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Background 

Pesticides, which are effective in pest and disease control management, are important for agriculture and 

public health purposes, but their excessive use affects food security and concurrent health threats for humans 

(Macdonald et al., 2000). Most of traditional pesticides are recalcitrant organic compounds which are not 

easily degraded by natural means and they are referred to as persistence organic pollutants (POPs). POPs are 

of two types, the organophosphate pesticides and the organochloride pesticides, and are of great 

environmental and health concerns due to their toxic, persistent and bio-accumulative capacities (Barber et al., 

2005). Many of them may form residual compounds which are more toxic in the soil and can be accumulated 

in living tissue through direct or indirect means, and thus they can get into the food chain of an ecosystem and 

affect wide range of organisms.  

0-1 γ-Hexachlorocyclohexane 

γ-Hexachlorocyclohexane (γ-HCH), which is a broad-spectrum organochloride insecticide, was one of the 

most popular organochloride pesticides that had been used extensively worldwide for the control of 

agricultural pests and mosquitoes in malaria health programs prior to the 1990‟s (Li et al., 2003). -HCH 

production by chlorination of benzene under suitable conditions leads to a mixture of isomers, and -HCH and 

its isomers were extensively applied since the 1940s and were added to the list of persistent organic pollutants 

(POPs) in 2009 (Vijgen et al., 2011). HCH is available in two formulations: technical-grade HCH (60-70 % 

α-HCH, 5-12 % β-HCH, 10-15 % γ-HCH, 6-10 % δ-HCH, and 3-4 % ε-HCH) and lindane (almost pure 

γ-HCH) (Abhilash et al., 2008). HCH isomers differ not only in the spatial orientation of the chlorine atoms 

bound to the aliphatic carbon ring (Fig. 0-1), but also in toxicity, water solubility (and thus mobility and 

bioavailability) and recalcitrance. Among the HCH isomers, α-HCH and γ-HCH dominate in the atmosphere 

due to their higher volatility and lower partition coefficient, while β-HCH is the most persistent in nature and 

less volatile isomer and tends to accumulate in soils (Vijgen et al., 2011). Only γ-isomer exhibited insecticidal 

activity, and it was widely used since 1953 as a cheap and effective insecticide especially in developing 

countries (Lal et al., 2010). Lindane is extremely toxic to humans and deleterious for environment. It is 

rapidly absorbed from the gastrointestinal tract of mice or rats and gets extensively distributed in fat, liver, 

ovarian tissues and brain. Although it has been banned in many countries because of its toxicity and 

recalcitrance (Lal et al., 2010), it is still being used in developing countries because of its efficacy and low 

cost. Thus it has caused seriously environmental problems. 
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Fig. 0-1 Axial versus equatorial arrangements of chlorine atoms in the five major isomers of HCH. α-HCH exists in two 

enantiomeric (+and -) forms (Lal et al., 2010). 

0-2 Biodegradation of γ-HCH 

γ-HCH is usually degraded under both aerobic and anaerobic environments, but it can be mineralized only 

in aerobic condition (Naqvi et al., 2014). Many bacteria has been reported for γ-HCH degradation (Böltner et 

al., 2005), and the γ-HCH degradation pathway and genes and enzymes involved in the degradation have been 

well studied in Sphingobium japonicum UT26 which was isolated from γ-HCH-polluted soil (Nagata et al., 

2007). -HCH degradation and mineralization was also reported by other species of Sphigobium, such as S. 

indicum strain B90 (Kumari et al., 2002) and B90A from India (Dogra et al., 2004) and S. francense strain 

Sp+ from France (Cérémonie et al., 2006). 

The microbial aerobic degradation pathway of γ-HCH was revealed in S. japonicum UT26 (Fig. 0-2) (Nagata 

et al., 2011). In this pathway, γ-HCH is converted to 2,5-dichlorohydroquinone (2,5-DCHQ) by sequential 

reactions catalyzed by LinA (γ-HCH dehydrochlorinase), LinB (1,3,4,6-tetrachloro-1,4-cyclohexadiene 

chlorohydrolase), and LinC (2,5-dichloro-2,5-cyclohexadiene-1,4-diol dehydrogenase). 2,5-DCHQ is then 

dechlorinated to chlorohydroquinone (CHQ) by LinD (2,5-dichlorohydroquinone dechlorinase), and CHQ is 

further transformed to β-ketoadipate by LinE (chlorohydroquinone 1,2-dioxygenase) and LinF (maleylacetate 

reductase). β-Ketoadipate is further degraded by the β-ketoadipate pathway that is generally found in 

environmental bacteria. 
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Fig. 0-2 Degradation pathway of γ-HCH in Sphingobium japonicum UT26. Compounds: 1, γ-HCH; 2, 

γ-pentachlorocyclohexene; 3, 1,3,4,6-tetrachloro-1,4-cyclohexadiene; 4, 1,2,4-trichlorobenzene; 5, 

2,4,5-trichloro-2,5-cyclohexadiene-1-ol; 6, 2,5-dichlorophenol; 7, 2,5-dichloro-2,5-cyclohexadiene-1,4-diol; 8, 

2,5-dichlorohydroquinone; 9, chlorohydroquinone; 10, acylchloride; 11, hydroquinone; 12, c-hydroxymuconic 

semialdehyde; 13, maleylacetate; 14, b-ketoadipate; 15, 3-oxoadipyl-CoA; 16, succinyl-CoA; 17, acetyl-CoA. TCA, 

citrate/tricarboxylic acid cycle (Tabata et al., 2016)                                                                                                                                                                                

0-3 The lin genes involved in the γ-HCH degradation 

The linA to linF genes in S. japonicum UT26 are dispersed on the three large circular replicons: the linA, linB, 

and linC genes on the 3.6-Mb chromosome I; the linF gene on the 670-kb chromosome II; and the linDE 

operon with its regulatory gene (linR) on a 185-kb plasmid, pCHQ1 (Nagata et al., 2006).  

Nearly identical lin genes have also been identified in other HCH-degrading bacterial strains, such as S. 

indicum B90 (Kumari et al., 2002) and B90A (Dogra et al., 2004) from India and S. francense Sp+ from 

France (Cérémonie et al., 2006); most of the lin genes in these strains are closely associated with an insertion 

sequence (IS), IS6100 (Lal et al., 2006). pCHQ1 is conjugally transferable from S. japonicum UT26 to another 

Sphingomonas paucimobilis strain (Nagata et al., 2006), and another report showed that the linA and linB 

genes in other strains are also located on plasmids (Cérémonie et al., 2006). These observations indicate that 

lin genes must be spread by mobile genetic elements (MGEs). 

0-4 Haloalkane dehalogenases (HLDs) 

0-4-1 Introduction of HLDs 

Halogenated compounds are widely used in industry and agriculture, and as components (i.e., solvents) in 

daily household items (Zulkifly et al., 2010). Haloalkane dehalogenases (HLDs) are key enzymes for the 

degradation of halogenated aliphatic compounds that occur as soil pollutants (Ballschmiter, 2003). HLDs (EC 

3.8.1.5) make up one such important class of enzymes because of their ability to attack polychlorinated 
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aliphatic hydrocarbons, which are produced in several industrial processes (Ang et al., 2018). Nowadays, 

various practical applications of HLDs are known, and the number is increasing with the growing knowledge 

of their properties and structure-function relationships: bioremediation of environmental pollutants, biosensors 

for toxic chemicals (Ang et al., 2018), industrial biocatalysis (Janssen, 2007), decontamination of warfare 

agents (Prokop et al., 2006), as well as cell imaging and protein analysis (Los et al., 2008). HLDs belong to 

the α/β-hydrolase fold superfamily, a very large and diverse group of structurally related hydrolytic enzymes 

with esterase, lipase or epoxide hydrolase activities (Koudelakova et al., 2011). Phylogenetic study of HLD 

sequences revealed that HLDs were subdivided into three subfamilies HLD-I, HLD-II, and HLD-III 

(Chovancová et al., 2007). The composition of amino acid residues that are important for the reaction (see 

below) is different among the subfamilies: Asp-His-Asp (catalytic triad) and Trp-Trp (halide-stabilizing 

residues) in HLD-I, Asp-His-Glu and Asn-Trp in HLD-II, and Asp-His-Asp and Asn-Trp in HLD-III. In 

contrast to HLDs belonging to HLD-I and HLD-II, those belonging HLD-III are poorly characterized 

experimentally (Chovancová et al., 2007).  

0-4-2 Structure and reaction mechanism of HLDs 

HLDs have a globular structure and are composed of two domains: a large central catalytic domain with an 

α/β-hydrolase fold structure and the second domain which lies like a cap on the main domain. The latter 

domain emerges as a large R-helical excursion between β-strands 6 and 7 of the catalytic core. The interface 

of the two domains forms the hydrophobic active site. The catalytic triad residues are a nucleophilic aspartate, 

a base catalyst histidine, and an aspartate or glutamate as the third member. These amino acids form the basis 

of the dehalogenation reaction and are located in the main domain. Whereas there is significant sequence 

similarity in the catalytic core, the sequence and structure of the cap domain diverge considerably between 

different HLDs. The cap domain was proposed to play a prominent role in determining substrate specificity 

(Koudelakova et al., 2013).  

HLDs perform catalysis using an SN2 (nucleophilic substitution) reaction and subsequent hydrolysis by the 

addition of water, in which only water is required as a cofactor (Fig. 0-3). This catalytic mechanism involves 

the catalytic triad of Asp-His-Asp/Glu. The carboxylate oxygen of aspartate initially launches a nucleophilic 

attack on the partially positive carbon atom of the halogen-bound substrate to produce a halide ion and 

alkyl-enzyme intermediate with an ester bond. The nearby His-Asp/Glu (acid-base pair) subsequently 

hydrolyzes a water molecule to produce a nucleophilic hydroxide that will attack the carbon of the ester bond. 

This generates a tetrahedral intermediate that immediately decomposes to form RCH2O
−
 and grabs a proton 

from the nucleophile to form RCH2OH (Jong et al., 2003). HLDs possess halide-binding residues, also known 

as halide-stabilizing residues, which is their unique feature (Chovancová et al., 2007). These residues are 

critical for the catalytic activity of HLDs as they help to stabilize the halide during formation of the 

enzyme-substrate complex.  
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Fig. 0-3 Simplified reaction mechanism of HLDs. a, The ester is formed by SN2 nucleophilic substitution, and the 

transition state formed in this step is stabilized by two halide-stabilizing residues. b, A water molecule activated by a 

histidine-acid pair attacks the ester intermediate to produce an alcohol and halide ion (Nagata et al., 2015) 

0-4-3 HLDs and its related proteins used in this study 

0-4-3-1 LinA 

LinA was initially identified as an enzyme that catalyzes the first step of γ-HCH degradation in S. japonicum 

UT26. LinA catalyzes dehydrochlorination of γ-HCH and γ-PCCH to produce 1,2,4-TCB (Fig. 0-2), and is not 

a member of HLDs. LinA can also degrade α-HCH and δ- HCH in addition to γ-HCH, but has no activity for 

β-HCH because β-HCH lacks a 1,2-biaxial HCl pair (Trantírek et al., 2001). Degradation assays of various 

halogenated compounds by purified LinA showed that the substrate specificity of LinA is very narrow. 

Because no gene significantly homologous to the linA gene has been found, its origin is unknown. LinA is 

thought to be a unique dehydrochlorinase, and its reaction mechanism of dehydrochlorination is of great 

interest (Trantírek et al., 2001). The genetic instability of the linA gene described in S. japonicum UT26 (Okai 

et al., 2010) seems to reflect a common feature of xenobiotic degrading pathways (Nagata et al., 2001). The 

gene loss is often associated with the loss of catabolic transposons or plasmids, or some type of DNA 
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rearrangements (Peisajovich et al., 2006). It has been shown that two copies of IS6100 located close to the 

linA gene are involved in its loss in S. japonicum UT26 (Nagata et al., 2011). 

0-4-3-2 LinB 

LinB is one of archetypal HLDs that involved in the -HCH degradation pathway and has been well 

characterized (Marek et al., 2000) (Fig. 0-4a). Site-directed mutagenesis of LinB confirmed that Asp108, 

His272, and Glu132 comprise the catalytic triad in this enzyme (Oakley et al., 2004). 

LinB has a broad substrate specificity, mainly due to a large active site volume, which includes 

monochloroalkanes (C3-C10), dichloroalkanes, bromoalkanes and chlorinated aliphatic alcohols 

(Koudelakova et al., 2011). Notably, LinBUT26 yields a significantly lower specificity constant for β-HCH 

(0.02 mM
-1

 s
-1

) as compared to another relatively well characterized LinB, namely, LinBB90A (identical to 

LinBMI1205, and LinBBHC-A and LinBpLB1) from S. indicum strain B90A (0.20 mM
-1

 s
-1

) (Okai et al., 2013). 

LinBB90A hydrolytically dechlorinates the metabolite 2,3,4,5,6-pentachlorocyclohexanol (PCHL), whereas 

LinBUT26 does not (Ito et al., 2007). A molecular dynamics simulation study suggests that this is mainly due to 

a difference in the flexibility of the entrance of the substrate access tunnel mediated by six out of the seven 

amino acid differences between the two enzyme variants (Okai et al., 2013). 

 

Fig. 0-4 Structures of LinBUT (a) (PDB code, 1CV2) and DbjA (b) (PDB code, 3A2M). Catalytic triads of LinB (Asp108, 

Glu132, and His272) and DbjA (Asp103, Glu127, and His280) are shown in red. The ERB fragment 

(
138

HHTEVAEEQDH
150

) of DbjA is shown in blue (Nagata et al., 2015) 

0-4-3-3 DmmA 

DmmA is a HLD with a known tertiary structure that was identified from a marine metagenomic consortium 

(Gehret et al., 2012). Inspection of its crystal structure revealed that its unusually large active site (Fig. 0-5) 

can accommodate bulky substrates (Daniel et al., 2015). DmmA belongs to subfamily HLD-II (Gehret et al., 

2012). This protein was originally annotated as CurN, and presumed to be the final gene product of the 

curacin A biosynthetic gene cluster (Chang et al., 2004) from the marine cyanobacterium Lyngbya majuscula 

(now designated Moorea producta) (Engene et al., 2012). 
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DmmA exhibited an exceptionally broad substrate specificity and degraded several halogenated 

environmental pollutants that are resistant to other members of HLDs. In addition to having this unique 

substrate specificity, the enzyme was highly tolerant to organic cosolvents such as dimethyl sulfoxide, 

methanol, and acetone. Its broad substrate specificity, high overexpression yield, good tolerance to organic 

cosolvents, and a broad pH range make DmmA an attractive biocatalyst for various biotechnological 

applications (Buryska et al., 2018). 

 

Fig. 0-5 Structures of DmmA. The stereo ribbon diagram is colored as a rainbow from blue at the N terminus to red at the 

C-terminus with catalytic pentad residues in stick form with magenta C (Gehret et al., 2012). 

0-4-3-4 DbjA 

DbjA, which was isolated from Bradyrhizobium japonicum USDA110 (Sato et al., 2005), possesses new 

substrate specificity with high catalytic activity towards β-methylated haloalkanes and sufficient 

enantioselectivity for industrial scale synthesis of optically pure compounds (Zbyněk Prokop et al., 2009). 

Comparison of the circular dichroism spectra of DbjA and other HLDs strongly suggested that DbjA contains 

more α-helices than the other HLDs (Sato et al., 2005) (Fig. 0-4b). A sequence comparison between DbjA and 

other HLDs has suggested that an 11-amino acid insertion between the main and cap domains of DbjA 

produces a unique active-site structure that results in the unique substrate specificity of DbjA (Sato et al., 

2005). Compared with other characterized HLDs, DbjA possesses unique properties. Catalytic activity and 

structural stability in a broad range of pH conditions combined with high enantioselectivity with selected 

substrates make DbjA a very versatile biocatalyst (Chaloupkova et al., 2011). Interestingly, DbjA can 

kinetically discriminate between enantiomers of two distinct groups of substrates, α-bromoesters and 

β-bromoalkanes; it has enantioselectivity based on distinct molecular interactions, which can be modified 

separately by engineering of a surface loop; and also it can adopt an inverse temperature dependence of 

enantioselectivity for β-bromoalkanes, but not α-bromoesters, by mutating this surface loop and a flanking 

residue (Prokop et al., 2010). 
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0-4-3-5 Rluc 

Luciferase (Luc) from Renilla reniformis (Rluc) is not HLD, but is phylogenetically associated with HLD-II. 

Renilla luciferase [Renilla-luciferin:oxygen 2-oxidoreductase (decarboxylating), EC 1.13.12.5] catalyzes the 

oxidative decarboxylation of coelenterazine in the presence of dissolved oxygen to yield oxyluciferin, CO2, 

and blue light (λmax.=480 nm). The molecular weight of Rluc is 36 kDa (Lorenz et al., 1991). Luciferases have 

become important research tools over the last two decades, due to their ability to emit light and therefore be 

monitored easily. These bioluminescent proteins are utilized widely as reporter genes in cell culture 

experiments and more recently in the context of small animal imaging (Contag et al., 1997).  

The Rluc mutant (Rluc8) was screened using a consensus sequence-driven strategy, and the results obtained 

showed that it was 200-fold more resistant to inactivation in murine serum and its light output was 4-fold 

higher than the wild type. Furthermore, the structure for Rluc8, a luciferase that utilizes coelenterazine as a 

substrate, was clarified for the first time, demonstrating a typical α/β-hydrolase folding at 1.4 Å resolution 

(Loening et al., 2006).  

0-4-4 Ancestral proteins 

The main goal of many protein engineering strategies is to improve enzyme properties for particular 

industrial or medical applications. One of these strategies is ancestral sequence reconstruction (ASR) (Wijma 

et al., 2013), in which a hypothetical ancestral sequence of a given set of related present-day sequences is 

predicted from a phylogenetic tree and reconstructed in a laboratory. This work has been covered in excellent 

reviews (Harms & Thornton, 2010). ASR has been used to enhance enzyme thermostability (Wijma et al., 

2013), solubility (Gonzalez et al., 2014), and activity (Takenaka et al., 2013), and to modify substrate 

specificity (Smith et al., 2013). 

In the last few decades, ASR has been widely used to study the evolution and structure-function 

relationships of many protein families, such as GFP-like proteins (Ugalde et al., 2004), opsins (Yokoyama, 

2002), steroid receptors (Ortlund et al., 2007), G-protein receptors (Babkova et al., 2017), and others (Dean et 

al., 2007). Using ancestral protein resurrection, two permissive and five restrictive mutations played important 

roles in the loss of aldosterone sensitivity in the modern glucocorticoid receptors (Ortlund et al., 2007). By 

introducing five conserved amino acids that were different in red and green vertebrate opsins into the ancestral 

background, Yokoyama et al. (Yokoyama et al., 2008) successfully recapitulated the shift in the opsin 

absorbance spectrum from red to green, whereas previous mutagenesis studies using modern proteins had 

resulted in contradictory results concerning the functional importance of key mutations.   

To the best of our knowledge, only a few researches reported ASR for HLDs. Sequences of dehalogenases 

DbjA (Sato et al., 2007), DbeA (Chaloupkova et al., 2014), DhaA (Newman et al., 1999), DmxA (Tratsiak et 

al., 2013), and DmmA (Gehret et al., 2012) were predicted by ASR. The present-day enzymes display 

considerable functional variations even though they are all closely evolutionary related and share similar 

structural topology, thus providing good models to investigate structural and functional divergence in the 

HLD-II subfamily. Characterization of the resurrected ancestral enzymes revealed unique functional 

properties, including enhanced thermostability, improved specific activity, or modified substrate specificity. 

This study highlights that the ASR method represents a powerful strategy for constructing highly active, stable, 

and soluble catalysts as robust templates for directed evolution experiments (Babkova et al., 2017). 

In order to predict the ancestral sequences of selected experimentally characterized enzymes from the 

HLD-II subfamily. Predicted ancestral sequences of LinB (linB-dmbA-anc) were synthesized and 

experimentally characterized (Jesenská et al., 2005). The sequence identity of LinB_dmbA_anc with LinB and 
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DmbA is 80% and 83%, respectively (Figure 0-6). The differences between the predicted ancestor and both 

present-day enzymes were mapped on LinB_dmbA_anc homology model (Figure 0-7). 

 

Fig. 0-6 Comparison of LinB_dmbA_anc sequence with LinB and DmbA sequences (red square represents catalytic 

residue of LinB) 

 

Fig. 0-7 Homology model of ancLinB-DmbA. Amino acid positions occupied by different residues in ancLinB-DmbA 

and LinB (A) and in ancLinB-DmbA and DmbA (B) are highlighted by red and cyan, respectively.  

0-5 Mutagenesis of enzymes 

Protein engineering seeks to design or discover proteins with properties useful for technological, scientific, 

or medical applications. Properties related to a protein‟s function, such as its expression level and catalytic 

activity, are determined by its amino acid sequence. Protein engineering inverts this relationship in order to 

find a sequence that performs a specified function (Yang et al., 2019). One of the goals of protein design and 
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protein engineering is to construct the enzymes with improved activity and modified specificity. The 

introduction of mutations into the genes, gene expression and protein purification take considerable effort and 

it is desirable to extensively characterize constructed mutants to detect even subtle changes in the specificity 

of the constructs (Marvanová et al., 2001). 

0-5-1 Mutagenesis of HLDs 

HLDs are attractive targets for protein-engineering studies aimed at improving catalytic efficiency and at 

broadening the range of substrate specificity for important environmental pollutants. It appears that libraries of 

structurally and mechanistically related enzymes will play an increasing role in biotransformation reactions, 

because each biocatalyst has its own characteristic substrate specificity, enantioselectivity, stability, and 

product inhibition data. Searching of sequenced genomes for putative HLD genes in conjunction with the 

overexpression and characterization of proteins encoded by these genes is one possible way for meeting the 

increasing demand for novel HLDs (Chan et al., 2010). Partial improvement in the catalytic properties and 

modification of the substrate specificities of HLDs by rational design (Chaloupková et al., 2003) and directed 

evolution approaches (Bosma et al., 2002) have been reported. 

A variant of LinB, LinBMI from Sphingobium sp. MI1205, which is 98%identical (having a difference in 

only 7 of the 296 amino acid residues) to LinBUT (Fig. 0-8), can catalyze the two-step conversion of β-HCH to 

2,3,5,6-tetrachlorocyclohexane-1,4-diol (TCDL) with the first conversion step being an order of magnitude 

more rapid than that by LinBUT (Ito et al., 2007), while LinBUT cannot convert the PCHL (Nagata et al., 2005). 

The substitution of the residues forming the catalytic pocket of LinBUT (I134 V/A247H) resulted only a weak 

effect on β-HCH conversion activity. Furthermore, the reciprocal double mutant of LinBMI (V134I/H247A) 

retained relatively high LinBMI-type activity (Ito et al., 2007). These results indicated that some of the five 

other residues are also important for the LinBMI-type activity. Site-directed mutagenesis and X-ray 

crystallographic studies (Okai et al., 2013) indicated that all seven residues are important for LinBMI-type 

catalytic activity. 
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Fig. 0-8 Structure of LinBMI (PDB code 4H77) and location of catalytic triad (D108, E132, and H272; shown in red) and 

the seven dissimilar amino acid residues between LinBMI and LinBUT: V134 and V112 (in magenta), L138, H247, and 

I253 (in cyan), T135 (in green), and T81 (in blue) (Moriuchi et al., 2014). 

0-5-2 Random mutagenesis 

“Random mutagenesis” is a technique that allows researchers to develop large libraries of variants of a 

particular DNA sequence. Once developed, these libraries can then be used for several purposes, including 

structure-function and directed evolution studies. Random mutagenesis is different from other mutagenesis 

techniques in that it does not require the researcher to have any prior knowledge about the structural properties 

of the DNA sequence being targeted, thus allowing for the unbiased discovery of novel or beneficial mutations. 

For this reason, random mutagenesis is especially useful for protein evolution studies (Forloni et al., 2018). 

Error-prone PCR introduces random copying errors by imposing imperfect, and thus mutagenic, or „sloppy‟, 

reaction conditions (e.g. by adding Mn
2+

 or Mg
2+

 to the reaction mixture). This method has proven useful both 

for generation of random libraries of nucleotide sequences, and also for the introduction of mutations during 

the expression and screening process in a mutagenesis step (Pritchard et al., 2005). Many researches had 

obtained excellent mutants with higher activity, thermostability, specific activity by using error-prone PCR 

combine with site directed mutagenesis (Varriale et al., 2018). Fig. 0-9 showed a model of selecting good 

evolved protein by using error-prone PCR. The researcher begins with the gene for the parent protein. This 

parent gene is randomly mutagenized by using error-prone PCR or some similar technique. The library of 

mutant genes is then used to produce mutant proteins, which are screened or selected for the desired target 

property (e.g., improved enzymatic activity or increased stability). Mutants that fail to show improvements in 

the screening/selection are typically discarded, while the genes for the improved mutants are used as the 

parents for the next round of mutagenesis and screening. This procedure is repeated until the evolved protein 

exhibits the desired level of the target property. 

Compared with site-directed mutagenesis, error-prone PCR offers a more natural way to improve the 

stabilities or biochemical functions of proteins by repeated rounds of mutation and selection. It could illustrate 

which one or some mutation sites would be useful during the evolution process. Until now, to our best 

knowledge, there was no research reported evolved or novel HLDs only by using error-prone PCR.  
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Fig. 0-9 Schematic outline of a typical directed evolution experiment (Bloom et al., 2009). 

0-6 Purposes of this study 

Various natural HLDs are known, and their activities can be changed dramatically by only small number of 

mutations, and many fundamental knowledge related to the reaction mechanisms of HLDs has been 

accumulated. Thus, HLDs are good materials not only for demonstrating the process and mechanism of 

functional evolution of enzymes but also for engineering of enzymes with novel catalytic activity. It is also 

suggested that function of HLDs can be evolved rapidly in sphingomonads. LinB is one of prototypical HLDs 

and was originally identified as an enzyme necessary for utilization of γ-HCH. There are various γ-HCH 

degraders have been isolated from HCH-isomers-contaminated sites around the world, and they also have 

identical or almost identical LinBs. Until now, no γ-HCH degrader has been reported that uses other HLDs 

besides LinB for the γ-HCH utilization. To get some insights into the process and mechanisms of functional 

evolution of HLDs toward the γ-HCH utilization, the followings are conducted in this study: 

1. Construction and characterization of the linB-replacement strains. 

2. Construction of in vivo and in vitro evolution system of HLDs toward the -HCH utilization. 

3. Purification and characterization of the putative evolved HLDs. 
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Chapter 1 Construction and characterization of the linB-replacement 

strains 

1-1 Background 

As described in background section, sphingomonads seem to have ideal background for functional 

evolution of catabolic enzymes for various recalcitrant hydrophobic compounds. In this study, Sphingobium 

japonicum UT26 was used as a host for in vivo evolution system, because functional evolution of HLDs is 

expected to occur rapidly in sphingomonads represented by the case of LinB variants. The linB gene has 

variants whose protein products are different with a small number of amino-acid residues, and LinBUT and 

LinBMI are 98% identical but their -HCH degradation activity are remarkably different. The important point 

is that the sequence variations in such variants are non-synonymous substitutions, which strongly suggests that 

the linB gene are still evolving at high speed under strong selection pressures (Nagata et al., 2015). In addition, 

although LinB is the only HLD to date involved in the γ-HCH degradation, other HLDs seem to have a chance 

to evolve toward the γ-HCH degradation by a small number of mutations. 

In this chapter, as the first step to get some insights into the evolution process of HLDs toward -HCH 

utilization, S. japonicum UT26-derivative strains, in which the linBUT gene was replaced by other HLD or its 

homologue genes including the putative ancestral genes, were constructed and characterized. 

1-2 Materials and methods 

1-2-1 Strains, plasmids, medium composition and culture condition 

The strains and plasmids used in this chapter were shown in Table 1-1. E. coli cells were incubated by using 

LB medium and Sphingobium strains were incubated by using 1/3LB medium. Spot assay for estimating the 

-HCH utilization ability was conducted by using W minimal salt medium containing 750 ppm of γ-HCH at 

final concentration as a sole carbon source. Compositions of these mediums were shown in Table 1-2. The 

solid medium was prepared by the addition of 1.5% (w/v) agar. Antibiotics were used at the final 

concentrations of 25 μg/mL for kanamycin (Km), 100 μg/mL for ampicillin (Ap), 50 μg/mL for streptomycin 

(Sm), and 10 μg/mL gentamycin (Gm). The incubation temperature of E. coli and Sphingobium cells was 37℃ 

and 30℃, respectively. Strains were stocked by addition of 15% glycerol at -80℃. 

1-2-2 DNA manipulations 

Established methods were employed for DNA manipulations. Plasmids were extracted by using LaboPass
TM

 

Plasmid Mini (COSMO Genetech) according to the attached instruction. Ligation of DNA was conducted by 

using Takara Ligation kit Mighty Mix (Takara). Gibson Assembly kit (New England BioLabs) was also used 

for assembling of DNA fragments. HIT Competent E.coli DH5 618 cells (RBC Bioscience) were used for 

transformation of E. coli. Hot Start Taq (NEB) and Q5 High-Fidelity DNA Polymerase (NEB) were used for 

polymerase chain reaction (PCR). When conducting colony PCR, a little cells were picked by toothpicks and 

mixed with reagents. Primers used in this chapter were shown in Table 1-3. The nucleotide sequences were 

determined using an ABI PRISM 3130xl sequencer and ABI Prism Big Dye Terminator Kit, version 3.1 

(Applied Biosystems). The nucleotide and protein sequences were analyzed using the Genetyx program, 
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version 13 (SDC Inc., Tokyo). The bacterial cells were transformed by electroporation (EP). Cells grown on 

1/3LB agar medium for two days were collected by an inoculation loop, washed three times with ice-cold EP 

buffer (1 mM MOPS and 10% glycerol), diluted appropriately, and mixed with DNA solution. The suspension 

was transferred to an EP cuvette with a 1 mm gap. EP was conducted under the conditions of 1.8 kV, 200 Ω 

and 25 µF. After the pulse, 1 mL of ice-cold 1/3LB medium was immediately added, then incubated for 2-10 h 

and spread onto a 1/3LB agar medium containing appropriate antibiotics. 

1-2-3 Construction of the linB-deletion and replacement strains 

The linB-deletion mutant, in which just open reading frame of the linB gene has been deleted, was 

constructed by allelic
 
exchange mutagenesis of S. japonicum UT26 using pK18mobsacB (Schäfer et al., 1994), 

which has the sacB gene for counter selection (Schweizer, 1992). The 1.5-kb upstream and downstream 

regions of the linB gene in S. japonicum UT26 were cloned into pK18mobsacB, and the resultant plasmid 

pK18mobsacB::linB_up_down was introduced into UT26 by EP, and the Km
r
 transformant into which the 

plasmid had been integrated via single crossover-mediated homologous recombination was selected. The Km
r
 

Suc
S
 transformant was inoculated on a 1/3LB plate containing sucrose (10%), and the Km

s
 Suc

r
 clones were 

selected. Finally, the linB-deletion strain was selected by PCR, and named UTDB2. For introduction of other 

HLD genes into the linB site, allelic
 
exchange mutagenesis of S. japonicum UTDB2 was carried

 
out by using 

pAK405, which has the streptomycin-sensitive rpsL allele (rpsL1) as a counterselection marker (Kaczmarczyk 

et al., 2012). Firstly, a plasmid pADB1 (Fig. 1-1) was constructed, which has the 1-kb upstream and 

downstream regions of the linB gene in pAK405. The linBMI, dbjA, dmmA, rluc, rluc_anc, rluc_ancM, and 

linB_dmbA_anc genes were introduced into pADB1, and the resultant plasmids were named pAMM1, pABJ1, 

pAMM1, pARL1, pALA1, pALA2, and pABA1, respectively. These plasmids were introduced into UTDB2 

by EP, and the Km
r
 Sm

s
 transformants into which these plasmids had been integrated via single 

crossover-mediated homologous recombination were selected. The Km
r
 Sm

s
 transformants was inoculated on 

a 1/3LB plate containing Sm, and the Km
s
 Sm

r
 clones were selected (Fig. 1-2). Finally, the strains that have 

the linBMI, dbjA, dmmA, rluc, rluc_anc, rluc_ancM, and linB_dmbA_anc genes in the linBUT site were selected 

by PCR among the Km
s
 Sm

r
 clones and designated as UTBM1, UTBJ1, UTMM1, UT2RL1, UTLA1, UTLA2, 

and UTBA1, respectively. Primers used for amplification and plasmids used as templates of the genes are 

shown in Table 1-3. The primer sets were designed by NEBuilder (http://nebuilder.neb.com) for assembly 

with EcoRV and HindIII-digested pADB1 by using a Gibson Assembly system (NEB). UTDB2DAX, in 

which both the linB and adhX genes were deleted, was constructed from UTDB2 by the same procedure using 

pAAXD1, which is a pAK405-based plasmid for deletion of the adhX gene (Inaba et al., 2020). DAX series 

strains, UTBM1DAX, UTBJ1DAX, UTMM1DAX, UTRL1DAX, UTLA1DAX, UTLA2DAX, and 

UTBA1DAX having the linBMI, dbjA, dmmA, rluc, rluc_anc, rluc_ancM and linB_dmbA_anc genes, 

respectively, in the linBUT site were constructed from UTDB2DAX by the same procedure using pABM1, 

pABJ1, pAMM1, pARL1, pALA1, pALA2, and pABA1, respectively. 

1-2-4 GC analysis for the γ-HCH degradation 

Cells were collected and washed, and then dissolved in PBS at final concentration of 5 mg cells /10 μL, and 

the 10 μL of cell suspension was added into 1 mL reaction mixture (W medium containing 176 mM of γ-HCH) 

and vortex to start reaction. The reaction mixture was incubated at 30
o
C for 60min, and 100 μL of reaction 

mixture was collected, vortexed with the same volume of ethyl acetate containing 2 ppm of dieldrin as the 

internal standard, centrifuged, and the upper layer was used to the GC analysis. GC equipped with a 
63

Ni 
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electron capture detector (ECD) and Rtx-1 capillary column (30 m×0.25 mm×0.25 μm; Restek) was used, and 

condition for the analysis is shown in Table 1-4. The concentration of -HCH and intermediates were 

quantified from peak area by using standard chemicals. 

1-2-5 Assay for the -HCH utilization activity on solid medium (spot assay) 

Bacterial cells grown on 1/3LB agar medium were collected by inoculation loop and washed three times 

with PBS. The bacterial cell suspension was diluted by PBS and adjusted to 100 mg cells/mL. This suspension 

was diluted 10 (10 mg cells/mL) and 10
2
 (1 mg cells/mL) fold, and each 10 L aliquots of each dilution were 

spotted on solid W minimal salt medium containing -HCH (750 ppm) or glucose (0.2%), or without adding 

any carbon sources, and incubated for 5 days at 30
o
C. 
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Table 1-1 Bacterial strains and plasmids used in this chapter 

Strains or plasmid Relevant characteristics Source or reference 

Sphingomonads   

Sphingobium japonicum UT26S γ-HCH degrader (Nagata et al., 2011) 

Sphingobium japonicum UTDB2 linB This study 

Sphingobium japonicum UTBM1 linB -> linBMI (Ito et al., 2007) 

Sphingobium japonicum UTBJ1 linB -> dbjA (Sato et al., 2005) 

Sphingobium japonicum UTMM1 linB -> dmmA (Gehret et al., 2012) 

Sphingobium japonicum UTLA1 linB -> rluc_ancM 
(Chaloupkova et al., 

2019) 

Sphingobium japonicum UTLA2 linB -> rluc_anc 
(Chaloupkova et al., 

2019) 

Sphingobium japonicum UTRL1 linB -> rluc (Loening et al., 2006) 

Sphingobium japonicum UTBA1 linB -> linB_dmbA_anc (Jesenská et al., 2005) 

Sphingobium japonicum UT26DAX γ-HCH degrader, adhX (Inaba et al., 2020) 

Sphingobium japonicum UTDB2DAX linB, adhX This study 

Sphingobium japonicum UTBM1DAX linB -> linBMI, adhX This study 

Sphingobium japonicum UTBJ1DAX linB -> dbjA, adhX This study 

Sphingobium japonicum UTMM1DAX linB -> dmmA, adhX This study 

Sphingobium japonicum UTLA1DAX linB -> rluc_ancM, adhX This study 

Sphingobium japonicum UTLA2DAX linB -> rluc_anc, adhX This study 

Sphingobium japonicum UTRL1DAX linB -> rluc, adhX This study 

Sphingobium japonicum UTBA1DAX linB -> linB_dmbA_anc, adhX This study 

E.coli   

DH5α 
recA1 endA1 gyrA96 thi-1 hsdR17 supE44 

relA1 (lacZYA-argF) Φ80lacZM15 
(Marietta et al., 1988) 

Plasmid   

pK18mobsacB Suicide plasmid for gene deletion, Km
r
 Schgfer et al., 1994 

pK18mobsacB_linB_up_down pK18mobsacB::linB_up_down This study 

pAK405 oripBR322, RP4 oriT, rpsL1, Km
r
 (Kahm et al., 2010) 

pADB1 pAK405::linB_up_down_EPH This study 

pBDQ1 pBBR MCS-1 (Cm) -UT26dnaQ
exo

 This study 

pABM1 pAK405::linB_up_down_linBMI This study 

pABJ1 pAK405::linB_up_down_dbjA This study 

pAMM1 pAK405::linB_up_down_dmmA This study 

pALA1 pAK405::linB_up_down_rluc_ancM This study 

pALA2 pAK405::linB_up_down_rluc_anc This study 

pARL1 pAK405::linB_up_down_rluc This study 

pABA1 pAK405::linB_up_down_linB_dmbA_anc This study 
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Table 1-2 Compositions of medium 

 

1/3LB broth  

Per liter.  

Bacto tryptone 3.3g 

Bacto yeast extract 1.7g 

NaCl 5g 

pH 7.0  

 

W medium  

Per liter  

KH2PO4 1.7g 

Na2HPO4 9.8g 

(NH4)2SO4 1.0g 

MgSO4  48.7mg 

FeSO4 0.52mg 

MgO 10.75mg 

CaCO3 2.0mg 

ZnSO4 0.81mg 

CuSO4 0.16mg 

CoSO4 0.15mg 

H3BO3 0.06mg 

 

1/10 W was made in which the concentrations of KH2PO4, 

Na2HPO4 and (NH4)2SO4 were diluted to 1/10 those in the W 

medium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LB broth  

Per liter.  

Bacto tryptone 10g 

Bacto yeast extract 5g 

NaCl 5g 

pH 7.0  
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Table 1-3 Primers used in this chapter 

Primer Sequence (5‟→3‟) Purpose 

linB_up_FW 
CTAGAGTCGACCTGCACCGGGTTTCCCC

GCCGACCCCGTC 

synthesis of 

pK18mobsacB::linB_up_down and 

pK18mobsacB::linB_up_MI_down 

linB_up_RV 
GTTCCGGACGATATTCTCCTTGAGCGATT

TTC 

synthesis of 

pK18mobsacB::linB_up_down and 

pK18mobsacB::linB_up_MI_down 

linB_down_FW 
GAATATCGTCCGGAACCGGCTCATTTTC

TAAG 

synthesis of 

pK18mobsacB::linB_up_down and 

pK18mobsacB::linB_up_MI_down 

linB_down_RV 
GTGCCAAGCTTGCATGTGGCCTTCGGCA

TTGCCGAGATGC 

synthesis of 

pK18mobsacB::linB_up_down and 

pK18mobsacB::linB_up_MI_down 

pADB1_rluc_F 
ctcaaggagaatatcgATGACTTCGAAAGTTTAT

GATC 
Amplification of rluc 

pADB1_rluc_R 
tgagccggttccggaTTATTGTTCATTTTTGAGA

ACTCG 
Amplification of rluc 

pADB1_rluc_anc_opt_F 
ctcaaggagaatatcgATGGTTAGCGCAAGCCAG

CG 
Amplification of rluc_anc 

pADB1_rluc_anc_opt_R 
tgagccggttccggaTTATTTGGTCAGTTCGTTC

AGAAAATCG 
Amplification of rluc_anc 

pADB1_linB_dmbA_anc_F 
cgctcaaggagaatatcgATGACCGCACTGGGTGC

AG 
Amplification of linB_dmbA_anc 

pADB1_linB_dmbA_anc_R 
gaaaatgagccggttccggaTTAAACACCGGCTGC

TGCACG 
Amplification of linB_dmbA_anc 

linB_up_1000_CF GGTATCATGTCAACTGGGGC 
Construction of pARL1, pALA2 

and pABA1 

linB_down_1000_CR TGGCATGGCACCGAGAAGGC 
Construction of pARL1, pALA2 

and pABA1 

linB_down_1000_CR2 GGCCACGTCGAGCACAAGCTC 
Construction of pARL1, pALA2 

and pABA1 

linB_down_1000_CR3 GATAATAGGCTTCCCGCCCGGAG 
Construction of pARL1, pALA2 

and pABA1 

M4out GCTGCAAGGCGATTAAG 
Construction of pARL1, pALA2 

and pABA1 

RVout GGCTCGTATGTTGTGTG 
Construction of pARL1, pALA2 

and pABA1 

 



23 
 

 

Fig. 1-1 pADB1 and its derivatives with linBMI, dbjA, dmmA, rluc, rluc_anc, rluc_ancM and linB_dmbA_anc 
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Fig. 1-2 Strategy for construction of the linB-replacement strains 
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Table 1-4 Condition of GC analysis 

Column Rtx-1 

Column temperature 160℃-280℃(20℃/min) 

Injection temperature 280℃ 

Gas flow rate 30mL/min 
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1-3 Results 

1-3-1 Construction of the linB-replacement strains 

 Firstly, the linB-deletion strain UTDB2 was constructed, in which just open reading frame of the linB gene 

was deleted. This strain can be used as a negative control for the cell having no LinB activity. Indeed, UTDB2 

showed neither the LinB activity in the -HCH degradation pathway nor the -HCH-utilization activity on the 

-HCH plate (see below). Then, pADB1 (Fig. 1-1), which has the 1-kb upstream and downstream regions of 

linB, was constructed by using pAK405 as a base to make it easier to construct plasmids for introduce of 

various genes into the linB site. The resultant plasmids were introduced into UTDB2 and the strains that have 

the linBMI, dbjA, dmmA, rluc, rluc_anc, rluc_ancM and linB_dmbA_anc genes (Table 1-5) in the linB site were 

constructed (Fig. 1-2), and named UTBM1, UTBJ1, UTMM1, UT2RL1, UTLA1, UTLA2, and UTBA1, 

respectively (Fig.1-3).  

The phylogenetical relationships of HLDs or HLD homologues used in this study is shown in Fig. 1-4. 

LinBMI from Sphingobium sp. MI1205 is 98% identical (7 amino acid differences among total 296 amino 

acids) with LinBUT but shows higher activity toward -HCH than LinBUT (Ito et al., 2007). DbjA is a HLD 

from Bradyrhizobium japonicum USDA110, which prefers bulky substrates (Sato et al., 2005). DmmA is a 

HLD from a marine metagenome and has an unusually large active site, and thus shows the most versatile 

substrate specificity among known HLDs (Gehret et al., 2012). Rluc is Renilla-luciferin 2-monooxygenase 

from Renilla reniformis (Lorenz et al., 1991), which has luciferase activity toward coelenterazine by 

monooxygenation mechanism. Rluc is monooxygenase, whose reaction mechanism is completely different 

from that of HLD, but its amino acid sequence is phylogenetically close to the HLD-II subfamily of HLDs 

(Fig. 1-6). To date, HLD activity of Rluc toward any HLD substrates has not been detected, but Rluc is 

considered to be an excellent candidate for investigating the functional evolution of HLDs (Nagata et al., 

2015). Rluc_anc is putative ancestral protein of LinB and Rluc (Fig. 1-4) that have been designed in silico 

(Chaloupkova et al., 2019). Rluc_ancM, which was unexpectedly produced on the cloning process, has just 

one amino acid difference R7P with Rluc_anc (Fig. 1-5). LinB_dmbA_anc is a putative ancestral protein of 

LinB and DmbA (Fig. 1-4). DmbA is a HLD from Mycobacterium bovis 5033/66 and only single amino acid 

is different with DmtA (K120 is N in DmbA) from Mycobacterium tuberculosis (Jesenská et al., 2005). 

DAX-series strains, UTBM1DAX, UTBJ1DAX, UTMM1DAX, UTRL1DAX, UTLA1DAX, UTLA2DAX, 

and UTBA1DAX, were also constructed from the strain UTDB2DAX, in which the adhX gene is also deleted 

in addition to the linB gene. If the adhX gene is expressed by spontaneous mutation, the strain become to be 

able to grow on the solid minimal salt medium without adding any carbon sources (Inaba et al., 2020), and 

thus DAX series strains have a merit to avoid the selection of false positive mutants that grow well on the 

-HCH plate in the next experiments. 
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Fig. 1-3 The linB-replacement strains construed in this chapter 

 

 

Fig. 1-4 Phylogenetic tree of HLDs and Rluc. HLDs, Rluc, and putative ancestral proteins used in this study are shown in 

red. 
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Table 1-5 Specific information of linB replacement strains and their corresponding hlds 

Strain hld Source of hld Characteristics of HLD Ref. For hld 

UT26S linBUT Sphingobium japonicum UT26 γ-HCH degrader (Nagata et al., 2011) 

UTDB2 ΔlinBUT   (Inaba et al., 2020) 

UTBM1 linBMI Sphingobium sp. MI1205 

Higher activity to β-HCH 

than LinBUT; 7AA 

differences compared to 

LinBUT 

 

(Ito et al., 2007) 

UTBJ1 dbjA 

Bradyrhizobium japonicum 

USDA110 

(forming root nodules on 

soybeans) 

Preference for bulky 

substrates 

 

(Sato et al., 2005) 

UTMM1 dmmA 
Marine metagenome, 

synthesized 

The most versatile among 

known HLDs 
(Gehret et al., 2012) 

UTLA1/LA2 
rluc_anc 

/rluc_ancM 
In silico design, synthesized 

A putative common 

ancestor of LinB and 

Renilla-luciferin 

2-monooxygenase (Renilla 

luciferase) from Renilla 

reniformis; Rluc 

(monooxygenase) activity 

(Chaloupkova et al., 

2019) 

UTRL1 rluc 
Renilla-luciferin 2-monooxyg

enase 

Luciferase activity toward 

coelenterazine, is 

phylogenetically 

close to the HLD-II 

subfamily. 

(Loening et al., 2006) 

UTBA1 linB_dmbA_anc Mycobacterium bovis 5033/66 
K120 in DmtA is N in 

DmbA 
(Jesenská et al., 2005) 
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Fig. 1-5 Amino acid sequence alignment of Rluc, Rluc_anc and Rluc_ancM (red squares represent catalytic residues) 

1-3-2 γ-HCH degradation activity of the linB-replacement strains  

S. japonicum UT26 degrades γ-HCH through the pathway shown in Fig. 1-6. γ-HCH is converted by two 

steps of LinA-catalyzed dehydrochlorination via γ-pentachlorocyclohexene (γ-PCCH) to 

1,3,4,6-tetrachloro-1,4-cyclohexadiene (1,4-TCDN), and this compound is productively metabolized by two 

steps of LinB-catalyzed hydrolytic dehalogenation via 2,4,5-trichloro-2,5-cyclohexadiene-1-ol (2,4,5-DNOL) 

to 2,5-dichloro-2,5-cyclohexadiene-1,4-diol (2,5-DDOL). 2,5-DDOL is converted to 

2,5-dichlorohydroquinone (2,5-DCHQ) by dehydrogenase LinC, and 2,5-DCHQ is further metabolized. In this 

pathway, two substrates of LinB, 1,4-TCDN and 2,4,5-DNOL, are unstable and have not been directly 

detected, and their production is predicted by the production of two dead end products, 1,2,4-trichlorobenzene 

(1,2,4-TCB) and 2,5-dichlorophenol (2,5-DCP), respectively (Nagata et al., 1993). By the GC assay used in 

this study, we can detect -HCH, -PCCH, 1,2,4-TCB, 2,5-DCP, 2,5-DDOL, and 2,5-DCHQ, and the 

important point is that the production of 2,5-DCP, 2,5-DDOL, and 2,5-DCHQ means that the cells have the 

LinB activity. 

The -HCH degradation activity of the constructed strains was examined by GC analysis and the 

concentration of remaining -HCH and metabolites produced after the incubation for 60 min are shown in Fig. 

1-7. As predicted, 2,5-DCHQ and 2,5-DCP were detected in S. japonicum UT26 and UTBM1 that have the 

linB gene, while only -PCCH and 1,2,4-TCB were detected as metabolites in UTDB2 lacking the linB gene. 

In UTBJ1, UTRL1, and UTBA1 only -PCCH and 1,2,4-TCB were detected, indicating that DbjA, Rluc, and 

LinB_dmbA_anc have no LinB activity. On the other hand, 2,5-DCHQ and 2,5-DCP were detected in 
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UTMM1, UTLA1, and UTLA2, indicating that DmmA, Rluc_anc, and Rluc_ancM have the LinB-like activity. 

The same tendency was obtained in the experiment using the DAX-series strains (Fig. 1-8), supporting the 

conclusion that DmmA, Rluc_anc, and Rluc_ancM have the LinB-like activity 

 

 

Fig. 1-6 Upstream degradation pathway of γ-HCH in S. japonicum UT26 

 

 

 

 

Fig. 1-7 GC analysis of Sphingobium japonicum UT series strains 
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Fig. 1-8 GC analysis of Sphingobium japonicum UT-DAX-series strains 

1-3-3 γ-HCH utilization activity of the linB-replacement strains 

γ-HCH utilization activity of the constructed strains was examined to see the growth of cells on the solid W 

minimal salt medium containing -HCH as a sole carbon source (-HCH plate). As positive and negative 

control, cells were also spotted on the solid W minimal salt medium containing glucose (Glucose plate) and 

adding no carbon source (w/o C plate), respectively. Strains that utilize -HCH increase the cell number to the 

visible state accompanying with clear zone around the spotted area on the -HCH plate. Three different 

concentrations of cells (100, 10 and 1 mg cells/mL) were spotted to distinguish the small difference. As 

predicted, all the strains grew well on Glucose plate (Fig. 1-10A), but not on w/o C plate (Fig. 1-9A). UT26 

and UTBM1 showed obvious -HCH utilization activity at the cell concentration of 10 and 1 mg cells/mL, 

while UTDB2, UTBJ1, and UTRL1 showed no -HCH utilization activity (Fig. 1-11A). UTLA2 showed 

-HCH utilization activity at the cell concentration of 10 mg cells/mL, and UTLA1 and UTMM1 formed 

larger clear zone around the spotted area than UTDB2 at the cell concentration of 100 mg cells/mL (Fig. 

1-11A). The same tendency was observed in the experiment using the DAX-series strains (Fig. 1-11B). These 

results indicate that Rluc_anc, Rluc_ancM, and DmmA have weak LinB-like activity for the -HCH 

utilization. 
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Fig.1-9 Spot assay of Sphingobium japonicum linB replacement strains on W plate without carbon source (2 days 

incubation). A. Sphingobium japonicum UT series strains. B. Sphingobium japonicum UT-DAX series strains. 
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Fig.1-10 Spot assay of Sphingobium japonicum linB replacement strains on W plate with glucose (1 day incubation). A. 

Sphingobium japonicum UT series strains. B. Sphingobium japonicum UT-DAX series strains. 
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Fig.1-11 Spot assay of Sphingobium japonicum linB replacement strains on W-γ-HCH plate (14 days incubation). A. 

Sphingobium japonicum UT series strains. B. Sphingobium japonicum UT-DAX series strains. 

1-4 Discussion 

In this chapter, the linB-replacement strains of S. japonicum UT26 were constructed by using homologous 

recombination, in which the linBUT gene was replaced with linBMI, dbjA, dmmA, rluc, rluc_anc, rluc_ancM 

and linB_dmbA_anc. GC assay for the -HCH degradation activity and spot assay for the -HCH utilization 

demonstrated that Rluc_anc, Rluc_ancM, and DmmA have weak LinB-like activity for the -HCH utilization. 

It was clearly demonstrated that some HLDs besides LinB can potentially be involved in the -HCH 

utilization. This result could be predicted on the basis of the facts that HLDs or its homologues are widely 

distributed among bacterial strains and that HLDs generally have a broad range of substrate specificities 
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(Koudelakova et al., 2011), but it was experimentally confirmed for the first time in this study. Especially, it is 

important that 'natural' HLD DmmA showed the LinB activity. 

DmmA is a HLD from marine metagenome and belongs to HLD-II subfamily, but its biological source is 

unknown. DmmA possesses an unusually large active-site cavity comparing with other structurally 

characterized HLDs (Gehret et al., 2012), and shows unusual broad substrate specificity. DmmA showed 

activity toward all 29 substrates constituting a set of representative HLD substrates (Koudelakova et al., 2011). 

Additionally, DmmA is active toward all poorly degradable chlorinated environmental pollutants, e.g., 

1,2-dichloroethane, 1,2-dichloropropane, 1,2,3-trichloropropane, and chlorocyclohexane as well as toward 

newly identified substrates of this enzyme family (Daniel et al., 2015). The broad substrate specificity of 

DmmA may be linked to its large active site and readily accessible active site. Analysis of access tunnels using 

CAVER identified the widely open mouth without any sign of bottleneck, which is unique to DmmA and has 

never been observed with other family members (Gehret et al., 2012). This wide opening provides easy access 

of a large spectrum of diverse molecules to the enzyme active site. While complementary analysis of LinB 

revealed clear bottlenecks which separate the active site from the surrounding water solvent. All of these 

results suggested that DmmA possesses a combination of several unique properties attractive for practical 

applications. 

On the other hand, it should be also noted that DbjA did not show the LinB activity, indicating that not all 

HLDs with broad substrate specificities show the LinB activity. DbjA from Bradyrhizobium japonicum 

USDA110 has been intensively analyzed because it shows unique substrate specificity such as a high catalytic 

activity for β-methylated haloalkanes and high enantioselectivity with β-brominated alkanes (Sato et al., 2005). 

Since this enzyme possessed unique catalytic activity, structural stability in a broad pH range, combined with 

high enantioselectivity with particular substrates, it still be used in the protein engineering analysis and further 

mutations on this enzyme will make it a very versatile biocatalyst. Determinants for the LinB activity will be 

revealed by comparing HLDs that show the LinB activity and those not. 

Rluc_ancM seems to have higher LinB-like activity than Rluc_anc and DmmA, since (i) UTLA2 

(UTLA2DAX) produced larger amount of 2,5-DCHQ and 2,5-DCP than UTLA1 (UTLA1DAX) and UTMM1 

(UTMM1DAX) (Fig. 1-12 and 1-13), and (ii) UTLA2 (UTLA2DAX) grew well at the cell concentration of 10 

mg cells/mL than UTLA1 (UTLA1DAX) and UTMM1 (UTMM1DAX) (Fig. 1-11). It is interesting because 

only one amino acid residue is different between Rluc_anc and Rluc_ancM. This result strongly suggest that (i) 

HLDs can change their LinB-like activity only by small number of amino acid residue substitution, and (ii) 

the assay system used in this study is sensitive enough to detect the difference. 

Taken together, strains constructed in this study can be used as starting materials in the functional evolution 

and engineering studies. Especially, DAX-series strains are usefully for avoiding false positive clones that 

grow well on the solid minimal salt medium without adding any carbon sources in the screening process. 
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Chapter 2 Construction of in vivo and in vitro evolution systems of 

HLDs toward the -HCH utilization 

2-1 Background 

  In Chapter 1, it was revealed that some HLDs besides LinB can potentially be involved in the -HCH 

utilization. Furthermore, it was suggested that (i) HLDs can change their LinB-like activity only by small 

number of amino acid residue substitution, and (ii) the assay system used in this study is sensitive enough to 

detect the difference. 

In this chapter, to get some insights into HLDs evolution toward the optimized -HCH utilization, 

experimental evolution systems of HLDs were constructed. As in vivo evolution system, the engineered strains 

constructed in Chapter 1 were directly used for the screening. Considering the possibility that mutation rate is 

too low to obtain the evolved genes in the in vivo evolution system, (i) hypermutator strains were constructed 

for the in vivo evolution system by the introduction of the mutated dnaQ gene into the linB replacement 

strains, and (ii) in vitro evolution system was constructed, in which error-prone PCR was used for random 

mutagenesis. Strategies used in this study are summarized in Fig. 2-2. 

2-2 Materials and methods 

2-2-1 Strains, plasmids, medium composition and culture condition 

The strains and plasmid used in this chapter were shown in Table 2-1. The medium and culture conditions 

were in accordance with Chapter 1. In addition, chloramphenicol (Cm) was used at the final concentration of 

25 μg/mL. 

2-2-2 DNA manipulations 

The basic DNA manipulations were in accordance with Chapter 1. Primers used in this chapter were shown 

in Table 2-2. HIT Competent E.coli DH5 619 cells (RBC Bioscience) showing higher efficient 

transformation rate than 618 cells were used for construction of mutant libraries of HLD or its related genes in 

E. coli. 
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Table 2-1 Bacterial strains and plasmids used in this chapter 

Strains or plasmid Relevant characteristics Source or reference 

Sphingomonads   

Sphingobium japonicum UT26DAX γ-HCH degrader, adhX (Inaba et al., 2020) 

Sphingobium japonicum UTDB2DAX linB, adhX (Inaba et al., 2020) 

Sphingobium japonicum UTBM1DAX linB -> linBMI, adhX This study 

Sphingobium japonicum UTBJ1DAX linB -> dbjA, adhX This study 

Sphingobium japonicum UTMM1DAX linB -> dmmA, adhX This study 

Sphingobium japonicum UTLA1DAX linB -> rluc_ancM, adhX This study 

Sphingobium japonicum UTLA2DAX linB -> rluc_anc, adhX This study 

Sphingobium japonicum UTRL1DAX linB -> rluc, adhX This study 

Sphingobium japonicum UTBA1DAX linB ->linB_dmbA_anc, adhX This study 

Sphingobium japonicum UT26DAX/pBDQ1 γ-HCH degrader, adhX, pBDQ1 This study 

Sphingobium japonicum UTDB2DAX/pBDQ1 linB, adhX, pBDQ1 This study 

Sphingobium japonicum UTBM1DAX/pBDQ1 linB -> linBMI, adhX, pBDQ1 This study 

Sphingobium japonicum UTBJ1DAX/pBDQ1 linB -> dbjA, adhX, pBDQ1 This study 

Sphingobium japonicum UTMM1DAX/pBDQ1 linB -> dmmA, adhX, pBDQ1 This study 

Sphingobium japonicum UTLA1DAX/pBDQ1 linB -> rluc_ancM, adhX, pBDQ1 This study 

Sphingobium japonicum UTLA2DAX/pBDQ1 linB -> rluc_anc, adhX, pBDQ1 This study 

Sphingobium japonicum UTRL1DAX/pBDQ1 linB -> rluc, adhX, pBDQ1 This study 

Sphingobium japonicum UTBA1DAX/pBDQ1 linB ->linB_dmbA_anc, adhX, pBDQ1 This study 

Sphingobium japonicum UTDB2DAX/pBLB1 linB, adhX, pBBR5TP::linBUT This study 

Sphingobium japonicum UTDB2DAX/pBLB2 linB, adhX, pBBR5TP::linBMI This study 

Sphingobium japonicum UTDB2DAX/pBBJ1 linB, adhX, pBBR5TP::dbjA This study 

Sphingobium japonicum UTDB2DAX/pBMM1 linB, adhX, pBBR5TP::dmmA This study 

Sphingobium japonicum UTDB2DAX/pBLA1 linB, adhX, pBBR5TP::rluc_ancM This study 

Sphingobium japonicum UTDB2DAX/pBLA2 linB, adhX, pBBR5TP::rluc_anc This study 

Sphingobium japonicum UTDB2DAX/pBRL1 linB, adhX, pBBR5TP::rluc This study 

Sphingobium japonicum UTDB2DAX/pBBA1 
linB, adhX, 

pBBR5TP::linB_dmbA_anc 
This study 

E.coli   

DH5α 

recA1 endA1 gyrA96 thi-1 hsdR17 

supE44 relA1 (lacZYA-argF) 

Φ80lacZM15 

(Marietta et al., 1988) 

Plasmid   

pBDQ1 pBBR MCS-1 (Cm) -UT26dnaQ
exo (Inaba et al., 2020) 

pBBR5T pBBR1MCS-5_terminator This study 

pBBR5TP pBBR1MCS-5 carrying T1 This study 

pBLB1 pBBR5TP::linBUT This study 

pBLB2 pBBR5TP::linBMI This study 

pBBJ1 pBBR5TP::dbjA This study 

pBMM1 pBBR5TP::dmmA This study 

pBLA1 pBBR5TP::rluc_ancM This study 

pBLA2 pBBR5TP::rluc_anc This study 
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pBRL1 pBBR5TP::rluc This study 

pBBA1 pBBR5TP::linB_dmbA_anc This study 

 

 

 

 

 

 

 

Table 2-2 Primers used in this chapter 

Primer Sequence(5‟→3‟) Amplification target 

pBBR5TP_Hin_linB_up 
gtgcttggatcaaggtccgaagcttAGACCAGAAAATC

GCTCAAG 
hlds genes 

pBBR5TP_Cla_linB_down 
gggccccccctcgaggtcgacggtatcgaTCGGATCTTA

GAAAATGAGC 
hlds genes 

M4out GCTGCAAGGCGATTAAG 
Colony PCR and Sequence 

checking 

RVout GGCTCGTATGTTGTGTG 
Colony PCR and Sequence 

checking 
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2-2-3 Construction of plasmids 

The terminator sequence was introduced into the broad-host-range vector pBBR1-MCS-5, and the resultant 

plasmid was named pBBR5T. The promoter sequence Pu necessary for constitutive expression of linA gene in 

S. japonicum UT26 was introduced into pBBR5T, and the resultant plasmid was named pBBR5TP. The linBUT, 

linBMI, dbjA, dmmA, rluc, rluc_anc, rluc_ancM, and linB_dmbA_anc genes were introduced into pBBR5TP, 

and the resultant plasmids were named pBLB1, pBLB2, pBBJ1, pBMM1, pBRL1, pBLA1, pBLA2, and 

pBBA1, respectively (Fig. 2-1). 

 

 

Fig. 2-1 Construction of plasmids for expression of HLD and its homologue genes in Sphingobium strains. 

2-2-4 Construction of the hypermutator strains 

Hypermutator strains were constructed by introduction of pBDQ1, which carries the mutated dnaQ gene of 

UT26 (dnaQexo
) (Inaba et al., 2020), into the linB-replacement strains by using electroporation. 

2-2-5 Screening for clones having the improved γ-HCH utilization ability 

Cells (Table 2-3) cultured by appropriate medium were collected, washed, and suspended in PBS at the 

concentration of 10 mg/mL. 100 μL of cell suspension was spread on W-γ-HCH plate and incubated at 30℃ 

for two weeks. Colonies grew well with larger clear zone than others were selected for further analysis. 

2-2-6 Error-prone PCR 

Random mutagenesis of the HLD and its related genes was conducted by error-prone PCR. The 

composition of the reaction solution is shown in Table 2-4. The reaction condition consisted of a denaturation 

step for 1 min at 94℃, followed by 30 cycles of denaturation at 94℃ for 30 sec, annealing at 56℃ for 30 sec, 

and extension at 72℃ for 30 sec, with a final extension step at 72℃ for 10 min. Mutation rate was adjusted to 

0.2~0.3% by concentration of Mn
2+

 and PCR cycles. 
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2-2-7 Construction of mutant libraries of HLD and its related genes 

Mutated genes generated by error-prone PCR were cloned into pBBR5TP by using Gibson Assembly kit 

and transformed into E. coli DH5, and the resultant transformants were used as mutant libraries in E. coli. 

Insertion rate of the PCR-amplified fragments and their mutation rate were estimated by using plasmids 

extracted from clones of the libraries that were randomly selected. The mixture of plasmids were extracted 

from the libraries in E. coli, and introduced by EP into S. japonicum UTDB2DAX (linB, adhX) to obtain 

the libraries in Sphigobium. 

 

 
Fig. 2-2 Strategy used in this study 
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Table 2-3 Strains used in the in vivo evolution system 

Strain Relevant characteristics 
Growth on HCH 

(low cell density) 

Growth on HCH 

(high cell density) 

Sphingobium japonicum UT26DAX γ-HCH degrader Yes Yes (death) 

Sphingobium japonicum UTBM1DAX linB -> linBMI, adhX Yes Yes (death) 

Sphingobium japonicum UTBJ1DAX linB -> dbjA, adhX No No 

Sphingobium japonicum UTMM1DAX linB -> dmmA, adhX No Yes (weak) 

Sphingobium japonicum UTLA1DAX linB -> rluc_ancM, adhX No Yes (weak) 

Sphingobium japonicum UTLA2DAX linB -> rluc_anc, adhX No Yes(weak) 

Sphingobium japonicum UTRL1DAX linB -> rluc, adhX No No 

Sphingobium japonicum UTBA1DAX 
linB->linB_dmbA_anc

adhX 
No Yes 

Sphingobium japonicum 

UT26DAX/pBDQ1 
γ-HCH degrader Yes Yes (death) 

Sphingobium japonicum 

UTBM1DAX/pBDQ1 
linB -> linBMI, adhX Yes Yes (death) 

Sphingobium japonicum 

UTBJ1DAX/pBDQ1 
linB -> dbjA, adhX No No 

Sphingobium japonicum 

UTMM1DAX/pBDQ1 
linB -> dmmA, adhX No Yes (weak) 

Sphingobium japonicum 

UTLA1DAX/pBDQ1 

linB -> rluc_ancM, 

adhX 
No Yes (weak) 

Sphingobium japonicum 

UTLA2DAX/pBDQ1 
linB -> rluc_anc, adhX No Yes(weak) 

Sphingobium japonicum 

UTRL1DAX/pBDQ1 
linB -> rluc, adhX No No 

Sphingobium japonicum 

UTBA1DAX/pBDQ1 

linB->linB_dmbA_anc, 

adhX 
No Yes 

Sphingobium japonicum 

UTDB2DAX/pBLB1 
pBBR5TP::linBUT Yes Yes (death) 

Sphingobium japonicum 

UTDB2DAX/pBLB2 
pBBR5TP::linBMI Yes Yes (death) 

Sphingobium japonicum 

UTDB2DAX/pBBJ1 
pBBR5TP::dbjA No No 

Sphingobium japonicum 

UTDB2DAX/pBMM1 
pBBR5TP::dmmA No Yes (weak) 

Sphingobium japonicum 

UTDB2DAX/pBLA1 
pBBR5TP::rluc_ancM No Yes (weak) 

Sphingobium japonicum 

UTDB2DAX/pBLA2 
pBBR5TP::rluc_anc No Yes(weak) 

Sphingobium japonicum 

UTDB2DAX/pBRL1 
pBBR5TP::rluc No No 

Sphingobium japonicum 

UTDB2DAX/pBBA1 
pBBR5TP::linB_dmbA_anc No Yes 

 



42 
 

Table 2-4 Compositions of solution for error-prone PCR 

Reagents Volume 

Template 
0.5 μL (plasmid was diluted by TE 

buffer* to 100 fold) 

pBBR5TP_Hin_linB_up (50pmol/μl) 0.5 μL 

pBBR5TP_Cla_linB_down (50pmol/μl) 0.5 μL 

rTaq (5U/μl) 0.5 μL 

10×buffer (Mg
2+

 free) 5 μL 

dNTP mixture 4 μL 

DMSO 2.5 μL 

MgCl2 (25mM) 3 μL 

MnCl2 (10mM) 0.5 μL 

Sterilized water Up to 50 μL 

*TE buffer: 

1M Tris (pH 8.0)      2 mL 

0.5M EDTA (pH 8.0)  400 μL 

Sterilized water    up to 200 mL 

2-3 Results 

2-3-1 In vivo evolution system 

The linB-replacement UT26 (wild type)- and UT-DAX-series strains constructed in Chapter 1 were 

incubated on the W--HCH plate, and clones that grew well with larger clear zone than others were selected. 

Considering the possibility that spontaneous mutation rate is too low to obtain the evolved genes in this 

system, hypermutator strains were also constructed by the introduction of the mutated dnaQ gene into the 

UT-DAX-series strains. The -HCH utilization ability of the resultant strains was assayed on the W--HCH 

plate (Fig. 2-3). These strains showed the same tendency with UT-DAX-series strains (Fig. 1-11). 

Some candidate clones were obtained by the screening for further analysis. HLD or its related genes of such 

candidates were amplified by PCR and sequenced. However, they carried the same gene as original or the linB 

gene. The former indicates that mutation(s) in the genome other than HLD or its related genes improved the 

-HCH utilization ability. The latter is probably due to the contamination with strains having the linB gene. 
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Fig. 2-3 Spot assay of UT-DAX(pBDQ1)-series strains (9 days incubation). Concentration of cells from outer to inner is 

100 mg/mL, 10 mg/mL and 1 mg/mL. 

2-3-2 Introduction of HLD or its related genes into UTDB2DAX by using a broad-host-range vector 

The linBUT, linBMI, dbjA, dmmA, rluc, rluc_anc, rluc_ancM, and linB_dmbA_anc genes were cloned into a 

broad-host-range vector pBBR5TP, and the resultant plasmids were named pBLB1, pBLB2, pBBJ1, pBMM1, 

pBRL1, pBLA1, pBLA2, and pBBA1 (Fig. 2-1).These plasmids were introduced into UTDB2DAX (linB, 

adhX), and the -HCH utilization ability of the resultant strains was assayed on the W--HCH plate ( Fig. 

2-4). The positive control strains, UTDB2DAX (pBLB1) and UTDB2DAX (pBLB2), showed obvious -HCH 

utilization activity, while the negative control strain UTDB2DAX showed no -HCH utilization activity (Fig. 

2-4A). As expected from the results of Chapter 1, UTDB2DAX (pBBJ1) and UTDB2DAX (pBRL1) showed 

no -HCH utilization activity, and UTDB2DAX (pBMM1), UTDB2DAX (pBLA1), and UTDB2DAX 

(pBLA2) showed weak -HCH utilization activity (Fig. 2-4). Unexpectedly, UTDB2DAX (pBBA1) showed 

weak -HCH utilization activity (Fig. 2-4B), suggesting that LinB_dmbA_anc has faint LinB-like activity. The 

activity was detected only in UTDB2DAX (pBBA1), probably because LinB_dmbA_anc was expressed at 

higher level in UTDB2DAX (pBBA1) than in UTBA1. 
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Fig. 2-4 Spot assay of Sphingobium japonicum UTDB2DAX/pBBR5TP::linB replacement genes strains (7 days 

incubation. Concentration of cells from outer to inner is 100 mg/mL, 10 mg/mL and 1 mg/mL. 

2-3-3 In vitro evolution system 

In Chapter 1, it was shown that DmmA, Rluc_anc, and Rluc_ancM have weak LinB-like activity. In 

addition, it was suggested that LinB_dmbA_anc has faint LinB-like activity in the previous section. Although 

the LinB-like activity of DbjA and Rluc has not been detected, they may change to enzymes showing 

LinB-like activity by small number of mutations. On the other hand, it was also expected that LinBUT26 and 

LinBMI still have chance to improve their activity for the -HCH utilization. Thus, in vitro evolution system 

for these genes toward the -HCH utilization was constructed. 

Random mutation was introduced into the linBUT, linBMI, dbjA, dmmA, rluc, rluc_anc, rluc_ancM, and 

linB_dmbA_anc genes by error-prone PCR, and their mutant libraries were constructed in E. coli. Each library 

consists of about 1,000 clones, and their insertion and mutation rates were estimated from clones randomly 

selected (Table 2-5). 

The mixture of plasmids were extracted from the libraries in E. coli, and introduced into S. japonicum 

UTDB2DAX to obtain the libraries in Sphigobium. The resultant libraries in Sphingobium were screened on 

the W--HCH plate, and clones that grew well with larger clear zone than others were selected. The selected 

clones were sub-cultured on another W--HCH plate with control strains, and their improved growth on the 

plate was confirmed. Plasmids carrying the mutated genes were extracted from the candidate clones, 

re-introduced into UTDB2, and their positive effect on the growth on the W-γ-HCH plate was confirmed (Fig. 

2-5). The final candidate evolved genes were sequenced and the results were summarized in Table 2-6. 
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Table 2-5 Mutant libraries of HLD and its related genes for the first round screening 

Genes Library size Insertion rate (%) Mutation rate (%) 

linBUT 923 62.5 0.23 

linBMI 905 75 0.27 

dbjA 893 50 0.19 

dmmA 925 75 0.30 

rluc_ancM 934 50 0.42 

rluc_anc 946 50 0.32 

rluc 902 50 0.23 

linB_dmbA_anc 881 62.5 0.33 

 

  

Fig. 2-5A 1
st
 screening of linBUT and its mutant colonies (No. 45, No. 52 and No.35, 8 days incubation, on the circle plate, 

concentration of cells from outer to inner is 100mg/mL, 10mg/mL and 1mg/mL) 

 

 

Fig. 2-5B 1
st
 screening of linBMI and its mutant colonies (No.2, No.55 and No.63, 8 days incubation, on the circle plate, 

concentration of cells from outer to inner is 100mg/mL, 10mg/mL and 1mg/mL) 
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Fig. 2-5C 1
st
 screening of linB_dmbA_anc and its mutant colonies (No.3, No.5, No.15, No.49 and No.76, 8 days 

incubation, on the circle plate, concentration of cells from outer to inner is 100mg/mL, 10mg/mL and 1mg/mL) 
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Fig. 2-5D 1
st
 screening of rluc_anc and its mutant colonies (No.4, No.8, No.34, No.37, No.2p and No.5p, 8 days 

incubation, on the circle plate, concentration of cells from outer to inner is 100mg/mL, 10mg/mL and 1mg/mL) 
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Fig. 2-5E 1
st
 screening of rluc_ancM and its mutant colonies (No.1 and No.10, 8 days incubation, on the circle plate, 

concentration of cells from outer to inner is 100mg/mL, 10mg/mL and 1mg/mL) 

 

   

 

Fig. 2-5F 1
st
 screening of rluc and its mutant colonies (No. 43, 8 days incubation, on the circle plate, concentration of 

cells from outer to inner is 100mg/mL, 10mg/mL and 1mg/mL) 
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Table 2-6 Summary of the candidate evolved genes obtained by the 1
st
 round screening 

HLD No Mutation site 

LinBUT 35 A141V(GCG→GTG) 

 52 P203T(CCG→ACG) 

LinBMI 63 G4S(GGC→AGC), I128V(ATT→GTT), A269T(GCA→ACA) 

 2 T81S(ACC→TCC), L239H(CTC→CAC) 

 55 D90V(GAC→GTC), A95T(GCG→ACG), L195S(CTC→TCC) 

 45 T81S (ACC→TCC), L239H (CTC→CAC) 

LinB_dmbA_anc 15 P158L(CCG→CTA), L294V(CTG→GTG) 

 3 R125C(CGT→TGT), E161V(GAA→GTA) 

 5 A3T(GCA→ACA), E147V(GAA→GTA), V148A(GTT→GCT), 

L196P(CTG→CCT), V222A(GTT→GCT) 

 19 No mutation 

 35 E187K(CAG→AAG) 

 47 R210C(CGT→TGT) 

 49 T2A(ACC→GCC) 

 76 L90P(CTG→CCG), S226N(AGC→AAC), G299D(GGT→GAT) 

Rluc_anc 4 G122S (GGT→AGT), I298M (ATT→ATG) 

 8 N87S(AAT→AGT), D104G(GAT→GGT), K136R(AAA→AGA), 

I161V(ATT→GTT), S187C(AGC→TGC), K247E(AAA→GAA) 

 34 S32N(AGC→AAC), F261L(TTT→CTT), 

 37 K237N(AAA→AAT), F261L(TTT→CTT) 

 2p S246C(AGC→TGC), V268M(GTG→ATG), L302Q(CTG→CAG) 

 5p N129S(AAT→AGT), V268E(GTG→GAG) 

Rluc_ancM 1 P7R(CCT→CGT), S32N(AGC→AAC), F261L(TTT→CTT), 

E304V(GAA→GTA), L305P(CTG→CCG) 

 10 P7R(CCT→CGT), K237N(AAA→AAT), F261L(TTT→CTT) 

Rluc 43 E132D(GAG→GAC), E151G(GAA→GGA), E211G(GAA→GGA) 
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2-3-4 The 2
nd

 round screening in the in vitro evolution system 

Since the in vitro evolution system seemed to work, the second round screening was also conducted. Eight 

evolved genes, linBMI-45, linBUT-52, linBMI-63, rluc_anc-4, rluc_anc-8, linB_dmbA_anc-3, linB_dmbA_anc-5, 

and rluc-43, whose positive effect on the -HCH utilization was obvious (Fig. 2-5), were selected for the 

second round screening.  

Random mutation was introduced into the eight genes by error-prone PCR, and their mutant libraries were 

constructed in E. coli. Each library consists of about 1,000 clones, and their insertion and mutation rates were 

estimated from clones randomly selected (Table 2-7). The mixture of plasmids were extracted from the 

libraries in E. coli, and introduced into S. japonicum UTDB2DAX to obtain the libraries in Sphigobium. The 

resultant libraries in Sphingobium were screened on the W--HCH plate, and clones that grew well with larger 

clear zone than others were selected. 

The second round screening was more difficult than the first screening, since they relatively formed many 

colonies. However, the selected clones were sub-cultured on another W--HCH plate with control 

(corresponding mutant strains selected from the 1
st
 round of screening), and their improved growth on the 

plate was confirmed. Plasmids carrying the mutated genes were extracted from the candidate clones, 

re-introduced into the UTDB2, and their positive effect on the growth on the W-γ-HCH plate was confirmed 

(Fig. 2-6). The final candidate evolved genes were sequenced and the results were summarized in Table 2-8. 

Table 2-7 Mutant libraries of HLD and its related genes for the first round screening 

Genes Library size Insertion rate (%) Mutation rate (%) 

linBMI-45 957 75 0.23 

linBUT-52 875 62.5 0.30 

linBMI-63 783 62.5 0.23 

rluc_anc-4 898 75 0.30 

rluc_anc-8 790 62.5 0.33 

linB_dmbA_anc-3 843 50 0.32 

linB_dmbA_anc-5 882 62.5 0.33 

rluc-43 925 62.5 0.3 

 

 

Fig. 2-6A 2
nd

 screening of linBUT-52 and its mutant colonies (No.8 and No.9, 7days incubation, on the circle plate, 

concentration of cells from outer to inner is 100mg/mL, 10mg/mL and 1mg/mL) 
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Fig. 2-6B 2
nd

 screening of linB_dmbA_anc-3 and its mutant colonies (No.21 and No.22, 7days incubation, on the circle 

plate, concentration of cells from outer to inner is 100mg/mL, 10mg/mL and 1mg/mL) 

 

Fig. 2-6C 2
nd

 screening of linB_dmbA_anc-5 and its mutant colonies (No.17, 7days incubation, on the circle plate, 

concentration of cells from outer to inner is 100mg/mL, 10mg/mL and 1mg/mL) 
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Fig. 2-6D 2
nd

 screening of rluc_anc-8 and its mutant colonies (No.4, No.6, No.7, No.11, No. 12, No.14, No.16 and No.18, 

7days incubation, concentration of cells from outer to inner is 100mg/mL, 10mg/mL and 1mg/mL) 
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Table 2-8 Sequence of candidates showed in Fig. 3-23 during the 2
nd

 round screening 

HLD No. Mutation site 

Rluc_anc-8 18 E171A(GAA→GCA), C187S(TGC→AGC), S188N(AGC→AAC) 

 16 S188N(AGC→AAC), L286P(CTG→CCG) 

 14 S188N(AGC→AAC) 

 4 S188Y(AGC→TAC), N255S(AAC→AGC), S238C(AGC→TGC) 

 7 V65A(GTT→GCT), S188N(AGC→AAC), K241E(AAA→GAA) 

 6 S188N(AGC→AAC), F261L(TTT→CTT), N271Y(AAT→TAT) 

 12 Q6R(CAG→CGG), S188N(AGC→AAC), P204S(CCG→TCG), 

V268E(GTG→GAG) 

 11 S188Y(AGC→TAC), R213C(CGT→TGT) 

LinBUT-52 9 I14V(ATT→GTT) 

 8 Q165R(CAG→CGG) 

LinB_dmbA_anc-3 22 E146G(GAA→GGA) 

 21 S43G(AGC→GGC) 

LinB_dmbA_anc-5 17  I25T(ATT→ACT) 

2-4 Discussion 

In this chapter, experimental evolution systems of HLD and its related genes toward the optimized -HCH 

utilization were constructed. The in vivo evolution system did not work well, mainly because candidate clones 

that grew well with larger clear zone on the W--HCH plate than others had no mutation in the HLD or its 

related genes. Probably, mutation(s) in the genome other than HLD or its related genes improved the -HCH 

utilization ability of the host cells. Although it is very interesting what mutation(s) have occurred in such 

clones, I did not further analyze them in this study. 

On the other hand, the in vitro evolution system using error-prone PCR worked well, and many candidate 

evolved genes were successfully obtained. Eight genes, whose positive effect on the -HCH utilization were 

obvious, were selected and used as templates for the second round screening. However, the second round 

screening was more difficult than the first screening, since the screening system seems to be difficult to detect 

small difference of genes that have evolved to some extent. This system is suitable for selection of the evolved 

gene from the original gene encoding enzyme having weak or no LinB-like activity. 

To finally conclude that the in vitro evolution system worked, it is necessary to confirm that the candidate 

genes indeed encode proteins having the improved LinB-like activity. Enzymatic activities of proteins 

encoded by the selected eight candidate genes were analyzed in the next chapter. 

Interestingly, rluc-43, whose original rluc gene encodes protein having no LinB-like activity, was obtained 

as the evolved gene that confers the -HCH utilization ability to the host cells. Although the further evolved 

gene of rluc-43 was not obtained by the second round screening in this study, further trail deserves to be 

conducted. 
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Chapter 3 Purification and characterization of the putative evolved 

HLDs 

3-1 Background 

One of the goals of protein design and protein engineering is to construct the enzymes with improved 

activity and modified specificity. The introduction of mutations into the genes, gene expression and protein 

purification take considerable effort and it is desirable to extensively characterize constructed mutants to 

detect even subtle changes in the specificity of the constructs. Kinetic experiments with a few selected 

substrates are often used for characterization of catalytic properties of the engineered enzymes.  

In the previous chapter, the candidate evolved genes toward the -HCH utilization were successfully 

obtained by using the in vitro evolution system, suggesting that the in vitro evolution system worked. 

However, it is necessary for the final conclusion to confirm that the candidate genes indeed encode proteins 

having the improved LinB-like activity. 

In this chapter, eight candidate evolved genes obtained by the first round screening were selected (Table 

3-3), and their protein products were expressed in E. coli as His-tagged proteins, purified, and characterized 

for their HLD and LinB-like activities. In addition, protein products of the candidate evolved genes obtained 

by the second round screening were also analyzed. 

3-2 Materials and methods 

3-2-1 Strains, plasmids, medium composition and culture condition 

The strains and plasmids used in this chapter were shown in Table 3-1.  

The medium and culture conditions were in accordance with Chapter 1. In addition, ampicillin (Ap) was 

used at the final concentration of 100 μg/mL. 

3-2-2 DNA manipulations 

The basic DNA manipulations were in accordance with Chapter 1. Primers used in this chapter were shown 

in Table 3-2. 
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Table 3-1 Bacterial strains and plasmids used in this chapter 

Strains or plasmid Relevant characteristics Source or reference 

E.coli   

DH5α 
recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 

(lacZYA-argF) Φ80lacZM15 
(Marietta et al., 1988) 

BL21 Star 
TM

(DE3)  F ompT hsdSB (rB-mB-) gal ompT, λ(DE3) (Studier & Moffatt, 1986) 

Plasmid   

pETWD1 pET22b(+)+TEE-Hisx6-TEV-NdeI-XhoI Mr. Deng Master thesis 

pETWD1-linBUT pETWD1::linBUT This study 

pETWD1-linBMI-45 pETWD1::linBMI-45 This study 

pETWD1-linBUT-52 pETWD1::linBUT-52 This study 

pETWD1-linBMI pETWD1::linBMI This study 

pETWD1-linBMI-63 pETWD1::linBMI-63 This study 

pETWD1-rluc_ancM pETWD1::rluc_ancM This study 

pETWD1-rluc_anc pETWD1::rluc_anc  This study 

pETWD1-rluc_anc-4 pETWD1::rluc_anc-4 This study 

pETWD1-rluc_anc-8 pETWD1::rluc_anc-8 This study 

pETWD1-rluc pETWD1::rluc This study 

pETWD1-rluc-43 pETWD1::rluc-43 This study 

pETWD1-linB_dmbA_anc pETWD1::linB_dmbA_anc This study 

pETWD1-linB_dmbA_anc-3 pETWD1::linB_dmbA_anc-3 This study 

pETWD1-linB_dmbA_anc-5 pETWD1::linB_dmbA_anc-5 This study 

pUC18 multiple cloning site internal to lacZ gene Fermentas Inc. 

pAQN pMB9 replicon, lacI
q
 aqn (Terada et al., 1990) 

pUC18-rluc-43 pUC18::rluc-43 This study 

pAQN-rluc-43 pAQN::rluc-43 This study 
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3-2-3 Construction of plasmids 

The plasmids for expression of proteins with His-tag at N-terminus in E. coli were constructed by using 

pETWD1 (constructed by insert translation enhancing element (TEE), 6×His-tag at N terminal, also insert 

tobacco etch virus (TEV) protease recognition and cleavage site) for linBUT, linBMI-45, linBUT-52, linBMI, 

linBMI-63, rluc_anc, rluc_anc-43, rluc_ancM, rluc_anc-4, rluc_anc-8, linB_dmbA_anc, linB_dmbA_anc-3, 

and linB_dmbA_anc-5 (Fig. 3-1). For the expression of rluc_anc-43, pUC18 and pAQN were also used. 
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Table 3-2 Primers used in this chapter 

Primer Sequence(5‟→3‟) purpose 

pBBR5TP_Hin_linB_up 
gtgcttggatcaaggtccgaagcttAGACCAGAAAATC

GCTCAAG 

Amplification of 1
st
 evolved hlds 

genes 

pBBR5TP_Cla_linB_down 
gggccccccctcgaggtcgacggtatcgaTCGGATCTTA

GAAAATGAGC 

Amplification of 1
st
 evolved hlds 

genes 

pETWD1_LinBMI_F 
gaatctttattttcagggcaTGAGCCTCGGCGCAAAG

C 
Amplification of linBMI 

pETWD1_LinBMI_R 
agtggtggtggtggtggtgcTTATGCTGGGCGCAATC

GC 
Amplification of linBMI 

pETWD1_LinBMI_F_M63 
gaatctttattttcagggcaTGAGCCTCAGCGCAAAG

C 
Amplification of linBMI-63 

pETWD1_Rluc_anc_LA1_F 
gaatctttattttcagggcaTGGTGAGCGCGAGCCAG

C 
Amplification of rluc_ancM 

pETWD1_Rluc_anc_LA1_

R 

agtggtggtggtggtggtgc 

TCATTTGGTCAGTTCGTTCAGAAAATCGG

C 

Amplification of rluc_ancM 

pETWD1_Rluc_anc_LA2_F 
gaatctttattttcagggcaTGGTTAGCGCAAGCCAG

C 
Amplification of rluc_anc 

pETWD1_Rluc_anc_LA2_

R 

agtggtggtggtggtggtgc 

TTATTTGGTCAGTTCGTTCAGAAAATCG 
Amplification of rluc_anc 

pETWD1_LinB_dmbA_anc

_F 

gaatctttattttcagggcaTGACCGCACTGGGTGCA

G 
Amplification of linB_dmbA_anc 

pETWD1_LinB_dmbA_anc

_R 

agtggtggtggtggtggtgcTTAAACACCGGCTGCT

GCAC 
Amplification of linB_dmbA_anc 

pETWD1_LinB_dmbA_anc

_F_M5r 

gaatctttattttcagggcaTGACCACACTGGGTGCA

G 
Amplification of linB_dmbA_anc-5 

pETWD1_Rluc_F 
gaatctttattttcagggcaTGACTTCGAAAGTTTATG

ATC 
Amplification of rluc 

pETWD1_Rluc_R 
agtggtggtggtggtggtgcTTATTGTTCATTTTTGA

GAACTC 
Amplification of rluc 

pET22b-F2 ggggttatgctagttattgctcag 
Colony PCR and Sequence 

checking 

pET22+b_seqR gggaattgtgagcggataac 
Colony PCR and Sequence 

checking 

M4out GCTGCAAGGCGATTAAG 
Colony PCR and Sequence 

checking 

RVout GGCTCGTATGTTGTGTG 
Colony PCR and Sequence 

checking 
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Fig. 3-1 Construction of plasmids for expression of HLD and its related proteins. 

3-2-4 Expression of His-tagged proteins in E. coli 

1. Plasmids for expression of His-tagged proteins were introduced into E. coli BL21 Star
TM

 (DE3) by 

electroporation. 

2. Cells were incubated until OD660 reached 0.6. 

3. 0.5 mM IPTG was added, and incubated at 20℃ for 12h for expression of proteins. 

4. Cells were collected and stocked at -80
o
C 

3-2-5 Purification of His-tagged proteins 

Reagents 

・Wash buffer (pH 7.5, 0.5 M NaCl, 10 mM imidazole) 

imidazole 0.68 g 

NaCl 29.2 g 

1 M K2HPO4 6.8 mL 

1 M KH2PO4 3.2 mL 

dH2O up to 1L  

Wash buffer was used after autoclaving. 

・Elution buffer (pH 7.5, 0.5 M NaCl, 0.5 M imidazole) 

imidazole 34 g 

NaCl 29.2 g 

1 M K2HPO4 16.8 mL 

1 M KH2PO4 3.2 mL 

dH2O up to 1L  

Elution buffer was used after autoclaving. 

・Conservation buffer (pH7.5, 20 mM Tris-HCl, 5 mM MgCl2, 100 mM NaCl, 0.1 mM EDTA) 

・BD TALON Metal Affinity Resins (BD Bioscience) 

Operations: 
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1. Cells were dissolved in conservation buffer (10-20 mL/g cells), and disrupted by ultrasonication (output 4, 

duty cycle 50%, 1 min x appropriate times with 5 min interval) until the solution become transparent.  

2. Cells were centrifuged at 15,000 rpm for 20 min, supernatant was collected as crude extract. 

3. BD TALON Metal Affinity Resins (0.2 g/100 μL) were washed with autoclaved dH2O 3 times (1,000 rpm, 

3-5 min), and washed with wash buffer 3 times (1,000 rpm, 3-5 min). 

4. Crude extract was mixed with BD TALON Metal Affinity Resin and wash buffer (3 fold volume of crude 

enzyme), and rotated at 4℃ for 20 min. 

5. The mixture was centrifuged at 1,000 rpm for 5 min, and supernatant was discarded 

6. Resin was washed with wash buffer 3 times (1,000 rpm, 5 min). 

7. Elution buffer was added and rotated at 4℃ for 10 min. 

8. The mixture was centrifuged at 1,000 rpm for 5 min 

9. Supernatant was collected and stocked as purified protein 1. 

10. 7-8 was repeated, and supernatant was collected and stocked as purified protein 2. 

11. Purified protein 1 and 2 were combined as purified protein. 

12. Purified protein was divided into a small volume (10 μL) and stocked in PCR tubes at -80℃.  

 

Table 3-3 Eight putative evolved HLDs selected from the 1
st
 round screening 

3-2-6 SDS-PAGE 

Reagents: 

Running buffer (1L)  3 g Tris 

           14.4 g Glycine 

           1 g SDS 

Stain buffer    0.05% (w/v) Coomassie Brilliant Blue R-250 

           50% methanol 

           10% acetic acid 

Destain buffer    25% methanol 

            7% acetic acid 

 

SDS-PAGE gel (12.5%): 

 

 

Original protein No Mutation sites 

Rluc_anc 4 G122S (GGT→AGT), I298M (ATT→ATG) 

 8 N87S (AAT→AGT), D104G (GAT→GGT), K136R (AAA→AGA), I161V 

(ATT→GTT), S187C (AGC→TGC), K247E (AAA→GAA) 

LinBMI 63 G4S (GGC→AGC), I128V (ATT→GTT), A269T (GCA→ACA) 

 45 T81S (ACC→TCC), L239H (CTC→CAC) 

LinBUT 52 P203T (CCG→ACG) 

Rluc 43 E132D (GAG→GAC), E151G (GAA→GGA), E211G (GAA→GGA) 

LinB_dmbA_anc 3 R125C (CGT→TGT), E161V (GAA→GTA) 

 5 A3T (GCA→ACA), E147V (GAA→GTA), V148A (GTT→GCT), L196P (CTG→CCT), 

V222A (GTT→GCT) 
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Table 3-4 Composition of SDS-PAGE gel (12.5%) 

 30% Acrylamide buffer* water 10% APS TEMED 

Separation gel 3.36 mL 2 mL 2.64 mL 24 μL 8 μL 

Concentration gel 0.75 mL 1.25 mL 3 mL 15 μL 10 μL 

* buffer 

Separation gel: 1.5M Tris-HCl (pH 8.8), 0.4% SDS (Sodium Dodecyl Sulfate) 

Concentration gel: 0.5M Tris-HCl (pH 6.8), 0.4% SDS (Sodium Dodecyl Sulfate) 

 

Operations: 

1. Protein samples were mixed with 2 × sample buffer (Bio-Rad) and heated at 95℃ for 10 min. 

2. Samples were electrophoresed (running electric current 25mA) on SDS-PAGE gel with Marker 

(BIO-RAD). 

3. Gel was stained for more than 40 min, and distain for overnight. 

3-2-7 Concentration of purified protein 

In order to stock protein for long time, purified protein was concentrated by using Vivaspin 2 (Sartorius).  

Operations: 

1. Vivaspin 2 tubes were washed with dH2O 3 times (8,000 xg, 5 min). 

2. Vivaspin 2 tubes were washed with concentration buffer 3 times (8,000 xg, 5 min) 

3. Purified protein was concentrated to 200 μL. 

4. Concentrated purified protein was divided into a small volume (10 μL) and stocked in PCR tubes at -80℃. 

3-2-8 Assay for dehalogenase activity 

HLD activity was assayed by using spectrophotometrical measurement of released halide ions according to 

the Iwasaki's method (Iwasaki et al., 1952) . 

Reagents: 

50 mM glycine buffer (pH 8.6)  (100 mL) 

0.2 M glycine  25 mL 

0.2 M NaOH  2 mL 

dH2O      73 mL 

Hg solution (Sol I)  (100 mL) 

Hg(SCN2)  0.3 g 

100% ethanol 100 mL 

FAS solution (Sol II)  (200 mL) 

NH4Fe(SO4)2•12H2O 12.32 g 

70% HNO3         72 mL 

dH2O             128 mL 

KBr（MW=119) 

- Prepare 476 mg/100 mL in DW (= 40000μmol/L) . 

- Dilute to 0, 50, 100, 400, 1000, 4000μmol/L for calibration curve. 

KCl (MW=74.551) 

- Prepare 298.2 mg/100 ml DW (= 40,000μmol/L) . 

- Dilute to 0, 50, 100, 400, 1000, 4000μmol/L for calibration curve. 
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Substrate: For LinA and HLD activity, γ-HCH (50 mg/mL in DMSO) and 1,3-dibromopropane were used, 

respectively. 

One unit (U) was defined as enzymatic activity that requires for the release of 1 μmol halide ion per minute. 

Operations: 

1. 1 mL of glycine buffer was pre-incubated at 30℃ for 5 min. 

2. 1μl of substrate was added and shaken for 30 sec. 

3. 1μl of concentrated protein was added and shaken gently. 

4. 200 μL of sample was collected at different time intervals: 0, 60 min, 180 min and 240 min. 

5. 20 μL of Sol I was added into samples and shaken for 30 sec. 

6. 40 μL of Sol II was added and shaken for 30 sec. 

7. Samples were centrifuged at 15,000 rpm for 5 min. 

8. Absorbance at 450 nm of the supernatant was measured by plate reader (Bio-Rad iMark Microplate 

Reader). 

9. Calibration curve was prepared by using the standard samples. 

10. Amount of released halide ions was calculated by using the calibration curve. 

3-2-9 Assay for the LinB-like activity 

γ-HCH is converted to 1,2,4-TCB, 2,5-DCP, and 2,5-DDOL by LinA and LinB (Fig. 3-2). Production of 

2,5-DCP and 2,5-DDOL from -HCH under the condition with LinA was used as an indicator of LinB-like 

activity. 

Operations: 

1. 1 mL of glycine buffer was pre-incubated at 30℃ for 5 min. 

2. 1 μL of substrate (50mg/ml γ-HCH dissolved in DMSO) was added and vortexed for 30 sec. 

3. LinA* and sample protein were added and vortexed gently. 

4. 200 μL of reaction solution was collected at different time intervals: 0, 10 min, 20 min and 30 min. 

5. 200 μL of ethyl acetate containing 2 ppm dildrin as internal standard was added and mixed well.  

6. The mixture was centrifuged at 15,000 rpm for 5 min. 

7. Upper layer (ethyl acetate layer) was collected and used for GC(ECD) analysis (1-2-4). 

* Amount of LinA was determined on the basis of the pilot analysis. 

 

 

Fig. 3-2 Upstream degradation pathway of γ-HCH in UT26 

  



62 
 

3-3 Results 

3-3-1 Expression and purification of the putative evolved HLDs 

The 8 putative evolved HLDs, LinBUT-52, LinBMI-45, LinBMI-63, Rluc-43, Rluc_anc-4, Rluc_anc-8, 

LinB_dmbA_anc-3, and LinB_dmbA_anc-5, their original proteins, and LinA were expressed in E.coli and 

purified (Fig. 3-3 to 3-5). All the proteins except LinBUT-52 and Rluc-43 could be expressed well and purified 

successfully. Concentration of the finally purified proteins used for further analysis was shown in Table 3-5. 

 

 

 

 

Fig. 3-3 SDS-PAGE of the whole cells and crude extracts 

 

 

 

 

 

 

Fig. 3-4 SDS-PAGE of the whole cells and crude extracts 

 

No. Protein 

1 LinA(Ap) Cell 

2 LinA(Ap) CE 

3 LinA(Km) Cell 

4 LinA(Km) CE 

5 LinBUT Cell 

6 LinBUT CE 

9 Rluc_anc Cell 

10 Rluc_anc CE 

11 Rluc_anc-4 Cell 

12 Rluc_anc-4 CE 

13 Rluc_anc-8 Cell 

No. Protein 

1 LinB_dmbA_anc Cell 

2 LinB_dmbA_anc CE 

3 LinB_dmbA_anc-3 Cell 

4 LinB_dmbA_anc-3 CE 

5 LinB_dmbA_anc-5 Cell 

6 LinB_dmbA_anc-5 CE 

7 LinBMI Cell 

8 LinBMI CE 

9 LinBMI-63 Cell 

10 LinBMI-63 CE 

11 LinBMI-45 Cell 

12 LinBMI-45 CE 

13 Rluc_anc-8 CE 
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Fig. 3-5 SDS-PAGE of the purified proteins 

 

 

 

Table 3-5 Concentration of evolved hlds 

Protein name Concentration of protein (mg/mL) 

LinB 6.23 

LinBMI 7.98 

LinBMI-63 4.08 

LinBMI-45 3.76 

LinB_dmbA_anc 2.17 

LinB_dmbA_anc-3 2.47 

LinB_dmbA_anc-5 1.86 

Rluc_anc 5.1 

Rluc_anc-4 1.54 

Rluc_anc-8 2.92 

3-3-2 HLD activity of the putative evolved HLDs 

General HLD activity of the six putative evolved HLDs toward 1,3-dibromopropane, which is a general 

substrate of HLDs, was analyzed. Among them, LinBMI-45 showed no significantly difference in HLD activity 

compare with LinBMI (Fig. 3-6). However, other five putative evolved HLDs showed higher HLD activity 

than their corresponding wild type proteins (Fig. 3-6 to 3-8). HLD activity of LinBMI-63 was 1.97-fold higher 

than LinBMI. Compared with LinB_dmbA_anc, LinB_dmbA_anc-3 and LinB_dmbA_anc-5 showed 2.87- and 

2.65-fold higher activity, respectively. Rluc_anc-4 and Rluc_anc-8 showed 2.58- and 2.80-fold higher activity 

than Rluc_anc. 

No. Protein 

1 LinA(Ap) Pu 

2 LinA(Km) Pu 

3 LinBUT Pu 

4 Rluc_anc Pu 

5 Rluc_anc-4 Pu 

6 Rluc_anc-8 Pu 

7 LinB_dmbA_anc Pu 

8 LinB_dmbA_anc-3 Pu 

9 LinB_dmbA_anc-5 Pu 

10 LinBMI-45 Pu 

11 LinBMI Pu 

12 LinBMI-63 Pu 
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Fig. 3-6 HLD activity of LinBMI and its mutants, LinBMI-45 and LinBMI-63 

 

 

 

Fig. 3-7 HLD activity of LinB_dmbA_anc and its mutants, LinB_dmbA_anc-3 and LinB_dmbA_anc-5 
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Fig. 3-8 HLD activity of Rluc_anc and its mutants, Rluc_anc-4 and Rluc_anc-8 

3-3-3 LinB-like activity of the putative evolved HLDs 

LinB-like activity of the five putative evolved HLDs was assessed by using -HCH as a starting substrate in 

the reaction solution containing LinA. Production of 2,5-DDOL, 1,2,4-TCB, and 2,5-DCP is shown in Fig. 3-9, 

Fig. 3-10 and Fig. 3-11.  

The difference between LinBMI and LinBMI-63 was faint, but larger amount of 2,5-DDOL seemed to be 

produced by LinBMI-63 (Fig. 3-9A). 

Rluc_anc-4 and Rluc_anc-8 obviously produced larger amount of 2,5-DDOL and 2,5-DCP and smaller 

amount of 1,2,4-TCB than Rluc_anc (Fig. 3-10), indicating that LinB-like activity these two proteins is higher 

than their original protein.  

Similarly, LinB_dmbA_anc-3 and LinB_dmbA_anc-5 obviously produced larger amount of 2,5-DDOL and 

2,5-DCP and smaller amount of 1,2,4-TCB than LinB_dmbA_anc (Fig. 3-11), indicating that LinB-like 

activity of these two proteins is higher than their original protein. 
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Fig. 3-9 Production of 2,5-DDOL, 1,2,4-TCB and 2,5-DCP by LinBMI and LinBMI-63 (A: Concentration of 2,5-DDOL; B: 

Concentration of 1,2,4-TCB; C: Concentration of 2,5-DCP) 
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Fig. 3-10 Production of 2,5-DDOL, 1,2,4-TCB and 2,5-DCP by Rluc_anc, Rluc_anc-4 and Rluc_anc-8 (A: Concentration 

of 2,5-DDOL; B: Concentration of 1,2,4-TCB; C: Concentration of 2,5-DCP) 
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Fig. 3-11 Production of 2,5-DDOL, 1,2,4-TCB and 2,5-DCP by LinB_dmbA_anc, LinB_dmbA_anc-3 and 

LinB_dmbA_anc-5 (A: Concentration of 2,5-DDOL; B: Concentration of 1,2,4-TCB; C: Concentration of 2,5-DCP) 
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3-3-4 Expression, purification and characterization of Rluc and Rluc-43 

Rluc could be expressed and purified well by using vector pETWD1 (Fig. 3-12), but Rluc-43 could not. So 

other expression vectors, pAQN and pUC18, were used for expression of Rluc-43. Rluc-43 was successfully 

expressed and purified by using pAQN vector (Fig. 3-13). Concentration of the finally purified proteins used 

for further analysis was shown in Table 3-6. 

Significant HLD activity of Rluc and Rluc-43 was not detected (data not shown). On the other hand, when 

these enzymes were incubated with -HCH and LinA, only Rluc-43 produced very faint amount of 2,5-DDOL 

(Fig. 3-14), suggesting that Rluc-43 has faint LinB-like activity. 

 

                            

Fig. 3-12 SDS-PAGE of Rluc 

 

 

                       

 

Fig. 3-13 SDS-PAGE of Rluc-43 

 

 

Table 3-6 Concentration of Rluc and Rluc-43 

Protein name Concentration(mg/ml) 

Rluc 0.98 

Rluc-43 1.05 

 

 

No. Protein 

1 Rluc Pu 

2 Rluc Cell 

3 Rluc Crude extract 

No. Protein 

1 pAQN/Rluc-43 Crude extract 

2 pUC18/Rluc-43 Crude extract 

3 pETWD1/Rluc-43 Crude extract 

4 pAQN/Rluc-43 Cell 

5 pUC18/Rluc-43 Cell 

6 pETWD1/Rluc-43 Cell 

7 pAQN/Rluc-43 Pure protein 
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Fig. 3-14 Production of 2,5-DDOL and 1,2,4-TCB by Rluc and Rluc-43 (A: Concentration of 2,5-DDOL; B: 

Concentration of 1,2,4-TCB) 

3-3-5 Expression, purification, and characterization of the putative evolved proteins obtained by the 2
nd

 
round screening 

The second round screening was more difficult than the first screening, since the screening system seems to 

be difficult to detect small difference of genes that have evolved to some extent. This system is suitable for 

selection of the evolved gene from the original gene encoding enzyme having weak or no LinB-like activity.  

Thus, only the putative evolved proteins of Rluc_anc-8 were further analyzed. Eight proteins obtained from 

the 2
nd

 screening and four proteins selected from the 1
st
 screening were expressed and purified (Fig. 3-15, 3-16 

and 3-17). Concentration of the finally purified proteins used for further analysis was shown in Table 3-7. 

Among these candidates, only Rluc_anc-8-6 and Rluc_anc-8-37 showed high LinB-like activity than 

Rluc_anc-8, HLD activity of Rluc_anc-8-6 and Rluc_anc-8-37 was higher compared with Rluc_anc-8 (Fig. 

3-18). LinB-like activity of the putative evolved proteins was assessed by using -HCH as a starting substrate 
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in the reaction solution containing LinA (Fig. 3-19). Since Rluc_anc-8-6 and Rluc_anc-8-37 produced lesser 

amount of 2,5-DCP and larger amount of 2,5-DDOL than Rluc_anc-8, more detailed analysis was conducted 

for these two proteins (Fig. 3-19). Rluc_anc-8-6 and Rluc_anc-8-37 also produced lesser amount of 2,5-DCP 

and larger amount of 2,5-DDOL than Rluc_anc-8 in this experiment, indicating that these two proteins have 

improved relative activity of the second LinB-catalyzed step to the first one. 

 

 

  
 

 

Fig. 3-15 Whole cells of variants of Rluc_anc-8 

 

 

 

 

                  

   

Fig. 3-16 Crude enzyme of variants of Rluc_anc-8 

 

 

 

 

No.  Protein 

1 Rluc_anc-2p Cell 

2 Rluc_anc-5p Cell 

3 Rluc_anc-34 Cell 

4 Rluc_anc-37 Cell 

5 Rluc_anc-8-6 Cell 

6 Rluc_anc-8-11 Cell 

7 Rluc_anc-8-14 Cell 

8 Rluc_anc-8-16 Cell 

9 Rluc_anc-8-18 Cell 

10 Rluc_nc-8-12 Cell 

11 Rluc_anc-8-4 Cell 

12 Rluc_anc-8-7 Cell 

No.  Protein 

1 Rluc_anc-2p Crude enzyme 

2 Rluc_anc-5p Crude enzyme 

3 Rluc_anc-34 Crude enzyme 

4 Rluc_anc-37 Crude enzyme 

5 Rluc_anc-8-6 Crude enzyme 

6 Rluc_anc-8-11 Crude enzyme 

7 Rluc_anc-8-14 Crude enzyme 

8 Rluc_anc-8-16 Crude enzyme 

9 Rluc_anc-8-18 Crude enzyme 

10 Rluc_anc-8-12 Crude enzyme 

11 Rluc_anc-8-4 Crude enzyme 

12 Rluc_anc-8-7 Crude enzyme 
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Fig. 3-17 Purified protein of variants of Rluc_anc-8 

 

 

Table 3-7 Concentration of purified protein of variants of Rluc_anc-8 

Protein name Concentration of protein (mg/mL) Protein name Concentration of protein (mg/mL) 

Rluc_anc-2p  3.54 Rluc_anc-8-14 6.73 

Rluc_anc-5p 4.08 Rluc_ancc-8-16 1.64 

Rluc_anc-34 2.15 Rluc_anc-8-18 3.83 

Rluc_anc-37 4.12 Rluc_anc-8-12 3.50 

Rluc_anc-8-6 4.45 Rluc_anc-8-4 1.73 

Rluc_anc-8-11 2.17 Rluc_anc-8-7 1.05 

 

 

 

 
Fig. 3-18 HLD activity of Rluc_anc-8, Rluc_anc-8-6 and Rluc_anc-8-37 and it two improved variants 

 

No.  Protein 

1 Rluc_anc-2p Purified enzyme 

2 Rluc_anc-5p Purified enzyme 

3 Rluc_anc-34 Purified enzyme 

4 Rluc_anc-37 Purified enzyme 

5 Rluc_anc-8-6 Purified enzyme 

6 Rluc_anc-8-11 Purified enzyme 

7 Rluc_anc-8-14 Purified enzyme 

8 Rluc_anc-8-16 Purified enzyme 

9 Rluc_anc-8-18 Purified enzyme 

10 Rluc_anc-8-12 Purified enzyme 

11 Rluc_anc-8-4 Purified enzyme 

12 Rluc_anc-8-7 Purified enzyme 
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Fig. 3-19 Production of 2,5-DDOL, 1,2,4-TCB and 2,5-DCP by Rluc_anc-8, Rluc_anc-8-6 and Rluc_anc-8-37 variants 

(A: Concentration of 2,5-DDOL; B: Concentration of 1,2,4-TCB; C: Concentration of 2,5-DCP) 
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3-4 Discussion 

In this chapter, protein products of the candidate evolved genes obtained by the in vitro evolution system 

were expressed in E. coli as His-tagged proteins, purified, and characterized. Most of the putative evolved 

proteins showed improved HLD activity toward 1,3-dibromopropane, which is a general substrate of HLDs, 

and LinB-like activity than their corresponding original enzymes. These results clearly demonstrated that the 

in vitro evolution system constructed in this study successfully worked. 

LinB-like activity was assessed by the production of 2,5-DCP and 2,5-DDOL from -HCH in the reaction 

solution containing LinA, since substrates of LinB in the -HCH degradation pathway are unstable and the 

direct assay is impossible. To quantify the LinB-like activity more critically, the assay system should be 

improved. 

LinBMI-63 showed the higher LinB-like activity than LinBMI, indicating that LinBMI can be more improved 

for the LinB activity in the -HCH utilization. This result strongly suggest that -HCH degraders can be 

optimized more for the -HCH utilization at the steps catalyzed by LinB. The dead-end product 2,5-DCP is 

toxic for cells, thus the second LinB-catalyzed step should be improved more than the first LinB-catalyzed 

step. Theoretical design of such delicate feature seems to be difficult, and thus the in vitro system constructed 

in this study will be useful for the purpose. Indeed, the putative evolved proteins, Rluc_anc-8-6 and 

Rluc_anc-8-37, obtained by the second round screening improved relative activity of the second 

LinB-catalyzed step to the first one. 

LinB_dmbA_anc-3 and LinB_dmbA_anc-5, and Rluc_anc-4 and Rluc_anc-8 showed improved LinB-like 

activity than their original proteins, LinB_dmbA_anc and Rluc_anc, respectively. Although more analysis is 

necessary, the candidate evolved proteins were also obtained by the 2
nd

 round screening by using HLDs 

showing very week or no LinB-like activity. The evolution process of HLDs toward the -HCH utilization 

may be traced by using this system and such HLDs. 
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Discussions 

Haloalkane dehalogenases (HLDs) (EC 3.8.1.5) that belong to the α/β-hydrolase superfamily convert 

halogenated compounds to corresponding alcohols by simple hydrolytic mechanism (Nagata et al., 2015). 

HLDs were originally identified from bacterial strains that utilize halogenated environmental pollutants as 

enzymes catalyzing dehalogenation step(s) of such halogenated compounds and were thought to be specific 

enzymes for the degradation of artificial compounds. However, it has been revealed that many bacterial strains 

including those that have not been reported as degraders of halogenated compounds also possess HLD 

homologues. Now it is obvious that many HLD-like genes can be identified in the genomes of various bacteria 

by database searches. If such HLD homologues are biochemically confirmed to be 'real' HLDs, they are 

expected to be valuable materials for protein-engineering studies attempting to develop efficient catalysts for 

biotechnological applications, since HLDs generally (i) have a broad range of substrate specificities, (ii) are 

promiscuous, and (iii) are ready to change their activities towards various substrates. 

LinB is one of prototypical HLDs and was originally identified as an enzyme necessary for utilization of a 

man-made chlorinated pesticide γ-hexachlorocyclohexane (γ-HCH) in Sphingobium japonicum UT26. To date, 

many γ-HCH-degrading bacterial strains including UT26 have been isolated from various sites contaminated 

with HCH isomers around the world. Interestingly, all the γ-HCH-degrading bacterial strains whose genes and 

enzymes for the γ-HCH degradation have been identified use LinB for the corresponding steps. In other words, 

no γ-HCH degrader has been identified that uses other HLDs besides LinB for the γ-HCH utilization. 

Considering the facts that HLDs or its homologues are widely distributed among bacterial strains and that 

HLDs generally have a broad range of substrate specificities, HLDs other than LinB might be involved in the 

γ-HCH degradation.  

The main purpose of this study is to understand the process and mechanisms of functional evolution of 

HLDs for the degradation of persistent organic pollutants. For the purpose, in vivo and in vitro evolution 

systems of HLDs toward the -HCH utilization were constructed. 

 

In Chapter 1, firstly, the linB-deletion strain UTDB2 was constructed, in which just open reading frame of 

the linB gene was deleted. Then, the linB-replacement strains were constructed using UTDB2, into which 

linBMI, dbjA, dmmA, rluc, rluc_anc, rluc_ancM and linB_dmbA_anc had been introduced at the linB site. GC 

assay for the -HCH degradation activity and spot assay for the -HCH utilization demonstrated that Rluc_anc, 

Rluc_ancM, and DmmA have weak LinB-like activity for the -HCH utilization. It was clearly demonstrated 

that some HLDs besides LinB can potentially be involved in the -HCH utilization. This result could be 

predicted on the basis of the facts that HLDs or its homologues are widely distributed among bacterial strains 

and that HLDs generally have a broad range of substrate specificities (Koudelakova et al., 2011), but it was 

experimentally confirmed for the first time in this study. Especially, it is important that 'natural' HLD DmmA 

showed the LinB activity. 

On the other hand, strains constructed in this chapter can be used as starting materials in the functional 

evolution and engineering studies. Especially, DAX-series strains are usefully for avoiding false positive 

clones that grow well on the solid minimal salt medium without adding any carbon sources in the screening 

process. 

 

In Chapter 2, experimental evolution systems of HLD and its related genes toward the optimized -HCH 

utilization were constructed. However, the in vivo evolution system did not work well, mainly because 
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candidate clones that grew well with larger clear zone on the W--HCH plate than others had no mutation in 

the HLD or its related genes. Probably, mutation(s) in the genome other than HLD or its related genes 

improved the -HCH utilization ability of the host cells. Although it is very interesting what mutation(s) have 

occurred in such clones, I did not further analyze them in this study. 

On the other hand, the in vitro evolution system using error-prone PCR worked well. There was no research 

reported about evolution of HLDs by using error-prone PCR. This research proved that error-prone PCR could 

be used to trace evolution process of HLDs for the first time. In this process, many candidate evolved genes 

were successfully obtained. Interestingly, rluc-43, whose original rluc gene encodes protein having no 

LinB-like activity, was obtained as the evolved gene that confers the -HCH utilization ability to the host cells. 

In the in vitro evolution system, it was also revealed that LinB_dmbA_anc has faint LinB-like activity, which 

was not detected by the in vivo evolution system, probably because its expression level is higher in the in vitro 

system than the in vivo one. This result suggests that in vitro system is more sensitive than the in vivo system 

for detection of the weak LinB-like activity. 

Eight genes, whose positive effect on the -HCH utilization were obvious, were selected and used as 

templates for the second round screening. However, the second round screening was more difficult than the 

first screening, since the screening system seems to be difficult to detect small difference of genes that have 

evolved to some extent. This system is suitable for selection of the evolved gene from the original gene 

encoding enzyme having weak or no LinB-like activity. 

 

In Chapter 3, protein products of the candidate evolved genes obtained by the in vitro evolution system 

were expressed in E. coli as His-tagged proteins, purified, and characterized. Most of the putative evolved 

proteins obtained by the first round screening showed improved HLD activity toward 1,3-dibromopropane, 

which is a general substrate of HLDs, and LinB-like activity than their corresponding original enzymes. These 

results clearly demonstrated that the in vitro evolution system constructed in this study successfully worked. 

LinB-like activity was assessed by the production of 2,5-DCP and 2,5-DDOL from -HCH in the reaction 

solution containing LinA, since substrates of LinB in the -HCH degradation pathway are unstable and the 

direct assay is impossible. However, the assay system should be more improved to quantify the LinB-like 

activity critically. 

LinBMI-63 showed the higher LinB-like activity than LinBMI, indicating that LinBMI can be more improved 

for the LinB activity in the -HCH utilization. This result strongly suggest that -HCH degraders can be 

optimized more for the -HCH utilization at the steps catalyzed by LinB. The dead-end product 2,5-DCP is 

toxic for cells, thus the second LinB-catalyzed step should be improved more than the first LinB-catalyzed 

step. Theoretical design of such delicate feature seems to be difficult, and thus the in vitro system constructed 

in this study will be useful for the purpose. 

LinB_dmbA_anc-3 and LinB_dmbA_anc-5, and Rluc_anc-4 and Rluc_anc-8 showed improved LinB-like 

activity than their original proteins, LinB_dmbA_anc and Rluc_anc, respectively. Although more analysis is 

necessary, the candidate evolved proteins (Rluc_anc-8-6 and Rluc_anc-8-37) were also obtained by the 2
nd

 

round screening by using HLDs showing very week or no LinB-like activity. These two variants could not 

only produce more 2,5-DDOL than Rluc_anc-8, but also decreased amount of 2,5-DCP, which was a dead-end 

product produced by LinB in the -HCH degradation pathway. 2,5-DCP was toxic to cells and degradation of 

this dead end product was benefit to -HCH degradation (Endo et al., 2006). The evolution process of HLDs 

toward the -HCH utilization may be traced by using this system and such HLDs. 

Error-prone PCR was often used to improve enzyme activity or catalytic efficiency in many researches (Lin 

et al., 2016) (Cheng et al., 2016) (Baek et al., 2017) (Crum et al., 2016). Two mutants E135V and E135R of an 
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alkaline xylanase Xyn11A-LC from Bacillus sp. SN5 were obtained by directed evolution (error-prone PCR) 

and site saturation mutagenesis. These two variants were found possess better alkalophilicity than wild type 

enzyme. Structural analysis showed that the residue at position 135, located in the eight-residue loop on the 

protein surface, might improve the alkalophilicity and catalytic activity by the elimination of the negative 

charge and the formation of salt-bridge (Bai et al., 2016). An engineered variant of isopentenyl diphosphate 

isomerase (IDI, E.C. 5.3.3.2) from Saccharomyces cerevisiae with improved catalytic activity by combining 

random (three runs of error-prone PCR) and site directed mutagenesis. The best mutant produced by this 

approach enhanced catalytic activity while also displaying improved stability in pH, enhanced thermostability 

and longer half-life (Chen et al., 2018). One of the identified mutants of Klebsiella pneumonia PDOR 

generated by error-prone PCR, which includes a single mutation A199S. This variant improved activity with 

4.9 times that of the wild type enzyme (Jiang et al., 2015). Two glycoside hydrolase variants, 

LXYL-P1-2-EP1 (EP1, S91D) and LXYL-P1-2-EP2 (EP2, T368E), from Lentinula edodes, were obtained 

from the library generated by error-prone PCR and exhibited 17% and 47% increases in their catalytic 

efficiencies on 7-β-xylosyl-10-eacetyltaxol (Chen et al., 2017). The baxA gene encoding Bacillus 

amyloliquefaciens xylanase A was mutated by error-prone PCR. The mutant, pCbaxA50, which has a single 

mutation site S138T, was obtained from the mutant library by using the 96-well plate high-throughput 

screening method. The specific activity of the purified variant enzyme was 9.38 U/mg, which was 3.5 times 

higher than that of its parent (Xu et al., 2016). Error-prone PCR was also used to increase activity of 

organophosphorus enzyme. Five mutants, which were obtained after one round of error-prone PCR, were 

shown more ability than the native strains to degrade of diazinon, with more than 25% raising ratio (Rezaie et 

al., 2018). 

 

As conclusions, the following two points are the most important in this study. 

(1) The linB-replacement strains were constructed, into which genes encoding HLD or its homologues 

including putative ancestral proteins had been introduced at the linB site, and by using these strains it was 

demonstrated that some HLDs besides LinB can potentially be involved in the γ-HCH utilization. 

(2) The in vivo and in vitro evolution systems of HLDs toward the optimized γ-HCH utilization were 

constructed, and some evolved enzymes were successfully obtained by using the in vitro evolution system, 

indicating that the system can be used for tracing the evolutionary process of HLDs toward the optimized 

γ-HCH utilization.  



78 
 

Acknowledgement 

I am very appreciate it that I can study and do research in this lab. Firstly, I want to express my sincerely 

thanks to Yuji Nagata professor. He is a very kindly and professional professor. He teaches me many things in 

experiments and also help me generate interests in this research gradually. I respect him very much and obtain 

many ideas and good suggestions from him. From him, I know research is very interesting and preciseness. 

We should deal with it with chariness and responsibility. On the other hand, Mr. Nagata often provide many 

delicious food for us, which could make our stressed life relaxing. With the help of Mr. Nagata, I attend three 

times of conference in Japan, which offer me many things. In the future, I will sustain this interests and 

passion to research and continue my research life. I hope I can do well in it. I am very honor to be a student of 

him and instructed by him.  

I also want to thankful to Mr. Ohtsubo, he gives me many good suggestions in my study. He treats me very 

kindly. Mr. Tsuda, Mr. Kato, Mr. Yano and Ms. Yukari are also extremely kindly teachers, they help me in 

research more or less. Mr. Tsuda is very serious in research. His earnest attitude toward research impressed me 

deeply. Mr. Kato is very patiently and teaches me experiment very carefully. Mr. Yano and Ms. Yukari often 

provide some useful suggestions to my research. I am very happy to study with all teachers and I am very 

appreciate to join in this big family. 

Secondly, I want to thank for all students in our lab. They help me much and we get along with each other. I 

feel very happy together with them. Thanks for Kafayat and Idola, they give me many suggestions about my 

research and life. My life become more colorful with the accompany of them. I wish all of them have a 

brightly future and happy life. 

Thirdly, thanks for Annapoorni and Daya professer from India. I do some researches with them together. I 

learn many things from them. They are very kindly and friendly. I like them very much.  

Lastly, I want to thank for my parents. They support me much in mental and money. I am very grateful they 

are always positive of me. Thanks for their help.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



79 
 

References 

Abhilash, P. C., Jamil, S., Singh, V., Singh, A., Singh, N., & Srivastava, S. C. (2008). Occurrence and distribution of 

hexachlorocyclohexane isomers in vegetation samples from a contaminated area. Chemosphere, 72(1), 79-86. 

https://doi.org/10.1016/j.chemosphere.2008.01.056 

Ang, T. F., Maiangwa, J., Salleh, A. B., Normi, Y. M., & Leow, T. C. (2018). Dehalogenases: From improved 

performance to potential microbial dehalogenation applications. Molecules, 23(5), 1-40. 

https://doi.org/10.3390/molecules23051100 

Babkova, P., Sebestova, E., Brezovsky, J., Chaloupkova, R., & Damborsky, J. (2017). Ancestral Haloalkane 

Dehalogenases Show Robustness and Unique Substrate Specificity. ChemBioChem, 18(14), 1448-1456. 

https://doi.org/10.1002/cbic.201700197 

Baek, S. C., Ho, T. H., Lee, H. W., Jung, W. K., Gang, H. S., Kang, L. W., & Kim, H. (2017). Improvement of enzyme 

activity of β-1,3-1,4-glucanase from Paenibacillus sp. X4 by error-prone PCR and structural insights of mutated 

residues. Applied Microbiology and Biotechnology, 101(10), 4073-4083. 

https://doi.org/10.1007/s00253-017-8145-4 

Bai, W., Cao, Y., Liu, J., Wang, Q., & Jia, Z. (2016). Improvement of alkalophilicity of an alkaline xylanase Xyn11A-LC 

from Bacillus sp. SN5 by random mutation and Glu135 saturation mutagenesis. BMC Biotechnology, 16(1), 1-9. 

https://doi.org/10.1186/s12896-016-0310-9 

Ballschmiter, K. (2003). Pattern and sources of naturally produced organohalogens in the marine environment: Biogenic 

formation of organohalogens. Chemosphere, 52(2), 313-324. https://doi.org/10.1016/S0045-6535(03)00211-X 

Barber, J. L., Sweetman, A. J., Van Wijk, D., & Jones, K. C. (2005). Hexachlorobenzene in the global environment: 

Emissions, levels, distribution, trends and processes. Science of the Total Environment, 349(1-3), 1-44. 

https://doi.org/10.1016/j.scitotenv.2005.03.014 

Bloom, J. D., & Arnold, F. H. (2009). In the light of directed evolution: Pathways of adaptive protein evolution. In the 

Light of Evolution, 3, 149-163. https://doi.org/10.17226/12692 

Böltner, D., Moreno-morillas, S., & Ramos, J. (2005). <51 Boltner2005.Pdf>. 7, 1329-1338. 

https://doi.org/10.1111/j.1462-2920.2005.00820.x 

Bosma, T., Damborský, J., Stucki, G., & Janssen, D. B. (2002). Biodegradation of 1,2,3-trichloropropane through 

directed evolution and heterologous expression of a haloalkane dehalogenase gene. Applied and Environmental 

Microbiology, 68(7), 3582-3587. https://doi.org/10.1128/AEM.68.7.3582-3587.2002 

Buryska, T., Babkova, P., Vavra, O., Damborsky, J., & Prokop, Z. (2018). A haloalkane dehalogenase from a marine 

microbial consortium possessing exceptionally broad substrate specificity. Applied and Environmental 

Microbiology. 84(2), e01684-17. https://doi.org/10.1128/AEM.01684-17 

Cérémonie, H., Boubakri, H., Mavingui, P., Simonet, P., & Vogel, T. M. (2006). Plasmid-encoded 

γ-hexachlorocyclohexane degradation genes and insertion sequences in Sphingobium francense (ex-Sphingomonas 

paucimobilis Sp+). FEMS Microbiology Letters, 257(2), 243-252. 

https://doi.org/10.1111/j.1574-6968.2006.00188.x 

Chaloupkova, R., Liskova, V., Toul, M., Markova, K., Sebestova, E., Hernychova, L., Marek, M., Pinto, G. P., Pluskal, 

D., Waterman, J., Prokop, Z., & Damborsky, J. (2019). Light-Emitting Dehalogenases: Reconstruction of 

Multifunctional Biocatalysts. ACS Catalysis. 9, 4810-4823. https://doi.org/10.1021/acscatal.9b01031 

Chaloupkova, R., Prokop, Z., Sato, Y., Nagata, Y., & Damborsky, J. (2011). Stereoselectivity and conformational 

stability of haloalkane dehalogenase DbjA from Bradyrhizobium japonicum USDA110: The effect of pH and 

temperature. FEBS Journal, 278(15), 2728-2738. https://doi.org/10.1111/j.1742-4658.2011.08203.x 



80 
 

Chaloupkova, R., Prudnikova, T., Rezacova, P., Prokop, Z., Koudelakova, T., Daniel, L., Brezovsky, J., Ikeda-Ohtsubo, 

W., Sato, Y., Kuty, M., Nagata, Y., Smatanova, I. K., & Damborsky, J. (2014). Structural and functional analysis 

of a novel haloalkane dehalogenase with two halide-binding sites. Acta Crystallographica Section D: Biological 

Crystallography, 70(7), 1884-1897. https://doi.org/10.1107/S1399004714009018 

Chaloupková, R., Sýkorová, J., Prokop, Z., Jesenská, A., Monincová, M., Pavlová, M., Tsuda, M., Nagata, Y., & 

Damborský, J. (2003). Modification of Activity and Specificity of Haloalkane Dehalogenase from Sphingomonas 

paucimobilis UT26 by Engineering of Its Entrance Tunnel. Journal of Biological Chemistry, 278(52), 52622-52628. 

https://doi.org/10.1074/jbc.M306762200 

Chan, W. Y., Wong, M., Guthrie, J., Savchenko, A. V., Yakunin, A. F., Pai, E. F., & Edwards, E. A. (2010). Sequence- 

and activity-based screening of microbial genomes for novel dehalogenases. Microbial Biotechnology, 3(1), 

107-120. https://doi.org/10.1111/j.1751-7915.2009.00155.x 

Chang, Z., Sitachitta, N., Rossi, J. V., Roberts, M. A., Flatt, P. M., Jia, J., Sherman, D. H., & Gerwick, W. H. (2004). 

Biosynthetic pathway and gene cluster analysis of curacin A, an antitubulin natural product from the tropical 

marine cyanobacterium Lyngbya majuscula. Journal of Natural Products, 67(8), 1356-1367. 

https://doi.org/10.1021/np0499261 

Chen, H., Li, M., Liu, C., Zhang, H., Xian, M., & Liu, H. (2018). Enhancement of the catalytic activity of Isopentenyl 

diphosphate isomerase (IDI) from Saccharomyces cerevisiae through random and site-directed mutagenesis. 

Microbial Cell Factories, 17(1), 1-14. https://doi.org/10.1186/s12934-018-0913-z 

Chen, J. J., Liang, X., Li, H. X., Chen, T. J., & Zhu, P. (2017). Improving the catalytic property of the glycoside 

hydrolase LXYL-P1–2 by directed evolution. Molecules. 22(12), 2133-2146. 

https://doi.org/10.3390/molecules22122133 

Cheng, Q., Gao, H., & Hu, N. (2016). A trehalase from Zunongwangia sp.: Characterization and improving catalytic 

efficiency by directed evolution. BMC Biotechnology, 16(1), 6-13. https://doi.org/10.1186/s12896-016-0239-z 

Chovancová, E., Kosinski, J., Bujnicki, J. M., & Damborský, J. (2007). Phylogenetic analysis of haloalkane 

dehalogenases. Proteins: Structure, Function and Genetics. 67(2):305-316. https://doi.org/10.1002/prot.21313 

Contag, C. H., Spilman, S. D., Contag, P. R., Oshiro, M., Eames, B., Dennery, P., Stevenson, D. K., & Benaron, D. A. 

(1997). Visualizing Gene Expression in Living Mammals Using a Bioluminescent Reporter. Photochemistry and 

Photobiology, 66(4), 523-531. https://doi.org/10.1111/j.1751-1097.1997.tb03184.x 

Crum, M. A., Trevor Sewell, B., & Benedik, M. J. (2016). Bacillus pumilus cyanide dihydratase mutants with higher 

catalytic activity. Frontiers in Microbiology, 7(AUG), 1-10. https://doi.org/10.3389/fmicb.2016.01264 

Daniel, L., Buryska, T., Prokop, Z., Damborsky, J., & Brezovsky, J. (2015). Mechanism-based discovery of novel 

substrates of haloalkane dehalogenases using in silico screening. Journal of Chemical Information and Modeling, 

55(1), 54-62. https://doi.org/10.1021/ci500486y 

De Jong, R. M., & Dijkstra, B. W. (2003). Structure and mechanism of bacterial dehalogenases: Different ways to cleave 

a carbon-halogen bond. In Current Opinion in Structural Biology. 13(6), 722 -730. 

https://doi.org/10.1016/j.sbi.2003.10.009 

Dean, A. M., & Thornton, J. W. (2007). Mechanistic approach to study evolution. Nature Reviews Genetics, 8(9), 

675-688. 

Dogra, C., Raina, V., Pal, R., Suar, M., Lal, S., Gartemann, K., Holliger, C., & Meer, J. R. Van Der. (2004). Organization 

of lin Genes and IS6100 among Different Strains of Evidence for Horizontal Gene Transfer. Journal of 

Bacteriology, 186(8), 2225-2235. https://doi.org/10.1128/JB.186.8.2225 

Endo, R., Ohtsubo, Y., Tsuda, M., & Nagata, Y. (2006). Growth inhibition by metabolites of γ-hexachlorocyclohexane in 

Sphingobium japonicum UT26. Bioscience, Biotechnology and Biochemistry, 70(4), 1029-1032. 

https://doi.org/10.1271/bbb.70.1029 



81 
 

Engene, N., Rottacker, E. C., Kaštovský, J., Byrum, T., Choi, H., Ellisman, M. H., Komárek, J., & Gerwick, W. H. 

(2012). Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich 

in bioactive secondary metabolites. International Journal of Systematic and Evolutionary Microbiology, 62(5), 

1171-1178. https://doi.org/10.1099/ijs.0.033761-0 

Forloni, M., Liu, A. Y., & Wajapeyee, N. (2018). Random mutagenesis using error-prone DNA polymerases. Cold 

Spring Harbor Protocols. 2018(3). https://doi.org/10.1101/pdb.prot097741 

Gehret, J. J., Gu, L., Geders, T. W., Brown, W. C., Gerwick, L., Gerwick, W. H., Sherman, D. H., & Smith, J. L. (2012). 

Structure and activity of DmmA, a marine haloalkane dehalogenase. Protein Science, 21(2), 239-248. 

https://doi.org/10.1002/pro.2009 

Gonzalez, D., Hiblot, J., Darbinian, N., Miller, J. C., Gotthard, G., Amini, S., Chabriere, E., & Elias, M. (2014). 

Ancestral mutations as a tool for solubilizing proteins: The case of a hydrophobic phosphate-binding protein. FEBS 

Open Bio, 4, 121-127. https://doi.org/10.1016/j.fob.2013.12.006 

Harms, M. J., & Thornton, J. W. (2010). Analyzing protein structure and function using ancestral gene reconstruction. In 

Current Opinion in Structural Biology. 20(3), 360-366. https://doi.org/10.1016/j.sbi.2010.03.005 

Inaba, S., Sakai, H., Kato, H., Horiuchi, T., Yano, H., Ohtsubo, Y., Tsuda, M., & Nagata, Y. (2020). Expression of an 

alcohol dehydrogenase gene in a heterotrophic bacterium induces carbon dioxide-dependent high-yield growth 

under oligotrophic conditions. Microbiology, 166, 531-545. https://doi.org/10.1099/mic.0.000908 

Ito, M., Prokop, Z., Klvaňa, M., Otsubo, Y., Tsuda, M., Damborský, J., & Nagata, Y. (2007). Degradation of 

β-hexachlorocyclohexane by haloalkane dehalogenase LinB from γ-hexachlorocyclohexane-utilizing bacterium 

Sphingobium sp. MI1205. Archives of Microbiology, 188(4), 313-325. https://doi.org/10.1007/s00203-007-0251-8 

Iwasaki, I., Utsumi, S., & Ozawa, T. (1952). New Colorimetric Determination of Chloride using Mercuric Thiocyanate 

and Ferric Ion. 225(3), 226. Bulletin of the Chemical Society of Japan. https://doi.org/10.1246/bcsj.25.226 

Janssen, D. B. B. T.-A. in A. M. (2007). Biocatalysis by Dehalogenating Enzymes. Academic Press. 61, 233-252. 

https://doi.org/https://doi.org/10.1016/S0065-2164(06)61006-X 

Jesenská, A., Pavlová, M., Strouhal, M., Chaloupková, R., Těšínská, I., Monincová, M., Prokop, Z., Bartoš, M., Pavlík, I., 

Rychlík, I., Möbius, P., Nagata, Y., & Damborský, J. (2005). Cloning, biochemical properties, and distribution of 

mycobacterial haloalkane dehalogenases. Applied and Environmental Microbiology, 71(11), 6736-6745. 

https://doi.org/10.1128/AEM.71.11.6736-6745.2005 

Jiang, W., Zhuang, Y., Wang, S., & Fang, B. (2015). Directed evolution and resolution mechanism of 1, 3-propanediol 

oxidoreductase from Klebsiella pneumoniae toward higher activity by error-prone PCR and bioinformatics. PLoS 

ONE, 10(11), 1-10. https://doi.org/10.1371/journal.pone.0141837 

Kaczmarczyk, A., Vorholt, J. A., & Francez-Charlot, A. (2012). Markerless gene deletion system for sphingomonads. 

Applied and Environmental Microbiology, 78(10), 3774-3777. https://doi.org/10.1128/AEM.07347-11 

Kahm, M., Hasenbrink, G., Lichtenberg-Fraté, H., Ludwig, J., & Kschischo, M. (2010). Grofit: Fitting biological growth 

curves with R. Journal of Statistical Software. 33(7), 1-21. https://doi.org/10.18637/jss.v033.i07 

Koudelakova, T., Bidmanova, S., Dvorak, P., Pavelka, A., Chaloupkova, R., Prokop, Z., & Damborsky, J. (2013). 

Haloalkane dehalogenases: Biotechnological applications. In Biotechnology Journal. 8(1), 32-45. 

https://doi.org/10.1002/biot.201100486 

Koudelakova, T., Chovancova, E., Brezovsky, J., Monincova, M., Fortova, A., Jarkovsky, J., & Damborsky, J. (2011). 

Substrate specificity of haloalkane dehalogenases. Biochemical Journal. 435(2), 345-354. 

https://doi.org/10.1042/BJ20101405 

Kumari, R., Subudhi, S., Suar, M., Dhingra, G., Raina, V., Dogra, C., Lal, S., Van der Meer, J. R., Holliger, C., & Lal, R. 

(2002). Cloning and characterization of lin genes responsible for the degradation of hexachlorocyclohexane 

isomers by Sphingomonas paucimobilis strain B90. Applied and Environmental Microbiology, 68(12), 6021-6028. 



82 
 

https://doi.org/10.1128/AEM.68.12.6021-6028.2002 

Lal, R., Dogra, C., Malhotra, S., Sharma, P., & Pal, R. (2006). Diversity, distribution and divergence of lin genes in 

hexachlorocyclohexane-degrading sphingomonads. Trends in Biotechnology, 24(3), 121-130. 

https://doi.org/10.1016/j.tibtech.2006.01.005 

Lal, R., Pandey, G., Sharma, P., Kumari, K., Malhotra, S., Pandey, R., Raina, V., Kohler, H.-P. E., Holliger, C., Jackson, 

C., & Oakeshott, J. G. (2010). Biochemistry of Microbial Degradation of Hexachlorocyclohexane and Prospects for 

Bioremediation. Microbiology and Molecular Biology Reviews, 74(1), 58-80. 

https://doi.org/10.1128/mmbr.00029-09 

Li, Y. F., Scholtz, M. T., & Van Heyst, B. J. (2003). Global gridded emission inventories of β-hexachlorocyclohexane. 

Environmental Science and Technology, 37(16), 3493-3498. https://doi.org/10.1021/es034157d 

Lin, L., Fu, C., & Huang, W. (2016). Improving the activity of the endoglucanase, Cel8M from Escherichia coli by 

error-prone PCR. Enzyme and Microbial Technology, 86, 52-58. https://doi.org/10.1016/j.enzmictec.2016.01.011 

Loening, A. M., Fenn, T. D., Wu, A. M., & Gambhir, S. S. (2006). Consensus guided mutagenesis of Renilla luciferase 

yields enhanced stability and light output. Protein Engineering, Design and Selection, 19(9), 391-400. 

https://doi.org/10.1093/protein/gzl023 

Lorenz, W. W., McCann, R. O., Longiaru, M., & Cormier, M. J. (1991). Isolation and expression of a cDNA encoding 

Renilla reniformis luciferase. Proceedings of the National Academy of Sciences of the United States of America, 

88(10), 4438-4442. https://doi.org/10.1073/pnas.88.10.4438 

Los, G. V., Encell, L. P., McDougall, M. G., Hartzell, D. D., Karassina, N., Zimprich, C., Wood, M. G., Learish, R., 

Ohana, R. F., Urh, M., Simpson, D., Mendez, J., Zimmerman, K., Otto, P., Vidugiris, G., Zhu, J., Darzins, A., 

Klaubert, D. H., Bulleit, R. F., & Wood, K. V. (2008). HaloTag: A novel protein labeling technology for cell 

imaging and protein analysis. ACS Chemical Biology, 3(6), 373-382. https://doi.org/10.1021/cb800025k 

Macdonald, R. W., Barrie, L. A., Bidleman, T. F., Diamond, M. L., Gregor, D. J., Semkin, R. G., Strachan, W. M. J., Li, 

Y. F., Wania, F., Alaee, M., Alexeeva, L. B., Backus, S. M., Bailey, R., Bewers, J. M., Gobeil, C., Halsall, C. J., 

Harner, T., Hoff, J. T., Jantunen, L. M. M., … Yunker, M. B. (2000). Contaminants in the Canadian Arctic: 5 years 

of progress in understanding sources, occurrence and pathways. In Science of the Total Environment. 254(2-3), 

93-234. https://doi.org/10.1016/S0048-9697(00)00434-4 

Marek, J., Vevodova, J., Smatanova, I. K., Nagata, Y., Svensson, L. A., Newman, J., Takagi, M., & Damborsky, J. 

(2000). Crystal structure of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26. Biochemistry, 

39(46), 14082-14086. https://doi.org/10.1021/bi001539c 

Marietta, M. A., Yoon, P. S., Iyengar, R., Leaf, C. D., & Wishnok, J. S. (1988). Molecular Cloning. A Laboratory 

Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor. Proc. Natl. Acad. Sci. U.S.A. 

Marvanová, S., Nagata, Y., Wimmerová, M., Sýkorová, J., Hynková, K., & Damborský, J. (2001). Biochemical 

characterization of broad-specificity enzymes using multivariate experimental design and a colorimetric microplate 

assay: Characterization of the haloalkane dehalogenase mutants. Journal of Microbiological Methods, 44(2), 

149-157. https://doi.org/10.1016/S0167-7012(00)00250-5 

Moriuchi, R., Tanaka, H., Nikawadori, Y., Ishitsuka, M., Ito, M., Ohtsubo, Y., Tsuda, M., Damborsky, J., Prokop, Z., & 

Nagata, Y. (2014). Stepwise enhancement of catalytic performance of haloalkane dehalogenase LinB towards 

β-hexachlorocyclohexane. AMB Express, 4(1), 1-10. https://doi.org/10.1186/s13568-014-0072-5 

Nagata, Y., Nariya, T., Ohtomo, R., Fukuda, M., Yano, K., & Takagi, M. (1993). Cloning and sequencing of a 

dehalogenase gene encoding an enzyme with hydrolase activity involved in the degradation of 

γ-hexachlorocyclohexane in Pseudomonas paucimobilis. Journal of Bacteriology, 175(20), 6403-6410. 

https://doi.org/10.1128/jb.175.20.6403-6410.1993 

Nagata, Y, Endo, R., Ito, M., Ohtsubo, Y., & Tsuda, M. (2007). Aerobic degradation of lindane 



83 
 

(γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. In Applied Microbiology and 

Biotechnology. 76, 741-752. https://doi.org/10.1007/s00253-007-1066-x 

Nagata, Y, Kamakura, M., Endo, R., Miyazaki, R., Ohtsubo, Y., & Tsuda, M. (2006). Distribution of 

γ-hexachlorocyclohexane-degrading genes on three replicons in Sphingobium japonicum UT26. FEMS 

Microbiology Letters, 256(1), 112-118. https://doi.org/10.1111/j.1574-6968.2005.00096.x 

Nagata, Y, Mori, K., Takagi, M., Murzin, A. G., & Damborsk, J. (2001). Identification of protein fold and catalytic 

residues of γhexachlorocyclohexane dehydrochlorinase LinA. Proteins: Structure, Function and Genetics. 45(4), 

471-477. https://doi.org/10.1002/prot.10007 

Nagata, Y, Natsui, S., Endo, R., Ohtsubo, Y., Ichikawa, N., Ankai, A., Oguchi, A., Fukui, S., Fujita, N., & Tsuda, M. 

(2011). Genomic organization and genomic structural rearrangements of Sphingobium japonicum UT26, an 

archetypal γ-hexachlorocyclohexane-degrading bacterium. Enzyme and Microbial Technology. 49(6-7), 499-508. 

https://doi.org/10.1016/j.enzmictec.2011.10.005 

Nagata, Y, Ohtsubo, Y., & Tsuda, M. (2015). Properties and biotechnological applications of natural and engineered 

haloalkane dehalogenases. Applied Microbiology and Biotechnology, 99(23), 9865-9881. 

https://doi.org/10.1007/s00253-015-6954-x 

Nagata, Y, Prokop, Z., Sato, Y., Jerabek, P., Kumar, A., Ohtsubo, Y., Tsuda, M., & Damborský, J. (2005). Degradation 

of β-hexachlorocyclohexane by haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26. Applied 

and Environmental Microbiology, 71(4), 2183-2185. https://doi.org/10.1128/AEM.71.4.2183-2185.2005 

Naqvi, T., Warden, A. C., French, N., Sugrue, E., Carr, P. D., Jackson, C. J., & Scott, C. (2014). A 5000-fold increase in 

the specificity of a bacterial phosphotriesterase for malathion through combinatorial active site mutagenesis. PLoS 

ONE, 9(4). e94177. https://doi.org/10.1371/journal.pone.0094177 

Newman, J., Peat, T. S., Richard, R., Kan, L., Swanson, P. E., Affholter, J. A., Holmes, I. H., Schindler, J. F., Unkefer, C. 

J., & Terwilliger, T. C. (1999). Haloalkane dehalogenases: Structure of a Rhodococcus enzyme. Biochemistry, 

38(49), 16105-16114. https://doi.org/10.1021/bi9913855 

Oakley, A. J., Klvaňa, M., Otyepka, M., Nagata, Y., Wilce, M. C. J., & Damborský, J. (2004). Crystal Structure of 

Haloalkane Dehalogenase LinB from Sphingomonas paucimobilis UT26 at 0.95 Å Resolution: Dynamics of 

Catalytic Residues. Biochemistry. 43(4), 870-878. https://doi.org/10.1021/bi034748g 

Okai, M., Kubota, K., Fukuda, M., Nagata, Y., Nagata, K., & Tanokura, M. (2010). Crystal Structure of 

Γ-Hexachlorocyclohexane Dehydrochlorinase LinA from Sphingobium japonicum UT26. Journal of Molecular 

Biology. 403(2), 260-269. https://doi.org/10.1016/j.jmb.2010.08.043 

Okai, M., Ohtsuka, J., Imai, L. F., Mase, T., Moriuchi, R., Tsuda, M., Nagata, K., Nagata, Y., & Tanokura, M. (2013). 

Crystal structure and site-directed mutagenesis analyses of haloalkane dehalogenase linB from sphingobium sp. 

Strain MI1205. Journal of Bacteriology, 195(11), 2642-2651. https://doi.org/10.1128/JB.02020-12 

Ortlund, E., Bridgham, J. T., Redinbo, M. R., & Thornton, J. W. (2007). Crystal Structure of an Ancienct Protein. 

Science, 317(5844), 1544-1548. https://doi.org/10.1126/science.1142819.Crystal 

Peisajovich, S. G., Rockah, L., & Tawfik, D. S. (2006). Evolution of new protein topologies through multistep gene 

rearrangements. Nature Genetics. 38(2), 168-174. https://doi.org/10.1038/ng1717 

Pritchard, L., Corne, D., Kell, D., Rowland, J., & Winson, M. (2005). A general model of error-prone PCR. Journal of 

Theoretical Biology, 234(4), 497-509. https://doi.org/10.1016/j.jtbi.2004.12.005 

Prokop, Zbyněk, Damborský, J., Janssen, D. B., & Nagata, Y. (2009). Method of production of optically active 

halohydrocarbons and alcohols using hydrolytic dehalogenation catalysed by haloalkane dehalogenases. US Patent 

7632666. http://www.patentstorm.us/patents/7632666/description.html 

Prokop, Zbyněk, Opluštil, F., DeFrank, J., & Damborský, J. (2006). Enzymes fight chemical weapons. Biotechnology 

Journal, 1(12), 1370-1380. https://doi.org/10.1002/biot.200600166 



84 
 

Prokop, Zbynek, Sato, Y., Brezovsky, J., Mozga, T., Chaloupkova, R., Koudelakova, T., Jerabek, P., Stepankova, V., 

Natsume, R., Van Leeuwen, J. G. E., Janssen, D. B., Florian, J., Nagata, Y., Senda, T., & Damborsky, J. (2010). 

Enantioselectivity of haloalkane dehalogenases and its modulation by surface loop engineering. Angewandte 

Chemie - International Edition, 49(35), 6111-6115. https://doi.org/10.1002/anie.201001753 

Rezaie, E., Latifi, A. M., & Mirzaei, M. (2018). Activity improvement of organophosphorus hydrolase enzyme by error 

prone PCR method. Journal of Applied Biotechnology Reports, 5(3), 100-104. 

https://doi.org/10.29252/JABR.05.03.03 

Sato, Y., Monincová, M., Chaloupková, R., Prokop, Z., Ohtsubo, Y., Minamisawa, K., Tsuda, M., Damborsky, J., & 

Nagata, Y. (2005). Two rizobial srains, Mesorhizobium loti MAFF303099 and Bradyrhizobium japonicum 

USDA110, encode haloalkane dehalogenases with novel structures and substrate specificities. Applied and 

Environmental Microbiology, 71(8), 4372-4379. https://doi.org/10.1128/AEM.71.8.4372-4379.2005 

Sato, Y., Natsume, R., Tsuda, M., Damborsky, J., Nagata, Y., & Senda, T. (2007). Crystallization and preliminary 

crystallographic analysis of a haloalkane dehalogenase, DbjA, from Bradyrhizobium japonicum USDA110. Acta 

Crystallographica Section F: Structural Biology and Crystallization Communications, 63(4), 294-296. 

https://doi.org/10.1107/S1744309107008652 

Schäfer, A., Tauch, A., Jsger, W., Kalinowski, J., Thierbachb, G., & Piihler, A. (1994). pK18mobsacB. Gene. 

Schweizer, H. P. (1992). Alielic exchange in Pseudomonas aeruginosa using novel ColE1‐type vectors and a family of 

cassettes containing a portable oriT and the counter‐selectable Bacillus subtilis sacB marker. Molecular 

Microbiology. 6(9), 1195-1204. https://doi.org/10.1111/j.1365-2958.1992.tb01558.x 

Smith, S. D., Wang, S., & Rausher, M. D. (2013). Functional evolution of an anthocyanin pathway enzyme during a 

flower color transition. Molecular Biology and Evolution, 30(3), 602-612. https://doi.org/10.1093/molbev/mss255 

Studier, F. W., & Moffatt, B. A. (1986). Use of bacteriophage T7 RNA polymerase to direct selective high-level 

expression of cloned genes. Journal of Molecular Biology. 189, 113-130. 

https://doi.org/10.1016/0022-2836(86)90385-2 

Tabata, M., Ohhata, S., Nikawadori, Y., Kishida, K., Sato, T., Kawasumi, T., Kato, H., Ohtsubo, Y., Tsuda, M., & 

Nagata, Y. (2016). Comparison of the complete genome sequences of four c-hexachlorocyclohexane-degrading 

bacterial strains: insights into the evolution of bacteria able to degrade a recalcitrant man-made pesticide. DNA 

Research, 23(6), 581-599. https://doi.org/10.1093/dnares/dsw041 

Takenaka, Y., Noda-Ogura, A., Imanishi, T., Yamaguchi, A., Gojobori, T., & Shigeri, Y. (2013). Computational analysis 

and functional expression of ancestral copepod luciferase. Gene, 528(2), 201-205. 

https://doi.org/10.1016/j.gene.2013.07.011 

Terada, I., Kwon, S. T., Miyata, Y., Matsuzawa, H., & Ohta, T. (1990). Unique precursor structure of an extracellular 

protease, aqualysin I, with NH2- and COOH-terminal pro-sequences and its processing in Escherichia coli. Journal 

of Biological Chemistry. 265(12), 6576-6581. 

Trantírek, L., Hynková, K., Nagata, Y., Murzin, A., Ansorgová, A., Sklenář, V., & Damborský, J. (2001). Reaction 

Mechanism and Stereochemistry of γ-Hexachlorocyclohexane Dehydrochlorinase LinA. Journal of Biological 

Chemistry, 276(11), 7734-7740. https://doi.org/10.1074/jbc.M007452200 

Tratsiak, K., Degtjarik, O., Drienovska, I., Chrast, L., Rezacova, P., Kuty, M., Chaloupkova, R., Damborsky, J., & Kuta 

Smatanova, I. (2013). Crystallographic analysis of new psychrophilic haloalkane dehalogenases: DpcA from 

Psychrobacter cryohalolentis K5 and DmxA from Marinobacter sp. ELB17. Acta Crystallographica Section F: 

Structural Biology and Crystallization Communications, 69(6), 683-688. 

https://doi.org/10.1107/S1744309113012979 

Ugalde, J. A., Chang, B. S. W., & Matz, M. V. (2004). Evolution of coral pigments recreated. Science, 305(5689), 1433. 

https://doi.org/10.1126/science.1099597 



85 
 

Varriale, S., Cerullo, G., Antonopoulou, I., Christakopoulos, P., Rova, U., Tron, T., Fauré, R., Jütten, P., Piechot, A., 

Brás, J. L. A., Fontes, C. M. G. A., & Faraco, V. (2018). Evolution of the feruloyl esterase MtFae1a from 

Myceliophthora thermophila towards improved catalysts for antioxidants synthesis. Applied Microbiology and 

Biotechnology, 102(12), 5185-5196. https://doi.org/10.1007/s00253-018-8995-4 

Vijgen, J., Abhilash, P. C., Li, Y. F., Lal, R., Forter, M., Torres, J., Singh, N., Yunus, M., Tian, C., Schäffer, A., & 

Weber, R. (2011). Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs-a global perspective on the 

management of Lindane and its waste isomers. Environmental Science and Pollution Research, 18(2), 152-162. 

https://doi.org/10.1007/s11356-010-0417-9 

Wijma, H. J., Floor, R. J., & Janssen, D. B. (2013). Structure- and sequence-analysis inspired engineering of proteins for 

enhanced thermostability. Current Opinion in Structural Biology, 23(4), 588-594. 

https://doi.org/10.1016/j.sbi.2013.04.008 

Xu, X., Liu, M. Q., Huo, W. K., & Dai, X. J. (2016). Obtaining a mutant of Bacillus amyloliquefaciens xylanase A with 

improved catalytic activity by directed evolution. Enzyme and Microbial Technology, 86, 59-66. 

https://doi.org/10.1016/j.enzmictec.2016.02.001 

Yang, K. K., Wu, Z., & Arnold, F. H. (2019). Machine-learning-guided directed evolution for protein engineering. 

Nature Methods, 16(8), 687-694. https://doi.org/10.1038/s41592-019-0496-6 

Yokoyama, S. (2002). Molecular evolution of color vision in vertebrates. Gene, 300(1–2), 69-78. 

https://doi.org/10.1016/S0378-1119(02)00845-4 

Yokoyama, S., Tada, T., Zhang, H., & Britt, L. (2008). Elucidation of phenotypic adaptations: Molecular analyses of 

dim-light vision proteins in vertebrates. Proceedings of the National Academy of Sciences of the United States of 

America, 105(36), 13480-13485. https://doi.org/10.1073/pnas.0802426105 

Zulkifly, A. H., Roslan, D. D., Hamid, A. A. A., Hamdan, S., & Huyop, F. (2010). Biodegradation of low concentration 

of monochloroacetic acid-degrading Bacillus sp. TW1 isolated from terengganu water treatment and distribution 

plant. Journal of Applied Sciences, 10(22), 2940-2944. https://doi.org/10.3923/jas.2010.2940.2944 

 

 

 


