
Collaborative Methods with Multiple Key
Components and Domains for Recommender System

著者 NGUYEN THI THUY LINH
学位授与機関 Tohoku University
学位授与番号 11301甲第19567号
URL http://hdl.handle.net/10097/00129701

TOHOKU UNIVERSITY

DOCTORAL THESIS

Collaborative Methods with Multiple Key
Components and Domains for

Recommender System

Author:
Nguyen Thi Thuy Linh

Supervisor:
Prof. Tsukasa ISHIGAKI

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Data Science and Service Research
Graduate School of Economics and Management

July 13, 2020

https://www.tohoku.ac.jp
http://www2.econ.tohoku.ac.jp/~DSSR/dsw.html
https://www.econ.tohoku.ac.jp/econ/

iii

Declaration of Authorship
I, Nguyen Thi Thuy Linh, declare that this thesis titled, “Collaborative Methods with
Multiple Key Components and Domains for Recommender System” and the work
presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

v

TOHOKU UNIVERSITY

Abstract
Graduate School of Economics and Management

Collaborative Methods with Multiple Key Components and Domains for
Recommender System

by Nguyen Thi Thuy Linh

Along with the convenience offered by increased use of the internet, people have
gradually changed their habits. For instance, they shop online using e-commerce
sites instead of going to stores. They watch movies on Netflix and YouTube as al-
ternatives to going to a cinema. However, because information has propagated ex-
peditiously, users have difficulty finding the items they want. Often, only a few
items are visible to users while others are buried in a long-tailed list. For that reason,
many recommender systems (RS) exist. My research addresses their problems and
provides solutions based on deep learning models.

The first challenge of an RS is suggesting interesting items to new users. To do so,
an RS needs some interactions among users and items to occur. Hence, the system
encounters serious obstacles with new or inactive users. To overcome this prob-
lem, modern RS tend to use as much information as possible. This trend was borne
out of the increasing number of studies on hybrid methods that combine rating and
auxiliary information. However, because of privacy concerns, in many cases, ser-
vice providers can not require users to give their personal information. Therefore,
numerous earlier reported methods only use item attributes for auxiliary informa-
tion. To address these shortcomings, my manuscript provides a method to extract
user profiles without using demographic data. My model learns user and item la-
tent variables through two separate deep neural networks and also infers implicit
relations between users and items using the information and their ratings.

To deal with the lack of interactions among users and items and improve accu-
racy, RS tend to combine numerous kinds of information. Nevertheless, many use-
ful data, such as item descriptions, items’ images or even transactions themselves,
are unstructured, and traditional methods can not extract latent vectors effectively.
Hence, how to obtain valuable information from unstructured data as well as how to
integrate them into a single system has become the second challenge of RS. Recently,
deep learning models have made a big step in extracting latent vectors of unstruc-
tured data and demonstrate their power in many applications from computer vision
and natural language processing to RS and bioinformatics. My solutions are based
on deep learning models to obtain better representation of user behavior and item
description.

The third challenge is that RS are mainly based on user interaction history, some-
times, suggestions only involve domains where the user interacted, which make user
be tedious. To address this problem, I propose a cross-domain model that can sug-
gest items in the other domains where the user even does not have any interaction.
My domain-to-domain translation model (D2D-TM), which is based on generative
adversarial network (GAN) and variational autoencoder (VAE), uses the user inter-
action history. Domain cycle consistency (CC) constrains the inter-domain relations.

HTTPS://WWW.TOHOKU.AC.JP
https://www.econ.tohoku.ac.jp/econ/

vii

Acknowledgments
First, I would like to express my deepest gratitude to my supervisor, Prof. Ishi-

gaki, who supported me a lot even before I entered Tohoku University. He taught
me the methodology to carry out the research and how to present it as clear as possi-
ble. He was always ready with useful comments whenever I needed them not only
with research, but also with other problems in studying. Without his guidance and
persistent help, this dissertation would not have been possible.

Exceptional gratitude goes out to all down at Data Science Program (DSP) and
Global Program of Economics and Management (GPEM) for giving me a chance to
study at Tohoku University. Staff members in the two programs always supported
me in both office works and student life.

Last but not least, I would like to thank my family and all of my friends who
always encouraged me to go on.

Thanks for all your support!

ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgments vii

1 Introduction about Recommender System 1
1.1 Recommender System . 1

1.1.1 Primary Objects in Recommender System 2
1.1.2 Goals of Recommender System 3
1.1.3 Basic Models . 4

Collaborative Filtering Models 4
Content-Based Models . 4
Hybrid Models . 4

1.2 My Contribution . 4
1.2.1 Cold Start and Data Privacy Problem 5

Cold Start Problem . 5
Data Privacy Problem . 5
My Solution . 6

1.2.2 Matrix Factorization Problem . 6
My Solution . 6

1.2.3 Tedious Suggestion Problem . 7
Diversity and Serendipity . 7
My Solution . 7

2 Deep Learning Techniques for Recommender System 9
2.1 Basic Concepts . 9

2.1.1 Activation Function . 10
2.2 Variational Autoencoder (VAE) . 10

2.2.1 VAE Structure . 12
2.2.2 VAE in Deep Neural Network 12

2.3 VAE in Recommender System . 13
2.3.1 VAE for rating information . 13
2.3.2 VAE for Content Information . 14

3 Collaborative Multi-Key Learning [35] 15
3.1 Introduction . 15
3.2 Related Work . 17
3.3 Proposed Collaborative Multi-Key Learning 17

3.3.1 Variational Autoencoder . 17
3.3.2 Variational Autoencoder for Categorical Embedding (CatVAE) 18
3.3.3 Variational Autoencoder for Texual Embedding (TextVAE) . . . 20
3.3.4 Collaborative Multi-key Learning 21

x

3.3.5 Predict . 23
3.4 Experiments . 23

3.4.1 Dataset Description . 23
3.4.2 Evaluation Scheme . 24
3.4.3 Baselines . 25
3.4.4 Experimental Settings . 27
3.4.5 Performance Comparison . 28

3.5 Conclusion . 29

4 Neural Collaborative Multi-key Learning 31
4.1 Introduction . 31
4.2 Neural Collaborative Multi-Key Learning Model 32

4.2.1 User-Item Content Matrix . 33
4.2.2 Denoising Unbalanced Autoencoder for Rating Information . . 34
4.2.3 Multinomial Likelihood Loss Function 34

4.3 Experiments . 34
4.3.1 Dataset Description . 35
4.3.2 Evaluation Scheme . 35
4.3.3 Baselines . 38
4.3.4 Experiment Settings . 38
4.3.5 Performance Comparison . 38

4.4 Conclusion . 39

5 Domain-to-Domain Translation Model [36] 41
5.1 Introduction . 41
5.2 Related Work . 43

5.2.1 Autoencoder . 43
5.2.2 Generative Adversarial Network (GAN) 43
5.2.3 Cross-Domain Recommender System 44

5.3 Method . 44
5.3.1 Framework . 45
5.3.2 VAE . 45
5.3.3 Domain Cycle-Consistency (CC) and Weight-Sharing 46
5.3.4 Generative Adversarial Network (GAN) 47
5.3.5 Learning . 48
5.3.6 Predict . 48

For Cross-Domain . 48
For Single Domain . 49

5.4 Experiments . 49
5.4.1 Dataset Description . 49

Amazon . 49
Movielens . 49

5.4.2 Evaluation Scheme . 50
5.4.3 Experimental Settings . 51

5.5 Performance Comparison . 51
5.5.1 Baselines . 51
5.5.2 Cross-Domain Performance . 52
5.5.3 Single Domain Performance . 53
5.5.4 Component . 55
5.5.5 Reconstruction Loss Function . 55

5.6 Qualitative Comparison . 56

xi

5.7 Conclusion . 58

6 Conclusion 59
6.1 Conclusion . 59
6.2 Future Plan . 60

Bibliography 61

xiii

List of Figures

2.1 General Structure of Neural Network 9
2.2 Activation Functions . 11
2.3 General Structure of AE and VAE . 12
2.4 Network Structure of Stacked Variational Autoencoder 13
2.5 Structure of CVAE . 14

3.1 CML Flowchart . 16
3.2 Illustration of a 1-1 CatVAE. 19
3.3 Illustration of a 2-2 TextVAE. 20
3.4 CML Model . 21

4.1 Hyperparameter comparisons of NeuCML 39

5.1 General structure of Domain-to-Domain Translation Model 43
5.2 Recall and NDCG for cross-domain . 54
5.3 Recall and NDCG in same domain . 54
5.4 Comparing recall of model components in the Health_Clothing dataset. 55
5.5 Comparing the recall of reconstruction loss functions for the Health_Clothing

dataset. 55

xv

List of Tables

1.1 Marketing Segmentation and Recommender System Comparison . . . 2

2.1 Advantages and Disadvantages of Activation Functions 11

3.1 CML key notation . 18
3.2 Structure of categorical user information 24
3.3 Datasets attributes in CML experiments 24
3.4 Hyperparameter settings for CML experiment 25
3.5 Recall@10 of four datasets in both sparse and dense settings (%) 26
3.6 Hit@10 of four datasets in both sparse and dense settings 26
3.7 NDCG@10 of four datasets in both sparse and dense settings 27
3.8 Effects of different hyperparameters on CML 29

4.1 Technique comparisons of related papers with NeuCML 32
4.2 List of denotation . 33
4.3 Datasets attributes in NeuCML experiment 35
4.4 mAP@50, NDCG@50 and Recall@50 of 8 Amazon datasets in sparse

setting . 36
4.5 mAP@50, NDCG@50 and Recall@50 of 8 Amazon datasets in dense

setting . 37

5.1 Dataset information after preprocessing in D2D-TM experiment 50
5.2 List of Comedy movies the user watched 56
5.3 Qualitative Comparison . 57

xvii

List of Abbreviations

RS Recommender System
AE AutoEncoder
VAE Variational AutoEncoder
DAE Denoising AutoEncoder
GAN Generative Adversarial Network
CML Collaborative Multi-key Learning
NeuCML Neural Collaborative Multi-key Learning
D2D-TM Domain-To-Domain Translation Model
MLP Multiple Layer Perceptron
KL Kullback leibler Leibler

xix

List of Symbols

x A scalar
x A vector
X A matrix
a(.) an activation function

1

Chapter 1

Introduction about Recommender
System

1.1 Recommender System

Along with the convenience offered by increased use of the internet, people have
gradually changed their habits. For instance, they shop online using e-commerce
sites instead of going to stores. They watch movies on Netflix and YouTube as alter-
natives to going to a cinema. However, because information has propagated expe-
ditiously, users have difficulty finding items they want. Often, only a few items are
visible to users while others are buried in a long-tailed list. For this reason, many rec-
ommender systems (RS) exist, that have become important in e-commerce or shared
platforms. Everyone can see RS-based phenomenon easily when using the Internet.
For example, YouTube automatically moves to videos related to the video that the
user played when it ends or suggests videos that the user may like. Amazon sug-
gests products you may concern and divides them into categories such as "Related to
items you’ve viewed" or "People who bought this product also bought these items",
and Facebook, Twitter or LinkedIn suggests friends, or posts.

Many big technology companies reported the importance of RS in their service
systems. Amazon reported a 29% sales increase to $12.83 billion during its second
fiscal quarter, up from $9.9 billion during the same time last year (Fortune.com,
2012)1. McKinsey estimated that 35% of Amazon.com’s revenue is generated by
its recommendation engine. They also estimated that 75% of what customers watch
on Netflix comes from product recommendations2. Following Christopher John-
son – an machine learning engineer in Spotify – the new recommender system has
helped Spotify increase its number of monthly users from 75 million to 100 million
at a time, despite competition from rival streaming service Apple Music. According
to YouTube, the implementation of an RS for more than a year, has led to success-
ful results, with recommendations accounting for around 60% of video clicks on the
homepage.

Traditionally, researchers and marketers have spent much effort in segmenting
customers [23, 21]. Customers and products are divided into different groups so
that a group of customers can be match to a suitable group of products to enhance
purchase amounts. However, the relationship between customers and products is
complicated, especially in an extensive system. Therefore, to provide better sugges-
tions to the individual customer, both online and offline systems need to implement
recommender systems. The advantages and disadvantages of traditional marketing

1https://fortune.com/2012/07/30/amazons-recommendation-secret/
2https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-

consumers.

2 Chapter 1. Introduction about Recommender System

Marketing Segmentation Recommender System
Data • Customer demographics • Rating information (im-

plicit and explicit feedback)
• Product information
(price and category)

• Content information (user
and item heterogeneous in-
formation such as text, image
and structural data)

Main
Characteristics

• Grouping customers ac-
cording to marketing seg-
ments

• Interacting with individ-
ual user

• Grouping the products in
categories that can be aligned
with marketing segments

• Suggesting top-k items to
the user

• Encouraging customers
indifferent segments to pur-
chase products from cate-
gories selected by the mar-
keter

• Helping the user find
products they would like to
purchase

Advantages • Good at small data • End-to-end automatic
suggestion

• Be possible to give expla-
nation

• Being able to combine
many types of information to
achieve high performance

Disadvantages • Handling with only lim-
ited datasets and data types

• Need much data

• Impossibility of extracting
individual customer behav-
ior

TABLE 1.1: Comparison between Marketing Segmentation and Rec-
ommender System

segmentation and recommender system are listed in Table 1.1. Information types
used in RS are thoroughly explained in Section 1.1.1.

1.1.1 Primary Objects in Recommender System

In RS, there are two main objects: the user and the item. The user can be a customer
or just a user who performed some actions in the system. An item is an object that
receives users’ actions. Items range from products in e-commerce systems and songs
in online music to other users in social networks. Besides the two main objects,
there are two more important types of information used in RS: rating and auxiliary
information.

Rating information is the interaction history that a user gave to items, which is
extremely important with an RS, as it supports RS to outperform traditional market-
ing segmentation. Based on rating information, systems can know what each user
likes and how they feels, which allows for better learning of user behavior. Rating
information can be obtained by two types of feedback: implicit or explicit. Explicit
feedback is an assessment that users actively give to items in the form of rating
scores or reviews. Reviews directly present how users feel about items. However,

1.1. Recommender System 3

the number of reviews in systems is limited because it takes much time to write a re-
view. Therefore, RS try to create their website so that users only need a click to give
ratings. Besides the limitation of explicit feedback, RS can collect huge implicit feed-
back. With implicit feedback, rating between a user and an item will be 1 if this user
had interactions with that item such as view, like or purchase. Otherwise, the rating
will be 0. Implicit feedback may contain much information even more than explicit
feedback. For example, before an user purchases an item, they will consider a bun-
dle of related items. Based on this information, systems may know which elements
the user considered the most such as price or quality. However, implicit feedback is
massive and noisy, which makes obtaining useful information from it challenging.

Auxiliary information includes user and item information. Auxiliary informa-
tion is mainly used in marketing segmentation, but current RS widely differ from
marketing segmentation. Traditionally, only structural information of items such
as genres and categories is used. However, thanks to new techniques such as deep
learning, RS can extract latent features from unstructured information such as item’s
images or text descriptions to support the model. Concerning user information,
marketing segmentation usually uses customer demographics, including sensitive
information such as income. However, most users are unwilling to give their in-
formation except basic necessary ones such as age or address. Therefore, previously,
most RS models ignored user information and only used item information. Recently,
researchers have attempted to build user information based on user interactions.

There are some other types of information supported for improving performance
of RS such as knowledge and geography. However, they depend on the task and
purpose of RS.

1.1.2 Goals of Recommender System

According to [1], there are two primary models:

• Rating prediction: it predicts rating for a combination of user-item. The learn-
ing algorithm attempts to complete an incomplete m × n rating matrix that
corresponds to rating scores that m users give to n items.

• Ranking prediction: it gives a list of top-k items in which user may be particu-
larly interested. In reality, users may want to receive a list of interesting items,
rather than predicted rating for a specific item.

Increasing product sales is the primary goal of an RS [1]. To achieve this, first
of all, an RS needs to predict the most relevant items to individual users. However,
to reach the broader business-centric goal of increasing revenue, the other common
operational and technical goals of RS are the following:

• Novelty: users may know popular items without the system’s support. There-
fore, suggesting unpopular items is surely helpful in enhancing sales diversity
as well as enriching users’ interest.

• Serendipity: if a system can suggest items that truly surprise users, merchant
can benefit from increasing sales diversity and discover new areas of users’
interest.

• Diversity: if suggested items belong to different types or domains, there is a
high probability that users are interested at least in one of them. The higher
the diversity that system gives, the lower the chance that a user gets bored by
repeated similar items.

4 Chapter 1. Introduction about Recommender System

1.1.3 Basic Models

The two main models are: collaborative filtering and content-based which based
on two main information types: rating and content, respectively. There are many
other types based on information such as knowledge-based and domain-based, but
collaborative filtering and content-based are the most important.

Collaborative Filtering Models

Collaborative filtering (CF) models are mainly based on rating information. They
include:

• Neighborhood-based: models that work with the assumption that if two users
have similar history interaction, they have a high probability to have same
taste, so that the user will like the items with which the other interacted.

• Model-based: models that attempt to construct user and item vectors from a
rating matrix, and then the rating matrix is filled out by multiple user vectors
to item vectors. In the first RS models, matrix factorization and singular value
decomposition (SVD) are widely used. However, many deep learning models
have recently been applied to obtain better representation vectors.

Content-Based Models

In content-based models, auxiliary information is used to extract user and item vec-
tors. Content-based methods have some advantages in making recommendations
for new items, when sufficient rating data are not available for that item. Tradition-
ally, CF-based models can achieve higher performance than content-based methods
and suggest surprisingly relevant items. However, recently, thanks to deep learn-
ing techniques, which are good at extracting latent vectors from unstructured data,
content-based methods are necessary in many cases such as fashion or music recom-
mendations.

Hybrid Models

Each model has its own advantages and disadvantages. Therefore, to achieve better
performance, researchers tend to combine two or more methods. Based on how
these methods are combined, hybrid methods are included:

• Loosely hybrid methods: component methods are optimized separately.

• Tightly hybrid methods: component methods are optimized together.

1.2 My Contribution

Many recommender system models focus on suggesting items to customers when
they interacted with a bundle of items. However, when customers cannot find what
they want in our system or interesting items are not suggested to them during their
first visits, they may leave immediately. Hence, systems can lose many potential
customers and incur in extra marketing expenses. My work focuses on giving better
suggestions for new customers, including new systems.

If customers have interactions in a single domain only, and based on these in-
teractions, system merely suggests items in this domain, customers may soon feel

1.2. My Contribution 5

indifferent. Hence, besides the current domain, my work also recommends items in
different domains that surprise customers. It is possible to not only keep customers
stay longer in our system but also bring more profit.

In summary, my research draws attention to making new customers become fre-
quent customers by suggesting items appropriate to current customer situation.

1.2.1 Cold Start and Data Privacy Problem

Cold Start Problem

In the winter, the extremely cold temperature makes cars’ engine difficult to start up.
Much engine is needed to warm them up and once they reach their optimal oper-
ating temperature, they will run smoothly. The cold start problem in recommender
systems is similar. The more user and item information a system has, the easier it is
for it to suggest relevant items. However, if a system gathers insufficient informa-
tion, recommending become problematic, which is called the cold start problem.

In recommender systems, the most important information is rating; hence collab-
orative filtering methods are usually better than content-based methods only. How-
ever, collaborative filtering methods work well in the assumption that every user
interacted with some items, and every items received some interactions from users.
Therefore, cold start happens when users and items have scarce interaction in RS
platforms. They can be new users, new items or inactive users and unpopular items.

With new or unpopular items, the standard solution is using a hybrid method
that combines rating information and item information. However, with new and
inactive users, because of privacy rules, RS usually ignore this problem and suggest
the most popular items to them. However, these uninteresting suggestions can make
new users leave our system or make users inactive. Therefore, solving the cold start
problem for users is necessary to enhance both the number of users and profit for
the platform.

Data Privacy Problem

To solve the cold start problem, a hybrid method, which uses both rating information
and auxiliary information of both users and items, is helpful. When users register on
an RS, they need to accept rules that allow the system to collect their history inter-
actions such as click or purchase, which are needed for system services. However,
users are unwilling to provide personal information that is unrelated directly to the
services, such as income, age, or family members. Furthermore, RS have many dif-
ficulties in using user information gotten from a third party because privacy rules
are strict. In auxiliary information, a user profile is a sensitive problem that de-
mands careful utilization to avoid privacy violations. According to [2], privacy is
regarded as "the right of a person to determine which personal information about
himself/herself might be communicated to others". This right also is regulated in
the privacy laws of many countries. For instance, Australia Privacy Laws3 stipulate
the following:

• Individuals must have the option of not identifying themselves, or of using a
pseudonym when dealing with an Australian Privacy Principle (APP) entity
in relation to a particular matter (Australian Privacy Principle 2.1).

3https://www.oaic.gov.au/individuals/privacy-fact-sheets/general/privacy-fact-sheet-17-
australian-privacy-principles

6 Chapter 1. Introduction about Recommender System

• If an APP entity is an agency or organisation, then the entity must not collect
personal information (other than sensitive information) unless the information
is reasonably necessary for, or directly related to, one or more of the entity’s
functions or activities (Australian Privacy Principle 3.1, 3.2).

Following these rules, service providers can provide only anonymized data to
a third party. Although the data are private, they are still desirable because they
allow for aggregate analysis [9]. Examples are provided by manufacturers who want
to know market-shares among their products and other competitors or researchers
want to study marketing methods. These problems are readily solved by publishing
raw data. However, such publication will violate privacy rules, as discussed above.
Therefore, before publishing data, a provider must apply some privacy-preserving
algorithms such as k-anonymity so that an entity in a dataset cannot be re-identified.
K-anonymity is a grouped method by which every tuple in the private table being
released is indistinguishably related to no fewer than k respondents [2]. However,
even when using these algorithms, demographic data are still vulnerable if attackers
make inferences from private information such as age, career, and zip code. If a
company violates the privacy rules, it will become an important scandal that can
blow out much of its values. For example, the recent scandal in which Facebook
provided data of more than 50 millions users to Cambridge Analytica – a British
political consulting firm – without their permission made the shares of this company
drop by almost 40% 4. Therefore, RS must avoid privacy violations.

My Solution

To solve the cold start problem while not violating privacy rules, my research pro-
vides an embedding method to extract user behavior from rating information with-
out requiring any extra demographic data, which is called Collaborative Multi-key
Learning (CML) [35]. Then, I two deep learning models based on variational au-
toencoder are suggested to capture user key vector and item key vector from user
behavior and item description, respectively. Finally, using these two key compo-
nent vectors, my suggested model is able to learn implicit relations between items
and users concomitantly through a probabilistic generative model with neural net-
works. Experiments on real-world datasets demonstrate that my proposed model
significantly outperforms the state-of-the-art baselines. Specially, my model pro-
vides high performance with a large margin in the cold start problem.

1.2.2 Matrix Factorization Problem

In previous work, I used matrix factorization for rating information. Matrix factor-
ization breaks the rating matrix into two component matrices: user latent matrix
and item latent matrix. However, the relationship among users and items are com-
plicated; hence, matrix factorization will not work well in case of few interactions in
the matrix.

My Solution

Instead of matrix factorization, I propose a neural network model in rating informa-
tion because one of its advantages is that it can learn complex problems especially
with unstructured data as rating information.

4https://www.cnbc.com/2018/11/20/facebooks-scandals-in-2018-effect-on-stock.html

1.2. My Contribution 7

There are nine main neural network structures, and I found that autoencoder
(AE) is the most suitable for my purpose. AE approaches have recently become the
most used methods to highlight latent vector. One advantage of AE models is that
they learn the interest of users given to all items at the same time. Based on this,
it is possible to highlight the relationship among items which makes it possible to
archive high performance even for new users. However, it makes AE models hard
to combine with content information. Therefore, my model provides a solution to
combine both rating information and content information in AE approaches.

1.2.3 Tedious Suggestion Problem

Diversity and Serendipity

While the board business goals of RS include finding items that users will like most,
suggesting them to users and enhancing profit, the core engine of RS is based on
rating and content information to suggest the most related items to user. If user only
focuses on a domain, there are a high chance that RS will pick the most similar items
in the next suggestions. When all these recommended items are remarkably similar,
the risk increases that the user might not like any of these items [1]. For example,
if a user just bought a guitar, it may be impossible that they will buy another one
from another shop. Tedious suggestions not only make users feel indifferent but
also decrease the profits of providers in these platforms.

Therefore, to enhance profit and keep user to use system continuously, recom-
mended items should belong to different types or different domains. Recommend-
ing items that are different types or out of the domain scope ensures that the user
does not get bored by repeated recommendations of similar items and supports for
cross-selling to raise the profit [1].

My Solution

My research aims to suggest interesting items that surprise users; then through sur-
prise suggestions, my model can enhance cross-selling for providers. For example,
if a user bought a protein supplement product in the health care product category,
the system can suggest a sports outfit in the clothing category because when they
wants to build their muscle, it is possible that they exercise frequently. To do that, I
propose a cross-domain RS method.

A system contains a huge number of items across different categories. If a system
makes a suggestion based on a user-item matrix of all items, computation costs will
be high, and sometimes be impossible to sustain. Therefore, it is necessary to divide
the whole dataset into smaller domains and to make suggestions for each single
domain.

A domain is a particular field of thought, activity or interest [6]. Based on their
different attributes, items can be divided into smaller domains following many lev-
els:

• Attribute level: items are the same type and have different values in specific
attributes. (i.e., drama and comedy movies, only different in genres).

• Type level: items are the same type but have differences in almost attributes
(i.e., health care products and clothes in e-commerce system).

• Item level: items are distinct types (i.e., movies and products in E-commerce
system).

8 Chapter 1. Introduction about Recommender System

• System level: items are almost the same but are collected in different ways
or different operators (i.e., items in Netflix and Movielens are movies, but are
collected in different platforms).

Therefore, if recommendation lists are included in different domains, tedious
problem will be solved. In addition, cross-domain or multi-domain methods can
solve other disadvantage of single-domain. For example, users usually only have
interactions in some domains. Hence, with other domains, they do not have any in-
teraction, which makes it difficult to give useful recommendations in such domains.

My model is called as domain-to-domain translation model (D2D-TM) [36], which
based on variational autoencoder (VAE) and generative adversarial network (GAN)
to extract homogeneous and divergent features from domains. Domain cycle con-
sistency (CC) constrains the inter-domain relations. The experiments indicate that
simply with a set of interaction history in a user’s domain, D2D-TM not only boosts
the prediction results of the domain, but also infers items in other domains with high
performance. Therefore, it can solve both the tedious suggestion problem as well as
the cold start problem.

9

Chapter 2

Deep Learning Techniques for
Recommender System

A neural network is a model inspired by how brain works and enables a computer
to learn from observation data as human. Along with the Digital Revolution which
enriches data sources and the innovation of computer, deep learning has recently
become a powerful set of techniques for learning in neural networks, and has widely
demonstrated its powerful in many applications:

• Computer vision: object detection, face recognition, auto-driving, etc.

• Natural language processing: text analysis, speech recognition, translation, etc.

• Recommender system, bio-informatics, etc.

Deep learning allows not only for powerful performance but also the attractive
learning feature representation from the scratch. In the next part, I demonstrate the
basic concepts of deep learning, and a model frequently used in the present research:
variational autoencoder (VAE). VAE are widely applied in RS to obtain latent vectors
of both auxiliary and rating information. In the last part of this section, I introduce
some recent studies that use VAE and achieve high performance.

2.1 Basic Concepts

Figure 2.1 represents the general structure of a neural network. In a neural network,
numeric data points, called inputs, are fed into the neurons in the input layer. Each

FIGURE 2.1: General Structure of Neural Network

10 Chapter 2. Deep Learning Techniques for Recommender System

neuron in a layer is multiplied with weights and then gives outputs of the neuron,
which is transferred to the next layer. There are three types of general component
layers: input layer, some hidden layers and output layer. To understand about neu-
ral network more in depth, first I start with the following linear regression:

f (x, w) = w0x0 + w1x1 + · · ·+ wmxm =
[
x 1

]
×
[

w
b

]
= xw

Each neural can be considered as a linear regression model. Then a hidden layers
with n neurons will be:

f (X, W) = XW =

 f0
...
fn

However, to create complex mappings between the network’s inputs and out-

puts, each neural is wrapped by a non-linear activation functions, so that network
can learn and model complex data, such as images, video, audio, and datasets which
are non-linear or have high dimensions.

Therefore, the first hidden layer will be h(1) = a(1)(f (X, W)) while a(.) is activa-
tion function.

The ith hidden layer will be h(i) = a(i)(f (h(i−1), W(i)))
Then the output will be Y = a(`+1)(f (h(`), W(`+1))) where ` is the number of

hidden layers.
The hidden layer thus calculated is called a fully connected layer. There are two

other important layer types: convolutional layer and recurrent layer. While the con-
volutional layer is widely used for image processing, the recurrent layer outper-
forms in text or speech processing.

Deep learning model or deep neural network is a neural network with many
hidden layers. Traditionally, neural networks can have one or two hidden layers.
However, recent deep learning models can have more than 150 hidden layers.

2.1.1 Activation Function

The activation function is a mathematical "gate" between two layers. It can be con-
sidered as a transformation that converts values of neurons in current layers into
needed range such as [0, 1] or [−1, 1]. Furthermore, it can work as a switch to turn
the neurons on or off.

In a deep learning network, there are four non-linear activation function which
are used most frequently: sigmoid, tanh, relu and leaky relu. Function formulas as
well as advantages and disadvantages of the four activation functions are presented
in Table 2.1 and Figure 2.2

2.2 Variational Autoencoder (VAE)

VAE belongs to a family of AE models. AE aims to represent (code) for a set of data
in an unsupervised manner by training the network to ignore signal "noise". Figure
2.3a represents the general structure of an AE model. AE usually includes two parts:

• Encoder: h = f (x) with h representing a set of input x.

2.2. Variational Autoencoder (VAE) 11

Activation Func-
tion

Advantages Disadvantages

Sigmoid • Smooth gradient. • Vanishing gradient: pre-
diction is almost no change
for very high or very low val-
ues of input. As a result,
the network refuses to learn
further and reach an accurate
prediction slowly.

σ(x) = 1
1+e−x • The output of each neu-

rons is normalized
• Computationally expen-
sive

Output: [0, 1] • Clear predictions • Outputs are not zero cen-
tered

Tanh • Smooth gradient • Vanishing gradient
tanh(x) = ex−e−x

ex+e−x

Output: [−1, 1]
• Normalized outputs and
clear predictions following
zero centered.

• Computationally expen-
sive

Relu
relu(x) =
max(0, x)

• Computationally efficient
and non-linear: network can
be quickly converged

• The dying ReLU problem:
when inputs are not positive,
the output of the relu func-
tion becomes zero; backprop-
agation thus cannot perform.

Leaky Relu • Prevent the dying ReLU
problem by keeping a small
values for negative inputs
which enables backpropaga-
tion.

• Results are not consis-
tent—leaky ReLU does not
provide consistent predic-
tions for negative input
values.

lrelu(x) =
max(αx, x)

• Computationally efficient
and non-linear

TABLE 2.1: Advantages and Disadvantages of Activation Functions

(A) (B) (C) (D)

FIGURE 2.2: Activation Functions

12 Chapter 2. Deep Learning Techniques for Recommender System

(A) AE (B) VAE

FIGURE 2.3: General Structure of AE and VAE

• Decoder: Decoder: r = g(h) = g(f (x)) with r is reconstruction of x. AE tries
to make r close as possible to x based on representation h.

To obtain a representation vector h, AE models need to minimize the loss func-
tion L(x, r) = L(x, g(f (x))). Dimension of h is usually much smaller than x to avoid
becoming copy-paste function.

2.2.1 VAE Structure

Variational autoencoder (VAE) [24] is a probabilistic AE. The general structure of
VAE is presented in Figure 2.3b. Unlike other AE models, the latent variable z is
not generated directly by input, but is instead sampled from some prior distribution
pθ(z) with parameter set θ. The output is then generated from some conditional
distribution pθ(D|z), where D represents input data. Therefore, VAE can learn sig-
nificant features and generate new instances that appear to have been sampled from
the training set.

However, the true posterior pθ(z|D) is intractable, especially with continuous
variables. Similarly to [24], we seek parameter set φ so that variational inference
qφ(z|D) is approximate with the true posterior pθ(D|z). To measure the quality of
this approximation, we can use Kullback–Leibler divergence KL between the ap-
proximate and exact posteriors. Then, the problem becomes maximizing the lower
bound L(θ, φ; D) as indicated below:

L(θ, φ; D) = Eqφ(z|D)[log pθ(D|z)]−KL(qφ(z|D)||pθ(z)) (2.1)

2.2.2 VAE in Deep Neural Network

VAE in a deep neural network is called stacked variational autoencoder or simply
SVAE. SVAE usually has a symmetric structure. As Figure 2.4 illustrates, hidden
layer 1 has the same number of neurons as hidden layer 4, hidden layer 2 has the
same number of neurons as hidden layer 3, and input has the same number of neu-
rons as output.

In a deep learning network, to make training with back-propagation possible, a
reparameterization trick [24] is applied to express a random variable z as a deter-
ministic variable z = µ + σ � ε, where µ is a mean vector and σ is a vector that

2.3. VAE in Recommender System 13

FIGURE 2.4: Network Structure of Stacked Variational Autoencoder

consists of a diagonal component of the covariance matrix. Both µ and σ are outputs
of the encoder network with input x, denoted by E(x). Furthermore, � signifies an
element-wise product; ε is generated from a Gaussian distribution N (0, I) with I as
the identity matrix. However, xrec will be the output of the generator network with
input z as xrec = G(z).

It is noteworthy that VAE training is aimed at minimizing a variational upper
bound, which is

L = KL(q(z|x)‖p(z))−Eq(z|x)[log p(x|z)] = LKL + Lrec, (2.2)

with LKL = KL(q(z|x)‖p(z)),
and Lrec = −Eq(z|x)[log p(x|z)],

where KL is the Kullback–Leibler divergence.
From now, to be simpler, I will call stacked variational autoencoder "variational

autoencoder" or VAE.

2.3 VAE in Recommender System

As illustrated in Chapter 1, there are two main kinds of information in recommender
systems: rating and content. VAE can extract important features of both information
types, that provide give high performance, as proved by many pieces of research.

2.3.1 VAE for rating information

Muli-VAE [31] proposed a variant of VAE for recommendation with implicit data.
The authors introduced a principled Bayesian inference approach for parameters es-
timation and demonstrated the advantages of multinomial likelihood function for
click vectors compared with commonly used functions such as Gaussian or log like-
lihood. Multi-VAE only considers implicit user feedback – namely an input of Multi-
VAE is a vector represented for a user. The length of the vector equals to the number
of items. Each item is presented by a neuron. If the user has an interaction with an
item, its neuron in the vector will be 1 and be 0 if vice versa. Multi-VAE structure

14 Chapter 2. Deep Learning Techniques for Recommender System

FIGURE 2.5: Collaborative Variational Autoencoder for Recom-
mender System

is the same as Figure 2.4, in which output is the probabilistic that the user will have
interactions in each neuron.

2.3.2 VAE for Content Information

Collaborative variational autoencoder (CVAE) [27] is a hierarchical Bayesian model
which integrates stacked variational autoencoder (VAE) into probabilistic matrix fac-
torization (PMF). While VAE focuses on extracting latent representation of item in-
formation, PMF concentrates on the relationship between users and items through
interaction history. VAE and PMF are tightly combined, which enables CVAE to bal-
ance the influences of side information and interaction history. Figure 2.5 illustrates
the graphical model of CVAE and its generative process is as follows:

• For each layer l of the generation network

– For each column n of the weight matrix Wl , draw: Wl,∗n ∼ N (0, λ−1
w IKl)

– Draw the bias vector bl ∼ N (0, λ−1
w IKl)

– For each row j of hl , draw hl,j∗ ∼ N (σ(hl−1,j∗Wl + bl), λ−1
s IK)

• For each user i, draw the latent variable ui ∼ N (0, λ−1
u IK)

• For each item j

– Draw prior distribution of the content variable, chosen to be a unit Nor-
mal distribution: zj ∼ N (0, IK)

– Draw a latent offset v′j ∼ N (0, IK)

– Draw latent variable of item as vj = v′j + zj

• Draw a rating rui for each user-item pair (u,i), rui ∼ N (UT
u Vi, C−1

ui)

where Wl and bl are the weight matrix and biases vector for layer l, Xl represents
layer l. λw , λs, λn, λv, λu are hyperparameters, Cui is a confidence parameter for
determining the confidence to observations.

15

Chapter 3

Collaborative Multi-Key Learning
with an Anonymization Dataset for
a Recommender System

3.1 Introduction

Existing RS methods can be categorized roughly into three classes [3]: content-based
methods, collaborative iltering (CF) based methods and hybrid methods. Content-
based methods [44, 37, 50] use auxiliary information such as user profiles or item
descriptions to identify and recommend relevant items to users. Alternatively, CF-
based methods [17, 31, 53] use a history view or buying patterns of users, so-called
rating information, to calculate similarity among users and users or among items
and items. They then suggest similar items to a user or suggest items that a similar
user has sought or bought. Generally, CF-based methods can achieve higher per-
formance than content-based methods and can suggest surprisingly relevant items.
Nevertheless, their performance is low in cases of sparse data or a cold start [40],
whereas content-based methods can accommodate users. Therefore, recently, hybrid
methods [30, 58, 8], which are a combination of collaborative and content informa-
tion, have gained popularity.

Rating information is extremely important with an RS. As I mentioned before,
rating information can be feedback of two types: implicit or explicit. In typical ex-
plicit feedback, a user will provide ratings for items on a Likert scale [22], with or
without a review. Although explicit feedback can be negative or positive, implicit
feedback is only positive. With implicit feedback, rating between a user and an item
will be 1 if this user had interactions to that item such as view, like or purchase.
Otherwise, the rating will be 0. Therefore, explicit feedback might represent user
behavior better than implicit feedback. In attempting to improve performance, a
recommendation system will try to collect feedback that is as explicit as possible.
However, with explicit feedback, it is easier to require a user to assign a rating score
than to write a review because the review costs much time to write. For that reason,
to obtain a high-performance recommendation system, but to enable its deployment
with many recommendation systems, I propose a method that combines a rating
score with implicit feedback.

To achieve high performance while remaining suitable with many situations
in which demographic data are unavailable or too sensitive to use, my research
presents a collaborative multi-key learning (CML) method that takes advantage of
an average rating score with implicit feedback in a deep learning model. Two keys of
my model, user categorical and item textual information, are generated from public

16 Chapter 3. Collaborative Multi-Key Learning [35]

FIGURE 3.1: Flowchart of CML for a recommender system.

sources such as an average rating score and an item description, followed by opti-
mization in multi-key learning. Therefore, CML can not only cooperate with user
and item information to enhance performance; it can also perform appropriately
with many information systems.

Figure 3.1 portrays a flowchart of my proposed framework for a recommender
system that uses information while alleviating privacy concerns. The user informa-
tion is created by the user’s view and purchase history, whereas the textual informa-
tion is created by the title and description of products.

The main contributions of this section are summarized as presented below.

• Achieve high performance without demographic data

• Exploit the combination of average rating score and implicit feedback in a deep
learning model

• Propose deep learning models based on variational autoencoder to capture
latent representation of auxiliary information from many sources: variational
autoencoder for textual information (TextVAE) from products and variational
autoencoder for categorical information (CatVAE) from users.

• Provide a user key vector and an item key vector for recommendation tasks by
learning effective latent representations for content and implicit relations be-
tween items and users concomitantly through a probabilistic generative model
with neural networks.

• Experiments on real-world datasets to demonstrate that my proposed model
significantly outperforms state-of-the-art baselines.

The remainder of this paper is organized as follows: Section 3.2 presents a brief
review of related works. Section 3.3 introduces my proposed model. Then Section
3.4 presents my experiment and a comparison of my results to those obtained using
other methods, followed by a conclusion in Section 3.5.

3.2. Related Work 17

3.2 Related Work

Numerous reports describe recommender systems. I only review methods that are
most related to my research.

Regarding auxiliary information, collaborative topic modeling (CTR) [46] presents
a model that uses latent Dirichlet allocation (LDA) to learn latent variables. Yet, these
latent variables are often insufficiently effective, especially when the auxiliary infor-
mation is very sparse. To avoid heavy feature engineering processes, researchers
have recently emphasized applications of deep learning models that show great po-
tential in computer science areas, to extract features. Collaborative deep learning
(CDL) [47], collaborative knowledge base embedding (CKE) [56], and collaborative
variational autoencoder [27] have been proposed. They show promising perfor-
mance. CDL uses stacked denoising autoencoder (DAE) to extract features from
textual information and combines it with rating information through joint learning.
Collaborative Variational Autoencoder is the same as CDL, except it uses variational
autoencoder (VAE) [24] instead of denoising autoencoder. VAE seems better than
DAE for cases in which corruption of the input in observation space requires data
specific corruption schemes, whereas, if given a fixed noise level, then it will de-
grade the robustness of representation learning [27]. Nevertheless, these methods
completely ignore user information.

Regarding the use of user profiles, deep collaborative filtering [26] presents a
method that combines demographic and product information. To avoid using demo-
graphic data, Multi-VAE [31] and deep matrix factorization (DMF) [54] use a user-
item rating vector as the user profile input. Multi-VAE attempts to reconstruct a user
profile through VAE whereas DMF uses matrix factorization to learn latent features
of both users and item through neural networks, which allows a user-item rating
vector and item-user rating vector as input. However, both models are CF methods.
For that reason, they use no content information.

3.3 Proposed Collaborative Multi-Key Learning

This section presents the CML method, which not only learns feature vectors of user
and item information through two separated deep learning models. It also presents
how to combine latent vectors obtained from two models in a collaborative filtering
system. My model is divisible into three parts: categorical user information, textual
item information, and collaborative multi-key learning information.

Here, I designate a user index i (i = 1, · · · , I) and item index j (j = 1, · · · , J).
For this study, I use datasets of two types: user information data without privacy
concerns and textual information data. I denote user i data as a vector si, which
is a stack vector of one-hot-encoding feature content vector. Textual data (title and
description of items) are represented by a bag-of-words matrix X, which is a J-by-M
matrix, where J is the number of items and M is the vocabulary size. In addition, xj
is a vector which row j in X is transposed.

My goal is production of a good predictor rij of interaction of user i for item j
using dataset S = [s1, · · · , sI] and X.

3.3.1 Variational Autoencoder

Variational autoencoder (VAE) [24] is a probabilistic AE. Different from other AE
models, latent variable z is not generated directly by input, but is instead sampled
from some prior distribution pθ(z) with parameter set θ. Then output is generated

18 Chapter 3. Collaborative Multi-Key Learning [35]

TABLE 3.1: Summary of key notation used in this work. All vectors
are denoted as bold lowercase

si, xj User information of user i and textual information of item j
rij Interaction between user u and item v
ui, vj Representation vector of user i or item j
u†

i , v†
j Offset vector of user i and item j

zs, zx Latent vector of user information and textual latent vector of item
es, ds, ex, dx encoded and decoded layers of user and textual information
Q, c, W, b Set of weight and bias parameters connected among user or tex-

tual information and encoded layers, latent layers, and decoded
layers

from some conditional distribution pθ(D|z), where D represents input data. There-
fore, VAE can learn significant features and generate new instances that appear to
have been sampled from the training set.

However, the true posterior pθ(z|D) is intractable, especially with continuous
variables. Similarly to [24], I seek parameter set φ so that variational inference
qφ(z|D) is approximate with the true posterior pθ(D|z). To measure the quality of
this approximation, I can use Kullback–Leibler divergence KL between the approx-
imate and exact posteriors. Then my problem becomes maximization of the lower
bound L(θ, φ; D) as shown below.

L(θ, φ; D) = Eqφ(z|D)[log pθ(D|z)]−KL(qφ(z|D)||pθ(z)) (3.1)

3.3.2 Variational Autoencoder for Categorical Embedding (CatVAE)

In this subsection, I investigate an unsupervised deep learning model called CatVAE
to learn latent representations of categorical information.

Actually, CatVAE, a multiple hidden layer VAE for categorical information, com-
prises three parts: an encoder, a learning latent vector by probability, and a decoder.
As described in Section 3.3.1, latent variable zs,i of user i’s information is generated
by some posterior distribution pθs(zs,i) with parameter set θs for user information.
I denote a dimension of latent vectors {zs,i} as Ks. Here, {zs,i} represents a set of
zs,i (i,= 1, · · · , I). I use the notation hereinafter for other variables or data. Then
output si is generated by some conditional distribution pθs(si|zs,i). I strive to find
φs such that Kullback–Leibler divergence between qθs({zs,i}|S) and pθs({zs,i}|S) is
minimized.

In CatVAE, with a user, I designate es and ds respectively as encoder layers and
decoder layers. The output of encoder layer l of user i information is represented as
es,l,i, whereas the decoder layer output n is represented as ds,n,i. Latent vector zs,i is
generated from multivariate normal distribution N(µs,i, diag(σs,i)), where µs,i is the
mean vector and σs,i is a vector which consists of diagonal component of covariance
matrix. In addition, µs,i, σs,i are generated by the encoder network. Here, {Qe,l , Qd,n,
ce,l , cd,n} (l = 1, · · · , Ls, n = 1, · · · , Ns) respectively stand for weight matrices and
bias vectors of encoder layer l and decoder layer n. Qµ, Qσ, cµ, cσ are weight matrices
and bias vectors from the last layer encoder to latent variables. For convenience, I
use Q, and c to denote the collection of all layers of weight matrices and biases in
categorical embedding. Also, Ls-Ns CatVAE corresponds to an Ls layer encoder and
Ns layer decoder.

3.3. Proposed Collaborative Multi-Key Learning 19

FIGURE 3.2: Illustration of a 1-1 CatVAE.

Figure 3.2 presents my 1-1 CatVAE, which has one layer encoder and one layer
decoder. First, the input of user information is encoded by some hidden layers es,l,i.
Then, latent variable zs,i is generated from N(µs,i, diag(σs,i)) produced from a dense
function of the last encoded layer. The generative process of CatVAE is explained
below.

1. Encode process: For each layer l in encoded layers es

(a) For each column k weight matrix Qe,l , draw
Qe,l,k ∼ N (0, λ−1

q I)

(b) For bias parameter, draw ce,l ∼ N (0, λ−1
q I)

(c) For the output of layer, draw
es,l,i ∼ N (f (Qe,les,l−1,i + ce,l), λ−1

s I)

2. Generate latent variable: For each user, perform the following.

(a) For a mean variable, draw
µs,i ∼ N (f (Qµes,Ls,i + cµ), λ−1

s I)

(b) For the standard deviation, draw
σ2

s,i ∼ N (f (Qσes,Ls,i + cσ), λ−1
s I)

(c) For a latent variable, draw
zs,i = µs,i + σs,i � ε

3. Decode process: For each layer n in ds

(a) For each column k weight matrix Qd,n, draw
Qd,n,k ∼ N (0, λ−1

q I)

(b) For a bias parameter, draw bd,n ∼ N (0, λ−1
w I)

(c) For the output of a layer, draw
ds,n,i ∼ N (f (Qd,nds,n−1,i + cd,n), λ−1

s I)

where λw and λx are hyperparameters, ex,0,j = xj and dx,0,j = zx,j.

• λq and λs are hyperparameters

20 Chapter 3. Collaborative Multi-Key Learning [35]

FIGURE 3.3: Illustration of a 2-2 TextVAE.

• I is the unit matrix.

• f (.) is the activation function, which can be reLU, tanh, or sigmoid.

• ε ∼ N (0, I)

• operation �means A = B�C if Aij = Bij ×Cij

• es,0,i = si and ds,0,i = zs,i

3.3.3 Variational Autoencoder for Texual Embedding (TextVAE)

In this subsection, similarly to the previous categorical embedding part, TextVAE is
multiple hidden layers of VAE for textual information. Similarly to user informa-
tion, I have ex, zx, and dx respectively as encoder layers, latent vector and decoder
layers. I designate ex,l,j, zx,l,j and dx,l,j for item j in the same manner as user in-
formation. zx,l,i has dimension Kx. It is generated from N(µx,j, diag(σx,j). In addi-
tion, W, b are weight matrices and biases of all layers, whereas {We,l , Wd,n, be,l , bd,n}
(l = 1, · · · , Lx, n = 1, · · · , Nx), Wµ, Wσ, bµ, bσ are defined similarly to CatVAE. I
must also find parameter set φx for textual information such that qφx(zx,j|xj) is ap-
proximate with pθx(zx,j|xj).

Figure 3.3 presents my illustrations for 2-2 TextVAE. The generative process of
latent variables is shown below:

1. Encode process: For each layer l in encoded layers ex

(a) For each column k weight matrix We,l , draw
We,l,k ∼ N (0, λ−1

w I)

(b) For the bias parameter, draw be,l ∼ N (0, λ−1
w I)

(c) For the output of a layer, draw
ex,l,j ∼ N (f (We,lex,l−1,j + bl), λ−1

x I)

2. Generate latent variable: For each item,

(a) For a mean variable, draw
µx,j ∼ N (f (Wµex,Lx ,j + bµ), λ−1

x I)

3.3. Proposed Collaborative Multi-Key Learning 21

FIGURE 3.4: Collaborative Multi-key Learning Model.

(b) For the standard deviation, draw
σ2

x,j ∼ N (f (Wσes,Lx ,j + bσ), λ−1
x I)

(c) For a latent variable, draw
zx,j = µx,j + σx,j � ε

3. Decode process: For each layer n in dx,j

(a) For each column k weight matrix Wd,n, draw
Wd,n,k ∼ N (0, λ−1

w I)

(b) For a bias parameter, draw bd,n ∼ N (0, λ−1
w I)

(c) For the output of a layer, draw
dx,n,j ∼ N (f (Wd,ndx,n−1 + bd,n), λ−1

x I)

where λw and λx are hyperparameters, ex,0,j = xj and dx,0,j = zx,j.

3.3.4 Collaborative Multi-key Learning

Using CatVAE and TextVAE, I obtained two feature variables: zs and zx. Consid-
ering these feature variables as the "key" components, I propose a CML model as
shown in Figure 3.4. I designated rij as the interaction of user i to item j. The for-
mula is presented below.

1. For categorical embedding: Get latent variable {zs,i} for all users as 3.3.2

2. For textual embedding: Get latent variable {zx,j} for all items as 3.3.3

3. For each user i:

(a) Draw a latent user offset vector u†
i ∼ N (0, λ−1

u I).

(b) Set user key vector to be ui = u†
i + zs,i.

4. For each item j:

(a) Draw a latent item offset vector v†
j ∼ N (0, λ−1

v I).

22 Chapter 3. Collaborative Multi-Key Learning [35]

(b) Set item key vector as vj = v†
j + zx,j.

5. Draw a rating rij for each user–item pair (i, j):
rij ∼ N (uT

i vj, C−1
ij)

Here Cij is a confidence parameter similar to that for CTR [46] (Cij = a if rij = 1
and Cij = b otherwise)

Learning the parameters: As in [27], I seek parameters φs and φx such that
KL(qφs({zs,i}|{si})||p({zs,i})) and
KL(qφx({zx,j}|{xj})||p({zx,j)}) are minimized. Then, maximizing the posterior prob-
ability of {ui}, {vj}, {rji}, W, b, Q, and c is equivalent to maximizing the Evidence
Lower Bound as shown below.

LMAP =−∑
i,j

Cij

2
(rij − uT

i vj)
2 − λu

2 ∑
i
(Eqφs ({zs,i}|S))‖ui − zs,i‖2

2

− λv

2 ∑
j
(Eqφx ({zx,j}|X))‖vj − zx,j‖2

2 + Eqφs ({zs,i}|S) log p(S|{zs,i})

+ Eqφx ({zx,j}|X) log p(X|{zx,j})−KL(qφs({zs,i}|S)‖p({zs,i}))

−KL(qφx({zx,j}|X)‖p({zx,j}))−
λq

2 ∑
t
(‖Qt‖2

F + ‖ct‖2
2)

− λw

2 ∑
t
(‖Wt‖2

F + ‖bt‖2
2)

(3.2)

To maximize the objective in Eq. 3.2, I use an EM model as presented below.

1. Pre-train two unsupervised models, CatVAE and TextVAE, to get latent vari-
ables for initialization.

2. E step: Employ a stochastic gradient descent (SGD) algorithm to optimize
{µs,i}, {σs,i}, {µx,j} and {σx,j}. The gradient of L is obtainable.

∇µs,iL(θs, φs; si) '− µs,i +
1
L

L

∑
l=1

(Λui(EqθU [ui]− z(l)s,i) +∇z(l)s,i
log pθs(si|z(l)s,i))

∇σs,iL(θs, φs; si) '
1

σs,i
− σs,i +

1
L

L

∑
l=1

[Λui(EqθU [ui]− z(l)s,i)

+∇
z(l)s,i

log pθs(si|z(l)s,i)]� ε(l)

∇µx,jL(θx, φx; xj) '− µx,j +
1
L

L

∑
l=1

(Λvj(EqθV [vj]− z(l)x,j) +∇z(l)x,j
log pθx(xj|z(l)x,j))

∇σx,jL(θx, φx; xj) '
1

σx,j
− σx,j +

1
L

L

∑
l=1

[Λvj(EqθV [vj]− z(l)x,j)

+∇
z(l)x,j

log pθx(xj|z(l)x,j)]� ε(l)

Therein,

• L represents the number of samples in a datapoint,

• ε(l) ∼ N (0, I), and z(l) = µ + σ � ε(l), and

3.4. Experiments 23

• Λui ← (EqθV [VCjVT] + λuI),
where EqθV [VCjVT] = EqθV [V]CjEqθV [V]T + ∑j CijΛ−1

vj
, and

• Λvj ← (EqθU [UCiUT] + λuI)

where EqθU [UCjUT] = EqθU [U]CiEqθU [U]T + ∑i CijΛ−1
ui

.

3. M step: Update U and V as shown below.

ui ← (VCiVT + λuIK)
−1(VCiRi + λu(Eqθzs

[zs,i]))

vj ← (UCjUT + λvIK)
−1(UCiRi + λv(Eqθzx

[zx,j]))

Then calculate LMAP as 3.2 and repeat until convergence.

4. return to step 2 until convergence

3.3.5 Predict

I set D as representing the observed data: D = {S, X}. After all parameters, U, V,
and the weights of the inference network and generation network are learned, the
predictions can be made as presented below.

E[rij|D] = (E[u†
i |D] + E[zs,i|D])T(E[v†

j |D] + E[zx,j|D])

For point estimation, the prediction can be simplified as

r∗ij = (ui + µs,i)
T(vj + µx,j).

An item that has never been seen before will have no v term, but the µx can be
inferred through the content. As a result, both sparsity and cold start difficulties are
alleviated, leading to robust recommendation performance.

3.4 Experiments

This section explains evaluation of my proposed method for use with real-world
datasets from Amazon. Subsequently, I present a comparison with other state-of-the-
art methods. The experimentally obtained results constitute evidence of significant
improvement over competitive baselines.

3.4.1 Dataset Description

To demonstrate the effectiveness of my proposed method, I use four real datasets of
Amazon 1 from different domains for empirical studies: Tools and Home Improve-
ment, Sports and Outdoor, Health and Personal Care, and Home and Kitchen. With
each of the datasets, I took two parts: metadata and 5-core.

Metadata include item information such as id, title, description, categories, brand,
imageUrl, and price. I combined the title and description and followed the same pro-
cedure as that explained in another report of the relevant literature [46] to preprocess
the text information. After removing stop words, the top S discriminative words ac-
cording to the tf-idf [43] values are chosen to form the vocabulary. I chose S equal to
8000 in each dataset.

1http://jmcauley.ucsd.edu/data/amazon/

24 Chapter 3. Collaborative Multi-Key Learning [35]

TABLE 3.2: Structure of categorical user information

Feature
column

Feature content Comments

0–6 Weekday Weekday when the user gave rating score: 0 –
Monday, 1 – Tuesday, etc.

7–11 Rating score Rating which the user gave to items appeared in
training.

12– Categories List categories of a dataset

TABLE 3.3: Attributes of datasets after preprocessing: #user, #item,
and #feature respectively denote the number of users, number of
items, and number of user categorical features. Dense rate refers to

the density percentage of the rating matrix

Dataset #user #item #feature dense rate (%)
Tools and Home Improvement 2118 7780 830 0.2
Sports and Outdoor 4062 11560 994 0.13
Health and Personal Care 5584 13790 786 0.13
Home and Kitchen 7981 19184 896 0.08

Here, 5-core includes rating information such as user id, item id, rating (1–5
stars), review, and time. Each user and item has at least five interactions. I only
keep users that have more than 10 interactions. I treated ratings as implicit feed-
back, which leads to the following.

rij =

{
1 if user i rated for item j
0 otherwise

I took time, the rating score from 5-core reviews, and the item category from
metadata to create categorical user information. I create three one hot encoding
vectors corresponding to three feature contents which consist of weekday, rating
score, and category in Table 3.2. Assuming that user i rates an item j belonging to
category 1 as "very good (five star)" on Monday, the hot encoding vector is

si,j = [1, 0, 0, 0, 0, 0, 0,︸ ︷︷ ︸
weekday

0, 0, 0, 0, 1,︸ ︷︷ ︸
rating

1, 0, · · · , 0︸ ︷︷ ︸
category

]T.

Then I create input vector si for user i as

si = |Ji|−1 ∑
j∈Ji

si,j,

where Ji is an item set which user i rated in the dataset.
After preprocessing, I have details of four datasets as in Table 3.3.

3.4.2 Evaluation Scheme

For recommendation tasks, to simulate reality, I sorted user-rated items following
time. To prove that my model can work well in many cases, with each dataset, I
have two settings: sparse and dense. With each user, I took one (for sparse setting)

3.4. Experiments 25

TABLE 3.4: Hyperparameter settings of PMF, CDL, CVAE, and my
model for sparse and dense settings of respective datasets

Methods
Tools and Home Improve-
ment

Sports and Outdoor

sparse dense sparse dense
PMF ε = 1, λu =

0.01, λv = 0.01
ε = 3, λu =
0.01, λv = 0.01

ε = 3, λu = 0.01,
λv = 0.01

ε = 3, λu =
0.01, λv = 0.01

CDL λu = 10, λv =
1, λr = 0.1

λu = 10, λv =
1, λr = 1

λu = 10, λv = 1,
λr = 0.1

λu = 10, λv =
1, λr = 10

CVAE λu = 10, λv =
1, λr = 10

λu = 10, λv =
1, λr = 1

λu = 1, λv = 100,
λr = 0.1

λu = 10, λv =
1, λr = 1

CML λu = 10, λv =
10, λr = 1

λu = 10, λv =
1, λr = 1

λu = 10, λv = 10,
λr = 1

λu = 1, λv =
10, λr = 10

Methods
Health and Personal Care Home and Kitchen
sparse dense sparse dense

PMF ε = 3, λu =
0.01, λv = 0.01

ε = 3, λu =
0.01, λv = 0.01

ε = 3, λu = 0.01,
λv = 0.01

ε = 3, λu =
0.01, λv = 0.01

CDL λu = 1, λv =
10, λr = 0.1

λu = 0.1, λv =
1, λr = 0.1

λu = 0.01, λv =
100, λr = 0.1

λu = 1, λv =
1, λr = 1

CVAE λu = 1, λv =
100, λr = 0.1

λu = 0.1, λv =
100, λr = 10

λu = 1, λv = 100,
λr = 10

λu = 0.1, λv =
100, λr = 10

CML λu = 1, λv =
100, λr = 1

λu = 1, λv =
10, λr = 1

λu = 1, λv = 10,
λr = 0.1

λu = 1, λv =
10, λr = 10

or eight (for dense setting) first items for training, with one item for validation and
the rest for testing.

For evaluation, I adopt the following three representative top-N recommenda-
tion measures:

• Recall: Percentage of purchase items that are in the recommended list

recall@M =
number of items a user likes among top M

total number of items that the user likes

• Hit: stands for the hit ratio, or the percentage of users that have at least one
correctly recommended item in their list

Hit =

{
1 if there is at least a recommended item in user list
0 otherwise

• NDCG [51]: The most frequently used list evaluation measure that incorpo-
rates the positions of correctly recommended items.

The final reported result is the average recall over all users.

3.4.3 Baselines

The models included in my comparison are listed below.

• PMF: probabilistic matrix factorization [39] models latent factors of users and
items by a gaussian distribution. PMF is a collaborative filtering method. It
uses no user or item information.

26 Chapter 3. Collaborative Multi-Key Learning [35]

TABLE 3.5: Recall@10 of four datasets in both sparse and dense set-
tings (%)

Methods
Tools and Home Improve-
ment

Sports and Outdoor

sparse dense sparse dense
PMF 0.168 0.28 0.31 0.49
Multi-VAE 0.6 1.1 1.2 2.45
CDL 0.94 2.62 1.34 3.87
CVAE 1.28 3.08 1.6 4.47
CML 1.39 3.11 1.95 4.53
Improvement 8.6% 1% 20.6% 1.3%

Methods
Health and Personal Care Home and Kitchen
sparse dense sparse dense

PMF 0.15 0.18 0.2 0.33
Multi-VAE 0.21 0.44 0.46 0.86
CDL 0.47 2.06 0.41 1.3
CVAE 1.02 2.55 0.87 1.57
CML 1.24 2.62 0.93 1.59
Improvement 21.9% 2.7% 6.7% 1.3%

TABLE 3.6: Hit@10 of four datasets in both sparse and dense settings

Methods
Tools and Home Improve-
ment

Sports and Outdoor

sparse dense sparse dense
PMF 0.023 0.019 0.042 0.035
Multi-VAE 0.08 0.074 0.15 0.14
CDL 0.11 0.13 0.16 0.2
CVAE 0.15 0.16 0.19 0.22
CML 0.17 0.17 0.22 0.23
Improvement 13% 6.25% 15.8% 4.5%

Methods
Tools and Home Improve-
ment

Sports and Outdoor

sparse dense sparse dense
PMF 0.027 0.03 0.028 0.025
Multi-VAE 0.046 0.057 0.063 0.065
CDL 0.075 0.12 0.059 0.079
CVAE 0.14 0.147 0.117 0.098
CML 0.164 0.153 0.126 0.1
Improvement 17% 4.08% 7.69% 2.04%

3.4. Experiments 27

TABLE 3.7: NDCG@10 of four datasets in both sparse and dense set-
tings

Methods
Tools and Home Improve-
ment

Sports and Outdoor

sparse dense sparse dense
PMF 0.009 0.0093 0.02 0.017
Multi-VAE 0.0423 0.038 0.078 0.073
CDL 0.0592 0.067 0.088 0.107
CVAE 0.0729 0.087 0.112 0.12
CML 0.077 0.088 0.124 0.12
Improvement 5.62% 1.15% 10.7% 0%

Methods
Tools and Home Improve-
ment

Sports and Outdoor

sparse dense sparse dense
PMF 0.012 0.015 0.013 0.012
Multi-VAE 0.022 0.029 0.032 0.033
CDL 0.04 0.061 0.028 0.041
CVAE 0.083 0.076 0.061 0.05
CML 0.092 0.079 0.063 0.052
Improvement 10.84% 3.95% 3.28% 4%

• Multi-VAE[31]: is a collaborative filtering method that uses VAE to reconstruct
a user-item matrix. With each user, Multi-VAE creates a user profile by one hot
user-item vector

• CDL: collaborative deep learning [47] is a probabilistic feedforward model for
joint learning of stacked denoising autoencoder (SDAE) and collaborative fil-
tering.

• CVAE: collaborative variational autoencoder [27] is a generative latent vari-
able model that jointly models the generation of content and rating and uses
variational bayes with inference network for variational inference.

• CML: collaborative multi-key learning is my proposed model, which learns
and optimizes both textual representation for items and categorical represen-
tation for user simultaneously through two separate variational autoencoder
models. It then combines them in a multi-key learning process.

3.4.4 Experimental Settings

In the experiments, I first use grid search and a validation set to ascertain the optimal
hyperparameters for PMF, Multi-VAE, CDL, CVAE, as well as CML. Table 3.4 shows
the best hyperparameters for each algorithm along with each dataset in both sparse
and dense settings. With PMF, I chose ε in [0.1, 10], λv and λu in [0.01, 10]. With CDL,
CVAE, and CML, I chose λv in [1, 100], λu and λr in [0.1, 10].

After grid search, I realized that dimensions of latent variables Ks = Kx = 50
gave the best performance in addition to high speed. Therefore, I kept Ks = Kx = 50
in every algorithm with every datasets. Furthermore, I set Cij = 1 if user i has
interaction to item j, and Cij = 0.01 if not.

28 Chapter 3. Collaborative Multi-Key Learning [35]

With Multi-VAE, I used a three-layer model (L=6), which is ’#product-600-200-
50-200-600-#product’. With each layer, I applied an activation function tanh as in the
original paper.

With CDL and CVAE, I used a two-layer model (L=4), which has detailed archi-
tecture as ’8000-200-50-200-8000’.

With my model, I used 1-1 CatVAE model ’|si|-100-50-100-|si|’ for user informa-
tion, where |si| is the user information dimension, and using 2-2 TextVAE model
’8000-200-50-200-8000’ for item information.

3.4.5 Performance Comparison

Tables 3.5, 3.6, and 3.7 respectively portray Recall, Hit, and NDCG results obtained
using PMF, CDL, CVAE, and CML in four datasets with both sparse and dense set-
tings. From these results, I obtained the following observations.

• Learning features through a deep learning network improves the performance
to a considerable degree. This observation derives from the result that PMF,
the only model which uses no content information, performs worse than other
models. The best model, CML, outperforms PMF 727% and 639% in term
Recall@10 and Hit@10, respectively on sparse setting of Tools and Home Im-
provement dataset. Results indicate that hybrid methods are much better than
collaborative filtering methods.

• Extracting features from user categorical and item textual information can boost
the results. From the user profile, I took the summary not only of the user–item
matrix, but also time and categories. Therefore, my model can outperform
Multi-VAE by 184% to 590%

• Learning features through VAE also improves the performance. CDL (which is
using stacked denoising autoencoder to learning features) also performs worse
than CVAE, as does my model. On Tools and Home Improvement, CML can
excel 19% in dense setting, but 48% in a sparse setting. A possible reason is
that DAE only works well when I have more data.

• Learning features through both user categorical information and item textual
information can enhance the performance. Compared with CVAE, which only
uses item textual information, my model outperforms in all datasets with both
sparse and dense settings. That result is reasonable because user information
is important. However, because of privacy concerns, it is difficult to imple-
ment in recommender systems, whereas CML can use user information with
alleviation of privacy concerns.

Overall, it is readily apparent that CVAE is a strong baseline that beats CDL and
PMF in all datasets. Therefore, I specifically examine comparison of my model and
CVAE, which reveals that CML outperforms CVAE in all four datasets with margins
from 1% to 21.9% in Recall@10, and from 2.04% to 17%, especially with sparse setting
(margin 6.7%–21.9%) in Hit@10 and to 10% in NDCG@10. In addition, CML works
well in when a dataset is sparse. In a sparse setting of Sports and Outdoor (dense
rate 0.0087%) and Health and Personal Care (dense rate 0.0073%), CML can boost
results respectively by 20.6% and 21.9% for Recall@10.

To elucidate the effects of different hyperparameters on my model, I tested 1) an
activation function, 2) dimensions of latent variable z, and 3) the number of hidden
layers on Tool and Home Improvements with a sparse setting.

3.5. Conclusion 29

TABLE 3.8: Effects of different hyperparameters on CML

Activation
function

f (.) reLU tanh sigmoid
Recall@10 0.8 0.79 1.39

Dimension of
latent variable

Ks = Kx 20 50 100
Recall@10 1.15 1.39 1.26

Number of
hidden layers

#layers 0 1 2
Recall@10 1.12 1.39 1.14

Activation Function: relu and tand are usually more suitable for deep models
than sigmoid. However, in Table 3.8, sigmoid is apparently outstanding against relu
and tand. A possible reason is that CML is a probabilistic model so that sigmoid, for
which the output is in (0, 1) is better.

Dimensions of latent variable: When I increase the number of dimensions of
a latent variable, I might obtain more feature information. However, as Table 3.8
presents, more features does not mean greater effectiveness. In AE, if Ks or Kx is too
large, then the model will become a copy-paste model, and might not learn anything.

Number of hidden layers: I only change the number of layers of categorical
information. Increasing the number of layers will deepen the network, but such
deepening is not always better. In Table 3.8, one might note that if the layers are too
few (0 layer), the model seems underfitting, but if the layers are too numerous (2
layers), the model is apparently overfitting.

3.5 Conclusion

This section presents a proposal of the CML model that can extract user informa-
tion and product content as well as learn implicit relations between items and users.
This model can learn user information without using demographic data. Moreover,
it can combine content information of items through stochastic deep learning mod-
els. Consequently, it can be adopted easily by many e-commerce companies. Exper-
iments have demonstrated that my proposed model can outperform state-of-the-art
methods for recommendation to a significant degree and with more robust perfor-
mance. Experiments have also demonstrated that my model works well when the
recommender system is a new one that has only one rating for each user. Therefore,
start-up e-commerce companies can also apply my model without difficulty.

31

Chapter 4

Neural Collaborative Multi-key
Learning for Recommendation
System

4.1 Introduction

In the previous chapter, I used matrix factorization in rating information step. Ma-
trix factorization breaks rating information into two component matrices: user la-
tent matrix and item latent matrix. Although matrix factorization is famous and
widely used in RS, the relationship among users and items is complicated; hence
in case of few interactions in the matrix, it is difficult for matrix factorization to
achieve high performance. Recently, neural networks, especially deep learning mod-
els broke down numerous previous barriers and received close attention from both
the academy and the industry. For RS, plenty of researches presented substitute
methods based on neural networks for and proved that neural networks possibly
outperform traditional models such as matrix factorization and singular value de-
composition (SVD) [17, 41, 31].

To optimize recommender systems in rating information steps by neural net-
works, there are nine main approaches. As Zhange et al. argue, they are based
on nine main structures of neural networks [57]. Four of them are used more fre-
quently: multiple layer perceptron (MLP), convolutional neural network (CNN),
recurrent neural network (RNN) and autoencoder (AE). MLP is a feed-forward net-
work with one or more hidden layers between input layer and output layer [57].
MLP approaches such as NeuCF [17] learn user latent vector and item latent vector
separately, and then concatenate them into a single vector. The output of this model
is the score of the user and the item. One advantage of this method is that it can
combine with content information easily, so there are many studies based on MLP.
However, because each input is an combination of a user and an item, MLP-based
models may have difficulty in extracting the relationship among users and among
items, which may lead to low performance, especially with new users or new items.
CNN is a special feed-forward network that focuses on extracting the relationship
of local features by using convolutional layers and pooling operations [13]. RNN
is used for sequential data in which input of current data includes the output of
previous data [13]. Most papers that used CNN [18, 45] and RNN [52, 19] models
are considered interaction items of a user as a sequence. CNN-based models divide
input sequence into blocks with fixed window size, while RNN-based models sort
items following time order. The output of the previous item will be added to the
current item. Therefore, these methods are not suitable for inferring items for new
users, as they have few interactions. Recently, some studies have used AE models

32 Chapter 4. Neural Collaborative Multi-key Learning

TABLE 4.1: Technique comparisons of related papers with NeuCML.
In user information, -, +, ++ represent for not using user informa-
tion, using user information with demographic data and constructing
user information without demographic data. -, + in item information
columns represent for not using and using item information respec-

tively.

Model User in-
formation

Item infor-
mation

Prediction method

PMF [39] - - Matrix Factorization
NeuCF [17] - - Matrix Factorization + Multi-

ple Layer Perceptron
Multi-VAE [31] - - Autoencoder
BINN [28] ++ - Recurrent Neural Network
CVAE [27] - + Matrix Factorization
JVAE-CF [25] + - Autoencoder
CML ++ + Matrix Factorization
NeuCML ++ + Autoencoder

for rating information such as AutoRec and Multi-VAE [41, 31] and performed high
accuracy. AE approaches have recently become the most used methods to highlight
latent vector. One advantage of AE models is that they learn users’ interest which
given to all items at the same time. Based on this, they can highlight the relationship
among items that can achieve high performance even for new users. However, the
input of these models needs to include the information relative to all items, which
is hard to combine with content information due to the high input dimension. In
my research, I propose an AE model which combine both rating information and
content information. The main features of my work and other pieces of research are
summarized at Table 4.1

The main contributions of this section are outlined below.

• Propose Denoising Unbalanced Autoencoder for rating information step which
can boost model especially in sparse cases.

• Propose a method to combine content information and rating information into
AE model

• Experiments on real-world datasets to demonstrate that my proposed model
significantly outperforms state-of-the-art baselines.

The remainder of this section is organized as follows: Section 4.2 presents my
proposed model; Section 4.3 illustrates my experiments and Section 4.4 compares
of my results to those obtained using other methods. Finally, the conclusion is pro-
vided in Section 4.5

4.2 Neural Collaborative Multi-Key Learning Model

This section presents the NeuCML method, which is an end-to-end deep learning
model. My model is divisible into three parts: user information, item information,
and collaborative multi-key learning information. Collaborative multi-key learning
information is an combination of content information and rating information. The
general structure of the proposed NeuCML is presented in Figure 4.1.

4.2. Neural Collaborative Multi-Key Learning Model 33

TABLE 4.2: List of denotation

Denote Size Meaning
I, J number of user and item
Vu, Vi size of user information and item information vector
Mu I ×

Vu

one-hot-encoding feature content matrix for user informa-
tion

Mi J ×Vi a bag-of-words matrix for textual data of item information
Xr I × J user-item rating matrix
Zu, Zi stack of latent vector gotten from CatVAE and TextVAE as

CML
Xc I × J user-item content matrix
xc, xr I content vector and rating vector of a user u

Different AE structures are applied to all three parts. Content latent vectors are
extracted from auxiliary information by two variational autoencoder (VAE) models.
Then, a denoising unbalanced autoencoder network reconstructs the combination of
content latent vectors and rating information to predict users’ interest for all items.
General structures of two models are represented in Figure 4.2 c and d respectively.

Here, I designate a user index i(i = 1, · · · , I) and an item index j(j = 1, · · · , J).
Both content information and rating information are used to enhance system knowl-
edge about users and items. In content information, similar to CML, user informa-
tion of an user i, si is constructed from time and sub-categories in q transaction,
and item information of an item j, tj is the output of tf-idf for item description
and title. I denote Mu and Mi as user and item information respectively, where
Mu = [s0, s1, · · · , sI] and Mi = [t0, t1, · · · , tI].

Rating information is denoted as Xr for all users, and xr for a single user. My
goal is to generate a probability vector y for each user, where yi = [yi,0, yi,1, · · · , yi,J]
and yi,j measures interest probability that user i will give to item j. The details of the
denotation are presented in Table 4.2.

4.2.1 User-Item Content Matrix

Mu and Mi matrices which are represented for user information and item informa-
tion, are then learned by two separated VAE networks to collect user and item con-
tent latent matrices Zu and Zi respectively.

As all AE models do, VAE includes into two steps: encoder and decoder. As-
suming that I use L hidden layers for VAE encoder and decoder, with each input s
of user information, for encoder I have :

hu
e,i = a(Wu

e,i−1hu
e,i−1),

where a is activation function and he,0 = s. Then, a latent vector is extracted by:

µu = a(Wu
e,L,µhu

e,L), and σu = a(Wu
e,L,σhu

e,L)

zu = µu + σu � ε,

where ε = [ε0, ε1, · · · , ε||z||] and εi ∼ N (0, 1). Similar to encoder, I have decoder as:

hu
d,i = a(Wu

d,i−1hu
d,i−1),

34 Chapter 4. Neural Collaborative Multi-key Learning

where hu
d,0 = zu and hu

d,L = s̃ which is the generative vector of input vector s. User
content latent matrix Zu is constructed by [zu

1 , zu
2 · · · zu

I].
I use a similar VAE structure for item information to get item content latent ma-

trix Zi, which is constructed by [zi
1, zi

2 · · · zi
J]. Then, the user-item content matrix is

constructed as:
Xc = Zu × ZT

i (4.1)

I also denote xc = zu × ZT
i as user content vector.

4.2.2 Denoising Unbalanced Autoencoder for Rating Information

Unlike traditional denoising autoencoder (DAE) which corrupted the initial input
x to get a partially destroyed version x̃ using stochastic mapping x̃ ∼ qD(x̃|x), I
propose another strategy to corrupt input vector xr as x̃ ∼ qD(x̃|xr, xc)), which is
parameterized by the desired proportion λ. A fixed number λ is added into xr to
"fill out" "blanks" of rating information with content information.

x̃ = (xr ∗ (1− λ) + λ)� xc (4.2)

The AE is trained to "understand" the probability of interest from the user to
each item. The corrupted input x̃ is then mapped, as with the basic AE, to a hidden
representation z = fθ(x̃)). The hidden representation can be learned by a n-layers to
highlight important information from a complex corrupted input x̃ as follows:

hi = a(Wi−1hi−1) where a is an activation function
h0 = x̃

z = a(Wnhn)

From the hidden representation, I reconstruct an x̃r = s(W′z) where s is the
activation function. Different from other AE models in which encoder and decoder
are symmetric, I use a single layer to reconstruct a simple rating information matrix
from hidden representation, although a deeper network is used in the encoder part.
That is why I name it denoising balanced autoencoder.

4.2.3 Multinomial Likelihood Loss Function

Multinomial likelihood is proved in CCF and Multi-VAE [55, 31] as the most suitable
loss function for click vector. In my model,the multinomial likelihood loss function
for each user u is represented as:

L(x̃r, x) = ∑ x� log σ(x̃) (4.3)

where σ is softmax function and � represents an element-wise multiplication.

4.3 Experiments

This section explains the evaluation of my proposed method for use with real-world
datasets from Amazon. Subsequently, I present a comparison with other state-of-the-
art methods. The experimentally obtained results constitute evidence of significant
improvement over competitive baselines.

4.3. Experiments 35

TABLE 4.3: Attributes of datasets after preprocessing: #user, #item,
and #cat respectively denote the number of users, number of items,
and number of user categorical features. Dense rate refers to the den-

sity percentage of the rating matrix

Dataset #user #item #cat dense (%)
Home and Kitchen 7981 19184 896 0.08
Movies and TV 11543 13604 546 0.2
Kindle Store 7188 17545 990 0.12
Toys and Games 3192 10074 406 0.17
Beauty 3796 9889 252 0.18
Office Products 1775 2381 381 0.78
Patio, Lawn and Garden 323 945 326 1.6

4.3.1 Dataset Description

To demonstrate the effectiveness of my proposed method, I used seven categories
of Amazon datasets with various data sizes as well as dense rates. I used the same
structure to build user information as CML.

With item information, I combined the title and description and followed the
same procedure as that explained in another report [46] to preprocess the text infor-
mation. After removing stop words, the top S discriminative words according to the
tf-idf values are chosen to form the vocabulary. I chose a maximum of S of 8000 in
each dataset.

After preprocessing, I gathered the details of the datasets as indicated in Table
4.3. Next, I divided each dataset into two settings: sparse and dense. In the sparse
setting, I took only one item for training and the remaining for testing, whereas, I
took eight items for training in dense setting.

4.3.2 Evaluation Scheme

For the recommendation tasks, to simulate reality, I sorted user-rated items follow-
ing time. To prove that my model can work well in many cases, with each dataset, I
had two settings: sparse and dense. With each user, I took one (for the sparse setting)
or eight (for the dense setting) first items for training, with one item for validation
and the rest for testing.

For the evaluation, I adopted the following three representative top-N recom-
mendation measures:

• Recall: percentage of purchase items that are in the recommended list

recall@M =
number of items a user likes among top M

total number of items that the user likes

• NDCG [51]: the most frequently used list evaluation measure that incorporates
the positions of correctly recommended items.

• mAP: mean average precision. It not only measures whether items the user
like are in suggestion list, but also computes order of these items.

The final reported result is the average of all users.

36 Chapter 4. Neural Collaborative Multi-key Learning

TABLE 4.4: mAP@50, NDCG@50 and Recall@50 of 8 Amazon datasets
in sparse setting

Dataset Models mAP NDCG Recall

Home
and
Kitchen

NeuMF 0.04 0.011 0.03
Multi-VAE 0.074 0.114 0.033
CML 0.069 0.107 0.031
NeuCML 0.09 0.127 0.037
Improve(%) 21.62 11.4 12.12

Movies
and TV

NeuMF 0.115 0.1 0.022
Multi-VAE 0.276 0.18 0.051
CML 0.257 0.172 0.045
NeuCML 0.302 0.186 0.053
Improve(%) 9.42 3.33 3.92

Beauty

NeuMF 0.041 0.067 0.022
Multi-VAE 0.068 0.101 0.039
CML 0.081 0.097 0.029
NeuCML 0.088 0.113 0.043
Improve(%) 8.64 11.88 10.26

Toys and
Games

NeuMF 0.029 0.053 0.014
Multi-VAE 0.057 0.083 0.024
CML 0.055 0.082 0.022
NeuCML 0.064 0.089 0.025
Improve(%) 12.28 7.23 4.17

Patio,
Lawn
and
Garden

NeuMF 0.391 0.291 0.122
Multi-VAE 0.491 0.343 0.122
CML 0.361 0.307 0.101
NeuCML 0.675 0.41 0.13
Improve(%) 37.47 19.53 6.56

Office
Products

NeuMF 0.271 0.195 0.086
Multi-VAE 0.399 0.219 0.109
CML 0.284 0.211 0.079
NeuCML 0.417 0.229 0.113
Improve(%) 4.51 4.57 3.67

Kindle
Store

NeuMF 0.026 0.044 0.01
Multi-VAE 0.072 0.091 0.0231
CML 0.05 0.075 0.018
NeuCML 0.079 0.095 0.0244
Improve(%) 9.72 4.4 4.17

4.3. Experiments 37

TABLE 4.5: mAP@50, NDCG@50 and Recall@50 of 8 Amazon datasets
in dense setting

Dataset Models mAP NDCG Recall

Home
and
Kitchen

NeuMF 0.002 0.006 0.003
Multi-VAE 0.054 0.078 0.041
CML 0.057 0.08 0.044
NeuCML 0.062 0.087 0.048
Improve(%) 8.77 8.75 9.1

Movies
and TV

NeuMF 0.048 0.115 0.048
Multi-VAE 0.252 0.136 0.056
CML 0.535 0.223 0.12
NeuCML 0.54 0.227 0.124
Improve(%) 0.93 1.79 3.33

Beauty

NeuMF 0.165 0.096 0.06
Multi-VAE 0.054 0.07 0.038
CML 0.265 0.157 0.105
NeuCML 0.271 0.158 0.107
Improve(%) 8.64 11.88 1.9

Toys and
Games

NeuMF 0.036 0.058 0.033
Multi-VAE 0.027 0.047 0.024
CML 0.115 0.105 0.072
NeuCML 0.125 0.108 0.074
Improve(%) 8.7 2.86 2.78

Patio,
Lawn
and
Garden

NeuMF 0.298 0.195 0.137
Multi-VAE 0.306 0.188 0.144
CML 0.204 0.182 0.142
NeuCML 0.348 0.21 0.15
Improve(%) 13.73 11.7 4.17

Office
Products

NeuMF 0.086 0.106 0.056
Multi-VAE 0.08 0.106 0.052
CML 0.091 0.106 0.059
NeuCML 0.11 0.13 0.076
Improve(%) 20.88 22.64 28.81

Kindle
Store

NeuMF 0.064 0.084 0.037
Multi-VAE 0.059 0.065 0.026
CML 0.327 0.205 0.127
NeuCML 0.378 0.22 0.132
Improve(%) 15.6 7.32 3.94

38 Chapter 4. Neural Collaborative Multi-key Learning

4.3.3 Baselines

The models included in my comparison are listed below.

• NeuMF [17]: neural collaborative filtering which is combined of general ma-
trix factorization (GMF) and multiple layer perception (MLP). GMF and MLP
use the same input and item vectors, but are separately optimized. The final
output is based on the output of them.

• Multi-DAE [31]: is a collaborative filtering method that uses denoising autoen-
coder to reconstruct a user-item matrix. With each user, Multi-DAE creates a
user profile by one hot user-item vector

• CML: Collaborative multi-key learning learns and optimizes both textual rep-
resentation for items and categorical representations for users simultaneously
through two separate variational autoencoder models. It then combines them
in a multi-key learning process.

• NeuCML: neural collaborative multi-key learning uses denoising unbalance
autoencoder to infer interest probability of all items for each user by the com-
bination of rating information and latent content information. Latent content
information is constructed based on user and item latent information which
obtained through two separate VAE models.

4.3.4 Experiment Settings

In the experiments, I first used q grid search and a validation set to ascertain the
optimal hyperparameters. I used the code provided by authors for all baselines.
With NeuMF, I found that a deeper network has higher performance in the Amazon
dataset. As grid search result, I picked number of factors as 50 and I used a network
as [1000− 200− 50] for multiple layer perceptron part.

With my model, I used two VAE networks that have q number of neurons in each
layer as [100− 50− 100] and [400− 200− 50− 200− 400] to learn the latent vector
of user information and item information respectively. For rating information, in the
sparse setting, I found that a shallow network with one or two hidden layers as [200]
or [200− 100] achieved the best performance whereas broad, deep structures such
as [4000− 2000− 1000] or [5000− 3000− 2000] performed better in dense setting.
Furthermore, I chose λ which balances rating information and content information
as 0.01

4.3.5 Performance Comparison

Tables 4.4 and 4.5 portray mAP@50, NDCG@50 and Recall@50 results obtained using
NeuMF, CML, Multi-VAE and NeuCML in seven datasets with sparse and dense
settings respectively. From these results, I obtained the following observations.

• Denoising unbalanced autoEncoder is better than matrix factorization, espe-
cially with the sparse setting. This observation derives from NeuCML outper-
forming than CML by 2.27% – 10.26% in dense settings, and 13.64% – 48.28%
in Recall@50.

• VAE model is better than the combination of GMF and MLP. This observation
derives from NeuCML outperforming than NeuMF by 53.9% – 203.8%; Multi-
VAE also outperforms better than NeuMF by 25.57% – 176.9% in mAP@50 of
all sparse settings

4.4. Conclusion 39

FIGURE 4.1: Recall@50 of Office Products dataset with different layers
and number of neurons settings

• Adding auxiliary information can boost systems not only in the accuracy but
also in the order of item lists. That mAP@50 of my model is better than Multi-
VAE by 4.51% – 38.46% in sparse settings and 13.72% – 540.7% in dense set-
tings proved this observations. User information in my model is built based
on transactions. Therefore, the denser of a transaction, the better a user in-
formation system can get, which is why my model outperforms Multi-VAE in
dense settings with large margin.

To elucidate the effects of different numbers of layers as well as number of neu-
rons, I tested 6 combination of layers and neurons for rating information in the Office
Products category with Multi-VAE and NeuCML. The result is illustrated in Figure
4.3. In Multi-VAE, the click input vector is so sparse that a deeper and wider network
cannot learn more information. However, in NeuCML, the click input vector is com-
bined with content information to become denser. The rich source of information
needs a deeper and wider network to highlight more important features.

4.4 Conclusion

This section presented a proposal of the NeuCML model that can extract user in-
formation and product content as well as learn implicit relations between items and
users. User information can be extracted from transactions without using demo-
graphic data. This model proposes a method to combine content information and
AE collaborative filtering approach that can achieve high performance in both sparse
and dense settings. In addition, this model also proposes a DUAE model, that ap-
propriately learns latent features of dense vectors as click vectors and content infor-
mation combination, and generates sparse click vectors.

41

Chapter 5

D2D-TM: A Cycle VAE-GAN for
Multi-Domain Collaborative
Filtering

5.1 Introduction

In a recommender system, there are possible to have plenty items such as hundreds
of millions products in Amazon and billions users in Facebook. Meanwhile, each
users interest only couple of items in some certain categories. It leads interaction
matrix among users and item becoming extremely sparse. To solve this problem, the
recommender system tends to divide items into small domains in which the items
have similar attributes [11]. Each domain will have specific characteristics. For ex-
ample, Amazon divides its items into categories based on their uses such as clothes
or health care products. With clothes, the most important features possibly are color
and material while customers conceivaly choose Health Care Products from prestige
producers. Netflix separated movies according to their genres like action or comedy.
Therefore, to ascertain these characteristics, each domain must be considered sep-
arately. For that reason, many studies have specifically examined a single domain
[12, 8, 7]. Nevertheless, single domains still present numerous difficulties [20]. For
example, they can not work well when a user has no interaction in the considered
domain or when companies want to cross-sell their products. That these problems
are solvable using items from multi-domains [5] has spurred my interest in propos-
ing multi-domain recommender systems.

Algorithms that specifically address a single domain can process items from mul-
tiple domains easily by aggregating all items into a single domain. However, be-
cause all items are learned by a sole network or function, difficulties arise in captur-
ing the specific characteristics of respective domains. For instance, a user enjoyed to
watch action comedies or sci-fi dramas movies may be supposed to be attractive by
action movies if comedies and dramas categories are consolidated because number
of action movies are overabundant compared to other genres. With this misunder-
standing, system tends to suggest action dramas movies which are different from
user’s type. Conversely, some algorithms specifically addressing multiple domains
extract latent features of the respective domains by a separated network [29, 34].
Although they can highlight the particular features of each domain, they have less
chance to obtain similar features among domains. If there is no information about
drama class, the user above is perhaps endorsed romantic dramas or horror dramas
movies since they are more popular. Nevertheless, not only specific characteristics
(differences) of each domain such as action comedies or sci-fi dramas are requisite
to obtain, but also mapping their similarities as "user who like this kind of movies in

42 Chapter 5. Domain-to-Domain Translation Model [36]

action comedies will also like that kind of movies in sci-fi dramas" is imperative. For
that reason, multi-domain systems must capture both to achieve good performance.

Some other multi-domain studies have specifically examined the transfer of knowl-
edge from a source domain that is much denser to a target domain, or from spe-
cific sources such as user search query or social network information [42, 38, 10].
Nevertheless, many companies are unable to implement such methods because it is
sometimes impossible to get much denser data or to collect data from these external
sources.

To address these difficulties, I propose a multi-domain network structure that can
capture both similar and different features among domains and which can treat ev-
ery domain equally by taking only implicit feedback inside the system as input. My
model is extended from unsupervised image-to-image translation networks (UNIT)
[32] for the recommender systems, called a domain-to-domain translation model
(D2D-TM). It is based on generative adversarial networks (GANs) and variational
autoencoders (VAEs). D2D-TM uses the user interaction history of each domain as
input and extract its features through a VAE-GAN network as well as restrains do-
mains by domain cycle consistency (CC). In a UNIT network, two VAE networks
extract highlights of the respective domains, then map them to create a fake image
which GAN then attempts to clarify with a real image. In my model, GAN has the
same purpose. D2D-TM generates an interaction list that a user might like in domain
B based on the user interaction history in domain A. Subsequently, GAN works to
classify a generated vector and a real vector in domain B, so that the generated net-
work is improved. Interaction vector for domain A is generated in similar way if
system has interaction history in domain B. However, layers of VAE of two kinds
with two purposes exist in my network: distinct layers and shared layers. First, in
each domain, distinct layers serve to classify user behaviors. With example above,
distinct layers in comedy and drama classes are required to point up that user is
interested in action Comedy and sci-fi drama respectively. Following, share layers
map specific behaviors of a domain to another domain. In addition, I improve CC
in UNIT network to domain cycle consistency so that it is more appropriate to rec-
ommendation task. Different from UNIT, D2D-TM requires a set of mutual users to
train. Other users can be inferred directly, without training, by using information of
only one domain.

In summary, the main contributions of this section are the following.

• Propose a multi-domain recommender system that can extract both homoge-
neous and divergent features among domains through the VAE-GAN-CC net-
work.

• Propose an end-to-end deep learning approach for a collaborative filtering rec-
ommender system that only uses the user interaction history as input

• Infer cross-domain and single-domain in a solely network

• Conduct rigorous experiments using two real-world datasets with four cou-
ple domains. Results of those experiments underscore the effectiveness of the
proposed system over state-of-the-art methods by a large margin.

The remainder of this section is organized as explained in the following. First,
Section 5.2 reviews related approaches and techniques for recommender systems in-
cluding VAEs, GANs, and a cross-domain recommender system. Section 5.3 presents
an explanation of details of my method with subsequent description of experiments
in Section 5.4. I also present conclusions in Section 5.5.

5.2. Related Work 43

FIGURE 5.1: The general structure of D2D-TM comprises six subnet-
works including two encoders EA, EB, two generators GA, GB, and
two discriminators DA, DB. Click vectors of a user in two domains xA
and xB are reconstructed respectively through two encoder–generator
pairs: {EA, GA} and {EB, GB}. Encoder and generator networks have
some distinct layers, denoted as D, to extract and generate divergent
features of two domains and some share layers, denoted as S, to map
these divergent features. Click vector xA is translated to vector xAB of
domain B through {EA, GB}. Also, click vector xB is translated to vec-
tor xBA of domain A through {EB, GA}. The translated vectors, along
with click vectors, then, are given into two discriminator networks

DA, DB to evaluate the actual conditions.

5.2 Related Work

Extensive studies have been conducted of RS, with reports presented in a myriad of
publications. This section is aimed at reviewing a representative set of approaches
that are closely related to my research.

5.2.1 Autoencoder

Autoencoder (AE) uses unsupervised learning, which has been shown to be effective
for learning latent variables in many deep-learning problems. Collaborative deep
learning (CDL) [47] and collaborative variational autoencoder (CVAE) [27] are two
well known papers that respectively describe the application of denoising autoen-
coder and variational autoencoder in hybrid methods. Two studies have used AE
to extract latent features from item description text, with related reports proposing
joint learning between these latent features and collaborative filtering. The recent
method, Multi-VAE [31] uses VAE for Collaborative Filtering to reconstruct a user–
item matrix. It achieves good results despite using only rating information.

5.2.2 Generative Adversarial Network (GAN)

As new unsupervised learning network, GAN can achieve promising results, espe-
cially in the realm of computer vision. Nevertheless, few GAN applications have
been reported for use with recommender systems. Actually, IRGAN [48] was the
first model to apply a GAN not only to an information retrieval area but also to a
RS. IRGAN extends discriminator and generator processes in traditional GANs to
discriminative retrieval and generative retrieval. Whereas discriminative retrieval

44 Chapter 5. Domain-to-Domain Translation Model [36]

learns to predict relevant score r given labeled relevant query–document pairs, gen-
erative retrieval is designed to generate a fake document to deceive discriminative
retrieval.

Recently, adversarial personal ranking (APR) [16], which enhances the Bayesian
personal ranking with adversarial network has arisen as a new approach of GAN to
recommender systems, along with GAN-HBNR [4], which proposes a GAN-based
representation learning approach for heterogeneous bibliographic network.

5.2.3 Cross-Domain Recommender System

Today, companies are striving to provide diverse products and services to users. For
example, Amazon is not only e-commerce platform, but also an online movie and
music platform. Therefore, cross-domain recommender systems are necessary for
them. Moreover, cross-domain RSs can solve data sparsity and the cold start prob-
lem, which are important issues related to single-domain RSs. Several works explor-
ing cross-domain RSs have included multiview deep neural network (MV-DNN)
[10], neural social collaborative ranking (NSCR) [49], and cross-domain content-
boosted collaborative filtering neural network (CCCFNET) [29]. Actually, MV-DNN
extracts rich features from the user’s browsing and search histories to model user
interests, whereas item features are extracted from three sources including the title,
categories, and contents with news or description with Apps. Then it calculates a
relevant score using a cosine function. Another method, NSCR, attempts to learn
embedding of bridge users with user–user connections taken from social networks
and user–item interaction. Alternatively, CCCFNET aims to learn content-based em-
bedding so that the model can transfer both content-based and collaborative filtering
across different domains simultaneously. A point of similarity among these methods
is that they require external information from other sources. For example, MV-DNN
requires a user search query, NSCR combines with user social network account,
whereas CCCFNET takes content information. Sometimes, it is impossible to get
this knowledge. Therefore, I propose a cross-domain model that uses only implicit
feedback inside the system.

5.3 Method

I use u ∈ {1, · · · , U} to index users, iA ∈ {1, · · · , IA} to index items belonging
to domain A, and iB ∈ {1, · · · , IB} to index items belonging to domain B. In this
work, I consider learning implicit feedback. The user-by-item interaction matrix is
the click 1 matrix X ∈ NU×I . The lower case xu = [xu1, xu2, · · · , xuI]

T ∈ NI is a
bag-of-words vector, which is the number of clicks for each item from user u. With
two domains, I have matrix XA ∈ NU×IA with xA = [xA1, xA2, · · · , xAIA]

T ∈ NIA for
domain A, and XB ∈NU×IB with xB = [xB1, xB2, · · · , xBIB]

T ∈NIB for domain B. For
simplicity, I binarize the click matrix, meaning that xui = 1 if user u has click on item
i and xui = 0 otherwise. Also, 0 can be regarded as missing values in X, and can be
generated through my framework. It is straightforward to extend its use to general
count data.

1I use the verb "click" for concreteness. In fact, this can be any type of interaction such as "watch",
"view," or "rating."

5.3. Method 45

5.3.1 Framework

My framework, as presented in Figure 5.1, is based on variational autoencoder (VAE)
[24] and generative adversarial network (GAN) [14]. In my model, VAE models have
the main responsibility of extracting a latent feature of input, whereas GAN specifi-
cally examines classification of a user real interaction vector and a generated vector
which supports the VAE networks. GAN is applied exclusively for training phrase.
D2D-TM comprises six subnetworks including two domain click vector encoders EA
and EB, two domain click vector generators GA and GB, and two domain adversarial
discriminators DA and DB. I maintain the framework structure as explained in a
report of an earlier study[32]. In addition, I share weights of the last few layers in
EA and EB, so that my model not only extracts different characteristics of two model
in the first layers; it also learns their similarities. In parallel, I also share weights of
the few first layers in GA and GB to make my model able to generate both similar
and divergent features. In Figure 5.1, share layers are denoted as S, whereas distinct
layers are denoted as D.

In training, the user interaction vectors for domain A and B are extracted high-
light representations by D layers in the encoder; then these features are shared weight
in S layers in assumption that user has some consistency behaviors among domains.
Furthermore, I obtain latent vector zA and zB, which are used for not only recon-
structing interaction vectors, but also generating interactions for opposite domains.
To generate, latent vector zA for domain A is reconstructed by S layers, then masked
by D layers in GB. Finally, the GAN discriminator is used to detect which vector was
generated from the other source.

5.3.2 VAE

VAE includes two processes: an encoder that maps input x to a latent representation
z and a generator that re-maps z to xrec: z ∼ q(z|x) and xrec ∼ p(x|z), with q(z|x)
and p(x|z) are two conditional distributions.

In a deep learning network, to make training with back-propagation possible, a
reparameterization trick [24] is applied to express a random variable z as a deter-
ministic variable z = µ + σ � ε, where µ is a mean vector and σ is a vector that
consists of a diagonal component of the covariance matrix. Both µ and σ are out-
puts of the encoder network with input x, denoted by E(x). Also, � signifies an
element-wise product; ε is generated from a Gaussian distribution N (0, I) with I
as the identity matrix. However, xrec will be the output of generator network with
input z as xrec = G(z).

It is noteworthy that VAE training is aimed at minimizing a variational upper
bound, which is

L = KL(q(z|x)‖p(z))−Eq(z|x)[log p(x|z)] = LKL + Lrec, (5.1)

with LKL = KL(q(z|x)‖p(z)),
and Lrec = −Eq(z|x)[log p(x|z)],

where KL is the Kullback–Leibler divergence.
In my model, the encoder–generator pair {EA, GA} constitutes a VAE for domain

A, term VAEA. As explained above, the distribution of the latent code zA, which is
generated from qA(zA|xA), is given as µA + σA � ε with µA and σA as the output of

46 Chapter 5. Domain-to-Domain Translation Model [36]

encoder network EA. In this case, both qA(zA|xA) and p(zA) are Gaussian distribu-
tions. Therefore,

LKLA = KL(qA(zA|xA)‖p(zA))

=
1
2

K

∑
k=1

(1 + log(σ2
Ak)− µ2

Ak − σ2
Ak),

with K as the dimension of z and where σAk, µAk respectively represent elements of
vector σA and µA. Then, I try to generate vector xAA by a conditional distribution
pGA(xA|zA), which means that xAA is a reconstruction of the input click vector xA
through generator network GA with input zA :

xAA ∼ pGA(xA|zA).

Assume that the click vector of user u for domain A is xA = [xA1, · · · , xAIA]
T, and

that the number of clicks is NA, then ∑IA
i xAi = NA. However, let πA = f (GA(zA))

with f (.) is softmax function, so ∑IA
i πAi = 1. Therefore, reconstruction vector

xAA of this user can be a sample from a multinomial distribution Mult(NA, πA) or
pGA(xA|zA) = Mult(NA, πA). Therefore, the reconstruction loss for xAA is

LrecA = −EzA∼qA(zA|xA)[log pGA(xA|zA)]

= −EzA∼qA(zA|xA)[
IA

∑
i

xAi log πAi].

Hereinafter, I also use a multinomial distribution for pGB .

LVAEA = λ1LKLA + λ2LrecA . (5.2)

The hyperparameters λ1 and λ2 control the weights of the reconstruction term. The
KL divergence terms penalize deviation of the latent code from the prior distribu-
tion.

Similarly, {EB, GB} constitutes a VAE for domain B: The distribution of latent
code zB, which is generated from qB(zB|xB), is given as µB + σB � ε. The recon-
structed click vector is xBB ∼ pGB(xB|zB). In addition,

LVAEB =λ1LKLB + λ2LrecB

=λ1KL(qB(zB|xB)‖p(zB))− λ2EzB∼qA(zB|xB)[log pGB(xB|zB)]. (5.3)

5.3.3 Domain Cycle-Consistency (CC) and Weight-Sharing

I can translate a click vector xA in domain A to a click vector in domain B through
applying pGB(xB|zA), terms xAB. Similarly, click vector xBA from domain B to domain
A is generated as pGA(xA|zB).

To ensure that xAB ≈ xB and xBA ≈ xA, first, I enforce a weight-sharing constraint
relating two VAEs. Specifically, I share the weights of the last few layers of EA and
EB that are responsible for extracting high-level representations of the input click
vectors in the two domains. In parallel, I share the weights of the first few layers
of GA and GB responsible for decoding high-level representations for reconstructing
the input click vector. Weight-sharing usually is used in parallel architectures which
two networks are trained simultaneously. In my case, weight-sharing not only helps
my model converge better, but also supports encoders to extract common features

5.3. Method 47

between two domains. Moreover, because neurons corresponding to same features
are triggered in various scenarios, weight-sharing can improve generating ability of
my model.

However, weight sharing alone does not guarantee that two domain are matched.
I propose a domain cycle consistency with two cycles to constrain representations
between two domains. Cycle consistency is a way of using transitivity to supervise
CNN training, which is applied in many image-to-image translation papers [59, 32].
This loss pushes encoder and decoder to be consistent into each others. In detail,
with domain A, first, I constrain xAB, which is generated from xA, closes to xB.

xAB ∼ pGB(xB|zA).

Then, I re-map xAB to domain A and compel it to close to xA.

xABA ∼ pGA(xA|zAB) where zAB ∼ qB(zAB|xAB).

With same encoder and decoder network as VAE, I apply VAE loss function to do-
main cycle consistency as:

LCCA =LrecAB + LKLAB + LrecABA

=− λ3EzA∼qA(zA|xA)[log pGB(xB|zA)] + λ4KL(qB(zAB|xAB)‖p(zAB))

− λ3EzAB∼qB(zAB|xAB)[log pGA(xA|zAB)]. (5.4)

As VAE, I also have hyperparameter λ3 and λ4 to control weights among two terms.
As domain A, with domain B, I have:

xBA ∼ pGA(xA|zB)

xBAB ∼ pGB(xB|zBA) where zBA ∼ qA(zBA|xBA).

And, loss cycle consistency of domain B is:

LCCB =LrecBA + LKLBA + LrecBAB

=− λ3EzB∼qA(zB|xB)[log pGA(xA|zB)] + λ4KL(qA(zBA|xBA)‖p(zBA))

− λ3EzBA∼qA(zBA|xBA)[log pGB(xB|zBA)]. (5.5)

5.3.4 Generative Adversarial Network (GAN)

GAN generally includes two processes: a generator and discriminator. Whereas the
discriminator functions to recognize real and generated data, the generator is de-
signed to generate fake ones that resemble real ones. This competition drives both
processes to improve their network until the counterfeits are indistinguishable from
the genuine articles [14]. In my model, VAE with cycle consistency works as a gen-
erator process. I have two GANs: GANA = {VAEA, DA} and GANB = {VAEB, DB}.

With domain A, there are three outputs of VAE:

xAA ∼ pGA(xA|zA)

xBA ∼ pGA(xA|zB)

xABA ∼ pGA(xA|zAB).

However, I mainly emphasize resampling of a click vector from domain B to domain
A. My discriminator process will be used to detect the generated click vector xBA and

48 Chapter 5. Domain-to-Domain Translation Model [36]

real click vector xA. Then, optimizing GAN for domain A will yield

LGANA = λ0ExA∼PA[log DA(xA)] + λ0EzB∼qB(zB|xB)[log(1− DA(xBA)]. (5.6)

Like domain A, I try to detect generated click vector xAB and real vector xB. Then
the loss discriminator of domain B will be

LGANB(EA, GB, DB) = λ0ExB∼PB[log DB(xB)] + λ0EzA∼qA(zA|xA)[log(1− DB(xAB)].
(5.7)

5.3.5 Learning

I solve the learning problems of VAEA, VAEB, CCA, and CCB, GANA, and GANB
jointly as

min
EA,EB,GA,GB

max
DA,DB

[LVAEA(EA, GA) + LGANA(EB, GA, DA) + LCCA(EA, GA, EB, GB)

+ LVAEB(EB, GB) + LGANB(EA, GB, DB) + LCCB(EB, GB, EA, GA)],
(5.8)

where LVAEA , LVAEB , LGANA , and LGANB are defined respectively in 5.2, 5.3, 5.6 and
5.7.

First, I pre-train VAEA and VAEB separately to extract the representations of two
domains. Then, because GAN works as a competition among generator and discrim-
inator while the generator tries to make a generated vector resemble a real vector,
the discriminator attempts to classify them. I will optimize the generator and dis-
criminator process sequentially. I summarize the training process as

1. Minimize generator

Lgen =LVAEA + LVAEB + LCCA + LCCB + log(1− DA(xBA)) + log(1− DB(xAB)).

2. Maximize LGANA and LGANB separately

3. Repeat Steps 1 and 2 until convergence.

5.3.6 Predict

For Cross-Domain

• From domain A to domain B: Here I assume that user u only clicked some
items in domain A, and has no interaction with any item in domain B. I have
a history click vector xA. Then I want to recommend items in domain B to
him by generating vector xAB in which the higher probability means greater
interesting items to this user. First, encoder EA extracts highlight features of
xA with zA ∼ qA(zA|xA). Then zA is masked with weight features of domain
B through xAB ∼ pGB(xB|zA)

• From domain B to domain A: Similarly, with a history click vector xB of user u
in domain B, I predict click vector xBA in domain A as xBA ∼ pGA(xA|zB) with
zB ∼ qB(zB|xB).

5.4. Experiments 49

For Single Domain

• For domain A: First, I get zA ∼ qA(zA|xA) as before. To infer next items user
may like in domain A, I predict click vector xAA as xAA ∼ pGA(xA|zA)

• For domain B: Similar with domain A, I infer xBB as xBB ∼ pGB(xB|zB)

5.4 Experiments

Because no public dataset exists for multi-domain RS, this section presents the ex-
perimental setup as well as empirical evaluation of my proposed method through
my own datasets based on real-world datasets such as those of Amazon2 [15, 33]
and Movielens3. My experiments are designed to answer the following research
questions:

1. Does my proposed method outperform single domain state-of-the-art models
such as Multi-VAE and CDL as well as multi-domain SOTA models such as
CCCFNET? And how great is the relative improvement?

2. What are the effects of the respective components such as domain CC or GAN
in my method?

3. What are the effects of multinomial reconstruction loss function with the Lecky
rectified linear unit (ReLu) activation function, which are key hyperparameters
of my model, on model performance?

4. Can my proposed model extract specific features in each domain and map
them to another domain?

5.4.1 Dataset Description

Amazon

I create two datasets from four Amazon review subsets: Health_Clothes from Health
and Personal Care and Clothing, Shoes and Jewelry; Video_TV from Video Games
and Movies and TV. In each dataset, I maintain a list of users who gave reviews in
both subsets as well as the products which the users reviewed. I treat the rating as
implicit feedback.

rij =

{
1 if user i rated for item j
0 otherwise

Movielens

From dataset Movielens 1M, I create two subsets: Drama_Comedy and Romance_Thriller.
The Drama_Comedy dataset includes users who rated both Drama and Comedy
movies as well as the rated movies. I prepare the Romance_Thriller dataset simi-
larly and consider rating scores as implicit feedback of the Amazon dataset.

I name datasets following an A_B structure. For instance, the dataset designates
as Health_Clothing means domain A is Health and Personal Care products; domain
B is Clothing, Shoes and Jewelry products. After preprocessing, I have details of

2http://jmcauley.ucsd.edu/data/amazon/
3https://grouplens.org/datasets/movielens/

50 Chapter 5. Domain-to-Domain Translation Model [36]

TABLE 5.1: Information of datasets after preprocessing, #user,
#item_A, and #item_B respectively represent the number of users, the
number of items in domain A, and the number of items in domain B.
Dense_A and dense_B respectively refer to the density percentages of

rating matrixes from domain A and domain B
.

Dataset #user #item_A #item_B dense_A dense_B
Health_Clothing 6557 16069 18226 0.08 0.05
Video_TV 5459 10072 28578 0.14 0.1
Drama_Comedy 6023 1490 1081 3.3 3.3
Romance_Thriller 5891 455 475 5.27 6.4

four datasets as shown in Table 5.1. From this, it is apparent that Movielens is much
denser than Amazon. Therefore, it can be regarded as having tested my model in
both the sparse and dense case.

5.4.2 Evaluation Scheme

I use two ranking-based metrics: Recall@K and normalized discounted cumulative
gain (NDCG@K) [51]. With each user, I sort the predicted list and take the K highest
score items. Then I compare the results with ground truth items.

Recall@K is defined as the percentage of purchase items that are of the recom-
mended list:

Recall@K =
Number of items that a user likes in the top K

Total number of items that a user likes

However, NDCG@K is defined as the most frequently used list evaluation mea-
sure that incorporates consideration of the position of correctly recommend items.
First, the discounted cumulative gain (DCG) of a user is regarded as

DCG@K =
K

∑
i=1

2hiti − 1
log2(i + 1)

where

hiti =

{
1 if item ith in groud truth list
0 otherwise

Because DCG is unequal among users, it is normalized as

NDCG@K =
DCG@K
IDCG@K

,

where the ideal discounted cumulative gain is represented as IDCG.

IDCG@K =
|HIT|

∑
i=1

2hiti − 1
log2(i + 1)

Therein, |HIT| is a list of ground truth up to position K.
The final result represents the average over all users.

5.5. Performance Comparison 51

5.4.3 Experimental Settings

I divide all users in each dataset randomly following 70% for training, 5% for vali-
dating to optimize hyperparameters, and 25% for testing. I train models using the
entire click history of training users. In validation and test processes, I use a click
vector of domain A to predict the click vector of domain B and vice versa.

The overall structure for Drama_Comedy and Romance_Thriller dataset is [I-
200-100-50-100-200-I]: the first [100] is the shared layer in the encoder; the second
[100] is the shared layer in the generator; [50] represents the latent vector dimension;
and I stands for the number of products in domain A or B.

For the Amazon dataset, because the number of products in each domain is much
greater than in the Movielens dataset, the overall structure for Health_Clothing and
Video_TV dataset is [I-600-200-50-200-600-I], whereas the first [200] is share-layer
in encoder, the second [200] is the share-layer in the generator, [50] is latent vector
dimension, and I is the number of products in domain A or B. I also found that with
a sparse dataset such as Amazon, adding a dropout layer to the input layer will yield
a better result.

With each hidden layer in the encoder and generator, I apply a leaky ReLU acti-
vation function with a scale of 0.5. With the discriminator network, I use structure
[100-1] for all datasets and apply tanh function for each hidden layer, except for the
last layer.

All hyper-parameters demanded above are chosen based on Recall@50 in valida-
tion sets.

5.5 Performance Comparison

5.5.1 Baselines

The models included in my comparison are listed below:

• CDL: collaborative deep learning [47] is a probabilistic feedforward model
for the joint learning of stacked denoising autoencoder (SDAE) and for col-
laborative filtering. For item contents, I combine the title and descriptions in
Health_Clothing and Video_TV datasets and use movie descriptions from the
IMBD website 4 for Drama_Comedy and Romance_Thriller datasets. Then I
merge products of the two domains into one set. Subsequently, I follow the
same procedure as that explained in [47] to preprocess the text information.
After removing stop words, the top discriminate words according to the tf-
idf values were chosen to form the vocabulary. I chose 8000 words for each
dataset. Next, I use grid search and the validation set to ascertain the optimal
hyperparameters. I search λu in [0.1,1,10], λv in [1, 10, 100] and λr in [0.1, 1,
10]. Results demonstrate that the two-layer model with detailed architecture
as ’8000-200-50-200-8000’ yielded the best results in validation sets.

• Multi-VAE: Multi-VAE [31] is a collaborative filtering method that uses VAE
to reconstruct a user–item rating matrix. I concatenate two user–item matrixes
from two domains so that the click vector of user u is [x1A, x2A, · · · , xIA, x1B, · · · , xIB].
Results indicate that structure ’#products-600-200-50-200-600-#products’ with
a dimension of latent vector 50 yielded superior results in validation sets.

4https://www.imdb.com/

52 Chapter 5. Domain-to-Domain Translation Model [36]

• CCCFNET: content-boosted collaborative filtering neural network [29] is a
state-of-the-art hybrid method for cross-domain recommender systems. With
a user, it utilizes a one-hot-encoding vector that extracts from a user–item rat-
ing matrix, but with the item, it combines both one-hot-encoding vector from
the user–item matrix and item attributes. Then, after learning, user hidden rep-
resentation will include collaborative filtering (CF) factors and content prefer-
ence, whereas item hidden representation includes CF factors and item content
representation. I combine text attributes as in CDL with a user–item matrix, so
that with each domain, the item input vector is [xu1, xu2, · · · , xuN , xw1, xw2, · · · , xwS]
for which N is the number of users and S is 8000. The best neural network
structure is ’200-50’.

• APR: adversarial personal ranking [16] enhances Bayesian personal ranking
with an adversarial network. I use publicly available source code provided by
authors, but it cannot achieve competitive performance for the datasets used
for this study. Therefore, I do not plot the results of APR in Figure 5.2

5.5.2 Cross-Domain Performance

Figure 5.2 presents Recall and NDCG results of Multi-VAE, CDL, CCCFNET, and
D2D-TM for each domain in four datasets. In light of these results, I have made the
following observations.

• With Multi-VAE, it has some similar characteristics with my model such as uti-
lization of user interaction vectors as input and learning features through VAE.
A salient difference is that my model can learn differences of two domains in
low-levels of encoder and generate them in high-levels of generator. Results
demonstrate that if two domains differ in a certain attribute (Romance_Thriller
and Drama_Comedy dataset), my model is only 2.9%–7.8% higher than Multi-
VAE in Recall@50. However, with two domains that differ in many attributes
such as Health, Personal Care, and Clothing, Jewelry in the Health_Clothing
dataset, my model outperforms Multi-VAE by 44.8% in Recall@50. Another
reason is that only VAE might let the system overfit while extracting features
by VAE. In such cases, discriminating by GAN helps the system avoid over-
fitting. Therefore, it can learn latent features better. The result demonstrates
that learning specific features of each domain and integrating VAE-GAN can
enhance performance. I present more details about VAE-GAN in Section 4.5.1
as well as specific features of domains in Section 4.6.

• With CDL, although it is a hybrid method combined with text information, my
model still can achieve superior performance to that of CDL by 17.9% (Thriller)
to 129% (Health) in Recall@50. The first reason is similar to that for Multi-VAE:
single-domain methods do not work well in multiple domains. Moreover, dif-
ferent from CDL, my model must only train some users who have many inter-
actions in both domains, but it can conduct inference for all users. It not only
reduces sparsity problems; it is also appropriate with real systems in cases for
which no retraining is necessary when a new user comes.

• With APR, I are unable to obtain competitive performance. In addition to the
same reasons given for Multi-VAE and CDL, another possible reason is that
GAN might work well for generating problems but not for extracting features
as VAE. In my model, VAE is the main model to learn features. The purpose of

5.5. Performance Comparison 53

GAN is supporting VAE in obtaining good features of two domains by trying
to distinguish generations between them.

• Comparison with CCCFNET, a hybrid cross-domain method, demonstrates
that my model can outperform it by 52.7% (Health) to 88.8% (Thriller) in Re-
call@50. A possible reason is that the VAE-GAN model can learn latent features
better than the simple Multilayer perceptron model can.

All four algorithms in baselines worked with the assumption that a user’s behav-
ior does not change. Even with CCCFNET, the user behavior is modeled as a sole
network. However, based on special characteristics of each domain, user behavior
presents some differences among domains. For example, a user who is a saver has
only bought inexpensive clothes, but for health care products, the user must follow
a doctor’s advice and might make purchases based on perceived effectiveness, not
on price. My model can capture both similar and different features of user behavior.
Therefore, it is reasonable that my model can outperform the baselines.

Figure 5.4 and Figure 5.5 respectively present the effectiveness of each compo-
nent in my model as well as results of multinomial likelihood.

5.5.3 Single Domain Performance

My model outperforms not only in cross-domain problem but also single domain
tasks. Figure 5.3 showed my results in Health_Clothing and Drama_Comedy datasets
compared with Multi-VAE and CDL. Opposite with cross-domain, in single domain
task, my model exceeded other models with high margin in case two domains are
quite similar such as Drama movies and Comedy movies. That my NDCG@10 sur-
passed about 30% and 31% in Drama dataset as well as 12% and 28% in Comedy
dataset compared with Multi-VAE and CDL respectively showed that my model
pushed true positive items into higher position. In my model, addition knowledge
learned from other domain provided a re-ranking sort which boosted homogeneous
user behavior among domains. Inferred user behavior is determined based on not
only similar users in current domain, but only similar others in additional domain.

54 Chapter 5. Domain-to-Domain Translation Model [36]

(A) (B) (C) (D)

(E) (F) (G) (H)

(I) (J) (K) (L)

(M) (N) (O) (P)

FIGURE 5.2: Recall and NDCG for cross-domain

(A) (B) (C) (D)

(E) (F) (G) (H)

FIGURE 5.3: Recall and NDCG in same domain

5.5. Performance Comparison 55

(A) (B)

FIGURE 5.4: Comparing recall of model components in the
Health_Clothing dataset.

(A) (B)

FIGURE 5.5: Comparing the recall of reconstruction loss functions for
the Health_Clothing dataset.

5.5.4 Component

Because VAE is key model to learn latent features, I keep VAE and try to ignore CC,
GAN, or both. I designate D2D-TM full, D2D-TM VAE_CC, D2D-TM VAE_GAN,
and D2D-TM VAE respectively as my original model, model ignoring CC, ignoring
GAN and ignoring both CC and GAN. Experiments presented in Figure 5.4 demon-
strate that both CC and GAN are important to achieve high performance. However,
results obtained for D2D-TM VAE_GAN are slightly better than those obtained for
D2D-TM VAE_CC. A possible result is that GAN creates a strong constraint to dis-
tinct features of two domains so that VAE can avoid overfitting and extract latent
features better.

Weight-sharing and CC are important parts by which similarity can be learned
between two domains, shown as D2D-TM VAE_CC is higher than D2D-TM VAE
8.1% in Health and Personal Care.

The result that D2D-TM VAE is slightly better than Multi-VAE also demonstrates
that learning different domains separately can improve performance.

5.5.5 Reconstruction Loss Function

In the UNIT framework, they use L1 loss for reconstruction. That is suitable with im-
age data, but with click data, Multinomial log loss is more appropriate. Otherwise,

56 Chapter 5. Domain-to-Domain Translation Model [36]

TABLE 5.2: List of Comedy movies the user watched

Input Comedy Movies Genres
Do not be a Menace to South Central While
Drinking Your Juice in the Hood (1996)

Comedy

Cocoon (1985) Comedy, Sci-Fi
Galaxy Quest (1999) Adventure, Comedy, Sci-Fi
Men in Black (1997) Action, Adventure, Comedy,

Sci-Fi
The Cable Guy (1996) Comedy
Sleeper Comedy, Sci-Fi
Back to the Future (1985) Comedy, Sci-Fi
Beverly Hills Ninja (1997) Action, Comedy
Back to the Future Part II (1989) Comedy, Sci-Fi
10. The Adventures of Buckaroo Banzai Across
the Eighth Dimension (1984)

Adventure, Comedy, Sci-Fi

many studies of RS used log likelihood (log loss) or Gaussian likelihood (square
loss). Therefore, I experimented with loss of four types. With L1 loss, log loss, and
square loss, activation function tanh can achieve superior results.

Figure 5.5 shows that the Multinomial log likelihood can outperform other types.
A possible reason is that with the click dataset, each element in the input vector is
0 or 1. Therefore, the square loss and L1 loss are unsuitable. Otherwise, the click
input is assumed to be generated from a multinomial distribution. Demonstrably, it
is better than log likelihood.

5.6 Qualitative Comparison

To gain deeper insight into how D2D-TM is better than algorithms and examine
single-domain algorithms such as Multi-VAE and multi-domain algorithms such as
CCCFNET, I first examine an exemplary user in the Drama_Comedy dataset. I have
a list Comedy movies this user watched in Table 5.2. Using it, I attempt to predict the
top 10 Drama movies by D2D-TM, Multi-VAE, and CCCFNET. Multi-VAE gave a list
of both Drama and Comedy movies, but I only take the top 10 Drama movies. Table
5.3 presents these predicted lists of movies obtained using the three algorithms.

In the list of Comedy movies this user watched, if I do not see the specific do-
main, it is reasonable to infer that this user likes to watch Action, Adventure, Com-
edy and Sci-Fi movies. For that reason, Multi-VAE gave suggestions that combine as
many favorite genres as possible. Moreover, when looking deeper into the dataset,
one can observe that Action movies are more popular than Adventure or Sci-Fi
movies. If a movie belongs to many genres, I count one for each genre. Conse-
quently, I have 155 Action movies, whereas Adventure and Sci-Fi movies are 76 and
53 respectively. That might be a reason most of the suggestions of Multi-VAE are
Action movies (7/10).

However, CCCFNET suggested popular movies in the Drama domain that are
not combined with other genres or combined with Thriller or Romantic. The rea-
son is that CCCFNET can not obtain the mutual features of this user type in two
domains such as attraction to mixed-genre movies or interesting movies combined
with Sci-Fi. The reason is that CCCFNET optimizes user and item representation by
summarizing the rating loss of two domains, which creates a weak constraint among

5.6. Qualitative Comparison 57

TABLE 5.3: Qualitative Comparison between D2D-TM, Multi-VAE,
and CCCFNET to highlight the effectiveness of algorithms used
specifically for multi-domain and algorithms specifically for a single
domain. Italic typeface is used to denote correctly predicted movies.

Top 10 predicted drama movies (D2D-TM) Genres
1. Star Wars: Episode V – The Empire Strikes Back
(1980)

Action, Adventure, Drama,
Sci-Fi, War

2. 2001: A Space Odyssey (1968) Drama, Mystery, Sci-Fi,
Thriller

3. E.T. the Extra-Terrestrial (1982) Children’s, Drama, Fantasy,
Sci-Fi

4. Close Encounters of the Third Kind (1977) Drama, Sci-Fi
5. The Day the Earth Stood Still (1951) Drama, Sci-Fi
6. Contact (1997) Drama, Sci-Fi
7. Starman (1984) Adventure, Drama, Ro-

mance, Sci-Fi
8. Twelve Monkeys (1995) Drama, Sci-Fi
9. Gattaca (1997) Drama, Sci-Fi, Thriller
10. Deep Impact (1998) Action, Drama, Sci-Fi,

Thriller
Top 10 predicted Drama movies (Multi-VAE) Genres
1. Braveheart (1995) Action, Drama, War
2. Saving Private Ryan (1998) Action, Drama, War
3. Star Wars: Episode V – The Empire Strikes Back
(1980)

Action, Adventure, Drama,
Sci-Fi, War

4. The Godfather (1972) Action, Crime, Drama
5. Gladiator (2000) Action, Drama
6. E.T. the Extra-Terrestrial (1982) Children’s, Drama, Fantasy,

Sci-Fi
7. Stand by Me (1986) Adventure, Comedy, Drama
8. The Patriot (2000) Action, Drama, War
9. The Silence of the Lambs (1991) Drama, Thriller
10. The Godfather: Part II (1974) Action, Crime, Drama
Top 10 predicted Drama movies (CCCFNET) Genres
1. A Civil Action (1998) Drama
2. Gone with the Wind (1939) Drama, Romance, War
3. Rules of Engagement (2000) Drama, Thriller
4. Bringing Out the Dead (1999) Drama, Horror
5. The General’s Daughter (1999) Drama, Thriller
6. Return to Me (2000) Drama, Romance
7. Erin Brockovich (2000) Drama
8. Frequent (2000) Drama, Thriller
9. 2001: A Space Odyssey (1968) Drama, Mystery, Sci-Fi,

Thriller
10. The Man in the Iron Mask (1998) Action, Drama, Romance

58 Chapter 5. Domain-to-Domain Translation Model [36]

domains, and which presents difficulty capturing similar features of two domains.
Moreover, if a user has few interactions in a domain, then the result will not be good.

Different from Multi-VAE and CCCFNET, most of the Drama movies D2D-TM
suggested also belong to Sci-Fi (10/10). Checking the training dataset carefully re-
vealed that there are 11 users who have similar behavior to that of the considered
user. They rated about 20 Comedy movies, which are mostly combined Action, Ad-
venture and Sci-Fi genres. They have more than five mutual movies selected with
the considered user. When I examine Drama movies that they watched, all were
interested only in Drama and Sci-Fi movies. They did not watch movies that are
combined with Action. This result illustrated that D2D-TM can highlight the simi-
larities and differences of user behavior in two domains based on the history of other
users. It can also map these characteristics together.

5.7 Conclusion

This section presented a proposal of the D2D-TM network structure that is able to
extract both homogeneous and divergent features among domains merely by using
the user interaction history. This model is the first ever reported to apply VAE-GAN-
CC to multi-domain RS. Results of the experiments described herein have demon-
strated that my proposed model can strongly outperform state-of-the-art methods
for recommendation while simultaneously providing more robust performance. My
model outperforms single domain models because these models join items in two
domains, then only can extract homogeneous features. In addition, my model tran-
scends cross-domain models such as CCCFNET, which learns the domains sepa-
rately, because they only can obtain divergent features. Thanks to being able to
extract efficiently both homogeneous and divergent features, if two domains are dif-
ferent in many characteristics such as health care products and clothing products,
D2D-TM is capable to outperform with high margin. Moreover, because my net-
work uses only implicit feedback, it can be adopted easily for use by many compa-
nies. However, D2D-TM learns and infers with two domains only. In the future, I
will improve D2D-TM into multi-domain models so that domains are not chosen by
hand as current version, but all domains are learned, then system suggests not only
interesting items but also interesting domains to users.

59

Chapter 6

Conclusion

6.1 Conclusion

In this dissertation, I introduced about recommender system sas well as deep learn-
ing models. A strength of deep learning models is they can extract latent represen-
tations from heterogeneous information. These latent representations assist recom-
mender systems in achieving high performance as well as overcome the cold start
problem.

I also addressed three problems of recommender system. The first one is the
user cold start problem. How to give good recommendations to new users or users
who have few interactions is important question concerning many recommender
systems. My research provided collaborative multi-key learning (CML) model – an
effective way to extract user behavior from implicit feedback without requiring user
demographic data. My model can thus contribute to providing a rich user informa-
tion source to achieve high performance even in cold start situations. I used two
variational autoencoder networks to obtain user key vectors and item key vectors
from auxiliary information. Then I proposed a probabilistic collaboration model
with neural network to combine the key components with rating information. Ex-
periments on real world datasets indicated that my collaboration model significantly
outperforms other baselines.

In addition, I contributed with an update version of CML which is called as neu-
ral collaborative multi-key learning (NeuCML). In NeuCML, I proposed a denoising
unbalanced autoencoder (DUAE) network instead of probabilistic matrix factoriza-
tion (PMF) in CML to solve the low accuracy problem of PMF for new users. Both
theory and experiments illustrate the advantage of DUAE in learning complex rela-
tionships among items when compared with PMF, especially with new users. Fur-
thermore, I presented a method to combine DUAE with auxiliary information which
possibly overcomes the problem of AE models for rating information.

The last problem concerns tedious suggestions. Tedious suggestions may not
only lead users to leave the system, but also decrease the profit of providers. To
solve the issue, I proposed a domain-to-domain translation model (D2D-TM) for
cross-domain recommender system. With my model, RS can recommend items in
domains in which the user does not have any interaction. My model is based on
variational autoencoder (VAE) and generative adversarial network (GAN) to extract
homogeneous and divergent features from domains. Domain cycle consistency (CC)
constrains the inter-domain relations. The experiments demonstrated that only with
a set of interaction history in a domain of a user, D2D-TM not only boosts the pre-
diction results of the domain, but also infers items in other domains with high per-
formance.

Through the use of deep learning models, I proposed collaboration models that
cooperated many components information such as auxiliary information and rating

60 Chapter 6. Conclusion

of different domains to achieve high performance as well as to solve the existing
problems of recommender systems.

6.2 Future Plan

Future work may delve deep into how to include other components into end-to-end
networks. Some suggestions to improve cross-domain recommender systems are
the following:

• Checking whether the model works with multi-domain simultaneously. This
model allows systems to know not only which items a user may like, but also
which categories the user may be interested next.

• Investigating whether D2D-TM has a higher performance if content informa-
tion is used. Current D2D-TM can solve the cold start problem if a user is new
in one domain and has some interactions in another domain. With cooperating
content information, D2D-TM may solve cold start problem if a user is new in
the system.

Computational costs should be investigated when implementing model into real
recommender system. My current model uses one-hot-encoding for items with which
a user has interactions; hence the computational cost is high if there are millions or
billions of products. An embedding method for items may be suitable in the future.

61

Bibliography

[1] Charu C. Aggarwal. Recommender Systems: The Textbook. 1st. Springer Publish-
ing Company, Incorporated, 2016. ISBN: 3319296574.

[2] Charu C. Aggarwal and Philip S. Yu. Privacy-Preserving Data Mining: Mod-
els and Algorithms. 1st ed. Springer Publishing Company, Incorporated, 2008.
ISBN: 0387709916, 9780387709918.

[3] J. Bobadilla et al. “Recommender Systems Survey”. In: Know.-Based Syst. 46
(July 2013), pp. 109–132. ISSN: 0950-7051.

[4] Xiaoyan Cai, Junwei Han, and Libin Yang. “Generative Adversarial Network
Based Heterogeneous Bibliographic Network Representation for Personalized
Citation Recommendation”. In: AAAI. 2018.

[5] Iván Cantador et al. “Cross-domain recommender systems”. In: Recommender
Systems Handbook. Springer, 2015, pp. 919–959.

[6] Berkovsky Shlomo Cantador Iván Fernández-Tobías Ignacio and Cremonesi
Paolo. Cross-Domain Recommender Systems. Boston, MA: Springer US, 2015,
pp. 919–959. ISBN: 978-1-4899-7637-6. DOI: 10.1007/978-1-4899-7637-6_27.
URL: https://doi.org/10.1007/978-1-4899-7637-6_27.

[7] Jingyuan Chen et al. “Attentive collaborative filtering: Multimedia recommen-
dation with item-and component-level attention”. In: Proceedings of the 40th
International ACM SIGIR conference on Research and Development in Information
Retrieval. ACM. 2017, pp. 335–344.

[8] Wei-Ta Chu and Ya-Lun Tsai. “A Hybrid Recommendation System Consid-
ering Visual Information for Predicting Favorite Restaurants”. In: World Wide
Web 20.6 (Nov. 2017), pp. 1313–1331. ISSN: 1386-145X. DOI: 10.1007/s11280-
017-0437-1. URL: https://doi.org/10.1007/s11280-017-0437-1.

[9] Graham Cormode et al. “Anonymizing Bipartite Graph Data Using Safe Group-
ings”. In: Proc. VLDB Endow. 1.1 (Aug. 2008), pp. 833–844. ISSN: 2150-8097. DOI:
10.14778/1453856.1453947. URL: http://dx.doi.org/10.14778/1453856.
1453947.

[10] Ali Mamdouh Elkahky, Yang Song, and Xiaodong He. “A Multi-View Deep
Learning Approach for Cross Domain User Modeling in Recommendation
Systems”. In: Proceedings of the 24th International Conference on World Wide Web.
WWW ’15. Florence, Italy: International World Wide Web Conferences Steer-
ing Committee, 2015, pp. 278–288. ISBN: 978-1-4503-3469-3. DOI: 10 . 1145 /
2736277.2741667.

[11] Ignacio Fernández-Tobías et al. “Cross-domain recommender systems: A sur-
vey of the state of the art”. In: Spanish Conference on Information Retrieval. sn.
2012, p. 24.

https://doi.org/10.1007/978-1-4899-7637-6_27
https://doi.org/10.1007/978-1-4899-7637-6_27
https://doi.org/10.1007/s11280-017-0437-1
https://doi.org/10.1007/s11280-017-0437-1
https://doi.org/10.1007/s11280-017-0437-1
https://doi.org/10.14778/1453856.1453947
http://dx.doi.org/10.14778/1453856.1453947
http://dx.doi.org/10.14778/1453856.1453947
https://doi.org/10.1145/2736277.2741667
https://doi.org/10.1145/2736277.2741667

62 Bibliography

[12] Yuyun Gong and Qi Zhang. “Hashtag Recommendation Using Attention-based
Convolutional Neural Network”. In: Proceedings of the Twenty-Fifth Interna-
tional Joint Conference on Artificial Intelligence. IJCAI’16. New York, New York,
USA: AAAI Press, 2016, pp. 2782–2788. ISBN: 978-1-57735-770-4.

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT
Press, 2016. ISBN: 0262035618.

[14] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural in-
formation processing systems. 2014, pp. 2672–2680.

[15] Ruining He and Julian McAuley. “Ups and Downs: Modeling the Visual Evo-
lution of Fashion Trends with One-Class Collaborative Filtering”. In: Proceed-
ings of the 25th International Conference on World Wide Web. WWW ’16. Montréal,
Québec, Canada: International World Wide Web Conferences Steering
Committee, 2016, pp. 507–517. ISBN: 978-1-4503-4143-1. DOI: 10.1145/2872427.
2883037. URL: https://doi.org/10.1145/2872427.2883037.

[16] Xiangnan He et al. “Adversarial Personalized Ranking for Recommendation”.
In: The 41st International ACM SIGIR Conference on Research & Development
in Information Retrieval. SIGIR ’18. Ann Arbor, MI, USA: ACM, 2018, pp. 355–
364. ISBN: 978-1-4503-5657-2. DOI: 10.1145/3209978.3209981.

[17] Xiangnan He et al. “Neural Collaborative Filtering”. In: Proceedings of the 26th
International Conference on World Wide Web. WWW ’17. Perth, Australia: Inter-
national World Wide Web Conferences Steering Committee, 2017, pp. 173–
182. ISBN: 978-1-4503-4913-0. DOI: 10.1145/3038912.3052569. URL: https:
//doi.org/10.1145/3038912.3052569.

[18] Xiangnan He et al. “Outer Product-Based Neural Collaborative Filtering”. In:
Proceedings of the 27th International Joint Conference on Artificial Intelligence. IJ-
CAI’18. Stockholm, Sweden: AAAI Press, 2018, 2227–2233. ISBN: 9780999241127.

[19] Balázs Hidasi et al. “Session-based recommendations with recurrent neural
networks”. In: arXiv preprint arXiv:1511.06939 (2015).

[20] Liang Hu et al. “Personalized recommendation via cross-domain triadic fac-
torization”. In: Proceedings of the 22nd international conference on World Wide
Web. ACM. 2013, pp. 595–606.

[21] Hyunseok Hwang, Taesoo Jung, and Euiho Suh. “An LTV model and customer
segmentation based on customer value: a case study on the wireless telecom-
munication industry”. In: Expert Syst. Appl. 26 (2004), pp. 181–188.

[22] Gawesh Jawaheer, Martin Szomszor, and Patty Kostkova. “Comparison of Im-
plicit and Explicit Feedback from an Online Music Recommendation Service”.
In: Proceedings of the 1st International Workshop on Information Heterogeneity and
Fusion in Recommender Systems. HetRec ’10. Barcelona, Spain: ACM, 2010, pp. 47–
51. ISBN: 978-1-4503-0407-8.

[23] Su-Yeon Kim et al. “Customer segmentation and strategy development based
on customer lifetime value: A case study”. In: Expert Systems with Applications
31.1 (2006), pp. 101 –107. ISSN: 0957-4174. DOI: https://doi.org/10.1016/j.
eswa.2005.09.004. URL: http://www.sciencedirect.com/science/article/
pii/S0957417405001934.

[24] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In:
CoRR abs/1312.6114 (2013).

https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/3209978.3209981
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052569
https://doi.org/https://doi.org/10.1016/j.eswa.2005.09.004
https://doi.org/https://doi.org/10.1016/j.eswa.2005.09.004
http://www.sciencedirect.com/science/article/pii/S0957417405001934
http://www.sciencedirect.com/science/article/pii/S0957417405001934

Bibliography 63

[25] Wonsung Lee, Kyungwoo Song, and Il-Chul Moon. “Augmented Variational
Autoencoders for Collaborative Filtering with Auxiliary Information”. In: Pro-
ceedings of the 2017 ACM on Conference on Information and Knowledge Manage-
ment. CIKM ’17. Singapore, Singapore: Association for Computing Machinery,
2017, 1139–1148. ISBN: 9781450349185. DOI: 10.1145/3132847.3132972. URL:
https://doi.org/10.1145/3132847.3132972.

[26] Sheng Li, Jaya Kawale, and Yun Fu. “Deep Collaborative Filtering via Marginal-
ized Denoising Auto-encoder”. In: Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management. CIKM ’15. Melbourne,
Australia: ACM, 2015, pp. 811–820. ISBN: 978-1-4503-3794-6. DOI: 10.1145/
2806416.2806527. URL: http://doi.acm.org/10.1145/2806416.2806527.

[27] Xiaopeng Li and James She. “Collaborative Variational Autoencoder for Rec-
ommender Systems”. In: Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’17. Halifax, NS, Canada:
ACM, 2017, pp. 305–314. ISBN: 978-1-4503-4887-4.

[28] Zhi Li et al. “Learning from History and Present: Next-Item Recommenda-
tion via Discriminatively Exploiting User Behaviors”. In: Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
KDD ’18. London, United Kingdom: Association for Computing Machinery,
2018, 1734–1743. ISBN: 9781450355520. DOI: 10.1145/3219819.3220014. URL:
https://doi.org/10.1145/3219819.3220014.

[29] Jianxun Lian et al. “CCCFNet: A Content-Boosted Collaborative Filtering Neu-
ral Network for Cross Domain Recommender Systems”. In: Proceedings of the
26th International Conference on World Wide Web Companion. WWW ’17 Com-
panion. Perth, Australia: International World Wide Web Conferences Steer-
ing Committee, 2017, pp. 817–818. ISBN: 978-1-4503-4914-7. DOI: 10 . 1145 /
3041021.3054207.

[30] Jianxun Lian et al. “xDeepFM: Combining Explicit and Implicit Feature Inter-
actions for Recommender Systems”. In: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. KDD ’18.
London, United Kingdom: ACM, 2018, pp. 1754–1763. ISBN: 978-1-4503-5552-
0. DOI: 10.1145/3219819.3220023. URL: http://doi.acm.org/10.1145/
3219819.3220023.

[31] Dawen Liang et al. “Variational Autoencoders for Collaborative Filtering”. In:
Proceedings of the 2018 World Wide Web Conference. WWW ’18. Lyon, France: In-
ternational World Wide Web Conferences Steering Committee, 2018, pp. 689–
698. ISBN: 978-1-4503-5639-8. DOI: 10.1145/3178876.3186150. URL: https:
//doi.org/10.1145/3178876.3186150.

[32] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. “Unsupervised Image-to-Image
Translation Networks”. In: Advances in Neural Information Processing Systems
30. Ed. by I. Guyon et al. Curran Associates, Inc., 2017, pp. 700–708.

[33] Julian McAuley et al. “Image-Based Recommendations on Styles and Substi-
tutes”. In: Proceedings of the 38th International ACM SIGIR Conference on Research
and Development in Information Retrieval. SIGIR ’15. Santiago, Chile: ACM, 2015,
pp. 43–52. ISBN: 978-1-4503-3621-5. DOI: 10 . 1145 / 2766462 . 2767755. URL:
http://doi.acm.org/10.1145/2766462.2767755.

https://doi.org/10.1145/3132847.3132972
https://doi.org/10.1145/3132847.3132972
https://doi.org/10.1145/2806416.2806527
https://doi.org/10.1145/2806416.2806527
http://doi.acm.org/10.1145/2806416.2806527
https://doi.org/10.1145/3219819.3220014
https://doi.org/10.1145/3219819.3220014
https://doi.org/10.1145/3041021.3054207
https://doi.org/10.1145/3041021.3054207
https://doi.org/10.1145/3219819.3220023
http://doi.acm.org/10.1145/3219819.3220023
http://doi.acm.org/10.1145/3219819.3220023
https://doi.org/10.1145/3178876.3186150
https://doi.org/10.1145/3178876.3186150
https://doi.org/10.1145/3178876.3186150
https://doi.org/10.1145/2766462.2767755
http://doi.acm.org/10.1145/2766462.2767755

64 Bibliography

[34] Weiqing Min et al. “Cross-Platform Multi-Modal Topic Modeling for Personal-
ized Inter-Platform Recommendation.” In: IEEE Trans. Multimedia 17.10 (2015),
pp. 1787–1801.

[35] L. Nguyen and T. Ishigaki. “Collaborative Multi-key Learning with an Anonymiza-
tion Dataset for a Recommender System”. In: 2019 International Joint Conference
on Neural Networks (IJCNN). 2019, pp. 1–9.

[36] L. Nguyen and T. Ishigaki. “D2D-TM: A Cycle VAE-GAN for Multi-Domain
Collaborative Filtering”. In: 2019 IEEE International Conference on Big Data (Big
Data). 2019, pp. 1175–1180.

[37] Aäron van den Oord, Sander Dieleman, and Benjamin Schrauwen. “Deep Content-
based Music Recommendation”. In: Proceedings of the 26th International Confer-
ence on Neural Information Processing Systems - Volume 2. NIPS’13. Lake Tahoe,
Nevada: Curran Associates Inc., 2013, pp. 2643–2651. URL: http://dl.acm.
org/citation.cfm?id=2999792.2999907.

[38] Weike Pan et al. “Mixed factorization for collaborative recommendation with
heterogeneous explicit feedbacks”. In: Information Sciences 332 (2016), pp. 84–
93.

[39] Ruslan Salakhutdinov and Andriy Mnih. “Probabilistic Matrix Factorization”.
In: Proceedings of the 20th International Conference on Neural Information Process-
ing Systems. NIPS’07. Vancouver, British Columbia, Canada: Curran Associates
Inc., 2007, pp. 1257–1264. ISBN: 978-1-60560-352-0.

[40] Andrew I. Schein et al. “Methods and Metrics for Cold-start Recommenda-
tions”. In: Proceedings of the 25th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. SIGIR ’02. Tampere, Finland:
ACM, 2002, pp. 253–260. ISBN: 1-58113-561-0.

[41] Suvash Sedhain et al. “AutoRec: Autoencoders Meet Collaborative Filtering”.
In: Proceedings of the 24th International Conference on World Wide Web. WWW
’15 Companion. Florence, Italy: Association for Computing Machinery, 2015,
111–112. ISBN: 9781450334730. DOI: 10.1145/2740908.2742726. URL: https:
//doi.org/10.1145/2740908.2742726.

[42] Bracha Shapira, Lior Rokach, and Shirley Freilikhman. “Facebook single and
cross domain data for recommendation systems”. In: User Modeling and User-
Adapted Interaction 23.2-3 (2013), pp. 211–247.

[43] Karen Sparck Jones. “A Statistical Interpretation of Term Specificity and Its
Application in Retrieval”. In: Document Retrieval Systems. GBR: Taylor Graham
Publishing, 1988, 132–142. ISBN: 0947568212.

[44] Alessandro Suglia et al. “A Deep Architecture for Content-based Recommen-
dations Exploiting Recurrent Neural Networks”. In: Proceedings of the 25th Con-
ference on User Modeling, Adaptation and Personalization. UMAP ’17. Bratislava,
Slovakia: ACM, 2017, pp. 202–211. ISBN: 978-1-4503-4635-1. DOI: 10 . 1145 /
3079628.3079684. URL: http://doi.acm.org/10.1145/3079628.3079684.

[45] Jiaxi Tang and Ke Wang. Personalized Top-N Sequential Recommendation via Con-
volutional Sequence Embedding. 2018. arXiv: 1809.07426 [cs.IR].

[46] Chong Wang and David M. Blei. “Collaborative Topic Modeling for Recom-
mending Scientific Articles”. In: Proceedings of the 17th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. KDD ’11. San Diego,
California, USA: ACM, 2011, pp. 448–456. ISBN: 978-1-4503-0813-7.

http://dl.acm.org/citation.cfm?id=2999792.2999907
http://dl.acm.org/citation.cfm?id=2999792.2999907
https://doi.org/10.1145/2740908.2742726
https://doi.org/10.1145/2740908.2742726
https://doi.org/10.1145/2740908.2742726
https://doi.org/10.1145/3079628.3079684
https://doi.org/10.1145/3079628.3079684
http://doi.acm.org/10.1145/3079628.3079684
https://arxiv.org/abs/1809.07426

Bibliography 65

[47] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. “Collaborative Deep Learning
for Recommender Systems”. In: Proceedings of the 21th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. KDD ’15. Sydney,
NSW, Australia: ACM, 2015, pp. 1235–1244. ISBN: 978-1-4503-3664-2.

[48] Jun Wang et al. “IRGAN: A Minimax Game for Unifying Generative and Dis-
criminative Information Retrieval Models”. In: Proceedings of the 40th Interna-
tional ACM SIGIR Conference on Research and Development in Information Re-
trieval. SIGIR ’17. Shinjuku, Tokyo, Japan: ACM, 2017, pp. 515–524. ISBN: 978-
1-4503-5022-8. DOI: 10.1145/3077136.3080786.

[49] Xiang Wang et al. “Item Silk Road: Recommending Items from Information
Domains to Social Users”. In: Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval. SIGIR ’17. Shin-
juku, Tokyo, Japan: ACM, 2017, pp. 185–194. ISBN: 978-1-4503-5022-8. DOI: 10.
1145/3077136.3080771.

[50] Xinxi Wang and Ye Wang. “Improving Content-based and Hybrid Music Rec-
ommendation Using Deep Learning”. In: Proceedings of the 22Nd ACM Interna-
tional Conference on Multimedia. MM ’14. Orlando, Florida, USA: ACM, 2014,
pp. 627–636. ISBN: 978-1-4503-3063-3. DOI: 10.1145/2647868.2654940. URL:
http://doi.acm.org/10.1145/2647868.2654940.

[51] Yining Wang et al. “A Theoretical Analysis of NDCG Type Ranking Mea-
sures”. In: COLT. 2013.

[52] Chao-Yuan Wu et al. “Recurrent Recommender Networks”. In: Proceedings of
the Tenth ACM International Conference on Web Search and Data Mining. WSDM
’17. Cambridge, United Kingdom: Association for Computing Machinery, 2017,
495–503. ISBN: 9781450346757. DOI: 10.1145/3018661.3018689. URL: https:
//doi.org/10.1145/3018661.3018689.

[53] Yao Wu et al. “Collaborative Denoising Auto-Encoders for Top-N Recommender
Systems”. In: Proceedings of the Ninth ACM International Conference on Web Search
and Data Mining. WSDM ’16. San Francisco, California, USA: ACM, 2016, pp. 153–
162. ISBN: 978-1-4503-3716-8. DOI: 10. 1145/2835776.2835837. URL: http:
//doi.acm.org/10.1145/2835776.2835837.

[54] Hong-Jian Xue et al. “Deep Matrix Factorization Models for Recommender
Systems”. In: IJCAI. 2017.

[55] Shuang-Hong Yang et al. “Collaborative Competitive Filtering: Learning Rec-
ommender Using Context of User Choice”. In: Proceedings of the 34th Inter-
national ACM SIGIR Conference on Research and Development in Information Re-
trieval. SIGIR ’11. Beijing, China: Association for Computing Machinery, 2011,
295–304. ISBN: 9781450307574. DOI: 10.1145/2009916.2009959. URL: https:
//doi.org/10.1145/2009916.2009959.

[56] Fuzheng Zhang et al. “Collaborative Knowledge Base Embedding for Rec-
ommender Systems”. In: Proceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’16. San Francisco,
California, USA: ACM, 2016, pp. 353–362. ISBN: 978-1-4503-4232-2.

[57] Shuai Zhang, Lina Yao, and Aixin Sun. “Deep learning based recommender
system: A survey and new perspectives”. In: arXiv preprint arXiv:1707.07435
(2017).

https://doi.org/10.1145/3077136.3080786
https://doi.org/10.1145/3077136.3080771
https://doi.org/10.1145/3077136.3080771
https://doi.org/10.1145/2647868.2654940
http://doi.acm.org/10.1145/2647868.2654940
https://doi.org/10.1145/3018661.3018689
https://doi.org/10.1145/3018661.3018689
https://doi.org/10.1145/3018661.3018689
https://doi.org/10.1145/2835776.2835837
http://doi.acm.org/10.1145/2835776.2835837
http://doi.acm.org/10.1145/2835776.2835837
https://doi.org/10.1145/2009916.2009959
https://doi.org/10.1145/2009916.2009959
https://doi.org/10.1145/2009916.2009959

66 Bibliography

[58] Yongfeng Zhang et al. “Joint Representation Learning for Top-N Recommen-
dation with Heterogeneous Information Sources”. In: Proceedings of the 2017
ACM on Conference on Information and Knowledge Management. CIKM ’17. Sin-
gapore, Singapore: ACM, 2017, pp. 1449–1458. ISBN: 978-1-4503-4918-5. DOI:
10.1145/3132847.3132892. URL: http://doi.acm.org/10.1145/3132847.
3132892.

[59] Jun-Yan Zhu et al. “Unpaired Image-to-Image Translation Using Cycle-Consistent
Adversarial Networks”. In: IEEE International Conference on Computer Vision,
ICCV 2017, Venice, Italy, October 22-29, 2017. 2017, pp. 2242–2251. DOI: 10 .
1109/ICCV.2017.244.

https://doi.org/10.1145/3132847.3132892
http://doi.acm.org/10.1145/3132847.3132892
http://doi.acm.org/10.1145/3132847.3132892
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1109/ICCV.2017.244

	Declaration of Authorship
	Abstract
	Acknowledgments
	Introduction about Recommender System
	Recommender System
	Primary Objects in Recommender System
	Goals of Recommender System
	Basic Models
	Collaborative Filtering Models
	Content-Based Models
	Hybrid Models

	My Contribution
	Cold Start and Data Privacy Problem
	Cold Start Problem
	Data Privacy Problem
	My Solution

	Matrix Factorization Problem
	My Solution

	Tedious Suggestion Problem
	Diversity and Serendipity
	My Solution

	Deep Learning Techniques for Recommender System
	Basic Concepts
	Activation Function

	Variational Autoencoder (VAE)
	VAE Structure
	VAE in Deep Neural Network

	VAE in Recommender System
	VAE for rating information
	VAE for Content Information

	Collaborative Multi-Key Learning CML
	Introduction
	Related Work
	Proposed Collaborative Multi-Key Learning
	Variational Autoencoder
	Variational Autoencoder for Categorical Embedding (CatVAE)
	Variational Autoencoder for Texual Embedding (TextVAE)
	Collaborative Multi-key Learning
	Predict

	Experiments
	Dataset Description
	Evaluation Scheme
	Baselines
	Experimental Settings
	Performance Comparison

	Conclusion

	Neural Collaborative Multi-key Learning
	Introduction
	Neural Collaborative Multi-Key Learning Model
	User-Item Content Matrix
	Denoising Unbalanced Autoencoder for Rating Information
	Multinomial Likelihood Loss Function

	Experiments
	Dataset Description
	Evaluation Scheme
	Baselines
	Experiment Settings
	Performance Comparison

	Conclusion

	Domain-to-Domain Translation Model D2DTM
	Introduction
	Related Work
	Autoencoder
	Generative Adversarial Network (GAN)
	Cross-Domain Recommender System

	Method
	Framework
	VAE
	Domain Cycle-Consistency (CC) and Weight-Sharing
	Generative Adversarial Network (GAN)
	Learning
	Predict
	For Cross-Domain
	For Single Domain

	Experiments
	Dataset Description
	Amazon
	Movielens

	Evaluation Scheme
	Experimental Settings

	Performance Comparison
	Baselines
	Cross-Domain Performance
	Single Domain Performance
	Component
	Reconstruction Loss Function

	Qualitative Comparison
	Conclusion

	Conclusion
	Conclusion
	Future Plan

	Bibliography

