in fact, there 
would be not any effect if activation feeds back from later levels to a level which processing is already ended.  



  118 

If our reasoning is plausible, it follows that even processing may in fact be cascaded in 

visual word recognition, perhaps not all the levels of processing assumed in the reading system may 

communicate with one another through feedback connections. At this purpose consider, for 

example, the DRC model: as said, there is no feedback in the model from the letter to the feature 

units. We suggested in this dissertation that this organization may indeed be crucial to explain the 

additivities of SQ and lexical variables observed when words and nonwords are mixed in the task 

(see Chapter 6). Regardless of our specific proposal, this feature could in fact allow the DRC model 

to account for additive effects of a variable influencing the visual feature analysis (e.g., SQ) and 

some other factors influencing later processes. Unfortunately, it has been not yet determined 

whether the whole patter of data could be simulated by a similar architecture. It seems to us to be 

critical, however, that additive effects of variables documented in previous literature always involve 

degradation as one of those variables; in other words, to the best of our knowledge, additive effects 

have never been reported when the factors manipulated in the task affect levels of processing which 

are subsequent to the visual feature analysis. Evidently, this may be a strong argument in favour of 

our account. Clearly, defining how visual word recognition needs to be modelled in order to 

reproduce additive and interactive effects of factors will be a critical issue for future researches. 

Finally, it has to be noted that cascaded and discrete stage models are not the solely 

available accounts. On the contrary, an intermediate position also exists, even if computational 

models of reading and visual word recognition have typically ignored this idea.  

Consider first the following question: what do we mean, exactly, with cascaded processing? 

Assuming cascaded processing does not mean to assume that subjects are able to identify, for 

example, the letters in a stimulus without the result of the feature analysis; as a consequence, the 

logical requirement of the task itself requires that at least some of the processes involved in 

performance occur in a strict succession. Cascaded processing more likely means to reject the idea 

of traditional discrete stage models that one component of processing must be completed before a 

second can start; hence, according to cascaded models, even when a process depends on the output 

of another process, the later one will start before the previous is completely ended. In order to have 

a better understanding of this point, consider the formulation suggested by Norman and Bobrow 

(1975). The authors hypothesized that the output of each process could be a set of quantities, each 

one indicating the degree of confidence that one of the several possible conclusions about the 

stimulus in input is correct. For example, at some instant in time, the output of the feature analysis 

might indicate a 20% chance that there is a vertical line on the left of the pattern in input and a 5% 

chance that there is a horizontal line across the middle; a bit later, the same outputs might indicate 

values of 35% and 60%. According to cascaded processing, the outputs from the feature level are 



  119

always available and the process of letter identification would be using this changing information 

over time.  

Now, imagine to apply this same logic to thresholded processing. In traditional stage 

models, a threshold is reached in a processing unit when activation in that unit reaches its maximum 

value, which means that information processing occurring in that unit is completely ended; to 

exemplify, according to traditional discrete stage models, activation would be passed to the letter 

level when the output of the feature analysis indicates a 100% chance that the stimulus in input has 

those visual features. As said, several empirical data contrasting this hypothesis exist. A different 

interpretation is however possible by assuming that the threshold does not reflect the maximum 

value of activation in the processing units; rather, a similar thresholded mechanism may be set to an 

amount of activation that is considered satisfactory in that unit: once this critical level is reached, 

then activation would flow to the subsequent level in a purely cascaded fashion. In other words, it is 

possible that processing occurring at an early level needs to collect a certain amount of information 

about the stimulus in input before cascading to a subsequent level. Using the previous example, it 

could be that activation is passed on to the letter level only when the output of the feature level 

analysis indicates with a certain chance (say, e.g., 30%) the presence of some visual features in 

input. A possible reason for a similar organization may be a principle of cognitive ergonomic; one 

may argue, in fact, that there would be no reasons to pass information on to latter stages when the 

degree of confidence about some characteristics of the stimulus in input is very low: such a strategy 

would be in fact highly demanding in terms of cognitive resources and perhaps counter-productive 

for performance. Whether this proposal fits the empirical evidence needs to be evaluated. It seems 

to us, however, that such an account could be a straightforward solution to reproduce additive and 

interactive effects of variables, perhaps being a valid alternative to a purely cascaded account. It 

may be hence interesting to implement a similar information processing modality in future 

computational modelling of visual word recognition and reading aloud. 

 

 

8.6 General conclusion 

 

The assumption of cascaded processing is central in the DRC model and in many other models of 

language processing following the work by McClelland and Rumelhart (1981). Previous simulation 

works, considered in the light of results from skilled readers, demonstrated that the assumption of 

cascaded processing is problematic. These studies concluded that, since the DRC model fails to 
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account for the effects showed by human readers, it requires a modification; in general, a threshold 

at the letter level has been introduced as a computational solution that would allow the model to 

simulate the empirical data obtained by varying stimulus quality in conjunction with lexical and 

non-lexical factors in reading aloud tasks.  

 The main goal of the empirical activities reported in this thesis has been to test the 

hypothesis of thresholded processing in the reading system. First of all, we collected empirical 

evidence demonstrating that processing in reading has to be cascaded. Moreover, we gave an 

explanation of the previous apparently problematic results. From one hand, we showed that the 

additivities of SQ and another variable observed in nonword reading arose because of a 

confounding with the Total Letter Confusability, a variable that is involved in reading of degraded 

letter strings; also, we demonstrated that the DRC model can in fact simulate these empirical data 

simply adjusting the values of a few parameters that regulate its sensibility to letter similarity. From 

the other hand, we argue that the additivities of SQ and lexical variables obtained when words and 

nonwords are randomly mixed in the task can be explained by considering list composition effects 

in degraded reading; we also suggested that degradation should be differently implemented in the 

DRC model in order to attempt the simulation of these results. In short, we demonstrated that the 

additivities previously reported do not necessarily claim the need of a threshold in the reading 

system; on the contrary, these data can be explained by modelling reading with a dual-route account 

assuming cascaded processing. 

As a consequence, the answer to the critical question investigated in this thesis – does the 

Dual-Route Cascaded model require a threshold? – is clearly No. Rather, the computational version 

of the model needs to be only partially modified in order to reproduce the effects due to letter 

confusability and to correctly implement stimulus degradation. More generally, the data obtained so 

far indicate that there is likely to be no thresholded processing in the reading system; factorial 

manipulations of factors will be extremely useful to further analyze this issue. 

Finally, practical and theoretical implications of the empirical work presented in this thesis 

are evident. From one hand, our data showed that the DRC model of reading does not require any 

radical modification involving its cascaded nature. From the other hand, the researches that have 

been presented sustain a cascaded framework as the account that – (at least) at present – better 

models the cognitive processes underling reading aloud and visual word recognition. 
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APPENDIX 
 

 

 

 

A. Nonword set Chapter 2 

 

 

One or more orthographic neighbours   Zero orthographic neighbours 

Short   Long   Short   Long 

nonword baseword   nonword baseword   nonword   nonword 

beceo becco   buocche brocche   bluva   bruchio 

bluco bruco   breglia briglia   bovre   braighe 

burpo burro   bleccia breccia   bunpo   bleuche 

cavua cavia   chiozza  chiazza    bupio   buospio 

cedlo cedro   cenghia  cinghia    buppi   biucche 

ceflo ceffo   cioccio ciuccio   crasa   chirria 

catra cetra   creccio cruccio   cufli   chiuspo 

cluva clava   chiusco chiosco   cusbo   crausco 

cubra cobra   cheatta chiatta   dripo   drussio 

felfa felpa   friccia freccia   fafre   friofro 

fiulo fiala   foschio fischio   fluco   freusio 

fraca frana   frantia frangia   gedre   geresco 

gemua gemma   giungra giungla   geflo   gelagri 

gerfa gerla   giustra giostra   gnasa   gnattro 

ghito ghiro   ghionda ghianda   groze   grompio 

gnolo gnomo   gnaffio  graffio    liplo   luorlio 

gurme germe   gruglia griglia   lumio   liospuo 

melfa melma   manvria mandria   luofa   luostia 

milpa milza   muccheo mucchio   meluo   miorfio 

mucua mucca   muscheo muschio   nurio   neucche 

murlo merlo   mucchia macchia   nuzao   nerghio 

piuba piuma   piccheo picchio   pivvo   praschi 

piuba piuma   piustra piastra   quoso   quochia 

siupe siepe   strullo strillo   sfepo   sproghi 

sludo scudo   spiuzzo spruzzo   soplo   strisso 

sviva stiva   svrazzo sprazzo   tiafi   trippio 

tipre tigre   truglia triglia   vreva   vregghi 

vesba vespa   voschio vischio   zatro   zianglo 
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B. Nonword set Chapter 3 

 

 

List A 
 

List B 

Low TLC High TLV  Low TLC High TLV 

DAVIUTA DEBEFIO 
 

DUCAZIA DOBERSO 

DILICUA DISULMA 
 

DUTILIA DROSORO 

DIVILIA DEMEBRO 
 

DUZIALA DABENEO 

DIZILVA DREBENO 
 

DILCAVA DEBREMO 

FAVULIA FEBERMO 
 

FOSPATA FEBARIA 

FIVATUA FEBLECA 
 

FULIVUA FREBANO 

FILICUA FRESUBO 
 

FURZICA FOBARGO 

GACUVIA GABENIA 
 

GARITIA GORIBIO 

GALALIA GRONERO 
 

GULATIA GOBERSO 

GAVACUA GOBREMO 
 

GATICUA GOMEBEO 

OCAVITA OBEMINO 
 

OPICUVA OMEGANO 

OCILIVA OBIMATO 
 

OTIRIVA OMESIBA 

OCIVATA OFORIBO 
 

OVICUCI OPOBINA 

OLILICI OLEBERA 
 

OVATULA OBEREFO 

PALIVUA PURIBIO 
 

PLIVAVI PORUTIA 

PLATIVA PRISICO 
 

PATUZIA PEBERIO 

RAVICUA REBRESO 
 

RILIZIA REMERMO 

SANELIA SANEBRO 
 

SICULIA STIPOBA 

SACUVIA SCUBELA 
 

STICUCA SEMOFRO 

SUCIZIA SEBERNO 
 

SAZILIA SEBREMO 

SLUCAVA SBEMERO 
 

SCUVALA SOMEBIE 

TOLTOVA TERADIO 
 

TUCAZIA TREMEFO 

TRISIPA TRESENO 
 

TICUVIA TINAIGO 

VILACUA VEBRESO 
 

VUCITRA VENORSO 

VOZILIA VREBEMO 
 

VAVILIA VEMERSO 
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C. Nonword set Chapter 4 

 

 

TLC balanced   TLC not balanced 

Short Long   Short Long 

DEFEO DIVILIA   DUCAO DISULMA 

DROME DUZIALA   DRIPO DEBEFIO 

FEQUE FLICUAI   FAFRE FREUSIO 

FODRO FOSPATA   FLUCO FEBARIA 

FOQUE FURZICA   FLUPA FEBLECA 

GEDRE GIARTIA   GEFLO GIORBIO 

GHEBE GACUVIA   GHEIA GABENIA 

GHEMO GHIVILA   GHEDO GHIRAMA 

GNEBE GNALPIA   GNEVA GNOMPIO 

GNESO GNAUCIA   GNALA GNEBRUO 

OBBEO OLILICI   OPPUA OMESBAI 

OBOBE OTRIVIA   OCACE OFROBIO 

OBROE OPICUVA   ORCAO OLEBREA 

ONEBO OCILIVA   OCITA OBEMINO 

ONENA OLAGHIA   ODADO OPROGHI 

ORIRO OLICHEA   ODALO ONERCHI 

OSEBO OCAVITA   OZICA OPOBINA 

OVEGO OCIVATA   OTIDO OMEGANO 

OZEMO OVICUCI   OZICA OBIMATO 

PEMIO PLIATIA   PUFLI PREISCO 

PEQUO PLIVAVI   PILVO PUORTIA 

POBEO PLAUVIA   POCAO PIURBIO 

SEFLO SUCIZIA   SOFLA SANEREO 

SESME SANELIA   SUSIO SOMEBIE 

SIOFO SAVICUA   SOPLO SEBENEO 

SMEBO SCULVIA   SUMIO SCUBLEA 

SVABE STICUCA   SFEPO STIPOBA 

TEOBA TUCAZIA   TIAFI TINAGIO 

TIBBO TUOGLIA   TIMMA TREGLIO 

TREBE TRISPIA   TISBO TEARDIO 
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D. Nonword set Chapter 5 

 

List A 
  
  

List B 

Many-N Zero-N Many-N Zero-N 

     BLAVE BLIRP   BLICK BLICH 

CHACK CHYTH   CHARP CHYLE 

CLECK CRAUN   CLOSS CLIGH 

CREAT CRIRR   CRAFE CRYLE 

DATCH DRICH   DRAVE DRURP 

FRICK FLIFE   FLATE FLAUB 

GAINT GHAIF   GATCH GHISC 

GIGHT GLITH   GLEAT GLYME 

GLAVE GLIEK   GRINT GRULE 

PETCH PLAFF   PAUNT PLECH 

PLAME PLARM   PLARE PLAUB 

PRITE PLOAM   POUTH PLIVE 

POTCH PLUTT   PRIPE PLYTH 

PRIVE PRAIF   PLINK PRAUT 

SLIPE SKAUK   SAUNT SLIEN 

SCORT SCROU   SCALL SLIER 

SPOOP SLIRM   SLINE SPAPH 

SLOUT SPYTH   SPOOT SPLEA 

TATCH TRARC   TOUTH TRURL 

TRIVE TWAUL   TRAVE TROAR 

BINCH BLIFE   BLANE BLERF 

CHASS CHERF   CHONE CHYBE 

CRAME CRYBE   CRASE CRERF 

CROSE CRARN   CREET COOSH 

DORSE DREWT   DREAK DRIRR 

FRESS FLEBB   FOUSE FLENE 

GOUSE GHIRM   GRABE GHYTH 

GRAGE GRERG   GRARE GRIGH 

GRAME GRURK   GRASH GRERF 

PENCH PLEEM   POOSE PRAUB 

PORSE PLERB   POUSE PLEWN 

PROME PRERG   PROSS PRECH 

PRINE PRETE   PROPE PREUM 

PROWN PROCH   PRIBE PRURB 

STAFE SKOAM   SEAVE SKURR 

SPAME SLEFF   SMORE SKASS 

STOOK SLERG   STABE SLESE 

STASE SLUBE   STORN SLOMB 

TORSE TEECE   TOUSE TRURR 

TRUSH TWOAR   TRIME TROAM 
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E. Word and nonword sets Chapter 6 

 

Word 

 

Nonword 

Low TLC High TLC Low TLC High TLC 

     BALIA BENDA 
 

BILZO BERCA 

CELLA CENNO 
 

CITRA CESBO 

CLAVA CREMA 
 

CLARO CRENE 

COCCO COSMO 
 

CALSA CABRO 

COLPA COBRA 
 

COLVO CONFE 

DANZA DENTE 
 

DILCE DERDO 

DITTA DOSSO 
 

DIACO DREGO 

FALCO FORNO 
 

FILPA FENTE 

FALDA FARRO 
 

FLOCA FRONA 

FIALA FIENO 
 

FIAVA FIEBA 

FIATO FIORE 
 

FILCO FIRBA 

FOLLA FONTE 
 

FUTTA FOSBA 

GARZA GAMBO 
 

GUTTO GUMMA 

GAZZA GONNA 
 

GOLCO GREDO 

GIOIA GEMMA 
 

GIUCO GEBIO 

LACCA LEMBO 
 

LADLO LEBRE 

MAZZA MAMMA 
 

MAPIA MEFFA 

MOLLA MERLO 
 

MITUA MIEBE 

MUCCA MANGO 
 

MILGA MANBA 

MULTA MENTA 
 

MALCA MENZO 

PACCO PENNA 
 

PINIA PONNA 

PALCO PERNO 
 

PAUCO PERTO 

PANCA PRETE 
 

PISCA PONBE 

PULCE PLEBE 
 

PALDA PONNO 

RAZZA RENNA 
 

RATIO RENTA 

RICCO ROSPO 
 

RUCCA RASSA 

RULLO ROMBO 
 

RULTA RISMO 

SALTO SASSO 
 

SALCA SEBIA 

STIVA SIEPE 
 

SAITA SUOMA 

SUOLA SUONO 
 

SCAPA SMAGO 

TACCO TONNO 
 

TITTO TARSO 

TALPA TORTO 
 

TALGA TARBA 

TAPPO TOSSE 
 

TALTO TONGO 

TARLO TORBA 
 

TROLA TREVE 

TASCA TRENO 
 

TOITA TIBRE 

TEDIO TONFO 
 

TUFLO TUOMO 

TAZZA TORRE 
 

TITIA TENBA 

VALLE VERME 
 

VITTA VEMBO 

VASCA VESTE 
 

VALTO VESBA 
VILLA VENTO 

 
VILPE VEBRO 
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F. Word and nonword sets Chapter 7 

 

   

WORD  NONWORD (baseword)  WORD  NONWORD (baseword) 

BADGE  BAIME (baize)  LEASH  LERGE (ledge) 

BEACH  BEART (beard)  LUNCH  LAMPH (lymph) 

BATCH  BENTH (bench)  MIRTH  MORSH (marsh) 

BEAST  BERCH (beech)  MOOSE  MOURD (mound) 

BLAZE  BLAVE (blade)  NERVE  NARSE (nurse) 

BLISS  BROCK (block)  NIECE  NATCH (notch) 

BLOOM  BLEAM (bream)  PEACE  POTCH (patch) 

BRIDE  BRACK (brick)  PEACH  PHOSE (phone) 

BRINK  BROOL (broom)  PIECE  PUTCH (pitch) 

CHAIR  CHERT (chest)  PLANE  PLONT (plant) 

CHURN  CHERK (cheek)  PLUME  POUTH (pouch) 

CHICK  CHISS (chess)  PRAWN  PRASK (prank) 

CLOAK  CLATH (cloth)  PRIZE  PRIVE (pride) 

CLOCK  CRINE (crime)  PLANK  PLAVE (plate) 

CLEFT  CLOID (cloud)  QUEEN  QUERT (quest) 

CLOWN  CLOME (clove)  QUILL  QUIRT (quilt) 

CREED  CLEAM (cream)  RANCH  REAGN (reign) 

COUCH  CANCH (conch)  RHYME  ROACK (roach) 

COAST  CRUCK (crack)  SAUCE  SCASE (scare) 

CRASH  CREEB (creek)  SCARF  SCODE (score) 

CROWD  CRAWN (crown)  SCOOP  SCOKE (scope) 

DREAM  DRISS (dress)  SCOUT  SCREP (scrap) 

FARCE  FLITH (faith)  SHADE  SHASE (shame) 

FIRTH  FROOR (floor)  SHANK  SHORK (shark) 

FIGHT  FLUVE (flute)  SHAPE  SHEST (sheet) 

FLAKE  FLAVE (flame)  SHAWL  SHECK (shack) 

FLAIR  FLINK (flank)  SHEAF  SHERN (sheen) 

FLINT  FLOKE (fluke)  SHORE  SHICK (shock) 

FOUNT  FORVE (force)  SHIRT  SHELT (shelf) 

FRAME  FROUD (fraud)  SHRUB  SHOST (shout) 

GLOBE  GLASE (glade)  SKILL  SLIRT (skirt) 

GLOSS  GLOUM (gloom)  SLASH  SLONG (slang) 

GOOSE  GRAFE (grape)  SNACK  SNACE (snake) 

GRAPH  GLEED (greed)  SPORT  SPOUN (spoon) 

GUEST  GRODE (grove)  SPIKE  SPIME (spice) 

GUILT  GRILE (guile)  SPATE  SNAVE (snare) 

HORSE  HEASH (heath)  TRICE  TRIMP (trump) 

HOUND  HANCH (hunch)  TRAIN  TRUCH (truck) 

JAUNT  JAICE (juice)  VALVE  VARGE (verge) 

LARCH  LOTCH (latch)  WITCH  WHAME (whale) 

 


