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Abstract  The Cu-0.36Cr-0.15Zr alloy was prepared by solid solution, 

continuous extrusion and cold deformation. The microstructural evolution, 

microhardness and the thermal analysis were examined for the alloy after 

annealing treatment at different temperatures ranging from 300 oC to 700 oC. 

Experimental results show that the microstructure of the alloy remains stable 

after annealed below 500 oC due to the pinning effect of dislocations from the 

nanoscale precipitates. However, recrystallization and grain growth took place 

after a 600 oC annealing treatment when the precipitates grew up and lose 

inhibition of movement of dislocations and grain boundaries. Meanwhile, the 

higher dislocation density and finer grains introduced by continuous extrusion 

accelerate the recrystallization process compared with that prepared by the 

traditional rolling process. 
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1. Introduction 

Due to the synergistic effect of precipitating strengthening and work 

hardening mechanisms, CuCrZr alloy possesses high mechanical strength, 

electrical conductivity and thermal conductivity and therefore are being 

considered as the candidate material for engineering applications, such as 

electric contacts, lead frames and trolley contact wires[1-3]. Many researchers 

have focused on the microstructure, precipitates and the mechanical behaviors 

of the CuCrZr alloys[4-7]. Feng et. al[8,9] found that the mechanical properties 

of CuCrZr alloy could be further improved after continuous extrusion by forming 

ultrafine subgrains while the electrical conductivity does not show a significant decrease. 

Thermal stability is another important property for the high strength and high electrical conductivity material. 

Nevertheless, ultrafine grained materials usually exhibit poor thermal stability. Jiang[10] found that the micro-hardness of 

copper, prepared by high-pressure torsion (HPT), decreased at as low as 180 oC, which indicates a very low thermal stability. 

However, the situation would become more complex for CuCrZr alloys with the introduction of precipitates, since these 

precipitates might block the motion of the dislocations and have a positive effect on the thermal stability. So, the aim of the 

present work was to analyze the influence of the precipitates and ultrafine grains on the thermal stability of CuCrZr alloys 

processed by continuous extrusion. 

2. Experimental Procedures 
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In the experiment, The Cu-0.36Cr-0.15Zr alloys were produced in a vacuum induction furnace and extruded into a 

diameter of 20 mm. After solution treated at 960 oC for 2 h, the CuCrZr rods were continuous extruded on the TLJ400 

copper continuous extrusion machine. The wheel speed is 4 rpm and the preheating temperature is 723 K. 

Plates with a thickness of 10 mm were cut from the continuous extrusion processed CuCrZr rods and then cold rolled by 

90% reduction in thickness. The cold deformed specimens were annealed in a resistance furnace for 1 h at different 

temperatures. 

Microstructural characterization was performed along the rolling direction by optical microscopy (OM) and the FEG-

SEM (JEOL 7001F). Transmission electron microscopy (TEM) observation was carried on a JEM 2010 transmission 

electron microscopy with an operating voltage of 200 kV. The hardness was determined on polished longitudinal section 

of the specimens using a Vickers hardness tester with a load of 200 g and a holding time of 15 s. The hardness for each 

sample was taken from the measured average of at least 7 indentations. 

X-ray diffraction (XRD) analysis was conducted with CuKa radiation, and the thermal analysis was carried out by 

differential scanning calorimetry (DSC) with a heating rate of 20 K/min from 300 oC to 700 oC. 

3. Results 

3.1 Microstructural evolution 

Figure 1 shows the microstructure of Cu-0.36Cr-0.15Zr alloy after continuous extrusion and 90% cold deformation and 

then annealed at different temperatures. The as-deformed microstructure displays a ribbon-like grains elongated along the 

rolling direction. It has been demonstrated that grains are largely refined to sub-micron scale after continuous extrusion for 

CuCrZr alloys [8], thus it is reasonable that the grains are very fine after cold rolling, shown in Figure 1(a). The ribbon-like 

grains are still retained in the alloy after annealing at 500 oC for 1 h. However, annealing at 600 oC produces obvious 

recrystallization grain growth. Ribbon-like structures vanished while coarse equiaxed grains and annealed twins could be 

observed. Meanwhile, there are still some very small grains that might be subgrains or recrystallized grains at an early 

stage. After annealed at 700 oC for 1 h, considerable grain growth took place. The average grain size is about 10 m and 

the annealed twins became more obvious. 
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3.2 Microhardness 

After continuous extrusion and cold rolling, the CuCrZr samples were annealed at 300 oC, 400 oC, 500 oC, 600 oC and 

700 oC for 1 h respectively. Figure 2 shows the microhardness of the samples versus annealing temperatures. It can be seen 

that the microhardness keeps nearly the same with annealing temperature up to 500 oC. Our previous study has proved that 

only a small part of solutes precipitate from the matrix, thus during the following annealing treatment below 500 oC, the 

remaining solutes precipitate providing the strengthening effect which compensates the softening effect of resulting from 

the dislocation recovery during annealing treatment. However, after annealed at 600 oC, the microhardness shows a sharp 

decrease to 81.7 HV. According to [11-13], the main precipitates in CuCrZr alloys are Cr, CrCu2Zr and Cu4Zr. These 

precipitates would grow up and lose the pinning effect of dislocations, leading to a recrystallized microstructure, as shown 

in Figure 1(c). When annealed at 700 oC, most recrystallized grains grow up and the microhardness demonstrates a further 

decrease to 69.2 HV. 

 

Figure 2. Microhardness of Cu-0.36Cr-0.15Zr alloy after annealing at different temperatures 

3.3 DSC result 

Figure 3 shows DSC curve of the Cu-0.36Cr-0.15Zr samples processed by continuous extrusion and cold deformation. 

The curve shows endothermic reaction points in the positive y-direction. It is reported that only the exothermal peak 

corresponding to recrystallization could be observed for deformed pure metals [14,15]. However, in this experiment, the 

DSC curve seems to be more complex, which has two exothermal peaks. The first exothermal peak at approximately 400 

oC can be attributed to the recovery of dislocations and the precipitating process [14]. The exothermal peak at the higher 

temperature corresponds to the recrystallization process when dislocation density significantly decreases, which could be 

verified by the microstructural evolution shown in Figure 1. Jiang etc.[10,16] have also found the recrystallization induced 

exothermal peak in ultrafine grained materials. When the scanning temperature is above 700 oC, the curve shows a 

descending trend, which might be part of another exothermal peak. We believe that it was caused by the oxidation of the 

CuCrZr alloys since the sample was colored after the DSC test although protected by the N2. 

 

Figure 3. DSC curve of Cu-0.36Cr-0.15Zr alloy processed by continuous extrusion and cold deformation. 
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3.4 XRD result 

Figure 4 shows the XRD results of Cu-0.36Cr-0.15Zr alloy processed by continuous extrusion and cold deformation 

after annealed at 400 oC, 500 oC, 600 oC and 700 oC respectively. Although there exists the second phase of precipitates, 

no diffraction peaks could be observed in the XRD patterns since these precipitates have a nanoscale size and a very low 

volume fraction. Figure 4 demonstrates not only the peak distribution of Cu matrix, but also the relative intensity variation 

of certain crystal planes. It can be seen that the (111)Cu intensity is the lowest after annealed at 400 oC but increase with the 

increase of annealing temperature while the (200)Cu shows the opposite trend, which indicates that the annealing 

temperature leads to the change of crystal orientation in the Cu-0.36Cr-0.15Zr alloy. 

 

Figure 4. XRD patterns of the Cu-0.36Cr-0.15Zr alloy annealed at different temperatures 

The Lotgering factor is used to describe the change of crystal orientation quantitatively. According to [17,18] the 

Lotgering factor could be given by: 

𝐿(ℎ𝑘𝑙) = (𝑃(ℎ𝑘𝑙) − 𝑃(ℎ𝑘𝑙)
0 )/(1 − 𝑃(ℎ𝑘𝑙)

0 ) 

𝑃(ℎ𝑘𝑙) = 𝐼(ℎ𝑘𝑙)/∑𝐼(ℎ𝑘𝑙) 

where I(hkl) illustrates the intensity of (hkl) diffraction, and P(hkl) presents the ratio of a (hkl) diffraction intensity with the 

integrated intensity at a certain annealing temperature. 𝑃(ℎ𝑘𝑙)
0  means that it is calculated under the condition that the samples 

were fully annealed which is 700 oC in the experiment. 

Figure 5 shows the Lotgering factors of different diffractions with different annealing temperatures for the Cu-0.36Cr-

0.15Zr alloy. The fraction of (220)Cu and (311)Cu remains almost unchanged with the increase of annealing temperature 

while the (111)Cu and (200)Cu demonstrate a significant variation when annealed above 500 oC. This phenomenon is 

consistent with the microstructure observation and the microhardness result. In fact, continuous extrusion and cold 

deformation lead to the formation of deformation texture. The stored energy decreases due to the recovery when annealed 

at lower temperatures, however the grain orientation remains unchanged, thus, the Lotgering factors at 400 oC and 500 oC 

are almost the same. When annealed at 600 oC, the deformation texture was greatly weakened by the formation of equiaxed 

grains and the crystal orientation is gradually approaching that of fully annealed samples. 

 

Figure 5. Lotgering factor showing the structural evolution with annealing temperature 
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4. Discussion 

4.1 Effect of precipitates on the thermal stability 

Figure 6(a) shows the precipitate morphology of the Cu-0.36Cr-0.15Zr samples annealed at 500 oC for 1 h. The 

precipitates have an average size of about 20 nm. It is generally accepted that the very fine nanoscale precipitates make 

great contribution to the strengthening of the alloy due to the pinning effect of the dislocations during plastic deformation. 

The restrain of dislocation movements inhibits the process of recrystallization, which actually improves the thermal stability 

of the alloy. The ultrafine grained Cu process by high pressure torsion recrystallized at as low as around 180 oC[11] while 

the CuCrZr alloy in this experiment remains thermal stable even annealed at 500 oC.  

 

Figure 6. Microstructure of the Cu-0.36Cr-0.15Zr samples annealed at 500 oC (a) and 600 oC (b) for 1 h 

Actually, there is always the competitive relationship between the driving force and the braking force for deformed 

CuCrZr alloys subjected to annealing treatments, where the reduction of dislocation density provides the driving force and 

the pinning effect from precipitates provides the breaking force of recrystallization. According to [19,20] the driving force 

(FD) and the braking force (FB) could be roughly estimated as follows: 

𝐹𝐷 = 𝛼𝐺𝑏2(𝜌0 − 𝜌1) 

𝐹𝐵 = 3𝑓𝛾𝑏/𝐷 

where is a numerical constant, G is the shear modulus, b denotes the Burgers vector of the matrix, 𝜌0 and 𝜌1 are the 

dislocation density before and after recrystallization, f presents the volume fraction of the precipitates, 𝛾𝑏 is the boundary 

energy and D is the diameter of the precipitates.  

If FD = FB, the critical precipitate size can be expressed as: 

𝐷𝑐𝑟 = 3𝑓𝛾𝑏/𝛼𝐺𝑏
2(𝜌0 − 𝜌1) 

For Cu-0.36Cr-0.15Zr alloy in this experiment, the critical precipitate size is about 50 nm in diameter. Thus, when the 

samples were annealed below 500 oC, the size of precipitates is below 20 nm which is smaller than the critical size. 

Therefore, the braking force is larger than the driving force and the recrystallization process is inhibited. However, when 

annealed at 600 oC, nanoscale precipitates grew up to nearly about 100 nm, which is larger than the critical size. In this 

situation, the precipitates could not pin the dislocations and the subgrain boundaries effectively and recrystallization took 

place, as shown in Figure 6(b).  

4.2 Effect of ultrafine grains on the thermal stability 

Figure 7 shows the microstructure of the Cu-0.36Cr-0.15Zr alloy after continuous extrusion. It can be seen that the 

subgrains have a size of several hundred nanometers with dislocations accumulating at the subgrain boundaries and inside 

the subgrains. Severe plastic deformation as well as abundant heat was introduced due to the friction between the extrusion 

die and the CuCrZr rod during the extrusion process, which provides the possibility of dynamic recrystallization. Ultrafine 
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grains help to improve the ductility of the alloy when subjected to large strains in the following cold deformation, which 

results in a more uniform grain spacing across the radial direction of the rod, just as shown in Figure 1(a). 

 

Figure 7. TEM image showing ultrafine grains of Cu-0.36Cr-0.15Zr alloy after continuous extrusion 

To clarify the effect of ultrafine grains on the thermal stability produced by continuous extrusion and subsequent cold 

rolling, the Cu-0.36Cr-0.15Zr samples directly subjected to the cold rolling were adapted as the comparison. The samples 

prepared by the two processing technologies were annealed at different temperatures and the variation of grain size vs. 

annealing temperatures is shown in Figure 8. It can be seen that the samples prepared by continuous extrusion demonstrate 

a notable grain growth after annealed above 500 oC while it above 600 oC for the samples prepared directly by cold rolling, 

which means that the introduction of continuous extrusion results in a relatively poor thermal stability. 

 

Compared to the traditional deformation process, such as rolling, drawing and so on, continuous extrusion introduced 

dynamic recrystallization, which produced ultrafine grains and relatively higher density of dislocations as well. The driving 

force for recrystallization from dislocations and grain size can be described as 𝐹𝐷 = 𝛼𝐺𝑏2(𝜌0 − 𝜌1)  and 𝐹𝐵 = 3𝛾/𝑑 

respectively, in which 𝛾 represents the boundary energy of grains and 𝑑 is the size of grains[19,21,22]. It can be deduced 

that the ultrafine grained CuCrZr alloy has a higher driving force for recrystallization with smaller grain size and higher 

dislocation density, which explains the relatively poor thermal stability. 
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5. Conclusions 

1. The microstructure and microhardness remained stable when annealed below 500 oC due to the pinning effect of the 

nanoscale precipitates. 

2. The nanoscale precipitates would grow up and lose inhibition of dislocations and grain boundaries after annealed at 

600 oC when recrystallization took place. Microhardness shows a sharp decrease and the crystal orientation approaches that 

of the fully annealed samples. 

3. Compared with the samples prepared directly by cold rolling, the ultrafine grained samples demonstrate a relatively 

poor thermal stability as a result of the higher dislocation density and the finer grains introduced by continuous extrusion. 
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