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            Abstract We present a shoreline change model for coastal hazard assessment and management

           planning. The model, CoSMoS-COAST (Coastal One-line Assimilated Simulation Tool), is a transect-based,

              one-line model that predicts short-term and long-term shoreline response to climate change in the 21st

             century. The proposed model represents a novel, modular synthesis of process-based models of coastline

               evolution due to longshore and cross-shore transport by waves and sea level rise. Additionally, the model

               uses an extended Kalman lter for data assimilation of historical shoreline positions to improve estimates offi

            model parameters and thereby improve con dence in long-term predictions. We apply CoSMoS-COAST tofi

              simulate sandy shoreline evolution along 500 km of coastline in Southern California, which hosts complex

              mixtures of beach settings variably backed by dunes, bluffs, cliffs, estuaries, river mouths, and urban

              infrastructure, providing applicability of the model to virtually any coastal setting. Aided by data assimilation,

                 the model is able to reproduce the observed signal of seasonal shoreline change for the hindcast period of

             1995 2010, showing excellent agreement between modeled and observed beach states. The skill of the–

              model during the hindcast period improves con dence in the model s predictive capability when applied tofi ’

             the forecast period (2010 2100) driven by GCM-projected wave and sea level conditions. Predictions of–

              shoreline change with limited human intervention indicate that 31% to 67% of Southern California beaches

               may become completely eroded by 2100 under sea level rise scenarios of 0.93 to 2.0 m.

 1. Introduction

              Coastal evolution, the interaction of many geologic and hydrodynamic processes at a multitude of spatio-

                 temporal scales, is notoriously dif cult to understand let alone predict [e.g., ., 2010; .,fi Pape et al Payo et al

           2016; , 2016]. Nevertheless, reliable, quantitative predictions of long-term coastal evolution onRanasinghe

             decadal to centennial timescales are increasingly sought for adaptation planning in anticipation of climate

             change and sea level rise (SLR) [ , 2009; ., 2016].Ranasinghe and Stive Nicholls et al

             Nearshore hydrodynamic processes such as waves, storms, tides, currents, uvial discharges, and sea levelfl

            anomalies play signi cant roles in forcing short-term (e.g., seasonal to multiannual) coastal morphologicfi

                    change [e.g., ., 2014; ., 2009; , 2010; ., 2014; ,Splinter et al Yates et al Hansen and Barnard Coco et al Barnard et al.

               2015]. On the other hand, long-term (e.g., decadal to centennial) processes such as natural and anthropogenic

              sediment supply, relative sea level changes, aeolian transport, land use, gradients in alongshore sediment trans-

               port, and climatic variations are often responsible for chronic coastal change [ , 2006;Ashton and Murray Warrick

            and Mertes Sallenger et al, 2009; ., 2012]. Therefore, predicting coastal evolution on intermediate timescales (e.g.,

            decadal to centennial) often requires accurate representations of both hydrodynamic and geologic forcing.

              Many different paradigms of coastal evolution models exist to simulate behavior of certain processes and

               scales. Studies of coastal hazards and shoreline change due to extreme events often rely on detailed,

            computationally onerous, numerical modeling efforts [e.g., ., 2009;physics-based Van Dongeren et al Barnard

               et al., 2014] to resolve the hydrodynamic forcing and morphologic response. On the other hand, simpli edfi

             process-based empirical modelsor (detailed below) are often applied to predict chronic shoreline change.

             All models, however, inevitably rely upon approximations of complex, multiscale systems, and thus are

                  subject to many sources of error [ ., 2010]. Nevertheless, they can provide useful tools to aid inPape et al

    understanding and predicting shoreline evolution.

            Physics-based 2-D and 3-D models of coupled hydrodynamics, waves, sediment transport, and morphology,

                e.g., Delft3D [ , 1995], XBeach [ ., 2010], Mike21 [ , 1992;Roelvink and Van Banning Roelvink et al Warren and Bach
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                Kaergaard and Fredsoe Warner et al, 2013], and ROMS [ ., 2010], solve conservation of mass and momentum of

                 fluid and sediment and seek to resolve nearly all of the important physical processes involved in coastal evo-

           lution. Physics-based models have become increasingly capable of simulating small-scale, short-term beach

                    and dune erosion due to storm events on timescales of days to weeks [cf. ., 2015], and recentde Winter et al

             efforts have achieved realistic simulations on even longer timescales [ ., 2017]. However,Luijendijk et al

                 physics-based simulations of large-scale (e.g., 100 m to 100 km length scale) or long-term (e.g., annual to dec-

             adal timescale) shoreline change (such as beach recovery) are often prohibitively expensive in computational

               cost and do not necessarily provide improved skill over simpli ed models [ , 2007; .,fi Murray Ranasinghe et al

               2013; ., 2016]. Therefore, a different modeling paradigm is often preferred to simulate large-scale,French et al

            long-term shoreline evolution. Contrasting the physics-based approach of fully resolving the governing equa-

             tions of hydrodynamic and morphologic interaction, process-based models typically account for a single domi-

            nant physical process. Process-based models, e.g., equilibrium beach pro le models [ , 1962], equilibriumfi Bruun

                   shoreline models [Miller and Dean, 200 4; Yates et a l., 2009, 2011; Davidson et al Splinter et al., 2010, 2013; ., 2014],

              and one-line models [Pelnard-Considere, 1956; Larson et al Ashton et al., 1997; ., 2001; Ashton and Murray, 2006],

               are straightforward and computationally ef cient but have only been proven reliable, in most cases, on inter-fi

              annual timescales. Further, the accuracy of process-based models is limited in locations when unresolved, sec-

            ondary processes contribute to coastal evolution. Lastly, data-driven or empirical models, constructed from

            observed behavior, represent another widely used paradigm to estimate long-term coastal evolution. For

               example, historical shoreline analyses [Dolan et al., 1978; Crowell et al Thieler and Danforth., 1991; , 1994;

                Fletch er et a l., 2003] derive rates of shoreline change from sets of orthorecti ed and georeferenced aerial photo-fi

             graphs. Because empirical approaches are derived directly from observed behavior, they (implicitly) account for

             all relevant morphologic processes at the specific location. However, the speci c processes responsible forfi

               morphologic change are not explicitly resolved. Finally, the quality of data-driven models is closely related to

               the quantity of data available to t the model, and, unfortunately, shoreline data are often sparse.fi

             As discussed above, each modeling paradigm has advantages and disadvantages. Recently, Long and Plant

            [2012] developed a data assimilation method to combine empirical and process-based shoreline models,

                leveraging the advantages of each approach. In this paper, we present a hybrid model with data assimilation

               that synthesizes and improves upon several shoreline models in the literature. The model is composed of

             three process-based models of sediment transport and shoreline change: (1) longshore transport and shore-

              line change due to waves following the one-line approach [ , 1956; ., 1997;Pelnard-Considere Larson et al

             Vitousek and Barnard, 2015], (2) cross-shore transport and equilibrium shoreline change due to waves

                [ ., 2009; , 2012], and (3) cross-shore transport and equilibrium beach pro le changeYates et al Long and Plant fi

          due to SLR [ , 1962; , 2005; ., 2015].Bruun Davidson-Arnott Anderson et al

              The contributions of each of the three process-based models listed above are mutually independent and,

               therefore, can be summed to provide a more complete shoreline evolution model for locations of interest

          in a variety of geologic settings. For example, Banno and Kuriyama     [2014] recently combined an equilibrium

         shoreline change model (2) and a SLR response model (3).

              The proposed model is forced with sea level projections [National Research Council, 2012] and hindcasted

            (1995 2011) and forecasted (2011– –2100) wave conditions derived from global-to-local nested Wave Watch III

                 [Tolman, 2 009] and S WAN [Bo oij e t al., 19 99] wave m odels [Erikson et al., 2015], which provide the nearshore

             forcing conditions needed for the process-based models. Importantly, the model uses data assimilation from

              historical shoreline positions to automatically calibrate the model parameters and to implicitly account for unre-

             solved sediment transport processes, e.g., uvial discharge, regional sediment supply, and long-term erosion. Afl

            schematic depicting the CoSMoS-COAST model, inputs, and outputs is shown in Figure 1.

                Detailed discussions of the model s governing equation and its numerical method are given in sections 2 and’

                  3, respectively. Later, in section 4, the model is applied to predict shoreline evolution on 500 km of coastline

                  in Southern California by the end of the 21st century. Finally, section 5 presents the conclusions of this work.

  2. Governing Equation

             The governing equation of the CoSMoS-COAST shoreline evolution model is a partial differential equation

            composed of three process-based models (1) a longshore transport one-line model, (2) a cross-shore—
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              equilibrium shoreline model, (3) and a sea level driven shoreline recession model and an assimilated long-—

            term rate parameter due to unresolved processes. This governing equation is given by

∂Y

∂t
|{z}

 shoreline change

¼ 
1

d

∂Q

∂X
|fflfflffl{zfflfflffl}

 longshore transport

 þ C E 1 2=
ΔE

|fflfflfflffl{zfflfflfflffl}

 cross shore transport-


c

tanβ

∂S

∂t
|fflfflffl{zfflfflffl}

 shoreline migration

  due to sea  -level rise

 þ v lt
|{z}

  long-term shoreline trend;

 unresolved processes

 ; (1)

                 where represents the position of the shoreline, e.g., the mean high water (MHW) line, measured as theY

                   distance along a shore-normal transect from the onshore end of the transect (see, e.g., Figure 2), and is time.t

              The terms on the right-hand side (RHS), representing physical processes that force shoreline change, are

    discussed in the following sections.

  2.1. Longshore Transport

                  The rst term on the RHS of equation (1) is the alongshore gradient in the longshore sediment transport ratefi

                 Q X d, where represents the alongshore coordinate and is the depth of closure. A generalized expression for

    the longshore transport rate is

  Q Q¼ 0   sin 2αð Þ; (2)

 where Q0            represents the magnitude of the longshore sediment transport rate derived empirically and

               expressed as a function of wave and sediment properties. For example, the Shore Protection Manual [US

      Army Corps of Engineers Q, 1984] gives 0  ¼ K ρ

ρs ρð Þ λ

H2
b Cg b;

16
        , where is the density of water,ρ H b   is the breaking

  wave height, C g b,                is the group velocity of the wave at breaking, is an empirically derived constant,K ρ s is

               the sediment density, and is the porosity of the sediment. The argument of equation (2),λ

  α α= wave   αshoreline              , represents the angle between the incident waves (with direction in Nautical con-θ

     vention and therefore with angle αwave              = 270 in Cartesian convention as shown in Figure 2) and the θ

   shoreline (with angle αshoreline               ) [ Larson et al., 1997]. The wave direction (at the offshore end of each trans-θ

                 ect) is calculated via nearshore wave models as described in section 4. The shoreline angle is given by

αshoreline  ¼ atan
dy

dx
 

 ; (3)

               where and represent the real world (e.g., Universal Transverse Mercator, UTM) coordinates of thex y

      Figure 1. Overview of the CoSMoS-COAST model.
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               shoreline. If the alongshore and cross-shore coordinates, and , are aligned with the real-world coordinates,X Y

                x yand , then the upper and lower case variables are interchangeable. A schematic demonstrating the setup

                  of the one-line model is given in Figure 2. The model does not consider high-angle wave instability and the

                  growth of shoreline features such as spits, sand waves, and capes [e.g., ., 2001; , 2003;Ashton et al Falqués van

                 den Berg et al Kaergaard and Fredsoe., 2012; , 2013], which can lead to multivalued solutions to the shoreline

                 position, . More details on the longshore transport component of the model are given in section 3 andY

 Appendix A.

  2.2. Cross-Shore Transport

                   The second term on the RHS of equation (1) is the equilibrium shoreline model of . [2009], whichYates et al

              simulates episodic beach erosion and recovery during periods of high and low wave energy, respectively.

                The coef cient represents the rate of shoreline change, which we assume to remain constant during bothfi C

     accretion and erosion ( =C C+  = C              ) in order to facilitate data assimilation [ , 2012]. .Long and Plant Yates et al

    [2011] demonstrated that replacing C+  and C           with results in less than 10% degradation in model perfor-C

         mance for California beaches. In equation (1), =E H2          is the wave energy related to the wave height, ,H

                  squared. Following [2012], we do not apply a factor of 16 between the wave energy andLong and Plant

      the wave height squared, i.e., E ¼ 1
16

H 2            , like in . [2009]. =Yates et al ΔE E E eq    is the disequilibrium between

              the instantaneous wave energy and the wave energy associated with the equilibrium shoreline position, E eq.

       The equilibrium wave energy is given by E eq  = aYst           + , where and are calibration parameters andb a b Y st  is the

       short-term shoreline position described below in section 3.

       2.3. Shoreline Migration Due To Sea Level Rise

                The third term on the RHS of equation (1) expresses the shoreline recession resulting from passive oodingfl

                 due to SLR under the assumption that the beach slope, tan , will remain relatively consistent through time.β

               However, future work might consider the temporal evolution of beach slope as predicted by the parameter-

               ization of [1984] and projected changes to wave breaking, wave period, and sediment size. WhenSunamura

                    tan is chosen as the average slope of the active beach pro le extending to the depth of closure, this expres-β fi

              sion, known as the Bruun rule, approximates the shoreline recession resulting from equilibrium beach pro lefi

            adjustments due to SLR, , (or in this case the rate of SLRS dS
dt           ) and is a calibration coef cient. The Bruun rule isc fi

               widely used [ , 1988] and modi ed [ , 2005; , 2009; ., 2013;Bruun fi Davidson-Arnott Wolinsky and Murray Rosati et al

                  Young et al Anderson et al Cooper and Pilkey Ranasinghe et al., 2014; ., 2015], yet widely criticized [ , 2004; ., 2012]

     as an oversimpli cation of shoreline evolution.fi

                    If the beach slope, tan , is selected as the foreshore beach slope, then (in the absence of pro le change) theβ fi

              Bruun rule simply expresses the shoreline recession due to passive ooding. This modi cation allows thefl fi

         Figure 2. Schematic showing the setup of the shoreline model.
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                application of the model to rocky/cobble beaches where passive ooding is expected to occur, but the tradi-fl

                tional Bruunian pro le adjustment mechanism is not. In the application presented in section 4, we select thefi

                   beach slope, tan , as the foreshore slope rather than the smaller average beach slope (to the depth of clo-β

                   sure) in order to limit the in uence of the Bruunian response to SLR, yet still account for migration of thefl

    shoreline due to passive ooding.fl

             The beaches in Southern California experience some alongshore variability in foreshore beach slope, which

                  motivates our use of a low-pass lter to smooth the beach slope in the alongshore direction for each transect.fi

               The average foreshore beach slope in Southern California, derived from LIDAR data between 2.0 m and

                    +2.0 m around mean sea level at each transect, is tan = 1/32, suggesting (on average) 32 m of shorelineβ

      recession associated with the modi ed Bruunian response,fi 
S

tanβ
        , to 1.0 m of SLR. Alongshore variability can

                 decrease or increase the local beach slope by 52% or 60%, respectively, relative to the smoothed value of

                 the beach slope at the 95% con dence level. Therefore, the shoreline recession is sensitive to the local varia-fi

                 bility of the beach slope, which, for example, corresponds to an uncertainty (at the 95% con dence level) offi

                    12 to +35 m about the mean shoreline recession of 32 m associated with 1.0 m of SLR. This method for

            quantifying uncertainty also applies to the unresolved temporal variability of the beach slope.

   2.4. Long-Term Shoreline Trend

                  The fourth and nal term on the RHS of equation (1) is the long-term shoreline trend that represents unre-fi

                solved processes such as sources and sinks of sediment from uvial inputs [ , 1999;fl Inman and Jenkins Willis

               and Griggs Warrick and Mertes Flick Young et al, 2003; , 2009], nourishments [ , 1993], cliff failure [ ., 2011;

                Limber and Murray Bauer et al Thornton et al, 2011], aeolian transport [ ., 2009], sand mining [ ., 2006], and

              transport from offshore [ ., 2013]. In equation (1), if the long-term trend,Schwab et al vlt     , is a constant, then

               the shoreline migration is linear in time. Historical shoreline analyses using aerial photos often use linear

              regressions to t observed shoreline data and determine long-term annual erosion rates [see, e.g., USGSfi

              National Assessment of Shoreline Change; ., 2006]. The data assimilation method assumes thatHapke et al

vlt         is constant, starting from an initial value of v lt          = 0. However, when a data assimilation step takes place,

   the magnitude of v lt           changes and thus the unresolved, long-term shoreline change is time dependent.

              During the model forecast period, no observations are available to assimilate. Thus, during the forecast

 period vlt             is constant, and therefore, the unresolved, long-term shoreline change associated with this term

                is linear in time. Thus, this long-term component is subject to error when chronic, unresolved processes result

                 in a nonlinear response. The magnitude of this error, although dif cult to assess a priori, may be parameter-fi

                  ized via process noise in the Kalman lter as described in section 3 and Appendix B. In the applicationfi

    presented in section 4, v lt           represents (on average) approximately 10% of the variability of the shoreline

              change over long periods (~50 years and longer). However, regions dominated by nourishments or other

        long-term effects may have locally high values of v lt.

  3. Numerical Model

  3.1. Spatial Discretization

                In the proposed model, the coastline is discretized into a series of shore-normal transects that are arbitrarily

                 spaced in the alongshore direction. For each transect, the shoreline position at a given time step is measured

                   by the distance, , from the onshore end of the transect. The model computes the evolution of for eachY Y

                transect. Accordingly, the shoreline evolves as if on rails represented by each transect. A schematic of the“ ”

                model domain is shown in Figure 2. Although there are long-term coastal evolution models that are grid

                 based (e.g., the Coastal Evolution Model (CEM) of [2006]) and vector based [ .,Ashton and Murray Hurst et al

                2015], the current model is chosen to be transect based to cover long, irregular coastlines and facilitate

             the composition of the 1-D, process-based models (described above) with data assimilation. The drawback

             to the transect-based discretization is that, unlike CEM and many physics-based numerical models, the

            numerical method presented here does not have a conservative formulation for sediment volume.

              However, this characteristic does not severely denigrate the model quality, because of our inherent inability

             to resolve all processes resulting in shoreline evolution. Furthermore, the data assimilation method precludes

             the model from conserving sediment volume because the shoreline position and long-term shoreline change

        rate are intermittently adjusted to best t the observations.fi
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  3.2. Temporal Discretization

                 The model uses explicit Euler time stepping [see, e.g., , 2010] for the cross-shore transport terms due toMoin

              waves, sea level, and long-term effects. Fortunately, these terms do not exhibit numerical instability. The

              longshore-transport term, on the other hand, is susceptible to numerical instability based on the Courant

   number condition Δt < ΔX2 d
4Q0

          [ , 2006; , 2015]. Accordingly, the modelAshton and Murray Vitousek and Barnard

                uses the option of explicit Euler time stepping or the semi-implicit time stepping of Vitousek and Barnard

                [2015] (see Appendix A for details). The transect spacing, , is the most important consideration in selectingΔX

              the preferred time stepping method. In general, explicit Euler time stepping suf ces for transects spacedfi

    approximately 100 m or greater.

  3.3. Model Equations

              To facilitate model construction and data assimilation, equation (1) is split into short- (seasonal cross-shore

             transport) and long-term (longshore transport, SLR effects, and other) components of shoreline change, Yst

 and Y lt      , respectively, where =Y Y st  + Y lt          following [2012]. This splitting procedure applies theLong and Plant

    correct wave energy disequilibrium, Eeq  = aYst         + , associated with the short-term shoreline position,b Y st .

  Wrongly setting E eq               = + results in spurious disequilibrium between the wave energy and the newaY b

           long-term shoreline position, driving nonphysical shoreline change (e.g., spurious short-term accretion on

      a chronically eroding shoreline and vice versa).

    The split model equations become

Y stð Þnþ1
k   Y stð Þ n

k

Δt
 ¼ Ck En

k

 1 2=
E n

k   a k Ystð Þn
k   bk

 

(4)

Y ltð Þnþ1
k   Y ltð Þn

k

Δt
¼ 

K k

d k

Qnþθ
k þ1 2=   Q nþθ

k 1 2=

ΔX k


ck

tanβ k

∂S

∂t

  n

k

 þ v ltð Þk  ; (5)

                  where superscripts represent the time step index, is the time step, represents the transect index, andn Δt k

ΔXk              is the distance between adjacent transects (given in Appendix A). Note that the longshore-transport

 parameter, Kk                  , is taken outside of the longshore transport rate, , in equation (5), in order to facilitate dataQ

                assimilation of the parameter, as discussed below. All of the model parameters and variables in equations (4)

                  and (5) are de ned at each transect (with index ) except the longshore transport rate, , which is locatedfi k Q 

                between adjacent transects (with indices ± 1/2). Details of the longshore transport component of the modelk

              and the implicitness parameter (0 1) are given in Appendix A.θ ≤ ≤θ

  3.4. Data Assimilation

             Data assimilation automatically adjusts the model parameters during runtime to best t any availablefi

                observed shoreline data at the concurrent time step. Equations (4) and (5) use the extended Kalman lterfi

               data assimilation method of [2012]. The state vector representing the model solution andLong and Plant

      parameters is given by ψ ¼ Y lt v lt Y st C a b c K½ T        . Following equations (4) and (5), the evolution

      of the state vector is given by

∂ψ k

∂t
¼

ψ
nþ1
k   ψ

n
k

Δt
¼


K k

d k

Q nþθ
kþ 1 2=   Qnþθ

k 1 2=

ΔX k


ck

 tan β k

∂S

∂t

  n

k

 þ v ltð Þk

0

C k En
k

 1 2=
E n

k   ak Y stð Þ
n
k   b k

 

0

0

0

0

0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

 ¼ f
n
k  : (6)

             The evolution equation of the state vector, equation (6), has zero right-hand side terms,
∂ψk

∂t    ¼ 0 , for the

      evolution of the six model parameters, ψk = ( v lt )k  , Ck  , ak  , b k  , ck  , Kk      , that represent spatially variable, yet

               temporally constant coef cients, which are updated at each data assimilation step. Note that in equation (6),fi

     terms with superscript (e.g.,n Q nþθ
k±1=2  , En

k  , and ∂S
∂t

 

n

k
         , which represent the wave and sea level forcing conditions)
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                    are variable in time. On the other hand, terms without superscript are assumed to be constant with time in then

     absence of data assimilation (e.g., (vlt) k  , C k  , ak  , bk  , ck  , K k     and the unassimilated parameters d k   and tan β k),

                although in reality all of these parameters can exhibit variability in time, inevitably resulting in model error.

                The data assimilation method in equation (6) takes place independently for each transect , meaning that thek

                   model of a given transect is only aware of the shoreline data falling on that individual transect at that instance

             in time. The numerical procedure of the data assimilation method is detailed as follows:

        (1) Compute the evolution of the state vector, ψ

k  ¼ ψ

n
k  þ Δt f

n
k       , using the forward model, equation (6).

    Without data to assimilate, ψ
nþ1
k  ¼ ψ


k.

    (2) Compute the Jacobian, Ji j ¼ ∂Fi

∂ψj
     for each transect, where F ψ

n
k

 

 ¼ ψ
n
k  þ Δt f

n
k .

        (3) Update the error covariance matrix, =P JPJ
T        + , where is the process noise.Q Q

       (4) Compute the Kalman Gain, =K PH
T (HPH

T  + )R
  1        , where is the measurement error andR

  H ¼ 1 0 1 0 0 0 0 0½ 
T

          is the vector that relates the state vector to the observations.

     (5) Compute the data-assimilation step, ψ
nþ1
k  ¼ ψ


k   þ K Y obsð Þ nþ1

k   Hψ

k

 

  , where Y obsð Þnþ1
k   is the observed

            shoreline position at transect, , and between time steps andk n n + 1 .

                  (6) Compute the nal error covariance matrix,fi P = ( I KH P ) , to be used in the following time step.

                    If no concurrent data is available to assimilate at a given time step, then steps 4 6 are skipped. Note that steps–

                    2 and 3 must take place every time step (even without data to assimilate) in order to allow data assimilation at

  future time steps.

               Under the assumption of temporal constancy of model parameters, it is possible to make long-term predic-

                  tions of shoreline position (given the right forcing conditions), and the Kalman lter is simply used as a large-fi

              scale calibration tool. Knowledge of good initial parameters and the lack of unresolved processes eliminates

               the need for the Kalman lter. Although the proposed model assumes temporal constancy of its parameters,fi

             long-term geologic processes may invalidate this assumption in certain coastal settings and require modi -fi

              cation to current model. For example, equation (6) could be reformulated with a user-speci ed, time-varyingfi

    formulation of the dynamic effects, ∂ψ

∂t
          ¼ f tð Þ≠0. However, this approach will likely require longer data records

                to assimilate the parameters involved in the dynamic effects, i.e., ( ), which, for example, may represent long-f t

       term changes in sediment composition or beach slope.

                    Based on previous work [ ., 2009; , 2012; ., 2016], we expect that the wave-Yates et al Long and Plant Doria et al

               driven, cross-shore transport parameters , , are nearly constant in time. Based on this assumption,C a b

              changes in shoreline position resulting from (well-resolved) changes in wave climate [ ., 2015]Erikson et al

                  would be captured with the model. We also anticipate that and are roughly constant in time; however,c K

             long-term changes in beach pro le and sediment composition may alter these coef cients in unpredictablefi fi

         ways. The most uncertain and temporally variable parameter is vlt      . Lacking better options, the proposed

  model treats v lt                as a constant like in [2012] and in most historical erosion rate analysesLong and Plant

              (e.g., the USGS National Assessment of Shoreline Change [ ., 2006]). However, nonlinear changesHapke et al

               in natural or anthropogenic sediment supply and changes taking place outside of the hindcast period will

      not be resolved in the current model.

                 Finally, we note that many of the model parameters have requisite signs. Parameters and are negativeC a

                and , , and are positive. Instability results when the data assimilation method inadvertently changes ab c K

              parameter s expected sign. To prevent this instability, the numerical method, equation (6), is modi ed to’ fi

               ensure that the parameters retain their requisite signs throughout the data assimilation step. Details of the

        sign-preserving data assimilation method are presented in Appendix B.

 4. Application

             The CoSMoS-COAST model was developed as the shoreline change component of the Coastal Storm

               Modeling System (CoSMoS) framework [ ., 2014], focusing on the U.S. West Coast. The initialBarnard et al

               framework focused on developing predictions of coastal ooding due to waves and sea level rise onfl

             present-day shoreline con gurations. However, chronic erosion, driven by accelerating rates of sea level rise,fi

            might exacerbate future coastal ooding, and applying present-day beach pro les to ood predictionfl fi fl

           models might underestimate future hazard vulnerability. Thus, CoSMoS-COAST was developed to understand

                 the effects of shoreline change and its impact on future ooding due to waves and sea level rise.fl
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    4.1. Sea Level Rise Forcing

      Sea level vers us time is modeled as

    a quadratic function. The three

    unknown coefficients of the quadratic

     curve are obtained via three equatio ns.

       (1) The mean sea level in 2000 is

     assumed to be at zero elevation.

       (2) The rate of SLR in 2000 is

      assumed to be 3 mm/yr, w hich is

   consistent with values observed

     via satelli tes an d local tide gages.

      (3) Future sea level elevation at 2100

     is assumed to be 0.93 [National

    Research Council, 2012], 1.0, 1.25,

      1.5, 1.75, 2.0, and 5.0 m based

   on the scenarios considered

  (see Figure 3).

               The chosen sea level scenarios closely re ect the 2100 predictions given in the Intergovernmental Panel onfl

                   Climate Change 2013 (IPCC 2013) report (Figure 13.9 in . [2013]) as shown in Figure 3. We noteChurch et al

                  that sea level only affects the equilibrium pro le changes via the third term on the RHS of equation (1).fi

  4.2. Wave Forcing

                  Climate change drives potential changes to wave climate [ ., 2013; ., 2015; .,Hemer et al Erikson et al Shope et al

             2016], which must be accounted for when predicting long-term coastal evolution. CoSMoS-COAST is driven

                 with hindcast (1995 to 2011) and projected time series (2011 to 2100) of daily maximum wave heights and

                corresponding wave periods and directions from . [2015] and . [2016], who usedErikson et al Hegermiller et al

                a series of global-to-local nested wave models (i.e., WaveWatch III (WW3) and SWAN), shown in Figure 4.

             Hindcast waves are computed with NOAA WW3 Climate Forecast System Reanalysis and Reforecast hindcast

               deep-water waves applied at the open boundaries of a high-resolution SWAN grid and Scripps Institution of

               Oceanography reanalysis winds across the entire domain so that both swell and local sea generation are

               accounted for in the simulations. In order to improve ef ciency, projected wave conditions at each modelfi

            transect are generated via lookup tables constructed from results of the high-resolution hindcast

              [ ., 2016]. Deep-water wave forcing, derived from global and regional scale WW3 simulationsHegermiller et al

                  [ ., 2015], and projected wind elds from global climate models are used as inputs to the lookupErikson et al fi

             table. The wave climate projections employed in this application uses the GFDL-ESM2M climate model

             [Delworth et al., 2006] and representative concentration pathway (RCP) 4.5 emissions scenario [Stocker, 2014].

              Accurate predictions of nearshore wave conditions are needed because the formulations in equation (1) are

               highly sensitive to wave conditions. In particular, variations in wave angle and wave energy can signi cantlyfi

             affect the calculation of longshore transport (via equation (2)) and equilibrium shoreline response, respectively.

                 In the current application, the shoreline model is forced with a single projected time series of wave conditions

                [from Hegermiller et al., 2016]. However, this wave forcing scenario represents only one instance of the stochas-

               tic system representing the future wave climate. Use of an ensemble wave forcing approach would likely

                improve the range of potential shoreline positions and estimates of uncertainty but at the cost of increased

              computational effort (by a factor representing the number of ensemble wave scenarios). Adoption of an

             ensemble approach would likely favor computationally ef cient lookup table methods (used here) or statisticalfi

              downscaling methods [Antolínez et al., 2015; Rueda et al., 2017] over dynamical downscaling (nested models).

 4.3. Transects

               The ~500 km domain of the Southern California coast is discretized into 4802 transects spaced approximately

                  100 m apart (see Figure 5). The offshore ends of each transect coincide with the Model Output Points trans-

              ects [ , 2016] used in previous CoSMoS modeling efforts [ .,Coastal Data Information Program Barnard et al

             2014]. Each transect was manually given a designation of full model,“ ” “ cross-shore only,” “rate only, or”

 “ ”no prediction            based on geologic characteristics. Based on the transect designation, the shoreline model

             retains or neglects certain physical processes and the corresponding terms in the governing equation

          Figure 3. Scenarios of SLR used in the CoSMoS-COAST application to

 Southern California.
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                (equation (1)). As the name implies, transects designated as full model evolve the shoreline using the full“ ”

              governing equation (equation (1)). Full model transects are selected for long, sandy beaches, and all“ ”

             model components are included. Small ( 1 km), sandy pocket beaches (with limited longshore transport<

                 and localized hydrodynamic effects [e.g., ., 2011; ., 2011; , 2013;Daly et al Gallop et al Castelle and Coco van

                 de Lageweg et al Ratliff and Murray Harley et al., 2013; , 2014; ., 2015]) are designated as cross-shore only“ ”

             by setting = 0. Cobble beaches and heterogeneous sandy/rocky beaches invalidate the process-basedK

              models used here and, therefore, are designated as rate only transects by neglecting longshore and“ ”

                   cross-shore transport due to waves, i.e., setting = 0 and = 0. These transects evolve the shoreline usingK C

                a linear change rate (obtained via data assimilation) plus a recession rate due to excess passive oodingfl

               above the current rate of SLR [ ., 2015]. Finally, no prediction transects represent harbors,Anderson et al “ ”

              armored and rocky shorelines, and sea cliffs (without fronting beaches) where no model calculations are

                performed. In the current application in Southern California (Figure 5), 40% of the transects are full model,“ ”

            29% are cross-shore only, 15% are rate only, and 16% are no prediction.“ ” “ ” “ ”

  4.4. Shoreline Data

               Assimilation of historical shoreline data is a critical component of the model. Each shoreline observation pro-

                vides an opportunity to nudge the model parameters closer to their true state. Without data to assimilate,“ ”

               model skill depends on the accuracy of the estimated model parameters. For the shoreline forecast period

              (2010 2100), no observations are available and thus no data assimilation can be performed. Therefore, the–

              model hindcast period must assimilate enough shoreline data to allow suf cient convergence of the modelfi

                parameters before the start of the forecasting period (see Appendix C for details on convergence of the

 model parameters).

              Historical shoreline data are often spatially and temporally sparse. The current application combines the two

                most recent mean high water (MHW) shorelines (years 1997 and 2009) of the USGS National Assessment of

                   Figure 4. Wave grids from . [2015] and . [2016] used in the CoSMoS-COAST application toErikson et al Hegermiller et al

               Southern California. (a) The boundaries of the Eastern North Paci c WaveWatch3 grid and typical extratropical stormfi

                  tracks producing large wave heights in yellow. (b) The boundaries of the West Coast and Southern California SWAN grids

                  (red dashed lines) as well as bathymetry (blue base map) and contours of wave height illustrating wave shadowing by

                 offshore islands (yellow, orange, and blue contours). (c e) The wave grids, bathymetry, and offshore ends of each transect–

            (red dots) in the Santa Barbra, Los Angeles, and San Diego regions, respectively.
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              Shoreline Change [ ., 2006], 20 MHW shorelines derived from coastal LIDAR surveys (2003 2009;Hapke et al –

                   many of which only cover the southern half of the study area, i.e., south of Long Beach harbor) and 20

              MHW shorelines derived from biannual (2005 2015) GPS surveys by the USGS in Santa Barbra [– Barnard

                    et al., 2009]. An example of the shoreline data used in this application is shown in Figure 6 for La Jolla

                 Shores. Each intersection of a shoreline vector and a model transect provides one data point in time for

                 data assimilation (see Figure 6b). This data set provides a number between a minimum of 2 and a

                maximum of 27 shorelines to assimilate at a given transect. The average number of shorelines available on

               each transect is 12. Although the current model uses a signi cantly larger number of shorelines thanfi

              studies of comparable scale (e.g., the USGS National Assessment of Shoreline Change used only vefi

                  shorelines in California), it is likely that even more data are required to develop a truly predictive model of

           long-term shoreline change. This suggests that continued shoreline monitoring efforts, e.g., seasonal

           coastal LIDAR surveys, are critical assets to understand and predict shoreline change.

   4.5. Coastal Management Scenarios

                 In this application, we explore the combination of seven sea level projections (see Figure 3) and four manage-

            ment scenarios. The four management scenarios result from two independent, binary scenarios, namely,

              “ ” “ ” “ ”hold the line and continued nourishment. The hold the line scenario represents the management deci-

                sion to prevent or allow the shoreline from receding past existing infrastructure (e.g., by permitting or prohi-

               biting shoreline armoring, respectively). If the line is held, then the modeled shoreline is constrained from

              eroding past a 180,000-point polyline manually digitized from aerial photos that represent the division of

                  beach and urban infrastructure or the division of the subaerial beach and coastal cliff. We note that the hold“

          the line scenario is implemented in the model by setting” Yn+1  = max(Yn+1  , Ynon-erodible   ) without constraining

                  the model parameters. If the line is not held, then the shoreline is allowed to erode into existing infrastructure

      and coastal cliffs (i.e., Y Y< non-erodible  is permitted).

                  In this initial model application, we assume that the cliff does not erode landward with the beach, and the

             non-erodible shoreline stays xed through time. Thus, the dynamics between cliff erosion and beachfi

               change, where the eroding cliff provides sediment to the beach and the beach width controls cliff

          Figure 5. CoSMoS transects for Southern California. (Basemaps from Google Earth).
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                 erosion [e.g., , 2011; ., 2014], do not apply here. In future model applications,Limber and Murray Limber et al

               the CoSMoS-COAST model and a cliff retreat model [ ., 2015] will be coupled together.Limber et al

             The continued nourishment scenario represents the management decision to continue or cease the long-“ ”

           term, business-as-usual beach nourishment rate determined from recent historical data (1995 2010). The–

              USGS National Assessment of Shoreline Change [ ., 2006] derived long-term erosion rates fromHapke et al

               historical aerial photos in Southern California and found that a majority of the beaches are accreting.

             However, anthropogenic beach nourishments dominate these rates of accretion and mask the natural signal

                of shoreline change [ , 1993; ., 2006]. Thus, we conduct two scenarios assuming that recentFlick Hapke et al

               historical accretion trends either continue until 2100 or cease after 2010 (when data to assimilate become

             unavailable). In the model, the continued nourishment scenario is implemented by either allowing the“ ”

   data-assimilated value of vlt            to remain unchanged during the forecast period (2010 2100). On the other hand,–

      the no continued nourishment scenario forces“ ” v lt          = 0 following the nal data assimilation step for eachfi

   accreting transect where vlt             > 0. The seven sea level scenarios and four management scenarios combine to

            give a total of 28 different models run as part of this effort.

 4.6. Results

                As a preliminary analysis, we estimate the historical, long-term rate of shoreline change using a linear regres-

               sion of time versus observed shoreline position, obtained from the intersection of the shoreline vectors at

                 each transect (see, e.g., Figure 6). This effort is intended to update and improve upon previous estimates of

               the Southern California historical shoreline change rate [ ., 2006] through the inclusion of additionalHapke et al

                shoreline data. The long-term shoreline change rate (in m/yr) versus transect number is shown in Figure 7.

                  Note that the colored bands in Figure 7 identify the littoral cells identi ed by [1993] associated with eachfi Flick

                  transect. The results here reiterate the ndings of . [2006]: A majority of the beaches in Southernfi Hapke et al

                 California are accreting (72% of the transects). The regression rates (in Figure 7) alone do not identify the

               causal mechanisms of shoreline accretion. However, the shoreline change rates in Figure 7 do suggest a

                strong anthropogenic in uence (as was established in [1993] and . [2006]) based on thefl Flick Hapke et al

             observation that the largest rates of shoreline change occur near harbors and beaches receiving

 signi cant nourishments.fi

              It is possible to extrapolate a prediction of future shoreline position from long-term, historical shoreline

            change rates. However, because the rates are predominantly accretionary, a naïve extrapolation of

                      Figure 6. An example of the shoreline data, pictured above for La Jolla Shores, used in the CoSMoS-COAST model. (Basemaps from Google Earth).
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            shoreline position can signi cantly overestimate future beach width and thus underestimate future coastalfi

          hazard potential. Furthermore, predictions based on linear extrapolation methods neglect dynamical

              processes such as seasonal beach pro le changes and accelerated sea level rise. Thus, the proposedfi

              dynamical model is applied to improve long-term predictions of shoreline change while accounting for the

     relevant physical processes and management practices.

                The proposed dynamical model, equations (B8) and (B9) in the Appendix B following from equations (4) and

                     (5), is applied to Southern California. The model starts on 1 January 1995 and is run until 1 January 2100 with a

                  time step of 1 day. Data assimilation takes place at each time step when a concurrent shoreline observation is

                  available for a given transect. At each data assimilation step, the model parameters are adjusted to best t thefi

               dynamical model with the observed shoreline positions. When no more shoreline data is available to assim-

               ilate (date of last observed shoreline typically in Fall 2010), the forward model provides a forecasting tool—

           based on the converged values of the model parameters at each transect.

                The model-predicted nal shoreline position in 2100, , relative to the initial shoreline position in 1995,fi Y Y0 ,

               and spatial variability (with transect number) of the nal values of the assimilated model parameters arefi

                shown in Figure 8. The uncertainty values, estimated directly from the Kalman lter, arise from the processfi

                   noise estimates and as discussed in Appendix B. Note that Figure 8 applies the same colored bands inP Q

                 Figure 7 to indicate the littoral cells identi ed by [1993] associated with each transect. The initial valuesfi Flick

                      (blue lines in Figure 8) of a few model parameters are assumed constant for all transects: = 0.5, = 0.1, andC a

vlt                   = 0, which represent nominal values based on previous work [e.g., ., 2009]. The initial values ofYates et al

                  parameter are set to the average signi cant wave height for each transect, and the initial values of para-b fi

                  meter are estimated from variations in sediment type and grain size according to Table 1. Also, note thatK

              some model parameters are set to zero according to their transect designation (i.e., cross-shore only,“ ” “ rate

         only, or no prediction ) when speci c physical processes are neglected.” “ ” fi

              Figure 8 demonstrates the considerable alongshore variability in the nal values of the model parameters,fi

               especially for the equilibrium shoreline model parameters , , and . We compare the data-assimilated para-C a b

                     meters and to the range of values reported in . [2009] and . [2016] for CampC a Yates et al Doria et al

               Pendleton, Cardiff/Solana Beach, Torrey Pines, and Imperial Beach (green bands in Figures 8b and 8c). The

                  Figure 7. Long-term shoreline change rates for Southern California. Colored bands identify the littoral cells delineated in [1993].Flick
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              excellent agreement between parameters and derived in CoSMoS-COAST and . [2009]/C a Yates et al Doria

             et al. [2016] demonstrates the strong performance, the proposed data assimilation method, and its

              applicability to large spatial scales. Figure 8f shows the assimilated long-term shoreline change rate, v lt ,

              compared to the historical shoreline change rate (Figure 7). As expected, the assimilated and historical

              rates for each transect demonstrate a vague agreement, with the assimilated rates having a smaller

                Figure 8. (a f) The nal shoreline position and assimilated coef cients of the CoSMoS-COAST model applied to Southern– fi fi

                     California. The blue line represents the initial values of the shoreline model coef cients (note that 0 for all full modelfi K ≠ “

                transects ; = = = = 0 for all rate only transects; and” C a b K “ ” vlt           = 0 for all no prediction transects), the red lines represent“ ”

                 the nal assimilated values of the coef cients, and the pink bands represent uncertainty. Colored bands identify littoral cellsfi fi

                    delineated in [1993]. The green bands in Figures 8b and 8c represent the range of parameters and , respectively,Flick C a

          reported in . [2009] and . [2016].Yates et al Doria et al

                  Table 1. The Longshore Transport Rate Coef cient, , Used in the Current Application in Southern California Based on thefi K

    Sediment Type and Grain Size

          Sediment Type Grain Size Grain Diameter (mm) K (Longshore Transport Coef cient)fi

     Fine sand Fine sand 0.063-0.2 200
    Sand Medium sand 0.2-0.63 100

     Mixed sand/cobble Coarse sand 0.63-2.0 50

        Mixed sand/rock Very coarse sand 2.0 25 or less<
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                magnitude. We expect smaller values for the assimilated rate (in Figure 8f) compared to the historical rate

                (Figure 7) because the dynamical processes of the CoSMoS-COAST model, i.e., the rst three terms on thefi

            RHS of equation (1), should resolve a portion of the shoreline change signal.

                Figure 9 shows the time series of wave height, shoreline position, and the assimilated parameters for the

                 dynamical model at transect #505 near La Jolla Shores, CA. The initial and assimilated values of the shoreline

                 position and model parameters are shown with the blue and red lines in Figure 9, respectively. The pink

                bands in Figure 9 represent the uncertainty in the assimilated values of the shoreline position and model

                parameters, which arise from the process noise estimates and (discussed in Appendix B). The shorelineP Q

                  data, the intersection of transect #505, and the shoreline vectors (see, e.g., Figure 6b), are shown as blue dots

  in Figure 9b.

                  The wave height time series (Figure 9a) demonstrates a clear seasonal pattern of large wave heights in the win-

                  ter and small wave heights in the summer. In response to the seasonal pattern in wave heights, the shoreline

                erodes during periods of large waves (i.e., winter) and recovers during periods of small waves (i.e., summer),

                  as shown in Figure 9b. Note that the dynamical model aided by the data assimilation method (red line in

                 Figure 9b) is able to reproduce the observed signal of seasonal shoreline change, as indicated by the good

                  Figure 9. Time series of CoSMoS-COAST model predictions and parameters for transect #505 at La Jolla Shores. (a) Wave

                 height time series, (b) simulated shoreline position, , with (red line) and without (purple line) data assimilation com-Y

                    pared to the shoreline data (i.e., the intersection points of the transects and the shorelines, see Figure 6), and (c g) initial–

       (blue lines) and assimilated (red lines) model parameters.
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                performance of the model compared to the shoreline observations particularly with regard to the extent of the

               maximally accreted and eroded beach states . On the o ther hand, the modeled shoreline change without using

                  data assimilation (purple line in Figure 9b with the initial values of the model parameters s hown in Figures 9c–9g)

               does not reproduce the observed shoreline change. I n general, the performance o f the unassimilated model is

                particularly poo r when lacking go od estimates for initial values of the model parameters, which are, of co urse,

            unknown a priori. Ultimately, the model’s excellent performance durin g the hindcast period improves

            confidence that it may achieve a reliable quantitative prediction during the forecast period.

                 The wave forcing conditions (Figure 9a) transition from the hindcast period to the forecast period in 2011. The

               forecasted wave heights, derived from wind elds from the GDFL-ESM2M climate model [ ., 2006]fi Delworth et al

                 with the RCP 4.5 emissions scenario, are projected to decrease relative to the historical period for the low

              latitudes and mid-latitudes of the North Paci c such as Southern California [ ., 2015].fi Erikson et al

              Consequently, the standard deviation of the forecasted wave heights used in the current modeling application

                 decreases by 18% on average relative to that of the hindcasted wave heights. This causes a muted seasonal

               shoreline erosion response (due to smaller seasonal wave heights) in 2011 following the transition from the

                 hindcast period to the forecast period, as shown in Figure 9b. The modeled shoreline change, , shown inY

           Figure 9b is dominated by the wave-driven cross-shore transport, Y Y≈ st      ; and accordingly, the long-term com-

    ponents are almost negligible ( Ylt             ≈ 0) up to 2016. The dominance of the short-term shoreline change compo-

                  nents was established in previous works [e.g., ., 2009; ., 2016] who demonstrated the strongYates et al Doria et al

        performance of stand-alone equilibrium shoreline change models (i.e., Yst      only) for beaches in the region.

                  In Figures 9c 9g, we see that values of each model parameter are adjusted at each time step when shoreline–

                  data are available. Figure 9 does not depict the sea level response coef cient, = 1, because data assimilationfi c

                    is turned off for this term as discussed in Appendix B. When no shoreline data is available, the value of the model

              parameter remains constant. Thus, after the last available shoreline observation is assimilated, the model para-

                meters remain constant for the entire forecast period. Ideally, when enough data are available during the hind-

               cast period, the assimilated values of the model parameters will be suf ciently converged before the forecastfi

                  period begins. According to the analysis shown in Appendix C, this appears to be the case particularly for the

                equilibrium shoreline model parameters , , and since these parameters are related to the short-term shore-C a b

               line variability. The parameters representing the long-term shoreline behavior, on the other hand, andK vlt ,

             require longer records of shoreline data to obtain suf cient convergence [ ., 2013].fi Splinter et al

         We investigate the model s root-mean-square (RMS) error (’ Y Y obs          ) for the Fall 2009 shoreline, a data set that

                   exists for all transects. The results of the RMS error with and without data assimilation are shown in Table 2.

                    Data assimilation is able to reduce the RMS error by 30% for an average transect, by 64% for transects south of

                Long Beach, and by only 13% for transects North of Long Beach. The data assimilation method provides

              signi cant improvement for transects south of Long Beach because of the considerable amount of datafi

   available for the region.

             After the dynamical simulations (1995 2100) are complete and validated, we plot the shoreline projections and–

                uncertainties on a map in real-world coordinates. Figure 10 shows the initial shoreline position (green line) and

                 the nal (1 January 2100) shoreline position (red line) under the [2012] sea level sce-fi National Research Council

               nario. Figure 10 also shows yellow and red uncertainty bands representing the uncertainty in the shoreline

                 position at 1 January 2100 estimated from the Kalman lter and the uncertainty due tofi potential winter erosion

                (de ned as the maximally eroded beach state that is possible during winter months due to elevated wavefi

         heights and calculated as twice the standard deviation of Yst       ), respectively. For many transects, the simulated

              shoreline position recedes up to or past the non-erodible shoreline, which represents the interface between“ ”

              the sandy shoreline and coastal infrastructure. In the hold the line scenario shown in Figure 10, the shoreline is“ ”

               not allowed to erode past the non-erodible shoreline (black line) and into existing infrastructure. Under this

             Table 2. RMS Error Between Modeled and Observed Shoreline Position for Fall 2009 Shoreline

   RMS Shoreline Position Error

         Average # of Shorelines With Data Assimilation Without Data Assimilation

      All transects 12 14.5 m 20.7 m

          South of Long Beach (transects 1 1946) 17 7.0 m 19.4 m–

          North of Long Beach (transects 1946 4802) 7 19.0 m 21.8 m–
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                scenario, many of the transects experience complete beach loss by 2100 (e.g., the southern and northern ends

                 of Figure 10). However, these results do not explicitly include cliff retreat and the resulting sediment supply to

             the beach. See Figure 12 for more details on beach loss in Southern California.

 4.7. Uncertainty

            Signi cant uncertainty is associated with resolved and unresolved coastal processes. The uncertainty bandsfi

                presented in Figure 10 represent the process noise predicted by the Kalman lter (yellow bands) and thefi

             95% con dence bands associated with the modeled shoreline uctuations due to seasonal wave activityfi fl

               (red bands). Unresolved processes are implicitly accounted for in the uncertainty bands due to the esti-

                mated process noise in the Kalman lter. However, the lack of certainty in estimating the Kalman lterfi fi

                error covariance, , and process noise, , may lead to more uncertainty than reported in these predictions.P Q

             More details on the estimates of and are given in Appendix B.P Q

  4.8. Computational Effort

               Century-scale shoreline change simulations for the entire 500 km coast of Southern California using the devel-

              oped model take approximately 15 20 min of computer time. On the other hand, century-scale, global-to-local–

              nested WW3 and SWAN models require several days of computer time. Physics-based simulations of shoreline

               Figure 10. CoSMoS-COAST results for Southern California, pictured for La Jolla Shores. (Basemaps from Google Earth).
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             change on such spatiotemporal scales are completely intractable due to accuracy, stability, and computational

            requirements. In the proposed model, data assimilation represents a computationally ef cient means offi

                estimating the model parameters since model calibration takes place over the course of a single model run.

             Traditional optimization techniques (e.g., Newton’s method), on the other hand, may require several model

               runs to best estimate model parameters, thereby increasing computational cost. Short model run times such as

               the current shoreline model are necessary when evaluating a number of sea level and management scenarios.

 Models with lengthy run times become signi cantly less tractable when ensemble forcing conditions are applied.fi

     4.9. Relative Contribution of Model Components

            To evaluate the advantages of CoSMoS-COAST compared to individual process-based models, we measure

                  the relative contributions of each model component, i.e., the four terms on the RHS of equation (1), to the

                overall shoreline change simulated under the [2012] sea level scenario ( = 0.93 mNational Research Council S

                 by 2100). Figure 11 depicts the variance of the modeled shoreline change due to each individual term in

                the governing equation (equation (1)) relative to the variance of the total shoreline change, . For example,Y

         the variance of the wave-driven cross-shore transport is calculated as  var Y st     ð Þ , and its relative contribution

       to the model is calculated as var Y st              ð Þ = var Yð Þ , where var() calculates the variance of the time series and the

                   overbar indicates an average over all of the full model transects, which retain all of the terms in equation (1).“ ”

              Figure 11 depicts three different simulation periods (1995 2010, 1995 2050, and 2010 2100) of the no hold– – – “

              the line, continued nourishment scenario to evaluate the importance of each model component as a”

              function of time. For the hindcast period (1995 2010), the modeled shoreline change is dominated by–

            wave-driven cross-shore transport (90%) with little variance (10%) arising from longshore transport, long-term

 effects (v lt                 ), and the shoreline recession due to the negligible amount of SLR during this period. Many beaches

             in Southern California are dominated by cross-shore transport (particularly on interannual timescales) and thus

              are well simulated on short timescales using stand-alone equilibrium shoreline change models [ .,Yates et al

                2009; ., 2016]. On the other hand, many northern beaches, e.g., Santa Barbara, experience obliqueDoria et al

              wave approaches and therefore longshore transport is a signi cant factor, especially evident after large uvialfi fl

             discharge events [ ., 2009; ., 2009; , 2010].Elias et al Barnard et al Barnard and Warrick

              The modeled shoreline change for the forecast period (2010 2100) is primarily affected by the shoreline–

                   recession due to the large amount of SLR (0.93 m by 2100), which accounts for 69% of the model variance.

           For decadal-scale simulations (1995 2050), the modeled shoreline change is more uniformly distributed–

              between cross-shore (35%) and longshore (19%) wave-driven transport and recession due to SLR (35%), with

             the remaining 11% driven by unresolved long-term effects. However, there is uncertainty associated with

        these percentages due to a number of different factors:

            Figure 11. The relative contribution of each model component for different time periods.
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             1. The long-term shoreline recession due to SLR dominates the long-term predictions, particularly when

              large sea level projections are applied. Increasing the projected sea level rise will proportionally increase

                 the in uence of the shoreline recession term, /tan . The dominance the SLR term relies on the assump-fl S β

             tion that the Bruunian mechanism (or, perhaps more realistically, the passive ooding mechanism) holds.fl

                Although the constant of proportionality (1/tan ) is subject to considerable debate, it is very likely thatβ

              SLR projections exceeding 1.0 m will dramatically reshape the world s coastline [ ., 2008].’ FitzGerald et al

             2. Changes in natural and anthropogenic sediment supply, e.g., the frequency of uvial dischargefl

             events and beach nourishments, will affect the contribution of the long-term shoreline change rate

 term (vlt ).

               3. Projections of decreased seasonal wave heights [ ., 2015] will likewise decrease the relativeErikson et al

       importance of cross-shore wave-driven transport at long timescales.

             4. Projections of counterclockwise rotations in wave angle associated with decreased North Paci c wavefi

               energy and increased South Paci c swell [ ., 2015] may increase or decrease longshore trans-fi Erikson et al

         port in southern or northern beaches in Southern California, respectively.

              5. The wave-driven cross-shore transport term oscillates about an equilibrium state, whereas the other terms

             often represent persistent trends. Thus, the variance due the long-term processes typically increases with

           time whereas the variance of the cross-shore wave-driven term remains relatively consistent.

         Consequently, the relative contributions of each term vary with time.

               In summary, Figure 11 illustrates the clear advantage of the integrated approach used in CoSMoS-COAST over

            individual process-based models to simulate decadal-scale shoreline change in regions driven by nontrivial

          combinations of short- and long-term morphological processes. In contrast, individual processed-based

             shoreline models may miss a signi cant amount of the shoreline change signal, particularly forfi

   intermediate- and long-term predictions.

    4.10. Summary of Projected Changes

                The percentage of the transects in Southern California that experience total beach loss by 2050 and 2100

                under the seven sea level scenarios (Figure 3) and four management scenarios is presented in Figure 12.

               The four management scenarios are (1) holding the line and no continued nourishment, (2) holding the

                line and continued nourishment, (3) no holding the line and no continued nourishment, and (4) no holding

                 the line and continued nourishment. The results for the different sea level scenarios in Figure 12 apply the

                  same color scheme as in Figure 3 to depict each scenario. Figures 12a and 12b show the percentage of

               transects whose nal shoreline positions are eroded to within 1.0 m or past the non-erodible shoreline.fi

               Figures 12c and 12d show the percentage of transects whose nal shoreline positions erode more thanfi

                 5.0 m past the non-erodible shoreline. Note that only management scenarios 3 and 4 (no holding the line)

                   are valid for the analysis presented in Figures 12c and 12d. The results in Figures 12a and 12b indicate that

                the model predicts that 9 21% and 31 59% of transects will experience beach loss by 2050 and 2100,– –

             respectively (under sea level scenarios of 0.93 2.0 m). Including seasonal erosion may increase these–

                numbers to 25 39% and 45 67% of transects. The results in Figures 12c and 12d indicate that 3 11%– – –

                and 22 53% of transects will erode more than 5.0 m beyond infrastructure by 2050 and 2100, respectively–

               (under sea level scenarios of 0.93 2.0 m), and including seasonal erosion may increase these numbers to–

     25 39% and 40 65% of transects, respectively.– –

               Overall, the model predictions in Figure 12 indicate that a substantial percentage of beaches in Southern

              California are susceptible to complete erosion. However, the proposed model is subject to many simplify-

           ing approximations, subjecting the predictions to considerable uncertainty. Nevertheless, based on the

                  results in Figure 12, it is likely that at least 31% of Southern California will be completely eroded by

                 2100 in the absence of increased management efforts if SLR exceeds 1.0 m. The results also indicate that

            there is little overall difference between the nourished and unnourished management scenarios: the

            continued nourishment scenarios reduce the extent of erosion compared to the unnourished scenarios

                by at most 5% (see, e.g., Figure 12). However, for individual transects there can be signi cant differencesfi

             between the shoreline responses to the two scenarios. The small differences among the management

              scenarios suggest that the current rate of beach nourishment is insuf cient to deal with shorelinefi

               recession due to accelerated sea level rise. If future nourishments cannot keep pace with erosion, then

                the management practice of holding the line via shoreline armoring may become a critical issue in the

    overall evolution of the shoreline.
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                 The model predictions in Figure 12 suggest that there is signi cant potential for the shoreline to erode pastfi

               the back beach and into existing infrastructure. The shoreline model does not account for erosion through

                different substrates (e.g., rocky cliffs and concrete structures) but instead treats the entire transect as a sandy

              substrate. Clearly, this approach will overestimate the amount of erosion into cliffs and infrastructure under

               management scenarios 3 and 4 (not holding the line). However, the model predictions should remain valid

                until this fully eroded state occurs. Ultimately, the possibility of reaching such a fully eroded state might

           be considered unacceptable and therefore encourage new management practices and nourishment efforts.

                  In this case, the model s long-term shoreline change rate term might be speci ed to explore a range of nour-’ fi

  ishment intervention scenarios.

 5. Conclusions

               We have developed a exible and multifaceted model to predict long-term shoreline change across a widefl

            variety of geomorphic settings under the name of CoSMoS-COAST, the Coastal One-line Assimilated

               Simulation Tool. For the rst time, the model applies a synthesis of individual process-based shoreline changefi

             models, each resolving unique and addable components of shoreline change, e.g., longshore and cross-shore

              transport. Because manual parameter tuning is infeasible on large spatiotemporal scales, the model uses data

             assimilation to automatically calibrate the model parameters from sparse, noisy signals of observed historical

                shoreline change. Ultimately, we use data assimilation as a tool to improve the con dence in long-term pre-fi

                dictions. The proposed model is applied to simulate shoreline change on 500 km of Southern California coast-

            line. The model predictions, although subjected to considerable uncertainty, indicate that signi cant impactsfi

                   to the shoreline will occur due to accelerated sea level rise, with 31% to 67% of beaches in Southern California

                  lost by 2100 under the 0.93 to 2.0 m SLR projections. The simulation results indicate that current rates of

                beach nourishment may be insuf cient to keep pace with potential long-term erosion. It is likely that beachesfi

             in Southern California will require substantial management efforts (e.g., nourishments and armoring) to main-

        tain beach widths and prevent impacts to coastal infrastructure.

               Figure 12. Summary of CoSMoS-COAST modeling results for the Southern California: The percentage of beach transects

                       where the (a and b) model estimates total beach loss and (c and d) more than 5 m of erosion into cliffs and infrastructure
                      in (a and c) 2050 and (b and d) 2100. The four management scenarios are (1) holding the line and no continued nourishment,

                  (2) holding the line and continued nourishment, (3) no holding the line and no continued nourishment, and (4) no holding the

   line and continued nourishment.
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    Appendix A: Longshore Transport Model

              This appendix details the longshore transport model. The numerical method for longshore transport used in

             COSMOS-COAST follows [2015]. The shoreline position (in real-world coordinates ,Vitousek and Barnard x y) at

     any time step is given by

x n
k  ¼ x 0

k  þ Yn
k  cos ϕ k  ð Þ; (A1)

y n
k  ¼ y 0

k  þ Y n
k  sin ϕ k  ð Þ: (A2)

          Thus, the shoreline position is constrained to transect with shore-normalk

 angle, ϕk             . In other words, the shoreline moves as if on rails. Coordinates“ ” x 0
k  ; y0

k

 

represent

          t h e l o c a t i o n o f t h e o n s h o r e e n d o f t h e t r a n s e c t , a n d Y n
k      r e p r e s e n t s t h e d i s t a n c e f r  o m t h e t r a  n s e c t

 e n d x 0
k  ; y0

k

 

   t o t h e s h o r e l i n e xn
k  ; y n

k

 

         . T h e a l o n g s h o r e d i s t a n c e b  e t w e e n t r a n s e c  t s c a n b e c  a l c u l a t e d b y

ΔXð Þ k ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x kþ 1   x kð Þ 2  þ y kþ 1   y k

 2
q

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x k   x k 1ð Þ2  þ y k   y k1ð Þ2
q 

    a s e i t h e r a t i m e - v a r y i n g q u a n -

            t i t y ( u s i n g v a l u e s w i t h t i m e i n d e x n ) o r fix e d q u a n t i t y ( u s i n g t i m e i n d e x n = 0 ) .

              The numerical method begins with equation (5). The alongshore transport rate following equation (2) is

  calculated numerically by

Q
nþ1 2=

kþ 1 2=
 ¼ Q 0ð Þ nþ1 2=

kþ 1 2=
 sin 2α

nþ1 2=

k þ1 2=

 

 : (A3)

  The angle α
nþ1 2=

k þ1 2=
  is calculated as

α
nþ1 2=

kþ 1 2=  ¼ αwaveð Þ
nþ1 2=

kþ 1 2=   α shorelineð Þnþθ
kþ 1 2=  ; (A4)

 where αwaveð Þnþ1 2=

kþ 1 2=
            is the incident wave angle obtained from a nearshore model (e.g., SWAN) and

αshorelineð Þnþθ
k þ1 2=   ¼ atan2 ynþθ

kþ 1   ynþθ
k  ; x nþθ

kþ 1   x nþθ
k

 

 : (A5)

        The superscript + in equation (A5) impliesn θ

xnþθ
k  ¼ θx nþ1

k    þ 1 θð Þ xn
k  ; (A6)

ynþθ
k  ¼ θy nþ1

k    þ 1 θð Þy n
k  : (A7)

                  The parameter (0 1) determines the temporal discretization of the numerical method. For example, ifθ ≤ ≤θ

                    θ θ= 0 then the time stepping method is the (explicit) forward Euler method. = 1 is the (implicit) backward

    Euler method, and θ ¼ 1
2

           is the trapezoidal method (a semi-implicit method for the shallow water equations,

                see, e.g., [1994]). We can interpret the temporal discretization in equations (A5) (A7) in theCasulli and Cattani –

     following way: The shoreline angle α shorelineð Þnþθ
kþ 1 2=         is computed as weighted average of the current shoreline

 position x n
k  ; y n

k

 

     and the future shoreline position x nþ1
k  ; y nþ1

k

 

    with the weighting factor .θ

            Substituting equations (A1) and (A2) into equations (A6) and (A7), respectively, we obtain

x nþθ
k  ¼ x0

k  þ θY nþ1
k    þ 1 θð ÞY n

k

 

 cos ϕkð Þ ¼ x 0
k  þ Y nþθ

k  cos ϕk  ð Þ; (A8)

y nþθ
k  ¼ y 0

k  þ θY nþ1
k    þ 1 θð ÞYn

k

 

 sin ϕ kð Þ ¼ y 0
k  þ Y nþθ

k  sin ϕk  ð Þ: (A9)

              This method is implicit (when 0) because the solution that we seek,θ > Y nþ1
k        , is a function of itself via equation

          (5) and subsequent relationships (A3) (A5), (A8), and (A9) which contain– Y nþ1
k       . If θ = 0, then the method is

  explicit since Y nþ1
k    depends entirely on Y n

k   (and not Y nþ1
k      ) in equations (A8) and (A9).

            In vector notation, equation (5) (with equations (A3) (A5), and (A9)) are written as–

F Y
nþ1

 

  ¼ 0; (A10)

       for the vector of unknown shoreline positions Y
nþ1  ¼ Y nþ1

1  ; Y nþ1
2  ; Y nþ1

3   ; ;… Ynþ1
k   ; ;… Y nþ1

N1  ; Y nþ1
N

 

T
   , where isN

              the total number of shore-normal transects and superscript represents the transpose. The system ofT

                equation (A10) is nonlinear due to the presence of the sine and arctangent functions. If equation (A10)

                  was simpli ed by retaining the rst terms in a Taylor series of sine and arctangent, then the system offi fi
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           equations could be assembled into a linear system of equations (e.g., AY
n+1

     = ). The nonlinear system ofb

             equation (A10) can be solved using a variety of methods (e.g., Newton-Raphson method). Following

             Vitousek and Barnard Knoll and Keyes[2015], we use Jacobian-Free Newton-Krylov method (see, e.g.,

                  [2004]) in order to (as the name implies) eliminate the need to derive the Jacobian matrix of equation (A10).

   Appendix B: Data Assimilation

                 In this appendix, we discuss the modi cation of the model equations in order to preserve the expected signsfi

               of the model parameters during data assimilation step. As mentioned previously, parameters and areC a

                 negative, and , , and are positive. However, there is no guarantee that the data assimilation method,b c K

           described in section 3, will preserve the expected signs of the parameters.

    We modify the parameters C k  and a k     in equation (4) according to

Ystð Þ nþ1
k   Y stð Þn

k

Δt
 ¼ C k E n

k

 1 2=
E n

k   a k Y stð Þn
k   b k

 

¼ C þ
k E n

k

  1 2=
E n

k   aþ
k Ystð Þn

k   b þ
k

 

 ¼  E n
k

  1 2=
C þ

k E n
k  þ Cþ aþ

k Ystð Þ n
k   C þ

k b
 

;

(B1)

 where Cþ
k ¼ C k  and a þ

k ¼ a k      are the positive values of C k  and a k        , respectively, and is the transect index.k

   Thus, all parameters C þ
k  ; aþ

k  ; b k  ; ck  ; Kk            in the governing equations are positive. We will also absorb the coef -fi

        cients and rede ne the parameters of equation (B1) asfi

Ystð Þ nþ1
k   Y stð Þn

k

Δt
 ¼  E n

k

 1 2=
Cþ

k En
k  þ A k Y stð Þ n

k   B k

 

 ; (B2)

 where Ak  ¼ C þ
k aþ

k  and Bk  ¼ C þ
k bk              . The goal of this modi cation is to reduce the interdependence of the para-fi

 meters Ck  , a k   , and b k            during the data assimilation step. Following this step, all model parameters, C þ
k  ; Ak  ; Bk ;

ck  ; K k      are positive for each transect .k

            Now, we will replace the model parameters in equations (4) and (5) with

Cþ
k  ¼ Cþ

0

 

k
 exp σ C C 1ð Þk

 

(B3)

A k  ¼ A 0ð Þ k  exp σA A1ð Þ k

 

(B4)

Bk  ¼ B 0ð Þk  exp σB B1ð Þk

 

(B5)

c k  ¼ c 0ð Þk  exp σ c c1ð Þ k

 

(B6)

K k  ¼ K 0ð Þ k  exp σK K 1ð Þk

 

(B7)

 where Cþ
0

 

k
¼  C 0ð Þk  , A 0ð Þ k  ¼ C þ

0

 

k
aþ

0

 

k
 ¼ C0ð Þ k a 0ð Þ k  , B 0ð Þk  ¼ Cþ

0

 

k
b0ð Þ k ¼  C 0ð Þ k b0ð Þk   , and (C0)k , ( a 0)k ,

(b 0) k, ( c 0 )k, ( K 0)k        are the initial values of the parameters Ck  , ak  , bk  , c k  , K k     , respectively. The static parameters

σC  , σA  , σB  , σc  , σ K                 (typically, all set to a nominal value of 0.5) in uence the range of the possible values offl

  the assimilated parameters.

              After substituting the modi ed parameter equations (B3) (B7) into the model equations (5) and (B2), thefi –

  model equations become

Y stð Þnþ1
k   Ystð Þ

n
k

Δt
 ¼  En

k

 1 2=
C þ

0

 

k
 exp σC C 1ð Þk

 

E n
k  þ A0ð Þk  exp σA A 1ð Þ k

 

Y stð Þ
n
k   B0ð Þ k  exp σB B1ð Þk

  

 ; (B8)

Y ltð Þnþ1
k   Y ltð Þ

n
k

Δt
¼ 

K 0ð Þk  exp σK K 1ð Þk

 

dk

Q nþθ
kþ 1 2=   Q nþθ

k 1 2=

ΔXð Þ k


c 0ð Þk  exp σ c c 1ð Þ k

 

tanβ k

∂S

∂t

  n

k

 þ vltð Þ k  : (B9)

       The state vector used in data assimilation is

ψk ¼ Yltð Þ k v ltð Þ k Ystð Þk C 1ð Þk A 1ð Þ k B1ð Þ k c 1ð Þ k K 1ð Þ k

 

T
:

        So thus, the modi ed method assimilates the parameters (fi C 1)k , ( A1) k, ( B 1) k, ( c 1 )k, ( K 1 )k     , and the parameters Ck ,

ak  , b k  , ck  , K k     will have their requisite sign.
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                The exponential functions in (B3) (B7) serve two purposes: (1) exp( ) is positive for real (i.e., positive or– x

                  negative) values of ensuring the requisite signs of the parameters during data assimilation, and (2) it is easyx

      to obtain derivatives of this function (since  d xexp ð Þ
d x

       ¼ exp xð Þ) when calculating the Jacobian, J i j ¼ ∂F i

∂ψ j
   , of the data

 assimilation method.

          The only nontrivial and nondiagonal entries of the Jacobian will be ∂F 1

∂ψ j
and ∂F3

∂ψj
 , where

F 1  ¼ Y ltð Þ
n
k   Δt

K 0ð Þk  exp σ K K 1ð Þ k

 

d k

Q nþθ
kþ 1 2=   Qnþθ

k 1 2=

ΔXð Þk

  Δt
c0ð Þ k  exp σ c c 1ð Þ k

 

tanβk

∂S

∂t

  n

k

 þ Δt v ltð Þ k

F3  ¼ Ystð Þ
n
k   Δt E n

k

 1 2=
Cþ

0

 

k
 exp σ C C1ð Þ k

 

E n
k  þ A 0ð Þk  exp σ A A1ð Þ k

 

Y stð Þ
n
k   B 0ð Þk  exp σ B B1ð Þ k

  

:

  So thus, Jij         = , where is the identity matrix andI I

J1j ¼
∂F 1

∂ψ j

¼   1 Δt 0 0 0 0 Δt
c 0ð Þ k σc  exp σ c c1ð Þ k

 

tanβk

∂S

∂t

 n

k

Δt
K 0ð Þk σK  exp σ K K 1ð Þ k

 

d k

Qnþθ
kþ1 2=

  Q nþθ
k 1 2=

ΔXð Þk

 " #

J 3j ¼
∂F3

∂ψ j

¼



 0 0 1  Δt E n
k

 1 2=
A 0ð Þ k

 exp σ A A 1ð Þ k

 

  Δt E n
k

 1 2=
C þ

0

 

k
σ C  exp σ C C 1ð Þk

 

En
k

 

…

Δt En
k

  1 2=
A 0ð Þ k σ A  exp σ A A 1ð Þ k

 

Y stð Þn
k

 

Δt E n
k

 1 2=
B 0ð Þk σB  exp σ B B1ð Þ k

  

0 0 :

             For the Southern California application, the initial error covariance matrix, process noise, and measurement

   error are given by

    P ¼ diag 1 2 104    1 0: : :25 0 25 0 25 1 10 10 0 25:
  2

;

   Q ¼ diag 0:1 1105 0:1 110 3 1 10 3 1 10 3 1 10 10 1 10 4
  2

;

and

  R ¼ 1m;

               respectively, for each full model transect. We selected the values of and for“ ” P Q Yst  , vlt   , and Y lt   to be consis-

                tent with [2012], since these terms are unaffected by the modi ed Kalman lter method.Long and Plant fi fi

         However, the values of and associated withP Q C 1  , A1  , B1  , c 1  , K1       become harder to interpret since they relate

                     to the process noise of the original coef cients , , , , via equations (B3) (B7). We made a number of sen-fi C a b c K –

                 sitivity tests to different values of and , ultimately settling on the numbers reported above, which corre-P Q

                 spond to reasonable values of uncertainty in the original coef cients. We note that the and valuesfi P Q

             associated with the Bruunian response coef cient, , are set to very small values (fi c P7,7  = Q 7,7 = 1 × 1 0
  10

) i n

                order to effectively turn off data assimilation associated with this term. We chose to prevent data assimilation

                   of the Bruunian response term since sea level rise on the U.S. West Coast was negligible compared to the glo-

               bal mean during the hindcast period (1995 2010) due to dynamical factors [ ., 2011]. Thus,– Bromirski et al

                changes to the assimilated value of would, most likely, be physically unrealistic. Similarly, we effectively turnc

               off both the model terms and the data assimilation method associated with the longshore and cross-shore

           wave-driven transport processes on cross-shore only and rate only transects by setting“ ” “ ”

 K = 0 ; P8,8  = Q8,8 = 1 × 1 0   10     and =K C = 0 ; P 4,4  = Q4,4  = P 8,8  = Q8,8 = 1 × 1 0   10  , respectively.

     Appendix C: Convergence of Model Parameters

            We examine the convergence of the model parameters ( , , , ,C a b K v lt         ) as a function of the number of shoreline

             observations, . As more observations are assimilated (increasing ), the difference between successive esti-n n

     mates of the model parameters, ψ
n+1   ψ n          , decreases. Figure C1 illustrates the average convergence rate for

    each model parameter according to ψ nþ1 ψ n

ψ0





  (or |ψ

n+1   ψ n| i f ψ
0          = 0, which is the case for =ψ v lt   ). Figure C1

                depicts the average rate of convergence (blue lines) and the overall trend (black dashed line) for transects

                 #1 1946 (South of Long Beach), where an average of 17 shoreline vectors are available to assimilate. The axes–

                in Figure C1 are on logarithmic scales, and thus, the (roughly linear) decreasing trends correspond to asymp-

                totic convergence of the model parameters. As shown in Figure C1, the model parameters do converge; how-

             ever, the convergence is not monotonic, likely due to the variable nature of Y nþ1
obs   Y 

modeled  (the difference

               between observed and modeled shoreline positions) in step (5) of the data assimilation method. As shown

               in Figures C1a C1c, the short-term shoreline change parameters ( , , ) converge rapidly. This result is– C a b

                expected as parameters , , govern the behavior of wave-driven seasonal variability, a process that isC a b
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               well resolved with 10 15 years of available data. On the other hand, the long-term shoreline change–

   parameters andK vlt             converge slower, likely due to the limited temporal extent of the available shoreline

           data relative to the long timescales of variability associated with these parameters.
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