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TWENTY-SEVEN QUESTIONS ABOUT THE CUBIC SURFACE

KRISTIAN RANESTAD - BERND STURMFELS

We present a collection of research questions on cubic surfaces in 3-space.
These questions inspired the collection of papers published in this special
issue of the Le Matematiche, so this article serves as an introduction. The
number of questions is meant to match the number of lines on a cubic
surface. We end with a list of problems that are open.

1. Introduction

One of most prominent results in classical algebraic geometry, derived two cen-
turies ago by Cayley and Salmon, states that every smooth cubic surface in com-
plex projective 3-space P3 contains 27 straight lines. This theorem has inspired
generations of mathematicians, and it is still of importance today. The advance
of tropical geometry and computational methods, and the strong current interest
in applications of algebraic geometry, led us to revisit the cubic surface.

Section 3 of this article gives a brief exposition of the history of that classical
subject and how it developed. We offer a number of references that can serve as
first entry points for students of algebraic geometry who wish to learn more.

In December 2018, the second author compiled the list of 27 question. His
original text was slightly edited and it now constitutes our Section 2 below.
These questions were circulated, and they were studied by various groups of
young mathematicians, in particular in Leipzig and Berlin. In May 2019, a one-
day seminar on cubic surfaces was held in Oslo. Different teams worked on the
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questions and they made excellent progress. It was then decided to call for a
special issue of Le Matematiche, with submission deadline in September 2019.

This call resulted in the 14 articles listed as [48]–[61]. In Section 4 we give
an overview of this collection, and we briefly discuss the contribution of each
article. For each article, we identify which of the 27 question it refers to. We
also highlight ten key problems that remain open. These make it clear that there
is still a lot of research to be done, and our readers are invited to join the effort.

2. Questions

The text that follows in this section was written and circulated by the second
author in December 2018. The list of 27 questions was conceived as a working
document that evolves over time. It was initially not meant to be published.
It simply represents what the second author wanted to know, but did not know
back then. The current status of the 27 questions will be our topic in Section 4.

In spite of two centuries of research on cubic surfaces, it appears that there
are still many unresolved questions, especially when it comes to computational,
tropical and applied aspects. Please feel free to circulate this text. It is aimed
at stimulating further work on cubic surfaces, or equivalently, on symmetric
4×4×4 tensors. Your feedback and comments will be greatly appreciated.

A cubic surface in P3 is the zero set of a homogeneous polynomial

f = c1x3+c2y3+c3z3+c4w3+c5x2y+c6x2z+c7x2w+c8xy2

+c9y2z+c10y2w+c11xz2+c12yz2+c13z2w+c14xw2

+c15yw2+c16zw2+c17xyz+c18xyw+c19xzw+c20yzw.
(1)

We work over a field K of characteristic 0, such as Q, Qp, Q(t), R, C, Q(t),
or C{{t}}. The 15-dimensional group PGL(4) acts naturally on the projective
space P19 = P(Sym3(K4)) whose coordinates are (c1 ∶ c2 ∶ ⋯ ∶ c20). Our first
question concerns the orbits of that action. Here the point of departure would
be Kazarnovskii’s general formula, found in [15, 29], for degrees of orbits.

Question 1. Given a generic homogeneous cubic f in x,y,z,w, what can we say
about the orbit closure PGL(4) ⋅ f ? What is the degree of this variety in P19?
Can we determine some of its defining polynomial equations?

The geometric invariant theory of cubic surfaces is well understood. In his
1861 article [38], Salmon found six fundamental invariants. Their degrees are 8,
16, 24, 32, 40 and 100. The square of the last one is a polynomial in the first five.
Over a century later, Beklemishev [5] proved that Salmon’s list is complete.
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Question 2. How to evaluate the six invariants? Same question for their tropi-
calizations. (See the textbook [31] for basics on tropical geometry).

One obvious invariant is the discriminant of f . This is a polynomial of
degree 32 in the coefficients c1, . . . ,c20. Edge [20] corrects a formula written in
fundamental invariants due to Salmon, apparently also repeated by Clebsch.

The next question assumes familiarity with the combinatorial theory of dis-
criminants that was developed by Gel’fand, Kapranov and Zelevinsky [22].

Question 3. How many monomials does the discriminant have? How many
vertices does its Newton polytope have, i.e. how many D-equivalence classes of
regular triangulations are there?

The discriminant of the cubic f equals the resultant of the quadrics ∂ f
∂x , ∂ f

∂y ,
∂ f
∂ z , ∂ f

∂w . We therefore seek formulas for the resultant of four quadrics in x,y,z,w.

Question 4. Can we write the resultant of four quadratic surfaces in P3 as the
determinant of an 8×8-matrix whose entries are linear forms in the brackets?
This resultant is the Chow form of the Veronese embedding of P3 into P9. Such
a formula would be derived from a nice Ulrich sheaf on that Veronese threefold.

Assuming the answer to Question 4 to be affirmative, we specialize to get
an 8×8-matrix whose entries are quartics in c1, . . . ,c20 and whose determinant
equals the discriminant of f . Note that the discriminant has degree 32 in the ci.

Question 5. Which varieties in P19 arise by imposing rank conditions on the
8×8-matrix in Question 4?

In his 1899 article [33], E.J. Nansen writes the above resultant as the de-
terminant of a 20×20-matrix. We can again specialize this to a matrix whose
determinant is the discriminant of f .

Question 6. Which varieties in P19 arise by imposing rank conditions on this
20×20-matrix?

It seems reasonable to surmise that the loci in Questions 5 and 6 are cubic
surfaces with prescribed types of singularities. The simplest scenario is the
occurrence of simple nodes as the only singularities. Then these are at most 4.

Question 7. For k = 2,3,4, the variety of k-nodal cubics is irreducible of codi-
mension k in P19. Using his numerical software [7], Sascha Timme computed
that the degrees of these varieties are 280, 800 and 305 respectively. Later we
learned that these degrees, and many more, had been found by Vainsencher [46].
Can we find explicit low-degree polynomials that vanish on these varieties?
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Question 8. Can we find 17 real points in P3 such that all 280 of the 2-nodal
cubics through these points are real? Can we find 16 real points in P3 such
that all 800 of the 3-nodal cubics through these points are real? Also, are there
configurations such that no such cubic is real?

The 4-nodal cubics are Cayley symmetroids. These arise in convex opti-
mization, as boundaries of feasible regions in semidefinite programming.

Question 9. Can we find 15 real points in P3 that lie on 305 real Cayley sym-
metroids?

The following question arose from a conversation with Hannah Markwig.

Question 10. Can the numbers 280, 800 and 305 be derived tropically?

The next question refers to the classical construction of cubic surfaces by
blowing up the projective plane P2 in six points.

Question 11. How to construct six points with integer coordinates in P2, and a
basis for the space of cubics through these points, such that the resulting cubic
surface in P3 has a smooth tropical surface for its 2-adic tropicalization? Which
unimodular triangulations of the Newton polytope 3∆3 of a dense cubic f arise?

Up to symmetry, there are 14373645 unimodular triangulations of the triple
tetrahedron 3∆3. This number was reported recently in [28, Theorem 3.1].

Question 12. Given a cubic surface over a valued field K, how to decide whether
its tropicalization is smooth after some linear change of coordinates? How to
search PGL(4,K)?

Salmon’s invariant of degree 100 vanishes precisely when the cubic surface
has an Eckardt point, that is, a point common to three of its 27 lines. This
invariant deserves further study.

Question 13. What is the singular locus of the Eckardt hypersurface of degree
100 in P19?

A homogeneous cubic polynomial f in x,y,z,w can be interpreted as a sym-
metric tensor of format 4×4×4. A typical tensor has complex rank 5, but its real
rank becomes 6 as one crosses the real rank boundary. This is a hypersurface
of degree 40 in P19 studied by Michałek and Moon [32, Proposition 3.4].

Question 14. What can be said about the tropicalization of the Michałek–Moon
hypersurface?
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Seigal [43, Proposition 2.6] identifies the Hessian discriminant as the locus
where the complex rank of cubics f jumps from 5 to 6. She points out that this
discriminant has degree ≤ 120 and is invariant under the action of PGL(4,K).

Question 15. How to write the Hessian discriminant in terms of Salmon’s six
fundamental invariants of the cubic surface?

The eigenpoints of f are the fixed points of the gradient map ∇ f ∶ P3 ⇢

P3. This was studied by Abo et al. in [1]. For generic cubics f , there are 15
eigenpoints. They form the eigenconfiguration of the 4×4×4 tensor f .

Question 16. Which configurations of 15 points in P3 arise as eigenpoints of a
cubic surface?

The eigendiscriminant is a hypersurface of degree 96 in P19. This object and
its degree are studied in [1, Section 4]. It represents cubic surfaces that possess
an eigenpoint of multiplicity ≥ 2. This hypersuface deserves further study.

Question 17. Does there exists a compact determinantal formula for the eigendis-
criminant of the cubic surface?

We learned from Bruin and Sertöz [8] that there are 255 Cayley symmetroids
containing a general complete intersection (2,3)-curve in P3, one for each 2-
torsion point on the Jacobian of such a genus 4 curve. This is less than the
number 305 of Cayley symmetroids found in a general P4 in P19; cf. Question 9.

Question 18. What explains the drop from 305 to 255 when we count Cayley
symmetroids that lie in the special 4-plane in P19 of all cubic surfaces containing
a given space sextic?

The following question paraphrases Problem 5.4 in [45]. It was studied by
Bernal et al. [6], but the authors of that article left it largely unresolved.

Question 19. What are all toric degenerations of Cox rings of cubic surfaces?

The following question paraphrases Conjecture 5.3 in [37].

Question 20. Can we identify a tropical basis for the universal Cox ideal of
cubic surfaces?

In tropical geometry, it is a big challenge to relate intrinsic Del Pezzo ge-
ometry to embedded geometry in P3. This is reminiscent from the curve case.

Question 21. There are two generic types of tropical del Pezzo surfaces of
degree 3, characterized by the tree arrangements in [37, Figures 4 and 5]. Can
we identify cubics f that realize these two types by looking at the valuations of
the six invariants in Question 2?
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The lines in P3 are points p = (p12 ∶ p13 ∶ p14 ∶ p23 ∶ p24 ∶ p34) in the Grass-
mannian Gr(2,4) ⊂ P5. The universal Fano variety in P19 ×P5 parametrizes
lines on cubic surfaces. Its ideal is generated modulo the Plücker quadric by 20
polynomials of degree (3,1) in (p,c). These are derived in [28, Section 6].

Question 22. Can we find an explicit tropical basis for universal Fano variety?

A real cubic surface in P3
R has either one or two connected components. In

the latter case, the cubic is hyperbolic. It bounds a convex body that is of interest
in optimization. For some background on real cubics we refer to [35].

Question 23. Can we find a semialgebraic description for the set of smooth
hyperbolic cubics in P19

R ? How to express this case distinction in terms of the
six fundamental invariants?

Every cubic f whose Hessian discriminant (in Question 15) is non-zero has
a unique representation as a sum of five third powers of linear forms, f = `3

1 +

`3
2 + `3

3 + `3
4 + `3

5. This is Sylvester’s Pentahedral Theorem. Salmon [38] uses
this to write the invariants.

Question 24. Can we find explicit linear forms `i ∈ Z[x,y,z,w] such that the
2-adic tropicalization of V( f ) is tropically smooth. Which unimodular triangu-
lations of the triple tetrahedron 3∆3 arise?

If we project a cubic surface V( f ) from a general point p on that surface,
then we get a double-covering of P2 branched along a quartic curve. The 28
bitangents of that curve are the images of the 27 lines on V( f ) plus one more
line which is the exceptional divisor over p.

Question 25. Can this correspondence from 27 to 28 be understood in tropical
geometry? In particular, can we see the seven 4-tuples of tropical bitangents
already in the tropical cubic surface Trop(V( f ))?

The seven 4-tuples of bitangents of a tropical plane quartic are studied by
Chan and Jiradilok in [11]. For cubic surfaces, Brundu and Logar [9] offer a
computational study of f via the following alternative normal form:

f = a1(2x2y−2xy2+xz2−xzw−yw2+yzw) + a2(x−w)(xz+yw)+

a3(z+w)(yw−xz) + a4(y− z)(xz+yw) + a5(x−y)(yw−xz).

This amounts to fixing an L-set, i.e. a special configuration of five lines on V( f ).

Question 26. How to compute the Brundu–Logar normal form in practice? Can
we write a1,a2,a3,a4,a5 as rational functions in c1,c2, . . . ,c20? What does this
tell us tropically?
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Here is another interesting normal form, called the Cayley–Salmon form of
f by Dolgachev [17]. A general cubic surface has 120 distinct representations

f = `1`2`3 + m1m2m3, (2)

where the `i and m j are linear forms. We learned this from Buckley and Kośir
[10] who derived it from the classical construction of Steiner sets. Steiner called
the two triples in (2) a Triederpaar, and he showed that there are 120 such pairs.

Question 27. How to compute the 120 Cayley–Salmon representations (2) of a
given cubic surface in practice? Can this be tropicalized?

3. History

This section offers a historical introduction to the cubic surface and its 27 lines.
It is aimed at students and other non-experts. One goal is to introduce accessible
sources for further study of this beautiful theme in classical algebraic geometry.
Those who seek a textbook introduction are referred to the books by Dolgachev
[17, Chapter 9] and Reid [36, Chapter 7]. In applications, one considers cubic
surfaces over the real numbers, and for those we refer to the book by Segre [41]

Arthur Cayley first showed that there are 27 lines on a general complex cu-
bic surface, and then Salmon showed that there are 27 lines on every smooth
complex cubic surface, both in the middle of the 19th century. Their results are
remarkable given that nonsingular cubic surfaces are not all projectively equiva-
lent. In fact, by a simple parameter count, there is a 4-dimensional family of iso-
morphism classes of cubic surfaces. Salmon found six fundamental invariants
for cubic surfaces. Their degrees are 8, 16, 24, 32, 40 and 100, and the square of
the last one is a polynomial in the other five. These invariants are homogeneous
polynomials in the 20 coefficients ci of the cubic form f . They parameterize
naturally the four-dimensional family of projective equivalence classes of cubic
surfaces. For a concrete example, we computed the full expansion of Salmon’s
invariant of degree 8. It is a sum of 7261 terms, which looks like this:

192c2
1c3

10c3
13−864c2

1c3
10c13c16c3+2592c2

1c3
10c2

3c4+1728c2
1c2

10c2
12c13c4

−648c2
1c2

10c2
12c2

16−288c2
1c2

10c12c2
13c15+432c2

1c2
10c12c13c16c20+ ⋯

⋯ +1728c3c2
4c2

5c6c2
9+1728c3c2

4c2
6c2

8c9+384c3c4c3
7c3

9+192c2
4c3

6c3
9.

A crucial ingredient in the investigations of Cayley and Salmon was the use
of normal forms for f . The two most important ones were the Cayley-Salmon
form and the Sylvester form. The Cayley-Salmon form, i.e. general f is the sum
of two triple products of linear forms, gives a nice access to the combinatorial
structure of the 27 lines. Steiner [44] called the pair of triples of planes defined
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by the triple products a Triederpaar, and showed that a general cubic surface has
120 such Triederpaare. Sylvester’s pentahedral form, i.e. a general f is the sum
of five cubes of linear forms, is the key to Salmon’s computation of invariants.

Schläfli exploited the combinatorics of the 27 lines in [39]. In particular,
he described the 36 double-sixes formed by the 27 lines. As was shown later
by C. Segre in [42] (see also [16]), the double-sixes correspond one to one to
the equivalence classes of linear determinantal presentation of f . Subsequently
Schläfli, in [40], classified irreducible cubic surfaces according to singularities
into 22 different types, and the number of real lines on real smooth cubic sur-
faces. A double-six of lines determines a pair of birational morphisms of the
cubic surface to the plane P2. Each morphism contracts one set of six lines in
the double-six to points in P2, and it maps the other set to conics in P2. This
correspondence, showing that a smooth cubic surface is isomorphic to the pro-
jective plane blown up in six points, goes back to Clebsch [12].

The incidence graph of the 27 lines has a large automorphism group, iden-
tified with the Weyl group E6 by Jordan [27]. The automorphism group of the
surface is naturally a subgroup of E6. The general nonsingular cubic surface has
however no nontrivial automorphisms. The complex surfaces with nontrivial
automorphisms are the ones with at least one Eckardt point, see [19]. These are
points contained in three of the lines. A surface with an Eckardt point admits a
projective involution that fixes the three lines pointwise.

In his paper [21] in the first volume of Mathematische Annalen, Geiser noted
the relation between the 27 lines on a cubic surface and 28 bitangents to a plane
quartic curve. The curve is the branch locus of the projection of the surface
away from a general point on the surface. The birational automorphism defined
by interchanging the sheets of this double cover is called the Geiser involution.

The early results by Schäfli on real cubic surfaces inspired the production of
models of cubic surfaces with up to 27 real lines. The culmination of the work
of this period is found in B. Segre’s book [41]. This book is a comprehensive
investigation into the five different kinds of real smooth cubic surfaces. To this
date, the book [41] is the best source on cubic surfaces over the real numbers.

Well into the 20th century, algebraic geometry textbooks featured the smooth
cubic surfaces. Baker’s book Principles of Geometry [4] is an example. This
changed in the second half of the 20th century. Sheaves and schemes now pro-
vided better tools for moduli spaces, like Hilbert schemes and geometric invari-
ant theory (GIT). Dolgachev, van Geemen and Kondo used GIT to describe a
4-dimensional proper moduli space of k-nodal cubic surfaces [18] with k = 0 or
k = 1, ...,4. Allcock, Carlson and Toledo [2] constructed a GIT model of the
moduli space as quotient of a complex 4-dimensional ball by a reflection group.

The textbooks on abstract algebraic geometry by Hartshorne [26] and Grif-
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fiths and Harris [23] introduce smooth cubic surfaces as embeddings of the plane
blown up in six points. Miles Reid’s undergraduate textbook [36] gives a more
elementary introduction to smooth cubic surfaces and its 27 lines, without ref-
erence to the isomorphism with the plane blown up in six points. A compre-
hensive treatment starting with the 27 lines and the group E6, covering determi-
nantal representations, power sum presentations and automorphisms, is given
by Dolgachev [17]. It includes also a very nice historical overview on cubic sur-
faces. A nice overview of real cubic surfaces from a modern minimal program
perspective is found in Kollár’s lecture notes [30] on real algebraic surfaces.

Tropical geometry started at the beginning of the 21st century and it offers
a new perspective on classical algebraic geometry. The book by Maclagan and
Sturmfels offers an introduction which includes tropical surfaces in 3-space in
[31, Section 4.5]. These are the natural tropicalizations of affine surfaces in
the complement of the coordinate hyperplanes in P3. The relationship between
complex and tropical geometry is an active area of research. Smooth tropical
cubic surfaces may have infinitely many lines [34, 47]. Recent work in [14, 28,
37] concerns different representations of the cubic surface, aimed at revealing all
the tropical lines in the tropicalization. The tropicalization of the complement of
a triangle in a cubic surface has been considered by Gross et al. [24] to explain
mirror symmetry phenomena of Calabi-Yau varieties.

4. Progress

Considerable progress on the 27 questions was made between January 2019 and
September 2019. This resulted in 14 articles, written for the special volume
of Le Matematiche. Here we introduce these papers, with emphasis on how
they address the prompts in Section 2. Naturally, many questions remain unan-
swered. We conclude with a list of ten open problems, extracted from the 27
questions. We consider these to be especially interesting for further research.

The first three papers concern the group action of PGL(4) on the projec-
tive space P19 of cubic surfaces. Brustenga, Timme and Weinstein [49] use
numerical algebraic geometry to answer Question 1. The general orbit in P19

is a 15-dimensional variety of degree 96120. Cazzador and Skauli [51] de-
velop the intersection-theoretic approach to this problem. It rests on the solution
by Aluffi and Faber for the same problem concerning PGL(3)-orbits of plane
curves. Elsenhans and Jahnel [55] resolve the first part of Question 2, by giving
a practical algorithm for evaluating invariants and covariants of cubic surfaces.
Based on the classical method of transvections, it is implemented in Magma.
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We next come to the discriminant of the cubic surface. Kastner and Löwe
[58] present a computational solution to Question 3: the Newton polytope has
166104 vertices. The paper by Bunnett and Keneshlou [50] addresses Questions
4, 6 and 7. The answer to Question 4 is “no” since there is no rank 1 Ulrich sheaf
on the Veronese surface in P9. The authors determine a rank 2 Ulrich sheaf, they
construct a Pfaffian representation of size 16×16 for the discriminant, and they
examine the rank strata of Nansen’s 20×20 matrix. Keneshlou [59] identifies
the singular locus of the Eckardt hypersurface. This solves Question 13.

Normal forms of cubic surfaces are important for many applications. Paniz-
zut, Sertöz and Sturmfels [60] introduce a new normal form which works well
for tropical geometry. They also answer most of Question 11. Donten-Bury,
Görlach and Wrobel [54] resolve Question 19 by describing a classification of
all toric degenerations of cubic surfaces. Their approach rests on Khovanskii
bases of Cox rings. Hahn, Lamboglia and Vargas [57] address Question 27.
They describe two methods for computing the 120 Cayley-Salmon equations.

Cubic surfaces correspond to symmetric tensors of format 4×4×4. Seigal
and Sukarto [61] investigate how their tensor rank is reflected in the singular-
ity structure of the surface. An important player in their paper is the Hessian
discriminant. This invariant is the object studied by Dinu and Seynnaeve [53],
who present the answer to Question 15. The article by Çelik, Galuppi, Kulkarni
and Sorea [52] studies the spectral theory of symmetric 4×4×4 tensors. Their
parametrization of the eigenpoints furnishes a partial answer to Question 16.

Two articles examine cubic surfaces via tropical geometry. Brandt and
Geiger [48] give a partial answer to Question 10. They develop a tropical theory
of binodal cubics through 17 given points in P3. In that setting, the classical
count of 280 drops to 214. Geiger [56] studies the combinatorics of lines on
tropical cubic surfaces. She proves that the Brundu-Logar normal form gives
surfaces that are not tropically smooth, thus answering part two of Question 27.

We also note that an observant referee proposed an answer for Question 18.
The following explanation for the drop was given. Consider the special 4-space
of cubic surfaces that contain a (2,3)-curve C. This 4-space contains a P3 of
reducible symmetroids, all with the unique quadric surface Q that contains C, as
a component. This P3 is an excess intersection that counts as 50 in the 305.

The 14 articles offer considerable new insights on cubic surfaces. However,
some of the harder questions still remain unanswered. We conclude with a
reprise of Section 2, in the form of a list of ten open problems on cubic surfaces.

1. Determine the prime ideal of the generic PGL(4) orbit on P19. (Q1)

2. How to evaluate the six fundamental invariants for a tropical cubic? (Q2)

3. Identify all rank varieties for the discriminant matrices in [50]. (Q5-6)
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4. Determine the prime ideals of the varieties of k-nodal cubics in P19. (Q7)

5. Find 19−k points whose interpolating k-nodal surfaces are all real. (Q8-9)

6. Prove [60, Conjecture 4.1]: Smooth tropical cubics have 27 lines. (Q11)

7. Which cubics are tropically smooth after a coordinate change? (Q12)

8. Find determinantal or pfaffian formulas for eigendiscriminants. (Q17)

9. What is the correct tropicalization of Sylvester’s Pentahedral Form? (Q24)

10. Relate the 27 lines to the 28 bitangents in the tropical setting. (Q25)

These are our favorites among problems extracted from the 27 questions.
They underscore our belief that, even two centuries after Cayley and Salmon,
the investigation of cubic surfaces will continue to be an active area of research.
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