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Introduction 

Comparative experiments are often inevitable in many scientific studies.

They serve as the means of generating data. Therefore, care is usually taken

to ensure that such experiments are properly conducted. Before carrying

out a comparative experiment, an experimenter may have to adopt a

suitable experimental(statistical) design. Several statistical designs have

been proposed for use under certain experimental conditions[1,2].

Data collected in the course of a well design experiment need to be
analysed in order to provide answers to research questions under
consideration. If quantitative data are classified according to three or more
treatments or levels of at least two factors, an analysis of variance
(ANOVA) tech-nique may be applied. Different statistical designs require
different analysis of variance techniques. For instance, one-way ANOVA is
applicable to data collected using the completely randomised design.

No matter how carefully planned and conducted an experiment is, there
might be a case of unbalanced data. ANOVA models were originally
developed for balanced data. The problem of performing analysis of
variance on unbalanced data can be handled by first estimating the missing
values and using the estimates in place of the missing observations. The
resulting data, comprising the actual observations and the estimates of the
missing values are then analysed. Following the novel works of [3,4], least 
squares estimators of missing values in a number of statistical designs,
namely, Randomised Block Design[5], General Incomplete Block
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Design [6], Latin Square Design [7,8], Graeco-Latin Square Design [9], F-Square Design [10], 
Cross-Over Design [11] and Split-Plot Design [12] have been derived. The purpose of this paper 
is to derive the least squares estimators of missing values in a nested factorial design.
Statistical properties of the estimators are equally investigated.

Review of two-stage nested design and three-factor nested
factorial design

Nested designs among other statistical designs are frequently used in agricultural, ecological, med-
ical and industrial experimental processes [13]. There are generally classified in accordance with the 
number of factors used in the experiment. For instance, in a experimental situation where two
factors (say A and B) are being considered such that each level of B is combined with only one level
of A, we say B is nested in A. The resulting design is called a two-stage nested design. The linear
statistical model for a balanced two-stage nested design, may be written as

Yijk = µ+ αi + βj(i) + εk(ij), i = 1, 2, · · · , a, j = 1, 2, · · · , b, k = 1, 2, · · · , r (1)

where Yijk is the kth observation at the jth level of B nested in the ith level of A, µ is the grand
mean, αi is the effect of ith level of factor A, βj(i) is the effect of jth level of factor B nested within

ith level of factor A and εk(ij) is the random error term such that εk(ij) ∼ N(0, σe2). The nature of 
this design makes it impossible for one to examine the main effect of factor B and the interaction
between the two factors [14]. In a two-stage nested design, the hypotheses to be tested, depend on 
whether the two factors are fixed or random or we have a combination of fixed and random factors.
In these three cases, the partitioning of the total variation into recognised sources of variation
remains the same. Let SSA, SSB(A) and SSE1 denote the sum of squares due to factor A, sum of 
squares due to factor B within the levels of factor A and sum of squares due to error respectively. The
total sum of squares (SST ) is partitioned as follows:

SST = SSA + SSB(A) + SSE1
(2)

where SST =
∑a
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design.

Table 1. Test Statistics and Rejection Criteria for Various Cases of Two-Stage Nested Designs
Factor Type of Hypotheses F-Ratio Reject H0 if

effects

A fixed F1 = MSA

MSE

B fixed

H0 : αi = 0 vs H1 : αi 6= 0

H0 : βj(i) = 0 vs H1 : βj(i) 6= 0 F2 =
MSB(A)

MSE

F1 > Fα,(a−1),ab(n−1)

F2 > Fα,a(b−1),ab(n−1)
A random F3 = MSA

MSB(A)

B random

H0 : σ2
α = 0 vs H1 : σ2

α 6= 0

H0 : σβ
2
j(i)

= 0 vs H1 : σβ
2
j(i)
6= 0 F2 =

MSB(A)

MSE

F3 > Fα,(a−1),a(b−1)

F2 > Fα,a(b−1),ab(n−1)

A fixed F3 = MSA

MSB(A)

B random

H0 : αi = 0 vs H1 : αi 6= 0

H0 : σβ
2
j(i)

= 0 vs H1 : σβ
2
j(i)
6= 0 F2 =

MSB(A)

MSE

F3 > Fα,(a−1),a(b−1)

F2 > Fα,a(b−1),ab(n−1)

A random F1 = MSA

MSE

B fixed

H0 : σ2
α = 0 vs H1 : σ2

α 6= 0

H0 : βj(i) = 0 vs H1 : βj(i) 6= 0 F2 =
MSB(A)

MSE

F1 > Fα,(a−1),ab(n−1)

F2 > Fα,a(b−1),ab(n−1)

In Table 1, α is the level of significance, MSA = SSA

a−1 , MSB(A) =
SSB(A)

a(b−1) and MSE =
SSE1

ab(n−1) .

A nested-factorial design is a statistical design that involves both crossed and nested factors.
Suppose that in a three-factor nested-factorial design, factors A, B and C have a levels, b levels
and c levels respectively. If the b levels of factor B are nested within a levels of factor A and c
levels of factor C are crossed with a levels of factor A and b levels of factor B, we may consider
the linear model:



Yijkl = µ+ αi + βj(i) + γk + (αγ)ik + (βγ)jk(i) + el(ijk) (3)

In (3), µ is the grand mean, αi is the effect of the ith level of factor A, βj(i) is the effect of jth level
of factor B nested within ith level of factor A, γk is the effect attributable to kth level of factor
C, (αγ)ik is the effect of the interaction of ith level of factor A and kth level of factor C, (βγ)jk(i)
represents the interaction effect of the kth level of factor C and jth level of factor B within the ith
level of factor A and el(ijk) is the error term.

The total sum of squares (SST ) corresponding to (3), is partitioned as follows:

SST = SSA + SSB(A) + SSC + SSAC + SSBC(A) + SSE (4)

where

SST =
a∑
i=1

b∑
j=1

c∑
k=1

n∑
l=1

X2
ijkl −

X2
....

abcn
(5)

SSA =
1

bcn

a∑
i=1

X2
i... −

X2
....

abcn
(6)

SSB(A) =
1

cn

a∑
i=1

b∑
j=1

X2
ij.. −

1

bcn

a∑
i=1

X2
i... (7)

SSC =
1

abn

c∑
k=1

X2
..k. −

X2
....

abcn
(8)

SSAC =
1

bn

a∑
i=1

c∑
k=1

X2
i.k. −

1

bcn

a∑
i=1

X2
i... −

1

abn

c∑
k=1

X..
2
k. +

X2
....

abcn
(9)

SSBC(A) =
1

n

a∑
i=1

b∑
j=1

c∑
k=1

X2
ijk. −

1

cn

a∑
i=1

b∑
j=1

X2
ij.. −

1

bn

a∑
i=1

c∑
k=1

Xi.
2
k. +

1

bcn

a∑
i=1

X2
i... (10)

X.... =

a∑
i=1

b∑
j=1

c∑
k=1

n∑
l=1

Xijkl (11)

and

SSE =
a∑ b∑ c∑ n∑

X2
ijkl −

1

n

a∑ b∑ c∑
X2
ijk. (12)

i=1 j=1 k=1 l=1 i=1 j=1 k=1

Table 2. Test Statistics and Rejection Criteria based on the three-factor nested-factorial design

Factor Type of Hypotheses F-Ratio Reject H0 if
effects

A fixed F4

B(A) fixed F5

C fixed F6

A × C F7

B × C(A)

H0 : αi = 0 vs H1 : αi 6= 0
H0 : βj(i) = 0 vs H1 : βj(i) 6= 0
H0 : γk = 0 vs H1 : γk 6= 0

H0 : (αγ)ik = 0 vs H1 : (αγ)ik 6= 0
H0 : (βγ)jk(i) = 0 vs H1 : (βγ)jk(i) 6= 0 F8

F4 > Fα,(a−1),abc(n−1)
F5 > Fα,a(b−1),abc(n−1)
F6 > Fα,c−1,abc(n−1)

F7 > Fα,(a−1)(c−1),abc(n−1)
F8 > Fα,a(b−1)(c−1),abc(n−1)

A fixed H0 : αi = 0 vs H1 : αi 6= 0 F9

B(A) random F5

C fixed F10

A × C

H0 : σβ
2
(α) = 0 vs H1 : σβ

2
(α) 6= 0

H0 : γk = 0 vs H1 : γk 6= 0
H0 : (αγ)ik = 0 vs H1 : (αγ)ik 6= 0 F10

B × C(A) H0 : σβ
2
γ(α) = 0 vs H1 : σβ

2
γ(α) 6= 0 F12

F9 > Fα,(a−1),a(b−1)
F5 > Fα,a(b−1),abc(n−1)
F10 > Fα,c−1,a(b−1)(c−1)

F11 > Fα,(a−1)(c−1),a(b−1)(c−1)
F12 > Fα,a(b−1)(c−1),abc(n−1)

where F4 = MSA

MSE
, F5 =

MSB(A)

MSE
, F6 = MSC

MSE
, F7 = MSAC

MSE
, F8 =

MSBC(A)

MSE
, F9 = MSA

MSBC(A)
,

F10 = MSC

MSBC(A)
F11 = MSAC

MSBC(A)
and F12 =

MSBC(A)

MSE
.

Main Results

In this section, we derive least squares estimators of missing values in a three-factor nested-factorial
design under several conditions. Theorem 1 provides the estimators of s missing values within the
same cell in nested-factorial design.
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Theorem 3.1. Suppose there are n numbers of observations per each combination of a level of each
of factors A, B, and C in a nested-factorial design. Assume s of the r observations are missing.
Let the least squares estimators of the missing values be M1,M2,M3, · · · ,Ms. The estimators are
all equal to the arithmetic mean of the (n− s) observations remaining in the cell that contains the
missing values.

Proof. From (11), we have

SSE =
∑s
y=1My

2 +R− (X′
....+

∑s
y=1My)

2

n

where R is the sum of all the terms independent of M1,M2,M3, · · · ,Ms. The partial∑s
derivatives

of SSE with respect toM1,M2,M3, · · · ,Ms satisfy the equations ∂SSE

∂My
= 2My−

2(X′
....+ y=1My)

n , 1, 2, 3, · · · , s.
Equating to zero the partial derivative of SSE with respect to each of M1,M2,M3, · · · ,Ms leads
to the following system of linear equations:

Cs×sMs×1 = Xs×1

Ms×1 = Cs
−
×
1
sXs×1 (13)

where Cs×s =



n− 1 −1 −1 · · · −1
−1 n− 1 −1 · · · −1
−1 −1 n− 1 · · · −1
. . . · · · .
. . . · · · .
. . . · · · .
−1 −1 −1 · · · n− 1
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, Ms×1 =
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.

.

.
Ms


, Xs×1 =
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X ′ijk.
X ′ijk.
X ′ijk.
.
.
.

X ′ijk.


and X ′ijk. is the sum of the (n− s) observations that are originally available in the cell. Next,

we solve for Ms×1 in (13) using the principle of mathematical induction. Before obtaining the
general solution of (13), we shall solve (13) when s=1, 2 and 3. If s = 1, we have

M1 =
X ′ijk.
n− 1

(14)

For s = 2, (
n− 1 −1
−1 n− 1

)(
M1

M2

)
=

(
X ′ijk.
X ′ijk.

)
(15)

Solving (13) for M1 and M2 leads to

M1 = M2 =
X ′ijk.
n− 2

(16)

With s = 3, the following equation is satisfied:

MM1

2

M3

 =

n− 1 −1 −1
−1 n− 1 −1
−1 −1 n− 1

−1X ′ijk.X ′ijk.
X ′ijk.

 (17)

=⇒M1 = M2 = M3 =
X ′ijk.
n− 3

(18)

Consequently, the solution of (13) is

X ′ijk.
My =

n− s
, y = 1, 2, 3, · · · , s QED (19)

It may happen that the missing values we wish to estimate belong to different cells.

Theorem 3.2. Let V1, V2, · · · , Vq denote least squares estimators of missing observations in q
different cells in a nested-factorial design with three factors, such that in each of the cells only one
value is missing. Let the number of observations originally available in each of the q cells be n− 1.
Denote the totals of observations originally available in the cells by X

i
′
(e)j(e)k(e)l(e)

, e = 1, 2, 3, · · · , q.
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Then Ve =
X′

i(e)j(e)k(e)l(e)

n−1 , e = 1, 2, 3, · · · , q.

Proof. Using (11), we obtain

SSE =
∑q
e=1 Ve

2 +R′ −
∑q

e=1(Ve+Xi(e)j(e)k(e)l(e)
)2

n

where R′ is the sum of all the terms independent of V1, V2, V3, · · · , Vq. The partial derivatives

of SSE with respect to V1, V2, V3, · · · , Vq satisfy the equations ∂SS
e

E = 2V −
2(Ve+Xi(e)j(e)k(e)l(e)

)

∂V e n ,

V1, V2, v3, · · · , Vq. On equating ∂SSE

∂Ve
to zero and solving the resulting equation, we have

Ve =
X
i
′
(e)j(e)k(e)l(e)

n− 1
, e = 1, 2, 3, · · · , q (20)

This completes the proof.

Other cases of missing values in a nested-factorial design with three factors may be frequently
encountered. For instance, two or more of the q missing values may belong to the same cell. The
fact remains that least squares etimators of such missing values can be easily derived using similar
procedures to those in Theorem 3.1 and 3.2.
It has been argued by many authors that when a missing value is estimated , as it is the case in
this study, the treatment sum of squares is biased. The bias in sum of squares due to factor C,
which may be encountered when a missing value in the design under consideration, is estimated
using (13), is given in Theorem 3.

Theorem 3.3. Let a missing value in a three-factor nested-factorial design be estimated using
(14). If when we ignore the classification of the observations based on factor C, we obtain a two-
way nested design in which the number of observations originally available in the cell containing
the missing observation is r−1. Let the estimator of the missing observation in the resulting nested
design be U . In testing t e hyp)othesis H0 : γk = 0, the sum of squares due to factor C is positivelyh(

r−1
rbiased. The bias is B = (M1 − U)2.

Proof. By substituting M1 and U into SSE1
, the bias is obtained as follows:

B = M2
1 −

(X ′ij. +M1)2

r
− U2 −

(X ′ij. + U)2

r

=
(r − 1

r

)
(M1 − U)2 (21)

In the case of one missing value in a three-factor nested factorial design, the missing value
is estimated using (14) and adjustment for bias in SSC is made by subtracting B from SSC 
[15] In general, if there are two or more missing values, the estimates of the values are found 
using the appropriate formulae based on the nested and nested-factorial designs. These estimates
are then used in place of the corresponding missing values and the analysis of variance for
both nested and nested-factorial designs are conducted. The corresponding SSE and SSE1 are 
computed. As a consequence, the corrected sum of squares due to factor C is [16]

Corrected SSC = SSE1 − SSE (22)

Numerical Example

Numerical illustrations made in this section are based on the assembly time data from [2]. The data 
were collected in an experiment in which three-factor nested factorial design was applied. Of interest
in the experiment are the three factors operators, layouts and fixtures, which have four levels, two
levels and three levels respectively . Among the three factors considered in the experiment, operators
are nested under levels of layouts. It shall be noted that the four operators selected for Layout 1 are
different from the four operators selected for Layout 2. Moreover, the operators are randomly
selected, justifying the use of the mixed effects analysis of variance model. As shown in Table 3, the
third factor fixtures and layouts are subjected to a factorial arrangement.
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Table 3. The Assembly Time Data

Operators Layout 1 Layout 2
1 2 3 4 1 2 3 4

Fixture 1 22 23 28 25 26 27 28 24
24 24 29 23 28 25 25 23

Fixture 2 30 29 30 27 29 30 24 28
27 28 32 25 28 27 23 30

Fixture 3 25 24 27 26 27 26 24 28
21 22 25 23 25 24 27 27

Source: Montgomery(2013)

For easy reference to each observation in Table 3, the observations will be expressed in Xijkl 
notation, where i = 1, 2, 3, 4, j = 1, 2, k = 1, 2, 3, 4, l = 1, 2. For instance, X1111 = 22 refers to the
first observation in the cell corresponding to Operator 1, Layout 1 and Fixture 1. The data in Table 1
have been analysed in [2]. However, for reference purposes, we consider the ANOVA results in Table 
4.

Table 4. Analysis of variance table based assembly time data

Source of Variation Sum of Squares Degree of Freedom Mean Square F P Value
82.80 2 41.40 7.54 0.01
4.08 1 4.09 0.34 0.58
71.91 6 11.99 5.15 0.01
19.04 2 9.52 1.73 0.22
65.84 12 5.49 2.36 0.04
56.00 24 2.33

Fixture(C)
Layout(B)

Operator(Within Layout) B(A)
CA

C× B(A)
Error
Total 299.67 47

Though Table 3 contains balanced data, we shall create room for missing observations by
deleting some of the observations and then estimate those missing observations and perform the
necessary analysis of variance. Using (14) the estimate of X1111 = 22 is found to be M1 = 24.
Replacing X1111 in Table 3 by its estimate and performing the requisite analysis of variance, the
results in Table 5 are obtained.

Table 5. Analysis of variance table based on assembly time data with an estimate of one missing value

Source of Mean Square F Ftab

Variation
Sum of Squares Degree of

Freedom
79.625(77.992) 2 39.813(38.996) 7.503(7.5345) 3.89

3.000 1 3.000 0.262 5.99
68.583 6 11.431 4.868 2.53
18.375 2 9.188 1.732 3.89
63.667 12 5.306 2.260 2.20
54.00 23 2.348

Fixture(C)
Layout(B)

Operator(Within Layout) B(A)
CA

C× B(A)
Error
Total 287.250(285.617) 46

The values inside the brackets are obtained after the adjustment has been made for the bias in
the sum of squares due to factor C. The bias B is calculated using Theorem 3. In this regard,
B = 1.633.

To illustrate the estimation of two missing values using Theorem 2 in a three-factor nested-
factorial design, we assume that the values X2111 and X2121 are missing in Table 3. Their least
squares estimates are 24 and 28 respectively. If we ignore data classification according to factor
C, we have a two-stage nested-factorial design and the estimates of X2111 and X2121 can be easily
found to be 25.4 and 27.4 respectively. In line with (21), the corrected sum of squares due to factor
C is calculated to be Corrected SSC = 164.233.
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Table 6: Analysis of variance table based on assembly time data with estimates of two missing
values

Source of Mean Square F Ftab

Variation
Sum of Squares Degree of

Freedom
78.167(164.233) 2 39.083(82.117) 6.90(14.490) 4.75

4.688 1 4.688 0.380 5.99
74.125 6 12.354 5.126 3.44
19.500 2 9.750 1.720 3.89
68.00 12 5.667 2.351 2.23
53.000 22 2.410

Fixture(C)
Layout(B)

Operator(Within Layout) B(A)
CA

C× B(A)
Error
Total 297.480(385.546) 45

It can be deduced from Tables 4, 5 and 6 that the sum of squares due to factor C, error sum of
squares and total sum of squares all vary depending on whether the analysis is based on balanced
data without estimates of missing values or data with one or more estimates of missing values.
Interestingly, the analysis of variance results in the three tables lead to the same conclusion for
each of the four sources of variations fixture (C), layout (B), operator (C), B(A), CA and C×
B(A), indicating the appropriateness of the missing value estimation technique discussed in this
paper.

Conclusion

This study primarily deals with the non-iterative least squares estimation of missing values in a
three-factor nested-factorial design. The theoretical results obtained in this paper are predicated
on several cases of missing values. In particular, we have paid attention to the cases of one missing
value and many missing values in the same cell or different cells. In the case of one missing value,
we have shown that the estimate of the missing value is equal to the arithmetic mean of the
remaining values in the cell containing the missing value. Similar results are also obtained in the
case of many missing values.
In the three-factor nested-factorial design, the factor C is crossed with the other factors. The bias
in the sum of squares due to factor C is derived when a missing observation is estimated using the
proposed estimator. The bias is shown to be a positive quantity. On the basis of many missing
values, an expression for the corrected sum of squares due to factor C is given.
In order to show the application and suitability of the theoretical results, a numerical example
based on the data from [2] is considered. Analysis of variance tables are obtained based on the 
original data, data with the estimate of one missing value and the data with the estimate of
two missing values. Correction is also made for the upward bias in the sum of squares due to
factor C. Interestingly, the analysis of variance results obtained in these cases lead to the same
conclusion for each requisite source of variation.
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