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Abstract When faced with unbalanced data, it is often necessary to
estimate the necessary missing values before the application of the analysis
of variance technique. Previous studies have shown that diferent designs
require diferent missing value estimators. With the introduction of some

relatively new statistical designs, it has become expedient to derive missing
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value estimators for such designs. In this study, least squares estimators of
missing values in a three-factor nested-factorial design are derived.
Properties of the estimators are equally determined. A numerical example is
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Introduction

Comparative experiments are often inevitable in many scientific studies.

to ensure that such experiments are properly conducted. Before carrying
out a comparative experiment, an experimenter may have to adopt a
suitable experimental(statistical) design. Several statistical designs have
been proposed for use under certain experimental conditions[1,2].

Data collected in the course of a well design experiment need to be
analysed in order to provide answers to research questions under
consideration. If quantitative data are classified according to three or more
treatments or levels of at least two factors, an analysis of variance
(ANOVA) tech-nique may be applied. Different statistical designs require
different analysis of variance techniques. For instance, one-way ANOVA is
applicable to data collected using the completely randomised design.

No matter how carefully planned and conducted an experiment is, there
might be a case of unbalanced data. ANOVA models were originally
developed for balanced data. The problem of performing analysis of
variance on unbalanced data can be handled by first estimating the missing
values and using the estimates in place of the missing observations. The
resulting data, comprising the actual observations and the estimates of the
missing values are then analysed. Following the novel works of [3,4], least
squares estimators of missing values in a number of statistical designs,
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Design [6], Latin Square Design [7,8], Graeco-Latin Square Design [9], F-Square Design [10],
Cross-Over Design [11] and Split-Plot Design [12] have been derived. The purpose of this paper
is to derive the least squares estimators of missing values in a nested factorial design.
Statistical properties of the estimators are equally investigated.

Review of two-stage nested design and three-factor nested
factorial design

Nested designs among other statistical designs are frequently used in agricultural, ecological, med-
ical and industrial experimental processes [13]. There are generally classified in accordance with the
number of factors used in the experiment. For instance, in a experimental situation where two
factors (say A and B) are being considered such that each level of B is combined with only one level
of A, we say B is nested in A. The resulting design is called a two-stage nested design. The linear
statistical model for a balanced two-stage nested design, may be written as

)/ij:u+a7+ﬂ](z)+ek(17)7lz1727 aa7j:172a"' 7bak:1727"' T (1)

where Y;i, is the kth observation at the jth level of B nested in the ith level of A, 4 is the grand
mean, «; is the effect of ith level of factor A, 3;(; is the effect of jth level of factor B nested within

ith level of factor A and ey (;;) is the random error term such that e ;) ~ N(0, 02). The nature of
this design makes it impossible for one to examine the main effect of factor B and the interaction
between the two factors [14]. In a two-stage nested design, the hypotheses to be tested, depend on
whether the two factors are fixed or random or we have a combination of fixed and random factors.
In these three cases, the partitioning of the total variation into recognised sources of variation
remains the same. Let SS4, SSp(4) and SSE, denote the sum of squares due to factor A, sum of
squares due to factor B within the levels of factor A and sum of squares due to error respectively. The
total sum of squares (SSr) is partitioned as follows:

SSTZSSA+SSB(A)+SSE1 (2)
a b r a
where SSr = Zi:l Zj:l Zk:l Xi2jk B ﬁX%’ S84 = b% Zi:l XzQ - ﬁX%.»
a b a b T a b
SSB(A) = % Zi:l Zj:l Xzzg - ﬁX?..v S8g, = Zi:l Zj:l Zk:l Xlz_]k - % Zi:l Zj:l Xzzg
and X = Z?Zl 2?‘21 22:1 Xijk. Table 1 comprises the various cases of two-stage nested
design.

Table 1. Test Statistics and Rejection Criteria for Various Cases of Two-Stage Nested Designs

Factor | Type of Hypotheses F-Ratio Reject Hy if
effects

A fixed Hy:0,=0vs Hy: 75 0 Fi = %22 > Fa,(a—l),ab(n—l)
MS

B fixed Ho: By =0vs Hi: By #0 | Fo =~ | F2 > Fua(b—1),ab(n—1)

A random Hy:02=0vs H : 02 #0 3 = MAgi(AA) F3 > Fy (a—1),a(b-1)

B random HO : a%j(i) =0vs Hl : Ugj(i) 75 0 F2 = ﬁ?) F2 > Fa,a(bfl),ab(nfl)

A fixed Hy:a;=0vs Hy : o 75 0 F3 = MAgng) F3 > Foz,(afl),a(bfl)
MS

B random | Hj : O’%jm =0vs Hy: (T%j(l‘) 7& 0] Fr = ﬁ Fy > Fa,a(b—l),ab(n—l)

A random Hy:02=0vs Hy :02 #0 = %22 F1 > Fy (a-1),ab(n—1)
MS

B fixed Ho:Bjy =0vs Hi: By #0 | Fo = 2= | F2 > Foa(b—1),ab(n—1)

SSB(A)

SiEsy and MSp = o=

ab(n—1)"

In Table 1, « is the level of significance, MS4 = %, MSpay =

A nested-factorial design is a statistical design that involves both crossed and nested factors.
Suppose that in a three-factor nested-factorial design, factors A, B and C have a levels, b levels
and c levels respectively. If the b levels of factor B are nested within a levels of factor A and c
levels of factor C are crossed with a levels of factor A and b levels of factor B, we may consider
the linear model:
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In (3), p is the grand mean, «; is the effect of the ith level of factor A, 3;,)

Yijer = p+ i + By + v+ (@y)ir + (BY)jr) + €uijr)

3)

is the effect of jth level

of factor B nested within ith level of factor A, v4 is the effect attributable to kth level of factor
C, ()i is the effect of the interaction of ith level of factor A and kth level of factor C, (87),k()
represents the interaction effect of the kth level of factor C and jth level of factor B within the ith

level of factor A and e;(;j1) is the error term.

The total sum of squares (SSt) corresponding to (3), is partitioned as follows:

SST =554 +SSB(A) + SSc + SSac +SSBC(A) + SSEg

where

i=1 j=1k=11[=1
SSa = i sz2 — X2
cn e aben
1 a b 1 a
— 2
SSpay=—D_ > Xi. =35>
i=1 j=1 i=
1 < X?
SSH = — X2. o
C7 abn Z “k T aben
k=1
1 a (& 1 a
1=1 k=1 =1
1 a b c
SSBC(A) = ﬁ Z ij
i=1j=1k=1
a b c n
X. . = Z ZXijkl
i=1 j=1 k=1 I=1

and

Cc

RN

i=1 j=1

Z

n

b
Z > X~
k=1 1=1

abcn

a

;zkz zk+fzxz_.

ZZZ%k

11]1k1

(4)

(12)

Table 2. Test Statistics and Rejection Criteria based on the three-factor nested-factorial design

Factor Type of Hypotheses F-Ratio Reject Hy if
effects
A fixed Hy:a;,=0vs Hy: o 75 0 Fy Fy > Fa,(afl),abc(nfl)
B(A) fixed Hy: ﬂj(i) =0vs Hy: By(z) 75 0 F5 s > Fa,a(b—l),abc(n—l)
C fixed Hy : Ve = 0vs Hy: Vi # 0 Fs Fs > Fa,c—l,abc(n—l)
AxC Hy : (ay)i =0 vs Hy : (y)ix # 0 Fr Fr > Fy (a—1)(c—1),abe(n—1)
B x C(A) Ho : (B7) k@) =0 vs Hy : (B7)k) # 0 Iy Fs > Faa(b-1)(c—1).abe(n—1)
A fixed Hy:0,=0vs Hy : 7é 0 Fy Fy > Fa,(a—l),a(b—l)
B(A) random Hy: O—%(a) =0vs H;: 0—123(04) # 0 F5 F5 > Fa,a(b—l),abc(n—l)
C fixed Ho:ve=0vs Hy: v, #0 Fio Fio > Fo eo1,a(b-1)(c-1)
A xC Hy (OéV)k =0vs Hy: (@) #0 Fio | Fi1 > Fo (a—1)(c—1),a(b—1)(c-1)
B x C(A) Hy: O—,B'y(a) 0 vs Hy :0[237(&) # 0 Fio Fig > Fa,a(b—l)(c—l),abc(n—l)
where F, = MSE Fs = MEZ;‘“, Fs = %SE Fr = %S§E07 Fy = %7 Fy = #Sc‘:m’
Fip = 71\/1{\9{%@ Fi = Ml\giga) and Fig = 71\/1]6\”;;;/;).

Main Results

In this section, we derive least squares estimators of missing values in a three-factor nested-factorial
design under several conditions. Theorem 1 provides the estimators of s missing values within the
same cell in nested-factorial design.
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Theorem 3.1. Suppose there are n numbers of observations per each combination of a level of each
of factors A, B, and C in a nested-factorial design. Assume s of the r observations are missing.
Let the least squares estimators of the missing values be My, Ma, M3, --- , My. The estimators are
all equal to the arithmetic mean of the (n — s) observations remaining in the cell that contains the
missing values.

Proof. From (11), we have

7 s 2
SSE:ZZ:1M§+R,M

n
where R is the sum of all the terms independent of My, My, M3, --- , M. The partial derivatives
of SSE with respect to My, My, M3, - - - , M satisfy the equations %ﬂj’f = 2My7w, 1,2,3,---

Y
Equating to zero the partial derivative of SSg with respect to each of My, My, M3, --- , My leads
to the following system of linear equations:

CsXsMsxl = Xs><1

Ms><1 - C;><15Xs><1 (13)
n-1 -1 -1 - -1 M, Xiit.
-1 n-1 -1 - -1 M, Xk,
1 -1 =1 - -1 My X0
where Cyys = . . . . yMgaa = 1| - » Xox1 = .
T P | M, X1,

and X;jk. is the sum of the (n — s) observations that are originally available in the cell. Next,
we solve for My in (13) using the principle of mathematical induction. Before obtaining the
general solution of (13), we shall solve (13) when s=1, 2 and 3. If s = 1, we have

X'
M, = ik 14
a1 (14)

(o)) -G)

Solving (13) for M; and M, leads to

For s = 2,

X!

My = My = —9& 16
1 25— (16)
With s = 3, the following equation is satisfied:
M, n—1 -1 -1\ ' (X
My|=[ -1 n-1 =1 X0 (17)
Ms -1 -1 n-1 ngk_
X/
—t Ml = M2 = M3 = 771]k- (18)
n—3
Consequently, the solution of (13) is
X/,
M,=—"9% y—123...,s QED (19)
n—s
It may happen that the missing values we wish to estimate belong to different cells.
Theorem 3.2. Let Vi,Va,---,V, denote least squares estimators of missing observations in q

different cells in a nested-factorial design with three factors, such that in each of the cells only one
value is missing. Let the number of observations originally available in each of the q cells be n — 1.
Denote the totals of observations originally available in the cells by X£<E>j<ﬂ>k<ﬂ>l<c> ,e=1,2,3,---,q.

13
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X/
§() (e k(@) 1)
Then V, = 29O o 9 9.3 ... q.

n—1

Proof. Using (11), we obtain

S (VetX () (e) p(e)i(e))?
SSE _ q ‘/;2 + R/ _ e=1 i J k !

e=1 n
where R’ is the sum of all the terms independent of Vi, Va2, Vs, -+, V,. The partial derivatives
. . . 2(Ve+X (e) () p(e) (e
of SSg with respect to Vi, Vs, Vs, - -+, V satisfy the equations % =2V, — ( il )Ti( Vet )),
Vi, Va,v3,- -+, V4. On equating ag‘fE to zero and solving the resulting equation, we have
Xl jrpene
V, = ORI o 1,2.3,--- .q (20)

n—1
This completes the proof.

Other cases of missing values in a nested-factorial design with three factors may be frequently

encountered. For instance, two or more of the ¢ missing values may belong to the same cell. The
fact remains that least squares etimators of such missing values can be easily derived using similar
procedures to those in Theorem 3.1 and 3.2.
It has been argued by many authors that when a missing value is estimated , as it is the case in
this study, the treatment sum of squares is biased. The bias in sum of squares due to factor C,
which may be encountered when a missing value in the design under consideration, is estimated
using (13), is given in Theorem 3.

Theorem 3.3. Let a missing value in a three-factor nested-factorial design be estimated using
(14). If when we ignore the classification of the observations based on factor C, we obtain a two-
way nested design in which the number of observations originally available in the cell containing
the missing observation is r—1. Let the estimator of the missing observation in the resulting nested
design be U. In testing the hypothesis Hy : v, = 0, the sum of squares due to factor C is positively

biased. The bias is B = (;1) (M — U)2.
Proof. By substituting M; and U into SSg,, the bias is obtained as follows:

B — M12 . (Xz/] + M1)2 _ U2 . (Xz,j + U)2

r r

_ (7";1)(1\41—@2 (21)

In the case of one missing value in a three-factor nested factorial design, the missing value
is estimated using (14) and adjustment for bias in SS¢ is made by subtracting B from SS¢
[15] In general, if there are two or more missing values, the estimates of the values are found
using the appropriate formulae based on the nested and nested-factorial designs. These estimates
are then used in place of the corresponding missing values and the analysis of variance for
both nested and nested-factorial designs are conducted. The corresponding SSg and SSg, are
computed. As a consequence, the corrected sum of squares due to factor C is [16]

Corrected SS¢ = SSgE, — SSE (22)

Numerical Example

Numerical illustrations made in this section are based on the assembly time data from [2]. The data
were collected in an experiment in which three-factor nested factorial design was applied. Of interest
in the experiment are the three factors operators, layouts and fixtures, which have four levels, two
levels and three levels respectively . Among the three factors considered in the experiment, operators
are nested under levels of layouts. It shall be noted that the four operators selected for Layout 1 are
different from the four operators selected for Layout 2. Moreover, the operators are randomly
selected, justifying the use of the mixed effects analysis of variance model. As shown in Table 3, the
third factor fixtures and layouts are subjected to a factorial arrangement.

14
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Table 3. The Assembly Time Data

Operators Layout 1 Layout 2
1 2 3 4 1 2 3 4
Fixture 1 22 23 28 25 26 27 28 24
24 24 29 23 28 25 25 23
Fixture2 30 29 30 27 29 30 24 28
27 28 32 25 28 27 23 30
Fixture 3 25 24 27 26 27 26 24 28
21 22 25 23 25 24 27 27

Source: Montgomery(2013)

For easy reference to each observation in Table 3, the observations will be expressed in X
notation, where ¢ = 1,2,3,4,7 =1,2,k =1,2,3,4,1l = 1,2. For instance, X1111 = 22 refers to the
first observation in the cell corresponding to Operator 1, Layout 1 and Fixture 1. The data in Table 1
have been analysed in [2]. However, for reference purposes, we consider the ANOV A results in Table

4.

Table 4. Analysis of variance table based assembly time data

15

Source of Variation Sum of Squares Degree of Freedom Mean Square F P Value
Fixture(C) 82.80 2 41.40 7.54 0.01
Layout(B) 4.08 1 4.09 0.34 0.58

Operator(Within Layout) B(A) 71.91 6 11.99 5.15 0.01
CA 19.04 2 9.52 1.73 0.22
Cx B(A) 65.84 12 5.49 236 0.04
Error 56.00 24 2.33
Total 299.67 47

Though Table 3 contains balanced data, we shall create room for missing observations by
deleting some of the observations and then estimate those missing observations and perform the
necessary analysis of variance. Using (14) the estimate of X;1;; = 22 is found to be My = 24.
Replacing X7111 in Table 3 by its estimate and performing the requisite analysis of variance, the

results in Table 5 are obtained.

Table 5. Analysis of variance table based on assembly time data with an estimate of one missing value

Source of Sum of Squares  Degree of Mean Square F Fiab
Variation Freedom
Fixture(C) 79.625(77.992) 2 39.813(38.996) 7.503(7.5345) 3.89
Layout(B) 3.000 1 3.000 0.262 5.99
Operator(Within Layout) B(A) 68.583 6 11.431 4.868 2.53
CA 18.375 2 9.188 1.732 3.89
Cx B(A) 63.667 12 5.306 2.260 2.20
Error 54.00 23 2.348
Total 287.250(285.617) 46

The values inside the brackets are obtained after the adjustment has been made for the bias in
the sum of squares due to factor C. The bias B is calculated using Theorem 3. In this regard,

B =1.633.

To illustrate the estimation of two missing values using Theorem 2 in a three-factor nested-
factorial design, we assume that the values Xo111 and X512 are missing in Table 3. Their least
squares estimates are 24 and 28 respectively. If we ignore data classification according to factor
C, we have a two-stage nested-factorial design and the estimates of Xo111 and X519 can be easily
found to be 25.4 and 27.4 respectively. In line with (21), the corrected sum of squares due to factor

C is calculated to be Corrected SS¢c = 164.233.
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Table 6: Analysis of variance table based on assembly time data with estimates of two missing

values
Source of Sum of Squares  Degree of  Mean Square F Fiap
Variation Freedom
Fixture(C) 78.167(164.233) 2 39.083(82.117) 6.90(14.490) 4.75
Layout(B) 4.688 1 4.688 0.380 5.99
Operator(Within Layout) B(A) 74.125 6 12.354 5.126 3.44
CA 19.500 2 9.750 1.720 3.89
Cx B(A) 68.00 12 5.667 2.351 2.23
Error 53.000 22 2.410
Total 297.480(385.546) 45

It can be deduced from Tables 4, 5 and 6 that the sum of squares due to factor C, error sum of
squares and total sum of squares all vary depending on whether the analysis is based on balanced
data without estimates of missing values or data with one or more estimates of missing values.
Interestingly, the analysis of variance results in the three tables lead to the same conclusion for
each of the four sources of variations fixture (C), layout (B), operator (C), B(A), CA and Cx
B(A), indicating the appropriateness of the missing value estimation technique discussed in this

paper.

Conclusion

This study primarily deals with the non-iterative least squares estimation of missing values in a
three-factor nested-factorial design. The theoretical results obtained in this paper are predicated
on several cases of missing values. In particular, we have paid attention to the cases of one missing
value and many missing values in the same cell or different cells. In the case of one missing value,
we have shown that the estimate of the missing value is equal to the arithmetic mean of the
remaining values in the cell containing the missing value. Similar results are also obtained in the
case of many missing values.

In the three-factor nested-factorial design, the factor C is crossed with the other factors. The bias
in the sum of squares due to factor C is derived when a missing observation is estimated using the
proposed estimator. The bias is shown to be a positive quantity. On the basis of many missing
values, an expression for the corrected sum of squares due to factor C is given.

In order to show the application and suitability of the theoretical results, a numerical example
based on the data from [2] is considered. Analysis of variance tables are obtained based on the
original data, data with the estimate of one missing value and the data with the estimate of
two missing values. Correction is also made for the upward bias in the sum of squares due to
factor C. Interestingly, the analysis of variance results obtained in these cases lead to the same
conclusion for each requisite source of variation.
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