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SUMMARY 

 

 

Real-time testing with dynamic substructuring provides an efficient way to simulate 

the nonlinear dynamic behaviour of civil structures or mechanical facilities. In this 

technique, the test structure is divided onto two substructures: the relatively crucial 

substructure is tested physically and the other is modelled numerically in the 

computer. The key challenge is to ensure that both substructures interact in real-

time, in order to simulate the behaviour of the emulated structure. This has special 

demands on the utilized integration methods and their implementations. 

Researchers have devoted significant effort to implement second-order integrators, 

such as Newmark integration methods, in a monolithic way where both 

substructures are integrated altogether. However, in view of large and complex 

structures, time integration methods are required to advance large-scale systems 

hence endowed with high-frequency components of the response or mixed first- 

and second- order systems like in the case of controlled systems. In this case, the 

monolithic implementation of a second-order time integration method becomes 

inefficient or inaccurate.  

With these promises, the thesis adopts the Rosenbrock-based time integration 

methods for both dynamic simulations of complex systems and substructure tests, 

and in particular, focuses on the development of monolithic schemes with 

subcycling strategies for nonlinear cases and partitioned methods with staggered 

and parallel solution procedures for linear and nonlinear cases.  

Initially, the Rosenbrock integration methods endowed with one stage to three 

stages are introduced and their applicabilities to second-order systems are 

investigated in terms of accuracy, stability and high-frequency dissipation, such as 

stability analysis of the Rosenbrock methods with one stage and two stages via the 

energy approach and numerical experiments on an uncoupled spring-pendulum 

system. Then, these methods are implemented in a monolithic way for real time 

substructure tests also considering subcycling strategies. Meanwhile, real-time 

substructure tests considering nonlinearities both in the numerical and physical 

substructures were carried out to illustrate the performances of the monolithic 

methods. Moreover, three types of partitioned algorithms based on the element-to-

element partitioning are successively proposed. Two of them are based on 

acceleration continuity with a staggered solution procedure and a parallel solution 



procedure, respectively, and one of them is based on velocity continuity and a 

projection method. Both stability and accuracy properties of the proposed 

algorithms are examined by means of analytical techniques and numerical studies 

on single-, two-, three- and four-degree-of-freedom model problems and a coupled 

spring-pendulum system. Finally, a novel test rig conceived to perform both linear 

and nonlinear substructure tests with different combinations of numerical and 

physical substructures are presented and commented. 
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with different γs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

vii



3.5 Numerical simulations for the uncoupled spring-pendulum stiff problem

summarized in Table 3.1: (a) velocity l̇ obtained with different methods

and ∆t0 = 1/3ms; (b) velocity l̇ provided by different LSRT algorithms

and ∆t0 = 1/3ms; (c) velocity l̇ with ∆t0 = 2ms; (d) displacement y with

∆t0 = 2ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 (a)-(d) Schematic representation of a substructured spring-pendulum

oscillator; (e) block diagram representation including delay . . . . . . . 69

4.2 Coupled integration in real time: (a) force-displacement(mixed) cou-

pling strategy; and (b) mixed strategy with algebraic coupling conditions 70

4.3 Solution sequence of the time integration of a coupled system with

the LSRT3 algorithm: (a) single time-step strategy; (b) multiple time-

step strategy with equilibrium-based interpolation; (c) multiple time-

step strategy with differentiation-based interpolation. . . . . . . . . . . 72

4.4 Numerical simulations for the coupled spring-pendulum stiff problem

summarized in Table 3.1: (a) velocity ẋp
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CHAPTER 1

INTRODUCTION

1.1 Context

With the higher-rise, longer-span and smarter-material tendencies of structural sys-

tems and the higher requirements of safety and reliability, structural dynamic testing is

becoming more and more important. As structures become higher and/or longer, their

mathematical models and failure modes turn out to be more unpredictable with purely

analytical techniques and their responses under dynamic loads, such as earthquake

or wind, require advanced dynamic testing techniques. Also, with more efficient intro-

duction of smart materials and devices to structures, their applications reduces the

robustness and applicabilities of the existing design codes and need specific dynamic

tests. Meanwhile, the introduction of new design concepts, such as performance-

based seismic design, requires experimental techniques to validate their suitabilities.

Current dynamic testing includes a various methods: Free-vibration tests; Monitor-

ing of ambient vibrations; Harmonic excitation tests; Shaking table tests; Quasi-static

tests; Pseudodynamic tests and Real-time substructure tests (Negro and Magonette,

1998). To evaluate the dynamic performance of structures and components subjected

to complex dynamic loading, such as earthquake, two basic experimental methods

co-existed for a long time: the shaking table testing which frequently allows full time-

scale but reduced space-scale; the Pseudodynamic testing which usually permits full

space-scale but expanded time-scale. In a word, they both have inherent predomi-

nances but limitations (Williams and Blakeborough, 2001).

In order to overcome the problems of spatial and temporal scaling associated with
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the shaking table testing and the Pseudodynamic (PsD) testing, Real-time Testing

with Dynamic substructuring (RTDS) was developed in the early 1990s (Nakashima

et al., 1992) and, since then, it was used and advanced by researchers worldwide

for seismic simulation studies (Nakashima and Masaoka, 1999; Dimig et al., 1999;

Horiuchi et al., 1999; Darby et al., 1999; Williams, 2000; Bonnet, 2006; Bursi, 2007;

Chen et al., 2007). The RTDS test method involves the combination of the real-

time dynamic testing of a Physical Substructure (PS), that contains the key regions of

interest, with the analytical simulation of a Numerical Substructure (NS), that contains

the remainder of the emulated structure. The interaction of both substructures is

achieved by imposing compatibility and equilibrium conditions at the interface.

The increasing interest of the RTDS method is motivated by two major features of

this method: i) compared to the shaking table testing method, critical structural com-

ponents of interest, such as portions with nonlinear behaviour or more prone to dam-

age under dynamic loading, can be tested at full scale while the remainder is mod-

elled numerically, which to some extent leads to significant cost savings and makes it

possible to conduct full-scale test; ii) with respect to the PsD testing method, velocity-

dependent phenomena can be taken into account, moreover, distributed-mass sys-

tems can be considered. Because of those two advantages, RTDS method is thus

an desirable approach for earthquake engineering. However, those advantages are

offset by the complexities of implementation (Nakashima, 2001; Blakeborough et al.,

2001). The key challenge of the applications of the RTDS method to large or complex

structures is to ensure that the PS and the NS interact in real-time. To confront this

challenge, current RTDS research focuses both on the development of sophisticated

control strategies (Horiuchi and Konno, 2001; Darby et al., 2001, 2002; Wallace et al.,

2005; Neild et al., 2005; Gawthrop et al., 2009) and on the development of efficient

numerical integration schemes (Bursi, 2007; Bonnet et al., 2007; Sajeeb et al., 2007;

Shing, 2008; Bonnet et al., 2008). The research proposed herein is mainly related to

numerical integration issues of the RTDS method.

Although the field of RTDS method is the main target of this thesis, both numeri-

cal strategies and methods developed for time-stepping schemes herein can also be

applied to PsD testing with dynamic substructuring and pure numerical simulations.

For PsD testing, the significant contribution of the substructuring methodology (Der-
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mitzakis and Mahin, 1985) is scaling effects which extends the application to large

structures. Likewise, with this method, the structure can be divided into two substruc-

tures: one is numerically simulated in computer in that it has a simple behaviour or

it is not considered to be critical for the emulated structure; the remainder requires

physical replication with PsD technique because it contains nonlinear behaviour or

it is critical to the performance of the structure concerned (Pegon and Pinto, 2000).

In the test, both substructures are solved monolithically with a direct time integration

method (Bursi and Shing, 1996) or separately by using a partitioned time integration

scheme (Pegon and Magonette, 2002). Differently from the conventional PsD testing

methods and the direct integration algorithms, in the substructuring test the restoring

forces in the NS are numerically modelled while the restoring forces in the PS are

not numerically modelled but are measured from a test conducted in parallel with the

direct/partitioned time integration (Williams and Blakeborough, 2001).

In this document, the time integration methods are developed for solving second-

order systems, i.e. structural dynamics. But the utilized integrators are expressed

in the first-order form. Besides the field of structural dynamics, it is believed that

the time integration methods proposed, in particular the partitioned methods, can be

implemented on both first- and second-order coupled problems in different fields of

engineering or science (Nakshatrala et al., 2008; Felippa et al., 2001; Prakash and

Hjelmstad, 2004).

1.2 Motivation of the research

A brief review of dynamic testing was given within the context of earthquake en-

gineering in the previous section. Real time testing with dynamic substructuring

was described and its limitations, especially its complexities of implementation, were

pointed out. Moreover, the PsD testing with dynamic substructuring was introduced

as well as its computational limitation. These limitations as well as the implementation

difficulties of both hybrid testing methods, to some extent, reflect the high requirement

for efficient and accurate integration methods. In this thesis, attempts are made to
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follow these requirements.

As underlined above, RTDS is efficient for modeling structures exhibiting complex

nonlinear behaviour, especially if the nonlinearity is concentrated in specific regions

of the structure. However, if a large structure is considered, computational model of

the NS is expected to be nonlinear to take into account phenomena such as material

plasticity, geometric nonlinearity and buckling. In order to integrate the nonlinear NS

coupled to the PS in real time, an efficient time integration method is required capable

to exhibit the following desirable properties: i) real-time compatibility; ii) unconditional

stability; iii) explicit target displacements and velocities; iv) time efficiency.

Frequently, structural models for large-scale structures contain non-physical high-

frequency components that are artifacts of standard finite-element modeling of the

spatial domain. Moreover, physical high-frequency models are included but not accu-

rately treated. Therefore, the equations of motion can contain stiff components of the

response. In this case, an advanced integration method is required to filter out high-

frequency oscillations without sacrificing the accuracy of low-frequency modes. With

these considerations, we propose Rosenbrock-based L-stable Real-Time (LSRT) al-

gorithms. These methods are linearly implicit, because they are unconditionally sta-

ble, but require only a single linearization and matrix decomposition per time step

where the Jacobian is formed only at the beginning of each time step. The methods

are real-time compatible and possess high-frequency dissipation capabilities.

Most of the aforementioned research works carried out on substructure tests con-

sidered structural integrators applied to the equations of motion expressed as second-

order in time. Nonetheless, it is well known that the motion of the PS in a substructure

test, see Fig.1.1, is driven by a transfer system -actuator- and sensors, governed by a

control unit. Since the control system is typically described by first-order Differential-

Algebraic Equations (DAEs), the utilized integrators have to deal with mixed first- and

second-order DAEs. In order to solve this problem, there are mainly three options:

i) to use different integrators for structural and control systems, respectively, Csee

for instance Wu et al. (2007), that utilizes the Newmark- method for the emulated

structure and a proprietary MTS controller with its own built-in time integrator; ii) to

reformulate the control equations in a second-order form (Brüls and Golinval, 2006),

and employ a structural integrator like the Generalized-α method (Chung and Hul-
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bert, 1993) for both systems; to use first-order integrators like the LSRT algorithms,

for both structural and control systems. Herein, we adopt the last option owing to the

favourable properties of LSRT algorithms employed in control (Vulcan, 2006).

Fig. 1.1: Block diagram representation including delay for RTDS tests

With regard to applications time-stepping methods to RTDS tests, they can be

broadly classified in monolithic and partitioned. In a monolithic approach, the method

integrates: i) the Numerical Substructure (NS) only, whilst the Physical Substruc-

ture (PS) can be considered as a black box (Bursi et al., 2008) or as a grey box

(Lamarche et al., 2009), with estimates of stiffness and damping of the PS included

in the Jacobian matrix; ii) both the NS and the PS by means of stiffness estimates

(Jung et al., 2007), like in a typical pseudo-dynamic (PsD) test. Conversely, a par-

titioned approach typically solves both NS and PS through different integrators and

takes into account the interface problem, for instance by prediction, substitution and

synchronization of Lagrange multipliers (Pegon and Magonette, 2002). In detail, par-

titioned algorithms can be applied to the Euler-Lagrange form of the equations of

motion -second-order in time- (Prakash and Hjelmstad, 2004; Bonelli et al., 2008b)

or to the Hamilton form of the equations of motion -first-order in time- (Nakshatrala

et al., 2008). In this thesis, we consider both monolithic and partitioned approaches

based on L-stable real-time compatible Rosenbrock algorithms applied to equations

of motion first-order in time.

As far as complex emulated structures are concerned, numerical and control re-

quirements impose different time steps for NS and PS, respectively. As a result, two
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main techniques can be identified to tackle this problem: i) model reduction, that rep-

resents an effective way to lower computation burdens related to the integration of a

complex NS, but becomes very inaccurate especially for non-linear systems; ii) multi-

time methods that allow to employ different time integrators in distinct subdomains.

Moreover, subcycling permits to use different time steps in different subdomains. The

last strategy is relatively simple to implement, but stability and accuracy properties of

the original schemes can be hindered. Therefore, this thesis proposes some novel

multi-time method with subcycling strategies, and also investigates relevant stability

and accuracy issues.

When using subcycling strategies, the computer for RTDS tests must keep send-

ing displacement signals without interruption to the digital servo-controller. On the

other hand, the next target displacement is not ready at the instant when loading in

the current integration time-step is completed. To overcome this problem, Nakashima

(2001) proposed a approach in which the task of creating the target displacement (by

solving the equations of motion) at an integration time step ∆t and the task of creating

displacement signals (to be sent to the servo-controller) at a smaller time-interval δt

are separated. The signal generation task is programmed as: if the displacement

target is not available, i.e. before the completion of numerical integration, the signals

are generated by the extrapolation of previous displacements; once the numerical

integration is completed and the target displacement is available, the signal gener-

ation task stops extrapolation and starts performing interpolation (Nakashima and

Masaoka, 1999). In this thesis, a parallel solution procedure is proposed where the

target displacement and velocity is provided in advance so that only interpolation is

needed for signal generation task.

Hence, the objectives of this thesis can be summarised as follows:

1. To consider one- and two-stage linearly implicit Rosenbrock-based integrators

applied to equations first-order in time for RTDS tests and PsD tests with DS;

2. To develop monolithic Rosenbrock-based time integration methods and subcy-

cling strategies for RTDS;

3. To develop partitioned Rosenbrock-based time integration methods and com-

patible subcycling strategies for RTDS and PsD tests with DS;
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4. To develop a proper framework of accuracy and stability analysis for partitioned

methods;

5. To apply both monolithic and parallel partitioned integration methods to real-

time substructure tests and to compare their efficiencies.

1.3 Thesis organization

With the objectives described in the previous subsection, the thesis presents the re-

search work conducted by the author on the development of integration schemes for

RTDS tests: monolithic methods and partitioned methods without and with consider-

ing subcycling strategies. The properties of the proposed methods are investigated in

terms of stability, accuracy, high-frequency dissipation and implementation efficiency.

Moreover, for experimental validations of the involved methods a test rig is conceived

and constructed within the SERIES project. The organization is depicted in Fig. 1.2.

In detail, the thesis is organised as follows:

The first chapter focuses on the motivation of the thesis with respect to the require-

ments of the newly-developed RTDS technique.

The second chapter provides a detailed review of the previous work accomplished

by other researchers, their contributions and the problems encountered. Firstly, the

assessment of the RTDS method within the dynamic laboratory testing of structures

is made in terms of advantages and limitations. Secondly, the RTDS technique is

detailed as well as the problems restricting its development. Thirdly, the commonly-

used integration methods are reviewed and the requirements for advanced integration

schemes are underlined. Lastly, the development of partitioned methods is stated and

both the GC and the PM methods are analysed in depth.

Chapter 3 introduces the Rosenbrock-based LSRT methods and their accuracy and

stability are analysed when applied to second-order systems. Initially, the LSRT meth-

ods are introduced and their applications by other research are shortly discussed.

Secondly, the accuracy analysis is carried out. Thirdly, the energy approach is used
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Fig. 1.2: Organization of the thesis

to investigate their stability properties with respect to second order systems. Lastly,

an uncoupled spring-pendulum system is emulated numerically to validate both the

theoretical analysis and the high-frequency dissipation properties of the linearly im-

8



plicit time integration methods.

In Chapter 4, the monolithic integration schemes developed for RTDS are extended

to nonlinear systems and subcycling strategies are developed for real time applica-

tions. Firstly partitioning and coupling techniques are introduced and applied to an

uncoupled spring-pendulum system to achieve a coupled spring-pendulum system.

Secondly, zero-stability analysis is performed for the coupled spring-pendulum sys-

tem and both stability and accuracy analysis by means of simulations. Lastly, in order

to validate the methods in real testing environment, we present RTDS test results for

nonlinear Single-DoF system, and the Multiple-DoF spring-pendulum system.

From Chapter 5 to 7, the partitioned methods based on linearly implicit integra-

tors are developed and studied. Chapter 5 mainly proposes the partitioned methods

based on acceleration continuity. In chapter 6, subcycling strategies are proposed for

the partitioned method which is inherently staggered. Chapter 7 extends the stag-

gered methods to the parallel form. With respect to each type of partitioned methods,

both theoretical analyses and numerical simulations of linear and nonlinear systems

are carried out to investigate their performances.

Another family of partitioned methods, based on a projection solution procedure

and velocity continuity, are presented in Chapter 8. Their accuracy and stability anal-

yses are conducted. The numerical analysis is performed on a Single-DoF split-

mass system and rechecked on Two- and Three-DoF systems. Finally, their ap-

plications to nonlinear systems are investigated through simulations of the coupled

spring-pendulum system.

In Chapter 9, a test rig is designed and its different configurations are presented

to appraise its capabilities. Finally, conclusions and future perspectives are drawn in

Chapter 10.
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CHAPTER 2

STATE OF THE ART

2.1 Introduction

This chapter provides a review of previous research related to this thesis. First, a

briefly introduction is presented on the well-established themes of dynamic experi-

mental testing of structures and the significance of the RTDS within the testing meth-

ods assessed. Then, the second section focuses on the RTDS in terms of control

and actuator dynamics. Thirdly, the overview of the global integration methods used

for solving the numerical substructure(s) are conducted in the third section, and sev-

eral are emphasized which will be used for comparison. Finally, the fourth section

presents the developments of the partitioned time integration methods, and the GC

method and the PM method are introduced in great detail.

2.2 Experimental dynamic tests

This section provides a description of the experimental techniques which can be

used for earthquake testing of civil engineering structures. In particular, the PsD test

method and the RTDS method which are the focus of this thesis. A historical review

is given as well as their advantages and limitations.

With the development of long-span and high-rise structures, a variety of testing

methods have been developed to satisfy the strong requirement of experimental
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evaluation of structures. Articles by Takanashi and Nakashima (1987), Negro and

Magonette (1998), and Williams and Blakeborough (2001), provide comprehensive

overviews on contemporary research related to laboratory testing of structures under

earthquake loads. The focus is on the context of the RTDS, for which four principal

methods are introduced and discussed: quasi-static testing method, shaking table

method, PsD testing method, PsD tests with dynamic substructuring and RTDS test-

ing method. By comparison, the advantages of RTDS are discussed. Finally, key

challenges ahead are detailed and possible contributions of the thesis are listed for

the RTDS.

2.2.1 Quasi-static testing method

First, the most common technique, quasi-static testing method is briefly introduced.

Quasi-static tests are performed by imposing predefined displacement or force histo-

ries on the specimen by actuators at an extended time scale. The specimen tested

is generally composed of a series of single elements or simple portions of the emu-

lated structure. By imposing cyclic displacements and measuring the corresponding

restoring forces, one can predict the effect of systematic changes in material prop-

erties, details, boundary conditions, loading rates, and even the dynamic behaviour

of the structures subjected to any dynamic input. Such tests are relatively easy and

economical to execute. Since the displacement is predefined but not online, it may

not cover the range of the displacements that a structure undergoes during an actual

seismic event (Negro and Magonette, 1998).

2.2.2 Shaking table testing method

Shaking table method is used extensively in seismic research. In a real test, a

reduced-scale model considering the law of similarity is mounted on a rigid platform,

and both the specimen and the platform are excited to replicate ground motions,

including recorded earthquakes time-histories (Bonnet, 2006). This testing method

provides important data on the dynamic response caused by specific ground motions
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(either real or artificial), considering the inertial and damping characteristics of the

tested structure and the phenomena of geometric nonlinearities, localized yielding

and damage, and component failure. However, reduced-scale or highly simplified

specimens are required for large-scale structures. This may cause problems in en-

suring correct dynamic scaling: i) scale factors may not be optimized to be completely

satisfied; ii) it is difficult to have confidence in the extrapolation of nonlinear dynamic

response to full scale (Williams and Blakeborough, 2001); iii) scaling may result in

poor representation of the behaviour of specific portions, such as connections (Negro

and Magonette, 1998). In addition to the issues related to similitude, the perfor-

mance of the shaking table tests requires sophisticated control system (Negro and

Magonette, 1998; Williams and Blakeborough, 2001).

2.2.3 Pseudo-dynamic testing method

The third method reviewed is Pseudo-dynamic testing method, also termed as the

online computer-controlled testing method or the quasi-static online testing method

(Nakashima, 2001). In this experimental testing technique, a simulation is executed

based on a step-by-step numerical solution of the governing equations of motion for

model formulated considering both the numerical and physical components of an

emulated structure:

Mü + Cu̇ + r (u) = fe (2.1)

where M is the mass matrix, C the damping matrix, u the vector of nodal displace-

ment, r is the restoring force vector, fe is the vector of the external forces, and the

dots represent differentiation with respect to time. In Eq. (2.1), the mass and vis-

cous damping characteristics of the emulated structure are numerically modelled.

Differently from conventional computational modelling and simulation where the en-

tire structure is simulated analytically, the restoring force vector which contains un-

certainties over the nonlinear stiffness and hysteretic damping characteristics is not

evaluated numerically but directly measured on the structure at certain controlled lo-

cations. The detailed process of the PsD testing method is illustrated in Fig. 2.1.

For simulating the earthquake response of a structure, a record of a real or artificially
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generated earthquake ground acceleration history is used to compute the external ex-

citation fe running the PsD algorithm. The displacement vector of the structure (where

the mass of the structure can be considered to be concentrated) is calculated using a

suitable integration method. The displacements are then applied to the test structure

by servo-controlled hydraulic actuators fixed to the reaction wall. Load cells on the

actuators measure the forces necessary to achieve the required displacements and

these restoring forces are returned to the computer for use in the next time step calcu-

lation (Pegon and Pinto, 2000; Bursi, 2008). Even though Eq. (2.1) can be expressed

Fig. 2.1: Flow of the PsD testing method

for any number of degrees of freedom (DoFs), it is not feasible to test large structures.

This is because the number of DoFs tested is determined by the number of available

actuators and some other laboratory facilities. Even for a simple structure, the mass

has to be concentrated in certain location through standard condensation techniques.

If taking a example of a framed building, the slabs are generally assumed to be stiff
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enough for their in-plane deformability to be ignored and most of the mass is concen-

trated in the floor slabs. However, earthquake loading often leads to severe damage

and unpredictable uncertainty only in parts of the structure. It would be much more

desirable to test the critical parts of the emulated structure while also the restoring

forces for the remainder are modelled in the computer. This is the main idea of the

PsD testing method with dynamic substructuring.

2.2.4 PsD testing method with dynamic substructuring

It was observed that during structural testing, damage (and therefore nonlinear be-

haviour) often occurred in specific, limited regions of an entire structure. Hence, the

substructuring technique was introduced to the PsD testing method by Dermitzakis

and Mahin (1985). With the aid of the substructuring methodology, a physical model

is built only of the part or parts where nonlinearity is expected (the PS) while the re-

mainder is computationally modelled (the NS). The principle of the method is similar

as the PsD testing method. The only difference is that the restoring force of the NS is

numerically modelled.

With the substructuring technique, the number of DoFs of the tested structure is

likely to be quite large. As far as utilized integrator is concerned, it was initially ex-

pected to use an explicit integration (Shing and Mahin, 1984). Solving large ODEs

system with an explicit integrator may lead to stability problem, which blocks the

application of the PsD testing to large-scale structural models. To overcome this,

Dermitzakis and Mahin (1985) proposed a mixed implicit-explicit algorithm based on

the work by Hughes and Liu (1978). Due to the increasing complexity of the tested

structures, many efficient, unconditionally stable numerical algorithms were devel-

oped, such as Operator-splitting (OS) method (Nakashima, 1990), implicit Newmark

method (Dorka and Heiland, 1991) and the alpha method (Shing et al., 1991). How-

ever, the direct application of implicit integration algorithms to PsD tests has been

partially limited by the requirement to iterate with experimental substructures and dif-

ficulties in estimating the experimental tangent stiffness matrix. To implement implicit

integration methods, (Shing et al., 1991), (Bursi and Shing, 1996) adopted a modified

Newton-type iterative procedure with initial stiffness. The next section will provide a
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more detailed coverage of the development of numerical integration methods for PsD

testing with substructuring.

Before moving to the RTDS testing in the next subsection, another efficient tech-

nique, the so-called continuous PsD testing method is introduced here, in which the

loading rate is increased and the hold period is eliminated. This technique, by sus-

taining a smooth motion and a continuous loading of the test structure, eliminates

or at least reduces force relaxation of structural materials. Moreover, capabilities for

fast rate or near real-time also partially allows for rate-dependent effects of the tested

structure. The new techniques for fast rate are built upon the same integration meth-

ods and principles developed for PsD testing in Subsection 2.2.3. As faster rate of

testing with no hold period are achieved, additional challenges arise in solving this

equations of motion: i) the use of shorter time step; ii) the adoption of parallel solu-

tion procedure; iii) the higher requirement to dealing with the inherent control error

and response lag of servo-hydraulic systems. For this technique, Researchers at the

JRC, ISpra have made a considerable effort and substantial contributions on the de-

velopment both on parallel integration algorithms (Buchet and Pegon, 1994; Pegon

and Magonette, 2002, 2005) and on control issues (Magonette et al., 1998).

2.2.5 Real-time testing with dynamic substructuring

When rate-dependent effects are of importance, the continuous PsD testing needs to

be extended to RTDS. This approach is similar to PsD testing with substructuring, but

with the testing proceeding in real time. The test principles can be better understood

through a simple two-story building with a damper device as shown in Fig. 2.2. As

shown in the figure, the tested structure is divided into a test specimen (the damper,

which is expected to reduce the response of the overall structure and make possi-

bly less damage to the main structure during the test) and a surrounding numerical

substructure. By imposing compatibility and equilibrium conditions at the interface,

the substructures are mode to interact possibly in real time, in order to emulate the

dynamic behaviour of the overall structure. In detail, the test process starts from time

integration in the numerical substructure, with the measured force from the PS and

the external force. After integration, the desired displacement in the PS is determined
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and then sent to the actuator to advance the PS. At the end of the time-step the ac-

tuator loads and positions are measured and fed back to the numerical model. This

loop is completed at each time incremental until the test is completed. This technique,

Fig. 2.2: Control loop of the RTDS testing method

since it was developed by Nakashima et al. (1992), has been undergoing a rapid de-

velopment world-widely both on control issues and integration methods (Nakashima,

2001; Williams and Blakeborough, 2001; Blakeborough et al., 2001). The increasing

interest in RTDS testing is motivated by two major features: i) real time simulation

enable the technique to consider rate-dependent phenomena such as strain rate ef-

fects on material properties or viscous damping forces for specific dissipative devices;

ii) substructuring technique makes the possibility of large-scale structural tests with

common laboratory facilities.

Meanwhile, real time testing requires rapidly imposing high loads or accurate dis-

placements over a range of frequencies. This, on the one hand, imposes high require-

ment for efficient integration methods which will be detailed in the next section. On

the other hand, it is a difficult task to make the actuator(s) execute exactly and con-

tinuously within a shorter period. In the case of the work presented in the thesis, the

RTDS are performed in displacement control. The displacements must be conveyed
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rapidly from the NS to the PS. Also, the restoring forces measured form the PS must

be quickly fed back to the NS. Communications between these two substructures

are thus of paramount importance which, to some extent, determine the accuracy

or the reliability of RTDS tests. To obtain desirable communications, efficient control

schemes are required to minimize propagations of the experimental error during tests

and to compensate for the actuator dynamics which is beyond emulated structures.

Historically, Horiuchi et al. (1996) pointed out that the effect of the effect actuator dy-

namics may introduces negative damping for a linear system which may cause the

test to become unstable, and utilized polynomial extrapolations to compensate for

it. From then the effect has been gained sufficient attention by many researchers

working on this subject (Horiuchi et al., 1999; Nakashima and Masaoka, 1999). Also,

some control approaches were developed to considering actuator dynamics (Darby

et al., 2001; Wagg and Stoten, 2001; Neild et al., 2005; Bursi, 2007). A fuller review

of the delay compensation schemes used for RTDS testing is given in Chapter 5 of

the thesis (Bonnet, 2006).

2.3 Integration methods for RTDS testing

In a RTDS test, finite element method is used to discretize the problem spatially.

The resulting dynamic equations of motion are a system of second-order Ordinary

Differential Equations (ODEs):

Mü + f (uü) = fe (2.2)

where f is the assembled resisting force vector (which depend on the structural dis-

placement vector and velocity vector). If the applied loads are entirely due to ground

acceleration, the external force vector fe on the right-hand side of (2.2) can be re-

placed by the following expression.

fe = −MBüg (2.3)

where B is the ground acceleration transfer matrix and üg is the specified support

acceleration.
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When considering the substructuring methodology, the resisting force vector can

be divided by means of differential partitioning (Bursi, 2008) as follows

f (uü) = fn (uü) + fp (uü) (2.4)

where subscript n refers to the NS and subscript p stands for the PS. Note that the

time integration methods discussed in this section are mainly used for the so-called

monolithic integration method. If the experimental mass is negligible, the resisting

force vector of the PS fp is directly measured from the specimen by a data acquisi-

tion system. Otherwise, the force vector measured includes the inertial forces of the

specimen. In order to avoid duplication, one way is to compensate for the initial forces

by measuring the corresponding acceleration. Another way is to remove components

with respect to the mass of the NS from the matrix M. The RTDS test related to the

coupled spring-pendulum system in Chapter 4 adopts the latter way.

Since the RTDS testing was developed, various integration methods have been

implemented and validated in the past decade. In order to review them systematically,

they are classified into three groups: explicit methods, implicit methods and linearly

implicit methods. For an explicit method, the target displacement solution at ti+1 can

be entirely expressed by known solutions such as the current state at ti and k − 1

previous solution states earlier, i.e.,

ui+1 = f (ui , u̇i , üi , ... , ui−k+1, u̇i−k+1, üi−k+1) (2.5)

where k indicates that the method belongs to k-step method. Note that in order

to distinguish them from linearly implicit methods, the right hand side of 2.5 does

not involves tangent stiffness matrix or its approximation. The advantages of explicit

methods are that they are computationally efficient, easy to implement, and fast in

their execution. However, they are conditionally stable -the second Dalquist barrier

(Lambert, 1991, p.243)-. This indicates that the time step used frequently has to

satisfy stability condition other than accuracy requirement, especially in presence of

high-frequency components. In other words, explicit integration method is not suitable

for stiff problems which have natural frequencies with different scales.

For an implicit method, the target displacement solution at ti+1 not only depends on

known solutions as explicit methods but also unknown solutions at ti+1, i.e.,

ui+1 = f (ui+1, u̇i+1, üi+1, ui , u̇i , üi , ... , ui−k+1, u̇i−k+1, üi−k+1) (2.6)
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Most of implicit methods are unconditionally stable, thus rendering suitability for stiff

problems. It also implies that the choice of time step is due to the accuracy require-

ment, because this type of methods is stable for any time step. However, they are

computationally more complex than explicit methods, often requiring an iterative so-

lution process. Moreover, iterations may introduce spurious loading cycles for the PS

and/or unloading process within a step which therefore causes non-realistic stiffness

measurements.

Besides explicit methods and implicit methods, another type of integration methods

is of interest in RTDS tests, linearly implicit methods. The methods are called linearly

implicit in that they require only a single linearization and matrix decomposition per

time step. This type of methods have explicit expression of target displacements as

(2.5). But they also have some properties of implicit method, A-stability or L-stability,

for the reason that single built-in iteration is included. A drawback of linearly implicit

methods is that evaluation of tangent stiffness matrix and its inversion is required

per time step. To solve this problem, users for RTDS testing frequently adopt initial

stiffness matrix (Chang, 2002) or other approximations (Bursi et al., 2008; Lamarche

et al., 2009).

In the following subsections a detailed review of time integration methods used for

RTDS is presented following the aforementioned classification. For each method, the

formulation is provided, and its stability, accuracy and efficiency for RTDS testing are

detailed.

2.3.1 Central difference method

The central difference method (CDM) is the most popular time integration method for

RTDS testing, especially RTDS testing applied to a Single- or Multiple-DoF systems

(Nakashima et al., 1992; Horiuchi et al., 1999; Nakashima and Masaoka, 1999; Darby

et al., 1999, 2001; Horiuchi and Konno, 2001; Blakeborough et al., 2001; Wu et al.,
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2005). It is mathematically described by:

Müi + Cu̇i + ri = fe,i

üi =
1

∆t2 (ui+1 − 2ui + ui−1)

u̇i =
1

2∆t
(ui+1 − ui−1)

(2.7)

where ∆t is the time step chosen.

The CDM is explicit but conditionally stable. The stability limit of the CDM is

ωmax ∆t ≤ 2 where ωmax is the greatest natural frequency of the tested structure. Math-

ematically, the method is second-order accurate, with no dissipation but slight period

delay with sufficiently small time step. For RTDS testing, (Nakashima and Masaoka,

1999) proposed that the choice of used time step satisfies ωmax ∆t ≤ 0.3 ∼ 0.4 for

achieving accurate responses.

To implement the CDM for RTDS testing, inserting the acceleration and velocity

expressions into equilibrium equation yields a formula of target displacement in terms

of known solution of the two previous steps (Darby et al., 2001). The expression

of the target displacement contains an inverse term but no time-dependent tangent

stiffness and therefore the inversion can be provided in advance. Indeed, the method

is efficient with nonlinear stiffness. If nonlinear damping forces are considered, the

method becomes implicit and therefore inefficient. In this case, Wu et al. (2005) used

another predictor for target velocity, i.e.,

u̇P
i =

1
∆t

(ui+1 − ui) (2.8)

which was originally proposed by (Nakashima et al., 1992). This enables explicit form

for target velocity, but deteriorates the original CDM in terms of stability and accuracy

(Wu et al., 2005).

2.3.2 Explicit Newmark method

Newmark (1959) presented a family of single-step integration methods for the solution
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of structural dynamic problems. The method can be written in a standard form as

Müi+1 + Cu̇i+1 + Kui+1 = fe,i+1

ui+1 = ui + ∆tu̇n + ∆t2
((

1
2
− β

)
üi + βüi+1

)

u̇i+1 = u̇i + ∆t ((1− γ) üi + γüi+1)

(2.9)

The stability and accuracy of the method is determined by the choice of the parame-

ters β and γ. Furthermore, numerical dissipation can be introduced by setting γ ≥ 0.5,

but this renders the method to be first-order accurate.

An explicit form can be derived from the Newmark method by setting β = 0, and

the parameter γ is evaluated to be 1/2 to achieve second-order accuracy. Inserting

these two parameters into 2.9 yields the Explicit Newmark method as

Müi+1 + Cu̇i+1 + Kui+1 = fe,i+1

ui+1 = ui + ∆tu̇n +
1
2

∆t2üi

u̇i+1 = u̇i +
1
2

∆t (üi + üi+1)

(2.10)

This method has the stability and numerical properties as the CDM: i) the method is

second-order accurate; ii) the method is conditional stable and therefore not suitable

for stiff problems. But its implementation is different from the CDM. Firstly, the explicit

Newmark method is self-starting while the CDM requires a starting process (Wu et al.,

2005). Second, the explicit solution of the target displacement is available in (2.10)

and then the calculated displacement is sent to the PS; the experimental restoring

force vector is measured and fed back into (2.10); finally, üi+1 and u̇i+1 are achieved

and the whole process is repeated to advance k to k + 1. Third, the different imple-

mentation make a more favorable error-propagation characteristic for displacement

feedback errors in an experiment (Shing and Mahin, 1990).

This method will be implemented to a spring-pendulum system in Chapter 3 and

4 for comparison. But the system exhibits nonlinearity that not only depends on

displacements but also on velocities. In this case, the following predictor is used:

u̇i+1 = u̇i + ∆tüi (2.11)

which is the same as (2.8) used by Wu et al. (2005) for the CDM. This predictor can

be used for RTDS tests considering nonlinear damping force but its effects on the
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stability and order of accuracy have not been investigated in the literature and require

further research. Moreover, the explicit Newmark method has been used in several

RTDS tests considering only nonlinear stiffness forces by Bonnet (2006); Bonnet et al.

(2007) and the method were proved to be accurate and stable.

2.3.3 Constant average acceleration method

Since the explicit methods are often conditionally stable, these can be limited when

applied to structures with multiple DoFs or in presence high-frequency components.

To overcome the aforementioned problems of explicit methods, many implicit meth-

ods were used for structural dynamics problems. In this subsection and the next

subsection, two widely-used implicit methods are introduced.

The constant average acceleration method can be derived from (2.9) by introducing

β = 1/4 and γ = 1/2. The equations therefore become:

Müi+1 + Cui+1 + Kui+1 = fe,i+1

ui+1 = ui + ∆tu̇i +
1
4

∆t2 (üi + üi+1)

u̇i+1 = u̇i +
1
2

∆t (üi + üi+1)

(2.12)

The method is unconditionally stable, second-order accurate, and one of the most

effective and popular method for structural dynamics problems. The constant average

acceleration method is also known as Trapezoidal method, as this method can be

derived using the trapezoidal rule on the equivalent first-order system of equations.

According to the second Dahlquist barrier (Lambert, 1991, p.243), this method is non-

dissipative with lowest frequency distortion of all the unconditionally stable second-

order accurate methods. To implement the method, Shing et al. (1996) proposed a

modified Newton iterative algorithm for a slow PsD test and Shing (2008) extended

this technique to RTDS tests. To eliminate the equilibrium error, a modified Newton

iteration method was used based on the initial stiffness of the structure.
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2.3.4 Generalized-α method

Compared with the constant average acceleration method which has no numerical

dissipation, the Generalized-α method is more attractive for RTDS tests. The method

provides proper dissipation for the high-frequency components, and the mount of

the numerical dissipation can be specified through the choice of the spectral radius

at infinity ρ∞. To introduce the desirable numerical dissipation, two parameters αm

and αf are introduced to shift the equilibrium point between ti and ti+1. Combining it

with the difference formulae for displacement and velocity vectors in (2.9) yields the

following method:

Müi+1−αm + Cui+1−αf + ri+1−αf = fe,i+1−αf

ui+1 = ui + ∆tu̇i + ∆t2
((

1
2
− β

)
üi + βüi+1

)

u̇i+1 = u̇i + ∆t ((1− γ) üi + γüi+1)

(2.13)

The time discrete combination of displacement, velocity and acceleration vectors re-

spectively read

ui+1−αf = (1− αf ) ui+1 + αf ui

u̇i+1−αf = (1− αf ) u̇i+1 + αf u̇i

üi+1−αm = (1− αm) üi+1 + αmüi

(2.14)

For the internal force vector and the external force vector, Erlicher et al. (2002) em-

ployed the generalized trapezoidal, viz.

ri+1−αf = (1− αf ) ri+1 + αf ri

fe,i+1−αf = (1− αf ) fe,i+1 + αf fe,i

(2.15)

Differently form the non-dissipative Newmark method which is two-stage method, the

Generalized-α method is a three-stage method and has another two algorithmic pa-

rameters αm and αf . Moreover, the following relations hold:

β =
1

(1 + ρ∞)2 , γ =
1
2

3− ρ∞
1 + ρ∞

,

αm =
2ρ∞ − 1
1 + ρ∞

, αf =
ρ∞

1 + ρ∞

(2.16)
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Generally, ρ∞ ∈ [0, 1], and the choice of ρ∞ = 0 corresponds to the case of asymptotic

annihilation of the high-frequency response while ρ∞ = 1 stands for the case of no

algorithmic dissipation. The method benefits from the user-defined dissipation that

limit the accumulation of experimental errors at high frequencies while not affecting

the response of interest in the low frequency range. The method with proper choices

of the parameters is unconditionally stable that makes it more attractive for solving

systems with many DoFs and/or in presence of high-frequency components.

2.3.5 Newmark-Chang method

Even though implicit methods often lead to unconditional stable solution which is suit-

able for multiple-DoF structural problems, they require undesirable iterations which

hampers their application to Multiple-DoF RTDS tests. For stability reasons, the uti-

lized integration method is expected to be explicit (Blakeborough et al., 2001). To

combat this, several linearly implicit methods that do not require iteration have been

proposed for PsD tests (Nakashima, 1990; Chang, 2002) and RTDS tests (Chen

et al., 2007; Bursi et al., 2008).

The Newmark-Chang method basically has the same procedure as Explicit New-

mark method introducing two parameters β1 and β2 in the displacement difference

equation, viz.

Müi+1 + Cui+1 + Kui+1 = fe,i+1

ui+1 = ui + β1∆tu̇i + β2∆t2üi

u̇i+1 = u̇i +
1
2

∆t (üi + üi+1)

(2.17)

where two parameter β1 and β2 are given by

β1 =
[
I + 1

2 ∆tM−1C + 1
4 ∆t2M−1K0

]−1 [
I + 1

2 ∆tM−1C
]

β2 = 1
2

[
I + 1

2 ∆tM−1C + 1
4 ∆t2M−1K0

]−1 (2.18)

such that the method becomes linearly implicit. Here, K0 represents the initial stiff-

ness matrix. The method is spectrally equivalent to the constant average acceleration

method which is believed to be most precise unconditionally stable method in the fam-

ily of Newmark methods. Nonetheless, this scheme exhibit two clear drawbacks: i) it
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requires a predictor like (2.11) for cases nonlinear damping forces; ii) β1 and β2 de-

pend on the C matrix, and so these parameters need to be updated at the beginning

of ∆t . Moreover, Krenk and Hogsberg (2005) pointed out that structural integrators

used in structural dynamics generally do not conserve the mechanical energy, but

an equivalent energy involving K, M, ∆t and algorithmic parameters. In this respect,

we re-analysed the above-mentioned algorithms showing that the Newmark-Chang

method is the only one that conserves the mechanical energy also for large ∆t in the

transient response of high-frequency modes; whilst the Explicit- Newmark’s method

(Bonnet et al., 2008) and the CR algorithm (Chen et al., 2009) exhibit large energy

excursions.

2.3.6 The CR method

The explicit CR integration algorithm was developed and implemented for real-time

testing by Chen and Ricles (2008). This method was derived using discrete control

theory. The defining equations for the method are:

Müi+1 + Cui+1 + Kui+1 = fe,i+1

u̇i+1 = u̇i + α1∆t üi

ui+1 = ui + ∆tu̇i + α2∆t2üi

(2.19)

where the parameters α1 and α2 read:

α1 = α2 = 4
[
4M + 2∆tC0 + ∆t2K0

]−1
M (2.20)

Differently from the Newmark Chang’s method, this method also provides an explicit

expression of target velocity vector while requiring the initial damping. Spectrally,

the CR method is the same as the Newmark-Chang method for the reason that it

is equivalent to constant average acceleration method. Therefore, the method is

second-order accurate, unconditionally stable and non-dissipative with minor period

distortion characteristics.

Moreover, this method has been implemented in several RTDS tests and it was

demonstrated to be stable and accurate (Chen et al., 2009). Though initial stiffness

and damping matrices are used if no sufficient time to update them, the method still

has stable performance when applied to a soften structure.
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2.3.7 Summary

In order to satisfy the application to RTDS tests for large and/or complex structures

that have more possibility of high-frequency components, it is desired to develop or

adopt an efficient and accurate numerical integration method. Based on the reviews

of RTDS technique and numerical integration methods, some essential requirements

of a desirable time integration method can be concluded as follows: i) uncondition-

ally stable; ii) explicit expressions of target displacement and velocity vectors; iii)

real-time compatible; iv) user-defined high-frequency dissipation; v) computational

efficiency. Among the widely-used integration methods discussed in this section, no

one can satisfy completely the five requirements. In the thesis, Rosenbrock-based

LSRT algorithms developed by Bursi (2008) will be implemented in both monolithic

and partitioned ways. All the aforementioned requirements are basically satisfied and

the methods belong to first-order method which is suitable for mixed first-order and

second-order systems or complex structures with single mass matrix.

2.4 Partitioned time integration methods

Large-scale problems may involve elements or meshing with different sizes vary-

ing over several orders of magnitude. Also, many complex problems may contains

different system characteristics. In these cases, partitioned time integration meth-

ods are desirable which can divide the overall system into different subdomains and

subsequently solve the subdomains separately with different integrators or different

time steps. In this section, a brief review of domain decomposition techniques related

to partitioned time integration methods and a short introduction to two partitioned

methods are provided.
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(a) (b)

Fig. 2.3: (a) Overlapping domain decomposition method; (b) Non-overlapping domain

decomposition method

2.4.1 Introduction to domain decomposition methods

Originally, Domain decomposition (DD) methods have been used to solve coupled

multi-physics problems such as fluid-structure interaction. However, recently, with the

advent of parallel computers and hybrid simulations, researchers have started using

DD methods to divide a large-scale simulation or computation tasks into several rel-

atively small problems which can be solved with different processors or with different

approaches. The technique entails parallelism and is particularly attractive to parallel

computation. DD methods, as shown in Fig. 2.3, can be classified into overlap-

ping and non-overlapping DD methods (Elleithy and Al-Gahtani, 2000). Overlapping

DD methods, as indicated by terminology, divide the overall domain into subdomains

which have at least one intersection area between them. The classical Schwarz

alternating method belongs to this class(Chan and Smith, 1996). Conversely, non-

overlapping DD methods generate subdomains with no intersection between each

other. The article by Xu and Zou (1998) provides a good review and a unified presen-

tation on the theoretical aspects of non-overlapping DD methods.

Non-overlapping DD methods have been relatively wider used in the last decade,

which are also referred to as substructuring or Schur complement methods. Among

substructuring methods, two similar methods have emerged and are considered to

be efficient parallel computing methods: the primal and dual substructuring meth-

ods (Prakash, 2007). In a primal substructuring approach, the coupling of the two

substructures are achieved through a primal variable at the interface, which is either

displacement or velocity or acceleration. A dual substructuring approach couples two

substructures by introducing a dual variable, i.e. the Lagrange multiplier. Both of them
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(a)

(b)

Fig. 2.4: The partitioning approach: (a) Node partitioning; (b) element partitioning

are based on very similar concepts. However, the latter one, which is currently called

the Finite Element Tearing and Interconnecting (FETI) method, is becoming more and

more popular due to its ability to deliver larger speed-ups on a larger number of pro-

cessors (Farhat et al., 1998). All the partitioned methods in Subsection 2.4.2 and the

proposed methods in the thesis are based on this technique. In structural dynamics,

two types of partitioning approaches based on non-overlapping DD methods are most

commonly used: node partitioning and element partitioning (Prakash and Hjelmstad,

2004). Node partitioning divides the overall structure into different sets of nodes with

a layer of interface elements (see Fig. 2.4a). In the case of element partitioning (as

shown in Fig. 2.4b), different sets of elements are assigned to different subdomain by

a boundary of interface nodes. In order to specify both partitioning approaches, the

relationships between the stiffness matrix of the overall domain and each subdomain

divided with both approach can provide a distinct explanation.

K =


 KAA KAB

KBA KBB


 (2.21)

As shown in Eq. (2.21), node partitioning simply divides the system matrix into dis-

joint parts with the off-diagonal terms representing the interface element. In this case,
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the number of overall degrees of freedom is the same as the corresponding uncou-

pled system. However, node partitioning results in non-zero off-diagonal terms and

therefore requires complex coupling algorithms, especially in the case of interface el-

ements which are shared by more than two subdomains. Hence this approach is not

suitable for real-time tests.

K =




KAA KAI

KIA KA
II + KB

II KIB

KBI KBB


 (2.22)

For element partitioning, the system matrix (2.22) is composed of the elements of

the corresponding subdomains with the overlap representing shared nodes which

couple the individual solutions together. Differently from the node partitioning, this

approach increase the overall DoFs by the number of DoFs at interfaces, but every

subdomain can be solved separately and coupling can be ensured by the continuity of

the solution across the interface and equilibrates tractions between the subdomains.

The discussion in this thesis is restricted to element partitioning.

2.4.2 The finite element tearing and interconnecting method - the FETI method

The FETI method based on dual Schur complement approach has recently received

significant attention from researchers in structural dynamics. The method enforces

continuity of the solution across the interface by introducing Lagrange multipliers. This

makes the method suitable for coupling two or more subdomains almost completely

independent of each other. Being a relatively new method, it has been constantly

undergoing enhancement in the last decade. For example, Farhat and Roux (1991)

developed a FETI method for the parallel finite element solution of equilibrium equa-

tions; and its extension to dynamic problem was presented by Farhat et al. (1994).

Moreover, based on differentially partitioned FETI method, Park et al. (1997) pre-

sented an algebraically partitioned FETI method for structural problems on parallel

computers. In the following, we provide in brief the derivation of differential algebraic

equations based on differentially partitioned FETI method.

Consider an arbitrary domain Ω partitioned into S subdomains. For these multiple
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subdomains, the Lagrangian can be written as

L = T − U =
S∑

i=1

[
1
2

u̇iMiu̇i − 1
2

uiKiui
]

(2.23)

where Mi and Ki are respectively the mass matrix and stiffness matrix of each subdo-

main. In addition, the solution must be continuous across the interface. For simplicity,

we impose the continuity of displacements at the interface as:

S∑

i=1

Giui = 0 (2.24)

where Gi is a Boolean matrix that operates on nodal vectors of subdomain Ωi , picks

out the degrees of freedom lying along its interface and assembles them in an inter-

face vector. Note that the conjugate to Gi , i.e. the matrix Gi T operates on interface

vectors, picks out the degrees of freedom that belong to Ωi and assembles them at

their corresponding position in the nodal vector for subdomain Ωi .

The Lagrangian is augmented with the constraint equation (2.24) using a multiplier

Λ as:

L =
S∑

i=1

[
1
2

u̇iMiu̇i − 1
2

uiKiui
]
− ΛT

S∑

i=1

Giui (2.25)

Through the Euler-Lagrange equations




d
dt

(
∂L
∂u̇i

)− ∂L
∂ui = fi

e , i = 1, ... , S
d
dt

(
∂L
∂Λ̇

)
− ∂L

∂Λ = 0 (2.26)

We arrive at the system




Miüi + Kiui = fi
e + Gi T Λ, i = 1, ... , S

S∑
i=1

Giui = 0
(2.27)

where Λ can be interpreted as the interface reaction forces acting internally between

all subdomains. Such a system of equations belongs to a broader class of equations

called differential algebraic equations (DAEs). Actually, the system of 2.27 is DAEs

of index-3. An important concept in studying DAEs is the differential index, which

plays a key role in the classification and the behaviour of DAEs. The definition of the
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differential index can be expressed by the minimum number of differentiations needed

to transform a system of DAEs into a system of ODEs. In general, it is not advisable

to tackle DAEs of index 3 directly (Lunk and Simeon, 2006). Instead, the index needs

to be lowered first by introducing alternative formulations.

2.4.3 Introduction to the GC method

For the sake of comparison, two partitioned methods which are appealing for PsD

testing with substructuring (Gravouil and Combescure, 2001; Combescure and Gravouil,

2002; Pegon and Magonette, 2002; Pegon, 2008) are introduced. Firstly, we present

the GC method which enables arbitrary numeric schemes of the Newmark family to

be coupled with different time steps in each subdomain through continuity of velocities

at the interface (Gravouil and Combescure, 2001). We consider here for simplicity,

the GC method with only two subdomains A and B. Subdomain A is discretized in

time with a coarse time step ∆tA and subdomain B with a fine time step ∆tB . It is

assumed that

∆tA = ss∆tB (2.28)

with ss the number of substeps. The basic principles of the method can be illustrated

in Fig. 2.5. Its solution procedure can be detailed as follows:

Fig. 2.5: The solution procedure of the GC method
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1. Solve the free problem in subdomain A .

M̃A üA
n+1free

= FA
ext ,n+1 − KA ũA

n − CA˜̇u
A
n

uA
n+1free

= ũA
n + αA

1 üA
n+1free

u̇A
n+1free

= ˜̇u
A
n + αA

2 üA
n+1free

(2.29)

where

M̃A = MA + αA
1 KA + αA

2 CA

ũA
n = uA

n + ∆tu̇A
n + ∆t2

(
1
2
− βA

)
üA

n

˜̇u
A
n = u̇A

n + ∆t (1− γA ) üA
n

αA
1 = βA ∆t2

αA
2 = γA ∆t

(2.30)

2. Interpolate the free velocity in subdomain A.

u̇A
n+j/ssfree

=
(

1− j
ss

)
u̇A

nfree
+

j
ss

u̇A
n+1free

(2.31)

3. Solve the free problem in subdomain B.

M̃B üB
n+j/ssfree

= FB
ext ,n+j/ss − KB ũB

n+(j−1)/ss − CB˜̇u
B
n+(j−1)/ss

uB
n+j/ssfree

= ũB
n+(j−1)/ss + αB

1 üB
n+j/ssfree

u̇B
n+j/ssfree

= ˜̇u
B
n+(j−1)/ss + αB

2 üB
n+j/ssfree

(2.32)

where

M̃B = MB + αB
1 KB + αB

2 CB

ũB
n+(j−1)/ss = uB

n+(j−1)/ss +
∆t
ss

u̇B
n+(j−1)/ss +

(
∆t
ss

)2 (
1
2
− βB

)
üB

n+(j−1)/ss

˜̇u
B
n+(j−1)/ss = u̇B

n+(j−1)/ss +
∆t
ss

(1− γB ) üB
n+(j−1)/ss

αB
1 = βB

(
∆t
ss

)2

αB
2 = γB

∆t
ss

(2.33)

4. Calculate the Lagrange multiplier at end of substep and solve the link problem

in subdomain B.
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The Lagrange multiplier can be obtained with the following equations

HΛn+j/ss = −
(

LA u̇A
n+j/ssfree

+ LB u̇B
n+j/ssfree

)
(2.34)

where

H = αA
2 LA (

M̃A)−1 (
LA)T

+ αB
2 LB (

M̃B)−1 (
LB)T

(2.35)

With the Lagrange multiplier at the end of the substep, we can calculate

the link solution.

M̃B üB
n+j/sslink

=
(
LB)T

Λn+j/ss

uB
n+j/sslink

= αB
1 üB

n+j/sslink

u̇B
n+j/sslink

= αB
2 üB

n+j/sslink

(2.36)

Finally, the kinematic quantities in subdomain B can be obtained with sum-

ming the free solutions and link solutions.

uB
n+j/ss = uB

n+j/ssfree
+ uB

n+j/sslink

u̇B
n+j/ss = u̇B

n+j/ssfree
+ u̇B

n+j/sslink

üB
n+j/ss = üB

n+j/ssfree
+ üB

n+j/sslink

(2.37)

5. Solve the link problem in subdomain A .

M̃A üA
n+1link

=
(
LA)T

Λn+1

uA
n+1link

= αA
1 üA

n+1link

u̇A
n+1link

= αA
2 üA

n+1link

(2.38)

Similarly, the kinematic quantities in subdomain A can be obtained as follows,

uA
n+j/ss = uA

n+j/ssfree
+ uA

n+j/sslink

u̇A
n+j/ss = u̇A

n+j/ssfree
+ u̇A

n+j/sslink

üA
n+j/ss = üA

n+j/ssfree
+ üA

n+j/sslink

(2.39)

In the GC method, the stability of the global problem depends on the stability condi-

tions of each subdomain. Its proof was given by Gravouil and Combescure (2001)

using an energy norm. The coupling between the Newmark methods does not affect
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the stability of the algorithms. Moreover, in multi-time-step cases the GC method en-

tails energy dissipation at the interface, while for the case of a single time step in all

the subdomains the GC method is energy preserving.

The GC method (Gravouil and Combescure, 2001) as most of available methods,

is in essence a sequential staggered algorithm that the integration of subdomain B

requires information from subdomain A in the current time step. Consequently, the

process in subdomain(s) with the fine time step has to systematically stop in order to

wait for the process in the subdomain(s) with the coarse time step.

2.4.4 The interfield parallel method - the PM method

Pegon and Magonette (2002, 2005) developed and implemented an interfield paral-

lel algorithm, the PM method, based on the GC method, but where the solution of

each subdomain states advance simultaneously. In the following, we presented the

formulation of the PM method. Consider for simplicity the linear elastic problem to

Fig. 2.6: The solution procedure of the PM method

be integrated with two subdomains A and B. In the PM method, a time step equal to

2∆tA is exploited on subdomain A, in order to anticipate information on the subdomain

B at the beginning of a new coarse time step. As depicted in Fig. 2.6, the solution

procedure is described as follows:

1. Solve the free problem of subdomain A using 2∆t in order to advance from tn−1
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to tn+1

M̃A üA
n+1free

= FA
ext ,n+1 − KA ũA

n−1 − CA˜̇u
A
n−1

uA
n+1free

= ũA
n−1 + αA

1 üA
n+1free

u̇A
n+1free

= ˜̇u
A
n−1 + αA

2 üA
n+1free

(2.40)

where

M̃A = MA + αA
1 KA + αA

2 CA

ũA
n = uA

n−1 + 2∆t u̇A
n−1 + (2∆t)2

(
1
2
− βA

)
üA

n−1

˜̇u
A
n = u̇A

n−1 + 2∆t (1− γA ) üA
n−1

αA
1 = βA (2∆t)2

αA
2 = γA 2∆t

(2.41)

2. Interpolate of the free velocity in subdomain A between tn and tn+1

u̇A
n+j/ssfree

=
(

1− j
ss

)
u̇A

nfree
+

j
ss

u̇A
n+1free

(2.42)

3. Start of the loop with ss substeps in subdomain B

4. Solve the free problem in subdomain B at tn+j/ss with j = {1, ... , ss}

M̃B üB
n+j/ssfree

= FB
ext ,n+j/ss − KB ũB

n+(j−1)/ss − CB˜̇u
B
n+(j−1)/ss

uB
n+j/ssfree

= ũB
n+(j−1)/ss + αB

1 üB
n+j/ssfree

u̇B
n+j/ssfree

= ˜̇u
B
n+(j−1)/ss + αB

2 üB
n+j/ssfree

(2.43)

where the relative parameters are equal to those of the GC method in subdo-

main B as shown in (2.33).

5. Calculate the Lagrange multiplier vector Λn+j/ss

HΛn+j/ss = −
(

LA u̇A
n+j/ssfree

+ LB u̇B
n+j/ssfree

)
(2.44)

where

HΛn+j/ss = −
(

LA u̇A
n+j/ssfree

+ LB u̇B
n+j/ssfree

)
(2.45)
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6. Solve of the link problem on subdomain B at tn+j/ss

M̃B üB
n+j/sslink

=
(
LB)T

Λn+j/ss

uB
n+j/sslink

= αB
1 üB

n+j/sslink

u̇B
n+j/sslink

= αB
2 üB

n+j/sslink

(2.46)

7. Calculate the kinematic quantities of subdomain B at tn+j/ss

uB
n+j/ss = uB

n+j/ssfree
+ uB

n+j/sslink

u̇B
n+j/ss = u̇B

n+j/ssfree
+ u̇B

n+j/sslink

üB
n+j/ss = üB

n+j/ssfree
+ üB

n+j/sslink

(2.47)

If j = ss, then end the loop in subdomain B

8. Solution of the problem link in subdomain A at tn+1

M̃A üA
n+1link

=
(
LA)T

Λn+1

uA
n+1link

= αA
1 üA

n+1link

u̇A
n+1link

= αA
2 üA

n+1link

(2.48)

9. Calculate the kinematic quantities of subdomain A at tn+1

uA
n+j/ss = uA

n+j/ssfree
+ uA

n+j/sslink

u̇A
n+j/ss = u̇A

n+j/ssfree
+ u̇A

n+j/sslink

üA
n+j/ss = üA

n+j/ssfree
+ üA

n+j/sslink

(2.49)

As shown in Fig. 2.6, two processes (the dashed lines) are advanced independently

and simultaneously; and the information exchanges are only required at the end of the

loop. This method is therefore parallel but may amplify the errors in both subdomains

(Pegon and Magonette, 2002). Moreover, the energy approach is not available for the

PM method and the spectral analysis was done for this method by (He, 2008). And

the method was discovered to be stable if the stability requirement in each subdomain

could be satisfied.
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2.5 Summary

The state of the art to the work of the thesis was provided in this chapter. Initially, a

brief overview of several well-established testing methods used in earthquake engi-

neering was provided, and among them, the PsD testing with dynamic substructuring

and the RTDS method were stated in terms of historical development, advantages,

limitation as well as some challenges. Then, several time integration algorithms in-

volved in RTDS tests and PsD tests were introduced within three families: explicit,

implicit and linearly implicit. Lastly, Section 2.4 reviewed some techniques related to

partitioned time integration methods, such as domain decomposition methods and

the FETI method, and elaborated two partitioned integration methods, i.e. the GC

method and the PM method.
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CHAPTER 3

ANALYSIS OF L-STABLE REAL TIME COMPATIBLE ALGORITHMS

3.1 Introduction

Most of the research works carried out on substructure tests considered structural

integrators for the equations of motion second-order in time. Nonetheless, it is well

known that the motion of the PS in a substructure test is driven by a transfer sys-

tem -actuators- and sensors, governed by a control unit. Since the control system

is typically described by first-order Differential-Algebraic Equations (DAEs), the uti-

lized integrators have to deal with mixed first- and second-order DAEs. In order to

solve this problem, there are mainly three options: i) to use different integrators for

structural and control systems, respectively, -see for instance Wu et al. (2007), that

utilizes the Newmark-β method for the emulated structure and a proprietary MTS

controller with its built-in time integrator; ii) to reformulate the control equations into a

second-order form (Brüls and Golinval, 2006), and employ a structural integrator like

the Generalized-α (Chung and Hulbert, 1993) for both systems; iii) to use first-order

integrators like the Rosenbrock algorithms, for both structural and control systems.

Herein, this thesis adopts the last option owing to the favourable properties of LSRT

algorithms employed in control (Vulcan, 2006).

The utilized LSRT algorithms belong to the class of the linearly implicit Rosenbrock

methods which combines positive properties of the explicit and implicit methods. Fur-

thermore, the algorithms are L-stable which enable high-frequency dissipation to be

achieved without sacrificing low-frequency accuracy. Besides, the LSRT algorithms

enjoy great popularity due to their simplicity of implementation for nonlinear problems.
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In this chapter, the novel L-Stable Real-time (LSRT) compatible algorithms derived

from the Rosenbrock methods (Bursi et al., 2008) are introduced. In particular, the

one- and two-stage methods are analysed in terms of accuracy and stability, and their

performance for nonlinear system is investigated through numerical experiments on

an uncoupled spring-pendulum system.

3.2 Rosenbrock based algorithms

This section mainly summarizes three real-time compatible algorithms, i.e. the

LSRT methods, which have been recently introduced (Bursi et al., 2008) in order to

perform RTDS tests. In detail, real-time compatibility implies that to obtain the solu-

tion of the differential equation ẏ = F(y, t), a numerical method does not require the

knowledge of the value of F or its derivatives at the end of the time step ∆t . Moreover,

to be compatible with dSPACE which operates in real time (dSPACE, 2001), the inte-

grator has to be characterized by intermediate substeps sampled with a sample rate

which is an integer number of the base sample rate. Following (Geradin and Rixen,

1997, p.389), the semi-discrete equations of motion for a generic nonlinear structure

can be expressed in a general form:

Mẍ + f (x, ẋ) = g (t) (3.1)

where M is the mass matrix, x stands for the displacement vector while ẋ and ẍ repre-

sent the corresponding velocity and acceleration vectors. The term f (x, ẋ) represents

the internal force vector including the elastic forces and the internal dissipation forces,

and the expression g defines the external force vector. Both M and g (t) do not de-

pend on the configuration.

Driven by the idea to use only one integrator both for dynamic and control equations

(Samin et al., 2007), (3.1) can be reformulated in Hamilton form:

ẏ = F(y, t) =





y2

M−1 (
g(t)− f

(
y1, y2

))



 (3.2)

where y =
{

yT
1 yT

2

}T
=

{
xT ẋT

}T
defines the state vector.
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The solution of (3.2) by means of an s-stage Rosenbrock method (Rosenbrock,

1963) is given by:

yk+1 = yk +
∑s

i=1 biki

ki = [I− γ∆tJ]−1
(

F
(

tk + αi∆t , yk +
∑i−1

j=1 αijkj

)
+ J

∑i−1
j=1 γijkj

)
∆t

(3.3)

where αi =
∑i−1

j=1 αij , γij and bi are the algorithm coefficients, and J is the Jacobian

matrix which is defined as

J =
∂F
∂y

(3.4)

This method is very suitable for the numerical solution of stiff and nonlinear prob-

lems (Verwer, 1982; Arnold et al., 2007b). To achieve so, it requires only a single

linearization and matrix decomposition per time step, whilst J is formed only at the

beginning of each ∆t . Thus, the method is linearly implicit (Hairer and Wanner, 1996,

p.102). In real-time testing, the Jacobian operator J is formed only on the basis of the

NS, but other choices of J can improve the performance of these methods (Steihaug

and Wolfbrandt, 1979; Lamarche et al., 2009).

In order to achieve real-time compatible, It is assumed that αi =
i−1∑
j=1

αij so that the

function f and its derivative at beginning of every inner stage only depend on the

known solutions and coupling forces solved before. This summation also implies

αi = 0 for i = 1.

3.2.1 L-stable real-time one-stage (LSRT1) method

The one-stage real-time method when applied to the differential equation (3.2) ex-

ploits the following formulas:

k1 = [I− γ∆tJ]−1 f (yk , tk ) ∆t , yk+1 = yk + b1k1 (3.5)

The method is first-order accurate. The conditions necessary to achieve A-stability

and L-stability (Hairer and Wanner, 1996) are γ ≥ 1
2 and γ = 1, respectively.
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Fig. 3.1: Spectral radii ρ of the LSRT2 method with respect to the Generalized-α

method and Newmark-Chang method vs. the non-dimensional frequency Ω

3.2.2 L-stable real-time two-stage (LSRT2) method

The two-stage real-time method applied to (3.2) can be expressed as:

k1 = [I− γ∆tJ]−1 f (yk , tk ) ∆t , yk+α21 = yk + α21k1 (3.6)

k2 = [I− γ∆tJ]−1 (
f
(
yk+α21 , tk+α2

)
+ Jγ21k1

)
∆t , yk+α2 = yk + b1k1 + b2k2 (3.7)

For LSRT2 algorithm two sets of parameters are introduced that satisfy second-order

accuracy, L-stability and real-time compatibility: γ = 1 − √
2/2 and γ = 1 +

√
2/2,

together with α2 = α21 = 1/2, γ21 = −γ, b1 = 0 and b2 = 1. The favourable performance

of the LSRT2 method with respect to the low and high-frequency components of the

response can be observed from Fig. 3.1, where a comparison with the Generalized-α

method (Chung and Hulbert, 1993) and Newmark-Chang method (Chang, 2002) is

also illustrated.

3.2.3 L-stable real-time three-stage (LSRT3) method

The LSRT3 method applied to (3.2) can be expressed as:

yn+1 = yn + b1k1 + b2k2 + b3k3

k1 = (I− γ∆tJ)−1 f (tn, yn) ∆t

k2 = (I− γ∆tJ)−1 (f (tn + α2∆t , yn + α21k1) + γ21k1J) ∆t

k3 = (I− γ∆tJ)−1 (f (tn + α3∆t , yn + α31k1 + α32k2) + γ31k1J + γ32k2J) ∆t

(3.8)
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In order to ensure third-order accuracy, L-stability and real-time compatibility, it is

assumed that

b1 = 1/4, b2 = 0, b3 = 3/4

α2 = α21 = 1/3, α3 = 2/3, α31 = α32 = 1/3

γ21 = 0.1818, γ31 = −0.0428, γ32 = −0.5384, γ = 0.4359

(3.9)

Although this algorithm is third-order accurate for uncoupled and linear system, it is

relatively complex. Therefore, it is presented here only for the monolithic case rather

than the partitioned case.

It was proved by Bursi (2008) that these algorithms are unconditionally stable for

uncoupled problems and entail a moderate computational cost for real-time perfor-

mance. Generally, these algorithms entail five beneficial properties: i) they can be

implemented in a real-time environment and exploit evenly spaced substeps; ii) they

can deal with stiff systems relying on the L-stability property; iii) they do not exhibit

overshoot in the velocity for large time step; (iv) they do not require the computation

of the exponential of the system matrix and are easy to implement with few stages

in view of real-time performance; (v) they predict explicitly the state, thus in princi-

ple, they give a better control of the acceleration of the transfer system. In addition,

the LSRT algorithms were shown to be more competitive than popular Runge-Kutta

methods in terms of stability, accuracy and ease of implementation.

3.3 Accuracy analysis

Some of the parameters of the utilized LSRT algorithms are determined by their

required accuracy condition. Here, I reanalyse their accuracy in order to make a

preliminary preparation for the accuracy analysis of the partitioned methods.

In the accuracy analysis, two types of errors are usually considered: local errors

and global errors. The local error is the error introduced in a single step given the

exact initial solution; while the global error is the overall error caused by repeated

application of the integration approximation. Obviously, the global error is more desir-

able because it indicates the difference between the numerical solution and the exact
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solution. However, the global error is determined by local errors associated with the

accumulation of local errors at each time step. Thus, we mainly investigate local er-

rors of the partitioned methods. Local errors and global errors are sometimes defined

to include round-off errors. However, round-off errors are beyond the scope of this

thesis.

3.3.1 Local truncation error analysis for the LSRT1 algorithm

Here the Local truncation error of the LSRT1 method is analysed. We will let τ denote

the local truncation error, and yk be the exact solution.

For the sake of generality, the parameter γ of the LSRT algorithm is viewed as a

variable so that not only the L-stable algorithms but also the A-stable algorithms are

investigated.

The numerical solution yk+1 solved by the LSRT1 algorithm can be written in the

following form

yk+1 = yk + k1 = yk + [I− ∆tγJ]−1 f (tk , yk ) ∆t (3.10)

Let us return to the Taylor series approximation and use it to estimate the error in the

approximation of the LSRT1 algorithm. If we assume that we have all the data (yk and

its derivatives) at tk, then the exact solution at tk+1 is given, according to the first-order

Taylor series expansion, as follows

y (tk+1) = yk + fk ∆t + O
(

∆t2) (3.11)

By comparing (3.10) with (3.11), we can find that the numerical solution to the system

(3.2) satisfies

τy
k+1 = yk+1 − y (tk+1) = [I− ∆tγJ]−1 fk ∆t − fk ∆t

= ∆tγJ [I− ∆tγJ]−1 fk ∆t + O
(

∆t2
)

= O
(

∆t2
) (3.12)

which indicates that the algorithm is locally second-order accurate.
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3.3.2 Local truncation error analysis for the LSRT2 algorithm

Similarly, we assume that yk = y(tk ) and leave the parameter γ as variable. Inserting

all other parameters into (3.7) we can obtain:

yk+1 = yk + [I− ∆tJγ]−1
(

f
(

tk +
1
2

∆t , yk +
1
2

k1

)
+ Jγk1

)
∆t (3.13)

In order to investigate the local truncation error, we can simplify (3.13) into a formula

which only contains y and its derivatives at tk . Therefore, we adopt the first-order

Taylor’s series expansion of f
(
tk + 1

2 ∆t , yk + 1
2 k1

)
about tk :

f
(
tk + 1

2 ∆t , yk + 1
2 k1

)
= fk + ∆t

2
∂f
∂t

∣∣
k + k1

2
∂f
∂y

∣∣∣
k

+ O
(

∆t2
)

= fk + ∆t
2

∂f
∂t

∣∣
k + ∆t

2 [I− ∆tJγ]−1 Jfk + O
(

∆t2
) (3.14)

Now, Eq. (3.13) can be rewritten as:

yk+1 = yk + [I− ∆tγJ]−1


 fk + ∆t

2
∂f
∂t

∣∣
k + ∆t

2 [I− ∆tγJ]−1 Jfk−
−∆tγJ [I− ∆tγJ]−1 fk + O

(
∆t2

)


 ∆t (3.15)

We then expand the Taylor’s series of the exact solution y (tk+1) up to the second

order:

y (tk+1) = yk + fk ∆t +
∆t2

2

(
fk

∂f
∂y

∣∣∣∣
k

+
∂f
∂t

∣∣∣∣
k

)
+ O

(
∆t3) (3.16)

Comparing Eq. (3.15) with Eq. (3.16), we can get the local truncation error of this

method:

τy
k+1 = yk+1 − y (tk+1) = O

(
∆t3) (3.17)

which indicates a local truncation of order O
(

∆t3
)
.

Since the solution at the end of the first stage is required to calculate the Lagrange

multipliers in the partitioned methods. Here its local truncation error is analysed as

well. For LSRT2, the solution at tk + 1
2 ∆t is:

yk+ 1
2

= yk +
1
2

k1 = yk +
1
2

[1− ∆tγJ]−1 f (tk , yk ) ∆t (3.18)

From the Taylor series expansion, we then expand y
(
tk+1/2

)
up to the first order:

y
(

tk+ 1
2

)
= yk + fk

∆t
2

+ O
(

∆t2) (3.19)

45



Thus, we can obtain:

τ y
k+ 1

2
= O

(
∆t2) (3.20)

which implies that the middle point only has locally second-order accuracy.

3.3.3 Global error analysis for the LSRT algorithm

When applied to linear problems, the utilized algorithms can be recast into a recursive

form as

yk+1 = Ryk + Lk (3.21)

where R is the amplification matrix and Lk is the load vector that depends on the

external forces, respectively. Actually, the global error contains the local truncation

error of the current step and the propagation of the previous errors, i.e.,

ek+1 = yk+1−y (tk+1) = Ryk +Lk−y (tk+1) = R (yk − y (tk ))+Ry (tk )+Lk−y (tk+1) = Rek +τk+1

(3.22)

Thus,

ek+1 ≤ Rne0 +
n−1∑

i=1

Rn−iτi ≤ Rn − 1
R− 1

n
Max

i=1
τi (3.23)

Let us take the LSRT2 method for example. According to Eq. (3.13), we can simplify

its amplification matrix as

R = I + Φ∆t (3.24)

where the unitary matrix is corresponding to the first term at the RHS of Eq. (3.13)

and Φ∆t stands for the second term.

Thus, we can rewrite the global error as

ek+1 ≤ Rn − 1
Φ∆t

O
(

∆t3) = O
(

∆t2) (3.25)

which indicates that the LSRT2 algorithm is second-order accurate.

Roughly speaking, if the local error is O (∆tp), then the global error will be O
(

∆tp−1
)
.

Meanwhile, we can conclude that the LSRT1 algorithm is first-order accurate, and the

LSRT2 algorithm is second-order accurate.
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3.4 Stability analysis via the energy method

For physical reasons, it is desired that numerical solutions of stable system are

bounded (Wood, 1990). An algorithm which exhibits this behavior is said to be stable.

The stability of the LSRT algorithms have been analysed through the model approach

by Vulcan (2006). In order to further realize the decaying properties of the algorithms,

we introduce the energy method that guarantees the preservation of the total energy

of the system.

For the stability analysis, it suffices to restrict attention to an autonomous second

order problem in the linear region, characterized by the differential equation

Mü (t) + Cu̇ (t) + Ku (t) = 0 (3.26)

In this equation M, C and K are the mass, damping and stiffness matrices of the sys-

tem, respectively, while u (t), u̇ (t) and ü (t) are respectively the displacement, velocity

and acceleration vectors. In order to analyse the stability properties and investigate

the numerical damping of the LSRT algorithms, we assume no physical damping, i.e.,

C = 0. Eq. (3.26) can be reformulated in Hamilton form:

ẏ = Jy (3.27)

where

J =


 0 I

−M−1K 0


 ,y =





u (t)

u̇ (t)



 ,ẏ =





u̇ (t)

ü (t)



 (3.28)

The discrete form of the energy balance equation involves the increment of the me-

chanical energy over the time interval from tk to tk+1 . The increment can be expressed

in terms of mean values and increments of the displacement and velocity by the fol-

lowing formula:

∆Ek+1 = (uk+1 − uk )T K (uk+1 + uk ) /2 + (u̇k+1 − u̇k )T M (u̇k+1 + u̇k ) /2 (3.29)

which is the sum of the former potential energy increment and the latter kinetic energy

increment. It is assumed that the mass matrix M and K are symmetric and positive
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definite. In order to deal with the first-order algorithms, Eq. (3.29) is transformed into:

∆Ek+1 =
1
2





uk+1 − uk

u̇k+1 − u̇k





T 
 K 0

0 M








uk+1 + uk

u̇k+1 + u̇k



 =

1
2

(yk+1 − yk )T P (yk+1 + yk )

(3.30)

Here, P is a sparse matrix which contains two positive definite matrices, and there-

fore is positive definite. Before the detailed stability analysis, we state the following

formulae:

PJ =


 K 0

0 M





 0 I

−M−1K 0


 =


 0 K

−K 0




PJ−1 =


 K 0

0 M





 0 I

−M−1K 0



−1

=


 0 −M

M 0




(3.31)





x1

x2





T 
 0 −Y

Y 0








x1

x2



 = 0 (3.32)

which indicates that the matrices PJ and PJ−1 are zero-definite. These formulae are

used to simplify the energy balance equations in Subsection 3.4.1 and 3.4.2.

In the following subsections energy balance equations are derived for the LSRT1

and LSRT2 algorithms. Through splitting the expressions into mean values and in-

crements and reformulating both into linear functions of a specific vector, the energy

balance equations can be transformed into a quadratic form of the specific vector

multiplied by a polynomial of γ which determine the sign of the equation.

3.4.1 Stability analysis for the LSRT1 algorithm

Since an inverse matrix is included in Eq. (3.5), we rewrite it into:

yk =
1

∆t
J−1 [I− ∆tJγ] k1 =

1
∆t

[
J−1 − ∆tγI

]
k1 (3.33)

Therefore, the energy balance equation can be rewritten:

∆Ek+1 = 1
2 kT

1 P (2yk + k1)

= 1
2 kT

1 P
(
2 1

∆t

[
J−1 − ∆tγI

]
k1 + k1

)

= 1
2 kT

1 P (−2γ + 1) k1 + 1
∆t k

T
1 PJ−1k1

=
(−γ + 1

2

)
kT

1 Pk1

(3.34)
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For the algorithm to be stable the energy increment must be negative semi-definite,

i.e., zero or negative-definite. Obviously, if γ = 1/2, ∆Ek+1 = 0 and therefore the

algorithm is conservative; if γ > 1/2, the algorithm introduces positive dissipation

and is therefore unconditionally stable; if γ < 1/2, the algorithm provides negative

dissipation and is therefore unconditionally unstable.

3.4.2 Stability analysis for the LSRT2 algorithm

Similarly, we leave the parameter γ as variable and adopt all other parameters as

shown in Subsection 3.2.2. The first step is to state the energy increment over the

first stage form tk to tk+1/2. The increment can be expressed by the following formula:

∆Ek+1/2 =
(
uk+1/2 − uk

)T
K

(
uk+1/2 + uk

)
/2+

(
u̇k+1/2 − u̇k

)T
M

(
u̇k+1/2 + u̇k

)
/2 (3.35)

Similarly, Eq. (3.35) is transformed into:

∆Ek+1/2 =
1
2





uk+1/2 − uk

u̇k+1/2 − u̇k





T 
 K 0

0 M








uk+1/2 + uk

u̇k+1/2 + u̇k



 =

1
2

(
yk+1/2 − yk

)T
P

(
yk+1/2 + yk

)

(3.36)

To continue, we rewrite Eq. (3.6) into:

yk =
1

∆t
J−1 [I− ∆tJγ] k1 =

1
∆t

[
J−1 − ∆tγI

]
k1 (3.37)

Therefore, we obtain:

∆Ek+1/2 = 1
2

(
1
2 k1

)T
P

(
2yk + 1

2 k1
)

= 1
4 kT

1 P
(
2 1

∆t

[
J−1 − ∆tγI

]
k1 + 1

2 k1
)

= 1
4 kT

1 P
(−2γ + 1

2

)
k1 + 1

2∆t k
T
1 PJ−1k1

= 1
2

(−γ + 1
4

)
kT

1 Pk1

(3.38)

Evidently, we can conclude: if γ = 1/4, the energy in the first stage is conservative; if

γ > 1/4, the integration in the first stage provides positive dissipation; if γ < 1/4, the

solution in the first stage provides negative dissipation.

The increment of the mechanical energy over the time interval from tk to tk+1 can

be expressed as:

∆Ek+1 =
1
2

(yk+1 − yk )T P (yk+1 + yk ) =
1
2

kT
2 P (2yk + k2) (3.39)
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In order to avoid inverse matrices, the following transformations are required:

k2 = [I− ∆tJγ]−1
(

J
(

yk +
1
2

k1

)
∆t − ∆tJγk1

)
(3.40)

Thus,

yk =
1

∆t

[
J−1 − ∆tγI

]
k2 − 1

2
k1 + γk1 (3.41)

To continue, the energy balance equation can be rewritten:

∆Ek+1 = 1
2 kT

2 P (2yk + k2)

= 1
2 kT

2 P
(
2

(
1

∆t

[
J−1 − ∆tγI

]
k2 − 1

2 k1 + γk1
)

+ k2
)

= 1
2 kT

2 P (−2γk2 − k1 + 2γk1 + k2)

(3.42)

In order to eliminate the vector k1 in Eq. (3.42), it is necessary to express k1 with

respect to k2. To achieve this, we firstly substitute yk in Eq. (3.40) by the RHS of the

Eq. (3.37)

k2 = [I− ∆tJγ]−1 (
J

(
1

∆t

[
J−1 − ∆tγI

]
k1 + 1

2 k1
)

∆t − ∆tJγk1
)

= [I− ∆tJγ]−1 J
(

1
∆t J

−1 +
(

1
2 − 2γ

)
I
)

∆tk1

(3.43)

Through transformation, we can obtain the following formula:

k1 =
1

∆t

(
1

∆t
J−1 +

(
1
2
− 2γ

)
I
)−1

J−1 [1− ∆tJγ] k2 (3.44)

Substituting k1 in Eq. (3.42) by (3.44) yields:

∆Ek+1

= 1
2 kT

2 P
(

(2γ − 1) 1
∆t

(
1

∆t J
−1 +

(
1
2 − 2γ

)
I
)−1

J−1 [I− ∆tJγ] k2 + (1− 2γ) k2

)

= 1
2 (2γ − 1) kT

2 P
(

1
∆t

(
1

∆t J
−1 +

(
1
2 − 2γ

)
I
)−1

J−1 [I− ∆tJγ]− I
)

k2

(3.45)

The term in the bracket at the right hand side of P matrix in Eq. (3.45) can be

simplified:

1
∆t

(
1

∆t J
−1 +

(
1
2 − 2γ

)
I
)−1

J−1 [I− ∆tJγ]− I

=
(

1
∆t J

−1 +
(

1
2 − 2γ

)
I
)−1

J−1
(

1
∆t [I− ∆tJγ]− J

(
1

∆t J
−1 +

(
1
2 − 2γ

)
I
))

=
(

1
∆t J

−1 +
(

1
2 − 2γ

)
I
)−1

J−1
(−Jγ − J

(
1
2 − 2γ

))

=
(

1
∆t J

−1 +
(

1
2 − 2γ

)
I
)−1 (

γ − 1
2

)
(3.46)

Therefore, we have:

∆Ek+1 = −
(

γ − 1
2

)2

kT
2 P

((
2γ − 1

2

)
I− 1

∆t
J−1

)−1

k2 (3.47)
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Obviously, if γ = 1/4, we can obtain

∆Ek+1 = ∆t
(
γ − 1

2

)2
kT

2 PJk2 = 0 (3.48)

If γ = 1/2, we can easily find:

∆Ek+1 = 0 (3.49)

Accordingly, we can conclude that the LSRT2 algorithm with γ = 1/4 or γ = 1/2

preserves the total energy when applied to a conservative system (i.e., C = 0 and

F = 0).

For other values of γ, the stability condition is that the following matrix must be

positive definite

Q = P
((

2γ − 1
2

)
I− 1

∆t
J−1

)−1

(3.50)

Let’s analyse the matrix Q−1:

Q−1 =
((

2γ − 1
2

)
I− 1

∆t J
−1

)
P−1 = 1

∆t (PJ)−1 +
(
2γ − 1

2

)
P−1

=




(
2γ − 1

2

)
K−1 1

∆t K
−1

− 1
∆t K

−1
(
2γ − 1

2

)
M−1


 (3.51)

To analyse the matrix Q−1, we can rewrite it as:

Q−1 =


 A B

−B C


 (3.52)

where

A =
(

2γ − 1
2

)
K−1,B =

1
∆t

K−1,C =
(

2γ − 1
2

)
M−1 (3.53)

If γ > 1/4 and γ 6= 1/2, A, B and C are symmetric and positive definite. Using the

Blockwise inversion technique, the matrix Q can be expressed as:

Q =




(
A + BC−1B

)−1
−

(
A + BC−1B

)−1
BC−1

C−1B
(

A + BC−1B
)−1 (

C + BA−1B
)−1


 (3.54)
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If we suppose kT
2 = {xT

1 , xT
2 }, we can obtain.

kT
2 Qk2

=
{

xT
1 xT

2

}



(
A + BC−1B

)−1
−

(
A + BC−1B

)−1
BC−1

C−1B
(

A + BC−1B
)−1 (

C + BA−1B
)−1








x1

x2





= xT
1

(
A + BC−1B

)−1
x1 + xT

2

(
C + BA−1B

)−1
x2

+xT
2 C−1B

(
A + BC−1B

)−1
x1 − xT

1

(
A + BC−1B

)−1
BC−1x2

(3.55)

Since the matrices (A, B and C) are symmetric and positive definite,
(

A + BC−1B
)

and
(

C + BA−1B
)

are symmetric and positive definite. Meanwhile, their inverse ma-

trices are positive definite. Hence, we can obtain:

xT
1

(
A + BC−1B

)−1
x1 + xT

2

(
C + BA−1B

)−1
x2 > 0 (3.56)

and

xT
2 C−1B

(
A + BC−1B

)−1
x1 − xT

1

(
A + BC−1B

)−1
BC−1x2 = 0 (3.57)

Thus, we can get

kT
2 Qk2 > 0 (3.58)

which implies that the matrix Q is positive definite. Then we can obtain

∆Ek+1 = −
(

γ − 1
2

)2

kT
2 Qk2 < 0 (3.59)

Finally, we can conclude that if γ > 1/4 and γ 6= 1/2, the RHS of the energy bal-

ance equation is negative, implying that the algorithm is unconditionally stable and

introduces so called algorithmic damping. Conversely, the algorithm with γ < 1/4 is

unconditionally unstable and provides negative dissipation.

3.5 Numerical experiments on a spring-pendulum oscillator

It is well known that systems including pendula may exhibit large amplitude subhar-

monic and chaotic motions as well as simple periodic behaviour (Nayfeh and Arafat,
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Fig. 3.2: Schematic representation of a spring-pendulum system

2001; Bayly and Virgin, 1993). Both pendula and spring-pendula have been studied

theoretically, numerically and experimentally in the context of time integration and dy-

namic substructuring (Bursi and Mancuso, 2002; Kyrychko1 et al., 2006). In this sec-

tion, a spring-pendulum system is introduced, as a nonlinear test problem, to validate

the performance of the LSRT algorithms in nonlinear cases. The spring-pendulum

system has aspects of both a mass-spring oscillators and a simple pendulum. Thus,

it can, on the one hand, be taken as a nonlinear test system; on the other hand,

it can be used to model a stiff problem by introducing different springs with distinct

stiffness. In detail, the equations of motion of the spring-pendulum system are mod-

eled by using the Lagrange approach. Subsequently, its stability is studied using

the Routh-Hurwitz Criterion. Lastly, the LSRT algorithms are used to simulate the

spring-pendulum system.

3.5.1 Governing equations

The complete system is shown in Fig. 3.2. It consists of a spring-pendulum with

its pivot point connected to a mass M, belonging to a mass-spring-damper system

characterized by stiffness K and damping C. The mass M is guided by a line and

excited by an external force fe. The pendulum mass, m, is assumed to act at a

single point and is connected to the pivot point by a spring, k . The stretched length

is given by L + l where L is the original length of the spring together with the static
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deflection caused by gravity of the pendulum mass. It is evident that the system

includes rigid masses, springs, damper and external force. Therefore, the general

form of the Lagrange equations (Leonard, 1986), also considering dissipation through

the Rayleigh dissipation function and external forces using the idea of generalized

forces, is required

∂L
∂qi

− d
dt

(
∂L
∂q̇i

)
+

∂D
∂q̇i

= Qi (3.60)

The Lagrangian L is the difference between the kinetic energy of a system and its

potential energy, i.e., L = T − U. For this spring-pendulum system, the kinetic energy

is expressed as:

U =
1
2

Ky2 +
1
2

kl2 + mg
(

y − M + m
k

g + L − (L + l) cos θ

)
+ Mg

(
y − M + m

k
g
)

(3.61)

and the potential energy of the system is

T =
1
2

Mẏ2 +
1
2

m
(
ẏ2 + 2ẏ

(
(L + l) θ̇ sin θ − l̇ cos θ

)
+ l̇2 + (L + l)2 θ̇2) (3.62)

Where y is the displacement of M, and l and θ is describe the spring extensional and

pendulum angular motions, respectively. The superscript dots represent their time

derivatives.

The Lagrangian is therefore

L = T − U

= 1
2 Mẏ2 + 1

2 m
(
ẏ2 + 2ẏ

(
(L + l) θ̇ sin θ − l̇ cos θ

)
+ l̇2 + (L + l)2 θ̇2

)−
− 1

2 Ky2 + 1
2 kl2 + mg

(
y − M+m

k g + L − (L + l) cos θ
)

+ Mg
(
y − M+m

k g
)

(3.63)

For the viscous damping, we can introduce the Rayleigh dissipation function (Lemos,

1991) in which its contribution is analogous in form to the potential energy of a spring,

i.e.,

V =
1
2

Cẏ2 (3.64)

The external force enters the Lagrange equations in the right hand side, in the form

of generalized forces

Qy = fe (3.65)

which is the external force along the direction of y.
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Inserting all the terms of Eq. (3.60) into the following





∂L
∂y − d

dt

(
∂L
∂ẏ

)
+ ∂V

∂ẏ = Qy

∂L
∂θ − d

dt

(
∂L
∂θ̇

)
+ ∂V

∂θ̇
= 0

∂L
∂l − d

dt

(
∂L
∂ l̇

)
+ ∂V

∂ l̇ = 0

(3.66)

yields the system equations of motion

(M + m)ÿ + Cẏ + Ky + m(L + l)
[
θ̈ sin θ + θ̇2 cos θ

]
+ 2ml̇θ̇ sin θ −ml̈ cos θ = fe

m(L + l)2θ̈ + m(L + l)(g + ÿ) sin θ + 2m(L + l)l̇θ̇ = 0

ml̈ + kl −mÿ cos θ −m(L + l)θ̇2 + mg(1− cos θ) = 0

(3.67)

In particular, the coordinate y is directly excited by fe in Eq. (3.67), whereas θ

and l are not. Based on the circular frequency ω of fe an external resonance may

occur when ω/ωi is a rational number, where ωi is a natural frequency of the system.

Conversely, non-resonant interactions transfer energy from a high-frequency axial

mode to a low-frequency circular mode, even though there is no special relationship

between their frequencies.

3.5.2 Static analysis

The computation of static equilibria is often the first step in the analysis of a nonlin-

ear system model so that the behavior of the system in the neighborhood of each

equilibrium point can be qualitatively determined.

Before seeking for the equilibrium points, we rewrite the Lagrange equations of

(3.67) in the space-state form, through the transformations

x =





x1

x2

x3

x4

x5

x6





=





y

l

θ

ẏ

l̇

θ̇





(3.68)
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We will obtain the Hamilton form of the governing equations of motion

ẋ1 = x4

ẋ2 = x5

ẋ3 = x6

(M + m)ẋ4 + Cx4 + Kx1 + m(L + x2)
[
ẋ6 sin x3 + x2

6 cos x3
]

+

+ 2mx5x6 sin x3 −mẋ5 cos x3 = Fe

m(L + x2)ẋ6 + m(g + ẋ4) sin x3 + 2mx5x6 = 0

mẋ5 + kx2 −mẋ4 cos x3 −m(L + x2)x2
6 + mg(1− cos x3) = 0

(3.69)

Equilibrium positions are determined by the equilibrium conditions ẋ = 0. Hence, they

must satisfy the algebraic equations

Kx1 = Fe

mg sin x3 = 0

kx2 + mg(1− cos x3) = 0

(3.70)

which have two solutions, namely, the lower equilibrium point

x =
{

Fe/k 0 2jπ 0 0 0
}

, (j = 0, 1, 2, · · · ) (3.71)

and the upper equilibrium point

x =
{

Fe/k −2mg/k (2j + 1)π 0 0 0
}

, (j = 0, 1, 2, · · · ) (3.72)

Of particular interest in mechanics is the problem of stability of motion of dynamical

system when they are perturbed from an equilibrium state. Moreover, the behaviour

of a nonlinear system in neighborhood of an equilibrium point can be predicted on

the basis of the linearized system about the equilibrium points (Leonard, 1986). With

this in mind, we calculate the Jacobian matrices about the two equilibrium points, and

introduce Routh-Hurwitz Criterion to judge their stability.

For the lower equilibrium point, inserting its components into the equation J = ∂f/∂y

results the Jacobian matrix

J =




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−K/M −k/M 0 −C/M 0 0

−K/M −k/M − k/m 0 −C/M 0 0

0 0 −g/L 0 0 0




(3.73)
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leading to the characteristic equation

λ6+
C
M

λ5+
(

K + k
M

+
k
m

+
g
L

)
λ4+

(
Cg
LM

+
Ck
Mm

)
λ3+

(
gk
Lm

+ g
k + K
LM

+
kK
mM

)
λ2+

Cgk
LmM

λ+
gkK
LmM

= 0

(3.74)

For the upper equilibrium point, the Jacobian matrix is

J =




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−K/M k/M 0 −C/M 0 0

K/M −k/M − k/m 0 C/M 0 0

0 0 g/
(
L − 2mg/k

)
0 0 0




(3.75)

whose characteristic equation is

λ6 + C
M λ5 +

(
k
(

1
m + g

−kL+2gm + 1
M

)
+ K

M

)
λ4 + (CkL−3Cgm)k

(kL−2gm)mM λ3+

+ k (−3gKm+k (KL−g(m+M)))
m(kL−2gm)M λ2 − Cgk 2

(kL−2gm)mM λ− gk 2K
(kL−2gm)mM = 0

(3.76)

Next, Let us form the Routh array

λ6

λ5

λ4

λ3

λ2

λ1

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a2 a4 a6

a1 a3 a5 0

c1 c2 c3 0

d1 d2 0 0

e1 e2 0 0

f1 0 0 0

g1 0 0 0

(3.77)

In the case of the lower equilibrium point, the coefficients of the characteristic poly-

nomial are given as follows

a0 = 1 a2 = Cg
LM + Ck

Mm a4 = gk
Lm + g k+K

LM + kK
mM a6 = gkK

LmM

a1 = K+k
M + k

m + g
L a3 = Cg

LM + Ck
Mm a5 = Cgk

LmM

(3.78)
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According to Routh-Hurwitz Criterion, we can compute all other entries as

c1 = k+K
M c2 = kKL+gkm+gKm

LmM c3 = gkK
LmM

d1 = Ck 2

(k+K )mM d2 = Cgk 2

(k+K )LmM

e1 = kK
mM e2 = gkK

LmM

f1 = 0

(3.79)

The necessary condition that all roots have negative real parts is that all the elements

of the first column of the array have the same sign (nonzero). However, all the ele-

ments of Row f are zero and all the elements above Row f in the first column are

positive. In this case, some of the roots of the polynomial are located symmetrically

about the origin of the s-plane, e.g., a pair of purely imaginary roots. To determine

this special case, we take the last non-zero row and form an auxiliary equation:

kK
mM

λ2 +
gkK
LmM

λ0 = 0 (3.80)

Now carrying out its differentiation with respect to λ gives a new characteristic equa-

tion

d
dλ

(
kK
mM

λ2 +
gkK
LmM

λ0
)

= 2
kK
mM

λ = 0 (3.81)

Then, we continue the stability analysis by replacing with

f1 = 2
kK
mM

(3.82)

Hence, the last entry can be obtained

e2 =
gkK
LmM

(3.83)

Clearly, the terms in the first column are all positive. Therefore, the motion in the

neighborhood of the lower equilibrium point is stable. In the same manner, directly

using Routh-Hurwitz Criterion, the case of the upper equilibrium point is proved to be

unstable.

3.5.3 Numerical integration

After qualitatively studying the spring-pendulum system, we apply the LSRT algo-

rithms, as well as two Newmark-based integrators, to this system to investigate their
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nonlinear performance. These two Newmark-based integrators are explicit when

dealing with systems with only nonlinear stiffness. To implement them, an additional

prediction for target velocity is provided and a linearization step is required for the

Newmark-Chang method. In detail, a process, including an additional prediction for

velocity and a linearization for the nonlinear system, is carried out before integrating.

Then, the favourable properties of the LSRT algorithms are reconfirmed by compar-

ing with the utilized Newmark-based integrators in terms of accuracy, stability and

numerical dissipation.

3.5.3.1 Implementation

The state space form of the equations of motion can be directly integrated by the first-

order LSRT algorithms after the Jacobian matrix can be calculated at the beginning

of each time step. For the sake of comparison, two Newmark based integrators,

i.e., the explicit Newmark method and the Changs method, are also implemented.

These two Newmark-based integrators are explicit when dealing with systems with

only nonlinear stiffness. To apply them to the spring-pendulum system, an additional

prediction for target velocity is provided

ẋk+1 = ẋk + ∆t ẍk (3.84)

To implement the Newmark-Chang method, a linearization of (3.1) is required to

update the parameters β1 and β2. By means of the first-order Taylor’s series expan-

sion, the second term on the right-hand side of (3.1) can be approximated as

f (x, ẋ) = f(x0, ẋ0) +
∂f
∂x
|x0,ẋ0 (x−x0) +

∂f
∂ẋ
|x0,ẋ0 (ẋ− ẋ0) + O

(
(x− x0)2 , (ẋ− ẋ0)2) (3.85)

As a result, Eq.(3.1) becomes

M̄ẍ + C̄ẋ + K̄x = F̄ (3.86)
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where

M̄ = M

C̄ = ∂f
∂̇x |x0,ẋ0

K̄ = ∂f
∂x |x0,ẋ0

F̄ = g(t) + C̄ẋ0 + K̄x0 − f(x0, ẋ0)

(3.87)

Now, we recall the Newmark-Chang linearly implicit scheme. In this case, the target

displacement is calculated as follows:

xk+1 = xk + β1∆t ẋk + β2∆t2ẍk (3.88)

where two parameters β1 and β2, are given by

β1 =
[
I + 1

2 ∆tM̄−1C̄ + 1
4 ∆t2M̄−1K̄

]−1 [
I + 1

2 ∆tM̄−1C̄
]

β2 = 1
2

[
I + 1

2 ∆tM̄−1C̄ + 1
4 ∆t2M̄−1K̄

]−1 (3.89)

such that the method becomes linearly implicit even for the cases with nonlinear

damping terms.

3.5.3.2 Absolute stability analysis

In order to analyse the convergence properties of the LSRT methods, the spring-

pendulum system described by (3.67) is linearized around θ = 0 under the assump-

tion that the numerical solutions are contractive (Lambert, 1991, p.265). The spectral

radius ρ of the amplification matrix of the nonstiff spring-pendulum system whose

characteristics are summarized in Table 3.1 is represented in Fig. 3.3 with linear

scale (left subfigures) and logarithmic scale (right subfigures), for the LSRT2 and

the LSRT3 method, respectively, and for different γ values. The stability properties of

the LSRT methods are similar to those of the linear uncoupled systems. The LSRT3

method with γ = 0.1590 is unstable, while the LSRT2 method with γ = 1 +
√

2/2 and

the LSRT3 method with γ = 2.4052 exhibit an increased numerical damping. The

high-frequency filtering capabilities of the algorithms are evident in the log-scale rep-

resentation.
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Table 3.1: Spring-pendula characteristics for numerical simulations

Uncoupled spring-pendulum: nonstiff problem

M [kg] C [kg/s] K [N/m] m [kg] k [N/m] L [m]

11 40 1000 0.34 400 0.167

Uncoupled spring-pendulum: stiff problem

M [kg] C [kg/s] K [N/m] m [kg] k [N/m] L [m]

11 40 1000 0.34 400000 0.167
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Fig. 3.3: Spectral radii of the LSRT methods applied to the uncoupled spring-

pendulum oscillator linearized around θ = 0: a) the LSRT2 method; b) the LSRT3

method.

3.5.3.3 Accuracy analysis

The accuracy analysis of the uncoupled spring-pendulum nonstiff problem, whose

characteristics are listed in Table 3.1, is performed by means of numerical simula-

tions. The convergence both of displacement and velocity is depicted in Fig. 3.4a
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and 3.4b, respectively. As expected, all examined time-stepping methods exhibit

second-order accuracy except the LSRT3 method that shows third-order accuracy.

The choice of different values of γ for displacement and velocity accuracy provides

similar results for the methods with the same stage number as depicted in Fig. 3.4c

and Fig. 3.4d, respectively.

Fig. 3.4: Convergence of displacement and velocity for the uncoupled spring-

pendulum nonstiff problem summarized in Table 3.1: (a) displacement y error; (b)

velocity ẏ error; (c) displacement y error for the LSRT algorithms with different γs; (d)

velocity ẏ error for the LSRT algorithms with different γs.
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3.5.3.4 Numerical simulation

Some numerical simulations on the uncoupled stiff spring-pendulum system, whose

characteristics are summarized in Table 3.1, are depicted in Fig. 3.5. In detail, both

Fig. 3.5a and Fig. 3.5b show the axial velocity l̇ of the spring-pendulum system

integrated with ∆t = ∆t0 = 1/3ms both for the Newmark-Chang and the Explicit-

Newmark’s method. Conversely for comparison, 2∆t0 is used for the LSRT2 method

and 3∆t0 for the LSRT3 method, respectively. The filtering capabilities of the LSRT

methods are evident. When the time step is chosen to be ∆t0 = 2ms only the LSRT

methods exhibit a stable behaviour, as it is shown in Fig. 3.5c and 3.5d, respectively.

3.6 Conclusions

The LSRT algorithms were introduced and analysed in this chapter. Firstly, Con-

sidering L-stability, real-time compatibility and desirable accuracy, the LSRT algo-

rithms derived form the linearly implicit Rosenbrock methods were introduced. Sub-

sequently, their accuracy was restudied in a purely symbolic way, and their stability

was investigated by means of the energy approach, indicating how the parameter

affects the stability and dissipation property of the LSRT algorithm. Finally, the non-

linear performance of the LSRT algorithms was observed through numerical exper-

iments on the spring-pendulum system. Compared with two Newmark-based meth-

ods, the LSRT algorithms exhibit relative higher efficiencies both on high-frequency

dissipation and nonlinear implementation.
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Fig. 3.5: Numerical simulations for the uncoupled spring-pendulum stiff problem sum-

marized in Table 3.1: (a) velocity l̇ obtained with different methods and ∆t0 = 1/3ms;

(b) velocity l̇ provided by different LSRT algorithms and ∆t0 = 1/3ms; (c) velocity l̇

with ∆t0 = 2ms; (d) displacement y with ∆t0 = 2ms.
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CHAPTER 4

MONOLITHIC TIME INTEGRATION METHODS FOR REAL-TIME

SUBSTRUCTURE TESTS

4.1 Introduction

Real-time Testing based on the principle of Dynamic Substructuring and Pseudo-

Dynamic testing with dynamic substructuring also known as hybrid testing, are be-

coming more and more important in testing and proof of design and control strate-

gies for civil engineering, see for instance (Saouma and Sivaselvan, 2008) and (Bursi,

2008). In the related field of coupled mechanical systems Hardware-in-the-loop (HiL)

tests are carried out, where physically and computationally heterogeneous mechani-

cal components interact dynamically, and the response is obtained by solving simul-

taneously the coupled equations which model the system. Because terminology is

far from standard, heterogeneous testing is preferred herein to hybrid testing, be-

cause the tested system is composed of parts of different kinds, see (Felippa et al.,

2001; Gumaste et al., 2000) and references therein. In fact, hybrid is more linked to

multiplatforms or multimethods in software processes Donzelli and Iazeolla (2001).

RTDS and PsD techniques with DS involve splitting of the emulated structure into

two parts: the Physical Substructure (PS) or device, that contains a key region of

interest and is experimentally tested; the virtual or Numerical Substructure (NS), that

contains the remainder of the system and is numerically modelled as illustrated in

Fig.4.1a-d. By imposing compatibility and equilibrium conditions at the interface be-

tween the NS and the PS, respectively, the substructures are made to interact pos-

sibly in real time, in order to emulate the dynamic behaviour of the full emulated
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system. In the special case of real-time testing, the computational time per time in-

terval, i.e. the integration time ∆t plus the time for display must be smaller or equal

than the physical time taken by the actual motion of the emulated system. In order

to interconnect the PS and the NS, a transfer system that acts on the PS is typically

controlled to follow NS interface kinematic quantities or other outputs. This transfer

system normally consists of an electric or electro-hydraulic actuator, or system of ac-

tuators such as a shake table, and a controller, shown in block diagram form in Fig

4.1e. The overall real-time system must be capable of interfacing the NS with the test

system actuator and sensor in a seamless fashion.

Once the governing differential equations describing the NS and the PS involved

are partitioned, for instance by means of differential partitioning (Bursi et al., 2008),

different integrators can be exploited to perform the discretization in time, especially

in the case of real-time applications. See, among others, papers based on linear

multistep methods that are applied to the Euler-Lagrange form of equations of mo-

tions and are typically linearly implicit (Chen et al., 2009), explicit like the explicit

Newmark method (Bonnet et al., 2007, 2008) or applied with sub-increments and

corrections (Jung et al., 2007). Moreover, if they are A-stable they cannot exceed

the accuracy order of two - Dahlquist’s barrier (Lambert, 1991, p.243). Conversely,

there are papers where integrators are applied to the Hamilton form of equations of

motions (first-order in time) and are typically explicit (Zhang et al., 2005) or based on

Runge-Kutta methods, and conceived to be linearly implicit (Bursi et al., 2008). From

Butcher’s theory we know that a p-stage explicit Runge-Kutta method cannot have ac-

curacy order greater than p, but these methods reach easily accuracy of three (Bursi

et al., 2008) or more (Day, 1985). Due to the nature of heterogeneous simulations,

integrators are also linked with specific techniques, like the one that achieves an im-

proved stability by means of a better estimation of the Jacobian in a coupled system

(Lamarche et al., 2009) or by the approximation of the tangent operator directly from

measurements (Bonelli and Bursi, 2004; Hung and El-Tawil, 2009). Moreover, prob-

lems derived from the dynamics of the transfer system have elegantly been solved

with outer loop strategies (Bonnet et al., 2007) and/or delay compensation techniques

(Ahmadizadeh et al., 2008). Simulations of complex substructures may also require

the need of multitasking (Bonnet et al., 2007), or the use of partitioned integrators with
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subcycling (Bonnet et al., 2008). Moreover, for real-time applications other topics, i.e.

operating systems, control and equipment are investigated in depth. They are beyond

the scope of this paper, but relevant information can be found in the articles(Saouma

and Sivaselvan, 2008; Bursi et al., 2008).

In this chapter we focus on monolithic time integrators, i.e. single time-stepping

schemes which are directly applied to an emulated system. Currently limited to linear

systems (Bursi et al., 2008), we extend the application of Rosenbrock-based real-time

algorithms to nonlinear and possibly stiff coupled systems, for which they were origi-

nally developed (Hairer and Wanner, 1996, p.102). Two real-time L-stable integration

methods with two (LSRT2) and three (LSRT3) stages based on Rosenbrock schemes

(Rosenbrock, 1963), already analysed for linear problems (Bursi et al., 2008), and we

note the beneficial effects of these algorithms in terms of their filtering properties be-

yond the Nyquist’s frequency. For the sake of comparison, we also implement the

linearly implicit Newmark-Chang method (Chang, 2002) and the Explicit-Newmark’s

method that were extensively employed by Bonnet et al.Bonnet et al. (2007, 2008) for

real-time testing. The remainder of the chapter is organized as follows. Section 4.2

presents the substructuring strategy and its application to a spring-pendulum sys-

tem. A stability analysis of the discretized coupled spring-pendulum system based

on zero-stability approach is presented in Section 4.3. In Section 4.4, some sub-

cycling strategies for the LSRT algorithms as well as some other real-time integra-

tors are developed. Moreover, in order to reconfirm the performance of the methods

on nonlinear problems, we present in section 4.5 some RTDS tests on the coupled

spring-pendulum system in which nonlinearities are permitted in both the NS and PS.

Conclusions are drawn in Section 4.6.
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4.2 Substructuring strategy

4.2.1 Partitioning and coupling

For the NS and PS to combine in order to emulate the entire structure, real-time cou-

pling at the interconnection between the substructures is required. Coupling between

the NS and the PS is achieved through interface compatibility and equilibrium condi-

tions. With the equations of motion of the NS, the kinematic quantities can be fully

computed from the previous displacement, velocity and acceleration vectors. Those

controlled kinematic quantities relating to the physical/numerical substructure inter-

face are then applied to the test specimen using a transfer system and the coupling

force vector measured at the interface is feedback to the NS. This force feedback

ensures the equilibrium condition, whilst the kinematic quantities applied to the NS at

the interface results in the compatibility condition. In conclusion, the monolithic ap-

proach for real time tests consists in running two processes in parallel, and imposing

interface compatibility and equilibrium conditions to ensure their coupling.

The partitioning technique exploited herein to partition a system is called differ-

ential partitioning (Bursi, 2008) and is based on the governing differential equations

describing the NS and PS involved. In this chapter we consider a nonlinear spring-

pendulum system shown in Fig. 4.1a. Through the so-called differential partitioning

as shown in Fig. 4.1b, the overall structure is split into NS and PS depicted in Fig.4.1c

and d, respectively. Meanwhile, the global structure is uncoupled using two sets of or-

dinary differential equations (as shown in Section 4.4.2) connected by a shared force

vector, i.e. the coupling force at the interface, and by the interface continuities.

4.2.2 Coupled integration in real time based on displacement control

A prediction-substitution procedure based on kinematic control and without iteration

to satisfy the real-time requirement is considered herein. The algorithm is schemat-

ically depicted in Fig. 4.2. It entails the integration of the differential equations of

the NS using the coupling force mp
1 ẍp

1,k−2 + (k p
2 xp

2,k−2 + mp
2g)cos(xp

2,k−2) + mp
1g = un

k−1
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Fig. 4.1: (a)-(d) Schematic representation of a substructured spring-pendulum oscil-

lator; (e) block diagram representation including delay
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(a)

(b)

Fig. 4.2: Coupled integration in real time: (a) force-displacement(mixed) coupling

strategy; and (b) mixed strategy with algebraic coupling conditions

available at tk−1; the motion of the actuator governed by predicted kinematic quantity

ẍp
1,k = up

k available at tk ; and the measuring of the coupling force mp
1 ẍp

1,k + (k p
2 xp

2,k +

mp
2g)cos(xp

2,k ) + mp
1g. This actual prediction-substitution procedure is rather different

from a truly parallel scheme (Felippa et al., 2001), which at tk−1 would entail also

a prediction of the coupling force mp
1 ẍp

1,k + (k p
2 xp

2,k + mp
2g)cos(xp

2,k ) + mp
1g. This is not

useful owing to the nature of the PS. Note that according to Fig. 4.2, the applica-

tion of kinematic quantities and the relevant measurements entail a certain delay that

in our treatment is considered in Section 4.4 by means of an approximation on the

evaluation of the NS acceleration.

4.3 Subcycling strategies

Because the NS is likely to have several degrees of freedom, and may be nonlinear,

it is desirable to have large ∆ts to integrate the entire structure in real time. On the
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other hand, an ideal control requires a fine time step to match the sampling rate of the

digital controller (Bonnet et al., 2007). It is custom to deal with these requirements

with the use of subcycling strategies. For instance, see (Weiner et al., 1993) and

(Shome et al., 2004), among others, in the context of partitioned Runge-Kutta meth-

ods. Similarly, interfiled parallel algorithms without and with numerical dissipation

were developed for linear multistep methods (Bonelli et al., 2008b; Bursi et al., 2009).

Herein we still propose a monolithic approach, less advanced than a partitioned ap-

proach, but more effective than a basic multitasking strategy (Bonnet et al., 2007).

In fact, a basic multitasking strategy adopts interpolation to solve the incompatibility

between coarse and fine time steps; herein, we propose multistage algorithms -the

LSRT methods- endowed with interpolations that achieve a certain order of accuracy

in the NS. Similar interpolations are suggested for the Newmark’s schemes.

4.3.1 Subcycling strategies for the LSRT algorithms

Along the lines of Meijaard (2003), the continuous solution of the LSRT algorithms

can be described as

y(ξ) = yk + ∆t
s∑

i=1

bi(ξ)ki (4.1)

where ξ =
t− tk

∆t
with 0 ≤ ξ ≤ 1.

In detail, for the LSRT2 algorithm, the weights bi(ξ) read:

b1(ξ) =
(2α21 + 2γ + 2γ21 − ξ)ξ

2(α21 + γ21)
, b2(ξ) =

(−2γ + ξ)ξ
2(α21 + γ21)

(4.2)

Conversely, for the LSRT3 algorithm the weights bi(ξ) can be evaluated as

b1(ξ) = (4+6γ+6γ31+b2(−2+6γ31−6γ32)+6γ32−3ξ)ξ
4+6γ31+6γ32

b2(ξ) = b2ξ

b3(ξ) = (−6γ−2b2(1+3γ21)+3ξ)ξ
4+6γ31+6γ32

(4.3)

In this specific case, k n
2 and k n

3 relevant to NS are unknown; therefore, to ensure a

real-time process, it is assumed k n
1 = k n

2 = k n
3 in the first stage and k n

2 = k n
3 in the

second stage of each time step k , as shown in Fig. 4.3b. Two ways are proposed

to implement the subcycling strategy of Fig. 4.3a in an actual RT test. (i) A scheme
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Fig. 4.3: Solution sequence of the time integration of a coupled system with the

LSRT3 algorithm: (a) single time-step strategy; (b) multiple time-step strategy with

equilibrium-based interpolation; (c) multiple time-step strategy with differentiation-

based interpolation.
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based on Interpolation and equilibrium where the state vector can be computed with

(3.8) and (4.3); this procedure is shown in Fig. 4.3b for the LSRT method.(ii) A scheme

based on Differentiation and interpolation where the relevant strategy for the LSRT3

algorithm is illustrated in Fig. 4.3c; in this case less information from the PS is needed.

For the time being, both subcycling strategies were only tested off-line; therefore,

to evaluate the restoring force, the relevant acceleration ẍ1 coming from the PS in the

Interpolation and equilibrium strategy, was obtained via equilibrium, i.e.

ẍ1(ξ) =
1

mn
1

(
fe(ξ)− fs(ξ)− cn

1 ẋ1(ξ)− k n
1 x1(ξ)

)
(4.4)

where x1 and ẋ1 are scalar displacement and velocity, respectively. Conversely, ẍ1

in the Differentiation and interpolation strategy was obtained by the differentiation of

( 4.1).

4.3.2 Subcycling strategies for the Explicit Newmark method and the Newmark-

Chang method

Along the lines of Section 3.5.3, in order to compare the Explicit Newmark method

and the Newmark-Chang method with the LSRT algorithms described in Chapter 2,

we used them with ∆t0. Since they are single step methods without stages, we im-

plemented a subcycling strategy that foresees exchange of information only at the

beginning and at the end of ∆t0. Nonetheless, to use subcycling that implied inter-

polation within ∆t0, we can proceed as follows. The evaluation of the displacement

vector for the Newmark schemes was assumed to vary according to a complete third-

order polynomial within each ∆t as follows:

x (t − tk ) = c0 + c1 (t − tk ) + c2 (t − tk )2 + c3 (t − tk )3 (4.5)

The coefficient vectors are determined for the Newmark-Chang method by means of

interpolation of x and ẋ at time tk and tk+1, respectively:

xk+1 = xk + β1ẋk ∆t + β2∆t2ẍk

ẋk+1 = ẋk +
∆t
2

(ẍk + ẍk+1)
(4.6)
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Then,

c0 = xk , c1 = ẋk , c2 =
6(β1 − 1)ẋk + (6β2ẍk − ẍk − ẍk+1)∆t

2∆t
,

c3 =
4(1− β1)ẋk + (ẍk + ẍk+1 − 4β2ẍk )∆t

2∆t2

(4.7)

Accordingly, the acceleration vector can be obtained by double differentiation of (4.6)a,

i.e.

ẍ(ξ) =
6(β1 − 1)ẋk + (6β2ẍk − ẍk − ẍk+1)∆t

∆t
+3

4(1− β1)ẋk + (ẍk + ẍk+1 − 4β2ẍk )∆t
∆t

ξ
(4.8)

If we set β1 = 1, β2 = 0.5, the acceleration vector for the Explicit-Newmark’s method is

recovered. Notice that the acceleration is interpolated by first-order polynomial. But it

is different from a linear interpolation between ẍk and ẍk+1. The proposed interpola-

tion is derived from the original method. Therefore, this subcycling strategy preserves

the original order of accuracy. In Section 4.4.3, order reduction of accuracy is discov-

ered when implementing this subcycling strategy. However, this is not because of the

subcycling strategy but because the previous coupling force is used in Eq. (4.13).

4.4 Numerical application on a coupled spring-pendulum system

4.4.1 Zero Stability analysis

Even though time stepping schemes like the LSRT algorithms are L-stable for un-

coupled problems, as proved in Bursi et al. (2008) and in Subsection 3.5.3.2, for the

linear and the linearized case, respectively, they can become unstable for the coupled

case. This aspect of coupled systems treated in discrete time can be checked eas-

ily, through a zero-stability analysis (Kubler and Schiehlen, 2004; Bursi et al., 2008)

that represents a sufficient condition for stability (Stuart and Humphries, 1996). Even

though one chooses special initial conditions not to blow up the solution for a non-

zero stable case, the presence of roundoff errors in the computations will still cause

the numerical solution to blow up, and therefore, the zero-stability analysis becomes
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a necessary condition too. If one consider a vanishing step size ∆t → 0, this leads

to a time invariant state vector yk+1 = yk = y0. Thus, the zero-stability of the coupled

substructures does not depend on the integration scheme. For the RTDS implemen-

tation with a displacement control of the actuator shown in Fig. 4.1d, the zero-stability

analysis requires that the inputs, i.e. the coupling force un
k for the NS, and the accel-

eration up
k for the PS, be collected in a vector uk . The same can be done with the

outputs through the vector zk . Then, one can relate the inputs and the outputs taken

at the same instant at the interconnection with the relationship uk = Lzk , where L is a

time invariant Boolean matrix. For the coupled system of Fig. 4.1d, one gets,

zk =





ẍ1,k

fs,k−1



 , L =


 0 Lp

Ln 0


 , uk =





un
k

up
k



 (4.9)

where fs,k−1 = mp
1 ẍp

1,k−1 + (k p
2 xp

2,k−1 + mp
2g)cos(xp

3,k−1) + mp
1g and Lp = Ln = 1. If the

output equations are time invariant and linearly dependent on the inputs, one can

relate the input at time tk+1 to the input at time tk through the following relation:

uk+1 = C1uk + f̃, (4.10)

where the matrix C1 and the vector f̃ contain constant terms as a result of the vanish-

ing time steps ∆t . Hence, one obtains,

C1 =


 0 mp

1

0 −mp
1/mn

1




f̃ =





(
k p

2 xp
2,k + mp

2g
)

cos
(
xp

3,k

)
+ mp

1g
1

mn
1

(
fe,k+1 − k n

1 xn
1,k+1 − cnxn

2,k+1 + mp
2g − (

k p
2 xp

2,k + mp
2g

)
cos

(
xp

3,k

))





(4.11)

If one uses stable integrators, zero-stability of the partitioned integration of two sub-

structures is guaranteed, if an algebraic loop between the subsystems does not exist

and if the spectral radius of C1 lies within the unit circle in the Argand-Gauss plane. In

practice, the coupling of the NS and the PS must follow certain rules. For the coupled

spring-pendulum system under exam this condition results to be:

mp
2cos2 (

xp
3,k

)
+ mp

1 ≤ mn
1 (4.12)

where mp
1 and mn

1 are the split-masses in Fig. 4.1b, mp
2 is the pendulum mass and

xp
3 the relevant angle shown in Fig. 4.1d. If xp

3,k = 0, the total physical masses

75



present in the PS cannot be greater than the mass of the NS. This condition arises

from the fact that we are dealing with feed-through systems and an algebraic loop

arises between the acceleration up
k and the interface force un

k at the interface, because

their magnitudes are both dependent on each other. The algebraic loop can only

be removed through an iterative process to evaluate exactly interface quantities or

the presence of filters Kubler and Schiehlen (2004). However, iterations cannot be

performed in real time and some delay is always present in RTDS owing to the transfer

system and/or the data acquisition process: so the algebraic loop is not eliminated

and the zero-stability condition (4.12) obtained for the spring-pendulum system holds.

In the previous proof and the forthcoming numerical simulations, a realistic delay of

∆t between the acceleration at the interface and the coupling force is considered, i.e.

ẍ1,k+1 =
1

mn
1
(fe,k+1 − fs,k − cnẋ1,k+1 − k nx1,k+1 + (mp

1 + mp
2 )g) (4.13)

This assumption and its consequences on stability and accuracy are confirmed

from numerical simulations and heterogeneous tests presented herein and Section

4.5.2, respectively.

4.4.2 Numerical simulations

In numerical simulations on the coupled spring-pendulum system, the PS is also

integrated with the same integrator as the NS, as shown in Fig. 4.3a. The equation

of motion for the NS is represented by

mn
1 ẍn

1 + cn
1 ẋn

1 + k n
1 xn

1 = fe − fs + (mn
1 + mp

2 )g (4.14)

The kinmeatic quantity ẍn
1 evaluated by a integrator in the NS is transferred to the PS

whose governing equations are




mp
2 ẍp

2 + k p
2 xp

2 −mp
2 (L + xp

2 )(ẋp
3 )2 −mp

2 ẍp
1 cos xp

3 + mp
2g(1− cos xp

3 ) = 0

(L + xp
2 )ẍp

3 + (g + ẍp
1 ) sin xp

3 + 2ẋp
2 ẋp

3 = 0
(4.15)

To advance the solution of the PS, the same integrator is used to achieve the kine-

matic quantities at the end of the time step. The coupling force feedback to the NS is

calculated with the equation

fs = mp
1 ẍn

1 + k p
2 xp

1 cos xp
2 + mp

2g cos xp
2 + mp

1g (4.16)
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As shown in Fig. 4.3a, the coupling force has an inevitable delay of ∆t in order to

realize real time simulation, i.e., the coupling force feedback is the coupling force

calculated from the previous step.

Table 4.1: Coupled Spring-pendula characteristics for numerical simulations

Coupled spring-pendulum: nonstiff problem

mn
1 [kg] cn

1 [kg/s] k n
1 [N/m] mp

1 [kg] cp
1 [kg/s] mp

2 [kg] k p
2 [N/m] L [m]

10 40 1000 1 0 0.34 400 0.167

Coupled spring-pendulum: stiff problem

mn
1 [kg] cn

1 [kg/s] k n
1 [N/m] mp

1 [kg] cp
1 [kg/s] mp

2 [kg] k p
2 [N/m] L [m]

10 40 1000 1 0 0.34 400000 0.167

Results of numerical simulations on a coupled spring-pendulum system schemat-

ically shown in Fig. 4.1(d) are depicted in Fig. 4.4. Relevant characteristics for the

stiff case are summarized in Table 4.1. The time-history of the axial velocity ẋp
2 of the

pendulum is represented in Fig. 4.4a when the system is integrated with ∆t0 = 1/3ms.

Clearly, the LSRT methods exhibit higher numerical dissipation than the one relevant

to the Newmark-Chang and Explicit-Newmark’s methods. Moreover, if we reduce the

γ values in the LSRT algorithms, they can trace the high-frequency components of

the response as shown in Fig. 4.4b. When ∆t0 = 2ms, only the LSRT methods exhibit

a stable behaviour, as it is evident for ẋp
2 and xp

1 in Fig. 4.4c and Fig. 4.4d, respectively.

4.4.3 Accuracy analysis

The accuracy analysis of the monolithic algorithms applied to the coupled spring-

pendulum system is performed by means of numerical simulations on a nonstiff prob-

lem, whose characteristics are listed in Table 3.1. The convergence of displacement

and velocity of the NS shown in Fig. 1c performed by different numerical integrators is

shown in Fig. 4.5a and 4.5b, respectively. The reduction of accuracy to first order with

respect to the uncoupled case, see Subsection 3.5.3.3 and Bursi et al. (2008), is evi-
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Fig. 4.4: Numerical simulations for the coupled spring-pendulum stiff problem sum-

marized in Table 3.1: (a) velocity ẋp
2 obtained with different methods and ∆t0 = 1/3ms;

(b) velocity ẋp
2 provided by different LSRT algorithms and ∆t0 = 1/3ms; (c) velocity ẋp

2

with ∆t0 = 2ms; (d) displacement xp
1 with ∆t0 = 2ms.
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Fig. 4.5: Convergence of displacement and velocity for the coupled spring-pendulum

nonstiff problem summarized in Table 3.1: (a) displacement x1 error without sub-

cycling; (b) velocity ẋ1 error without subcycling; (c) displacement x2 error with

equilibrium-based interpolation; (d) displacement x2 error with differentiation-based

interpolation.

dent also for the nonlinear case. Moreover, the LSRT algorithms result to be more ac-

curate in magnitude with respect to the Newmark-Chang and the Explicit-Newmark’s

method. When the subcycling strategies described in Subsection 4.3.2 are used, the

equilibrium-based interpolation grants an increase of the axial displacement pendu-

lum accuracy of the LSRT methods compared to the differential-based interpolation,

as shown in Fig. 4.5c and Fig. 4.5d, respectively.
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4.5 Application tests

Results of some experimental tests are described herein to confirm both analytical

and numerical findings presented in the previous sections. As underlined in Sec-

tion 4.3 all subcycling strategies were implemented off-line, and therefore, the basic

integration methods presented in Fig 4.3a were considered. We recall that in het-

erogeneous tests, the NS has been implemented either as a linear or as a nonlinear

spring-mass-damper system.

4.5.1 The Bouc-Wen model

In order to significantly test the performance of time-stepping schemes, in some

cases, the NS was endowed with hysteretic springs governed by the Bouc-Wen model

(Wen, 1976). Differently from other piecewise nonlinear models, the Bouc-Wen model

offers a compact and continuous representation of hysteresis. In detail, the restoring

force for an SDoF system reads

r (t) = Khu (t) + z (t) (4.17)

where the hysteretic component z is given by the solution of the nonlinear differential

equation

ż = K0u̇ − |z (t)|n [βsgn (z(t)u̇) + γ] u̇ (4.18)

where sgn is the signum function. The selection of suitable values for the parameters

K0, β, γ and n, entails hardening or softening nonlinearities. It can be proved that z

attains an inelastic limit zy , that reads

zy =
[

K0

β + γ

]1/n

(4.19)

provided that β + γ > 0. β, γ and n control the hysteresis shape: a hardening be-

haviour is simulated when |γ| > |β| and γ < 0; otherwise, a softening behaviour

is obtained. n modulates the sharpness of yielding and when n → ∞ the elasto-

perfectly plastic case is approached. The choice n = 1 implies that (4.18) can be
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analytically solved by means of exponential functions. In detail:

z = K0
β+γ − C1e−(β+γ)u zu̇ > 0

z = K0
−β+γ − C2e−(−β+γ)u zu̇ < 0

(4.20)

where C1 and C2 depend on the initial conditions. Conversely, n 6= 1 implies an

approximate solution of (4.18) based on hypergeometric functions.

4.5.2 Heterogeneous tests

In order to perform real-time tasks a dSPACE DS1104 RD controller board was used,

whilst MATLAB/Simulink was exploited to build the numerical model and implement

the time-stepping schemes. The transfer system consisted of an electrically driven

ball-screw actuator displacement controlled with an in-line mounted servo-motor con-

trolled by a servo-drive. The heterogeneous system is sketched in Fig. 4.1d. The

instrumentation used consisted of a load cell exploited to measure the force acting

at the spring-pendulum pivot, a LVDT displacement transducer connected to the plat-

form to track and control the actuator movement, a digital incremental encoder used

to record both angular displacement and angular velocity of the pendulum and a LVDT

connected to the pendulum bob, to measure the change in pendulum length. In all

the experiments, the transfer system was controlled by means of a PID controller with

a polynomial delay compensation technique for delay (Wallace et al., 2005).

The first test regards an SDoF system where the physical split-mass produces a

purely inertial feedback force, whilst the NS is characterized by a hysteretic behaviour

simulated with a Bouc-Wen model. System parameters are collected in Table 4.2.

Fig. 4.6 shows the experimental results when the LSRT2 method with γ = 1 − √2/2

is used with ∆t = 0.001s. Moreover, a sinusoidal external excitation with frequency

f = 1.5 Hz amplitude A = 12 N is considered. The test is successful also when a

nonlinear NS is considered.

The second test considers the spring-pendulum system, where the PS is schemat-

ically shown in Fig. 4.1d and whose parameter values are provided in Table 4.2. In

this case the NS is linear. Fig. 4.7 shows the experimental results, in terms of xp
1 and

xp
2 , see Fig. 1(d), when using the LSRT2 method with γ = 1−√2/2 and ∆t = 0.002s.
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Table 4.2: Coupled system characteristics for experimental tests

SDOF system with a nonlinear Bouc-Wen NS

mn
1 [kg] Bouc −Wen k0 [N/m] mp

1 [kg] cp
1 [kg/s] mp

2 [kg] k p
2 [N/m] L [m]

10 β = 55, α = 45 1000 1 50 0 0 0

MDOF system with a spring-pendulum and a linear NS:

mn
1 [kg] cn

1 [kg/s] k n
1 [N/m] mp

1 [kg] cp
1 [kg/s] mp

2 [kg] k p
2 [N/m] L [m]

10 40 1000 1 0 0.34 400 0.167

MDOF system with a spring-pendulum and a nonlinear Bouc-Wen NS

mn
1 [kg] Bouc −Wen k0 [N/m] mp

1 [kg] cp
1 [kg/s] mp

2 [kg] k p
2 [N/m] L [m]

10 β = 55, α = 45 1000 1 0 0.34 400 0.167

(a) (b)

Fig. 4.6: Real-time test on an SDoF system with a nonlinear NS excited by an external

sinusoidal force with f = 1.5 Hz and A = 12 N: (a) PS and set-up; (b) experimental

results.

Moreover, a sinusoidal external excitation with frequency f = 2.2 Hz and amplitude

A = 12 N is considered. Again experimental results show the capability of the LSRT2

method to deal with nonlinear systems and to entail a stable response.

The last RTDS test is characterized by nonlinearities in both the NS and the PS,

respectively. The characteristics of the system are summarized in Table 4.2. Fig. 4.8
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Fig. 4.7: Real-time test on a spring-pendulum system with a linear NS excited by

an external sinusoidal force with f = 2.2 Hz and A = 12 N: (a) PS and set-up; (b)

experimental results.

shows the experimental results when the LSRT2 method is exploited with γ = 1−√2/2

and ∆t = 0.002s. In addition, a sinusoidal external excitation with frequency f = 1.2 Hz

and amplitude A = 20 N is considered. Though the force frequency is in resonance

with the nonlinear NS, the test was successfully carried out.

4.6 Conclusions

In this chapter, a Rosenbrock-based algorithm, originally developed for real-time

dynamic substructuring (RTDS), has been extended to the case of nonlinear sys-

tems. These algorithms are compatible with real-time test methods, such as RTDS,

and can be applied in either a two- or three-stages linear implicit L-stable (LSRT) form.

The computational overhead is kept to a minimum because they are linearly implicit,

i.e. in order to avoid non-linear systems, they require only a single linearization and

matrix decomposition per time step, and can use Jacobian matrices updated only at
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Fig. 4.8: Real-time test on a spring-pendulum system with nonlinear Numerical Sub-

structure excited by an external sinusoidal force with f = 1.2 Hz and A = 20 N.
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the beginning of each time step. The nonlinear test system used in this paper is a

spring-pendulum system. Both numerical simulations and real-time substructuring

test results from the spring-pendulum system, were used to demonstrate on the per-

formance of the LSRT algorithms. This included both non-stiff and stiff nonlinear test

problems. In all cases the LSRT algorithms compared very well with more established

methods. In fact, both stability and accuracy properties of the proposed algorithms

are typically better than the algorithms used for comparison. These favorable proper-

ties have been shown when considering nonlinearities both in the numerical and the

physical substructures. A second key part of this study was to consider subcycling

strategies as part of the proposed LSRT algorithms. Interpolation strategies were

implemented, which showed favourable stability properties and an expected loss of

accuracy in the coupled case owing to an assumed delay. As a result, the integration

methods presented, can be used to obtain, stable, accurate and robust numerical

integration when incorporated into heterogeneous test methods, such as RTDS.
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CHAPTER 5

PARTITIONED TIME INTEGRATION METHODS BASED ON

ACCELERATION CONTINUITY

5.1 Introduction

The LSRT methods were observed to be efficient in structural dynamics in previous

two chapters. Their applications to ODEs systems were well investigated in terms of

accuracy, stability and nonlinear performance. The applications of these methods to

RTDS tests in a monolithic way was studied through numerical analyses and experi-

mental validations on a coupled spring-pendulum system. However, the requirement

to use previous coupling force causes order reduction and stability limit. From this

chapter, we start to show how the LSRT methods can be extended to partitioned time

integration methods which permit independent subdomain computations.

Most of the previous works on partitioned time integration methods for structural

problems were based on second-order integration methods (Geradin and Rixen, 2000;

Park and Felippa, 2000; Combescure and Gravouil, 2002; Pegon and Magonette,

2002; Farhat and Chandesris, 2003; Lunk and Simeon, 2006; Brüls and Golinval,

2006; Jay and Negrut, 2007), such as the Newmark methods and the α methods.

Also, there were some developed for first order problems (Nakshatrala et al., 2008,

2009; Zheng and Petzold, 2006; Zheng et al., 2009), by means of first-order integra-

tors. In this chapter, our aim is to develop partitioned time integration methods for

structural problems by the family of linearly implicit Rosenbrock methods. Attempts

have been made to develop partitioned linear-implicit Euler methods for structural

problems (Burgermeister et al., 2006) and to apply linearly implicit Rosenbrock meth-
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ods to second-order DAEs (Arnold et al., 2007b).

Before going into details, a brief overview of some of the aforementioned works

worth note is presented. To develop a partitioned time integration method for struc-

tural dynamics, one has three choices for kinematic constraints along the subdomain

interfaces: continuity of displacement, velocity or acceleration. In References (Car-

dona and Geradin, 1989; Geradin and Rixen, 1997, 2000), the direct extensions of

the Newmark methods and the α method to DAEs were introduced by enforcing the

continuity of displacements or imposing the acceleration constraint. It was shown

that tackling a system of index three directly by a numerical method was proponed

for stability problems and probably lower global convergence; using the acceleration

constraint may lead to a drift-off effect in the displacement response. To overcome

both drawbacks, two prominent methods were conceived by Lunk and Simeon (2006);

Jay and Negrut (2007), relying on the displacement and velocity constraints. It was

illustrated that both methods had the second-order accuracy both in displacement

and velocity variables, and in the article by Lunk and Simeon (2006), the method was

proved to preserve the same stability condition as in the unconstrained case. How-

ever, those methods treat all differential equations and algebraic equations together

which are not suitable for independent subdomain computation.

To allow independent subdomain computation, the FETI method was developed ini-

tially for quasi-static structural problems (Farhat and Roux, 1991) and later extended

to structural dynamics (Farhat et al., 1995). Using this method, each subdomains

can be solved independently and the inter-subdomain continuity can be enforced via

Lagrange multipliers applied at the interfaces. Based on the FETI method, Gravouil

and Combescure (2001) proposed a multi-time-step coupling method, labelled as the

GC method. This method enables independent computation because an explicit form

of Lagrange multiplier is derived from the velocity constraint after the free solutions

of all subdomains. It was also shown that imposing velocity continuity at the inter-

faces leads to stable algorithm without considerable drift in the displacement con-

straint while imposing continuity of displacement or acceleration suffers from some

stability and/or accuracy issues. The energy dissipation and the computation of the

Lagrange multiplier at the fine time step were considered as drawbacks by Prakash

and Hjelmstad (2004), who developed a variant of this method by enforcing continuity
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of velocities only at the coarse time step in the mesh. Another drawback is related

to the staggered characteristics of the solution procedure, and Pegon and Magonette

(2002) conceived a interfield parallel procedure where all subdomains can be ad-

vanced simultaneously and continuously.

In this chapter, efficient partitioned time integration methods using element-based

partitioning for structural dynamics are presented. With these methods, one can firstly

solve the interface Lagrange multipliers and subsequently advance the solution in all

subdomains separately. Moreover, we provide a series of analytical and numerical

studies to investigate the performances of the resulting partitioned time integration

methods.

5.2 Derivation of an explicit Lagrange multiplier

In this section, we briefly state the derivation of an explicit Lagrange multiplier.

Considering nonlinearities in the differential equations and constraint equations, Eq.

(2.27) can be expressed in a general form as follows:





Miüi = fi
(
ui , u̇i , t

)
+ Gi T

(
ui

)
Λ, i = 1, ... , S

S∑
i=1

gi
(
ui

)
= 0

(5.1)

which are nu equations governing the dynamic behaviour of all subdomains supple-

mented by nc constraint equations, with fi
(
ui , u̇i , t

)
as the vector of applied and inter-

nal forces, gi
(
ui

)
as the nonlinear holonomic interface vector and Gi

(
ui

)
= ∂gi

∂ui as the

constraint Jacobian matrix of the ith subdomain. In nonlinear finite element analysis,

forces can be usually split into fi
(
ui , u̇i , t

)
= −Ki

(
ui

) − Cu̇i + fi
e (t) with the stiffness

term Ki (ui
)

, damping matrix Ci and the external force fi
e (t).

In general, it is not advisable to tackle DAEs of index-three directly. In order to

solve the DAEs (5.1), we lower its index by means of the following analytical differen-

tiations. By differentiating the constraint equations with respect to time, one can get
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the constraints at velocity level

S∑

i=1

Gi (ui) u̇i = 0 (5.2)

A second differentiation step yields the constraints at acceleration level

S∑

i=1

Gi (ui) üi +
∂Gi

∂ui u̇iu̇i = 0 (5.3)

Note that the partitioned methods in this thesis are mainly developed for the inter-

subdomain linear constraint equations. It is assumed that the constraint Jacobian Gi

is constant with respect ui. Therefore, the constraint at acceleration level can be ex-

pressed as: Giüi = 0. If we substitute in (5.1) the original constraints on displacement

level by Gü = 0, we get the so-called DAEs of index-one. In order to implement the

LSRT methods to solve it, the resulting DAEs can be rearranged in the following form





 I 0

0 Mi








u̇i

üi



 =





u̇i

fi
(
ui , u̇i , t

)



 +


 0

Gi T


 Λ, i = 1, ... , S

S∑
i=1

[
0, Gi

]




u̇i

üi



 = 0

(5.4)

With the assumption yi =





ui

u̇i



, we can obtain





Ai ẏi = Fi
(
yi , t

)
+ CT

i Λ
S∑

i=1
Ci ẏi = 0

(5.5)

For ease of notation, the matrices A, and C for the ith subdomain are presented with

subscript i to avoid double superscripts. We can solve the system (5.5) both for the

state vectors and the Lagrange multiplier vector and finally get the explicit expressions

ẏi = A−1
i Fi (yi , t

)
+ A−1

i CT
i Λ i = 1, ... , S (5.6)

and

Λ = −
[

S∑

i=1

CiA−1
i CT

i

]−1 S∑

i=1

CiA−1
i Fi (yi , t

)
(5.7)
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From a purely mathematical viewpoint, Eqs. (5.7) and (5.6) can be written in a

compact form as

ẏ = A−1F (y, t) + A−1CT Λ (5.8)

and

Λ = − [
CA−1CT]−1

CA−1F (y, t) (5.9)

where,

y =
{(

y1
)T · · · (yS

)T
}T

A = Blockdiagonal
[
A1 · · ·AS

]

F (y, t) =
{(

F1
(
y1, t

))T · · · (FS
(
yS , t

))}T

C = [C1 · · ·CS ]

(5.10)

Inserting the representation of the Lagrange multiplier vector from (5.9) into Eq. (5.8),

we can obtain a system ODEs for variables y.

ẏ = A−1F− A−1CT
[
CA−1CT

]−1
CA−1F (y, t) (5.11)

The so-called ODEs approach is to solve the resulting ODEs. The ODEs approach

solves all subdomains monolithically and therefore it is not suitable for independent

simulations. But the proposed partitioned methods developed in this chapter are

different from that: when the Lagrange multiplier vector achieved at the beginning of

the time step or stage, each subdomain advances independently.

For the sake of comparison, we introduce another Lagrange multiplier vector Ψ to

project solutions onto the velocity constraint, i.e.,





Miu̇i = Miu̇i + Gi T Ψ

Miüi = fi
(
ui , u̇i , t

)
+ Gi T Λ

S∑
i=1

Giu̇i = 0

S∑
i=1

Gi üi = 0

(5.12)
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Similarly, (5.12) can be written in the first order form as:





 Mi 0

0 Mi








u̇i

üi



 =





Miu̇i

fi
(
ui , u̇i , t

)



 +


 0

Gi T








Ψ

Λ



 , i = 1, ... , S

S∑
i=1

[
0, Gi

]




u̇i

üi



 = 0

(5.13)

In the same manner as the previous case, (5.13) can be simplified into the same form

as (5.5). Note that the differences exist in the expressions of Ai , Fi and C:

Ai =


 I 0

0 Mi


 ⇒


 Mi 0

0 Mi




Fi =





u̇i

f
(
ui , u̇i , t

)



 ⇒





Miu̇i

f
(
ui , u̇i , t

)





C =
[

0 Gi
]
⇒


 Gi 0

0 Gi




Λ = Λ ⇒




Ψ

Λ





(5.14)

Furthermore, we can obtain an explicit expression of the dual Lagrange multipliers

vector as (5.7). In the following sections, not only the solution procedures but also the

analytical investigations of accuracy and stability are based on Eqs. (5.6) and (5.7).

Therefore, this case with dual Lagrange multipliers is also under consideration.

5.3 Formulations of the partitioned time integration methods

Based on the analysis of the previous section, two efficient partitioned time integra-

tion methods based on the LSRT1 method and the LSRT2 method, respectively, are

presented. These methods consist in firstly solving the interface Lagrange multipliers

and subsequently advancing the solutions in all subdomains separately.

In the thesis, a series of partitioned time integration methods are developed. In

addition to the partitioned methods with no subcycling in this chapter, two types of
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Fig. 5.1: The staggered solution procedure of the LSRT1-based partitioned method

with ss = 1

extensions of them considering subcycling and a type of projection methods will be

presented in the next three chapters, respectively. For easiness of notation, we de-

fine them in the following ways: i) based on the utilized integrator(s), we consider two

classes of methods: the LSRT1-based method and the LSRT2-based method which

are denoted by R1 and R2, respectively; ii) based on time steps used, they can be

classified into: non-subcycling cases and subcycling cases which are denoted by N

and S, respectively; iii) based on solution procedures, they can be categorized into:

staggered cases and parallel cases which are shorten as S and P; iv) based on inter-

face continuity, first three types of methods are endowed with acceleration continuity

and the last type with velocity continuity and they are denoted by A and V. We name

the partitioned methods in inverse order. For example, the methods presented in the

following subsection is abbreviated as APNR1, standing for Acceleration continuity,

parallel solution procedure, Non-subcycling and the LSRT1 method.

5.3.1 A parallel solution procedure with no subcycling and based on the LSRT1

integrator (APNR1)

For simplicity, let us consider a system divided into two subdomains A and B. For

notational simplicity we illustrate the solution procedure for advancing from tk to tk+1

as shown in Fig. 5.1.
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1. Caculate the Lagrange multiplier vector Λk at time tk

Λk = −H−1 [
CA A−1

A FA
k + CBA−1

B FB
k

]
(5.15)

where H = CA A−1
A CT

A + CBA−1
B CT

B ;

2. Compute ki
1 where i = A , B and evaluate the solutions yi

k+1 at time tk+1 in both

subdomains

kA
1 = [I− ∆tγJA ]−1 A−1

A

(
FA

k + CT
A Λk

)
∆t

yA
k+1 = yA

k + kA
1

(5.16)

and

kB
1 = [I− ∆tγJB ]−1 A−1

B

(
FB

k + CT
B Λk

)
∆t

yB
k+1 = yB

k + kB
1

(5.17)

The case is defined as parallel because the interconnection is only done in the

beginning of each stage to calculate Lagrange multipliers and then each subdomain

can advance independently. Note that this method advances each subdomain with

the same time step and therefore is also suitable for the cases with more than two

subdomains.

5.3.2 A parallel solution procedure with no subcycling and based on the LSRT2

integrator (APNR2)

Here, both subdomains A and B are integrated by the LSRT2 algorithm with the

same time step ∆t . As shown in Fig. (5.2), we can describe the solution procedure

as follows:

1. Calculate the Lagrange multiplier Λk at time tk ;

Λk = −H−1 [
CA A−1

A FA
k + CBA−1

B FB
k

]
(5.18)

2. Compute ki
1 where i = A , B and evaluate the solutions yi

k+1/2 (i = A , B) -First

stage-;

kA
1 = [I− ∆tγJA ]−1 A−1

A

(
FA

k + CT
A Λk

)
∆t

yA
k+1 = yA

k +
1
2

kA
1

(5.19)
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Fig. 5.2: The staggered solution procedure of the LSRT2-based partitioned method

with ss = 1

and

kB
1 = [I− ∆tγJB ]−1 A−1

B

(
FB

k + CT
B Λk

)
∆t

yB
k+1 = yB

k +
1
2

kB
1

(5.20)

3. Calculate the Lagrange multiplier Λk+ 1
2

at time tk+ 1
2
;

Λk+ 1
2

= −H−1
[
CA A−1

A FA
k+ 1

2
+ CBA−1

B FB
k+ 1

2

]
(5.21)

4. Compute ki
2 and advance the solutions to yi

k+1 in both subdomain, respectively,

-Second stage-;

kA
2 = [I− ∆tγJA ]−1

(
A−1

A FA
k+ 1

2
+ A−1

A CT
A ΛA

k+ 1
2
− γJA kA

1

)
∆t

yA
k+1 = yA

k + kA
2

(5.22)

and

kB
2 = [I− ∆tγJB ]−1

(
A−1

B FB
k+ 1

2
+ A−1

B CT
B ΛB

k+ 1
2
− γJBkB

1

)
∆t

yB
k+1 = yB

k + kB
2

(5.23)

Since the LSRT2 method contains two stages, inter-domain exchange of information

is not only required at the beginning of each time step but also at the beginning of

the second stage. From the solution procedure of an entire time step, this method

appears staggered. But if we divide the solution procedure in one time step into two
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stage processes, each stage process appears to be the same as the APNR1 method.

From this point of view, the APNR2 method also enables parallel simulations.

In conclusion, the extension of the linearly implicit L-stable integrators to the DAEs

with acceleration constraint is inspired by the following two points: i) the combination

of the explicit expression of the multiplier vector and the explicit characteristics of the

linearly implicit methods leads to partitioned methods with explicit characteristics; ii)

the high-frequency dissipation property of the L-stable methods enforces numerical

stabilization to the partitioned methods.

More precisely, we postulate the following properties for the partitioned methods:

i) the accuracy of the adopted integrators are preserved for both state variables and

Lagrange multipliers; ii) the partitioned methods are unconditionally stable in the lin-

ear case; iii) drift-off effects in displacement and velocity responses are limited and

at least controllable; iv) the high-frequency dissipation property is retained and also

adjustable; v) the partitioned methods permit the implementation of subcycling and

further parallel extension. In the following sections, it will be shown that the first two

requirements can be met. The last three requirements will be tested in the next two

chapters.

5.4 Accuracy analysis

The accuracy is a very important aspect of partitioned time integration methods

that needs to be considered when choosing an integrator for a DAE system. When

solving DAEs, not only numerical estimates of differential solution quantities but also

algebraic solution components introduce error. Moreover, these two sources of errors

mostly interact even in a single step of the integration routine and propagate in the

long term.
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5.4.1 Local truncation error analysis of the APNR1 method

For the sake of generality, we consider a non-autonomous system in the first order

form (5.5) and we leave the parameter γ as a variable. Here, the local truncation error

analysis is performed in a compact form as in (5.8) and (5.9). Suppose we know the

exact solution at time tk , i.e., yk = y (tk ). Let us define the local truncation error as the

difference between the numerical solution yk+1 and the exact solution y (tk+1):

τ y
k+1 = yk+1 − y (tk+1) (5.24)

Following the solution procedure as shown in Fig. 5.1, we can see that the first step

is to insert the exact solution into Eq. (5.7)

Λk = −
[
CA−1CT

]−1
CA−1Fk (5.25)

where Fk := F (yk, tk). Note that the Lagrange multiplier vector is achieved by inserting

the exact solution to Eq. (5.7) is exact.

Inserting the right-hand side of Eq. (5.25) into Eqs. (5.16) and (5.17) and compact

all of them together, we can obtain the recursive formula

yk+1 = yk + [I− ∆tγJ]−1
(

A−1Fk − A−1CT
(

CA−1CT
)−1

CA−1Fk

)
∆t (5.26)

Assuming Q = A−1CT
(

CA−1CT
)−1

C, the recursive formula can be simplified into

yk+1 = yk + [I− ∆tγJ]−1 (I− Q) A−1Fk ∆t (5.27)

Note that for the ODEs approach, the Jacobian matrix used in the inverse term of

(5.27) is (I− Q) J instead. This is the main difference between the proposed parti-

tioned method and the ODEs approach.

Now, we use Taylor series expansion to express the exact solution at time tk+1

y (tk+1) = yk +
(
A−1Fk + A−1CT Λk

)
∆t + O

(
∆t2)

= yk +
(

A−1Fk − A−1CT
[
CA−1CT

]−1
CA−1Fk

)
∆t + O

(
∆t2)

= yk + (I− Q) A−1Fk ∆t + O
(

∆t2)
(5.28)

By comparing (5.27) with (5.28), we can obtain the local truncation error

τ y
k+1 = (I− Q) A−1Fk ∆t − [I− ∆tγJ]−1 (I− Q) A−1Fk ∆t + O

(
∆t2)

= ∆tγJ [I− ∆tγJ]−1 (I− Q) A−1Fk ∆t + O
(

∆t2) (5.29)
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which indicates a local truncation error of O
(

∆t2
)
. In the equation above, the key of

the transformation is

I− [I− ∆tγJ]−1 = ∆tγJ [I− ∆tγJ]−1 (5.30)

This transformation will be widely used hereafter.

In addition, the local truncation error of Λ needs to be investigated. Since the exact

Lagrange multiplier vector can be calculated by inserting exact solution to Eq. (5.7),

we can obtain:

τΛ
k+1 = −

[
CA−1CT

]−1
CA−1 (Fk+1 − F (y (tk+1) , tk+1))

6 −
[
CA−1CT

]−1
CLτ y

k+1
(5.31)

where L is the Lipschitz constant which must exist if a unique solution exists. Ob-

viously, we can conclude that the order of local truncation error of the Lagrange

multiplier vector is equal to the minimal order of the local truncation error of each

subdomain. In this case, τΛ
k+1 is of order O

(
∆t2

)
.

5.4.2 Local truncation error analysis of the APNR2 method

In this case, two stages are included in one time step. Let us start with the analysis

of the first stage. In the same manner as the analysis for the APNR1 method, the

solution at time tk is assumed to be exact. According to Eq. (3.6), we obtain the

solution at the middle point

yk+ 1
2

= yk +
1
2

[I− ∆tγJ]−1 (I− Q) A−1Fk ∆t (5.32)

With Taylor series expansion, we can express the exact solution at the middle point

y
(

tk+ 1
2

)
= yk +

1
2

(I− Q) A−1Fk ∆t + O
(

∆t2) (5.33)

Therefore, the local truncation error at tk+ 1
2

can be obtained as

τ y
k+ 1

2
=

1
2

[I− ∆tγJ]−1 (I− Q) A−1Fk ∆t − 1
2

(I− Q) A−1Fk ∆t − O
(

∆t2)

=
1
2

[I− ∆tγJ]−1 γJ (I− Q) A−1Fk ∆t2 − O
(

∆t2)
(5.34)
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which indicates that the local truncation error of the middle point is of O
(

∆t2
)
. Follow-

ing Eq. (5.31), the Lagrange multiplier at the middle point is also locally second-order

accurate.

In the second stage, we can obtain the solution at time tk+1

yk+1 = yk + [I− ∆tγJ]−1


 (I− Q) A−1F

(
yk+1/2, tk+1/2

)−
−∆tγJ [I− ∆tγJ]−1 (I− Q) A−1Fk


 ∆t (5.35)

According to Taylor series expansion, the term F
(
yk+1/2, tk+1/2

)
can be expressed as

follows

F
(
yk+1/2, tk+1/2

)
= Fk +

∆t
2

∂F
∂t

∣∣∣∣
k

+
∂F
∂y

∣∣∣∣
k

(
yk+1/2 − yk

)
+ O

(
∆t2) (5.36)

Since yk+1/2 is locally second-order accurate, it can be expressed as

yk+1/2 = yk +
1
2

(I− Q) A−1Fk ∆t + O
(

∆t2) (5.37)

Eq. (5.35) can be rearranged as

yk+1 = yk + [I− ∆tγJ]−1




(I− Q) A−1
(

Fk +
∆t
2

∂F
∂t

∣∣∣∣
k

+
1
2

J (I− Q) A−1Fk ∆t
)
−

−γJ [I− ∆tγJ]−1 (I− Q) A−1Fk ∆t


 ∆t

(5.38)

With Taylor series expansion, the exact solution at tk+1 can be expressed as

y (tk+1) = yk + fk ∆t +
∆t2

2

(
∂f
∂y

∣∣∣∣
k

fk +
∂f
∂t

∣∣∣∣
k

)
+ O

(
∆t3)

= yk + (I− Q) A−1Fk ∆t +
∆t2

2

(
(I− Q) J (I− Q) A−1Fk +

∂f
∂t

∣∣∣∣
k

)
+ O

(
∆t3)

(5.39)

The comparison of the numerical solution and the exact solution yields

τ y
k+1 = [I− ∆tγJ]−1 (I− Q) A−1

(
Fk +

∆t
2

∂F
∂t

∣∣∣∣
k

+
1
2

J (I− Q) A−1Fk ∆t
)

∆t−

− [I− ∆tγJ]−1 γJ [I− ∆tγJ]−1 (I− Q) A−1Fk ∆t∆t − (I− Q) A−1Fk ∆t

−∆t2

2

(
(I− Q) J (I− Q) A−1Fk +

∂F
∂t

∣∣∣∣
k

)
+ O

(
∆t3)

=
(
I− [I− ∆tγJ]−1) γJ [I− ∆tγJ]−1 (I− Q) A−1Fk ∆t2 + O

(
∆t3)

= γJ [I− ∆tγJ]−1 γJ [I− ∆tγJ]−1 (I− Q) A−1Fk ∆t3 + O
(

∆t3)

(5.40)

which indicates that the local truncation for the solution at time tk+1 is of O
(

∆t3
)
.

Likewise, the Lagrange multiplier vector at time tk+1 is also locally third-order accurate.
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5.4.3 Global error estimates

Since the proposed partitioned methods are self-starting, i.e., one does not need

any starting procedure, the initialization error needs not to be taken into account.

Moreover, the Lagrange multiplier vector is calculated from the state vector, i.e., it

has no ’memory’. For these reasons, the global error analysis has mainly to deal with

the error propagation in the differential variables. For linear systems, the amplification

matrix is constant with time being. The result obtained in Subsection is still available

here: if the local error is O (∆tp), then the global error will be O
(

∆tp−1
)
.

5.5 Stability analysis

In inertia-type problems, only the low-frequency components of the response are

usually of interest while the existence of high-frequency components of the response

is inevitable. For these cases unconditionally stable algorithms are generally pre-

ferred over conditionally stable ones in that the latter ones require very small time

step. Moreover, it is often advantageous for an algorithm to possess dissipation prop-

erty in order to damp out any nonsignificant or spurious components of the higher

modes. Conversely, dissipative algorithms may introduce dissipation at lower fre-

quencies or do not permit user control of dissipation. Therefore, Hilber et al. (1977)

suggested some requirements for a desired algorithm:

1. It should be unconditionally stable when applied to a linear problem.

2. It should possess numerical dissipation that could be controlled by a parame-

ter other than the time step. In particular, no numerical dissipation should be

possible.

3. The numerical dissipation should not affect the low-frequency components too

strongly.

100



This section is devoted to an evaluation of Requirement 1 of the proposed par-

titioned algorithm. For constrained systems, model decomposition is not possible

and therefore the approach to stability by Hughes (1987) to stability is not suitable.

Though an energy approach was adopted for partitioned algorithms, for instance the

GC method by Gravouil and Combescure (2001), a similar approach is not available

for the Rosenbrock based partitioned methods, because the energy norm does not

increase monotonically with time being. Another approach to stability were imple-

mented for partitioned methods by Lunk and Simeon (2006), but the block elimination

for the Rosenbrock based partitioned methods is very complicated and maybe im-

possible. For these reasons, we conduct an absolute stability analysis as follows:

the recursive formula is expressed in a compact matrix, so that the stability can be

investigated through the linear recurrences analysis by Zheng and Petzold (2006).

Besides, Requirement 2 and 3 will be checked in the next chapters together with the

partitioned method with ss > 1.

5.5.1 Stability analysis for the APNR1 method

In order to investigate Requirement 1) of (Hilber et al., 1977), we linearize (5.5) and

assume no external force, i.e., F (y, t) = By. The application of the one-stage Rosen-

brock algorithm leads to the following recurrence:

yk+1 = yk + k1 = yk + [I− ∆tγJ]−1 (I− Q) Jyk ∆t (5.41)

Jyk+1 = Jyk + [I− ∆tγJ]−1 (I− Q) Jyk ∆t (5.42)

Let’s assume that Jyk = vk + wk , where vk = (I−Q) Jyk and wk = QJyk . We rewrite

Eq. (5.42) as

vk+1 + wk+1 = vk + wk + [I− ∆tγJ]−1 Jvk ∆t (5.43)

Then, let’s consider the following two recurrences:

vk+1 = vk + [I− ∆tγJ]−1 Jvk ∆t

wk+1 = wk

(5.44)
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Obviously, the former recurrence is the same as the monolithic one-stage Rosen-

brock method. Therefore, the first recurrence is stable when γ > 1/2. The latter

is constant recurrence and therefore stable. Hence following (Zheng and Petzold,

2006), the sum of these two recurrences is stable, and therefore the partitioned

method is stable. This implies that the partitioned one-stage Rosenbrock method

maintains the same stability condition as the progenitor method.

5.5.2 Stability analysis for the APNR2 method

When the APNR2 method applied to a linear and nonautonomous system, one can

advance the numerical solution from time tk to time tk+1 as follows:

yk+1 = yk +(I− ∆tJγ)−1




(I− Q) J
(

yk +
1
2

[I− ∆tγJ]−1 (I− Q) Jyk ∆t
)
−

−∆tJγ [I− ∆tγJ]−1 (I− Q) Jyk


 ∆t (5.45)

In order to adopt the linear recurrences approach to this problem, the following

transformation is needed:

2yk+1 − yk+1 = 2yk − yk +

+ (I− ∆tJγ)−1




(I− Q) J
(

2yk +
1
4

(I− ∆tJγ)−1 (I− Q) J2yk ∆t
)

− (I− ∆tJγ)−1 (I− Q) Jyk


 ∆t

(5.46)

Now, let’s assume that wk = 2yk and vk = −yk . The recurrence can be rearranged

as

wk+1 + vk+1 = wk + vk +

+ (I− ∆tJγ)−1




(I− Q) J
(

wk +
1
4

(I− ∆tJγ)−1 (I− Q) Jwk ∆t
)

+ (I− ∆tJγ)−1 (I− Q) Jvk


 ∆t

(5.47)

Then, consider the following two recurrences:

wk+1 = wk + (I− ∆tJγ)−1 (I− Q) J
(

wk +
1
4

(I− ∆tJγ)−1 (I− Q) Jwk ∆t
)

∆t (5.48)

and

vk+1 = vk + (I− ∆tJγ)−2 (I− Q) Jvk ∆t (5.49)
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The Recurrence (5.48) can be reformulated of the following two recurrences:

wk+1/2 = wk +
1
2

(I− ∆tJγ)−1 (I− Q) Jwk ∆t

wk+1 = wk+1/2 +
1
2

(I− ∆tJγ)−1 (I− Q) Jwk+1/2∆t
(5.50)

Then, one can transform one step as follows

wk+1/2 = wk +
(

I−
(

1
2

∆t
)

J (2γ)
)−1

(I− Q) Jwk

(
1
2

∆t
)

(5.51)

One can observe that this is similar to the APNR1 method, and this can be taken

as the APNR1 method with the time step 1
2 ∆t and the corresponding parameter 2γ.

We know that the APNR1 method is unconditionally stable when γ > 1/2. As a result,

we can conclude that Recurrence (5.48) is unconditionally stable when γ > 1/4.

Now, let’s analyse Recurrence (5.49). Left multiplying on both side by J, (5.49) can

be rewritten as

Jvk+1 = Jvk + (I− ∆tJγ)−2 J (I− Q) Jvk ∆t (5.52)

If one suppose that Jvk = pk + qk , where pk = (I− Q) Jvk and qk = QJvk , one can

rewrite the latter recurrence as:

pk+1 + qk+1 = pk + qk + (I− ∆tJγ)−2 Jpk ∆t (5.53)

Let’s consider the following two recurrences:

pk+1 = pk + (I− ∆tJγ)−2 Jpk ∆t (5.54)

and

qk+1 = qk (5.55)

The propagation matrices of the above two recurrences are I + (I− ∆tJγ)−2 J∆t and

I.

For the absolute stability of Recurrence (5.54), let z = −∆tλs , where λs denotes

an eigenvalue of the Jacobian matrix J. Thus, we can obtain the eigenvalues of the

amplification matrices:

R (z) = 1− (1 + zγ)−2 z = (1 + zγ)−2 (
(1 + zγ)2 − z

)
(5.56)
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Note that R (z) is the same as the usual stability function obtained from the second

Dahlquists test equation (Dahlquist, 1978). If one imposes that |R (z)| 6 1 with z > 0,

one can obtain

∣∣(1 + zγ)−2 (
(1 + zγ)2 − z

)∣∣ 6 1 (5.57)

Thus,

γ > 1/4 (5.58)

which indicates that Recurrence (5.54) is unconditionally stable when γ > 1/4.

Now, the two involved recurrences are both stable. The sum of them is therefore

stable, which indicates that the partitioned scheme preserves the stability limit of the

monolithic two-stage Rosenbrock method.

More investigations for the partitioned methods, such as numerical stability, nu-

merical simulations and so forth, are postponed to the next chapter together with the

subcycling cases.

5.6 Conclusions

In this chapter, we presented two partitioned methods, the APNR1 method and

the APNR2 method. Using these methods, one can divide a large-scale system into

smaller subdomains and integrate them independently. These methods also afford

the possibility of solving different subdomains simultaneously with the Lagrange mul-

tiplier vectors achieved at the beginning of each time step or each stage.

In detail, an explicit expression of the Lagrange multiplier vector was derived from

a system of DAEs with acceleration constraint in Section 5.2. Meanwhile, a case with

an additional Lagrange multiplier vector that imposes the continuity of velocity was

considered with the same form of expression. In section 5.3, two parallel solution

procedures were conceived, based on the LSRT1 method and the LSRT2 method

respectively. Furthermore, analytical investigations, in terms of accuracy and stability,

were carried out for the partitioned methods in Section 5.4 and 5.5. The partitioned
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methods were observed to exhibit the same order of accuracy as their progenitors,

and proved to be unconditionally stable when applied to a linear system.

The most important feature of these methods is that they enable different subdo-

mains to advance independently which provide the possibility to be extended to the

subcycling case in Chapter 6 and further to the case with a parallel solution procedure

in Chapter 7.
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CHAPTER 6

PARTITIONED TIME INTEGRATION METHODS WITH A STAGGERED

SOLUTION PROCEDURE

6.1 Introduction

In the previous chapter, partitioned time integration methods based on the LSRT1

method and the LSRT2 method were presented for structural dynamics. With these

methods, one can firstly solve the interface Lagrange multipliers and subsequently

advance the solutions in all subdomains separately. Regarding complex structural

problems, different subdomains may have different requirements of time step, for sta-

bility and/or accuracy considerations. In particular of RTDS tests, numerical and

control requirements impose different time steps for NS and PS. In those cases, one

available strategy, especially for linear problems, is model reduction that represents

an effective way to lower computation burdens related to the integration of a complex

NS. However, this strategy is not directly applicable to nonlinear problems and may

become very inaccurate. In this chapter, the partitioned methods are extended to

incorporate subcycling strategy where different subdomains are integrated with dif-

ferent time steps. For structural problems, considerable progress has been made in

the development and analysis of subcycling strategies.

Initially, the concept of subcycling based on node partitioning was proposed by Be-

lytschco et al. (1979), resulting in a constant-velocity subcycling algorithm. It was

extended to a more general case with non-integer time step ratio in Neal and Be-

lytschko (1989). Daniel (1998) pointed out that this subcycling algorithm suffers the

statistical stability problem and the momentum conservative problem. An alternative
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method with a constant-acceleration assumption was devised in (Belytschko and Lu,

1993) but proved to unstable by Klisinski and Mostrom (1998). A modified version

of the constant-acceleration subcycling algorithm was conceived by Daniel (1997)

which is statistically stable. Wu and Smolinski (2000) proposed energy conserving

algorithms which avoid the statistical stability but sacrifice accuracy. All the aforemen-

tioned subcycling strategies are based on the primal structuring formulation where an

emulated structure was divided into two sets of nodes or elements and coupling of

them is achieved through primal variables at the interface. Recently, Gravouil and

Combescure (2001) presented a subcycling extension of the Newmark methods -the

GC method- using the dual Schur substructuring, which was proved to be stable but

energy dissipative. Prakash and Hjelmstad (2004) developed a variant of the GC

method by enforcing continuity of velocities only at the coarse time step in the mesh.

This chapter presents a subcycling extension of the partitioned methods developed

in the previous chapter. In order to advance the subdomain with the fine time step,

intermediate solutions in the subdomain with the coarse time step are calculated

by a linear interpolation between the initial solution and the solution at the end of

time step or stage; and then the Lagrange multiplier is computed at the beginning of

each substep. This chapter is organized in the order as following. Two subcycling

strategies are devised for the APNR1 method and the APNR2 method, respectively,

and their implementation flowcharts are proposed in detail in Section 6.2. Then, the

accuracy analysis are conducted where both methods are discovered to preserve

the same order of accuracy of their progenitors. Considering difficulties in analytical

proof of subcycling methods, we carried out numerical stability analysis on a Single-

DoF split-mass system and further on Multiple-DoF test problems. Lastly, numerical

simulations are presented to validate the efficiency of the subcycling methods.
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6.2 The partitioned time integration methods

6.2.1 A staggered solution procedure with subcycling and based on the LSRT1 in-

tegrator (ASSR1)

In this subsection, we incorporate the APNR1 method with subcycling. Let’s assume

that subdomain A is integrated with a coarse time step ∆tA = ∆t and Subdomain B

with a fine time step ∆tB = ∆t/ss, and the linear interpolation is implemented. The

solution procedure for the above-mentioned system, shown in Fig. 6.1 is listed here:

1. Calculate the Lagrange multiplier vector Λk at time tk ;

Λk = −H−1 [
CA A−1

A FA
k + CBA−1

B FB
k

]
(6.1)

2. Compute kA
1 and evaluate the solution yA

k+1 at time tk+1 in Subdomain A ;

kA
1 = [I− ∆tγJA ]−1 A−1

A

(
FA

k + CT
A Λk

)
∆t

yA
k+1 = yA

k + kA
1

(6.2)

3. Interpolate the internal solutions of subdomain A with the linear interpolation

formula;

yA
k+ j

ss
= (1− j

ss
)yA

k +
j

ss
yA

k+1, (ss = 1, 2, · · · , ss) (6.3)

4. loops on the ss substeps of Subdomain B from tk to tk+1 with j = 1, 2, · · · , ss;

a. Compute the Lagrange multiplier vector Λk+(j−1)/ss ;

Λk+ j−1
ss

= −H−1
[
CA A−1

A FA
k+ j−1

ss
+ CBA−1

B FB
k+ j−1

ss

]
(6.4)

b. Solve for the point tk+j/ss in Subdomain B;

kB
1 =

[
I− ∆t

ss
γJB

]−1

A−1
B

(
FB

k + CT
B Λk

) ∆t
ss

yB
k+ j

ss
= yB

k+ j−1
ss

+ kB
1

(6.5)

If j = ss, then end the loop in Subdomain B.

109



Similarly to the GC method (Combescure and Gravouil, 2002), this procedure is

staggered in the sense that the internal solutions calculated with the linear interpo-

lation is required before advancing B. Differently, this partitioned method adopts the

LSRT1 method which has an explicit solution of the state variables. Therefore, the

interpolation involved in this method is only dependent on the target solution and the

initial solution, which makes this method self-starting. But for the GC method, the

interpolation is performed on the free solutions in the current and previous time step

and therefore a starting solution procedure is required to initialize the GC method.

From another angle, the interpolation has an inherent similarity to the GC method.

Since the initial solution in subdomain A in the current time step is also the target

solution of the previous time step. From this point of view, the internal solutions is

achieved through the linear interpolation between the target solutions of the current

time step and that of the previous time step. For sake of notational simplicity, we

define it as ”parallel interpolation” in the sense that the linear interpolation is achieved

between two solutions in the parallel positions of the current loop and the previous

loop. In fact, both the GC method and the PM method adopt this type of interpolation:

the internal solutions are calculated through the linear interpolation between the free

solutions of the current loop and that of the previous loop. This will be detailed in

Subsection 6.3.3. Moreover, the ASSR1 method appears unconditionally stable in all

the cases considered in Subsection 6.4.2.

6.2.2 A staggered solution procedure with subcycling and based on the LSRT2 in-

tegrator (ASSR2)

Since the LSRT2 algorithm has two stages, we suppose that ss is even in order to

avoid the case in which a substep in Subdomain B spans two stages in subdomain

A . As shown in Fig. (6.2), the solution procedure can be summarized in the following

pseudo-code:

1. Calculate the Lagrange multiplier vector Λk at time tk ;

Λk = −H−1 [
CA A−1

A FA
k + CBA−1

B FB
k

]
(6.6)

110



Fig. 6.1: The staggered solution procedure of the LSRT1-based partitioned method

with ss > 1

2. Compute kA
1 and evaluate the solutions yA

k+ 1
2

at time tk+ 1
2

in Subdomain A ;

kA
1 = [I− ∆tγJA ]−1 A−1

A

(
FA

k + CT
A Λk

)
∆t

yA
k+ 1

2
= yA

k +
1
2

kA
1

(6.7)

3. Solve the internal solutions of subdomain A with the linear interpolation formula

yA
k+ j

2ss
= (1− j

ss
)yA

k +
j

ss
yA

k+ 1
2

, (j = 1, 2, · · · , ss) (6.8)

4. Loops on the ss/2 substeps of the Subdomain B from tk to tk+1 with j = 1, 2, · · · , ss/2;

a. Calculate the Lagrange multiplier vector Λk+ j−1
ss

;

Λk+ j−1
ss

= −H−1
[
CA A−1

A FA
k+ j−1

ss
+ CBA−1

B FB
k+ j−1

ss

]
(6.9)

b. Compute kB
1 and evaluate the solution yB

k+ 2j−1
2ss

in Subdomain B -First

stage-;

kB
1 =

[
I− ∆t

ss
γJB

]−1

A−1
B

(
FB

k+ j−1
ss

+ CT
B ΛB

k+ j−1
ss

) ∆t
ss

yB
k+ 2j−1

2ss
= yB

k+ 2j−1
2ss

+
1
2

kB
1

(6.10)

c. Compute the lagrange multiplier vector Λk+ 2j−1
2ss

;

Λk+ 2j−1
2ss

= −H−1
[
CA A−1

A FA
k+ 2j−1

2ss
+ CBA−1

B FB
k+ 2j−1

2ss

]
(6.11)
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d. Compute kB
2 and evaluate the solution yB

k+ j
ss

in Subdomain B -Second

stage-;

kB
2 =

[
I− ∆t

ss
γJB

]−1 (
A−1

B

(
FB

k+ 2j−1
2ss

+ CT
B Λk+ 2j−1

2ss

)
− γJBkB

1

) ∆t
ss

yB
k+ j

ss
= yB

k+ j−1
ss

+ kB
2

(6.12)

If j = ss
2 , then end the loop in Subdomain B.

5. Calculate the Lagrange multiplier vector Λk+ 1
2
;

Λk+ 1
2

= −H−1
[
CA A−1

A FA
k+ 1

2
+ CBA−1

B FB
k+ 1

2

]
(6.13)

6. Compute kA
2 and evaluate the solution yA

k+1 in Subdomain A -Second stage-;

kA
2 = [I− ∆tγJA ]−1

(
A−1

A FA
k+ 1

2
+ A−1

A CT
A ΛA

k+ 1
2
− γJA kA

1

)
∆t

yA
k+1 = yA

k + kA
2

(6.14)

7. Interpolate the internal solutions of A with the following linear interpolation for-

mula

yk+ j+ss
2ss

A = (1− j
ss

)yk+ 1
2

A +
j

ss
yA

k+1 , (j = 1, 2, · · · , ss) (6.15)

8. Loops on the ss/2 substeps of the subdomain B form tk+1/2 to tk+1 with j =

1, 2, · · · , ss/2;

a. Calculate the Lagrange multipliers Λk+ 1
2 + j−1

ss
;

Λk+ 1
2 + j−1

ss
= −H−1

[
CA A−1

A FA
k+ 1

2 + j−1
ss

+ CBA−1
B FB

k+ 1
2 + j−1

ss

]
(6.16)

b. Compute kB
1 and evaluate the solution yB

k+ 1
2 + 2j−1

2ss
in Subdomain B -Second

stage-;

kB
1 =

[
I− ∆t

ss
γJB

]−1

A−1
B

(
FB

k+ 1
2 + j−1

ss
+ CT

B ΛB
k+ 1

2 + j−1
ss

) ∆t
ss

yB
k+ 1

2 + 2j−1
2ss

= yB
k+ 1

2 + 2j−1
2ss

+
1
2

kB
1

(6.17)

c. Calculate the Lagrange multipliers Λk+ 1
2 + 2j−1

2ss
;

Λk+ 1
2 + 2j−1

2ss
= −H−1

[
CA A−1

A FA
k+ 1

2 + 2j−1
2ss

+ CBA−1
B FB

k+ 1
2 + 2j−1

2ss

]
(6.18)
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Fig. 6.2: The staggered solution procedure of the LSRT2-based partitioned method

with ss > 1

d. Compute kB
2 and evaluate the solution yB

k+ 1
2 + j

ss
in Subdomain B -Second

stage-;

kB
2 =

[
I− ∆t

ss
γJB

]−1 (
A−1

B

(
FB

k+ 1
2 + 2j−1

2ss
+ CT

B Λk+ 1
2 + 2j−1

2ss

)
− γJBkB

1

) ∆t
ss

yB
k+ 1

2 + j
ss

= yB
k+ 1

2 + j−1
ss

+ kB
2

(6.19)

If j = ss
2 , then end the loop in Subdomain B.

Differently from the ASSR1 method, this process contains two stages in Subdo-

main A and therefore two interpolations are required. Meanwhile, the socalled par-

allel interpolation is not available in this procedure. In the first stage of Subdomain

A , the linear interpolation is performed between the initial solution and the solution

at tk+ 1
2
. And in the second stage of Subdomain A , the linear interpolation is per-

formed between the initial solution and the solution at tk+1. These two interpolations

will be discovered to be a sufficient condition for second-order accuracy. However,

this method with γB = 1 −
√

2
2 sometime becomes conditionally stable as shown in

Subsection 6.4.2.
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6.3 Accuracy analysis

In this case, subcycling strategy is implemented and therefore the recursive formula

for one step computation is relative more complex. It is not easy to derive the recur-

sive in the compact form. The synthetic approach used for the APNR1 method where

all subdomains are considered simultaneously is not suitable in this case. Here, we

adopt an alternative way to deal with the integration of each subdomain separately.

6.3.1 Local truncation error analysis of the ASSR1 method

First of all, let’s discuss the integration in Subdomain A . Similarly, the initial solution

is supposed to be exact, yA
k = yA (tk ), and analogously ΛA

k = ΛA (tk ). The integration

in Subdomain A is the same as the APNR1 method. Therefore, the solution yA
k+1 has

local truncation error of O
(

∆t2
)

and it can be expressed as

yA
k+1 = yA

k + ẏA
k ∆t + O

(
∆t2) (6.20)

The solutions inside the time step in Subdomain A are solved by linear interpolation

(6.3)

yA
k+j/ss =

(
1− j

ss

)
yA

k +
j

ss
yA

k+1

=
(

1− j
ss

)
yA

k +
j

ss

(
yA

k + ẏA
k ∆t + O

(
∆t2))

= yA
k +

j∆t
ss

ẏA
k + O

(
∆t2)

(6.21)

which indicates a local truncation error of O
(

∆t2
)
.

Now, let’s analyse the integration of Subdomain B. The integration of the first

substep is the same as the case without subcycling too, but the time step used is

not ∆t but ∆t/ss. At the end of the first substep, we can conclude that solutions

of both subdomains, whether solved by interpolation or integration, have the local

truncation error of O
(

∆t2
)
. Therefore, the Lagrange multiplier at the beginning of the

second substep has a local truncation error of O
(

∆t2
)
. The solution at the end of the

second substep is

yB
k+2/ss = yB

k+1/ss +
[

I− ∆t
ss

γJB

]−1 (
A−1

B FB
k+1/ss + A−1

B CT
B ΛB

k

)
∆t (6.22)
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In order to conduct a truncation error analysis, the components yB
k+2/ss , FB

k+1/ss and

ΛB need to be expressed in terms of yk and its derivatives.

yB
k+2/ss and ΛB are locally second-order accurate which can be expressed as

yB
k+1/ss = yB

k +
∆t
ss

ẏB
k + O

(
∆t2)

ΛB
k+1/ss = ΛB

k +
∆t
ss

Λ̇B
k + O

(
∆t2)

(6.23)

The second component FB
k+1/ss can be expressed by considering Taylor’s series ex-

pansion

FB
k+1/ss = FB

k + JB

(
yB

k+1/ss − yB
k

)
+

∂F
∂t

∣∣∣∣
k

∆t
ss

+ O
(

∆t2)

= FB
k + JB

∆t
ss

ẏB
k +

∂F
∂t

∣∣∣∣
k

∆t
ss

+ O
(

∆t2)
(6.24)

By inserting the three terms into (6.22) and simplifying it, we can obtain

yB
k+2/ss = yB

k +
∆t
ss

ẏB
k +

[
I− ∆t

ss
γJB

]−1

ẏB
k

∆t
ss

+ O
(

∆t2) (6.25)

If compared with the Taylor’s series expansion yB
k+2/ss = yB

k + 2∆t
ss ẏB

k + O
(

∆t2
)
, we

can say that the solution at the end of the second substep is locally second order

accurate.

In the same manner, we can treat the following substeps. Hence, we can conclude

that the solution at the end of the step is also locally second-order accurate; likewise

the Lagrange multiplier vector exhibits a local truncation error of O
(

∆t2
)
.

6.3.2 Local truncation error analysis of the ASSR2 method

In this case, the utilized LSRT2 algorithm has two stages. We can use the same

strategy as the ASSR1 method, but the process will be quite complicated. Here, we

follow the solution procedure and deal with each subdomain separately. Moreover, we

assume a reference solution procedure with exact Lagrange multiplier vector along

stages together.

For easiness of notation, we define the reference as ”unconstrained integration”

because the process is equivalent to the integration of uncoupled systems, while the

partitioned procedure is considered to be ”constrained integration”. Moreover, the
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symbols involved in ”unconstrained integration” are denoted by one bar above, such

as ȳ. Therefore, the governing equations can be expressed as

AA ˙̄yA = F (ȳA , t) + CT
A Λ (t)

AB ˙̄yB = F (ȳB , t) + CT
B Λ (t)

(6.26)

In the first stage of subdomain A , both ”constrained” and ”unconstrained” integrations

have the same initial solution -exact solution y(tk ) and exact Lagrange multiplier vector

Λ(tk ), i.e.,

yA
k = ȳA

k

Λk = Λ̄k

(6.27)

From Eq. (3.6), we can easily obtain

kA
1 = k̄A

1

yA
k+1/2 = ȳA

k+1/2

(6.28)

As we know, the middle point in the direct LSRT2 algorithm has the local truncation

error of O
(

∆t2
)
. Therefore,

τ yA
k+1/2 = τ ȳA

k+1/2 = O
(

∆t2) (6.29)

As before, we can easily prove that the solutions calculated by the linear interpolation

in the first stage are locally second-order accurate, i.e.,

τ yA

k+ j
2ss

= O
(

∆t2) (6.30)

Similarly, both ”constrained” and ”unconstrained” integrations in the first stage of sub-

domain B can give the same result. Therefore, we can obtain

kB
1 = k̄B

1

yB
k+ 1

2ss
= ȳB

k+ 1
2ss

(6.31)

τ yB

k+ 1
2ss

= τ ȳB

k+ 1
2ss

= O
(

∆t2) (6.32)

In agreement with (5.31), we can say that the Lagrange multiplierΛk+ 1
2ss

is also lo-

cally second-order accurate. In the second stage of the first substep in subdomain

B, the solutions at the end of ”constrained” and ”unconstrained” integrations can be

expressed as

yB
k+ 1

ss
= yB

k+ 1
2ss

+
[

I− ∆t
ss

γJB

]−1 (
A−1

B FB
k+ 1

2ss
+ A−1

B CT
B ΛB

k+ 1
2ss
− γJBkB

1

) ∆t
ss

(6.33)
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ȳB
k+ 1

ss
= ȳB

k+ 1
2ss

+
[

I− ∆t
ss

γJB

]−1 (
A−1

B F̄B
k+1/2/ss + A−1

B CT
B Λ̄B

k+ 1
2ss
− γJB k̄B

1

) ∆t
ss

(6.34)

From Eq. (6.31), we can easily conclude that FB
k+1/ss = F̄B

k+1/ss . Moreover, the La-

grange multiplier ΛB
k+ 1

2ss
is locally second-order accurate, i.e., ΛB

k+ 1
2ss
−Λ̄B

k+ 1
2ss

= O
(

∆t2
)
.

Now, if we compare the solutions yB
k+1/ss and ȳB

k+1/ss , we can find that:

yB
k+1/ss − ȳB

k+1/ss = O
(

∆t3) (6.35)

Since the unconstrained case is equivalent to solving the uncoupled system, the so-

lution is locally third-order accurate, i.e.,

ȳB
k+1/ss − yB (

tk+1/ss
)

= O
(

∆t3) (6.36)

Therefore,

yB
k+1/ss − yB (

tk+1/ss
)

= O
(

∆t3) (6.37)

However, the solution yA
k+1/ss is only locally second-order accurate, which makes the

Lagrange multiplier vector locally second-order accurate.

When the local truncation error at the end of the first substep is known, we can

deal with an arbitrary substep j. The starting condition for Substep j is assumed

to be locally third-order accurate and the Lagrange multiplier vector is second order

accurate, which is in agreement with the end point of the first substep. This starting

condition satisfies:

yB
k+j/ss − ȳB

k+j/ss = O
(

∆t3)

ΛB
k+j/ss − Λ̄B

k+j/ss = O
(

∆t2) (6.38)

With the aid of the Lipschitz constant, we can conclude that

FB
k+j/ss − F̄B

k+j/ss = O
(

∆t3) (6.39)

The solutions of the middle point given by ”constrained” and ”unconstrained” integra-

tions are expressed separately as

yB
k+ 2j+1

2ss
= yB

k+j/ss +
1
2

[
I− ∆t

ss
γJB

]−1 (
A−1

B FB
k+j/ss + A−1

B CT
B ΛB

k+j/ss

) ∆t
ss

ȳB
k+ 2j+1

2ss
= ȳB

k+j/ss +
1
2

[
I− ∆t

ss
γJB

]−1 (
A−1

B F̄B
k+j/ss + A−1

B CT
B Λ̄B

k+j/ss

) ∆t
ss

(6.40)
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The difference of them are determined by the terms in the same positions of the two

equations above. Comparing them, we have

yB
k+ 2j+1

2ss
− ȳB

k+ 2j+1
2ss

= O
(

∆t3) (6.41)

At the same time, we get:

kB
1 − k̄B

1 = O
(

∆t3) (6.42)

Since the LSRT2 algorithm has local second order accuracy at the end of the first

stage, we have

ȳB
k+ 2j+1

2ss
− yB

(
tk+ 2j+1

2ss

)
= O

(
∆t2) (6.43)

The combination of Eqs. (6.41) and (6.43) yields

yB
k+ 2j+1

2ss
− yB

(
tk+ 2j+1

2ss

)
= O

(
∆t2) (6.44)

which indicates a locally second-order accuracy.

Since the solution yA
k+ 2j+1

2ss
solved by linear interpolation is also locally second-order

accurate, we can easily obtain by means of Eq. (5.31) that:

ΛB
k+ 2j+1

2ss
− Λ̄B

k+ 2j+1
2ss

= O
(

∆t2) (6.45)

yB
k+ j+1

ss
= yB

k+ j
ss

+
[

I− ∆t
ss

γJB

]−1 (
A−1

B FB
k+ 2j+1

2ss
+ A−1

B CT
B ΛB

k+ 2j+1
2ss
− γJBkB

1

) ∆t
ss

ȳB
k+ j+1

ss
= ȳB

k+ j
ss

+
[
I− ∆t

ss
γJB

]−1 (
A−1

B F̄B
k+ 2j+1

2ss
+ A−1

B CT
B Λ̄B

k+ 2j+1
2ss
− γJB k̄B

1

) ∆t
ss

(6.46)

By comparing the two equations above, we can obtain

yB
k+ 2j+1

ss
− ȳB

k+ 2j+1
ss

= O
(

∆t3) (6.47)

The local truncation error of LSRT2 algorithm is of O
(

∆t3
)
. This indicates

ȳB
k+(j+1)/ss − yB (

tk+(j+1)/ss
)

= O
(

∆t3) (6.48)

Therefore, we can obtain by comparing Eq. (6.47) and (6.48) that the local truncation

of an arbitrary substep within the first stage of subdomain A is O
(

∆t3
)
. Moreover, the

solution yA
k+(j+1)/ss solved by a linear interpolation is only locally second-order accu-

rate. By considering Eq. (5.31), we can easily obtain the local truncation error of the
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Lagrange multiplier vector Λk+(j+1)/ss = O
(

∆t2
)
. They satisfy the starting condition as

we assumed at the beginning of the arbitrary substep and therefore the proof process

can be repeated successively to obtain the local truncation error of the partitioned al-

gorithm at the following substeps with the first stage of subdomain A . With this in

mind, we can conclude

τ yB
k+1/2 = O

(
∆t3) τΛ

k+1/2 = O
(

∆t2) (6.49)

Now, we start to deal with the second stage of subdomain A . The solution at the end

can be written for the ”constrained” and ”unconstrained” integrations

yA
k+1 = yA

k + [I− ∆tγJA ]−1
(

A−1
A FA

k+1/2 + A−1
A CT

A ΛA
k+1/2 − γJA kA

1

)
∆t

ȳA
k+1 = ȳA

k + [I− ∆tγJA ]−1
(

A−1
A F̄A

k+1/2 + A−1
A CT

A Λ̄A
k+1/2 − γJA k̄A

1

)
∆t

(6.50)

Since the differences between two terms in the same positions have been analysed,

we can easily obtain the difference of the equations above

yA
k+1 − ȳA

k+1 = O
(

∆t3) (6.51)

Since the LSRT2 algorithm is locally third-order accurate, we can conclude

ȳA
k+1 − yA (tk+1) = O

(
∆t3) (6.52)

By comparing the two equations above, we can obtain

τ yA
k+1 = yA

k+1 − yA (tk+1) = O
(

∆t3) (6.53)

For the solutions of subdomain B with the second stage of subdomain A , the inter-

nal solutions obtained by linear interpolation are also locally second-order accurate;

analogously the local truncation error of the Lagrange multiplier vector at the internal

point is of O
(

∆t2
)
. Therefore, we can adopt the result of arbitrary substep in that they

have the same starting condition. Finally, we can prove

τ yB
k+1 = yB

k+1 − yA (tk+1) = O
(

∆t3) (6.54)

With the aid of (5.31), we can easily obtain the local truncation error of the Lagrange

multiplier vector at the end that is O
(

∆t3
)
.
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6.3.3 Local truncation error analysis for the GC method

The GC method imposes continuity of velocities at the interface to couple arbitrary

Newmark schemes with different time steps in different subdomains. By means of

the energy approach, the method is proved to be unconditionally stable as long as

all of the individual subdomains satisfy their own stability requirements. However, the

method is only globally first-order accurate in subcycling case. In this subsection, we

will provide an explanation for the reduction of the accuracy order. Before analysing

the case with subcycling, the GC method with a single time step is analysed as fol-

lows.

The free solutions of velocity in subdomain A can be expressed as

u̇A ,free
k+1 = ˜̇u

A
k + αA

2 üA ,free
k+1

= u̇A
k + ∆t (1− γA ) üA

k + αA
2

(
M̃A)−1

(
FA

k+1 − KA ũA
k − CA˜̇u

A
k

) (6.55)

The second order Taylor series expansion of FA
k+1 can be written in the following form

FA
k+1 = FA

k + ∆tḞA
k + O

(
∆t2)

= MA üA
k + CA u̇A

k + KA uA
k − GT

A Λk +

+∆t
(
MA ...

u A
k + CA üA

k + KA u̇A
k − GT

A Λ̇n
)

+ O
(

∆t2)
(6.56)

Now, the solution can be rearranged as follows

u̇A ,free
k+1 = u̇A

k + ∆t (1− γA ) üA
k +

+αA
2

(
M̃A)−1




MA üA
k + CA u̇A

k + KA uA
k − GT

A Λk +

+∆t
(
MA ...

u A
k + CA üA

k + KA u̇A
k − GT

A Λ̇k
)−

−KA
(

uA
k + ∆t u̇A

k + ∆t2
(

1
2
− βA

)
üA

k

)
−

−CA (
u̇A

k + ∆t (1− γA ) üA
k

)
+ O

(
∆t2)




= u̇A
n + ∆tüA

n + αA
2 ∆t

...
u A

n − αA
2

(
M̃A)−1 (

GT
A Λn + GT

A ∆tΛ̇n
)

+ O
(

∆t3)

(6.57)

In the same manner, the free solution in subdomain B can be written as

u̇B,free
k+1 = u̇B

k + ∆t üB
k + αB

2 ∆t
...
u B

k + αB
2

(
M̃B)−1 (

GT
BΛk − GT

B ∆tΛ̇k
)

+ O
(

∆t3) (6.58)
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The Lagrange multiplier can be computed as follows

HΛk+1 = −
(

GA u̇A ,free
k+1 + GB u̇B,free

n+1

)

= −




GA

(
u̇A

k + ∆tüA
k + αA

2 ∆t
...
u A

k − αA
2

(
M̃A)−1 (

GT
A Λk + GT

A ∆tΛ̇k
)

+ O
(

∆t3))

+GB

(
u̇B

k + ∆tüB
k + αB

2 ∆t
...
u B

k − αB
2

(
M̃B)−1 (

GT
BΛk + GT

B ∆tΛ̇k
)

+ O
(

∆t3))




(6.59)

Since the solutions at tk is exact, the continuities of all kinematic quantities are satis-

fied, i.e.,

GA u̇A
k + GB u̇B

k = 0

GA üA
k + GB üB

k = 0

GA
...
u A

k + GB
...
u B

k = 0

(6.60)

Moreover, αA
2 = αB

2 , because the Newmark method is second-order accurate only

with γ = 1/2.

Then, Eq. (6.59) can be simplified into the following form:

HΛk+1 = HΛk + ∆tHΛ̇k + O
(

∆t3) (6.61)

In the matrix H = αA
2 GA

(
M̃A

)−1
GT

A + αB
2 GB

(
M̃B

)−1
GT

B , there is a ∆t included in the

terms αA
2 and αB

2 . Thus, Eq. (6.61) can be transformed into

Λk+1 = Λk + ∆tΛ̇k + O
(

∆t2) (6.62)

Similarly as the ASSR2 method, if the Lagrange multiplier vector used is exact (as

the ”constrained” integration), the solution obtained preserves the accuracy of the

Newmark method which is second order accurate. Differently from the ”constrained”

integration, the GC method with ss = 1 is advanced with the Lagrange multiplier vector

Λ of O
(

∆t2
)
. Therefore, its the local truncation error can be obtained by comparing

the GC method and the ”constrained” integration:

τ vA
n+1 = O

(
∆t3) + αA

2

(
M̃A)−1

O
(

∆t2) = O
(

∆t3)

τ dA
n+1 = O

(
∆t3) + αA

1

(
M̃A)−1

O
(

∆t2) = O
(

∆t3)

τ vB
n+1 = O

(
∆t3) + αB

2

(
M̃B)−1

O
(

∆t2) = O
(

∆t3)

τ dB
n+1 = O

(
∆t3) + αB

1

(
M̃B)−1

O
(

∆t2) = O
(

∆t3)

(6.63)

From this analysis, we can conclude that the case without subcycling can preserve lo-

cally third-order accurate in that the method can ensure locally second-order accurate
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Fig. 6.3: Representation of the linear interpolation in the GC method and its equiva-

lent solution procedure

Lagrange multiplier vector. In the subcycling case, in order to use this strategy, we

present a equivalent procedure to simplify the solution procedure of the GC method.

As we know, both Newmark integration method and linear interpolation are actually

the linear combination of basic quantities. If one has a deep insight of the GC method,

one can find a procedure which is equivalent to free solutions of subdomain A and

linear interpolations as shown in Fig. 6.3.

One loop of the GC method spans two steps. Therefore, we assume that the

solutions and the Lagrange multiplier vectors at tk−1 and tk are exact. Here, we use

the point tk as the basis of the analysis, and the differential vectors and the Lagrange

multiplier vectors are written in Taylor’s series expansion based on the point tk . Let

us consider the equivalent procedure and focus on the jth substep. In the equivalent

procedure, the solution in Subdomain A at tk−1+ j
ss

is obtained by linear interpolation,

and therefore it is only second order accurate, i.e.,

u̇A
k−1+ j

ss
= u̇A

k −
ss − j

ss
∆tüA

k + O
(

∆t2)

üA
k−1+ j

ss
= üA

k −
ss − j

ss
∆t

...
u A

k + O
(

∆t2)
(6.64)

In Subdomain B, we suppose that the solution at the beginning of Substep j is

locally second order accurate, Therefore, we have
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u̇B
k+ j−1

ss
= u̇B

k +
j − 1
ss

∆tüB
k + O

(
∆t2)

üB
k+ j−1

ss
= üA

k +
j − 1
ss

∆t
...
u B

k + O
(

∆t2)
(6.65)

The integration of Substep j related in the equivalent procedure includes advance

of Subdomain A from tk−1+ j
ss

to tk+ j
ss

and advance of Subdomain B from tk+ j−1
ss

to tk+ j
ss

.

Similarly as the case with ss = 1, we can get:

HΛk+j/ss = HΛk +
j

ss
∆tHΛ̇k + O

(
∆t2) (6.66)

Therefore, we can find that the Lagrange multiplier vector has one order lower than

the case with ss = 1

Λk+j/ss = Λk + O (∆t) (6.67)

From Eqs. (6.63), we can easily conclude that the solutions in the subcycling case

are only locally second-order accurate. From another viewpoint, the matrix H contains

one ∆t which makes the Lagrange multiplier vector first order accurate. This is the

cause of the order reduction in the subcycling case.

6.4 Numerical analysis and simulations of a Single-DoF split mass system

Due to the complexity of the subcycling cases, both the stability analysis and con-

vergence analyses are investigated through numerical experiments of a Single-DoF

split-mass system. Moreover, some results from theoretical analyses for the cases

with the same time step are validated in this section.

6.4.1 The Single-DoF split mass system

In order to test the performances of the partitioned methods we consider a test prob-

lem where a Single-DoF mass-spring system is split into two Single-DoF mass-spring
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Fig. 6.4: A Single-DoF split mass system

systems A and B linked by an interface reaction force Λ as shown in Fig. 6.4. This test

problem, the Single-DoF split-mass system, were widely used to validate partitioned

methods (Bonelli et al., 2008a; Prakash, 2007). For a partitioned algorithm, the key

is to preserve the performance of the overall system. For simplicity, we choose the

following system variables m = 1 and k = 1 and introduce a parameter b1 to partition

the mass and the spring

b1 =
mA

mB
=

kB

kA
(6.68)

The external force is defined with different purposes. For stability analysis, we as-

sume no external force in that it does not affect the stability condition. For conver-

gence analysis, we adopt a sinusoidal external force fe = sin(2t) imposed on Subdo-

main B.

6.4.2 Spectral stability analysis

Although the cases with no subcycling have been proved to be unconditionally stable,

the result can not be extended to the subcycling cases, because interpolation may

introduce instability. In this section, the spectral analysis approach is performed by

assuming no external force. By means of the spectral analysis, on the one hand,

the stability condition can be qualitatively ensured and on the other hand, the high

frequency dissipation and its effect on the low frequency mode can be quantitatively

observed.

Here the split mass system is assumed to be linear, with no dissipation and no ex-

ternal force. The application of the proposed methods leads to the general recursive
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formula:

yk+1 = Ryk (6.69)

where y is a state vector, and R an amplification matrix. For the staggered methods,

one can find that both subdomain A and B advanced from the same point tk . There-

fore, the starting condition of every loop is minimal and only contains the differential

variables. Let λi denote the eigenvalues of R. The modulus of λi is written as | λi |.
The stability condition requires that all of the eigenvalues λi must satisfy | λi |≤ 1.

Stability function of a partitioned method, differently from ODE integration, is not

only dependent on system characteristics but also on the parameters ss and b1. For

this reason, 14 scenarios are intentionally investigated, as shown in Table 6.1. Note

Table 6.1: Spectral stability analysis of the LSRT-based partitioned methods on a

Single-DoF split-mass system

Case Integrator ss γ Results

(1) LSRT1 1 1 stable (6.5)

(2) LSRT1 2 1 stable (6.6)

(3) LSRT1 10 1 stable (6.7)

(4) LSRT2 1 1-
√

2
2 stable (6.8)

(5) LSRT2 1 1+
√

2
2 stable (6.9)

(6) LSRT2 1 1∓
√

2
2 stable (6.10)

(7) LSRT2 1 1±
√

2
2 stable (6.11)

(8) LSRT2 2 1-
√

2
2 stable (6.12)

(9) LSRT2 2 1+
√

2
2 stable (6.13)

(10) LSRT2 2 1∓
√

2
2 stable (6.14)

(11) LSRT2 2 1±
√

2
2 stable (6.15)

(12) LSRT2 10 1-
√

2
2 sometime unstable (6.16)

(13) LSRT2 10 1+
√

2
2 stable (6.17)

(14) LSRT2 10 1∓
√

2
2 stable (6.18)

(15) LSRT2 10 1±
√

2
2 stable (6.19)

that the sign ∓ denotes that subdomain A is integrated with γ = 1 − √2/2 and sub-
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Fig. 6.5: | λi | for the partitioned method integrated with LSRT1 and ss = 1: (a) b1 = 2

and (b) b1 = 10
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Fig. 6.6: | λi | for the partitioned method integrated with LSRT1 and ss = 2: (a) b1 = 2

and (b) b1 = 10

domain B with γ = 1 +
√

2/2 and vice versa. For the cases with ss = 1 and ss = 2, two

choices of b1 are used: 2 and 10; for the cases with ss = 10, 4 choices of b1 are used:

0.1, 0.5, 2 and 10. With regard to the Single-DoF test problem, the absolute values

of the eigenvalues of the amplification matrices are plotted in Figs. (6.5)-(6.19). The

number of eigenvalues is 4, but only two of them -complex conjugate pair- are the

principal eigenvalues, whereas the others are spurious. One of the spurious eigen-

values is unit and is resulted from the acceleration constraint which will be detailed

investigated in the Subsection 6.4.4. From a sufficient number of spectral radius plots,

we can conclude: i) when ss = 1, all partitioned methods are stable, which is in agree-

ment with the symbolic stability analysis performed in Section 5.5; ii) in the presence

of subcycling, the ASSR1 method is always stable; iii) in the cases of subcycling,

the ASSR2 method with γ = 1 − √2/2 are sometimes conditionally stable and with

γ = 1 +
√

2/2 appears to be stable within all cases considered.
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Fig. 6.7: | λi | for the partitioned method integrated with LSRT1 and ss = 10: (a)

b1 = 0.1, (b) b1 = 1, (c) b1 = 2, and (d) b1 = 10

0 2 4 6 8 10
W0.0

0.2

0.4

0.6

0.8

1.0

ÈΛiÈ

(a)
0 2 4 6 8 10

W0.0

0.2

0.4

0.6

0.8

1.0

ÈΛiÈ

(b)

Fig. 6.8: | λi | for the partitioned method integrated by LSRT2 with γA = γB = 1 −
√

2
2

and ss = 1: (a) b1 = 2 and (b) b1 = 10
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Fig. 6.9: | λi | for the partitioned method integrated by LSRT2 with γA = γB = 1 +
√

2
2

and ss = 1: (a) b1 = 2 and (b) b1 = 10
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Fig. 6.10: | λi | for the partitioned method integrated by LSRT2 with γA = 1−
√

2
2 , γB =

1 +
√

2
2 and ss = 1: (a) b1 = 2 and (b) b1 = 10
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Fig. 6.11: | λi | for the partitioned method integrated by LSRT2 with γA = 1 +
√

2
2 , γB =

1−
√

2
2 and ss = 1: (a) b1 = 2 and (b) b1 = 10
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Fig. 6.12: | λi | for the partitioned method integrated by LSRT2 with γA = γB = 1−
√

2
2

and ss = 2: (a) b1 = 2 and (b) b1 = 10
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Fig. 6.13: | λi | for the partitioned method integrated by LSRT2 with γA = γB = 1 +
√

2
2

and ss = 2: (a) b1 = 2 and (b) b1 = 10
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Fig. 6.14: | λi | for the partitioned method integrated by LSRT2 with γA = 1−
√

2
2 , γB =

1 +
√

2
2 and ss = 2: (a) b1 = 2 and (b) b1 = 10
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Fig. 6.15: | λi | for the partitioned method integrated by LSRT2 with γA = 1 +
√

2
2 , γB =

1−
√

2
2 and ss = 2: (a) b1 = 2 and (b) b1 = 10
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Fig. 6.16: | λi | for the partitioned method integrated by LSRT2 with γA = γB = 1−
√

2
2

and ss = 10: (a) b1 = 0.1, (b) b1 = 1, (c) b1 = 2, and (d) b1 = 10
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Fig. 6.17: | λi | for the partitioned method integrated by LSRT2 with γA = γB = 1 +
√

2
2

and ss = 10: (a) b1 = 0.1, (b) b1 = 1, (c) b1 = 2, and (d) b1 = 10
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Fig. 6.18: | λi | for the partitioned method integrated by LSRT2 with γA = 1−
√

2
2 , γB =

1 +
√

2
2 and ss = 10: (a) b1 = 0.1, (b) b1 = 1, (c) b1 = 2, and (d) b1 = 10
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Fig. 6.19: | λi | for the partitioned method integrated by LSRT2 with γA = 1 +
√

2
2 , γB =

1−
√

2
2 and ss = 10: (a) b1 = 0.1, (b) b1 = 1, (c) b1 = 2, and (d) b1 = 10
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Fig. 6.20: | λi | for the partitioned method integrated by two-stage Rosenbrock method

with γ = 1/4 and ss = 1: (a) b1 = 2 and (b) b1 = 10

For the sake of generality, the two-stage Rosenbrock method with no numerical

damping, i.e., γ = 1/2 or γ = 1/4, is also considered in the partitioned method.

Herein, we consider four cases which are listed in Table 6.2. Figs. (6.20)-(6.23) show

Table 6.2: Spectral stability analysis of the partitioned method based on two-stage

Rosenbrock method with γ = 1/2 or γ = 1/4, on a Single-DoF split-mass system

scenario Integrator ss γ Results

(1) LSRT2 1 1/4 stable (6.20)

(1) LSRT2 1 1/2 stable (6.21)

(3) LSRT2 10 1/4 sometime unstable (6.22)

(4) LSRT2 10 1/2 stable (6.23)

the results of the spectral analysis for the partitioned method with the conservative

Rosenbrock method. For the cases with γ = 1/2, one of the spurious eigenvalues

is unitary and the other one is real whose absolute values is less than one. From

the stability plots, we can observe that all the cases presented are always stable.

Nevertheless, both spurious eigenvalues for the cases with γ = 1/4 are unit. In these

cases, the multiplicity of the unitary eigenvalue can introduce week instability which

will be specifically analysed in the subsection.
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Fig. 6.21: | λi | for the partitioned method integrated by two-stage Rosenbrock method

with γ = 1/2 and ss = 1: (a) b1 = 2 and (b) b1 = 10
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Fig. 6.22: | λi | for the partitioned method integrated by two-stage Rosenbrock method

with γ = 1/4 and ss = 10: (a) b1 = 0.1, (b) b1 = 1, (c) b1 = 2, and (d) b1 = 10
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Fig. 6.23: | λi | for the partitioned method integrated by two-stage Rosenbrock method

with γ = 1/2 and ss = 10: (a) b1 = 0.1, (b) b1 = 1, (c) b1 = 2, and (d) b1 = 10
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Fig. 6.24: Numerical damping ratio and relative frequency error for the staggered

procedure: (a), (b) ss=1; (c), (d) ss=10.

6.4.3 Investigation of the principal eigenvalues

Here, let’s consider a Single-DoF split-mass system integrated by the LSRT2-based

partitioned methods. The principal complex conjugate eigenvalues of the amplifica-

tion matrix can be expressed in the following form (Hughes, 1983):

λ1,2 = C + iD = e−ξ̄ω̄∆tA±iω̄∆tA (6.70)

Hence, the damped numerical frequency Ω̄ and the numerical damping ratio ξ̄ read

ω̄∆t = Ω̄ = arctan
(

D
C

)
(6.71)

ξ̄ = − ln
(
C2 + D2

)

2Ω̄
(6.72)

Both numerical damping and the frequency error are depicted in Fig. 6.24. The

favourable properties of the proposed partitioned algorithm in terms of high-frequency

dissipation and limited frequency error are evident.
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6.4.4 Investigation of spurious eigenvalues

This subsection deals with the cause of spurious eigenvalues and their effects on the

accuracy of partitioned methods. For an ODE system, numerous time integrators has

been developed based on the Newmark methods, exhibiting second-order accuracy

and numerical dissipation. Those methods introduce a so-called spurious root that

enables high-frequency dissipation to be achieved without sacrificing low-frequency

accuracy. In that case, the spurious root must be small enough to guarantee a good

approximation for the low-frequency modes (Hoff and Pahl, 1988).

In order to investigate the existence of the unit eigenvalue whatever the time step

is used in the partitioned integration, we consider the partitioned methods based on

LSRT2 integrator. The governing equations of motion for the Single-DoF test problem

can be written as:




mA üA + kA uA = Λ

mB üB + kBuB = −Λ

üA = üB

(6.73)

By means of (5.7), the Lagrange multiplier can be expressed as

Λ =
mBkA uA −mA kBuB

mA + mB
(6.74)

The corresponding amplification matrix can be expressed as




uk+1
A

u̇k+1
A

uk+1
B

u̇k+1
B





= R





uk
A

u̇k
A

uk
B

u̇k
B





(6.75)

If the matrix R has an eigenvalue which is unitary, this indicates that there exists an

eigenvector ξ which satisfies the following relationship:

Rξ = ξ (6.76)

From Eqs. (6.73) and (6.74), we can easily obtain that üA = 0, üB = 0, if we suppose

uA = kB , uB = −kA .
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Now, we can assume that ξ =
{

uk
A u̇k

A uk
B u̇k

B

}
=

{
kB 0 −kA 0

}T
We

can define this point as the equilibrium point for the constrained system for which the

derivative of the vector with respect to time is equal to zero. In order to prove that

this vector is one eigenvector of the matrix R, we advance one loop of solution from

the this vector. For the case without subcycling, this process can be listed in detail as

follows.

1. In the first stage, we can obtain the Lagrange multiplier at the beginning of the

time step:

Λk =
mBkA uk

A −mA kBuk
B

mA + mB
=

mBkA kB + mA kBkA

mA + mB
= kBkA (6.77)

In subdomain A, we can obtain:

f k
A =





u̇k
A

ük
A



 =


 1 0

0 mA



−1 



 0 1

kA 0








uk
A

u̇k
A



 +


 0

1


 Λ


 = 0 (6.78)

Thus,

k A
1 = [I − ∆tγJA ]−1 f k

A ∆t = 0 (6.79)

Accordingly, the solution at the middle of the time step in subdomain A can be

expressed as:




uk+1/2
A

u̇k+1/2
A



 =





uk
A

u̇k
A



 +

1
2

k A
1 =





uk
A

u̇k
A



 =





kB

0



 (6.80)

In the same manner, we can obtain the solution at middle of the time step in

subdomain B:



uk+1/2
B

u̇k+1/2
B



 =





uk
B

u̇k
B



 +

1
2

k B
1 =





uk
B

u̇k
B



 =




−kA

0



 (6.81)

2. In the second stage, we can compute the Lagrange multiplier at the middle of

the time step:

Λk+1/2 =
mBkA uk+1/2

A −mA kBuk+1/2
B

mA + mB
=

mBkA kB + mA kBkA

mA + mB
= kBkA (6.82)

Likewise, we can obtain:

f k+1/2
A =





u̇k+1/2
A

ük+1/2
A



 =


 1 0

0 mA



−1 



 0 1

kA 0








uk+1/2
A

u̇k+1/2
A



 +


 0

1


 Λ


 = 0
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(6.83)

k A
2 = [I − ∆tγJA ]−1 (

f k
A ∆t − ∆tγJA k A

1

)
= 0 (6.84)

Thus, the solution at the end of the time step in subdomain A can be expressed

as:




uk+1
A

u̇k+1
A



 =





uk
A

u̇k
A



 + k A

2 =





kB

0



 (6.85)

Similarly, the solution at the end of the time step in subdomain B can be com-

puted as:




uk+1
B

u̇k+1
B



 =




−kA

0



 (6.86)

3. Finally, we can obtain:
{

uk+1
A u̇k+1

A uk+1
B u̇k+1

B

}T
=

{
uk

A u̇k
A uk

B u̇k
B

}T
(6.87)

Thus, one of the eigenvalues of the amplification matrix is 1, and the corresponding

eigenvector is
{

kB 0 −kA 0
}T

.

In the case with subcycling, we can similarly prove the existence of the unitary

eigenvalue and its corresponding eigenvector . The proof can be simplified as follows.

In the first stage of subdomain A , the solution is the same as the case with subcy-

cling.




uk+1/2
A

u̇k+1/2
A



 =





kB

0



 (6.88)

Since the solutions at the middle of the time step are the same as the solutions at the

beginning, the internal solutions solved by a linear interpolation are always equal to

the solutions at the beginning, i.e.




uk+j/2ss
A

u̇k+j/2ss
A



 =





kB

0



 (6.89)

In the first stage of the substep in subdomain B, we can obtain




uk+1/2ss
B

u̇k+1/2ss
B



 =





uk
B

u̇k
B



 +

1
2

k B
1 =





uk
B

u̇k
B



 =




−kA

0



 (6.90)
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Fig. 6.25: | λi | for the partitioned method using dual Lagrange multipliers and inte-

grated with LSRT2 and ss = 10: (a) b1 = 1 and (b) b1 = 5

Similarly, the solution at the end of the first substep in the subdomain B can be ob-

tained





uk+2/2ss
B

u̇k+2/2ss
B



 =




−kA

0



 (6.91)

Following the solution procedure of the whole loop, we can easily conclude that the

solutions at any point which are obtained by either linear interpolation or LSRT2 al-

gorithm are always equal to the initial solutions. As a result, we can summarize that

{
uk+1

A u̇k+1
A uk+1

B u̇k+1
B

}T
=

{
uk

A u̇k
A uk

B u̇k
B

}T
(6.92)

which indicates the existence of the unitary eigenvalue.

In sum, we can conclude that the unit spurious eigenvalue is caused by the ac-

celeration constraint, and its corresponding eigenvector can be obtained in the DAE

equations.

Another spurious eigenvalue is real and its absolute value is less than one. This is

because the constraint is incomplete, only with acceleration continuity. If we introduce

another Lagrange multiplier µ to impose velocity continuity, we can find both spurious

become unit as shown in Fig. 6.25. However, one can observe that this case some-

times introduces instability which is not easy to avoid. Therefore the case is beyond

the discussion of this thesis.

139



6.4.5 Numerical convergence analysis

In this subsection, a series of numerical simulations on the Single-DoF split-mass

system are carried out to validate the accuracy analysis of the proposed methods

using different coarse time step ∆t from 10−4 to 10−1. Similarly, we checked every

case treated in the numerical stability analysis, as shown in Table 6.3. The initial

Table 6.3: Numerical convergence analysis of the partitioned methods on a Single-

DoF split-mass system

Case Integrator ss γ Results (Rate)

(1) LSRT1 1 1 1

(2) LSRT1 2 1 1

(3) LSRT1 10 1 1

(4) LSRT2 1 1-
√

2
2 2

(5) LSRT2 1 1+
√

2
2 2

(6) LSRT2 1 1∓
√

2
2 2

(7) LSRT2 1 1±
√

2
2 2

(8) LSRT2 2 1-
√

2
2 2

(9) LSRT2 2 1+
√

2
2 2

(10) LSRT2 2 1∓
√

2
2 2

(11) LSRT2 2 1±
√

2
2 2

(12) LSRT2 10 1-
√

2
2 2

(13) LSRT2 10 1+
√

2
2 2

(14) LSRT2 10 1∓
√

2
2 2

(15) LSRT2 10 1±
√

2
2 2

conditions are chosen to be d(t0) = 1 and v(t0) = 1. Fig. 6.26 shows that the observed

order of convergence which is in agreement with the symbolic analysis both in state

variables and the Lagrange multipliers in Section 6.3.
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Fig. 6.26: Global error of the partitioned methods with b1 = 10 and integrated by: (a)

LSRT1 and ss = 1, (b) LSRT1 and ss = 10, (c) LSRT2 with γ = 1−
√

2
2 and ss = 1; (d)

LSRT2 with γ = 1 +
√

2
2 and ss = 1; (e) LSRT2 with γ = 1 −

√
2

2 and ss = 10; and (f)

LSRT2 with γ = 1 +
√

2
2 and ss = 10
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Fig. 6.27: The displacement and velocity responses in free vibration of the Single-DoF

system with b1 = 10 integrated by the partitioned method with ss = 1 and ∆t = 0.01:

(a), (b) LSRT2 with γ = 1−
√

2
2 ; (c), (d) LSRT2 with γ = 1 +

√
2

2

6.4.6 Numerical simulations

In this subsection, the simulations of Single-DoF system is calculated with different

methods applying a relative large time step of ∆t = 0.01s. From Fig. 6.27 and 6.28,

we can observed that the case with γ = 1−
√

2
2 and the case with subcycling relatively

introduce less drift in the displacement responses. This can also be reflected in the

spectral stability plots: for the cases with γ = 1 +
√

2
2 the non-zero spurious eigenvalue

is smaller than the cases with γ = 1−
√

2
2 ; the subcycling cases are more close to one

than the cases with no subcycling.
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Fig. 6.28: The displacement and velocity responses in free vibration of the Single-DoF

system with b1 = 10 integrated by the partitioned method with ss = 10 and ∆t = 0.01:

(a), (b) LSRT2 with γ = 1−
√

2
2 ; (c), (d) LSRT2 with γ = 1 +

√
2

2
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Fig. 6.29: Partitioned Two-DoF system 1 with two subdomains

Fig. 6.30: Partitioned Two-DoF system 2 with three subdomains

6.5 Numerical simulation of partitioned Multiple-DoF linear systems

In this section, the numerical analysis of the partitioned methods are extended

to Multiple-DoF systems and multiple interface problems. Several test problems in-

cluding Two-, Three- and Four-DoF systems are considered to validate the proposed

methods and confirm some theoretical results in previous sections.

6.5.1 Partitioned Multiple-DoF systems

For the sake of generality, the Two-DoF mass-spring system can be partitioned into

two subdomains as depicted in Fig.6.29 and three subdomains as shown in Fig. 6.30.

For the sake of brevity, the former case is analysed in depth and it is mainly used to

validate the methods with subcycling. Conversely, the latter case is basically used to

observe the performances of the partitioned method with multiple interfaces and we

consider the same time step in all subdomains.
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Fig. 6.31: Partitioned Three-DoF system with two DoFs at interface

In order to investigate the partitioned methods with multiple DoFs at the interface,

we consider a Three-DoF system, which is split as shown in Fig. 6.31. The displace-

ment vector of subdomain A is assumed to be uA =
{

uA
1 , ϕA

1

}T and of subdomain B

is chosen to be uA =
{

uB
1 , ϕB

1 , uB
2

}T without considering vertical motion. The mass

matrices of each subdomain read

MA =
r

1 + r


 m1

ρ2m1


 and MB =

1
1 + r




m1 0 0

0 R2
g m1 0

0 0 m2 (1 + r)


 (6.93)

and their stiffness matrix can be written as

KA =
EI
l3A


 12 6lA

6lA 7l2A


 and MB =

EI
l3B




3 −3lB −3

−3lB 6l2B 3lB

−3 3lB 3


 (6.94)

Here E is the Young’s modulus, I is the Moment of Inertia of the cross section.

All beams and columns involved are assumed to have the same cross section. m1

and m2 are the condensed mass and Rg is the radius of gyration for m1. r defines

the distribution of mass m1 for two subdomains. In the simulation, we evaluate the

parameters as follows: E = 2 × 108kN/m2, I = 2 × 10−5m, m1 = m2 = 20 × 103kg,

Rg = 2m lA = 5m and lA = 3m. The natural frequencies of the emulated system can

be calculated as

f1 = 1.084 Hz, f2 = 0.658 Hz, f3 = 0.103 Hz (6.95)
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Fig. 6.32: Partitioned Four-DoF system 1 with one interface
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Fig. 6.33: | λi | for the partitioned method applied to the partitioned Two-DoF system

1 with LSRT2, ss = 1 and b1 = 10: (a) γ = 1−
√

2
2 and (b) γ = 1 +

√
2

2

In addition, a Four-DoF system which is split into two subdomains as illustrated in

Fig. 6.32 is also considered to confirm the partitioned methods with one interface.

6.5.2 Spectral stability analysis for the Multiple-DoF systems

Although the spectral stability analysis was performed on the Single-DoF system, a

direct extension to a Multiple-DoF system is impossible for the partitioned methods

because model decomposition for DAE systems is not available. Therefore, the per-

formance of the partitioned methods on Multiple-DoF system requires revalidation.

Though numerous simulations were conducted to check the stability of the methods,

only some representative results based on the LSRT2 method are presented for the

sake of brevity, as shown in Table 6.4.

146



0 2 4 6 8 10
W0.0

0.2

0.4

0.6

0.8

1.0

ÈΛiÈ

(a)
0 2 4 6 8 10

W0.0

0.2

0.4

0.6

0.8

1.0

ÈΛiÈ

(b)

Fig. 6.34: | λi | for the partitioned method applied to the partitioned Two-DoF system

1 with LSRT2, ss = 10 and γ = 1−
√

2
2 : (a) b1 = 0.1 and (b) b1 = 10
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Fig. 6.35: | λi | for the partitioned method applied to the partitioned Two-DoF system

1 with LSRT2, ss = 10 and γ = 1 +
√

2
2 : (a) b1 = 0.1 and (b) b1 = 10
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Fig. 6.36: | λi | for the partitioned method applied to the partitioned Two-DoF system

2 with LSRT2, ss = 1 (a) γ = 1−
√

2
2 and (b) γ = 1 +

√
2

2
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Fig. 6.37: | λi | for the partitioned method applied to the partitioned Three-DoF system

with LSRT2, ss = 1 and r = 2: (a) γ = 1−
√

2
2 and (b) γ = 1 +

√
2

2
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Fig. 6.38: | λi | for the partitioned method applied to: (a) the partitioned Three-DoF

system with LSRT2, ss = 10, r = 2 and γ = 1 −
√

2
2 , (b) the partitioned Four-DoF

system with LSRT2, ss = 1 and γ = 1 −
√

2
2 (c) the partitioned Four-DoF system with

LSRT2, ss = 1 and γ = 1 +
√

2
2 and (b) the partitioned Four-DoF system with LSRT2,

ss = 10 and γ = 1 +
√

2
2
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Table 6.4: Spectral stability analysis of the partitioned methods on partitioned

Multiple-DoF systems

Case system ss γ Results

(1) Fig.(6.29) 1 1-
√

2
2 Stable (Fig. 6.33.a)

(2) Fig.(6.29) 1 1+
√

2
2 Stable (Fig. 6.33.b)

(3) Fig.(6.29) 10 1-
√

2
2 Stable (Fig. 6.34)

(4) Fig.(6.29) 10 1+
√

2
2 Stable (Fig. 6.35.a); unstable (Fig. 6.35.b)

(5) Fig.(6.30) 1 1-
√

2
2 Conditionally stable (Fig. 6.36.a)

(6) Fig.(6.30) 1 1+
√

2
2 Stable (Fig. 6.36.b)

(7) Fig.(6.31) 1 1-
√

2
2 Conditionally stable (Fig. 6.37.a)

(8) Fig.(6.31) 1 1+
√

2
2 Stable (Fig. 6.37.b)

(9) Fig.(6.31) 10 1+
√

2
2 Stable (Fig. 6.38.a)

(10) Fig.(6.32) 1 1-
√

2
2 Stable (Fig. 6.38.b)

(11) Fig.(6.32) 1 1+
√

2
2 Stable (Fig. 6.38.c)

(12) Fig.(6.32) 10 1+
√

2
2 Stable (Fig. 6.38.d)

6.5.3 Drift analysis

In the partitioned Two-DoF system 2, a floating subdomain B is included. In this case,

the stiffness matrix KB is not invertible. This indicates that the floating subdomain

contains one free mass mode which has no stiff term. As shown in Fig. 6.36, three

unitary eigenvalues are included in the spectral plot. However, if we calculate the

eigenvectors of the amplification matrix, we can find that only two linearly independent

eigenvectors are corresponding to the three unitary eigenvalues.

Following the stability conditions provided by (Hughes, 1983, p.89), the case with

incomplete eigenvectors leads to the so-called called weak instability and therefore

the drift-off effect in the displacement and velocity responses. As we analysed before,

the incomplete constraint also induces drift. Therefore, we numerically investigate the

four representative cases and the results are listed in Table 6.5. Note that nf repre-

sents the number of the floating DoFs; ka stands for the number of unitary eigenval-
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Fig. 6.39: Partitioned Four-DoF system 2 with two subdomains

Fig. 6.40: Partitioned Four-DoF system 3 with three subdomains

ues, i.e, algebraic multiplicity ; and kg the maximum number of independent eigenvec-

tors corresponding to the unitary eigenvalues, i.e., geometric multiplicity (Seyranian

and Mailybaev, 2004). In addition, the drift in the displacement response of the afore-

mentioned systems integrated with different partitioned methods, with respect to the

time step, are depicted in Figs. (6.41) and (6.42). Note that the drift here is expressed

by the different solutions at interfaces. From these figures, we can observe that the

drift is quadratic with respect to the utilized time step. Moreover, the cases with sub-

cycling exhibit smaller drift compared to the cases without subcycling. To continue,

Table 6.5: The drift analysis of the partitioned methods on the partitioned Single- and

Four-DoF systems

Case system nc nf kg ka Results (Rate)

(1) Fig.6.4 (kB 6= 0) 1 0 1 1 2 (Fig. 6.41.a-b)

(2) Fig.6.4 (kB = 0) 1 1 2 1 2 (Fig. 6.41.c-d)

(3) Fig.6.39 2 1 3 2 2 (Fig. 6.42.a-b)

(4) Fig.6.40 3 2 5 3 2 (Fig. 6.42.c-d)

we consider again the partitioned Four-DoF system with three interfaces in depth.

The Jordan decomposition for the amplification matrix of the APNR1 method applied
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Fig. 6.41: Drift analysis for the partitioned methods with LSRT2 for different systems:

(a),(b) displacement drift and velocity drift at the interface of the partitioned Single

DoF system with b1 = 10; (c), (d) displacement drift and velocity drift at the interface

of the partitioned Single-DoF system with b1 = 10 and kB = 0.
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Fig. 6.42: Drift analysis for the partitioned methods with LSRT2 for different systems:

(a) drifts at the first interface of the partitioned Four-DoF system with two interfaces;

(b) drifts at the second interface of the partitioned Four-DoF system with two inter-

faces; (c) drifts at the first interface of the partitioned Four-DoF system with three

interfaces; (d) drifts at the second interface of the partitioned Four-DoF system with

three interfaces.
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to this system leads to a Jordan block as



1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1




(6.96)

which is actually composed of two 2×2 Jordan blocks with unitary eigenvalue. This

is different from the following case



1 1 0 0

0 1 1 0

0 0 1 0

0 0 0 1




(6.97)

This form is a 3 × 3 Jordan block with unitary eigenvalues. The difference between

(6.96) and (6.97 can be derived in their nth power:



1 n 0 0

0 1 0 0

0 0 1 n

0 0 0 1




and




1 n n2+n
2 0

0 1 n 0

0 0 1 0

0 0 0 1




(6.98)

In general, the amplification matrix usually contains (kg − ka) Jordan blocks of 2 × 2

as (6.96). Therefore, we can conclude that the drift-off effect is not aggravated with

the increasing number of the floating DoFs.

6.5.4 Simulations

In order to illustrate the stability properties of the partitioned methods when applied

to Multiple-DoF systems, several free vibration simulations for a partitioned Two-DoF

system were conducted, as shown in Fig. 6.43. The initial conditions were chosen

to be unit velocity and zero displacement for every DoF. For the partitioned methods

with no subcycling, the time step is fixed to 10ms. For the subcycling cases, the

coarse time step and the fine time step is chosen to be ∆tA = 10ms and ∆tB = 1ms,

respectively. It can be clearly observed that the displacement drift is not noticeable.

The drift-off effect in the velocity is relatively smaller which are omitted for brevity.
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Fig. 6.43: Numerical simulations for the partitioned Two-DoF system with one inter-

face: (a) displacements at the interface obtained with ss = 1 and γ = 1 −
√

2
2 ; (b)

displacements at the interface obtained with ss = 1 and γ = 1 +
√

2
2 ; (c) displace-

ments at the interface obtained with ss = 10 and γ = 1−
√

2
2 ; (d) displacements at the

interface obtained with ss = 10 and γ = 1 +
√

2
2 .
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Fig. 6.44: Numerical simulations for the partitioned Three-DoF system with one inter-

face: (a) velocities of the translational DoF at the interface obtained with ss = 1 and

γ = 1−
√

2
2 ; (b) velocities of the translational DoF at the interface obtained with ss = 1

and γ = 1 +
√

2
2 ; (c) velocities of the translational DoF at the interface obtained with

ss = 10 and γ = 1−
√

2
2 ; (d) velocities of the translational DoF at the interface obtained

with ss = 10 and γ = 1 +
√

2
2 .

The second example is the partitioned Three-DoF system. The objective is to

observe the drift induced by the weak instability. The numerical results, displayed in

Fig. 6.44, also indicate that the partitioned method with γ = 1 −
√

2
2 has less drift

at interface. In the case with floating subdomain, the weak instability becomes the

foremost limit of the partitioned method. Therefore, the parameter γ = 1 −
√

2
2 is

preferred.

To illustrate the nonlinear performance and high-frequency dissipation of the par-

titioned methods, let us consider again the coupled spring-pendulum stiff system as

described in Fig. 4.1 of Section 4.2. The system characteristics and the external

force is also chosen as shown in Table 3.1. The time step used in subdomain NS is
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Fig. 6.45: Numerical simulations for the partitioned spring-pendulum stiff system with

one interface: (a) extensional velocities of the pendulum obtained with ss = 1 and

γ = 1 −
√

2
2 ; (b) extensional velocities of the pendulum obtained with ss = 1 and

γ = 1 +
√

2
2 ; (c) extensional velocities of the pendulum obtained with ss = 10 and

γ = 1 −
√

2
2 ; (d) extensional velocities of the pendulum obtained with ss = 10 and

γ = 1 +
√

2
2 .

fixed to 1ms. Clearly, high-frequency dissipation property of their progenitor methods

is maintained in the partitioned case. Similarly, the methods with γ = 1 +
√

2
2 exhibit

higher numerical dissipation. However, as shown in the simulations of the partitioned

Three-DoF system, this also bring about higher drift at interface so that this makes

long term simulation impossible. Accordingly, the choice of the parameter γ depends

on the period of the simulation, the system characteristics, the accuracy requirement

and so on.
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6.6 Conclusions

The partitioned methods based on acceleration continuity were also extended in

this chapter to incorporate subcycling strategies, resulting in novel staggered parti-

tioned methods. In these methods, the emulated system is partitioned into two sub-

domains: one is integrated with the coarse time step and the other with the fine time

step. In addition to the computation of the Lagrange multipliers and the integration

of the subdomains, a linear interpolation is required before advancing the solution of

the subdomain with the fine time step. This prevents the partitioned methods to be

implemented in parallel simulations.

For these staggered partitioned methods, the accuracy analyses were performed

by setting a reference solution procedure by which each subdomain advanced sep-

arately with exact Lagrange multipliers and both the differential vectors and the La-

grange multiplier vector were proved to preserve the same order of accuracy as the

progenitor monolithic method. For comparison, the GC method was also proved in a

similar way to have a reduction of accuracy order with respect to its progenitor New-

mark method. This is because the inverse term H in the formula of the Lagrange

multiplier vector of the GC method includes a ∆t factor while the proposed staggered

methods do not.

The stability of the proposed staggered methods were studied by means of the

spectral approach on a Single-DoF split-mass system, and these methods frequently

appears to be stable. Meanwhile, the components of the eigenvalues of the amplifica-

tion matrix was investigated in depth. Four non-zero eigenvalues were included in the

amplification matrix. Among them, only one pair of complex conjugate eigenvalues

are principle eigenvalues, whereas the other two are spurious. For the complex con-

jugate eigenvalues, it was studied in terms of numerical damping ratio and frequency

error. For the spurious eigenvalues, the one unitary is unitary was found to be corre-

sponding to the ”equilibrium point” of the continuous DAE system and the other that

was real and less than one was observed to be owing to incomplete constraint at the

interface.

When dealing with a partitioned system in the presence of floating DoFs, the num-

ber of unitary eigenvalues is greater than one which indicates weak instability and
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therefore the displacement solutions exhibit slightly drift phenomena. But it was ob-

served that with proper choice of the parameter γ, the drift effect could be limited to

be so small as to be negligible. Moreover, it was proved that the drift effect would not

accumulate with the increasing number of the floating DoFs.
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CHAPTER 7

PARTITIONED TIME INTEGRATION METHODS WITH AN INTERFIELD

PARALLEL SOLUTION PROCEDURE

7.1 Introduction

The partitioned methods mentioned in the previous chapter provide an efficient

and accurate approach to solving large-scale structural dynamics problem. In those

methods, subcycling strategies are adopted. The subcycling strategies, on the one

hand, enable different subdomains to be advanced with different time steps; on the

other hand, they make the solution procedure be sequential in that the integration

of subdomain B is dependent on the interpolation achieved after the integration of

subdomain A . Like the GC method (Combescure and Gravouil, 2002), these methods

are not suitable for RTDS tests and continuous PsD tests.

In order to solve this problem, Pegon and Magonette (2002) developed and imple-

mented an interfield parallel solution procedure, the PM method, where both subcy-

cling and interfield parallelism are allowed. Along the same line, the Rosenbrock-

based partitioned methods developed in the previous chapter are extended to an

interfield parallel solution procedure in this chapter.
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Fig. 7.1: The interfield parallel solution procedure of the LSRT1-based partitioned

method

7.2 Formulations of parallel partitioned methods

7.2.1 An interfield parallel solution procedure based on the LSRT1 time-stepping

method (APSR1)

In order to illustrate the procedure, it is assumed that the system under consideration

is split into two subdomain A and B. As shown in Fig. 7.1, Subdomain A is advanced

with the coarse time step ∆tA , while Subdomain B with the fine time step ∆tB . Actually

in this procedure, the system time step is ∆t = 1/2∆tA . The solution of Subdomain

A is advanced further in order to provide the required solution for the next time step.

It is noted that the parameter ss is related to the ratio between the system time step

and the fine time step, i.e., ss = ∆t/∆tB . The solution procedure from ti to ti+1 can

be understood from the flowchart of Fig. 7.2. In detail, the procedure contains two

independent processes and one information exchange at the end. Initial solutions

are required from the previous two loops in subdomain A : yA
i+ j−1

ss
and yA

i while one

is taken from the previous loop in subdomain B: yB
i . For Subdomain A , the solution

procedure can be elaborated as follows:

1. Evaluate FA
i and FB

i with the initial solution yA
i and yB

i , and then calculate the
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Fig. 7.2: Flowchart for the interfield parallel solution procedure of the LSRT1-based

partitioned method

Lagrange multiplier vector Λi as follows

Λi = −H−1 [
CA A−1

A FA
i + CBA−1

B FB
i

]
(7.1)

2. Compute kA
1 and advance the solution to yA

i+2

kA
1 = [I− 2∆tγJA ]−1 A−1

A

(
FA

i + CT
A Λi

)
2∆t

yA
i+2 = yA

i + kA
1

(7.2)

3. Calculate yA
i+ j

ss
by means of a linear interpolation

yA
i+j/ss =

(
1− j

ss

)
yA

i +
j

ss
yA

i+1 (7.3)

The solution procedure in Subdomain B involves ss substeps, and each substep

advances as follows:

1. Evaluate FA
i+ j−1

ss
and FB

i+ j−1
ss

, and calculate the Lagrange multiplier vector Λi+ j−1
ss

as

follows

Λi+ j−1
ss

= −H−1
[
CA A−1

A FA
i+ j−1

ss
+ CBA−1

B FB
i+ j−1

ss

]
(7.4)
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2. Calculate kB
1 and advance the solution to yB

i+ j
ss

kB
1 =

[
I− ∆t

ss
γJB

]−1

A−1
B

(
FB

i + CT
B Λi

) ∆t
ss

yB
i+ j

ss
= yB

i+ j−1
ss

+ kB
1

(7.5)

3. If j = ss, then end the loop in subdomain B.

With this procedure, we can easily find that the initial solutions needed for the each

subdomain were provided in the previous step and the interfield communications are

needed only at the end of each time step. This makes the solution of each subdo-

main independent, and therefore allows implementing parallel computations. When

compared to the staggered partitioned methods, the parallelism is achieved at the

expense of using large time step of subdomain A which certainly amplifies integra-

tion errors. Moreover, the process needs more initial solutions which increase the

memory load and, subsequently, the computational cost.

Similarly as the PM method, this procedure is not self-starting. Herein, the LSRT1-

based partitioned method without subcycling is adopted to initiate the procedure with

the system time step, i.e., advancing the solutions from yA
0 and yB

0 to yA
1 and yB

1 .

Moreover, this choice does not destroy the accuracy of the method. This is because

both of them have the same order for the local truncation error. In addition, this

scheme preserves the parallel characteristics of the overall solution procedure.

7.2.2 An interfield parallel solution procedure based on the LSRT2 time-stepping

method (APSR2)

Since the LSRT2 method contains two stages, the integration in subdomain A is

expected to advance with the time step ∆tA = 4∆t as shown in Fig. 7.3. Moreover,

the solution procedure from ti to ti+1 can be understood from the flowchart depicted in

Fig. 7.4. The integration of both subdomains is independent and this provides the

possibility for parallel computations. Differently from the previous case, the integration

for subdomain A not only needs the Lagrange multiplier at the beginning of the first

stage but also that at the beginning of the second stage. Therefore, the solution

162



Fig. 7.3: The interfield parallel solution procedure of the LSRT2-based partitioned

method

Fig. 7.4: Flowchart for the interfield parallel solution procedure of the LSRT2-based

partitioned method
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procedure in subdomain A starts earlier at time ti−2 and ends further at time ti+2. For

this method, the solution procedure in subdomain A can be described as follows:

1. Evaluate FA
i−2 and FB

i−2 with the initial solutions yA
i−2 and yB

i−2 and then calculate

the Lagrange multiplier vector Λi−2

Λi−2 = −H−1 [
CA A−1

A FA
i−2 + CBA−1

B FB
i−2

]
(7.6)

2. Compute kA
1 and advance the solution to yA

i

kA
1 = [I− 4∆tγJA ]−1 A−1

A

(
FA

i−2 + CT
A Λi−2

)
4∆t

yA
i = yA

i−2 +
1
2

kA
1

(7.7)

3. Evaluate FA
i and FB

i with the initial solution yA
i and yB

i and then calculate the

Lagrange multiplier vector Λi

Λi = −H−1 [
CA A−1

A FA
i + CBA−1

B FB
i

]
(7.8)

4. Compute kA
2 and advance the solution to yA

i+2

kA
2 = [I− 4∆tγJA ]−1 (

A−1
A

(
FA

i + CT
A Λi

)− γJA kA
1

)
4∆t

yA
i+2 = yA

i + kA
2

(7.9)

5. Calculate yA
i+ j

ss
by means of a linear interpolation

yA
j

2ss
=

(
1− j

2ss

)
yA

i +
j

2ss
yA

i+1 (7.10)

At the same time, the procedure in subdomain B is performing ss substeps of solution

processes, each of which can be detailed as follows:

1. Evaluate FA
i+ j−1

ss
and FB

i+ j−1
ss

, and calculate the Lagrange multiplier vector Λi+ j−1
ss

Λi+ j−1
ss

= −H−1
[
CA A−1

A FA
i+ j−1

ss
+ CBA−1

B FB
i+ j−1

ss

]
(7.11)

2. Calculate kB
1 and advance the solution to yB

i+ 2j−1
2ss

kB
1 =

[
I− ∆t

ss
γJB

]−1

A−1
B

(
FB

i+ j−1
ss

+ CT
B Λi+ j−1

ss

) ∆t
ss

yB
i+ 2j−1

2ss
= yB

i+ j−1
ss

+
1
2

kB
1

(7.12)
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3. Evaluate FA
i+ 2j−1

2ss
and FB

i+ 2j−1
2ss

and calculate the Lagrange multiplier vector Λi+ 2j−1
2ss

Λi+ 2j−1
2ss

= −H−1
[
CA A−1

A FA
i+ 2j−1

2ss
+ CBA−1

B FB
i+ 2j−1

2ss

]
(7.13)

4. Calculate kB
2 and advance the solution to yB

i+ j
ss

kB
2 =

[
I− ∆t

ss
γJB

]−1 (
A−1

B

(
FB

i+ 2j−1
2ss

+ CT
B Λi+ 2j−1

2ss

)
− γJBkB

1

) ∆t
ss

yB
i+ j

ss
= yB

i+ j−1
ss

+ kB
2

(7.14)

5. If j = ss, then end the loop in subdomain B.

Differently from the LSRT2-based staggered case, the parameter ss here can be

odd or even. Similarly, this method is not self-starting and the LSRT2-based parti-

tioned method with no subcycling is chosen to preserve the second-order accuracy

and the parallel characteristics. In this case, three loops of initial procedures shown

in Fig. 6.3 are required with the time step ∆t to achieve the solutions at time t1, t2

and t3. Subcycling is introduced when the two subdomains have different require-

ments of time step. The initial procedure without subcycling may not satisfy these

requirements. Frequently, emulated structures exhibit linear responses at the begin-

ning. Therefore, the computational cost at the beginning is lower with respect to the

subsequent simulation in the presence of nonlinearities. From this point of view, the

adoption of the partitioned method with no subcycling is feasible and does not affect

the applicability range of this novel partitioned method.

7.3 Accuracy analysis

Differently from the staggered partitioned methods, the parallel methods require

special starting procedures with the same or higher order of accuracy to provide

initial solutions. As a consequence, the accuracy analysis for the parallel methods

needs to take into account not only the local truncation error induced by the regular

process but also the initialization error resulting from the starting procedure.
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Since the number of steps in the starting procedure is finite, the propagation error

is limited providing that the utilized time step is small. Therefore, the initialization

error analysis is omitted here. The truncation error of the parallel procedure can be

analysed with the same strategies as the staggered cases. Here, for simplicity, we

only present the analysis for the parallel method based on the LSRT2 integrator.

Let us first analyse the integration of subdomain A and assume that the initial solu-

tions for the parallel procedure, yA
i−2, yB

i−2 and yA
i , are exact. Similarly, the Lagrange

multiplier Λi−2 achieved at time ti−2 is also exact.

With the exact solutions and the exact Lagrange multiplier vector, the solution ob-

tained at time ti in the first stage is locally second-order accurate, i.e.,

τ yA
i = O

(
∆t2) (7.15)

Likewise, the Lagrange multiplier vector Λi at time ti is also locally second-order accu-

rate. Similarly to subsection (6.3.4), we can prove that the solutions ti+2 in the second

stage is locally third-order accurate, i.e.,

τ yA
i+2 = O

(
∆t3) (7.16)

Now let us start the integration of subdomain B and similarly suppose that the initial

solutions, yA
i , yB

i and yA
i+1, are exact. Then, the solution of subdomain B obtained

at the end of the first stage can be proven to be locally second-order accurate. The

internal solutions between time ti and ti+1 obtained by linear interpolation, yA
i+(j−1)/ss

and yA
i+(j−1/2)/ss , are locally second-order accurate. Therefore, the Lagrange multiplier

vector obtained at the end of the first stage of the first substep in subdomain B is

locally second-order accurate. Then, the solution obtained at the end of the first

substep is locally third-order accurate. In the same manner, the solution at the end

of this loop in subdomain B can be proven to be locally third-order accurate. Hence,

we can conclude that the local truncation error has the same order of accuracy as

the staggered case. However, the accuracy of these numerical methods is not only

determined by the order p but also the constant C, as shown in the terminology

C(∆tp). In order to efficiently compare the accuracies of different cases, a numerical

accuracy analysis will be carried out in the following sections.
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7.4 Numerical analysis and simulations for a Single-DoF split mass system

Similarly to the staggered partitioned methods, the classical stability analysis ap-

proaches, such as the model decomposition approach and the energy approach, are

not suitable for the parallel partitioned methods. In fact, stability is not only related to

the overall system, but even for the linear system it depends on the partitions. There-

fore, the performances of the parallel partitioned methods are investigated by means

of spectral stability analysis applied to a Single-DoF split mass system.

7.4.1 Spectral stability analysis

For the parallel partitioned methods, let us consider again a Single-DoF split mass

system. Since the LSRT2-based method is relatively more complicated and more

desirable in practice, we mainly deal with the method based on the LSRT2 algorithm

and only some results will be represented for the LSRT1-based method. The parallel

partitioned methods are not self-starting and therefore the choice of sufficient state

variables for the stability analysis is the main difficulty. It is of crucial importance to

choose sufficient variables. Here, two codes are taken into account: i) the output xi+1

and the input xi are parallel as depicted in Fig. 7.5; ii) the output block contains all

the target variables while the input block includes all the initial variables in one loop

of the solution procedure. The initial solutions for one loop are composed of yA
i−2,

yB
i−2, yA

i , yB
i and yA

i+1 while the output contains only yB
i+1 and yA

i+2. In order to study the

amplification factor of the loop, another pair of solutions yA
i−1, yB

i−1, as intermediates,

are also considered. As a consequence, the state vector involved in the spectral

stability analysis can be considered as follows:

Xi =
( (

yA
i−2

)T (
yB

i−2

)T (
yA

i−1

)T (
yB

i−1

)T (
yA

i

)T (
yB

i

)T (
yA

i+1

)T
)T

(7.17)

where yA
i collects the kinematic quantities of subdomain A

yA
i =

(
uA

i u̇A
i

)T
(7.18)

and similarly

yB
i =

(
uB

i u̇B
i

)T
(7.19)
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Fig. 7.5: The input and output representation of the integration loop for the interfield

parallel solution procedure of the LSRT2-based partitioned method

As a result, Xi generally has the dimension 8nA + 6nB with nA and nB the DoFs in

the two subdomains. For the Single-DoF split mass system, the dimension is 14. The

application of the LSRT2-based method leads to the following recurrence formula:

Xi+1 =




04×4 IG2
4×4 04×6

06×4 06×4 IG3
6×6

02×4 02×4 Rg1/G3
2×6

Rg2/G1
2×4 02×4 Rg2/G3

2×6




Xi (7.20)

Note that the amplification matrix is written in such a way that allows us to explain

the causes of special eigenvalues. In order to clearly represent the amplification,

the input and output solutions are classified into different groups as depicted in Fig.

7.5. In the amplification matrix, Is are identity matrices that stand for the solutions in

the overlapped domain while Rs are non-zeroes that represent the actual recurrence

involved in the parallel loop.

With respect to the Single-DoF system endowed with the system characteristics

addressed in Subsection 6.4.1, the absolute values of the eigenvalues of the amplifi-

cation matrices are plotted in Figs. (7.6-7.10).
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Fig. 7.6: | λi | for the parallel partitioned method integrated by LSRT2 with b1 = 0.1

and γ = 1−
√

2
2 : (a) ss = 2; (b) ss = 5; (c) ss = 10; (d)ss = 50
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Fig. 7.7: | λi | for the parallel partitioned method integrated by LSRT2 with ss = 10

and γ = 1−
√

2
2 : (a) b1 = 0.1; (b) b1 = 0.5; (c) b1 = 1; (d)b1 = 10
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Fig. 7.8: | λi | for the parallel partitioned method integrated by LSRT2 with ss = 10

and γ = 1 +
√

2
2 : (a) b1 = 0.1; (b) b1 = 0.5; (c) b1 = 1; (d)b1 = 10
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Fig. 7.9: | λi | for the parallel partitioned method integrated by LSRT2 with ss = 10

and γ = 1/4: (a) b1 = 0.1; (b) b1 = 0.5; (c) b1 = 1; (d)b1 = 10

170



0.0 0.5 1.0 1.5 2.0
W0.0

0.2

0.4

0.6

0.8

1.0

ÈΛiÈ

(a)
0.0 0.5 1.0 1.5 2.0

W0.0

0.2

0.4

0.6

0.8

1.0

ÈΛiÈ

(b)

0.0 0.5 1.0 1.5 2.0
W0.0

0.2

0.4

0.6

0.8

1.0

ÈΛiÈ

(c)
0.0 0.5 1.0 1.5 2.0

W0.0

0.2

0.4

0.6

0.8

1.0

ÈΛiÈ

(d)

Fig. 7.10: | λi | for the parallel partitioned method integrated by LSRT2 with ss = 10

and γ = 1/2: (a) b1 = 0.1; (b) b1 = 0.5; (c) b1 = 1; (d)b1 = 10

The number of nonzero eigenvalues is found to be 10: one is unitary, 4 pairs of

them are complex conjugate and the other one is frequently less than 1. Besides,

four zero eigenvalues are included. First of all, let us investigate the existence of the

zero eigenvalues. If we have a deep look at the amplification matrix defined in 7.20,

we can find that the third term of the first column is originally Rg2/G1
2×4 but here is zero

block. This is because the solution yB
i+1 is not dependent on the initial solution yA

i−2

and yB
i−2. For this reason, there are two zero eigenvalues and two corresponding

eigenvectors. Let us suppose that one of the corresponding eigenvector is:

ξ1 =
(

ψ1×4 01×10

)T
(7.21)

As a result of the intermediate block, we can obtain the following equation

R
(

01×4 ψ1×4 01×6

)T
=

(
ψ1×4 01×10

)T
(7.22)

If we assume ξ1 =
(

01×4 ψ1×4 01×6

)T
, we can finally achieve:

Rξ1 = 0ξ1

Rξ2 = 0ξ2 + ξ1

(7.23)
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and, therefore,

R2ξ2 = Rξ1 = 0 (7.24)

Accordingly, the eigenvector ξ2 is the eigenvector of the amplification matrix R with re-

spect to one zero eigenvalue, while the vector ξ2 is the so-called associated vector. In

the same manner, we can analyse the other zero eigenvector and find its correspond-

ing associated vector. Generally, the number of the zero eigenvalues is determined by

the DoFs of subdomain B and therefore is equal to 4nB . Finally, we can conclude that

the zero eigenvalues are caused by redundant inputs involved in the construction of

the amplification matrix and they do not affect the accuracy of the methods. Note that

the so-called redundant is not related to the necessary condition for the integration

but the redundant solutions are inevitable to achieve this amplification matrix.

As for the unit eigenvalue, we can also figure out the corresponding eigenvector

from the ”equilibrium point” of the Index-one DAEs system

ξ =
{

kB 0 −kA 0 kB 0 −kA 0 kB 0 −kA 0 kB 0 −kA 0 kB 0
}T

(7.25)

Although the parallel procedure is relatively more complex with respect to the stag-

gered case, we can also, by following the procedure, achieve Rξ = ξ. As a result,

the unitary eigenvalue is always existent whatever the time step and the parameter

γ are used. In addition, there are 9 eigenvalues which are not constant. Among

them, 4 pairs are complex conjugate and one is real. Note that the composition of the

eigenvalues discussed here is beyond the consideration of bifurcations.

Fig. 7.6 shows the absolute values of the eigenvalues of the amplification matrices

for the cases with different values of the parameter ss. Notice that all the cases in Fig.

7.6 have an excellent similarity. This is because, with different ss, the only difference

exists in the Rg1/G3
2×6 block of the amplification matrix while all the other blocks remain

the same. Therefore, we only elaborate the cases with ss = 10 which are relatively

common, only considering Ω ∈ [0, 2]. Similarly to the staggered methods, the method

with γ = 1+
√

2
2 exhibits unconditional stability while the one with γ = 1−

√
2

2 sometimes

is only conditionally stable. Nevertheless, we also must be aware that all the methods

are stable when the time step is sufficient small. Moreover, we would like to point out a
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Fig. 7.11: Global error of the Single-DoF system for the parallel partitioned method

integrated by LSRT2 with ss = 10: (a) b1 = 0.1 and γ = 1 −
√

2
2 ; (b) b1 = 10 and

γ = 1−
√

2
2 ; (c) b1 = 0.1 and γ = 1 +

√
2

2 ; (d)b1 = 10 and γ = 1 +
√

2
2

trend that must be taken into account to ensure the stability of the parallel integration:

the stability of the partitioned methods depends on the partitioning parameter b1.

Larger value of b1 introduces more damping, and therefore the method becomes

more stable.

7.4.2 Numerical convergence analysis

For the parallel partitioned methods, the global error ek at time tk is determined by

both the starting procedure and the regular parallel procedure. Although the local

truncation errors for both procedures are known, it is not immediately obvious how

the errors will accumulate over k time steps. In order to cope with this we conduct the

numerical convergence analysis.

Figs. 7.11 and 7.12 show the global error versus for the Single-DoF split mass

system, with the initial condition d0 = 0 and v0 = 1. Numerical results coincide well with

the theoretical accuracy analysis: the LSRT2-based method is globally second-order

accurate. In addition, the comparison of the cases with different algorithm parameter

γ and with different partitioning parameter b1 shows that the method with γ = 1+
√

2/2
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Fig. 7.12: Global error of the Single-DoF system for the parallel partitioned method

integrated by LSRT2 with ss = 10: (a) b1 = 0.1 and γ = 1/4; (b) b1 = 10 and γ = 1/4;

(c) b1 = 0.1 and γ = 1/2; (d)b1 = 10 and γ = 1/2

is more dissipative in the low frequency range and therefore introduces more error

than the method with γ = 1 − √2/2. As analysed in the previous subsection, higher

numerical dissipation is benefit to the stabilization of the partitioned method. If the

parameter γ = 1 +
√

2/2 is inevitable for stability limit, on the one hand, we can

use a smaller time step for required accuracy; on the other hand, we can choose

another suitable partitioning parameter b1 to ensure the accuracy in the low frequency

rang. Besides, the partitioned methods with γ = 1/4 and γ = 1/2 are simulated as

shown in Fig. 7.12. Both cases have no evident high-frequency dissipation except

the numerical dissipation due to the coupling at the interface. But they are relative

more accurate than the cases with dissipative values of γ.

7.4.3 Numerical simulation

For the parallel methods, four pairs of complex conjugate eigenvalues are included in

the stability analysis. The numerical damping and the frequency error are not easy

to be depicted as the staggered methods. In addition, the inherent drift due to the

acceleration constraint is also inevitable for the parallel method. That is why many
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Fig. 7.13: The numerical simulations the Single-DoF system integrated by the parallel

method with ss = 10, ∆t = 0.01 and γ = 1 +
√

2
2 : (a), (b) the displacement and velocity

responses with b1 = 0.1; (c), (d) the displacement and velocity responses with b1 = 1;

(e), (f) the displacement and velocity responses with b1 = 10

simulations will be enumerated considering different parameters. With this purpose

in mind, we take no account of the physical damping and external force. The simula-

tions of the Single-DoF split mass system are shown in Figs. 7.13 - 7.15. The evident

incoincidence of the numerical solution on the displacements with the theoretical so-

lution depicted in Fig. 7.13 (a) concerns the oscillation decay and period delay as well

as the drift at the interface. In case the of velocities (Fig. 7.13 b), the effect of the drift
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Fig. 7.14: The numerical simulations the Single-DoF system integrated by the parallel

method with ss = 10, ∆t = 0.01 and γ = 1 −
√

2
2 : (a), (b) the displacement and

velocity responses with b1 = 0.1; (c) the displacement response with b1 = 1; (d) the

displacement response with b1 = 10
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Fig. 7.15: The numerical simulations the Single-DoF system integrated by the parallel

method with ss = 10 and ∆t = 0.01: (a)the displacement response with b1 = 0.1 and

γ = 1/4; (b) the displacement response with b1 = 10 and γ = 1/4; (c) the displacement

response with b1 = 0.1 and γ = 1/2; (d) the displacement response with b1 = 10 and

γ = 1/2
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becomes unobservable while the other effects remain at the same level in the velocity

responses. When we adopt the parameter b1 = 1, the responses will be certainly im-

proved. Now let us proceed with these calculations a little bit longer to compare the

responses. As shown in Fig. 7.13 (c) and (d), the displacements reveal significant

drift effect as well as a little period delay. Similarly, the drift effect disappears in the

velocity while the period delay remains. For b1 = 10, even when the calculations con-

tinue to 100s, the responses only exhibit slight difference in the displacement, which

is mainly the contribution of the drift at the interface, and an excellent agreement for

the velocity.

Compared with the cases with γ = 1−
√

2
2 , Fig. 7.14 simulated with γ = 1−

√
2

2 has

less error in both displacement and velocity responses, especially for velocity. The

LSRT2 algorithm with γ = 1−
√

2
2 for uncoupled system introduces less dissipation for

the low frequency response. As shown in Fig. 7.14 (a), this disagreement is mainly

induced by the drift at the interface. For the other two cases with b1 = 1 and b1 = 10,

their displacement responses hardly exhibit noticeable differences while less for their

velocity responses which are omitted for simplicity.

In addition, some simulations are carried out for the conservative values of γ = 1/4

and γ = 1/2. Their performances are plotted in Fig. 7.15. Even though the global

integration with these values of γ has no dissipation at all, this only indicates zero

amplification decay but not zero period delay. If b1 6= 1, the time variations in both

subdomain are different. Moreover, the time steps used in different subdomain are

unequal. Therefore, the integrations in both subdomains have different period delay.

The unbalance period delay aggravates the deviation of the Lagrange multiplier from

its exact solution and therefore induces the amplification decay as shown in Fig. 7.15

(a).

The parallel methods applied on a Single-DoF system can be explored further with

more simulations, but this can not be extend to the Multiple-DoF system directly as

the ODE solver. Before moving to numerical analysis for Multiple-DoF systems, let us

make the following conclusions:

1. Using sufficient small time steps, all the cases involved are stable.

2. The methods with higher dissipative value of γ will be stable but may be inac-

curate, especially when b1 is not suitably chosen.
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3. The drift effect is mainly related to be displacement response, its effect on the

velocity response is relatively slight.

7.5 Numerical analysis and simulations for Multiple-DoF split mass systems

Both theoretical consideration and numerical examples have shown some prob-

lems in the Single-DoF system simulations: uncontrollable numerical dissipation and

conditionally stability. But their effects can be reduced by considering proper choices

of the parameters γ and b1. Some examples are provided in this section to ensure

that their effects are not aggravated with increasing the number of DoFs.

7.5.1 Spectral stability analysis

In this subsection, the partitioned Two-DoF system is considered. For this system,

the number of the initial values provided for the parallel procedure is 8nA + 6nB = 20.

Fig. 7.16 depicts the absolute values of the eigenvalues of the amplification matrices.

Similarly, the parallel method with γ = 1 +
√

2
2 indicates unconditionally stability while

with γ = 1 +
√

2
2 only conditionally stability when b1 = 10. Here, we can find that 8

of the eigenvalues are zero. This is because the number of DoFs in subdomain B

is 2. The numerical stability for Multiple-DoF systems are investigated for the other

cases which are not represented for simplicity. The results are similar: the method

with γ = 1−
√

2
2 sometimes is only conditionally stable. But the non-zero eigenvalues

of the amplification matrix with γ = 1 −
√

2
2 is more approximate to one in modular

which indicates higher accuracy.

7.5.2 Numerical simulations

In this subsection, the GC method, the PM method and the proposed staggered

method will be implemented for comparison. First, let us consider the partitioned
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Fig. 7.16: | λi | for the parallel method appled to the paritioned Two-DoF system 1

with LSRT2 and ss = 10: (a) b1 = 0.1 and γ = 1 −
√

2
2 ; (b) b1 = 10 and γ = 1−

√
2

2 ; (c)

b1 = 0.1 and γ = 1 +
√

2
2 ; (d) b1 = 10 and γ = 1 +

√
2

2
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Fig. 7.17: The displacement responses of the partitioned Two-DoF system 1 inte-

grated with: (a) the GC method; (b) the PM method; (c) the LSRT2-based staggered

method; and the LSRT2-based parallel method

Two-DoF system 1. All the methods are implemented with time step ∆t = 10ms.

Here, the system variables are chosen the same as before and the parameter b1 = 1.

For the proposed methods, staggered or parallel, we adopt the parameter γ = 1−
√

2
2 .

For the GC method and the PM method, we use the parameters β = 1/4 and γ = 1/2

for both subdomain. Fig. 7.17 and 7.18 collect the numerical solutions of the period

from 580ms to 600ms in order to highlight the different numerical properties of the

partitioned methods. The LSRT2-based parallel method exhibits more drift effect in

the displacement responses than the other methods. This is consistent with the re-

sults for the Single-DoF system in the previous section. For the GC method and the

PM method, no noticeable drifts are included in the displacement responses, but the

deviations of the displacement responses from the exact solutions are more or less

to the same extent as the proposed parallel method. Moreover, the proposed parallel

methods generates more accurate velocity solutions with no visible drift and deviation

while the GC method and the PM method also lead to noticeable errors in velocity re-
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Fig. 7.18: The velocity responses of the partitioned Two-DoF system 1 integrated

with: (a) the GC method; (b) the PM method; (c) the LSRT2-based staggered method;

and the LSRT2-based parallel method
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Fig. 7.19: The displacement and velocity responses of the partitioned Three-DoF

system integrated with: (a) and (b) the LSRT2-based staggered method; (c) and (d)

the LSRT2-based parallel method

sponses. In addition, the LSRT-based staggered method provides the solutions with

excellent agreement both for the displacement and velocity responses.

Secondly, we perform a series of simulations of the partitioned Three-DoF system.

Similarly, the time step ∆t = 10ms is used and the system characteristics is chosen

the same as Subsection 6.6.1. The numerical solutions simulated by the LSRT-based

methods, staggered and parallel, with γ = 1−
√

2
2 are reported in Fig. 7.19. Differently

from the simulations for the Single-DoF system, the velocity responses solved by both

methods also reveal slight drift effect. This drift effect is not only because of the free

mass model, but also due to the weak instability induced by the floating DoFs. Even

though only one floating subdomain is included in the system, two floating DoFs are

actually hidden in Subdomain B: one is the horizontal motion, the other one is the

rotational motion. Nevertheless, we also must be aware that the numerical solutions

are still within an acceptable range if the simulation period is not too long.
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Fig. 7.20: The displacement and velocity responses of the coupled spring-pendulum

system integrated by the LSRT2-based parallel method with: (a) and (b) γ = 1 −
√

2
2 ;

(c) and (d) γ = 1 +
√

2
2

Finally, we perform a couple of simulations of the coupled spring-pendulum system

in order to check the possibility of the nonlinear application of the LSRT2-based par-

allel method. The same stiff problem is solved here with the time step ∆t = 1ms for

the purpose to investigate the high-frequency dissipation property of the Rosenbrock-

based partitioned method. Fig. 7.20 shows that the displacement responses remain

excellent and no drift effect is visible. The difference in the velocity responses re-

veals the high-frequency dissipation property of the method. Similar, the method with

γ = 1 +
√

2
2 introduces higher numerical damping to the stiff problem.
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7.6 Conclusions

The partitioned methods proposed in the previous chapter are of great potential for

solving complex structures, especially when subcycling is used. However, the meth-

ods with subcycling are inherently staggered, in the sense that all the subdomains

have to be advanced sequentially, and not simultaneously at each time step. More

precisely, the time integration with the fine time step requires the information (the in-

ternal solution interpolated from the integration with the coarse time step) which is not

available at the beginning of the time step. This limits the application of the method

to some parallel computations, such as, real-time substructure testing.

In this chapter, we have focused exclusively on their extension to the parallel case.

The accuracy analysis for the staggered method provides us a powerful access to

implementation of parallel solution procedures without loss of the order of accuracy.

For the sake of lack of analytical investigation, we present a mathematical frame-

work for assessing some important numerical properties of the parallel methods, such

as stability and accuracy. Our numerical framework is based on the simulations on

a Single-DoF test problem, and then some Multiple-DoF test problems considering

floating subdomains, multiple Lagrange multipliers and nonlinearities are utilized to

test the numerical behaviour of parallel method.

In particular, numerical stability analysis was carried out by means of the spectral

analysis. The amplification matrix was based on two assumptions: i) the output xi+1

and the input xi are parallel; ii) the output includes all the target variables while the in-

put includes all the initial variables in one loop of the solution procedure. The number

of the eigenvalues of the obtained amplification matrix was 18 for a Single-DoF split

mass problem. All the eigenvalues were classified into four groups, i.e. principle, uni-

tary, zero and real, and they were analysed in terms of their causes and their effects

on the stability and accuracy.

In addition, it was noticed that the methods exhibited drift effects. The drift effects

were primarily caused by the acceleration constraint and were observed to be lim-

ited. When solving a partitioned system in the presence of floating subdomains or

DoFs, the drift effect was additionally induced by the weak instability, and could not

be bounded with the time approximating to infinity. With careful choices of the param-
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eter γ and the utilized time step, the drift effect of both cases could be reduced to an

acceptable level. In conclusion, the parallel methods were discovered to offer suffi-

ciently accurate numerical solutions and preserve some numerical properties, such

as high-frequency dissipation, as their progenitor methods.
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CHAPTER 8

PARTITIONED TIME INTEGRATION METHODS BASED ON PROJECTION

METHODS

8.1 Introduction

In this chapter, partitioned time integration methods are formulated by consider-

ing a projection onto the velocity constraint. The methods proposed in the last two

chapters to some extent introduce slight but unavoidable drift-off effects in the dis-

placement responses because of the acceleration constraint. Therefore, we develop

an alternative partitioned method based on the velocity constraint.

Often a DAEs system is implicitly solved inside the framework of projection meth-

ods. In Yen et al. (1998), the HHT-α method was extended to DAEs holonomically

constrained systems and projection methods were proposed to project the solution

of the underlying ODEs onto the velocity and displacement constraints; but the DAE

solvers were only first order convergent. A second order extension of the HHT-α

method to the DAEs system was made by means of an implicit projection without re-

lying on underlying ODEs (Jay and Negrut, 2007). Note that both of them are suitable

for integrating DAEs systems, but not efficient in sequential or parallel computations.

In recent years, a variety of explicit projection methods were developed. Actually, the

GC method and the PM method belong to this type of projection method in that the

free solution is obtained by integration of all subdomains without considering con-

straints, and then the link problem is solved to update the Lagrange multiplier and

project the free solution onto the velocity constraint. Both methods provide the possi-

bility for sequential and parallel computation, respectively, and second-order conver-
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gence can be achieved without subcycling, while first-order convergence with subcy-

cling. In addition, Zheng and Petzold (2006) proposed an explicit projection method

to solve first-order DAEs systems by means of a first-order integrator, Runge-Kutta-

Chebysheve method. The method is second order accurate for the state variable and

the Lagrange multiplier, and is suitable for parallel computation. In this chapter, a

couple of projection methods based on first order integrators, i.e. the LSRT1 method

and the LSRT2 method, are applied to second-order systems. We show that they

preserve the order of convergence and the favourable properties of their progenitor

methods.

8.2 Formulation of the projection methods

Motivated by the projection method developed by Zheng and Petzold (2006), we

develop two partitioned methods with the LSRT1 and LSRT2 methods, respectively,

for solving second order equations of motion in first-order form constrained by the

inter-subdomain velocity continuity.




ẏ = F (y, t) + CT Λ

Cy = 0
(8.1)

which is an index-2 DAEs system.

8.2.1 Derivation of the LSRT1-based projection method (VPNR1)

For the application of the LSRT1 method which is characterized by only one stage,

the general projection procedure (Brown et al., 2001) can be followed. The numerical

procedure consists of the following three steps:

1. Solve for the intermediate solution at time tk

k1 = ∆t [I− ∆tγJ]−1 (
F (yk , tk ) + A−1CT Λk

)

y∗k+1 = yk + k1

(8.2)
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2. Perform the projection

Φk+1 = −
(

CA−1CT
)−1

Cy∗k+1

yk+1 = y∗k+1 + A−1CT Φk+1

(8.3)

3. Update the Lagrange multiplier

Λk+1 = Λk +
2

∆t
Φk+1 (8.4)

In the design of such a method, the key factor is the choice of the Lagrange mul-

tiplier update. Here, Eq. (8.4) is set to achieve first order accuracy for the Lagrange

multiplier, which will be analysed in detail in Subsection 8.3.1.

8.2.2 Derivation of the LSRT2-based projection method (VPNR2)

The LSRT2 method is a two-stage method. Direct application to the projection proce-

dure as proposed by Zheng and Petzold (2006) leads to instability for second order

systems. This will be detailed analysed in Section 8.4. Here, another projection is

performed at the end of the first stage per time step and the Lagrange multiplier is

updated simultaneously. The projections involved are standard, with the same way

as Eq. (8.3). How to update the Lagrange multipliers at both the end of the first

stage and the end of the time step is the crucial point to design this method. This

determines the accuracy and stability of the method. The details of the design of

the method are postponed to Subsection 8.3.2 and Section 8.4. Here, the solution

procedure of the method is presented as follows:

1. Solve for the intermediate solution at time tk+1/2

k1 = ∆t [I− ∆tγJ]−1 (
F (yk , tk ) + A−1CT Λk

)

y∗k+1/2 = yk +
1
2

k1

(8.5)

2. Perform the projection

Φk+1/2 = −
(

CA−1CT
)−1

Cy∗k+1/2

yk+1/2 = y∗k+1/2 + A−1CT Φk+1/2

(8.6)
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3. Update the Lagrange multiplier

Λk+1/2 = Λk − 1
∆t

Φk+1/2 (8.7)

4. Solve for the intermediate solution at time tk+1

k2 = ∆t [I− ∆tγJ]−1 (
F

(
yk+1/2, tk+1/2

)
+ A−1CT Λk+1/2 − γJk1

)

y∗k+1 = yk + k2

(8.8)

5. Perform the projection

Φk+1 = −
(

CA−1CT
)−1

Cy∗k+1

yk+1 = y∗k+1 + A−1CT Φk+1

(8.9)

6. Update the Lagrange multiplier

Λk+1 = Λk+1/2 +
1

∆t
Φk+1 (8.10)

This solution procedure is parallel in the sense that the interface problem related

to the projections and the updates of the Lagrange multiplier is only conducted at the

end of each stage.

8.3 Accuracy analysis

8.3.1 Local truncation error analysis for the LSRT1-based projection method

In this section we will show that the projection method based on the LSRT1 method is

locally second order accurate in time for both the state vectors and the coupling force.

We consider one time step of the projection method from tk to tk+1. Suppose we have

the exact solutions as the initial conditions at time tk , i.e., yk = y (tk ) and Λk = Λ (tk ).

We can have the following equations satisfied:

Cyk = 0

Cẏk = 0
(8.11)
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In the first step of the projection method, the LSRT1 algorithm is used to solve for

the equations of motion without regard to the constraint equations to obtain the inter-

mediate state vector y∗k+1. In order to continue, we present another an auxiliary ODE

with constant Lagrange multiplier.

Aẏ∗ = F (y∗, t) + CT Λ∗ (8.12)

where Λ∗, the Lagrange multiplier vector, is assumed to be constant. We choose

Λ∗ = Λk . Therefore y∗k+1 is also the numerical solution of Eq. (8.12), and y∗ (tk+1) is

the exact solution of (8.12) at tk+1. Since the LSRT1 method is first order accurate,

we have

y∗k+1 − y∗ (tk+1) = O
(

∆t2) (8.13)

The next step in the derivation is to compare y∗ (tk+1) and y (tk+1) which are exact

solutions of the auxiliary ODE and the original DAE, respectively. Herein, we begin

by applying simple Taylor series analyses as follows:

y∗ (tk+1) = y∗k + ∆t ẏ∗k +
∆t2

2
ÿ∗k + O

(
∆t3)

y (tk+1) = yk + ∆t ẏk +
∆t2

2
ÿk + O

(
∆t3)

(8.14)

where y∗k is supposed to be exact, i.e. y∗k = yk . And we assume that the auxiliary

ODE is sufficient smooth, i.e.

ẏ∗k = ẏk = A−1 (
F (yk , tk ) + CT Λk

)

ÿk = A−1 (
Ḟ (yk , tk ) + CT Λ̇k

)

ÿ∗k = A−1Ḟ (yk , tk )

(8.15)

Thus, we can obtain

y (tk+1)− y∗ (tk+1) =
∆t2

2

(
ÿk − ÿ∗k

)
+ O

(
∆t3)

=
∆t2

2
A−1CT Λ̇k + O

(
∆t3)

(8.16)

By combining Eq.(8.16) with Eq. (8.13), we can find

y∗k+1 − y (tk+1) = O
(

∆t2) (8.17)

Before moving to the projection step, we can express the intermediate solution at tk+1

from Eq. (8.2) as follows:

y∗k+1 = yk + ∆t [I− ∆tγJ]−1 ẏk (8.18)
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If both sides of (8.18) are left multiplied by C, we can obtain

Cy∗k+1 = Cyk + C∆t [I− ∆tγJ]−1 ẏk

= C∆t [I− ∆tγJ]−1 ẏk

= C∆t [I− ∆tγJ]−1 (I− ∆tγJ + ∆tγJ) ẏk

= ∆tCẏk + ∆tC [I− ∆tγJ]−1 ∆tγJẏk

= ∆tC [I− ∆tγJ]−1 ∆tγJẏk

= ∆t2γCJẏk + ∆t3γ2C [I− ∆tγJ]−1 JJẏk

= ∆t2γCJẏk + O
(

∆t3)

(8.19)

In order to evaluate the term CJẏk , we introduce the continuity of the second deriva-

tive of the differential vector

Cÿk = 0 (8.20)

Moreover, the second derivative of the differential vector can be expressed as

ÿk =
∂

∂t

(
A−1F (yk , t) + A−1CT Λk

)
= Jẏk +

∂F
∂t

∣∣∣∣
k

+ A−1CT Λ̇ (8.21)

The combination Eq. (8.20) and (8.21) results in

CJẏk = −C
∂F
∂t

∣∣∣∣
k
− CA−1CT Λ̇ (8.22)

Thus, we can continue Eq. (8.19) as follows,

Cy∗k+1 = −∆t2γC
∂F
∂t

∣∣∣∣
k
− ∆t2γCA−1CT Λ̇ + O

(
∆t3) (8.23)

Now, let us discuss the projection step.

Φk+1 = −
(

CA−1CT
)−1

Cy∗k+1

= ∆t2γ
(

CA−1CT
)−1

C
∂F
∂t

∣∣∣∣
k

+ ∆t2γΛ̇ + O
(

∆t3) (8.24)

Now, the local truncation error of the differential vector can be obtained by combining

Eq. (8.17) and (8.24)

yk+1 − y (tk+1) = yk+1 − y∗k+1 + y∗k+1 − y (tk+1) = Φk+1 + O
(

∆t2) = O
(

∆t2) (8.25)

which indicate that it is of second order.
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Furthermore, the algebraic vector can be evaluated in term of local truncation error

as

Λk+1 = Λk +
2

∆t

(
∆t2γ

(
CA−1CT

)−1
C

∂F
∂t

∣∣∣∣
k

+ ∆t2γΛ̇ + O
(

∆t3)
)

= Λk + 2∆tγ
(

CA−1CT
)−1

C
∂F
∂t

∣∣∣∣
k

+ 2∆tγΛ̇ + O
(

∆t3)
(8.26)

Which is of only first order.

The method has different order of local truncation error in differential vector and

algebraic vector. But the numerical convergence analysis performed in Subsection

8.5.2 indicates first order global error in differential vector. This is because the pro-

jection in next time step can filter the second order term in the algebraic vector,

2∆tγ
(

CA−1CT
)−1

C ∂F
∂t

∣∣
k + 2∆tγΛ̇. The similar phenomenon can be observed in the

analysis of the LSRT2-based projection method and thereof the detailed investigation

is omitted here.

8.3.2 Local truncation error analysis for the LSRT2-based projection method

In this section we will show that the projection method based on LSRT2 is locally third

order accurate in time for the differential vector and locally second-order accurate for

the algebraic vector. We consider one time step of the projection method from tk to

tk+1. Suppose we have the exact solutions as the initial conditions at time tk , i.e.,

yk = y (tk ), and Λk = Λ (tk ). In the same way, we can have Eqs.(8.11) satisfied.

In the first stage, the LSRT2 algorithm is firstly used to solve for the equations

of motion without regard to the constraint equations to obtain the intermediate state

vector y∗k+1/2.

For the intermediate solution in the first stage, we present an auxiliary ODEs with

the same form as (8.12), where the Lagrange multiplier in the first stage is assumed

to be constant and equal to Λk . Suppose y∗k+1/2 is the numerical solution of (8.12),

and y∗
(
tk+1/2

)
is the exact solution of the auxiliary ODEs at tk+1/2. Because the

LSRT2 method in the first stage is similar as the LSRT1 method and therefore the

intermediate solution is of second order local truncation error, i.e.

y∗k+1/2 − y∗
(
tk+1/2

)
= O

(
∆t2) (8.27)
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Then we deal with the projection at the end of first stage, and we try to compare the

exact solutions of the original DAEs and the auxiliary ODEs. Herein, we begin by

applying simple Taylor series analyses as follows:

y∗
(
tk+1/2

)
= y∗k +

∆t
2

ẏ∗k +
∆t2

8
ÿ∗k + O

(
∆t3)

y
(
tk+1/2

)
= yk +

∆t
2

ẏk +
∆t2

8
ÿk + O

(
∆t3)

(8.28)

Similarly, initial solutions for both the auxiliary ODEs and the original DAEs can be

expressed as Eqs. (8.15).

The comparison between Eqs. (8.28) leads to the difference between the exact

solutions at tk+1 of the original DAEs and the auxiliary ODEs.

y
(
tk+1/2

)− y∗
(
tk+1/2

)
=

∆t2

8

(
ÿk − ÿ∗k

)
+ O

(
∆t3)

=
∆t2

8
A−1CT Λ̇k + O

(
∆t3)

(8.29)

Considering Eq. (8.1), the intermediate solution (8.5) can be written in the form

y∗k+1/2 = yk +
1
2

∆t [I− ∆tγJ]−1 ẏk (8.30)

With the similar derivation for the LSRT1-based projection method, we can express

the term Cy∗k+1/2 in the form

Cy∗k+1/2 =
1
2

∆t2γCJẏk + O
(

∆t3) (8.31)

As result of the continuity of the second derivative of the differential vector, i.e. Cÿk =

0, the expression of (8.21), we can similarly obtain

Cy∗k+1/2 =
1
2

∆t2γCJẏk + O
(

∆t3)

= −1
2

∆t2γC
∂F
∂t

∣∣∣∣
k
− 1

2
∆t2γCA−1CT Λ̇k + O

(
∆t3) (8.32)

By inserting (8.32) into Eq. (8.6a), we can obtain

Φk+1/2 = −
(

CA−1CT
)−1

Cy∗k+1/2

=
1
2

∆t2γ
(

CA−1CT
)−1

C
∂F
∂t

∣∣∣∣
k

+
1
2

∆t2γΛ̇k + O
(

∆t3) (8.33)

Finally, it follows form equation (8.33)and (8.27) that

yk+1/2 − y
(
tk+1/2

)
= O

(
∆t2) (8.34)
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By inserting (8.33) into Eq. (8.7), the Lagrange multiplier vector can be expressed as

Λk+1/2 = Λk − 1
∆t

Φk+1/2

= Λk − 1
2

∆tγ
(

CA−1CT
)−1

C
∂F
∂t

∣∣∣∣
k
− 1

2
∆tγΛ̇k + O

(
∆t2) (8.35)

which is locally first order accurate in time to the exact solution.

Before analysing the second stage, some terms included in Eq. (8.8) are expressed

by means of Taylor series expansion about the initial solution which are useful in the

following proof process.

F
(
tk+1/2, yk+1/2

)
= Fk +

∆t
2

∂F
∂t

∣∣∣∣
k

+ J
k1

2
+ O

(
∆t2)

k1 = ∆tFk + ∆tA−1CT Λk + O
(

∆t2)
(8.36)

Following Eq. (8.8), the intermediate solution at tk+1 can be expressed as

y∗k+1 = yk + [I− ∆tγJ]−1
(

Fk +
∆t
2

∂F
∂t

∣∣∣∣
k

+
1
2

J∆tFk +

+
1
2

J∆tA−1CT Λk + A−1CT Λk − 1
2

∆tγA−1CT
(

CA−1CT
)−1

C
∂F
∂t

∣∣∣∣
k
−

−1
2

∆tγA−1CT Λ̇k − γJ∆tFk − γJ∆tA−1CT Λk

)
∆t + O

(
∆t3)

(8.37)

According to Taylor series expansion, we can express the exact solution at time tk+1

to the third order about the initial solution

y (tk+1) = yk + Fk ∆t + A−1CT Λk ∆t + O
(

∆t3) +

+
∆t2

2

(
J

(
Fk + A−1CT Λk

)
+

∂F
∂t

∣∣∣∣
k

+ A−1CT Λ̇k

) (8.38)

Therefore

y∗k+1 − y (tk+1)

= [I− ∆tγJ]−1
(

Fk +
∆t
2

∂F
∂t

∣∣∣∣
k

+
1
2

J∆tFk +
1
2

J∆tA−1CT Λk + A−1CT Λk−

−1
2

∆tγA−1CT
(

CA−1CT
)−1

C
∂F
∂t

∣∣∣∣
k
− 1

2
∆tγA−1CT Λ̇k − γJ∆tFk − γJ∆tA−1CT Λk

)
∆t−

−Fk ∆t − A−1CT Λk ∆t − ∆t2

2

(
J

(
Fk + A−1CT Λk

)
+

∂F
∂t

∣∣∣∣
k

+ A−1CT Λ̇k

)
+ O

(
∆t3)

= −1
2

∆t2γA−1CT
(

CA−1CT
)−1

C
∂F
∂t

∣∣∣∣
k
− 1

2
∆t2 (γ + 1) A−1CT Λ̇k + O

(
∆t3)

(8.39)
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Left multiplying (8.39) by the term A−1C results in

A−1C
(
y∗k+1 − y (tk+1)

)

= −1
2

∆t2γA−1C
∂F
∂t

∣∣∣∣
k
− 1

2
∆t2 (γ + 1) A−1CA−1CT Λ̇k + O

(
∆t3) (8.40)

Since the y (tk+1) is the exact solution, we have A−1Cy (tk+1) = 0. Meanwhile, we can

get

A−1Cy∗k+1 = −1
2

∆t2γA−1C
∂F
∂t

∣∣∣∣
k
− 1

2
∆t2 (γ + 1) A−1CA−1CT Λ̇k + O

(
∆t3) (8.41)

Thus, by inserting Eq. (8.41) into Eq. (8.9), we can obtain

Φk+1 =
1
2

∆t2γ
(

CA−1CT
)−1

C
∂F
∂t

∣∣∣∣
k

+
1
2

∆t2 (γ + 1) Λ̇k + O
(

∆t3) (8.42)

Now, the local truncation error of the differential vector can be obtained

τk+1 = y∗k+1 + A−1CT Φk+1 − y (tk+1) = y∗k+1 − y (tk+1) + A−1CT Φk+1

= −1
2

∆t2γA−1CT
(

CA−1CT
)−1

C
∂F
∂t

∣∣∣∣
k
− 1

2
∆t2 (γ + 1) A−1CT Λ̇k + O

(
∆t3)

+
1
2

∆t2γA−1CT
(

CA−1CT
)−1

C
∂F
∂t

∣∣∣∣
k

+
1
2

∆t2 (γ + 1) A−1CT Λ̇k + O
(

∆t3)

= O
(

∆t3)

(8.43)

which indicates a local truncation error of O
(

∆t3
)
. By inserting Eq. (8.42) into Eq.

(8.10), we can obtain the local truncation error of the algebraic vector, i.e.

Λk+1 = Λk+1/2 +
1

∆t
Φk+1

= Λk + O
(

∆t2)
(8.44)

which is only locally first order accurate.

In this proof process, we can find that the second order terms in the expression of

the Lagrange multiplier vector, as shown in Eq. (8.35), is eliminated completely in the

calculation of the second stage as implied in Eq. (8.43). Likewise, the unbalanced

second order term in Eq. (8.44) can be filtered out by the projection in the first stage

of the next time step. This makes the differential vector achieves globally second

order accuracy even in the presence of the lower order accuracy in the algebraic

vector. Moreover, similar explanation can be used for the similar phenomenon in the

LSRT1-based projection method.
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8.4 Stability analysis

In this section, the analytical stability analyses are performed for the proposed

projection method. For the LSRT1-based projection method, the linear recurrence

approach is used and the method is proved to be unconditionally stable when applied

to second order systems. For the LSRT2-based projection method, the method has

two projection and therefore the linear recurrence approach become infeasible. But,

this approach is utilized to study the projection method with only one projection at the

end of the time step which is included in the common framework proposed by (Zheng

et al., 2009). The method is proved to be unconditionally unstable when applied to

undamped second order systems. This indicates the necessity to introduction another

projection at the end of the first stage.

In order to analyse the stability properties of the methods, we use a linear sec-

ond order system and assume no damping term and no external force term. The

governing equations can be expressed in the first order form as

ẏ = Jy + A−1CT Λ

Cy = 0
(8.45)

For brevity, we introduce an linear ODEs system, ẏ∗ = Jy∗. For the LSRT1 method,

its application to the linear system leads to the amplification matrix as

R = I + ∆tJ [I− ∆tγJ]−1 (8.46)

The application of the LSRT2 method to the system results in the amplification matrix

as

R = I + ∆tJ [I− ∆tγJ]−1
(

I +
(

1
2
− γ

)
∆tJ [I− ∆tγJ]−1

)
(8.47)

The two amplification matrices are expressed in the function of ∆tJ. Now, we simul-

taneously analyse both the LSRT1-based projection method and the LSRT2-based

projection method with only one projection step at the end of each time step. Here,

we shortly describe the solution procedure of the latter case.
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1. Solve for the intermediate solution at time tk+1

k1 = ∆t [I− ∆tγJ]−1 (
F (yk , tk ) + A−1CT Λk

)

yk+1/2 = yk +
1
2

k1

k2 = ∆t [I− ∆tγJ]−1 (
F

(
yk+1/2, tk+1/2

)
+ A−1CT Λk − γJk1

)

y∗k+1 = yk + k2

(8.48)

2. Perform the projection

Φk+1 = −
(

CA−1CT
)−1

Cy∗k+1

yk+1 = y∗k+1 + A−1CT Φk+1

(8.49)

3. Update the Lagrange multiplier

Λk+1 = Λk+1/2 +
1

∆t
Φk+1 (8.50)

This solution procedure is the similar as the LSRT1-based projection method as

shown in Subsection 8.2.1. The first step of both cases, i.e. Eqs. (8.2) and (8.48),

results in the common formula as follows

y∗k+1 = Ryk − (I− R) J−1A−1CΛk (8.51)

It is derived from Eq. (8.51) that

y∗k+1 − y∗k = R (yk − yk−1)− (I− R) J−1A−1C (Λk − Λk−1) (8.52)

In the projection step, combining Eqs. (8.3) leads to

yk+1 = y∗k+1 − A−1CT
(

CA−1CT
)−1

Cy∗k+1

= (I− Q) y∗k+1

(8.53)

where Q = A−1CT
(

CA−1CT
)−1

C.

From the last step, we can obtain

Λk+1 − Λk =
2

∆t
Φk+1 (8.54)

Likewise, we can obtain

Λk − Λk−1 =
2

∆t
Φk (8.55)
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Combining Eq. (8.52) and Eq. (8.55) leads to

y∗k+1 − y∗k = R (yk − yk−1)− 2
∆t

(I− R) J−1A−1CΦk

= R (I− Q)
(
y∗k − y∗k−1

)
+

2
∆t

(I− R) J−1A−1C
(

CA−1CT
)−1

Cy∗k

= R (I− Q)
(
y∗k − y∗k−1

)
+

2
∆t

(I− R) J−1Qy∗k

(8.56)

Let y∗k = wk + vk , where wk = Qy∗k and vk = (I− Q) y∗k . We can reform Eq. (8.56) as

wk+1 + vk+1 − wk − vk = R (vk − vk−1) +
2

∆t
(I− R) J−1wk (8.57)

Consider the following two recurrences:

vk+1 − vk = R (vk − vk−1) (8.58)

wk+1 = wk +
2

∆t
(I− R) J−1wk (8.59)

The propagation matrices for the recurrences (8.58) and (8.58) are R1 = R and

R2 = I +
2

∆t
(I− R) J−1 (8.60)

Now, the stability properties for the projection methods can be achieved through the

stability analyses of the two propagation matrices (Zheng and Petzold, 2006). Zheng

and Petzold (2006) introduced a first order test problem to study their absolute stabil-

ities of the propagation matrices. Using the linear first order test equation (Dahlquist,

1963), i.e. ẏ = λy, we can define z = −∆tλ with z > 0. For the LSRT1-based pro-

jection method, substituting ∆tJ = −z into Eq. (8.46) results in the stability funcation

as

R1 (z) = R (z) = 1− z/ (1 + γz) (8.61)

The stability requirement is obtained by imposing

|1− z/ (1 + γz)| 6 1 (8.62)

which indicates that γ > 1/2.

Inserting Eq. (8.61) into (8.60) leads to the stability function as

R2 (z) = 1− 2
1 + γz

(8.63)
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With the same manner, its stability requirement is determined by
∣∣∣∣1−

2
1 + γz

∣∣∣∣ 6 1 (8.64)

which indicates that the second matrix is unconditionally stable when γ > 1/2.

However, the stability analysis based on the first order test equation is not sufficient.

Since the projection methods are proposed for mechanical second-order systems, it is

necessary to consider the second-order test problem (Dahlquist, 1978), i.e. ü = −ω2u.

In order to analyse the stability of recurrences (8.58) and (8.59) for a second-order

system, we consider the model problem

u̇ = p

ṗ = −ω2u
(8.65)

As a result, λ2 = −ω2; moreover, the stability function of Recurrence (8.58) based on

the second-order test problem can be obtained by substituting into (8.46).

R1 (z) = R (z) = 1− zi
(1 + γzi)

(8.66)

The stability condition is imposed by ‖R1‖ 6 1, i.e.
√

1 + z2(−1 + γ)2

1 + z2γ2 6 1 (8.67)

which indicates that γ > 1/2.

Likewise, inserting (8.66) and ∆tJ = −zi into (8.60) results in the stability function

of Recurrence (8.59) based on the second-order test problem

R2 (z) = 1− 1
(1 + γzi)

(8.68)

The stability condition is imposed by ‖R2‖ 6 1, i.e.
√

z2γ2

1 + z2γ2 6 1 (8.69)

This condition is satisfied with an arbitrary value of γ.

Based on the analysis above, the following conclusion can be made: when γ >
1/2, both recurrences (8.58) and (8.59) are stable based on both the first-order and

second-order test problems. Hence following (Zheng and Petzold, 2006), the sum of
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these two recurrences is stable, and therefore the LSRT1-based projection method is

stable.

Now, we move to the LSRT2-based projection method with only one projection

step. Here we use the second-order test problem to prove that this case is not stable

for structural problems.

The stability function can be obtained by substituting ∆tJ = −zi into (8.47)

R1 = R = 1− zi [1 + γzi]−1 (
1− (

1/2− γ
)

zi [1 + γzi]−1) (8.70)

The stability condition for the first propagation matrix is imposed by ‖R1‖ 6 1, i.e.,

1
2

√√√√4 + 8z2γ2 + z4
(
1− 4γ + 2γ2

)2

(
1 + z2γ2

)2 6 1 (8.71)

which indicates that γ > 1/4.

Note that the solution of ‖R1‖ = 1 contains two values of γ, γ = 1/4 and γ = 1/2

which is multiple solution. This is consistent to the stability analysis via the energy

method in Chapter 3.

Now, we know that the first propagation matrix is stable when γ > 1/4. Let us

analyse the second propagation matrix. Inserting (8.70) into Eq. (8.60) gives

R2 = 1− 2 [1 + γzi]−1 (
1− (

1/2− γ
)

zi [1 + γzi]−1) (8.72)

whose stability is guaranteed by imposing ‖R2‖ 6 1, i.e.,
√

1 + z4γ4 + z2(1− 4γ + 6γ2)
(1 + z2γ2)2 6 1 (8.73)

which can be simpified into

z2(1− 2γ)2 6 0 (8.74)

Now, we can find that the second matrix is unconditionally unstable except γ = 1/2.

That’s why we introduce another projection with the purpose to have desirable sta-

bility property. But for the LSRT2-based projection method with two projections, the

linear recurrences approach is not suitable in that the additional projection blocks the

process to split the original recurrence into different but dependent recurrences. The

stability of the proposed method will be investigated by means of spectral stability

approach in the next section.
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8.5 Numerical analysis and simulations of a Single-DoF split mass system

We present here some numerical validation of the projection methods via applica-

tions to the Partitioned Single-DoF system, and in particular, the numerical stability

analysis by means of the spectral approach.

8.5.1 Spectral stability analysis

The LSRT1-based projection method is analytically proved to be unconditionally sta-

ble. Therefore, only a few of simulation results will be presented to revalidate the

theoretical analysis in the previous section and greater effect will be taken to provide

sufficient numerical results to guarantee the stability of the LSRT2-based projection

method. Let us once more consider the Partitioned Single-DoF system in Chapter

6 and adopt the same system characteristics. For both projection methods, the am-

plification matrices are constructed with 4 initial values, viz. 3 components from the

differential vector and 1 component from the algebraic vector. Although the differ-

ential vector contains 4 components but only three independent components in that

the algebraic equation entails velocity continuity. Hence the following state vector is

considered
{

uA u̇A uB λ
}T

(8.75)

Firstly, we check the absolute values of the eigenvalues of the amplification matri-

ces for the LSRT1-based projection method in Fig. 8.1. The number of the nonzero

eigenvalues is 4. Among them, one pair of complex conjugate eigenvalues are the

principal eigenvalues while the real one is the spurious eigenvalue. Likewise, the prin-

cipal eigenvalues enable numerical simulations emulate the overall system. The other

two are real. One of them is unitary whose associated eigenvector can be obtained

by considering ”equilibrium point”. If the equilibrium solution
{

kB 0 kA kA kB

}T

is taken as the initial solution, the solution procedure in one time step from tk to tk+1

follows: the intermediate solution maintain unchanged in the first step through (8.2);

the zero velocity term in the intermediate solution induces zero projection term Φk+1

which makes unitary projection; finally the zero term Φk+1 results in no update of the
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Fig. 8.1: | λi | for the LSRT1-based projection method integrated without subcycling:

(a) b1 = 2 and γ = 1; (b) b1 = 10 and γ = 1; (c) b1 = 100 and γ = 1; (b) b1 = 10 and

γ = 1/2.

Lagrange multiplier. Therefore, one unitary eigenvalue exists. The other real eigen-

value is spurious and less than 1. Therefore, it does not directly affect the physical

nature of the solution only induces slight displacement incoincidence at the interface.

Fig. 8.1 also brings to mind that the projection method is unconditionally stable

which is consistent with the theoretical results in the previous section. Moreover, the

projection method associated with the conservative integrator γ = 1/2 has no numer-

ical dissipation. This indicates that the coupling does not introduce any numerical

damping which is one evident difference from the partitioned method with accelera-

tion constraint in the previous two chapters.

Fig. 8.2 (a) displays the numerical damping ratios associated with the principal

eigenvalues of the LSRT1-based projection method. One can observe that the nu-

merical damping ratio remains closer to zero and thus induces less damping in the low

frequency oscillations. Moreover, the method produces desirable numerical damping
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Fig. 8.2: Numerical damping ratio and relative frequency error for the LSRT1-based

projection methods: (a) numerical damping ratio; (b) relative frequency error.

in the higher frequency range which follows the progenitor LSRT1 method very well.

It is also noticeable that the higher value of the partitioned parameter b1 gives less

low frequency dissipation. From Fig. 8.2 (b), the price paid for the less dissipation is

prone to higher frequency error in the low frequency range.

Next, we conduct a series of tests to investigate the stability properties of the

LSRT2-based projection method. The absolute values of the eigenvalues of the am-

plification matrices for the LSRT2-based projection method are presented in Figs.

8.3-8.4. Clearly, the various cases considered are unconditionally stable. Differently

from the LSRT1-based projection method, the moduli of the spurious eigenvalue re-

duces from 0.5 (not one) to zero along with increasing Ω. This is determined by the

updates of the Lagrange multiplier but does not affect the accuracy of the projection

method. As we analysed in the section of accuracy analysis, the error induced in

the update of the Lagrange multiplier vector can be corrected with the later projec-

tion process. Moreover, the principal eigenvalues reduces smoothly from one to zero

along with Ω. The desirable high frequency dissipation property of the progenitor

LSRT2 method is preserved as shown in Fig. 8.6. However, the method gives rise

to an evitable higher periodicity error in the high frequency range. For the projection

method based on the conservative Rosenbrock method, the method introduces slight

numerical damping.
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Fig. 8.3: | λi | for the LSRT2-based projection method integrated without subcycling:

(a) b1 = 2 and γ = 1 −
√

2
2 ; (b) b1 = 10 and γ = 1 −

√
2

2 ; (c) b1 = 2 and γ = 1 +
√

2
2 ; (b)

b1 = 10 and γ = 1 +
√

2
2 .
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Fig. 8.4: | λi | for the projection method integrated with conservative integrators: (a)

b1 = 2 and γ = 1/4; (b) b1 = 10 and γ = 1/4; (c) b1 = 2 and γ = 1/2; (b) b1 = 10 and

γ = 1/2.
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Fig. 8.5: | λi | for the LSRT2-based projection method integrated with γA = 1 −
√

2
2

and γB = 1 +
√

2
2 : (a) b1 = 0.1; (b) b1 = 0.5; (c) b1 = 2; (b) b1 = 10.
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Fig. 8.6: Numerical damping ratio and relative frequency error for the LSRT2-based

projection methods with: (a), (b) L-stable integrator; (c), (d) conservative integrator.

8.5.2 Numerical convergence analysis

This subsection, the accuracy analysis is revalidated through the simulation on the

Partitioned Single-DoF system. Here, the system is subjected to a harmonic base

excitation which is imposed on subdomain A . The numerical results for a range of

time steps from ∆t = 1.0 × 10−5 to ∆t = 0.1 are compared with the exact solution at

t = 0.5.

For the LSRT1-based projection method, the global error is examined in Fig. 8.7.

It can be observed that both the differential vector and the algebraic vector are first

order convergent. The LSRT2-based projection method is checked in Fig. 8.8. Only

second-order convergence of the differential vector is observed while the algebraic

vector is first-order convergent. Moreover, one can observe from both Figs. 8.7 and

8.8 that the solutions of both subdomains in the displacement and the velocity are

overlapped. This, on the one hand, shows that the solutions in both subdomains

have similar accuracy; on the other hand, this indicates that the drift effect is limited.
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Fig. 8.7: Global error of the Partitioned Single-DoF system emulated with the LSRT1-

based projection method: (a) γ = 1; (b) γ = 1/2.
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Fig. 8.8: Global error of the Partitioned Single-DoF system emulated with the LSRT2-

based projection method: (a) γ = 1−
√

2
2 ; (b) γ = 1 +

√
2

2 ; (c) γ = 1/4; (d) γ = 1/2.

Therefore, the drift analysis for this case is omitted.
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Fig. 8.9: The displacement responses of the LSRT1-based projection method applied

to the Partitioned Single-DoF system emulated with : (a) γ = 1; (b) γ = 1/2.

8.5.3 Numerical simulations

The Partitioned Single-DoF system without external force is considered here. The

time step during the simulation is chosen to be 10ms. For the LSRT1-based projec-

tion method, the simulation results in the displacement are plotted in Fig. 8.9. The

case with γ = 1 shows oscillatory decay, which is only due to the numerical damp-

ing introduced by the L-stable integrator. When using γ = 1/2, the method captures

the response very accurately with no visible oscillatory decay and period delay. For

the LSRT2-based projection method, the numerical solutions by means of different

cases are observed to stay stable and accurate for a total time of 100s as shown in

Fig. 8.10. Also, in our experience, the methods remain sufficient accurate even when

using a total simulation period of 2000s. In order to compare the different cases, a

larger time step, ∆t = 100ms, is used. The displacement responses are displayed

in Fig 8.11. One can observe that all the cases remain stable but presenting slight

numerical error. Especially, the cases with γ = 1 +
√

2
2 introduces greater numerical

damping as well as sight period error. For all the other cases, the numerical errors

are mainly linked to period delay. Moreover, it is noticeable that all the cases with

∆t = 100ms exhibit slight drift effect in the displacement responses.
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Fig. 8.10: The displacement responses of the LSRT2-based projection method ap-

plied to the partitioned Single-DoF system with b1 = 10: (a) γ = 1−
√

2
2 ; (b) γ = 1 +

√
2

2 ;

(c) γ = 1/4; (d) γ = 1/2
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Fig. 8.11: The displacement responses of the LSRT2-based projection method ap-

plied to the partitioned Single-DoF system with b1 = 10: (a) γ = 1−
√

2
2 ; (b) γ = 1 +

√
2

2 ;

(c) γ = 1/4; (d) γ = 1/2
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8.6 Numerical simulation of Multiple-DoF systems

The projection methods, DAEs time integration methods, have been analytically

investigated in terms of accuracy and stability. But this is not sufficient with respect

to ODE integrators (Arnold et al., 2007a). In order to validate the efficiency and

applicability of the methods, the numerical tests are performed for the Multiple-DoF

systems utilized in Chapter 6. In this section, we mainly deal with the LSRT2-based

projection method for simplicity.

For the Partitioned Two-DoF system 1, Fig. 8.12 shows the displacement of the

interface DoF computed with time step ∆t = 10ms using the LSRT2-based integra-

tion method with different values of parameter γ. The difference in the displacement

responses becomes evident, of course, a small amount of numerical damping is in-

troduced in the case with γ = 1 +
√

2
2 . In order to extend the comparison subsection

in Chapter 7, the external forces and the partitioned parameter b1 are the same as

those used in the comparison subsection. By comparison, the projection method ex-

hibits higher accuracy, especially the case γ = 1 +
√

2
2 , with excellent agreement with

the exact solution.

The projection method, without subcycling involved, has high applicability to the

multiple-interface problem. In order to study its application, the Partitioned Tow-DoF

system 2 is once more considered. For comparison and simplicity, the system char-

acteristics and the initial condition are chosen to be equivalent to the partitioned Two-

DoF system 1 by splitting the second DoF. The displacement responses are shown

in Fig. 8.13. We can notice that the method with γ = 1−
√

2
2 gives sufficient accuracy

that the displacement can follow the exact solution seamlessly along with increasing

time until 600s. To the contrary, the method with γ = 1+
√

2
2 introduces slight numerical

damping that the displacement can preserve sufficient accuracy within a duration of

100s.

In the third test cases considered, the Partitioned Three-DoF system is simulated

with no external force. As in the previous two chapters, floating subdomains lead

to weak instability and therefore aggravate drift effect. The Partitioned Three-DoF

system has one floating DoF which can be used to check if these phenomena af-

fect the projection methods. The results of the coupled simulations of the Partitioned
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Fig. 8.12: The displacement responses of the LSRT2-based projection method ap-

plied to the partitioned Two-DoF system 1 with b1 = 10: (a) γ = 1−
√

2
2 ; (b) γ = 1 +

√
2

2 ;

(c) γ = 1/4; (d) γ = 1/2
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Fig. 8.13: The displacement responses of the LSRT2-based projection method ap-

plied to the partitioned Two-DoF system 2 with b1 = 10: (a) γ = 1−
√

2
2 ; (b) γ = 1 +

√
2

2 ;

(c) γ = 1/4; (d) γ = 1/2
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Fig. 8.14: The displacement responses of the LSRT2-based projection method ap-

plied to the partitioned Three-DoF system with r = 2: (a) γ = 1 −
√

2
2 ; (b) γ = 1 +

√
2

2 ;

(c) γ = 1/4; (d) γ = 1/2

Three-DoF system are shown in Fig (8.14), with the time step ∆t = 10ms. The refer-

ence solutions are obtained through simulation of the global system using the LSRT2

method with γ = 1/2 and ∆t = 0.1ms. It is observed that the numerical responses and

exact solution show acceptable agreement except the case with γ = 1 +
√

2
2 . The case

with γ = 1 +
√

2
2 performs well for a certain length of time after which the numerical so-

lutions exhibit moderate amplitude decay and slight period delay as shown (8.14a). In

conclusion, these solutions illustrate the superior and more efficient performance of

the projection method in long-time duration problems. In particular, it is of interest to

note by combining the all the simulations, from the partitioned Single-DoF system to

the Partitioned Three-DoF system, that the errors do not show any systematic growth

along with the system complexity. This indicates that the projection methods do not

lead to an undesirable error when applied to more complex system.

The simulations in the previous three test problems involved linear systems. Here,

we consider a stiff nonlinear problem, the coupled spring-pendulum system, whose
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system characteristics are collected in Table 4.1. The problem is solved using the

LSRT2-based projection method with ∆t = 10ms. The proposed method performs

well, giving a excellent displacement and velocity responses, as seen in Fig. 8.15.

In this figure, the reference solution is obtained through integrating the uncoupled

spring-pendulum system with the LSRT2 method with γ = 1−√2/2 and ∆t = 0.1ms.

Moreover, the velocity responses of the elongation of the pendulum is plotted in Fig

8.16. The results indicate that the projection method with both values of γ has enough

high frequency dissipation that the high frequency oscillation can be damped out in a

few time steps. Although the responses for only the first 10s are shown, the problem

was actually run for a total time of 200s, and the solution was observed to be stable

and sufficiently accurate. Also, in our experience, the method remains stable if a

larger time step is used or a longer simulation period is expected. But more numerical

damping will be introduced with larger time step and the numerical damping will be

accumulated to an inacceptable amplitude decay, especially with longer simulation

duration. Altogether, the numerical dissipation requires high attention when dealing

with stiff coupled problems. On the one hand, it is determined by the choices of

the parameter γ and the time step and the partitioning of the coupled system. On the

other hand, it determines low-frequency accuracy and high-frequency dissipation and

therefore the efficiency and accuracy of the proposed method. Therefore, we need

take into account the accuracy tolerance and the length of simulation when choosing

the parameter γ and the time step, and we need avoid introducing additional high-

frequency models when partitioning the system.

8.7 Conclusions

A new form of partitioned time integration methods was proposed in this chapter.

Using these methods, all subdomains can be integrated independently and coupling

is achieved by projecting the numerical solutions onto the velocity constraint, simulta-

neously updating the Lagrange multiplier vector at interfaces. Following this strategy,

two projection methods based on the LSRT1 and the LSRT2 algorithms, respectively,
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Fig. 8.15: The displacement and velocity responses of the LSRT2-based projection

method applied to the coupled spring-pendulum stiff problem with: (a), (b) γ = 1−
√

2
2 ;

(c), (d) γ = 1 +
√

2
2
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Fig. 8.16: The elongational velocity responses of the LSRT2-based projection method

applied to the partitioned Three-DoF system 1 with b1 = 10: (a) γ = 1 −
√

2
2 ; (b)

γ = 1 +
√

2
2 ; (c) γ = 1/4; (d) γ = 1/2
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were formulated to achieve certain order of accuracy and stability requirements. In

order to validate their efficiency and properties, we conducted systematic numerical

analyses for the proposed methods, e.g. spectral stability, numerical convergence

and high-frequency dissipation. Moreover, a series of test problems were used to

check both theoretical and numerical analyses. The numerical results showed that

the methods remained stable and sufficiently accurate with certain time step sizes.

Moreover, they preserve their progenitor high-frequency dissipation. Lastly, we un-

derlined that the proposed methods can be implemented within a parallel computing

environment, where each subdomain can be independently integrated using a sepa-

rate processor. This observation provides the possibility to apply them to RTDS tests

for very large structures. Nonetheless, subcycling was not included and investigated

in these methods. A future work, believed to be of immense significance, is to com-

bine the efficient methods with subcycling strategies and thus, hopefully, enlarge the

applications of the proposed methods.

219



220



CHAPTER 9

EXPERIMENTAL VALIDATION AND REAL-TIME IMPLEMENTATION

9.1 Introduction

Both theoretical and numerical analyses for the partitioned methods have been pre-

sented in the previous four chapters. The partitioned methods with parallel solution

procedure were demonstrated to be efficient for real-time applications. The monolithic

methods with no subcycling were validated numerically and experimentally through

the application to a coupled spring-pendulum system in Chapter 4 while the cases

with subcycling were done only numerically but not experimentally.

With this in mind, a test rig is designed to provide a series of experimental vali-

dations for both monolithic and partitioned methods which are suitable for real-time

implementations. This chapter describes the design and construction of the test rig.

9.2 General test rig design

Experiments were conceived to be performed using a small-scale but robust test

rig to study the efficiencies and accuracies of the proposed monolithic and partitioned

time integration methods, before being applied to large-scale structures. This rig is

shown schematically in Fig. 9.1. The masses are guided on a linear bearing and

linked by coil springs or other nonlinear elements (for example, damping devices and

non-smooth spring). The rotations of the masses are allowed to consider geometric
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nonlinearity, while the tested structure can be also considered to be linear by con-

straining the rotation and installing only linear damping devices and springs.

The damping except the specific damping devices has two main sources in the

system: the spring/damping elements connecting the masses together and the lin-

ear bearings. The damping provided by a spring/damping element is proportional to

the relative velocity between the connected degrees of freedom, whereas the damp-

ing provided by the bearing is proportional to the absolute velocity of the supported

mass (Bonnet et al., 2007). In addition to the geometric nonlinearity derived by the

mass rotations, another two sources of nonlinearities are considered: springs with

discontinuous supports and nonlinear damping devices. Also, nonlinearities can be

included in the NS(s), such as the Bouc-Wen model. As a result, RTDS tests can be

implemented in a variety of ways by installing different combinations of spring and/or

damping devices and mass(es), and by considering linear/nonlinear models of the

NS(s).

To perform RTDS tests, four electro-thrust actuators are connected to the PS (as

shown Fig. 9.1). The translational motion of each mass is activated by average dis-

placement of each pair of actuators attached while the rotational motion is achieved

their relative displacement. Together with each actuator, each DoF activated is fitted

with a load cell, a displacement transducer and an accelerometer.

The test rig was designed to take into account geometric nonlinearity by allowing

the rotations of the masses. But it to some extent hardens the operation complexity of

the test rig. Moreover, the rotation of the actuator introduces additional inertia forces

into the system. A important design principle of the rig was to keep the rotations of the

actuators as low as possible to ease the real-time implementation. As shown in Fig

9.2, the rotation range of the actuators depends primarily on the distance between

the fixed points of the actuators in parallel, their lengths and their operating stroke

range. The displacement stroke of the actuator is 250mm and the distance dOA = 400

which determine the maximal rotation of each mass is θ1 ≈ 17. The minimal radius of

the rotation of the actuator is dAB = 990mm which indicates the maximal angle θ2 ≈ 9.

In this case, we neglect the rotation of the actuators and therefore their inertia forces.

Meanwhile, the directions of the coupling forces measured from the load cells are

assumed to be constant and parallel with the translational movement.
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Fig. 9.1: Test set-up

9.3 Detailed experimental equipment

As shown in Fig. 9.1, it was intended to design the rig for a maximum capacity of

two masses (considering their rotations) activated by two pairs of actuators as well

as some spring and damping devices. In this section the specifications of the test

components used in the test are emphasized. Before the description and choices of

different test components, purely numerical simulations have been performed on the

overall system shown in Fig. 9.3. The equations of motion for the system can be
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Fig. 9.2: Schematic representation of the rotation of the mass

found by means of Lagrangian mechanics:

m1ḧ1 + f1 + f2 − f3 − f4 + fcm,1 = F1

m2ḧ2 + f3 + f4 − f5 − f6 + fcm,2 = F2

J1θ̈1 + (f1e1 − f2e2 + f4e4 − f3e3) cos θ1 = M1

J2θ̈2 + (f3e3 − f4e4 − f5e5 + f6e6) cos θ2 = M2

(9.1)

where hi and θi are the translational displacement and the angular displacement of

the mass mi , respectively, and Ji is its moment of inertia, and Fi and Mi are the

external force and moment. fi is the sum of the restoring force and damping force of

the ith spring/damping element with the eccentricity ei , and fcm,i is the damping force

provided by the bearing of the supported mass. For the preliminary simulations, we

assume the following mechanical properties of the system:

m1 = m2 = 237kg, J1 = J2 = 5275kgm2

k1 = 14.8kN/m, k2 = 1.1k1, k3 = 0.9k2,

k4 = 1.2k3, k5 = 0.95k4, k6 = 1.05k5,

ci = 10kg/s (i = 1, ... 6), cm,1 = cm,2 = 75kg/s

(9.2)

Assuming the initial values of h1 = 0.03m and θ1 = 5π/180, Fig.9.4 shows the free

vibrations of the model of the form shown in Fig.9.3. Meanwhile, the natural frequen-
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Fig. 9.3: Schematic representation of the emulated four-DoF system

cies of the four-DoF system linearized at the equilibrium point 0, 0, 0, 0, 0, 0, 0, 0 are

4.27, 3.20, 2.45 and 1.85Hz.

9.3.1 The masses and the bearings

The rig contains two masses moving translational on two linear guides as shown in

Fig. 9.5. Each mass is composed of four rotational blocks, a translational block and

some other steel elements above the linear bearings. The masses are adjustable

through changing the number of the rotational blocks. Two translational blocks, sim-

ilarly as two carts, are fixed on four sliding blocks which allow smooth movement on

two linear guides as shown in Fig. 9.5. For each mass, four rotational blocks are

fixed to one translational block by means of a rotational bearing and a shaft. Besides,

there are some bearings between the rotational blocks that are used to connect the

rotational blocks to some devices, such as actuators, springs and damping devices.

The test rig is design to be flexible so that a series of the configurations, from linear

to nonlinear, from one- to four-DoF, can be considered. This requires the rig to be

easily reconfigurable. To achieve this, the framework is fixed horizontally to the base

of the laboratory. However, this will cause much out-plane bending on each mass. To

reduce this bending to a permitted level, the four rotational blocks are expected to be

225



0 1 2 3 4 5
-3
-2
-1

0
1
2
3

t@sD

D
is

pl
ac

em
en

t@
10
-

2 m
D

h2

h1

(a)

0 1 2 3 4 5
-10

-5

0

5

10

t@sD

D
is

pl
ac

em
en

t@
10
-

3 m
D

Θ2

Θ1

(b)

0 1 2 3 4 5

-0.4

-0.2

0.0

0.2

0.4

t@sD

V
el

oc
ity
@m
�s
D h

 

2

h
 

1

(c)

0 1 2 3 4 5
-2

-1

0

1

2

t@sD

V
el

oc
ity
@m
�s
D

Θ
 

2

Θ
 

1

(d)

Fig. 9.4: Numerical simulations for the four-DoF system as shown in Fig. 9.3 using

the LSRT2 time integration method with γ = 1 −
√

2
2 : (a) translational displacements

h1 and h2; (b) rotational displacements θ1 and θ2; (c) translational velocities ḣ1 and ḣ2;

(b) rotational velocities θ̇1 and θ̇2;
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fixed together rigidly to provide a greater bending stiffness. Likewise, the rotational

bearings as well as their corresponding shafts are designed to be rigid enough to

support the unbalance of the rotational blocks. With respect to vertical orientation, the

horizontal orientation also introduces more friction. This imposes higher requirements

on the linear bearings. The used linear bearings have the following physical details:

dynamic loading 38740N and static loading 83060N. This is enough to support the

masses on them either statically or dynamically. Moreover, the friction of the bearings

will be considered in the parameter cm,1 and cm,2 that will be identified before real-time

tests.

Fig. 9.5: Main configurations of the masses and the bearings

9.3.2 Springs and damping devices

The masses of the PS are linked by springs and damping devices. Six springs were

considered for the rig. The springs selected are of the rectangular wire section type

with a spring rate of 14.8kN/m, wire section of b×h = 8.1mm×4.0mm, outer coil diam-
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(a)

(b)

(c)

Fig. 9.6: (a) A coil spring and its configurations with continuous and discontinuous

supports; (b) detail of mounting spring; and (c) dampers

eter of 40mm and a free length of 305mm. The springs provide the same maximum

working deflection of 112.0mm. Among them, four are constructed with continuous

support while two are constructed with discontinuous support as shown in Fig. 9.6(a)

to introduce nonsmooth oscillations. In addition to the springs, two nonlinear dampers

were selected as shown in Fig. 9.6(b). Both of them are of the same type, STAB-O-

SHOC TA 20, with an maximum damping force of 550N, and a stroke of 200mm.

9.3.3 Electro-thrust actuators

There are four electro-thrust actuators produced by Parker. To gain a better idea of

their sizes and performances, here are a few more specific physical details:

1. Type: ETB80;
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(a) (b)

Fig. 9.7: (a) Electro-thrust actuators; (b) AC890 units

2. Available stroke: 500mm;

3. Max. permissible speed: 1340;

4. Max. thrust force: 8.3kN;

As shown in Fig. 9.7(a), Each of The actuators is equipped with a 3000rpm 400V

permanent magnet motor, with a maximum torque of about 4Nm. Considering the

reduction introduced by the ball-screw mechanism of the actuators, this translates

into around 2kN and 0.5m/s.

The motors are synchronous electric machines with permanent magnets of 8 poles

in the rotor, so they are operated by feeding them with a three-phase voltage of am-

plitude between 0 and 400V and a frequency between 0 and 200Hz. They are also

equipped with an electro-mechanical brake, with coils that need to be energized with

a 24Vdc supply to release the brake, as well as with a resolver, which is a position

sensor for the motor and provides with a means of measuring the rotational speed.

The motors of the actuators are powered by four controlled inverters of the AC890

series as shown in Fig 9.7(b). The AC890 system generates the three-phase voltage

of the necessary amplitude and frequency to make each of the motors rotate at the

specified speed. The direct current supply required by the drives is obtained by a

three-phase rectifier from the main supply of the laboratory.

It is possible to connect each of the drives to the PC via USB for configuration, for

which the proprietary software DSELite is used.
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(a) (b)

Fig. 9.8: (a) PPC 1103 unit and its connector panel; (b) detail of optical fiber connec-

tion to PC

9.3.4 Digital control and data-acquisition system

The real-time computing is done by the real-time system Power PC 1103 of dSpace,

which is connected via optical fibre to a PC for programming and supervision pur-

poses (shown in Fig. 9.8). It presents 8 digital to analogue converters, 4 parallel

analogue to digital converters and 4 multiplexed (x4) analogue to digital converters,

all of them for analogue voltage signals between -10 and 10V. It is therefore possible

to acquire 20 different signals.

The programming is done with Matlab, Simulink, Real Time Workshop and Real

Time Interface with great ease and the supervision is done with Control Desk.

9.3.5 Instrumentation package

There are four optical displacement sensors, each of which is fitted on one actuator

body as shown in Fig 9.9. The devices measure their distances from any object

placed in the way of their laser beams, as long as the distances are between 60 and

260mm. Each of them requires a 24Vdc power supply and provides with an analogue

output between 4 and 20mA.

The output is transmitted along a shielded cable into a metallic connection box con-
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Fig. 9.9: Laser sensor mounted on actuator for measurement of displacement..

nected to the ground, from where it continues along a coaxial cable to the connection

board of the Power PC 1103 unit.

In addition to the distance sensors, there are also four load cells and four acceleme-

ters to that are connected the end of the piston to the tested specimen.

9.4 Different test configurations

To allow accurate evaluation of the time integration methods, some simple linear

systems were required, in which the mass and stiffness properties can be clearly and

accurately determined and the overall system can be reliably computed. In this case,

the performance of the proposed integration methods can be studied by comparing

between numerical simulations and experimental results. On the other hand, many

complex nonlinear system were required to check the applicability of the integration

methods to nonlinear and/or complex systems. In this section, two relatively complex

and representative configurations for a four-DoF emulated system are presented in

detail.

The first case is a four-DoF emulated system partitioned into single PS and two

NSs as shown in Fig. 9.10. In this case, two NSs are considered each of which

presents a Two-DoF subsystem while single NS is tested as a floating subsystem
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which has two masses connected by two parallel springs. For this case, the test rig

in Fig. 9.1 is required to be rearranged: uninstalling springs noted S2 and S3.

Fig. 9.10: Schematic test configuration with single physical and two numerical sub-

structures.

Differently from the first configuration, the second case contains two physical and

single numerical substructures as shown in Fig. 9.11. For this case, the NS has the

same configuration as the PS of the first case. For the PS, the springs of each mass

have to be connected to the framework. For the sake of ease of implementation,

these springs S2 and S3 are connected to the inner joints as shown in Fig 9.1 and

the springs between two masses are required to removed.

9.5 Conclusions

In order to evaluate the performance of the partitioned algorithms for RTDS, a novel

test rig has been designed in this chapter. It is capable to perform both linear and

nonlinear substructure tests on Multiple-DoF systems in real time. It is characterized

by two masses and four DoFs. The nonlinearities at these stages derive from mass
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Fig. 9.11: Schematic test configuration with two physical and single numerical sub-

structures.

rotations, springs with discontinuous supports and nonlinear dampers. This chapter

focused on the design of this test rig and described the equipment that was prepared

to conduct this research.
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CHAPTER 10

CONCLUSIONS AND FUTURE PERSPECTIVES

10.1 Summary

The main objective of this work is to implement first-order integrators, the LSRT

methods, in monolithic and partitioned ways for dynamic simulations and substructure

tests. Four main contributions of this thesis can be summarized as follows:

1. To study the first-order time integration methods in terms of accuracy, stability

as well as high-frequency dissipation property;

2. To extend the monolithic time integration methods to the nonlinear case and

adopt subcycling strategies;

3. To develop partitioned time integration methods based on acceleration continu-

ity and extend them to two subcycling cases with staggered and parallel solution

procedures;

4. To develop partitioned time integration methods based on velocity continuity

and a projection method.

5. To design and construct a flexible test rig for experimental validations of all the

monolithic and partitioned time integration methods.

In this process, a great number of analytical approaches were presented or flexi-

bly adopted to study some numerical aspects of the proposed integration methods.

Subsequently, a set of linear and nonlinear test problems were numerically simulated

to validate the analytical results and to further investigate the performance of these
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methods. In addition, several substructure tests of the coupled spring-pendulum sys-

tem were carried out and a test rig of a Four-DoF system was designed to experimen-

tally investigate the behaviour of the proposed methods. From the available numerical

or experimental results, it was illustrated that the proposed methods exhibited many

favourable properties: accuracy, stability, high-frequency dissipation, time efficiency,

ease of implementation and so forth.

10.2 Conclusions

As presented in the previous section, this thesis presented a series of monolithic

and partitioned time integration methods for substructure tests and numerical simu-

lations. The first chapter is the introduction, including the context and the objective of

this research. In Chapter 2, a literature overview related to the thesis was presented

in the order: the widely-used testing methods; the RTDS method and the PsD testing

with dynamic substructuring; several direct time integration methods; and partitioned

time integration methods. This overview, on the one hand, provided some challenges

posed by the RTDS and the PsD testing with dynamic substructuring; on the other

hand, introduced in length some integration methods which were used for comparison

in the other chapters.

In Chapter 3, the utilized time integration methods were introduced. Their applica-

bilities to structural problems were checked in terms of accuracy and stability. Based

on the first-order form of the structural problem, the direct integration methods were

observed to have the same order of accuracy as dealing with first-order systems.

For the stability analysis of one- and two-stage methods, the energy approach was

used. Through serious reformulations, the energy balance equation of each method

applied to an undamped free vibration problem was simplified to be a formula whose

sign is dependent on the parameter γ, and therefore, the stabilities of the methods

were judged. The nonlinear performances of the time integration methods were in-

vestigated through numerical simulations of an uncoupled spring-pendulum system.

Compared with the Explicit Newmark method and the Newmark-Chang method, the
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LSRT methods were discovered to be more efficient, easy to implement, uncondition-

ally stable and endowed with high-frequency dissipation.

For the monolithic time integration methods, the first contribution of the thesis was

to extend them to nonlinear cases. The spring-pendulum system was again adopted

and partitioned into physical and numerical substructures. The stabilities of the mono-

lithic methods applied to the coupled spring-pendulum system were studied by means

of the zero stability analysis. Through numerical simulations on the coupled spring-

pendulum system, all the monolithic methods were proved to be first-order accurate

and it was observed that the reduction of the accuracy is caused by the adoption of

the previous coupling force. These favourable properties were shown when consid-

ering nonlinearities both in the numerical and the physical substructures.

The second contribution of the thesis to the monolithic methods was the adop-

tion of subcycling strategies. For the LSRT methods, two subcycling strategies, the

equilibrium-based interpolation and the differentiation-based interpolation, were de-

veloped. For comparison, the Explicit Newmark method and the Newmark Chang

method were also endowed with a subcycling strategy that was developed to keep

the original order of accuracy. All the subcycling strategies were validated through

numerical simulations on the coupled spring-pendulum system.

In view of hybrid testing of complex emulated structures, several novel partitioned

methods were developed based on the LSRT1 method and the LSRT2 method, re-

spectively. The partitioned methods use the FETI technique to split the overall system

into two or more subdomains coupled to each other with Lagrange multipliers. These

Lagrange multipliers ensured the continuity of the coupled solutions along the inter-

faces.

In Chapter 5, a novel type of partitioned integration methods were conceived based

on the continuity of the acceleration. This type of partitioned methods was imple-

mented in as follows: i) solve the Lagrange multipliers at the beginning of the step

or the inner stage; ii) advance each subdomain independently and simultaneously.

It was observed that only one communication at the beginning was needed and this

made it possible for parallel simulations. The accuracy analyses of the partitioned

methods were performed in a compact form in order to include al subdomains alto-

gether. Both the differential and algebraic vector was proved to have the same order
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of accuracy of the progenitor time integration methods. Their stability analyses were

conducted by using the linear recurrence approach and the partitioned methods were

proved to be unconditionally stable. After these theoretical analyses, the favourable

properties were rechecked through numerical simulations on a Single-, Two-, Three-,

and Four-DoF split-mass systems as well as the coupled spring-pendulum system.

The partitioned methods based on acceleration continuity were also extended in

Chapter 6 to incorporate subcycling strategies, resulting in novel staggered parti-

tioned methods. In these methods, the emulated system is partitioned into two sub-

domains: one is integrated with the coarse time step and the other with the fine time

step. In addition to the computation of the Lagrange multiplier vector and the integra-

tion of the subdomains, a linear interpolation is required before advancing the solution

of the subdomain with the fine time step. This prevents the partitioned methods to be

implemented in parallel simulations.

For these staggered partitioned methods, the accuracy analyses were performed

by setting a reference solution procedure by which each subdomain advanced sep-

arately with exact Lagrange multipliers and both the differential vectors and the La-

grange multiplier vector were proved to preserve the same order of accuracy as the

progenitor monolithic method. For comparison, the GC method was also proved in a

similar way to have a reduction of accuracy order with respect to its progenitor New-

mark method. The inverse term H in the formula of the Lagrange multiplier vector of

the GC method includes a ∆t factor while the proposed staggered methods do not. It

was illustrated in the accuracy analysis that this implied an order reduction of the GC

method.

The stability of the proposed staggered methods were studied by means of the

spectral approach on a Single-DoF split-mass system, and these methods frequently

appears to be stable. Meanwhile, the components of the eigenvalues of the amplifi-

cation matrix were investigated in depth. Four non-zero eigenvalues were included in

the amplification matrix. Among them, only one pair of complex conjugate eigenval-

ues are principle eigenvalues, whereas the other two are spurious. For the complex

conjugate eigenvalues, it was studied in terms of numerical damping ratio and fre-

quency error. For the spurious eigenvalues, the one unitary is unitary was found to

be corresponding to the ”equilibrium point” of the continuous DAE system and the
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other that was real and less than one was observed to be so owing to incomplete

constraint.

When dealing with a partitioned system in the presence of floating DoFs, the num-

ber of unitary eigenvalues is greater than one which indicates weak instability and

therefore the displacement solutions exhibit slightly drift phenomena. This is because

the continuous DAEs system of index 1 has null eigenvectors. But it was observed

that with proper choice of the parameter γ, the drift effect could be limited to be so

small as to be negligible. Moreover, it was proved that the drift effect would not accu-

mulate with the increasing number of the floating DoFs.

For RTDS tests, a type of parallel partitioned methods was conceived in Chapter

7. In these methods, the integration in the subdomain with the coarse time step ad-

vances 2 times (for the LSRT1-based case) or 4 times (for the LSRT2-based case)

further than the system time step, in order to provide the information required in the

integration of the subdomain with the fine time step in the next system time step.

This makes the integration of both subdomains to advance simultaneously but in-

dependently. A series of analytical and numerical analyses were conducted for the

proposed methods.

Differently, the parallel methods are not self-starting, and therefore, it was of crucial

importance to choose sufficient variables when building the amplification matrix. Two

codes were followed: the output xi+1 and the input xi were parallel and the output

included all the target variables while the input included all the initial variables in

one loop of the solution procedure. The number of the eigenvalues of the obtained

amplification matrix was 18 for a Single-DoF split mass problem. All the eigenvalues

were classified into four groups, i.e. principle, unitary, zero and real, and they were

analysed in terms of their causes and their effects on the stability and accuracy.

The fourth type of partitioned methods developed in Chapter 8 was based on a pro-

jection solution procedure as well as velocity continuity. These methods contain three

steps in every stage: i) solve the subdomains independently; ii) project the solutions

to the velocity constraint; and iii) update the Lagrange multipliers. The computation

cost for the last two steps is negligible with respect to the first step. Therefore, meth-

ods enable parallel simulations in that all the subdomains advance independently only

with information exchange at the end of each stage/step.
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For this type of methods, the accuracy analysis was also conducted by using a

reference solution procedure with constant Lagrange multipliers. Differently from pre-

vious methods, the local truncation error of the Lagrange multipliers was discovered

to be one order lower for either LSRT1- or LSRT2-based methods. However, it was

observed that this error had no propagation on the differential vectors and this made

the differential vectors preserve the same order of accuracy of the progenitor integra-

tion method.

With regard to the stability analyses, the LSRT1-based projection method was

proved to be unconditionally stable by using the linear recurrence approach. For the

LSRT2-based projection method, the spectral analysis was adopted and the method

appears to be unconditionally stable for all cases considered. Moreover, the linear

recurrence approach was used to analyse a projection method based on the LSRT2

method but with only one projection. The resulting recurrence was observed to be

stable for a first-order test problem but unstable for a second-order test problem. Be-

sides, numerical analyses and simulations were carried out and the projection meth-

ods were validated to be accurate and efficient.

In order to evaluate the performance of the partitioned algorithms for RTDS, a novel

test rig has been designed in Chapter 9. It is capable to perform both linear and

nonlinear substructure tests on Multiple-DoF systems in real time. It is characterized

by two masses and four DoFs. The nonlinearities at these stages derive from mass

rotations and springs with discontinuous supports. Also nonlinear dampers can be

introduced.

10.3 Future perspectives

Recommendations for future work are expressed herein regarding validations, im-

provements and applications of the proposed methods.

Regarding the validations of the proposed methods, a novel test rig has been de-

signed and different tests will be performed in a near future. In this thesis, all numer-

ical analyses were conducted without considering experimental errors and actuator
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dynamics. But these effects in typical situation of RTDS are large enough to have

significant influence on the experiment results and in certain cases can lead to insta-

bility. In the tests, some linear/non-linear control techniques will be implemented and

the integration methods will be investigated in the presence of experimental error and

actuator dynamics.

With regard to the partitioned methods with acceleration continuity, the effect of the

displacement drift-off error is due primarily to the index-1 DAE characteristics and is

aggravated in the presence of floating DoFs. It was illustrated in Chapter 6 that this ef-

fect could be reduced by a proper choice of the parameter γ and the utilized time step.

In order to reduce this effect, one way is to investigate the relationship of the drift-off

effect with respect to the value of parameter γ and further design an estimate of the

drift-off effect with the hope that this effect can be controlled or minimized. Another

way is to adopt some stabilization techniques, such as the Baumgarte stabilization.

Developments in reducing displacement drift-off error would be beneficial to extend

the application of the partitioned method to longer-period simulations. Regarding the

projection methods proposed, the aforementioned drift-off effect is not noticeable.

But this type of methods treat all subdomains with the same time step. Future work is

required to endow the methods with subcycling strategies, and furthermore, extend

them to the case with a parallel solution procedure.

In addition, we want to extend the applicability range of the partitioned methods.

The thesis provided a series of time integration methods and every method has differ-

ent choices of the parameter γ. More work is required to compare the performances

of different cases so as to provide some effective guides for their applications. More-

over, the systems studied in this thesis are of second-order. The objective to imple-

ment the first-order integrator is to solve mixed first- and second-order system. The

concept of the partitioned integration methods can also be extended to couple the

discretization in time of controller(s) and the solution of NS(s) together.
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