
Developing acceptance tests from existing documentation using annotations:

An experiment

David Connolly, Frank Keenan and Fergal Mc Caffery
Dundalk Institute of Technology

Software Technology Research Centre (SToRC)

Dublin Road, Dundalk, Ireland.

{david.connolly,frank.keenan,fergal.mccaffery}@dkit.ie

Abstract

The importance of good software testing is often

reported. Traditionally, acceptance testing is the last

stage of the testing process before release to the

customer. Unfortunately, it is not always appropriate

to wait so long for customer feedback. Emerging agile

methods recognise this and promote close interaction

between the customer and developers for early

acceptance testing, often before implementation

commences. Indeed, Acceptance Test Driven

Development (ATDD) is a process that uses customer

interaction to define tests and tool support to automate

and execute these. However, with existing tools, tests

are usually written from new descriptions or rewritten

from existing documentation. Here, the challenge is to

allow developers and customers to annotate existing

documentation and automatically generate acceptance

tests without rewrites or new descriptions. This paper

introduces the related ideas and describes a particular

experiment that assesses the value of using annotated

text to create acceptance tests.

1. Introduction

A large part of software development expenditure is
attributed to testing. Traditionally, with plan-driven
development, acceptance testing, the process of testing
functional requirements with “data supplied by the
customer” [1] occurs as the final stage of the
development process long after the initial investigation
has completed [2]. Many reports, however, highlight
that costs can be reduced by detecting errors earlier in
development [3]. Also supporting this, in many
domains, such as the medical device industry, software
is developed subject to a regulatory environment with a
tendency for extensive documentation. Despite many
constraints already being specified, these are often
ignored with acceptance tests written from scratch after

implementation is complete. In contrast, agile
approaches require constant customer collaboration
throughout development, with customer provision of
acceptance tests being an important part of this role.
Often, it is recommended that tests be identified before
implementation commences.

In eXtreme Programming (XP) [4], for example,
acceptance tests are defined as a part of the User

Stories practice and, as such, are written before coding
of the story begins. In this context, functional tests are
synonymous with acceptance tests [5]. Further, for
accurate user stories, Cohn recommends customers
themselves specify acceptance tests with developers
and testers providing support as required [6]. The XP
practice of Continuous Integration, that is, building
and testing a system frequently, maximizes the use of
the executable and automated products of Test Driven

Development (TDD) [7]. TDD visibly links executable
unit tests to the overall development process. TDD is
widely practised and has many reported benefits [8]
but successful use does rely on tools such as JUnit [9].

ATDD adds to this established test-first philosophy
with acceptance testing of an automated and executable
nature. In keeping with agile principles, ideally
customers write acceptance tests guided by developers.
Its practice “allows software development to be driven
by the requirements” [10]. A key advantage of ATDD
in its wider context is that it leverages existing agile
infrastructure supporting continuous integration.

As with TDD, support from tools makes ATDD
feasible. However, Andrea [11] claims that existing
tools exhibit several deficiencies and produce tests that
are “hard to write and maintain”. To overcome this
Andrea also suggests that the next generation of
functional testing tools need to support writing (and
reading) functional tests in multiple formats.

Given the widespread adoption of information and
communication technology, in many organisations
business rules are documented in numerous formats,
for example, in web based Content Management
Systems. However, ATDD is currently not well

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by STÓR

https://core.ac.uk/display/35316184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

supported with tools that enable reusing such existing
documents, without rewrites, to create executable tests.
A challenge, therefore, is to support a customer in
easily creating tests from existing material. However,
successful identification of accurate acceptance tests in
this manner is not necessarily straightforward.

Key challenges include Under-Specification and
Over-Specification. While both refer to the accuracy of
test specification, each has distinct effects on testing
outcomes. In an Under-Specified test, elements that
should cause the test to fail have not been identified
and included in a test. This has the consequence of a
test passing as a false positive. In an environment,
using continuous integration such a false positive is
costly because it appears that work is progressing
correctly therefore delaying the process of bug
discovery. In contrast, an Over-Specified test is one
where superfluous elements that should not cause the
test to fail have been identified and included in the test.
A common cause of over-specification at this level of
granularity is inclusion of implementation details in a
test. At some point in the development cycle, these
elements are likely to change and cause the test to fail
as a false negative. This devalues testing effort and
forces either rewrites of a test at the correct
specification level or exclusion of a test, even if, in
principle, a testable part of the system goes untested.

In general, this research examines the automatic
generation of acceptance tests from existing electronic
documents by a responsible and knowledgeable
customer working in close collaboration with the
development team. Such a customer will work by
identifying and helping to annotate existing
documents. A staged adoption of any prototype is
planed with developers first helping customers to
annotate documents. Once confidence exists, it is
planned to move to customers annotating and
developer reviewing. This paper examines the potential
benefit of using annotated documents to identify test
cases. The second section summarises related work and
progress realised so far. This is followed in section
three by an overview of an exploratory experiment
concerning annotations. Finally, an outline of future
work is included with conclusions in section four.

2. Related Work

Many approaches to conducting acceptance testing

exist. Some concentrate on acting as a “recording
device” allowing user actions to be replayed against a
system, checking for deviations. However, this
approach is mainly limited to Graphical User Interface
(GUI) testing of a specific version of a system, using a
tool such as the Selenium IDE [13].

Tools for writing acceptance tests in a customer
friendly format and appropriate for continuous
integration exist. RSpec, for example, is a “Behaviour
Driven Development framework for Ruby” [14]. It
promotes a workflow that involves writing stories in a
somewhat prescriptive natural language style and then
manually translating these steps into Ruby. While the
authors consider this approach interesting for new
stories, it has limitations in dealing with existing
documents that were written without reference to
RSpec’s style of writing tests.

Other open source tools aimed at supporting ATDD
exist including EasyAccept that has a script syntax that
supports tests written in both tabular and sequential
style [15].

Generally, the Framework for Integrated Tests
(FIT) is the most widely accepted tool for managing
acceptance tests in agile development and therefore
practising ATDD [16]. In FIT’s simplest workflow a
user, places inputs and some expected output into a
tabular format, a ColumnFixture [17]. The developer
then writes code (fixtures) that executes this data
against the system’s production code.

A simple example of arbitrary precision integer
multiplication is represented as a FIT table in Figure 1
and the associated fixture code in Figure 2. This
example, while trivial, still differs from a Unit Test, as
it does not test implementation details such as null
checking. Implementation details can be appropriate in
a unit test but at this level of granularity, it would
represent over specification. In a ColumnFixture table,
the first row is a reference to the fixture code; the
second row contains structural elements in the form of
labels for data, t1 and t2, or actions, product().
Subsequent rows contain inputs and expected
responses. The third row, for example, contains a
testable event, here; from this, the fixture code, t1 is
initialized with “0”, t2 is initialized with “0” and the
product() method returns “0”. The fourth and
subsequent rows are further events. Events may depend
on previous events e.g. tests can have state or be
stateless; this is an implementation detail of the system
and fixture code.

multiplication.AIntegerFixture

t1 t2 product()

0 0 0

1 1 1

1 2 2

2147483647 2 4294967294

9223372036854775807 2 18446744073709551614

Figure 1 Example FIT Table

Other built-in fixture included in FIT include
ActionFixtures for testing a “sequence of commands”
and RowFixtures for “comparing test data to objects in
the system” [17].

Figure 2 Example FIT Fixture Code

FitNesse is a Wiki framework developed to support

FIT [18]. It facilitates the editing of FIT tables in a
browser allowing non-programming experts to add
content. While FIT tables can be written in any tool
that can export HTML, such as Microsoft Excel, these
generic tools do not have any authoring features
directly supporting the task domain. Existing tools that
support either FIT or FitNesse include AutAT and
FitClipse. AutAT seeks to assist “business-side
people” taking a visual approach to building
Acceptance Tests [19]. As FitClipse [20] builds on
FitNesse tests are entered using its wiki syntax.
Mugridge introduces a process based around a library
of fixtures named FitLibrary, which improves FIT’s
“business-level expressiveness” to emphasise a
“domain-driven design approach” [21]. It supports a
type of fixture, DoFixtures, which approach natural
language in readability.

Commercial software also supports such a
workflow, with GreenPepper [22] supporting
“executable specifications” while providing an
expressive library of table types. For clarity, it is
important to note that GreenPepper uses code
annotations (Java and C#) that are unrelated to the
annotations in this paper.

However, none of these tools is focused on reusing
existing documentation, so unlike the proposed
approach these approaches require re-writes of content.
In the requirements authoring process, Melnik and
Maurer found that the use of FIT helped students to
“learn how express requirements in a precise,
unequivocal manner” [23]. In a number of
experiments aimed at evaluating the impact of FIT
tables on the implementation of change requests Ricca
et al. [24], found improvement in the correctness of
code produced. The addition of FIT Tables to plain text
descriptions had the most impact on more experienced

students, and they found no significant increase in time
taken to implement the changes.

The use of annotations was proposed because it
provides users with a simple conceptual framework
allowing them to add detail to text descriptions of tests.
Annotations are used here to allow for links to be made
between descriptions and corresponding FIT Tables.
These annotations are based on elements of an
acceptance test description recommended by Jain [16].
There are four basic types, covering most elements of
an individual acceptance test:

• Precondition: event that must occur before a test is
run,

• Actor + Action: part of system and functionality.

• Observerable Result: a verifiable response
generated by the system,

• Examples: represent the input data given to a test.
The passing or failure of test resets with variance

from specified Observerable Results. A visual
representation of the annotations is contained in Figure
3. Here, each annotation type is modified to include a
unique colour shade and a greyscale symbol to make
them more easily identifiable.

3. Annotations Experiment

The research question to be investigated is to what

extent can Acceptance Test Driven Development be

improved by supporting the elicitation of executable

acceptance tests from existing text?
This experiment was designed to evaluate the

impact of annotations on the process of authoring
acceptance tests. The scenario used to write the
question descriptions given to respondents concerned
the management of software packages on a computer
system, such as GNU/Linux [25].

There were six participants, each experienced in
computing as either a postgraduate or professional.
However, none had prior experience of writing FIT
tables. All were given a short, two-hour training
session on FIT Tables and ATDD. Participants were

Figure 3. Annotation Legend

public class AIntegerFixture extends

ColumnFixture {

 public String t1;

 public String t2;

 public String product() {

 return AInteger.multiply(t1, t2);

 }

}

tasked to create tests using either annotated
descriptions or from non-annotated plain text
descriptions. The plain text descriptions serve as a
reference for comparison against annotations. The only
difference between descriptions was the presence or
absence of annotations. Three participants were
randomly assigned to Group A and Group B and each
group received four questions. Group B started with
annotated descriptions while Group A were given a
non-annotated version. For subsequent exercises, the
groups alternated between annotated and non-
annotated. Apart from a common assignment of
question, to their group, participants worked alone. In
providing these descriptions, the first author acted in
the role of a customer on an agile project. The
experiment considered annotations in paper–based
experiment in isolation aside from usability
considerations of prototypes.

3.1. Design

For comparison purposes, the first author wrote
reference tests, providing an “ideal” test description
against which the participants’ tests were compared.
Each was in the form of high-level descriptions of how
a system should function, including handling of error
conditions and intended to be of approximately equal
difficulty: Question 1 covered initial bootstrap of the
package management system; Question 2 covered
installation of new packages; Question 3 covered
removal of packages; Question 4 covered upgrading of
packages. The metrics used to assess the experiment
were gathered under the following headings:

• Errors: elements that should not appear in the test.
From participants’ answers, all error occurrences
counted towards the average.

• Correct Elements: The first occurrence of an element
in participants’ answer. Participants were free to
reuse structural elements (for example the first
row in a FIT Table) as this only affects readability.
However, repeated data elements are counted as
Errors. Presence of a data element irrespective of
corresponding structural element was enough for it
to count as correct, so two penalising respondents
twice.

• Missing Elements: defined as elements that were
omitted by the participants compared to the
reference test.

• Time: amount of time taken to complete FIT table.
After the experiment, participants were required to

respond to a short survey with questions formulated
using the Likert scale for responses.

3.2. Question and Responses

A reproduction of Question 2 with annotated text is

presented in Figure 4. This version was provided to
Group A with Group B receiving a non-annotated plain
text version.

A simple FIT Table (ColumnFixture) reproduced in

Figure 5 represents the bracketed text of Figure 4.

This table acknowledges the flow of events
encoded in the text and unambiguously represents the

Figure 4. Sample question

package install() failReason? failPackages?

fcron TRUE

vcron FALSE

Package

conflict fcron

Figure 5. Sample 'ideal' answer

specific package name of the “conflicting package”.
For illustration and comparison with the “ideal”
response, two respondent answers are provided in
Figure 6 and Figure 7. Figure 6 reproduces the answer
attempt from respondent A2, who had been provided
an annotated version of Question 1.

Here, the respondent A2 correctly identifies the

sequence of events, but fails to include the name of the
package, “fcron”, causing the failure. However, the
chosen label heading “success?” does not reflect the
action name but this is not considered an error because
the respondent correctly labelled the table. Respondent
A2 achieved the fewest Errors and both the most
Correct Elements and fewest Missing Elements in
Question 2.

The corresponding snippet from respondent B1,
who had used a non-annotated version, is reproduced
in Figure 7.

Install Result

Duplicate (vcron) Package Conflict

Here, the respondent B1 failed to identify from the text
that the ‘install()’ action should fail due to the prior
installation of a conflicting package. Indeed
respondent B1 didn’t correctly identify “install()” as an
action at all, instead specifying the package name
“vcron” combined with the error detail as data to be
verified.

In comparing these answers with the reference
answer in Figure 6 one element was missed by
respondent A2 while four elements were missed by
respondent B1 in Figure 7.

Finally, it should also be noted that respondent B1
performed better when using annotated texts and
respondent A2 performed worse when using non-
annotated texts. The next section summarises the
overall results for the experiment.

3.3 Results

The results gathered from the respondents answers,
are summarised in Table 1. For clarity, the row number
is included in column 1. Columns 2, 3 and 4 introduce
the question number, which group is responding (A or

B) and the type of description provided in the group’s
question. Columns 5, 6 and 7 contain the arithmetic
mean of the counts for each group’s Errors, Correct

Elements and Missing Elements, respectively. The
presence of Errors indicates Over-Specification while
that of Missing Elements indicates Under-

Specification. In all cases, Correct Elements plus

Missing Elements equals Total Elements of the “ideal”
answer.

We analysed both the data element and the
structural element of the responses. An Error occurs
whenever a response is matched against the “ideal”
answer and a mistake is identified. A mistake may be
identified in either the data element or the structural
element. All mistakes that occur in the data element are
counted as errors, whereas only the first occurrence is
counted as an error in the structural element. For
example, if we matched an individual’s response
against the “ideal” response and discovered that a data
element “fcron” had been included by a respondent
three times; the first two match the “ideal” response
counting as Correct but the third element would be
incorrect and count as one error.

Table 1. Results from annotations experiment

Row Q Group Type Errors Correct Missing

1 Q1 B Annotated 7.33 12 14

2 Q1 A Plain 13 14 12

3 Q1 - Difference 55.74% (15.38%) (15.38%)

4 Q2 A Annotated 4.67 14 7

5 Q2 B Plain 9.67 10.67 10.33

6 Q2 - Difference 69.77% 27.03% 38.46%

7 Q3 B Annotated 9.67 9.67 3.33

8 Q3 A Plain 11.67 9 4

9 Q3 - Difference 18.75% 7.14% 18.18%

10 Q4 A Annotated 11.5 14 6

11 Q4 B Plain 14 8.67 11.33

12 Q4 - Difference 19.61% 47.06% 61.54%

13 - - Average

Difference

40.97% 16.46% 25.70%

Each row in Table 1 presents the results of one

group for a particular question. For example, Row 1
represents the arithmetic mean of responses from
Group B for Question 1 (annotated). In the case of
Row 1, the three members of Group B obtained an
average of 7.33 errors, an average of 12 correct
elements and 14 missing elements, with the total
elements of the “ideal” answer being 26 (12 +14).
While Row 2 represents the arithmetic mean of
responses from Group A for Question 1 (plain, non-

package success?

fcron TRUE

vcron FALSE “Package Conflict”

Figure 7. Respondent answer (non-annotated)

Figure 6. Respondent snippet (annotations)

annotated). Further, the percentage difference
(55.74%) between Group A and Group B is
represented in row 3. This is obtained from as follows:

Row 3 = ((|Row 1 – Row 2|)/ (Row 1 + Row
2)/2)*100. For example, in the case of the obtaining the
percentage difference of Errors:

55.74% = (|7.33 – 13|) / ((7.33 + 13) /2) * 100
In the case of a worse performance when given

annotations, the result will be distinguished in Table 1
by making it appear in bold. This pattern continues for
each question given to respondents.

The final row, Row 13, contains the overall
percentage difference; these results included the cases
of decreased performance in Row 3 as negative
numbers.

In each case, the occurrence of Errors is
significantly reduced for the annotated versions. This
holds across both groups even with a pattern of Group
A taking less time on average compared to Group B.
For example, the figure of 55.74% in row 3 indicates
that there were 55.74% less errors identified in the
annotated version. This means responses with a lower
incidence of Over-Specification occurred when
respondents were provided with annotations.

In Question 2 to Question 4, the average number of
Correct Elements for the annotated version is greater
than that for the non-annotated version. A similar
reduction in the number of Missing Elements occurred.
For example, 27.03%, Correct in Row 6 means that
there were 27.03% more elements identified by the
group given annotations. Similarly, 38.46%, Missing in
Row 7 means that there were 38.46% less missing
elements identified by the group given annotations.

As with Error Rates, the number of Correct

Elements achieved by respondents appears unrelated to
the amount of time spent. However, the effect of
annotations on Correct Elements and Missing Elements
was smaller than on the Error Rates, therefore
annotations had less of an impact on Under-

Specification.

3.4.1. Participant Observations and Survey A
questionnaire participant noted “Annotations were
helpful to identify potential tests” but qualified it by
saying that it led to “ignoring the rest of text”; the
quality of annotations is a major issue. Another
participant noted that annotations were particularly
useful when first getting to grips with the problem
domain. Another respondent felt it would have been
desirable to view a fully worked up example in the
problem domain before responding.

In general, participants stated that they were
somewhat unfamiliar with the problem domain and
were new to writing FIT Tables. However, respondents
were quite positive about the benefit of annotations.

The responses to the question did annotations help to

clarify the descriptions provided. Are reproduced in
Figure 8 with the X-axis representing the Likert scale
from 1 (Disagree Strongly) to 5 (Agree Strongly). The
central tendency is represented by the median,
corresponding to “Agree”.

3.4.2. Limitations The small number of participants
makes it difficult to draw generalisable conclusions
based on quantitative analysis. Also, as the question
descriptions and reviews of responses were both
conducted by the authors there is a potential for
experimental bias. This will be addressed in future
work by adopting a marking scheme approach with
multiple reviewers who were not involved with the
authoring of descriptions.

4. Conclusions and Future Work

This paper has argued that software testing can be
enhanced by improving support for ATDD in the
situation where constraints are already defined in
elec1tronic documents. The experimental results
presented here considered the value of using annotated
documents to author acceptance represented by FIT
Tables. The results indicate that using annotated
documents helped to identify more elements that are

Correct with fewer Missing elements and Errors when
creating acceptance tests. Additionally this helps in
reducing the possibility of specifying tests incorrectly
and of clarifying existing business rules.

The results from this limited study have been very
encouraging and further investigation is planned. In
particular, tool support is being examined. This should
allow customers to identify acceptance tests from
existing documents in a collaborative environment.
This will be facilitated though development of text
editor add-on for FitNesse that supports the definition

Figure 8. Response to question on

benefit of annotation

of FIT Tables from pre-existing documents by
customers using the annotations described here. In
addition a new type of annotation describing grouping
will be defined which should help to clarify
independence of tests that look similar.

The experiment consider the operation of
annotations in the abstract, there effects as part of a full
software engineering process will be studied later with
future work focusing on evaluating the use of
annotations by relevant stakeholders, especially the
collaborative use of annotations by customers and
developers. Facilitation of self-assessment though
collaboration by users of the prototype is a key
prototype requirement. Tool support will allow future
experimental evaluations with, for example, a larger
sample group from industry. These experiments will
form part of the next step towards answering the
research question.

5. Acknowledgements
This research is partially supported by Institutes of

Technology, Technological Sector Research
Programme, Strand 1 Fund and Science Foundation
Ireland through the Stokes Lectureship Programme,
grant number 07/SK/I1299.

6. References

[1] Sommerville, I. Software Engineering, 8th edition,

pages 80-81, Addison-Wesley, 2007.
[2] Pressman, R. S. Software Engineering: A

Practitioner’s Approach, European Adaption, 5th edition.
McGraw-Hill, 2000.

[3] G. Tassey, “The economic impacts of inadequate
infrastructure for software testing” National Institute of
Standards and Technology (NIST), May 2002.

[4] Beck, K. and C. Andres. Extreme Programming
Explained: Embrace Change, 2nd ed, Addison Wesley,
Boston, 2005.

[5] Sauvé, J. P. and Neto, O. L. A. Teaching software
development with ATDD and EasyAccept. In SIGCSE ’08:
Proceedings of the 39th SIGCSE technical symposium on
Computer Science Education, pages 542–546, ACM, 2008.

[6] Cohn, M. User Stories Applied. Addison-Wesley,
Boston, 2005.

[7] K. Beck, Test Driven Development: By Example,
Addison-Wesley Professional, 2002.

[8] Jeffries, R. and Melnik, G. Guest editors’
introduction: TDD–the art of fearless programming. IEEE
Software, volume 24(3), 2007, pages 24–30.

[9] Kent Beck, Erich Gamma, and David Saff. JUnit 4.
Website, URL last accessed 16th January 2009:
http://junit.sourceforge.net/

[10] Park, S.S. and Maurer, F. The benefits and
challenges of executable acceptance testing, in APOS ’08:
Proceedings of the 2008 international workshop on

Scrutinizing agile practices or shoot-out at the agile corral,
ACM, New York, NY, USA, 2008, pages. 19–22.

[11] Andrea, J. Envisioning the next generation of
functional testing tools. IEEE Software, volume 24(03),
2007, pages 58–66.

[12] Cunningham, W. FIT: Framework for Integrated
Testing. Website, URL last retrieved 21st April, 2008:
http://fit.c2.org.

[13] Kasatani, S. Selenium IDE. Website, URL last
accessed 1st December 2008: http://seleniumhq.org/

[14] RSpec Development Team. Website, URL last
accessed 1st December 2008: http://rspec.info

[15] Sauvé, J.P., Cirne, W., Osorinho and Coelho, R.
EasyAccept Sourceforge Project. Website URL last accessed
3rd Dec 2008: http://easyaccept.sourceforge.net

[16] Jain, N. Acceptance Test Driven Development.
Presentation URL last accessed 30th Nov 2008.
http://www.slideshare.net/nashjain/acceptance-test-driven-
development-350264/

[17] W. Cunningham, Framework for Integrated Test,
September 2002. Website, URL last accessed 16th January
2009: http://fit.c2.com

[18] FitNesse.org. Website, URL last accessed 7th
February 2008: http://fitnesse.org

[19] Schwarz, C., Skytteren, S. K., and Øvstetun, T. M.
AutAT: an eclipse plugin for automatic acceptance testing of
web applications. In OOPSLA ’05: Companion to the 20th
annual ACM SIGPLAN conference on OOPSLA, 2005,
pages 182–183.

[20] Deng, C., Wilson, P., and Maurer, F. FitClipse: A
FIT-based Eclipse plug-in for Executable Acceptance Test
Driven Development. In proceedings of the 8th International
Conference on Agile Processes in Software Engineering and
eXtreme Programming (XP 2007). 2007.

[21] R. Mugridge, Managing agile project requirements
with storytest-driven development, Software, IEEE, 25 (Jan.-
Feb. 2008), pp. 68–75, 2008.

[22] Pyxis Technologies inc., GreenPepper Sofware,
Website, URL last accessed 19th January 2009:
http://www.greenpeppersoftware.com/confluence

[23] Melnik, G. and Maurer, F. The practice of
specifying requirements using executable acceptance tests in
computer science courses. In OOPSLA ’05: Companion to
the 20th annual ACM SIGPLAN conference on OOPSLA,
pages 365–370, ACM, 2005.

 [24] F. Ricca, M. D. Penta, M. Torchiano, P. Tonella, M.
Ceccato, and C. A. Visaggio, Are fit tables really talking?: a
series of experiments to understand whether fit tables are
useful during evolution tasks, in ICSE ’08: Proceedings of
the 30th international conference on Software engineering,
New York, NY, USA, 2008, ACM, pp. 361–370.

 [25] Free Software Foundation, About the GNU Project.
Website, URL last access 16th January 2009:
http://www.gnu.org/gnu/the-gnu-project.html

