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ABSTRACT

This study presents experimental observations of chaotic thermoacoustic oscillations induced in a looped tube with respect to both temporal
and spatial dimensions and compares themwith those in a resonance tube system. Thewave propagation directions observed in thermoacoustic
systems showing periodic behaviors are con�rmed in the chaotic case, from cold to hot sides in the stack in a looped system, andwith re�ections
at the ends of a resonance tube system. Although both systems are similar in their route to chaos and correlation dimensions of the chaotic
attractor, a recurrence visualization method reveals di�erences in the distribution of temporal patterns resulting from the mode competition
between the natural frequencies of the systems.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5066363

Thermoacoustics is an emerging �eld of study in which under-
standing of theoretical linear stability analysis is already well
established.1,2 However, there is still a lack of knowledge on non-
linear phenomena occurring at high amplitudes, such as chaotic
oscillations. The �rst step in the understanding of such phe-
nomena requires complete experimental observations. Spatio-
temporal observations have already been performed for periodic
oscillations with shockwaves in both straight and loop thermoa-
coustic systems, verifying the standing wave and traveling wave
pro�les. The current study aims to understand thermoacoustic
chaotic oscillations, and, to some extent, chaotic behaviors in
dissipative �uid systems, by reporting the spatio-temporal mea-
surement in both straight and looped systems.

I. INTRODUCTION

Thermoacoustic oscillators are a class of dissipative �uid sys-
tems that show self-sustained acoustic oscillationswhen a gas column
con�ned in a tube is locally heated or cooled until the tempera-
ture ratio between the hot and cold parts becomes su�ciently high.
Re�ecting the tube geometry, two types of thermoacoustic oscil-
lations are generated: one is a standing wave mode oscillation in
a resonance tube3,4 with open and/or closed ends, and the other
is a traveling wave mode oscillation in a looped tube.5–7 In both
oscillation modes, the generated acoustic gas oscillations are almost
sinusoidal functions of time having natural frequencies when the

temperature gradient is just above the critical one, but the waveform
distorts at elevated temperature ratios.

It has been observed both experimentally and numerically that
a high temperature ratio leads to a periodic pressure wave with shock
fronts moving back and forth in the resonance tube8,9 and traveling
in one direction in the looped tube.9,10 In some experimental systems,
even chaotic oscillations are generated owing to higher temperature
ratios.11,15 However, these thermoacoustic chaotic oscillations have
only been observed in resonance tubes so far. Furthermore, measure-
ment of the spatio-temporal evolution of chaotic oscillations has been
a di�cult experimental task because of the extreme temperature con-
ditions generated by using liquid helium11 or combustion reactions of
air-fuel mixtures.15

From a theoretical point of view, the thermoacoustic system
has been discussed as a stability problem of hydrodynamics.2,3,16

Although the theoretical results of the linear stability analysis are
validated by various experiments,6,17–20 it is still challenging to make
an elaborate nonlinear analysis that can describe thermoacoustic
chaotic oscillations based on the fundamental equations of hydro-
dynamics, as demonstrated in Rayleigh-Bénard convection systems.

This study experimentally reports the thermoacoustic chaotic
oscillations in a looped tube. We have recently succeeded in gener-
ating chaotic oscillations in a resonance tube by making the system
dissonant,21 although the major part of the tube was maintained at
room temperature. In this paper, we apply the same technique to
a looped tube thermoacoustic system to excite chaotic acoustic gas
oscillations. A spatio-temporalmeasurement of pressure �uctuations
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reveals di�erences between the fast and slow dynamical patterns of
chaotic oscillations in the resonance and looped tubes.

II. EXPERIMENTS

A. Looped tube thermoacoustic system

Figure 1(a) shows the looped tube thermoacoustic system,
which was made of straight acrylic cylindrical tubes with a 48mm
inner diameter and a pair of 180◦ bend sections, each of which was
made of two 90◦ steel elbows with the same diameter as the straight
tubes. The loop had an average length of L = 4.16m, was �lled with
air at ambient temperature and pressure, and contained a stack sand-
wiched by cold and hot heat exchangers with temperatures of TC

and TH , respectively. The stack was made of a 20mm long cylindri-
cal ceramic honeycomb catalyst which had square pores with a side
length of 0.68mm. Temperatures TC and TH were measured at the
cold and hot sides of the stack using thermocouples inserted into the
pipe. The heat exchangers were made of brass strips with a thickness
of 0.5mm and 1.0mm apart from each other. The hot heat exchanger
was heated by feeding electrical current to a sheathed wire heater
wound around it, whereas the cold heat exchanger was cooled by cir-
culating water at an ambient temperature of 293K. A cooling water
pipe was also wound around the 48mm diameter tube and separated
from the hot heat exchanger by 35mm. Thus, the looped tube was
mostly maintained at room temperature during the experiments.

This system started to excite acoustic gas oscillations with a
frequency of f2 = 164 Hz when the temperature ratio TH/TC was
increased to 1.90. The oscillation mode corresponds to the second
longitudinal acoustic mode of the looped tube as f2 was close to 2a/L,
where a denotes the sound speed and L is the average length of the
loop. The acoustic pressure, monitored by using a small pressure
transducer located at x = 2.7m, was almost sinusoidal; x represents
the axial coordinate taken along the tube axis going from cold to

FIG. 1. Schematic illustration of thermoacoustic systems: (a) looped tube and (b)
resonance tube.

hot in the stack, with x = 0 at the center of the stack. With an ele-
vated temperature ratio of TH/TC = 2.30, the temporal variation
of the pressure became noticeably distorted because of the excited
oscillations of the higher harmonics. At TH/TC = 2.64, the pressure
oscillations were con�rmed to evolve into periodic shock waves with
discontinuous wavefronts. Further increase of TH/TC resulted in an
increase of pressure discontinuity.

Observations of thermoacoustic shock waves have been
reported in previous experimental and numerical studies on ther-
moacoustic systems made of a straight resonance tube.8,9 We have
experienced that the local contraction of the tube diameter is able
to turn the periodic shock waves into chaotic oscillations.21 Breaking
the system’s symmetry with this small pipe increased the number of
modes with incommensurate frequencies, excitable within the reach-
able range of temperature ratios. With the increasing number of
incommensurate frequencies, an overall locking phenomenon was
less likely to prevail, and the nonlinear interactions eventually caused
the system to become chaotic. Therefore, we inserted a 2mm thick
and 100mm long pipe into the looped tube, to achieve the same
impact on the traveling thermoacoustic oscillations.

In the looped tube system installed with the small pipe, the
chaotic oscillations were explored by changing the position of the
pipe with a step of 0.1m in a range of 1.74m < x < 3.34m, at a
constant heating power of 450W. This was the maximum power
applicable by the present heater wire. We found two areas, 3.14m <

x < 3.34m and 2.44m < x < 2.54m, in which the chaotic oscilla-
tionswere con�rmed, and decided to put the small pipe at x = 3.24m
in the middle of the wider area.

When installed with the small pipe at that position, the system
started to oscillate with f3 = 244Hz in the third acoustic mode at
TH/TC = 1.84; it entered the quasiperiodic state with incommen-
surate frequencies f3 and f1 = 80.4Hz with TH/TC > 1.97 and was
�nally found to reach the chaotic state characterizedwith broadpeaks
at base frequencies f1, f2, and f3 in the amplitude spectrum when
TH/TC = 2.19.

Figure 2(a) shows a chaotic pressure oscillation in the looped
tube measured at x = 73mm. This measurement is a part of spatio-
temporal observation using many pressure transducers. The mea-
surement method is described below. Slow dynamics with aperi-
odic beating was observed, as well as fast dynamics associated with
the base frequencies f1 and f3. In the magni�ed view (a1) at times
t = 5.6 s, one can see the third mode oscillations slightly modulated
by the �rst mode oscillations, whereas, in the magni�ed view (a2) at
time t = 7.6 s, the �rst mode oscillations are more visible, as one can
see from the time intervals τ3 = 1/f3 and τ1 = 1/f1.

To quantify the chaotic behavior, we evaluated the correlation
dimension ν de�ned as

ν = lim
r→0

logC(r)

log r
, (1)

where C is the correlation integral,

C(r) = 1

N2

N
∑

i,j=1

2
(

r −
∥

∥Ezi − Ezj
∥

∥

)

, i 6= j, (2)

and N is the number of considered points Ezi in the phase space (here
built using the embedding method22), r is the arbitrary distance,
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FIG. 2. Chaotic time series obtained from (a) the loop system and (b) the reso-
nant system over a long time scale. Short-time behaviors are shown in (a1), (a2),
(b1), and (b2) with time indications for the first and third mode oscillation periods
τ1 = 1/f1 and τ3 = 1/f3.

and 2 is the heaviside function.11 In the calculation, we used 60 000
points of pressure signals, low-pass �ltered with 1 kHz, and sampled
at 2.5 kHz, as shown in Fig. 2(a). The calculation up to 10 dimensions
indicated that ν was equal to 3.2 ± 0.1. Figures 3(a) and 3(b) show
the convergence of ν as the phase space dimensionm increases. The
slope of the correlation integral on a logarithmic scale reaches 3.2
abovem = 4.

In order to con�rm that the noninteger correlation dimen-
sion does not result from stochastic noise in our time series, we
tested the data using pseudoperiodic surrogate testing introduced
by Small et al.12 This testing method has been used to con�rm
the existence of nonperiodic intercycle dynamics in thermoacoustic
systems.13,14 After generating 30 surrogates using m = 4 embedding

FIG. 3. (a) Log-log graph of the correlation integral for embedding dimensions
m = 1 to 10 calculated from the normalized time series of Fig. 2(a). (b) Correla-
tion dimension ν estimated from the slope of (a) between log(r) = −3.5 to−2.5
using the least square fitting method.

from the chaotic time series shown in Fig. 2(a), we calculated the cor-
relation dimension for all surrogates and the original data. The results
are shown in Fig. 4, in which one can see a clear di�erence from the
correlation dimensions of the surrogates, so the null hypothesis of
periodic orbit with uncorrelated noise is rejected.

B. Resonance tube thermoacoustic system

In order to make a comparison with the looped tube system,
we investigated a resonance tube thermoacoustic system, as shown
in Fig. 1(b). It was made of 48mm diameter cylindrical tubes with
a total length of LR = 2.10m and was installed with a stack and a
pair of heat exchangers in the same way as the looped tube. The res-
onance tube length was set so that the natural frequencies de�ned by
fn ≈ na/(2LR) (n = 1, 2, 3,. . . ) were close to those in the looped sys-
tem de�ned by fn ≈ na/L. The stack pore size was the same as that
used in the looped tube. Again, a 2mm thick walled cylindrical pipe
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Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 4. Correlation dimensions ν with m = 4 of the original data (red squares)
and 30 pseudoperiodic surrogates (grey dots) for the time series shown in Fig. 2(a)
after normalization. The correlation dimension differs clearly from the surrogates.

with a length of 100mm was placed at x = 1.39m to prevent the
shock wave formation. Here, x is measured from the hot end to the
opposite end, with x = 0m at the closed end near the hot part.

When TH was elevated while keeping TC at the ambient tem-
perature, the resonance tube thermoacoustic system started to gen-
erate acoustic gas oscillations with the third natural frequency
f3 = 250.2Hz at TH/TC = 1.91 and entered the chaotic regime at
TH/TC = 2.40 via quasiperiodic oscillation states of f1 and f3 modes.
The amplitude spectrum consisted of major broad peaks around the
natural frequencies f1, f2, and f3, and the correlation dimension of the
chaotic attractor was found to be 3.2 ± 0.1, from the pressure oscilla-
tions measured at the end of the resonance tube with TH/TC = 2.40.
Figure 2(b) shows a typical time series obtained in the resonant sys-
tem with TH/TC = 2.74. As in the looped system, the fast dynamics
alternate between mostly third mode oscillation phases and phases
where �rst mode oscillations are visible, as can be seen from themag-
ni�ed views in (b1) and (b2). Again, the chaotic behavior appeared
in the aperiodic slow beating.

The correlation dimension of 3.2 ± 0.1 in the resonance tube
was equal to that estimated in the looped tube. Similar correlation
dimensions were obtained at di�erent measurement positions x in
both systems. Therefore, it was found that the point measurement of
the pressure did not detect a signi�cant di�erence between thermoa-
coustic chaotic oscillations in the looped tube and in the resonance
tube. Furthermore, we tested the chaotic time series obtained in the
resonant systems using the pseudoperiodic surrogates data testing
which also led to the rejection of the null hypothesis of a periodic
orbit with stochastic noise.

C. Spatio-temporal measurement method

To observe the spatial structure of thermoacoustic chaotic oscil-
lations, we conducted simultaneous measurements of pressure oscil-
lations at di�erent axial positions. Several pressure transducers were

placed on the tube walls via small ducts of 2mm internal diame-
ter and 10mm length. In total, 52 pressure transducers were placed
with an axial spacing of 65mm in the looped tube and 37 pressure
transducers with a spacing of 50mm in the resonance tube. The
transducers were not located in the 90◦ elbow regions in the looped
tube and in the short section at the middle of the resonance tube,
where two 48mm tubes were connected by a tube �tting.

The pressure signals, after ampli�cation by DC ampli�ers and
low-pass �ltered at 1 kHz, were sampled by a multichannel A/D
converter at a sampling frequency of 5 kHz for a time interval of
15 s. During the measurements, the temperature ratio was kept at
TH/TC = 2.74 ± 0.01 to warrant chaotic oscillations both in the
looped tube and in the resonance tube thermoacoustic systems.

III. RESULTS AND DISCUSSION

The results for the looped tube and the straight tube are shown
in Figs. 5 and 6, where the horizontal and vertical axes represent the

FIG. 5. Spatio-temporal chaotic data obtained from the loop system at times (a1)
and (a2) in Fig. 2(a). Examples of pressure waves propagation in the positive x
direction are indicated by solid lines separated by typical time intervals τ1 = 1/f1
and τ3 = 1/f3. The less intense reflected waves propagating in the negative x

direction are indicated by dashed lines. See Multimedia view for a stroboscopic
animation corresponding to the first 10 s slow down to 1/3 of the actual speed.
Multimedia view: https://doi.org/10.1063/1.5066363.1
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FIG. 6. Spatio-temporal chaotic data obtained from the resonant system at times
(b1) and (b2) in Fig. 2(b). Examples of pressure waves propagation in the pos-
itive x direction are indicated by solid lines separated by typical time intervals
τ1 = 1/f1 and τ3 = 1/f3. The reflected waves propagating in the negative x

direction are indicated by dashed lines. See Multimedia view for a stroboscopic
animation corresponding to the first 10 s slow down to 1/3 of the actual speed.
Multimedia view: https://doi.org/10.1063/1.5066363.1

time and pressure transducer position, respectively. The color scale
represents the gauge pressure measured. The white horizontal bands
correspond to the positions of the elbows and connections without
pressure transducers. Only a time window of two times the period
of the �rst oscillation mode was used here at the times indicated by
(a1), (a2), (b1), and (b2) in Fig. 2.

In Fig. 5(a1), we see six parallel lines separated by one-third of
the period of f1 mode oscillation. In the spatial direction, one can
see three wavelengths of approximately a/f3, which indicates that the
spatial pattern is dominated by the f3 mode. In Fig. 5(a2), the peri-
odicity between the original six pressure waves corresponding to the
f3 mode is broken, while the f1 mode periodicity is conserved. The
pressure waves mostly travel from the hot to the cold side of the
stack with much less intense pressure waves going in the negative x
direction, just as in other looped thermoacoustic systems showing
periodic regimes.10

In Fig. 6(b1), for the resonant system, the pressure waves go
back and forth with multiple re�ections at both ends of the system.
Here, the dominant pressure wave is re�ected twice in the considered
time window, showing that it corresponds to the �rst mode oscilla-
tions, but two less intense intermediate waves corresponding to the
third mode oscillations are also visible. In Fig. 6(b2), all pressure

wave intensities are roughly similar, showing a dominance of the
f3 mode.

In both systems, the chaotic behavior appears to be governed by
underlying f1 and f3 mode oscillations in short time scales. In order to
study the chaotic dynamics of our systems on longer time lengths, we
used the recurrence plot introduced by Eckmann et al.23 This visual
tool highlights the times when a trajectory revisits a region of the
phase space. It is built from a binary matrix described as

Rij = 2
(

ε −
∥

∥Ezi − Ezj
∥

∥

)

, i, j = 1, . . . ,N, (3)

where ε is a threshold value. When two points of the phase space Ezi
and Ezj are closer than a distance ε, the states at times i and j are con-
sidered to be recurrent and Rij is equal to 1. On the other hand, if the
two points are far from each other,Rij is equal to 0. By applying this to
each point of the attractor, one can obtain aN × N recurrencematrix
with the identity line as an axis of symmetry. By representing the
recurrent states with black dots and the others with white dots, var-
ious structures appear in recurrent plots:24 isolated dots occur if the
state is not persistent and manifests a random event; diagonal lines
parallel to the identity line occur when the trajectory visits the same
region of the phase space at di�erent times (the recurrence plot of a
perfectly periodic behavior will then contain persistent diagonal lines
at intervals corresponding to the period of oscillation); rectangles
delimited by horizontal/vertical lines are a sign of almost not chang-
ing states for a long time. If the threshold value ε is too small, the
lack of recurrent points due to noise or a larger sample spacing pre-
vents to learn anything about the recurrence in the system dynamics.
If ε is too large, distant points of the attractor can be misinterpreted
as recurrent states. A threshold value ε equal to 10% of the attractor
size is commonly considered as the upper limit.24,25

Figures 7 and 8 show the recurrence plots obtained from the
loop and resonant systems at TH/TC = 2.74 ± 0.01 using a long
time series of 15 s. The phase space was constructed using the pres-
sure p measured at di�erent positions of the system instead of the
embedding method, namely,

Ezi = (p1, p2, . . . , pM), (4)

where M denotes the total number of transducers used. The
Euclidean norm was used to determine the threshold value ε, which
was set to be equal to 10% of the two most distant points in the
attractor. ε was then of the order of

√
M times the typical pressure

amplitude, with M being the dimension of the phase space, or here
the number of used transducers. The bottom �gures correspond to
the enlarged regions at times (a1), (a2), (b1), and (b2). Only the lower
parts of the recurrence plots were computed because of the power
limit of our computer.

Figure 7 shows the recurrence plot of the chaotic oscillations
in the loop system. Therein, one can see clusters of recurrent points
forming kitelike patterns, one of which is labeled 3© in Fig. 7. These
patterns are unequally distributed over time, showing that similar
phases eventually repeat after some time. The kitelike pattern 3©
begins at t = 5.6 s, when the third mode oscillations dominate the
dynamics as we have already shown in Figs. 2(a1) and 5(a1). In order
tomake the comparison easier, we have included the spatio-temporal
plot of pressure waves in the inset graph of Fig. 7. In the magni�ed
view of the recurrence plot of Fig. 7(a1), however, few intermediate
points separated by the period of the thirdmode τ3 = 1/f3 are visible.

Chaos 29, 093108 (2019); doi: 10.1063/1.5066363 29, 093108-5
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FIG. 7. Recurrence plot of a chaotic behavior observed in the loop system with
the spatio-temporal data. Examples of an aperiodic phase, kite tail structure,
and kitelike pattern are highlighted in regions 1©, 2©, and 3© respectively. Bot-
tom figures show the enlarged regions (a1) and (a2) with typical time intervals
τ1 = 1/f1 and τ3 = 1/f3.

FIG. 8. Recurrence plot of a chaotic behavior observed in the resonance tube
with the spatio-temporal data. An example of the kitelike pattern is highlighted
between times (b1) and (b2). Bottom figures show the enlarged regions (b1) and
(b2) with typical time intervals τ1 = 1/f1 and τ3 = 1/f3.
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FIG. 9. Recurrence plots of the chaotic behaviors of (a) Fig. 7 and (b) Fig. 8 from
a single point measurement at x = 73mm in the looped tube and x = 2.10m in
the resonance tube. The phase portraits were build using the embedding method
with 8 dimensions.

Instead, we see diagonal lines separated by the �rst mode oscillations
period τ1 = 1/f1, indicating that the oscillations are mostly periodic
with the fundamental mode oscillations. The absence of solid diago-
nals for the third mode oscillations results from random �uctuations
added by each transducer, which would be overcome by increasing
the threshold value ε, yet exceeding 10% of the attractor size. In the
time interval of (a1), the thirdmode oscillations are observed, but this
mode eventually looses its stability as one can see from the sequence
of spatio-temporal plots in Fig. 7. The striped structure at the end of
the kitelike patterns originates from a quasiperiodic behavior, i.e., the
recurrence in the fast dynamics periodicity is recovered at the period
of the beating.24,26 Aperiodic phases (region 1© in Fig. 7) make the

transition between each kitelike pattern. During the transition, the
�rst mode oscillations appear with highly �uctuating amplitude, as
one can see in the inset graphs starting from (a2). The correspond-
ing enlarged recurrence plot of (a2) shows only a few diagonal lines
close to the identity line and separated by the period τ1 = 1/f1. At the
end of the aperiodic transition, a thin recurrent states cluster forming
“tail” of the kitelike pattern is observed (region 2© in Fig. 7), showing
that this part of the transition is consistently repeated.

In Fig. 8, one can also see kitelike patterns with variable sizes.
However, the quasiperiodicity is even more obvious here and the
aperiodic transition is absent. The patterns end with curving stripes
resulting from changes in the period of the beating, which can
be interpreted as underlying frequencies’ �uctuations. The spatio-
temporal data manifest the mode competition between the �rst and
third oscillation modes. In the enlarged recurrence plot (b1), only
the diagonals corresponding to the �rst oscillationmodes are present,
while in the enlarged recurrence plot (b2), one can see the short diag-
onals corresponding to the thirdmode oscillations starting to appear.
During the transition from one pattern to another, the former pres-
sure wave corresponding to the �rst oscillation mode switches to its
�rst intermediate neighbor to the right as can be seen by comparing
the spatio-temporal plots in Figs. 8(b1) and 8(b3).

Though our systems show a quasiperiodic route to chaos,
the presence of recurrent patterns in the recurrence plot of the
�nal reachable chaotic states at TH/TC = 2.74 ± 0.01 manifests
(almost) regular phases that could be a sign of some intermittent
phenomena27,28 as observed by Sujith et al. in a combustion system
showing type II intermittency.25 The presence of interrupting chaotic
phases is only observed in our loop thermoacoustic system, suggest-
ing some type of intermittency that di�ers from the chaotic behavior
observed in the resonant system.

We also created the recurrence plots by building the phase space
with the embedding method using single point measurements and
obtained qualitatively similar results, which shows that the chaotic
behavior is temporal and not spatio-temporal. Results are shown in
Figs. 9(a) and 9(b). Though themultiple-pointmeasurement allowed
us to observe wave propagation direction in both thermoacoustic
systems, a single point measurement would be su�cient for the
recurrence analysis of chaotic oscillations.29

IV. SUMMARY

By performing spatio-temporal measurements in a loop and a
resonant thermoacoustic oscillator showing chaotic behaviors, we
have found that the traveling directions of the pressure waves do
not change from those reported in previous studies using periodic
thermoacoustic oscillators.

Though the point measurement revealed quasiperiodic routes
to chaos with similar correlation dimensions in both systems, the
recurrence plots highlighted qualitative di�erences in the patterns
resulting from the mode competition between the modes observed
in the routes to chaos. While the chaotic behavior in the loop system
consisted of alternations of aperiodic and quasiperiodic phases with
increasing beating amplitude, the chaotic behavior in the resonant
system showed only quasiperiodic phases with variable durations.

These patterns hint at the existence of di�erent intermittent phe-
nomena or node types in the phase space, which could be investigated
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by extracting more information from longer time series such as their
lifetime distribution.
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