
Automating expert-defined tests: a suitable

approach for the Medical Device Industry?

David Connolly1, Fergal Mc Caffery2, and Frank Keenan1

1 Software Technology Research Centre,
2 Regulated Software Research Group,

Dundalk Institute of Technology, Dublin Road, Dundalk, Ireland
{david.connolly,fergal.mccaffery,frank.keenan}@dkit.ie

Abstract. Testing is frequently reported as a crucial stage in the soft-
ware development process. With traditional approaches acceptance test-
ing is the last stage of the process before release to customer. Acceptance
Test Driven Development (ATDD) promotes the role of an expert cus-
tomer in defining tests and uses tool support to automate and execute
these tests. Here the challenge is to support such an expert in the reuse
of existing documentation. This paper details an experiment in a generic
domain while outlining plans for development of an automated testing
model that could assist medical device companies to adhere to regulatory
guidelines by providing them with a fully traceable testing artifacts.

1 Introduction

A large part of software development expenditure is attributed to testing. Tradi-
tionally, with plan-driven development, acceptance testing, the process of testing
functional requirements with “data supplied by the customer” [1] occurs as the
final stage of the development process long after the initial investigation has
completed [2]. Many reports, however, highlight that costs can be reduced by
detecting errors earlier in development [3]. Also supporting this, in many do-
mains, such as the medical device industry, software is developed subject to a
regulatory environment with a tendency for extensive documentation. This reg-
ulatory environment features guidelines and standards such as [4] - [9]. Despite
many constraints already being specified, this is often ignored with tests written
from scratch after implementation is complete. In contrast, agile approaches re-
quire constant customer collaboration throughout development, with customer
provision of acceptance tests being an important part of this role. Often, it is
recommended that tests be identified before implementation commences. In eX-
treme Programming (XP) [10], for example, acceptance tests are defined as a
part of the User Stories practice and, as such, are written before coding of the
story begins. In this context, functional tests are synonymous with acceptance
tests [11]. Further, for accurate user stories, Cohn recommends customers them-
selves specify acceptance tests with developers and testers providing support as
required [12]. The XP practice of Continuous Integration, that is, building and
testing a system frequently, maximizes the use of the executable and automated

CORE Metadata, citation and similar papers at core.ac.uk

Provided by STÓR

https://core.ac.uk/display/35316191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 David Connolly et al.

products of Test Driven Development (TDD) [13]. TDD visibly links executable
unit tests to the overall development process. TDD is widely practised and has
many reported benefits [14] but successful use does rely on tools such as JUnit
[15]. ATDD adds to this established test-first philosophy with acceptance testing
of an automated and executable nature. In keeping with agile principles, ideally
customers write acceptance tests guided by developers. Its practice “allows soft-
ware development to be driven by the requirements” [16]. A key advantage of
ATDD in its wider context is that it leverages existing agile infrastructure sup-
porting continuous integration. As with TDD, support from tools makes ATDD
feasible. However, Andrea [17] claims that existing tools exhibit several deficien-
cies and produce tests that are “hard to write and maintain”. To overcome this
Andrea also suggests that the next generation of functional testing tools need
to support writing (and reading) functional tests in multiple formats. Given the
widespread adoption of information and communication technology, in many
organisations business rules are documented in numerous formats, for example,
including Medical Devices . However, ATDD is currently not well supported with
tools that enable reusing such existing documents, without rewrites, to create
executable tests. A challenge, therefore, is to support a suitably informed ex-
pert to perform the agile customer role and in easily creating tests from existing
material. However, successful identification of accurate acceptance tests in this
manner is not necessarily straightforward.

2 Importance of “Well Tested” Medical Device Software

The risk of patient injury from software defects is a concern due to the man-
ufacture and deployment of increasing numbers of software-embedded medical
devices [18] - [20]. There have been a number of major medical device product
recalls over this past 25 years that were the result of software defects [21]. Highly
traceable testing and change control procedures within medical device software
development is important as such modifications can occur frequently and may
occur at different levels (e.g. design, interface or code), therefore increasing the
risk of software failure [21]. It is therefore important that a medical device com-
pany has an efficient software development process in place that include change
control practices. According to the Institute of Medicine report “To Err is Hu-
man” [22], between 44000 to 98000 people die in hospital from preventative
medical errors. The report also says that more people die every year as a re-
sult of medical errors than from motor vehicle accidents, breast cancer or AIDS.
Like most industries, the medical device industry depends on computer tech-
nology to perform many of the functions ranging from financial management
to patient treatment [23]. The use of software in medical devices has become
widespread in the last two decades. Medical devices with software include those
that are supplied and used entirely in hospitals and other health facilities, as
well as consumer items such as blood pressure monitors. Many medical devices,
and their software, operate in real time - monitoring, diagnosing, or controlling
a physiological process as it changes. The complexity and risk profile of med-

Automating expert-defined tests: a suitable approach for MDI? 3

ical devices varies widely and range from a consumer digital thermometer for
minor diagnosis, and an implanted artificial heart that is critical to preserving
a patient‘s life, to a therapeutic X-ray machine with a computer user interface,
programmable software controlled therapy and anatomical and biophysical mod-
elling in the software, which is operated under a high level of professional staff
supervision [24]. Analysis of medical device recalls highlights the diverse nature
of medical device software failures. The FDA found that during 1983 - 1987 ap-
proximately 44% of the quality problems that led to voluntary recalls of medical
devices were attributed to errors or deficiencies designed into particular medical
devices rather than having been inserted during the manufacturing phase. The
study also recognised software quality management practices as a means to pre-
vent failure [25]. In the medical device industry, the software used to control a
device takes on an additional role - it must help ensure the safety of the user.
There are many challenges to implementing safe software. Software design needs
to include deliberate engineering practices and rigorous approaches for software
testing such as an expert customer defining suitable tests before development
begins.

3 Related Work

Many approaches to conducting acceptance testing exist. Some concentrate on
acting as a “recording device” allowing user actions to be replayed against a
system, checking for deviations. However, this approach is mainly limited to
Graphical User Interface (GUI) testing of a specific version of a system, using a
tool such as the Selenium IDE [26]. Tools for writing acceptance tests in a cus-
tomer friendly format and appropriate for continuous integration exist. RSpec,
for example, is a “Behaviour Driven Development framework for Ruby” [27].
It promotes a workflow that involves writing stories in a somewhat prescrip-
tive natural language style and then manually translating these steps into Ruby.
While the authors consider this approach interesting for new stories, it has lim-
itations in dealing with pre-existing documents. Other open source tools aimed
at supporting ATDD exist including EasyAccept which supports both tabular
and sequential styles [28].

Generally, the Framework for Integrated Tests (FIT) is the most widely ac-
cepted tool for managing acceptance tests in agile development and therefore
practising ATDD [29]. In FIT‘s simplest workflow a user, places inputs and
some expected output into a tabular format, a ColumnFixture [30]. The devel-
oper then writes code (fixtures) that executes this data against the system‘s
production code. Other built-in fixture included in FIT include ActionFixtures

for testing a “sequence of commands” and RowFixtures for “comparing test
data to objects in the system” [30]. FitNesse is a Wiki framework developed to
support FIT [31]. It facilitates the editing of FIT tables in a browser allowing
non-programming experts to add content. While FIT tables can be written in
any tool that can export HTML, such as Microsoft Excel, these generic tools do
not have any authoring features directly supporting the task domain. Existing

4 David Connolly et al.

tools that support either FIT or FitNesse include AutAT and FitClipse. Au-
tAT seeks to assist “business-side people” taking a visual approach to building
Acceptance Tests [32]. As FitClipse [33] builds on FitNesse tests are entered
using its wiki syntax. Mugridge introduces a process based around a library of
fixtures named FitLibrary, which improves FIT‘s “business-level expressiveness”
to emphasise a “domain-driven design approach” [34]. It supports a type of fix-
ture, DoFixtures, which approach natural language in readability. Commercial
software also supports such a workflow, with GreenPepper [35] supporting “ex-
ecutable specifications” while providing an expressive library of table types. For
clarity, it is important to note that GreenPepper uses code annotations (Java
and C#) that are unrelated to the annotations in this paper. However, none of
these tools is focused on reusing existing documentation, so unlike the proposed
approach these approaches require re-writes of content.

In the requirements authoring process, Melnik and Maurer found that the
use of FIT helped students to “learn how express requirements in a precise,
unequivocal manner” [36]. In a number of experiments aimed at evaluating the
impact of FIT tables on the implementation of change requests Ricca et al. [37],
found improvement in the correctness of code produced. The addition of FIT
Tables to plain text descriptions had the most impact on more experienced stu-
dents, and they found no significant increase in time taken to implement the
changes. The use of annotations was proposed because it provides users with a
simple conceptual framework allowing them to add detail to text descriptions of
tests. Annotations are used here to allow for links to be made between descrip-
tions and corresponding FIT Tables. These annotations are based on elements of
an acceptance test description recommended by Jain [29]. There are four basic
types, covering most elements of an individual acceptance test:

– Precondition: event that must occur before a test is run.
– Actor + Action: part of system and functionality.
– Observerable Result : a verifiable response generated by the system.
– Examples : represent the input data given to a test.

The passing or failure of a test rests with variance from specified Observable

Results. A visual representation of the annotations is contained in Figure 1.

Fig. 1. Annotations

Automating expert-defined tests: a suitable approach for MDI? 5

4 Annotations Experiment

This experiment was designed to evaluate the impact of annotations on the pro-
cess of authoring acceptance tests. The scenario used to write the question de-
scriptions given to respondents concerned the management of software packages
on a computer system, such as GNU/Linux [38]. There were six participants,
each experienced in computing as either a postgraduate or professional. How-
ever, none had prior experience of writing FIT tables. All were given a short,
two-hour training session on FIT Tables and ATDD. Participants were tasked
to create tests using either annotated descriptions or from non-annotated plain
text descriptions. The plain text descriptions serve as a reference for comparison
against annotations. The only difference between descriptions was the presence
or absence of annotations. Each participant was randomly assigned to Group A
and Group B, with each group assigned in total three participants and receiving
four questions. Group B started with annotated descriptions while Group A were
given a non-annotated version. For subsequent exercises the groups alternated
between annotated and non-annotated. Apart from a common assignment of
question, to their group, participants worked alone. In providing these descrip-
tions, the first author acted in the role of a customer on an agile project. The
experiment considered annotations in paper-based experiment in isolation aside
from usability considerations of prototypes.

4.1 Design

For comparison purposes, the first author wrote reference tests, providing an
“ideal” test description against which the participants‘ tests were compared.
Each was in the form of high-level descriptions of how a system should func-
tion, including handling of error conditions and intended to be of approximately
equal difficulty: Question 1 covered initial bootstrap of the package management
system; Question 2 covered installation of new packages; Question 3 covered re-

moval of packages; Question 4 covered upgrading of packages. The metrics used
to assess the experiment were gathered under the following headings:

– Errors : elements that should not appear in the test. From participants‘ an-
swers, all error occurrences counted towards the average.

– Correct Elements : From participants‘ answers an elements first occurrence.
Participants were free to reuse structural elements (for example the first
row in a FIT Table) as this only affects readability. However, repeated data
elements are counted as Errors. Presence of a data element irrespective of
corresponding structural element was enough for it to count as correct, so
two penalising respondents twice.

– Missing Elements : defined as elements that were omitted by the participants
compared to the reference test.

– Time: amount of time taken to complete FIT table.

6 David Connolly et al.

4.2 Question and Responses

A reproduction of Question 2 with annotated text is presented in Figure 2. This
version was provided to Group A while Group B received it non-annotated.

Fig. 2. Sample Question

A simple FIT Table (ColumnFixture) has been transcribed in Figure 3, it
represents the text of Figure 2. This acknowledges the flow of events encoded in
the text and unambiguously represents the specific package name of the “con-
flicting package”.

Fig. 3. Sample ‘Ideal’ Answer

For illustration and comparison with the “ideal” response, two respondent
answers are transcribed in Figure 4 and Figure 5. Figure 4 the answer attempt
from respondent A2, who had been provided an annotated version of Question
1.

Fig. 4. Respondent answer (annotations)

Automating expert-defined tests: a suitable approach for MDI? 7

Here, the respondent A2 correctly identifies the sequence of events, but fails
to include the name of the package, “fcron”, causing the failure. However, the
chosen label heading “success?” does not reflect the action name but this is
not considered an error because the respondent correctly labelled the table.
Respondent A2 achieved the fewest Errors and both the most Correct Elements
and fewest Missing Elements in Question 2.

Fig. 5. Respondent answer (non-annotated)

The corresponding snippet from respondent B1, who had used a non-annotated
version, is transcribed in Figure 5. Here, the respondent B1 failed to identify from
the text that the “install()” action should fail due to the prior installation of a
conflicting package. Indeed respondent B1 didn‘t correctly identify “install()” as
an action at all, instead specifying the package name “vcron” combined with the
error detail as data to be verified. In comparing these answers with the reference
answer in Figure 4 one element was missed by respondent A2 while four elements
were missed by respondent B1 in Figure 5. Finally, it should also be noted that
respondent B1 performed better when using annotated texts and respondent A2
performed worse when using non-annotated texts. The next section summarises
the overall results for the experiment.

4.3 Results

The results gathered from the respondents answers, are summarised in Table 1.
For clarity, the row number is included in column 1. Columns 2, 3 and 4 introduce
the question number, which group is responding (A or B) and the type of descrip-
tion provided in the group‘s question. Columns 5, 6 and 7 contain the arithmetic
mean of the counts for each group‘s Errors, Correct Elements and Missing El-

ements, respectively. The presence of Errors indicates Over-Specification while
that of Missing Elements indicates Under-Specification. In all cases, Correct El-

ements plus Missing Elements equals Total Elements of the “ideal” answer. We
analysed both the data element and the structural element of the responses. An
Error occurs whenever a response is matched against the “ideal” answer and a
mistake is identified. A mistake may be identified in either the data element or
the structural element. All mistakes that occur in the data element are counted
as errors, whereas only the first occurrence is counted as an error in the struc-
tural element. For example, if we matched an individual‘s response against the
“ideal” response and discovered that a data element “fcron” had been included
by a respondent three times; the first two match the “ideal” response counting
as Correct but the third element would be incorrect and count as one error.

8 David Connolly et al.

Table 1. Results from annotations experiment

Row Q Group Type Errors Correct Missing

1 Q1 B Annotated 7.33 12 14

2 Q1 A Plain 13 14 12

3 Q1 - Difference 55.74% (15.38%) (15.38%)

4 Q2 A Annotated 4.67 14 7

5 Q2 B Plain 9.67 10.67 10.33

6 Q2 - Difference 69.77% 27.03% 38.46%

7 Q3 B Annotated 9.67 9.67 3.33

8 Q3 A Plain 11.67 9 4

9 Q3 - Difference 18.75% 7.14% 18.18%

10 Q4 A Annotated 11.5 14 6

11 Q4 B Plain 14 8.67 11.33

12 Q4 - Difference 19.61% 47.06% 61.54%

13 - - Average Difference 40.97% 16.46% 25.70%

Each row in Table 1 presents the results of one group for a particular question.
For example, Row 1 represents the arithmetic mean of responses from Group B
for Question 1 (annotated). The use of median would not reverse the overall
results.

Further, the percentage difference (55.74%) between Group A and Group B
is represented in row 3. This is obtained from as follows:

Row3 = ((|Row1 − Row2|)/(Row1 + Row2)/2) ∗ 100. (1)

For example, in the case of the obtaining the percentage difference of Errors:

55.74% = (|7.33 − 13|)/((7.33 + 13)/2) ∗ 100 (2)

In the case of a worse performance when given annotations, such a result
has been enclosed with parenthesis in Table 1. This pattern continues for each
question given to respondents. The final row, Row 13, contains the overall per-
centage difference; these results included the cases of decreased performance in
Row 3 as negative numbers. In each case, the occurrence of Errors is reduced
for the annotated versions. This holds across both groups even with a pattern
of Group A taking less time on average compared to Group B. For example,
the figure of 55.74% in row 3 indicates that there were 55.74% less errors iden-
tified in the annotated version. This means responses with a lower incidence of
Over-Specification occurred when respondents were provided with annotations.
In Question 2 to Question 4, the average number of Correct Elements for the
annotated version is greater than that for the non-annotated version. A similar
reduction in the number of Missing Elements occurred. For example, 27.03%,
Correct in Row 6 means that there were 27.03% more elements identified by the
group given annotations. Similarly, 38.46%, Missing in Row 7 means that there
were 38.46% less missing elements identified by the group given annotations.

Automating expert-defined tests: a suitable approach for MDI? 9

As with Error Rates, the number of Correct Elements achieved by respondents
appears unrelated to the amount of time spent. However, the effect of annota-
tions on Correct Elements and Missing Elements was smaller than on the Error

Rates, therefore annotations had less of an impact on Under-Specification.

4.4 Selection of a Domain

The initial results are promising however the chosen domain used in the ex-
periment is one of largely unregulated innovation; therefore the large tracts of
documentation required for the approach do not exist. However, medical device
companies must produce a design history file detailing the software components
and processes undertaken in the development of their medical devices. Due to
the safety-critical nature of medical device software it is important that highly
efficient software development practices are in place within medical device com-
panies. Medical device companies who market within the USA must ensure that
they comply with medical device regulations as governed by the FDA (FDA -
Food and Drug Administration) [39] - [6]. The medical device companies must
be able to produce sufficient evidence to support compliance in this area. To this
end, the (CDRH - Center for Devices and Radiological Health) has published
guidance papers for industry and medical device staff which include risk -based
activities to be performed during software validation [4], pre-market submis-
sion [5] and when using off-the-shelf software in a medical device [6]. Although
the CDRH guidance documents provide information on which software activ-
ities should be performed, including risk based activities; they do not enforce
any specific method for performing these activities. The FDA have defined the
following eleven software development areas:

– Level of Concern

– Software Description

– Device Hazard and Risk Analysis

– Software Requirements Specification

– Architecture Design

– Design Specifications

– Requirements Traceability Analysis

– Development

– Validation, Verification and Testing

– Revision Level History

– Unresolved Anomalies

The research outlined in this paper with tool support could greatly assist
medical device software development companies to have traceability of all re-
quirements throughout the testing phase and to ensure that all requirements are
thoroughly tested. In particular, this would assist medical device companies to
adhere to the FDA demands in relation to “Requirements Traceability Analysis”
and “Validation, Verification and Testing”.

10 David Connolly et al.

4.5 Conclusions and Future Work

The annotations experiment in this paper was designed to evaluate the impact
of annotations on the process of authoring acceptance tests. Future work in the
form of case studies will be aimed at measuring the stages of error detection
encountered on projects applying digital annotations; this will asses if the ap-
proach helps to highlight deficient documents in-place, encouraging correction at
source rather than through creation of second generation artefacts (for example,
by writing new acceptance tests). While the size of groups in this study has lim-
ited the statistical conclusions, the results presented in this paper indicate that
using annotated documents helped to identify more elements that are Correct

with fewer Missing elements and Errors when creating acceptance tests.
Due to the applicability of this research to medical device software we would

now like to re-design this experiment so that it concerned medical device software
requirements. This work will specifically help medical device companies to ad-
dress two of the eleven areas defined by the FDA i.e. “Requirements Traceability
Analysis” and “Validation, Verification and Testing”.

4.6 Acknowledgments

This research is partially supported by Institutes of Technology, Technological
Sector Research Programme, Strand 1 Fund and Science Foundation Ireland
through the Stokes Lectureship Programme, grant number 07/SK/I1299.

References

1. Sommerville, I. Software Engineering, 8th edition, pages 80-81, Addison-Wesley,
2007.

2. Pressman, R. S. Software Engineering: A Practitioner‘s Approach, European Adap-
tion, 5th edition. McGraw-Hill, 2000.

3. G. Tassey, “The economic impacts of inadequate infrastructure for software test-
ing”, National Institute of Standards and Technology (NIST), May 2002.

4. CDRH, General Principles of Software Validation; Final Guidance for Industry

and medical device Staff. January 11, 2002

5. CDRH, Guidance for the Content of Premarket Submissions for Software Con-

tained in Medical Devices; Guidance for Industry and medical device Staff. May
11, 2005

6. CDRH, Off-The-Shelf Software Use in Medical Devices; Guidance for Industry,

medical device Reviewers and Compliance. Sept 9, 1999

7. ANSI/AAMI/ISO 14971, Medical devices - Application of risk management to med-

ical devices, 2nd Edition. 2007.

8. ANSI/AAMI/IEC 62304, Medical device software - Software life cycle processes.
July 19, 2006)

9. ISPE, GAMP Guide for Validation of Automated Systems. December, 2001.

10. Beck, K. and C. Andres. Extreme Programming Explained: Embrace Change, 2nd
edition, Addison Wesley, Boston, 2005.

Automating expert-defined tests: a suitable approach for MDI? 11

11. Sauvé, J. P. and Neto, O. L. A. Teaching software development with ATDD and
EasyAccept. In SIGCSE ‘08: Proceedings of the 39th SIGCSE technical symposium

on Computer Science Education, 2008, pages 542-546.

12. Cohn, M. User Stories Applied. Addison-Wesley, Boston, 2005.

13. K. Beck, Test Driven Development: By Example, Addison-Wesley Professional,
2002.

14. Jeffries, R. and Melnik, G. “Guest editors‘ introduction: TDD- the art of fearless
programming”. IEEE Software, volume 24(3), pages 24-30, 2007.

15. Kent Beck, Erich Gamma, and David Saff. JUnit 4. Website, URL last accessed
16th January 2009: http://junit.sourceforge.net/

16. Park, S.S. and Maurer, F. “The benefits and challenges of executable acceptance
testing”, in APOS ‘08: Proceedings of the 2008 international workshop on Scruti-

nizing agile practices or shoot-out at the agile corral, 2008, pages 19-22.

17. Andrea, J. “Envisioning the next generation of functional testing tools”. IEEE

Software, volume 24(03), pages 58-66, 2007.

18. Crumpler, E.S. and Rudolph H. “FDA software policy and regulation of medical
device software”, Food Drug Law Journal, volume 52, pages 511-516, 1997.

19. Munsey, R. R.,“Trends and events in FDA regulation of medical devices over the
last fifty years”, Food Drug Law Journal, volume 50, pages 163-177, 1995.

20. “Medical device reporting: Improvements needed in FDA‘s system for monitoring
problems with approved devices”, US General Accounting Office, GAO/HEHS-97-
21, 1997

21. Bovee, M.W., Paul, D. L. and Nelson, K. M. “A Framework for Assessing the
Use of Third-Party Software Quality Assurance Standards to Meet FDA Medical
Device Software Process Control Guidelines”, IEEE Transactions on Engineering

Management, volume 48(4), pages 465-478, 2001.

22. Kohn, L., Corrigan, J. and Donaldson, M., editors, To Err is Human: Building a
Safer Health System, National Academy Press, 2000.

23. Wallace, D. R. and Kuhn, D. R. “Failure Modes in Medical Device Software: An
analysis of 15 Years of Recall data”, NIST. URL Last accessed January 2007:
http://csrc.nist.gov/staff/kuhn/final-rqse.pdf

24. Jamieson, J. “Regulation of medical devices involving software in Australia - an
overview”, 6th Australian Workshop on Safety Critical Systems and Software, Bris-
bane 2001.

25. Leffingwell, D. A., Widrig, D. R. and Morrissey, W. T. “Applying requirements
management to medical devices utilizing software”, Rational Software Corporation
1997.

26. Kasatani, S. Selenium IDE. Website, URL last accessed 1st December 2008:
http://seleniumhq.org/

27. RSpec Development Team. Website, URL last accessed 1st December 2008:
http://rspec.info

28. Sauvé, J.P., Cirne, W., Osorinho and Coelho, R. EasyAccept Sourceforge Project.
Website URL last accessed 3rd Dec 2008: http://easyaccept.sourceforge.net

29. Jain, N. Acceptance Test Driven Development. Presentation URL last
accessed 30th Nov 2008. http://www.slideshare.net/nashjain/acceptance-test-
driven-development-350264/

30. W. Cunningham, Framework for Integrated Test, September 2002. Website, URL
last accessed 16th January 2009: http://fit.c2.com

31. FitNesse.org. Website, URL last accessed 7th February 2008: http://fitnesse.org

12 David Connolly et al.

32. Schwarz, C., Skytteren, S. K., and Øvstetun, T. M. “AutAT: an eclipse plugin for
automatic acceptance testing of web applications”. In OOPSLA ‘05: Companion

to the 20th annual ACM SIGPLAN conference on OOPSLA, 2005, pages 182-183.
33. Deng, C., Wilson, P., and Maurer, F. “FitClipse: A FIT-based Eclipse plug-in for

Executable Acceptance Test Driven Development”. In XP 2007: Proceedings of

the 8th International Conference on Agile Processes in Software Engineering and

eXtreme Programming. 2007.
34. Mugridge, R. “Managing agile project requirements with storytest-driven develop-

ment”, IEEE Software, volume 25 (Jan.-Feb. 2008), pages 68-75, 2008.
35. Pyxis Technologies inc., GreenPepper Sofware, Website, URL last accessed 19th

January 2009: http://www.greenpeppersoftware.com/confluence
36. Melnik, G. and Maurer, F. “The practice of specifying requirements using exe-

cutable acceptance tests in computer science courses”. In OOPSLA ‘05: Compan-

ion to the 20th annual ACM SIGPLAN conference on OOPSLA, pages 365-370,
2005.

37. F. Ricca, M. D. Penta, M. Torchiano, P. Tonella, M. Ceccato, and C. A. Visaggio,
“Are fit tables really talking?: a series of experiments to understand whether fit
tables are useful during evolution tasks”, in ICSE ‘08: Proceedings of the 30th

international conference on Software engineering, 2008, pages 361-370.
38. Free Software Foundation, About the GNU Project. Website, URL last access 16th

January 2009: http://www.gnu.org/gnu/the-gnu-project.html
39. FDA‘s Mission Statement. URL last access 18th March 2009:

http://www.fda.gov/opacom/morechoices/mission.html

	Automating expert-defined tests: a suitable approach for the Medical Device Industry?
	David Connolly, Fergal Mc Caffery, Frank Keenan

