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Abstract: Nanocrystalline metallic materials with grain sizes of less 
than 100 nm exhibit high strength and unique characteristics, such as 
high levels of ductility and corrosion resistance. Mechanical milling 
techniques can be used to produce large amounts of nanocrystalline 
metallic powder. However, it is essential to perform a sintering 
treatment, which induces coarsening of the crystal grains, to form a bulk 
material from the mechanically milled powder. The cold spray technique is 
expected to effectively form a nanocrystalline metallic coating using the 
mechanically milled powder. This study focuses on pure iron coating, 
which is formed by a cold spray technique using mechanically milled pure 
iron powder. Pure iron powder, with crystal grains of ~100 nm, was 
obtained by a mechanical milling process, and was deposited onto a low-
carbon steel substrate by cold spraying. It was confirmed that a dense, 
nanocrystalline coating with a hardness of over 300 HV can be achieved; 
however, the deposition efficiency of this coating was half of that of 
the coating formed using the as-received powder. The improvement of the 
deposition efficiency and properties of such coatings was attempted using 
powder mixtures comprising both milled and as-received powders. The 
results indicate that the deposition efficiency and microstructure, 
directly linked to the mechanical properties of the coating, can be 
controlled by varying the content of the as-received powder of the 
mixture. 
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Highlights 

y The nanocrystalline pure iron coating can be obtained by employing mechanical milling 

combined with cold spraying. 

y The deposition efficiency and microstructure can be controlled using powder mixtures 

comprising both milled and as-received powders. 

y The milled and as-received powders in the mixture are deposited on the substrate 

independently without interaction with each other. 

*Highlights (for review)
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Abstract  

Nanocrystalline metallic materials with grain sizes of less than 100 nm exhibit high strength 

and unique characteristics, such as high levels of ductility and corrosion resistance. 

Mechanical milling techniques can be used to produce large amounts of nanocrystalline 

metallic powder. However, it is essential to perform a sintering treatment, which induces 

coarsening of the crystal grains, to form a bulk material from the mechanically milled powder. 

The cold spray technique is expected to effectively form a nanocrystalline metallic coating 

using the mechanically milled powder. This study focuses on pure iron coating, which is 

formed by a cold spray technique using mechanically milled pure iron powder. Pure iron 

powder, with crystal grains of ~100 nm, was obtained by a mechanical milling process, and 

was deposited onto a low-carbon steel substrate by cold spraying. It was confirmed that a 

dense, nanocrystalline coating with a hardness of over 300 HV can be achieved; however, the 

deposition efficiency of this coating was half of that of the coating formed using the 

as-received powder. The improvement of the deposition efficiency and properties of such 

coatings was attempted using powder mixtures comprising both milled and as-received 
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powders. The results indicate that the deposition efficiency and microstructure, directly linked 

to the mechanical properties of the coating, can be controlled by varying the content of the 

as-received powder of the mixture. 
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1. Introduction 

In power and chemical plants, high chromium steels or stainless steels, which exhibit 

high strength and high corrosion resistance, are employed for components, such as pipes and 

turbine blades. Typically, these excellent properties are achieved by adding rare metals or 

strategic materials to the base metal. However, for the effective utilization of resources, the 

improvement of these properties without the use of rare metals or strategic materials is 

desirable. 

Grain refinement is a technique used for the reinforcement of metallic materials 

without the addition of rare metals or strategic materials. In particular, nanocrystalline 

metallic materials, which are generally defined as materials with grain sizes smaller than 

100 nm, have high strengths exceeding those of coarse-grained and even alloyed metallic 

materials [1]. Furthermore, nanocrystalline metallic materials can exhibit high levels of 

ductility and corrosion resistance [2–4]. These unique characteristics have attracted the 

attention of several researchers. A number of techniques have been proposed to achieve 

nanocrystallization of metallic materials, such as thermo-mechanical-controlled processes, 

equal-channel angular pressing，accumulative roll-bonding, and mechanical-milling [5–8]. 

These techniques are based on the introduction of severe plastic strain to metallic materials 

and dynamic recrystallization. Among these techniques, mechanical milling can be used to 

produce large quantities of nanocrystalline metallic powders relatively conveniently. During 

the mechanical milling process, the powder material is repeatedly deformed by the 

high-energy impact of the balls. However, it is essential to conduct a sintering treatment at 

high temperature to form a bulk material from the nanocrystallized powder produced by the 

mechanical milling process. High-temperature treatments induce coarsening of the 

nanocrystal grains obtained by the mechanical milling process. 

 Cold spray techniques are based on the impact and deposition of numerous fine and 
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solid particles accelerated by a supersonic gas flow [9,10]. Such cold spray processes are 

performed below the melting temperature of the powder material; thus, they are capable of 

maintaining the microstructure of the feedstock powder. This suggests that nanocrystalline 

metallic coatings can easily be achieved by the application of mechanical milling, combined 

with cold spraying. A number of nanocrystalline coatings, such as aluminum alloys, copper 

alloys, nickel alloys, and intermetallic alloys, formed by cold spraying using mechanically 

milled powder, have previously been investigated [11–16]. Ajdelsztajn et al. reported that an 

Al 5083 powder with nanocrystalline grains in the range of 20–30 nm can be obtained by 

performing mechanical milling under a liquid nitrogen environment. In addition, it has been 

confirmed that nanocrystalline Al 5083 coatings can be formed by cold spraying; the hardness 

values of these coatings are significantly higher than those of cast or cold worked Al 5083 

[17]. Kumar et al. confirmed the successful formulation and deposition of nanocrystalline 

Ni–20Cr powder, with an average crystal grain-size of 10 nm, onto SA 516 boiler steel by a 

cold spray technique [18,19]. The nanocrystalline Ni–20Cr coating provided superior 

high-temperature oxidation resistance and erosion–corrosion resistance compared to those of 

boiler steel and coarse-grained Ni–20Cr coatings.  

As shown by these reports, nanocrystalline metallic coatings can be obtained by 

employing mechanical milling combined with cold spraying. This study focuses on a pure 

iron coating, formed by cold spraying using mechanically milled feedstock powder, as an 

alternative material to high chromium or stainless steels. Commercially available pure iron 

powder was mechanically milled under various conditions, and characterized to determine the 

optimal milling conditions. The powder was milled under specific conditions, and then, it was 

deposited onto a low-carbon steel substrate by cold spraying. The deposition efficiency, 

microstructure, and hardness of the obtained coating were evaluated using scanning electron 

microscopy (SEM), electron backscatter diffraction (EBSD) analysis, and hardness testing. 
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2 Experimental procedures 

2.1 Mechanical milling conditions 

A commercially available pure iron powder (ITOH KIKOH CO., LTD., Japan) was 

employed as the feedstock powder for the cold spray process. The chemical composition of 

the iron powder, shown in Table I, was identified using an optical emission spectrometer 

(PDA-5500, Shimadzu Corporation, Japan) and a carbon and sulfur analyzer (EMIA-220V, 

HORIBA, Ltd., Japan). The pure iron powder was treated by using a commercial planetary 

ball milling equipment (Planetary Micro Mill PULVERISETTE 7, Fritsch Co., Ltd, Germany). 

The iron powder was placed in a silicon-nitride pod, with an inner volume of 45 mL, together 

with high-carbon chromium bearing steel balls (JIS code: SUJ2, Ohashikokyu Co., Ltd., 

Japan). The diameter of each SUJ2 ball was 8 mm and the masses of the iron powder and the 

balls were approximately 50 g and 73 g, respectively. The rotation speed of the pod was 

constant at 1400 rpm. The total milling periods were set to 5 h, 10 h, and 20 h. Cycles 

including a milling period of 30 min, followed by a rest period of 15 min, were repeated 

throughout the total milling period. The mechanical milling process was performed under an 

air atmosphere. The particle size distributions of the as-received and milled powders were 

identified by a laser diffraction and scattering method (Microtrac MT3300EX II, Nikkiso Co., 

Ltd., Japan). In this study, the mean particle size was equivalent to that where the cumulative 

volume of the powder was 50% of the total volume of the powder. 

 

2.2 Cold spraying conditions 

 The as-received and mechanically milled iron powders were deposited onto a 

low-carbon steel substrate (JIS code: SS400) using a high-pressure cold spray technique. A 

commercial cold spray facility (PCS-100, Plasma Giken Co., Ltd., Japan) was used. Nitrogen 
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gas was used as the acceleration and carrier gases for the iron powder. The pressure and 

temperature of the acceleration gas were maintained as 5 MPa and 1273 K, respectively. The 

rotational speed of the powder feeder, which is associated with the powder feed rate, was 

3 rpm and the traverse speed of the spray gun nozzle was 300 mm/s. The standoff distance 

between the spray gun nozzle tip and the substrate was maintained at 30 mm. 

 

2.3 Deposition efficiency 

 The deposition efficiencies of the as-received and mechanically milled iron powders 

were evaluated based on the weight ratio between the deposited powder and consumed 

powder. The deposition efficiency η is given as 

 

  
          

         
             (1) 

 

where Wdeposited and Wconsumed represent the weights of the deposited powder and consumed 

powder, respectively. In addition, 100 g of each powder was placed into the powder feeder 

and sprayed onto the substrate. The value of Wdeposited was obtained by subtracting the weight 

of the substrate measured prior to the spraying from that measured following the spraying. 

 

2.4 Observation of microstructure 

 The microstructures of the cold-sprayed iron coatings were observed using SEM. In 

addition, EBSD analysis was used to study the crystal grain-size distribution of the coating. 

The iron coatings were cut perpendicular to the coating surface, and embedded in epoxy resin 

(Epoxicure 2, Buehler, USA). The cross-sectional surfaces of the coatings were successively 

ground with #80, #320, and #600 waterproof abrasive papers, and polished with diamond 

suspensions of 9 µm, 3 µm, and 1 µm. Subsequently, the cross-sectional surfaces were 
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mirror-polished with 0.05 µm colloidal silica (Mastermet, Buehler, USA). To prevent the 

development of the charge-up phenomenon during the SEM observation, the cross-sectional 

surfaces were coated with Au, using a sputtering technique (MC1000, Hitachi 

High-Technologies Corporation, Japan). The area designated for observation was treated for a 

period of 4 min using a flat ion milling technique (IM4000, Hitachi High-Technologies 

Corporation, Japan). For the microstructural observation a commercial field emission SEM 

(SU-70, Hitachi High-Technologies Corporation, Japan) was used. 

The porosity of each coating was assessed by performing image analysis on the 

cross-sectional SEM images, using the free software ImageJ (U. S. National Institutes of 

Health, USA)[20]. The SEM images were magnified by ×250 and the porosity of each coating 

was assessed using five SEM images. In this study, splat boundaries in a coating were also 

regarded as pores. 

The crystal grain-size distributions were investigated by EBSD analysis, using 

equipment manufactured by the TexSEM Laboratories, Inc., USA. During the EBSD analysis, 

two step sizes of 100 nm and 15 nm were employed to analyze the relatively large and small 

areas selected for the investigation, respectively. Any images of the crystal grains with an 

image quality of less than 1000 due to the problems with the detection accuracy were 

excluded. 

 

2.5 Hardness tests 

 The hardness of each coating was measured using a micro Vickers hardness tester 

(MICRO-SA, Matsuzawa Co., Ltd, Japan). The specimens used for the cross-sectional 

observations were also used for the hardness tests. The vertical load was set to 0.98 N and the 

hardness of each coating was randomly measured 15 times. The mean value of the 

measurements was recorded as the hardness of the coating. 
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3. Results and discussion 

3.1 Characterization of the milled powder 

The SEM images of the as-received powder and the powders that were mechanically 

milled for various periods of time are shown in Fig. 1. The morphologies of the milled 

powders significantly differ from that of the as-received powder. The as-received powder has 

a spherical shape; in contrast, the milled powders have irregular and angular shapes. In 

addition, the qualitative inspection of the SEM images show that the particles of the milled 

powders are generally larger than those of the as-received powder. 

The particle-size distribution of the as-received powder and the milled powders is 

shown in Fig. 2. The particle-size distribution of the as-received powder is relatively narrow. 

Nevertheless, the particle sizes of the milled powders are in the range of 5–500 µm. The 

maximum particle size of the milled powders was approximately ten times larger than that of 

the as-received powder. This indicates that the particles merged with each other during the 

mechanical milling process. The relationship between the mechanical milling treatment period 

and the mean particle size is shown in Fig. 3. The mean particle size increases as the treatment 

time is extended to 10 h. However, the mean particle size decreases when the treatment time 

is set to 20 h. There was also a decrease in the maximum particle size of the powder that was 

milled for 20 h, as shown in Fig. 2. These results imply that the merged particles began to 

fragment when the treatment period was set to 20 h. Compared with the other milled powders, 

the powder that was milled for 20 h has a more appropriate particle size for cold spraying. 

Figure 4 shows inverse pole figure (IPF) images, obtained by EBSD analysis, of the 

cross-sections of the particles of the as-received powder and the powder that was milled for 

20 h. The colors in the IPF images represent crystal orientations. Based on these IPF images, 

it was confirmed that the powder that was milled for 20 h exhibited much finer crystal grains 
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than the as-received powder. In addition, these fine crystal grains were distributed throughout 

the powder milled for 20 h. The crystal grain-size distributions of the as-received powder and 

the powder milled for 20 h are shown in Fig. 5. The as-received powder exhibits crystals with 

grain sizes larger than 1 µm. Furthermore, for the powder milled for 20 h, the mode value of 

the crystal grain-size is approximately 100 nm. No crystals with a grain size larger than 1 µm 

can be observed. In addition, several fine crystals with grain sizes smaller than 50 nm can be 

observed. Consequently, it is confirmed that pure iron powder can be nanocrystallized using 

mechanical milling techniques. 

 

3.2 Characterization of the coating formed using the milled powder 

Based on the results of the mechanical milling, the powder milled for 20 h, 

hereinafter referred to as the milled powder, was selected as a feedstock powder for the cold 

spray process. In this study, cold-sprayed coatings were formed using the as-received powder 

and milled powder, which are denoted by STD and MM, respectively.  

Figure 6 shows the cross-sectional SEM images of the STD and MM coatings. Both 

the STD and MM coatings are dense, with thicknesses of more than 500 µm, as shown in 

Figs. 6(a) and 6(c). Further, no cracks can be observed at the coating/substrate interface. 

Based on the high-magnification images shown in Figs. 6(b) and 6(d), it was confirmed that 

the microstructure of the MM coating differs from that of the STD coating. Relatively large 

pores of ~10 µm, as well as crystal grains, can be observed in the image of the STD coating. 

In contrast, neither large pores nor crystal grains can be observed in the image of the MM 

coating. However, several splat boundaries can be observed, which has similar appearance to 

that of cracked glass. A number of these splat boundaries were formed by the collapse and 

bonding of particles during the mechanical milling process. As described later, the deposition 

efficiency of the milled powder was significantly lower than that of the as-received powder. 
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This indicates that a large number of particles of the milled powder containing large particles 

with sizes larger than 100 µm were impinged on the deposited layer without deposition. These 

wasted particles probably contributed to the disappearance of large pores, similarly to shot 

peening. 

The IPF images of these two coatings, obtained by EBSD analysis, are shown in 

Fig. 7. In the case of the STD coating, crystal grains with sizes larger than 10 µm are widely 

distributed. The high-magnification image shown in Fig. 7(b) reveals the presence of crystal 

grains smaller than 1 µm at the particle/particle interface. These fine crystal grains could not 

be detected within the as-received powder. Thus, the crystal grains in the vicinity of the 

particle/particle interface were refined by the appearance of dynamic recrystallization at the 

moment of impingement or during the formation of the coating. However, these fine crystal 

grains do not contribute to a significant proportion of the coating. In contrast, the crystal 

grain-size of the MM coating was completely different from that of the STD coating. In the 

case of the MM coating, shown in Figs. 7(c) and 7(d), nanocrystal grains are distributed 

throughout the coating; crystal grains with a size larger than 1 µm cannot be observed. The 

crystal grain-size distributions of the STD and the MM coatings are shown in Fig. 8. 

Compared with the crystal grain-size of the milled powder, shown in Fig. 4(c), the crystal 

grains of the MM coating were slightly larger; however, nanocrystal grains were maintained. 

The substrate and the deposited layer were exposed to the high temperature gas stream and 

heated up during the cold spray process. The coarsening of the crystal grains can be attributed 

to the high temperature of the accelerating gas. The behavior of crystal grain growth is 

influenced by the plastic strain in the crystal grains. Crystal grains with large plastic strains, 

i.e., numerous dislocations, can be easily recrystallized and coarsened by heating. The 

coarsened crystal grains observed in Fig. 7(d) probably possess large plastic strains induced 

by the mechanical milling. On the other hand, there are few plastic strains in the fine crystal 
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grains. A similar crystal grain growth behavior can also be observed in cold-sprayed metallic 

coatings subjected to heat treatment at a relatively low temperature [21]. 

The hardness, deposition efficiency, and porosity of the STD and MM coatings are 

shown and compared in Fig. 9. The hardness of the MM coating was determined to be more 

than double of that of the STD coating. The higher hardness of the MM coating can be 

attributed to the presence of the nanocrystal grains. In contrast, the deposition efficiency of 

the as-received powder was determined to be approximately double of that of the milled 

powder. Moreover, the degree of porosity of the MM coating, which includes the splat 

boundaries observed in Fig. 6(d), was estimated to be approximately double of that of the 

STD coating. During the cold spray process, it is more difficult to plastically deform the 

milled powder with a high hardness, than the as-received powder. The large plastic 

deformation of the powder results in the elimination of the natural oxide film present on the 

powder surface and on the intimate contact between the powders and the substrate or 

deposited coating layer, followed by the deposition of the powder [22]. Specifically, a low 

degree of plastic deformation results in a low bonding strength between the particles, as well 

as a low deposition efficiency. In addition, the milled powder exhibits a wide particle-size 

distribution, and also contains particles with sizes larger than 100 µm, as shown in Fig. 2. It is 

difficult to deposit these large particles by cold spraying [23]; however, the angular shapes of 

the milled powder contribute to deposition compared to the spherical shapes of the 

as-received powder [24]. Consequently, the comparatively low deposition efficiency and high 

porosity level of the MM coating can be attributed to the high hardness, wide particle-size 

distribution, and splat boundaries of the milled powder, which were already formed during the 

mechanical milling process. 

Based on these results, we demonstrated that a dense, pure iron coating with high 

hardness can be achieved using the milled powder with nanocrystal grains. Furthermore, the 
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deposition efficiency of the milled powder was significantly lower than that of the as-received 

powder. Therefore, we attempted to improve the deposition efficiency of the milled powder, 

which is discussed in section 3.3. 

 

3.3 Characterization of the coating formed using a mixed powder 

To improve the deposition efficiency of the milled powder, it was mixed with the 

as-received powder. The mixed powder was cold-sprayed onto a SS400 substrate under the 

conditions described in section 2.2. The mixing ratio between the as-received powder and 

milled powder was varied to investigate the effect of the mixing ratio on the deposition 

efficiency, microstructure, and hardness of the coating. Milled powder samples with 

as-received powder contents of 10 wt.%, 20 wt.%, and 30 wt.% were prepared, denoted as 

AS10, AS20, and AS30, respectively. 

The cross-sectional SEM images of the coatings formed using each powder are 

shown in Fig. 10. Dense coatings with thicknesses larger than 500 µm can be seen in 

Figs. 10(a), 10(c), and 10(e). The magnified images indicate that relatively large pores and 

several splat boundaries are present; however, the appearance of these splat boundaries do not 

resemble to cracked glass. As shown in Figs. 6(b) and 6(d), the microstructures of the three 

coatings formed by the mixed powders were more similar to that of the STD coating than that 

of the MM coating. 

The IPF images of the three coatings, obtained by EBSD analysis, are shown in 

Fig. 11. A number of regions with coarse crystal grains can be observed in the case of the 

AS10 coating. These regions originated from the as-received powder. In addition, the 

proportion of the as-received powders within the coating noticeably increases as the 

as-received powder content of the mixed powder increases. These results indicate that the 

as-received powders can be widely scattered throughout the coating that was formed using the 
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mixed powder. Furthermore, the degree of distribution of the as-received powders in the 

coating matrix can be controlled by varying the content of the as-received powder of the 

mixed powder. These microstructures exhibit both nanocrystal grains and coarse crystal grains. 

Zhang et al. reported that harmonic structures, with a bimodal grain-size distribution with a 

specific periodic arrangement of coarse and ultrafine grain fractions, can be used to achieve 

both high strength and high ductility [25]. Referring to the work reported by Zhang et al., 

these microstructures, shown in Fig. 11, are expected to exhibit excellent mechanical 

properties. 

The relationship between the deposition efficiency and the content of the as-received 

powder of the mixed powder is shown in Fig. 12(a). The deposition efficiency linearly 

increases as the content of the as-received powder of the mixture increases. A deposition 

efficiency of approximately 45% can be obtained using the AS30 powder. Let us assume that 

the deposition efficiencies of the milled powder and as-received powder are maintained when 

the mixed powder are sprayed on the substrate. Using the deposition efficiency, ηmilled, of the 

milled powder and the deposition efficiency, ηas, of the as-received powder, the deposition 

efficiency, ηmixed, of the mixed powder can be expressed as  

 

       
             

   
                   (2) 

 

where ξas is the content of the as-received powder of the mixed powder. According to the 

assumption, the deposition efficiency of the mixed powder is expected to be proportional to 

the content of the as-received powder. Consequently, the experimental result indicates that the 

milled and the as-received powders are deposited on the substrate independently without 

interaction with each other. This means that the deposition efficiency of the milled powder 

itself is not improved by the mixture of the as-received powder with the milled powder. 
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The porosity level and Vickers hardness of each coating are shown in Figs. 12(b) and 

12(c) as a function of the as-received powder content, respectively. In contrast to the 

deposition efficiency, the porosity level and Vickers hardness monotonically decrease as the 

as-received powder content of the mixture increases. The assumption above is extended to the 

porosity level of each coating. If the porosity of the coating is determined by sum of the 

porosities resulting from the milled and the as-received powders, the porosity of the coating is 

expected to be the black line shown in Fig. 12(b). The tendency of the experimental result is 

similar to the expected line. This also indicates that the depositions of the milled and the 

as-received powders are independent of each other.  

Our previous research has revealed that the most important factor in the deposition of 

cold-sprayed metallic particles on a metallic substrate is a natural oxide film on the particles 

and the substrate [22][26]. The milled and as-received powders are obviously composed of 

the same material. Therefore, the natural oxide films and the almost material properties of 

these powders are the same. Hardness is the only property that is different in these powders. 

When a hard particle is deposited of on a soft substrate, the soft substrate is plastically 

deformed more than the hard particle. Inversely, in the case of the deposition of a soft particle 

on a hard substrate, the soft particle is plastically deformed more than the hard substrate. This 

means that the total broken area of surface oxide films on the particle and the substrate is not 

significantly affected by the difference in hardness. Consequently, the depositions of the 

milled and as-received powders are independent of each other. 

 As shown in Fig. 12(c), the hardness values of the coatings formed using the mixed 

powders fluctuate significantly; however, the hardness values of the coatings formed using 

either the as-received powder or the milled powder individually show limited variation. As 

shown in Fig. 11, the as-received powder with large crystal grains was widely distributed 

throughout the coating that was formed using the mixed powders. The size of the indentation 
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formed by the hardness test was approximately 30 µm, which is comparable with the mean 

diameter of the as-received powder. The areas formed by the as-received powder in the 

coating definitely have a lower hardness than the nanocrystalline matrix formed by the milled 

powder. Consequently, the hardness of the coatings formed using the mixed powders 

fluctuates significantly. 

Based on the results, it was determined that the deposition efficiency, hardness, and 

porosity level of coatings formed using milled powders can be controlled by varying the 

content of the as-received powder of the powder mixture used for deposition. In addition, the 

milled and as-received powders are deposited independently from each other. This character 

results in a control of the microstructure of the coating. The mechanical properties of these 

coatings, such as their tensile strength, ductility, and adhesion strength, is aimed to be 

investigated in future works. 

 

4. Conclusions 

This study focused on the use of mechanical milling and cold spray techniques to 

develop a nanocrystalline pure iron coating. The deposition efficiency, microstructure, and 

hardness of each coating were assessed, and the following conclusions were drawn: 

y Mechanical milling was applied to a pure iron powder with crystal grains larger than 

1 µm. Consequently, nanocrystal grains of approximately 100 nm were obtained 

following a mechanical milling period of 20 h. In addition, it was confirmed that a wide 

distribution of particle sizes was obtained by the mechanical milling process. 

y A dense coating consisting of nanocrystal grains could be formed by a cold spray 

technique using the powder that was milled for 20 h. The hardness of the coating that was 

formed using the milled powder was approximately double of that of the coating formed 

using the as-received powder. In contrast, the deposition efficiency of the coating that 
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was formed using the milled powder was half of that of the coating formed using the 

as-received powder. In addition, the porosity level of the coating formed using the milled 

powder was double of that of the coating formed using the as-received powder. 

y The effect of the mixing ratio between the as-received and milled powders on the 

deposition efficiency, microstructure, hardness, and porosity level of the coating was 

evaluated. Nanocrystalline coatings containing randomly distributed regions consisting of 

coarse crystal grains were formed using the mixed powder. It was confirmed that the 

deposition efficiencies and porosity levels of such coatings could be controlled by 

varying the content of the as-received powder of the mixture used to form the coating. In 

addition, the milled and as-received powders are deposited on the substrate independently 

from each other. 
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Table I Chemical composition of the pure iron powder [unit: wt.%]. 

C Si Mn P S Fe 

0.007 0.01 0.06 0.015 0.006 Bal. 
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List of figure captions 

Figure 1 SEM images of the as-received powder and the powders that were mechanically 

milled for various treatment periods; (a) as-received, (b) milled for 5 h, (c) milled for 10 h, 

and (d) milled for 20 h. 

Figure 2 Particle-size distribution of the as-received powder and the powders that were milled 

for various periods. 

Figure 3 Relationship between the mean particle size and the mechanical milling treatment 

period. 

Figure 4 IPF images obtained from the cross-section of each powder; (a) as-received powder, 

(b) powder milled for 20 h (low magnification), (c) powder milled for 20 h (high 

magnification). 

Figure 5 Crystal grain-size distribution of the as-received powder and the powder that was 

mechanically milled for 20 h. 

Figure 6 Cross-sectional SEM images of each coating; (a) STD specimen, (b) magnified STD 

specimen, (c) MM specimen, and (d) magnified MM specimen. 

Figure 7 IPF image obtained from the cross-section of each coating; (a) STD specimen, (b) 

STD specimen, (c) MM specimen, and (d) magnified MM specimen. 
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Figure 8 Crystal grain-size distribution of the STD specimen and the MM specimen. 

Figure 9 Hardness, deposition efficiency, and porosity level of the STD and the MM 

specimens; (a) hardness, (b) deposition efficiency, and (c) porosity. 

Figure 10 Cross-sectional SEM image of the coatings formed using each mixed powder; (a) 

AS10 coating, (b) magnified AS10 coating, (c) AS20 coating, (d) magnified AS20 coating, (e) 

AS30 coating, and (f) magnified AS30 coating. 

Figure 11 IPF image obtained from the cross-section of each coating; (a) AS10 coating, (b) 

AS20 coating, and (c) AS30 coating. 

Figure 12 Dependency of deposition efficiency, porosity level, and hardness on the content of 

the as-received powder of the mixture used to form the coating; (a) deposition efficiency, (b) 

porosity, and (c) hardness. 
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