
Rollins College Rollins College

Rollins Scholarship Online Rollins Scholarship Online

Honors Program Theses

Spring 2020

Computational analysis of woodwind instruments using the Computational analysis of woodwind instruments using the

lattice Boltzmann method lattice Boltzmann method

Jack D. Gabriel
Rollins College, jgabriel@rollins.edu

Follow this and additional works at: https://scholarship.rollins.edu/honors

 Part of the Fluid Dynamics Commons

Recommended Citation Recommended Citation
Gabriel, Jack D., "Computational analysis of woodwind instruments using the lattice Boltzmann method"
(2020). Honors Program Theses. 128.
https://scholarship.rollins.edu/honors/128

This Open Access is brought to you for free and open access by Rollins Scholarship Online. It has been accepted
for inclusion in Honors Program Theses by an authorized administrator of Rollins Scholarship Online. For more
information, please contact rwalton@rollins.edu.

https://scholarship.rollins.edu/
https://scholarship.rollins.edu/honors
https://scholarship.rollins.edu/honors?utm_source=scholarship.rollins.edu%2Fhonors%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/201?utm_source=scholarship.rollins.edu%2Fhonors%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.rollins.edu/honors/128?utm_source=scholarship.rollins.edu%2Fhonors%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rwalton@rollins.edu

ROLLINS COLLEGE

HONORS THESIS

Computational analysis of

woodwind instruments using the

lattice Boltzmann method

Author:

Jack GABRIEL

Supervisor:

Dr. Whitney COYLE

A thesis submitted in fulfillment of the requirements

for the degree of Artium Baccalaureus Honoris

in the

Physics Department

May 8, 2020

i

Declaration of Authorship
I, Jack GABRIEL, declare that this thesis titled, “Computational analysis of

woodwind instruments using the lattice Boltzmann method” and the work

presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a re-

search degree at this University.

• Where any part of this thesis has previously been submitted for a de-

gree or any other qualification at this University or any other institu-

tion, this has been clearly stated.

• Where I have consulted the published work of others, this is always

clearly attributed.

• Where I have quoted from the work of others, the source is always

given. With the exception of such quotations, this thesis is entirely my

own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,

I have made clear exactly what was done by others and what I have

contributed myself.

Signed:

Date:

ii

Ozymandias

I met a traveller from an antique land

Who said: “Two vast and trunkless legs of stone

Stand in the desert . . . Near them, on the sand,

Half sunk, a shattered visage lies, whose frown,

And wrinkled lip, and sneer of cold command,

Tell that its sculptor well those passions read

Which yet survive, stamped on these lifeless things,

The hand that mocked them, and the heart that fed:

And on the pedestal these words appear:

‘My name is Ozymandius, king of kings:

Look on my works, ye Mighty, and despair!’

Nothing beside remains. Round the decay

Of that colossal wreck, boundless and bare

The lone and level sands stretch far away."

Percy Bysshe Shelley

iii

ROLLINS COLLEGE

Abstract
Physics Department

Artium Baccalaureus Honoris

Computational analysis of woodwind instruments using the lattice

Boltzmann method

by Jack GABRIEL

Through the use of the lattice Boltzmann method, a series of computational

models were created to simulate air flow in woodwind instruments. Start-

ing as a two-dimensional code in Matlab running on the CPU, the model

went through a series of iterations before becoming a three-dimension code

in Fortran that was accelerated through the use of GPU parallel computing.

The accuracy and stability of the model are shown by comparison to various

published benchmark tests. Thus far, the air flow in organ pipes for a two

dimensional model was simulated showing oscillating flow by the labium as

expected. This thesis offers the mathematical and computational background

as well as a description of the implementation of the basic LBM for simulat-

ing flow in musical instruments. The method described here is meant as a

first step to a code that is highly flexible and can be used to study many as-

pects of acoustics in musical instruments. Future applicability of the model

includes observing flow at the exit of both square and round organ pipes in

addition to modeling the reed-mouthpiece system of the clarinet.

iv

Acknowledgements
To start, I would like to thank my adviser, Dr. Whitney Coyle for her guid-

ance, advice and trust. Whether it was as a freshman walking into her office

knowing nothing about the clarinet other than that Squidward plays it on

"SpongeBob SquarePants" or for this thesis in proposing to create this com-

putational model that has been the basis of PhD dissertations, she trusted

that I would be able to be successful in at least part of what I set out to do.

For that reason I am extremely indebted to her.

Additionally I would like the thank Dr. Thomas Moore for our interesting

conversations on end corrections and flow out the end of pipes, and, along

with Dr. Rochelle Elva, for serving on my thesis committee.

I am grateful for my many friends at Rollins who helped make Central

Florida my home over these past four years. I would like to give a special

thanks to my honors friends for providing a forum to vent while we all com-

pleted our respective theses and to my fellow physics majors who I see as an

extension of my family and without whom, I would have struggled to find a

reason to stay at Rollins.

Finally I would like to thank my parents for allowing me to attend Rollins

and, along with my brother and sister, for humoring me as I tried to explain

to them my research throughout the years.

v

Contents

Declaration of Authorship i

Ozymandias . ii

Abstract iii

Acknowledgements iv

1 Introduction 1

2 Acoustics of Musical Instruments 6

2.1 Introduction . 6

2.2 Clarinet Acoustics . 6

2.2.1 Reed Mouthpiece System 7

2.2.2 Resonator . 10

2.3 Flutes . 11

2.4 Impedance . 12

2.4.1 Acoustical Impedance 12

2.4.2 Radiation Impedance . 14

2.5 End Corrections . 14

2.6 Conclusion . 16

3 Theory of Lattice Boltzmann Method 18

3.1 Introduction . 18

3.2 Kinetic Theory . 19

3.3 Lattice Boltzmann Equation . 21

vi

3.3.1 Single Relaxation Time 25

3.3.2 Multiple Relaxation Times 28

3.4 Conclusion . 30

4 Implementation of Lattice Boltzmann Method 31

4.1 Introduction . 31

4.2 LBM Models . 31

4.2.1 One Dimension . 32

4.2.2 Two Dimensions . 32

4.2.3 Three Dimensions . 34

4.3 Boundary Conditions . 37

4.3.1 Solid Boundary . 38

4.3.2 Open Boundaries . 40

4.4 GPU Computing . 42

4.4.1 Architecture . 43

4.4.2 Programming . 44

4.4.3 Memory Management 46

4.5 Implementation . 50

4.6 LBM Procedure . 52

4.7 Conclusion . 53

5 Numerical Analysis of Pipes and Flutes 54

5.1 Introduction . 54

5.2 Evolution of the code . 54

5.3 Poiseuille Flow in a Pipe . 56

5.3.1 D2Q9 . 57

5.3.2 D3Q19 . 59

5.4 Acoustics of a Pipe with No Mean Flow 61

5.4.1 D2Q9 . 61

5.5 Flow in a Flute . 63

vii

5.5.1 D2Q9 . 63

5.6 Conclusion . 64

6 Conclusion and Future Research 65

6.1 Conclusion . 65

6.2 Future Work . 66

Bibliography 68

viii

List of Figures

2.1 The clarinet with all of its components labeled. This can be

modeled as a cylinder with one open end and the other end

closed [12]. 7

2.2 The clarinet reed mouthpiece system where the ligature holds

the reed to the mouthpiece [14]. 8

2.3 The clarinet reed mouthpiece system where the ligature holds

the reed, dotted line, to the mouthpiece. The reed induced

flow, ur, the input flow from the muisician, ub and the pressure

difference between the inside of the mouth and mouthpiece,

∆p, can be seen [16]. 9

2.4 The results of the sensitivity analysis for the relevant surface

area of the reed, Sr, where γ is a dimensionless blowing pa-

rameter and cents is a measure for describing ratios of frequen-

cies. A difference of around 10 cents can be heard by the aver-

age musician, so these differing values of Sr would be audible

[15]. 9

2.5 A represenationation of the acoustical pressure in a closed open

tube for the first five resonance frequencies where λ is the

wavelength, L is the length of the tube, f0 is the fundamen-

tal and v is the velocity of the wave. Notice that only the odd

multiples of the fundamental are possible [18]. 10

ix

2.6 A diagram of the parts of a flue pipe where L is the distance

from the flue exit to the labium and H is the height of the flue

exit. The flue pipes studied for this thesis are closed flue pipes,

so the end of the pipe resonator is closed (not pictured) [4]. . . 12

2.7 The impedance spectra of a closed-open cylinder and a clar-

inet. It can be seen that the frequency at which the peaks occur

are similar for the first few peaks [18]. 13

2.8 A representation of the pressure inside the closed open tube

where the radiation impedance of the open end is nonzero

with L being the length of the tube and l being the end cor-

rection. 16

4.1 The lattice cell representation for the D1Q3 model where c0

is the non-propagating site and c1 and c2 are the propagation

sites. The velocity vectors correspond to the position of cq mul-

tiplied by the speed. 32

4.2 The lattice cell representation for the D2Q9 model where c0

is the non-propagating site and c1, . . . , c8 are the propagation

sites. Notice that the naming convention starts with the edges

of the square followed by its verticies in an anticlockwise man-

ner. 33

4.3 The lattice representations for three commonly used three di-

mensional lattice Boltzmann models. Notice that for all three

models, the six faces of the cube are included (blue) however

for 4.3a the verticies are included (red) unlike 4.3b where the

edges are included (green). 4.3c includes all 27 propagation

sites, the verticies, edges and faces [4]. 35

x

4.4 The procedure of the no-slip condition for the distribution func-

tions. Notice that because the distribution function get in-

verted from steps two to three, the tangential velocity along

the wall is zero. Steps two and three are not performed pro-

gramatically, but are included as an aid to give a better under-

standing of the boundary condition [10]. 39

4.5 The procedure of the free-slip condition for the distribution

functions. Notice that because the distribution functions get

reflected between steps two and three, the tangential velocity

along the wall is non-zero. Similar to the no-slip procedure,

steps two and three are only included to give a better concep-

tual understanding [10]. 40

4.6 A schematic displaying the asymtotic target flow for the ab-

sorbing boundary condition (ABC) where D is the length of

the buffer, δ is the distance from the end of the buffer and f T
q is

the target distribution function. Notice that in this schematic,

the target distribution function is used to asymptotically in-

duce a source flow at the inlet of the simulation. Not pictured,

it could similarly be used to set an outlet flow at the edge of

the domain [9]. 41

4.7 A graphical representation of the breakdown of the GPU into

multiprocessors and thread processors. Notice that the thread

processors are grouped into multiprocessors along with a lim-

ited amount of shared memory. This breakdown of the GPU

computational units is analagous to the breakdown of the pro-

gramming model into threads and blocks [38]. 44

xi

4.8 The breakdown of the programming model where the grid is

comprised of thread blocks which are further comprised of

threads. Notice that this hierarchy is similar to the architec-

ture of the GPU itself [39]. 45

4.9 The mapping of the lattice grid on to the thread grid on the

GPU. Notice that each lattie node corresponds with a thread

on the thread grid which makes this fine-grained parallelism

[10]. 46

4.10 The two different types of memory access: coalesced and un-

coalesced, where the data of a specific thread is accessed at the

address in the GPU memory. Misaligned and non-sequencial

memory access can degrade code performance [40]. 47

4.11 Two different data layout schemes: row major and tiling. While

less efficient, the row major scheme is simple and still suf-

ficiently efficient for the purposes of this thesis. For larger

simulations, the increased efficiency of the tiling scheme could

merit its more difficult implementation [42]. 48

4.12 The data access required for the orange cell during the stream-

ing and collision phases where Nx is the number of cells in the

x dimension, Ny is the number of cells in the y direction and

Pi is the ith plane of cells, 0 ≤ i ≤ Nz where Nz is the number

of cells in the z direction [42]. 49

5.1 Poiseuille flow in a pipe from the D2Q9 model where the yel-

low on the left side indicates the inlet velocity and the blue

on the right side indicates the outlet condition of zero flow.

Additionally, notice that the velocity at the walls is zero and

maximum in the middle as expected. 58

xii

5.2 Comparison of the theoretical results for the Poiseuille flow

from Eq. 5.7 and the results from the D2Q9 code. Notice that

the simulated results agree well with the theory curve. 58

5.3 Comparison of the theoretical results for the Poiseuille flow

from Eq. 5.4 and the results from the D3Q19 code. Notice that

the simulated results agree well with the theory curve. 60

5.4 Equivelocity lines from the results of the D3Q19 code at an

arbitrary length. Notice that the concentric circles are what is

expected from Eq. 5.4. 60

5.5 Snapshots of flow from a pipe with an initial perturbation from

[9]. From a to b, the pulse reaches the end of the pipe where

part of it reflects and part of it is radiated outwards. From b

to c, the pulse continues to radiate outwards and propagate in

the pipe. 62

5.6 Results from the D2Q9 code for a pipe with an initial pertur-

bation. Notice that the flow at the three different snapshots are

similar to that of 5.5. 62

5.7 Flow from a flute from the D2Q9 code. Notice the presence of

oscillations and vorticies about the labium. 64

xiii

List of Tables

5.1 Performance of the D2Q9 Fortran CPU model compared to the

same GPU model on a 500 x 110 lattice. The 15.58 million lat-

tice updates per second (MLUPS) places it in line with other

codes used in musical acoustics [4], [10]. 55

xiv

Listings

4.1 A simple example of a series loop in Fortran that can paral-

lelized. 42

xv

List of Algorithms

1 CPU Algorithm . 50

2 Push Algorithm . 51

3 Pull Algorithm . 52

4 LBM Algorithm . 52

xvi

Dedicated to my wife and kids that I apparently
have. . .

1

Chapter 1

Introduction

Woodwind instruments including, among others, flutes and clarinets, have

been around in close to their present form for the past couple of centuries.

Most woodwind instruments were not built with the physics in mind, but

rather with the intention of making the instrument sound ‘better’ to the user

and audience. Over the last century, it has been the goal of acousticians to

better understand the physics of the sound produced by these instruments,

perhaps to optimize the manufacturing, or improve consumer experiences,

or in many cases to merely better understand the complexities underlying

the instruments.

Musical acousticians sought understanding first through experimental

and theoretical approaches, however, the advent and rapid development of

computers has opened up a new way to study the acoustics of woodwind

instruments. Numerical simulations are particularly advantageous in cases

where theoretical modeling or experimentation is either difficult or invasive

as can occur, for example, when analyzing end corrections or fluid structure

interaction in woodwind instruments. The goal of this thesis is to analyze air

flow computationally, within a particular set of woodwind instruments. As

the governing equations for flow in woodwind instruments are quite com-

plex, exact analytical solutions are restricted in scope [1], [2]. This means that

for this work, a numerical solution is required. The following sections will

introduce the approach and method as well as offer context for the problem

Chapter 1. Introduction 2

at hand.

This research began nearly three years ago as an experimental investi-

gation of air flow inside the clarinet mouthpiece. The work was difficult

to validate with the current methods and the research group sought to add

computational studies in order to have confidence in the work. The clarinet

mouthpiece also offered an extra layer of difficulty in that there were moving

parts, the reed on the mouthpiece (see Section 2.2.1). In order to build a solid

computational foundation, the work will begin by introducing a simpler sys-

tem, the flute, then offer suggestions for future work that could eventually

lead to development of simulations of the clarinet mouthpiece – the end goal

of this line of research in Dr. Coyle’s lab. The geometry and specifics of the

flute will be introduced in Section 2.3.

As an introduction to the computational techniques used in this thesis,

first we must discuss the two main approaches when simulating the phys-

ical transport equations (mass and momentum for this work): continuum

and discrete [3]. For the continuum approach, the domain is first discretized

into a mesh which consists of volumes, grids or elements depending on the

method used. This allows for the partial differential equations that are being

solved, the Navier-Stokes equations, to be converted into a system of alge-

braic equations. These algebraic equations are then solved iteratively until

convergence below some target threshold is reached. This process is per-

formed at each time step until the simulation is complete. There are many

examples of this approach being used in musical acoustics. Kühnelt used a

finite element model as part of his work in simulating vortex shedding in the

flue pipe [4]. Additionally, Giordano used a finite difference scheme to simu-

late the effects of different geometries of the flue exit in the flue pipe in both

2D and 3D [5], [6]. The main benefit to the contiuum approach is that the so-

lution comes from directly solving the Navier-Stokes equations as opposed

to an approximation. However, due to complexity involved in solving these

Chapter 1. Introduction 3

equations, an extraordinary amount of computation power is required. This

means that either the time steps of the simulation are large, the simulation

takes a long time to run or a supercomputer is used.

On the opposite extreme, instead of solving the governing equations over

the entire domain, the interaction between individual particles can be con-

sidered. On the microscopic scale, the governing equation is Newton’s sec-

ond law, which is a simple ordinary differential equation. For the discrete

approach, the velocity and position of each particle is identified and an inter-

particle force function needs to be applied at each time step. This time step

needs to be able to resolve the fastest motion in the domain, meaning that the

time step needs to be on the order of femtoseconds, O(10−15)s [3]. With the

computational power available today with modern computers, this means

that the total simulation time needs to be less than O(10−9)s, which makes

this approach not currently feasible for musical acoustics where the simu-

lation time is O(10−3)s or larger. In addition to the time step being small,

the domain needs to be subsequently small, which additionally makes this

approach not feasible for this work. While not feasible, there are benefits of

this approach that need to be discussed. The main benefit of this approach

is its simplicity. This comes from Newton’s second law being computation-

ally easy to solve, reducing the computational power required for each time

step. The issue is then that there are too many time steps needed for even the

fastest computers to make this approach feasible for this work.

This leads to the lattice Boltzmann method (LBM), which operates be-

tween the continuum and discrete approaches. Instead of considering the

behavior of each individual particle, the idea of the LBM is to consider the

behavior of a collection of particles using statistical mechanics [3]. The ra-

tionale for this comes from the fact that for fluid dynamics, the movement

of each individual particle is not important; rather, the overall flow over the

Chapter 1. Introduction 4

entire domain is. The LBM is relatively new and has gained a lot of attrac-

tion over the last 30 years, especially in the realm of fluid dynamics [7]. The

main advantage of the LBM is its simplicity while at the same time it is ca-

pable of resolving the Navier-Stokes equations, which will be discussed in

Section 4.6. Additionally, due to the local nature of the LBM, it is inherently

parallelizable as discussed in Section 4.4, which allows for simulations that

require either long time scales or high spatial resolutions to be performed.

Originating from the lattice gas automata model, which acted as a sim-

plified molecular dynamics model, the LBM has been used in multiple areas,

but especially for simulating complex fluid systems and systems with com-

plex boundaries [3], [7]. First performed in studying musical acoustics by

Skordos in 1995 with his simulations of recorders and pipes, the LBM has

been shown to work well in simulating the flow inside woodwind instru-

ments [8]. More recently, there have been numerous simulations on more

complicated instruments and larger scales [4], [9], [10]. Kühnelt used a high

performance computing cluster to perform 3D simulations of the flow about

the labium in the organ pipe and flute [4]. Moving from static to moving

boundary simulations, da Silva performed simulations on the mouthpiece of

a clarinet in order to study the fluid structure interaction between the reed

and air flow in the mouthpiece [9]. Shi improved upon da Silva’s model,

parallelizing it to run on the graphics processing unit (GPU) and adding an

acoustic resonator on the end of the mouthpiece [10].

For this work, an LBM code was written that allows for future improve-

ments to be made. While Shi and da Silva used a 2D axisymmetric model

and Kühnelt used CPU parallel computing, the current work presented here

will offer the first 3D GPU LBM model with the purpose of studying wood-

wind instruments. In building up to this point, to the author’s knowledge,

this work also presents the first 2D GPU LBM simulations of a closed flue

pipe. Far from an end product, the code presented in this work is meant

Chapter 1. Introduction 5

to be the first step in a code that can be rapidly manipulated and improved

upon to study numerous aspects of the acoustics of woodwind instruments.

The outline of the thesis is as follows:

Chapter 2 gives an introduction to the acoustics underlying woodwind

instruments. This overview presents a framework for how the woodwind

instruments are related, which helps in understanding why certain simula-

tions were performed. The starting point for this work was studying the

acoustics of the clarinet (a more complicated system). This chapter presents

the series of approximations which are generally used to simplify the system.

Chapter 3 disucsses the underlying theory of the LBM. Starting from in-

troductory kinematic theory, the all important Boltzmann equation is derived

in terms of the one particle distribution function. Additionally, the two most

common approximations for the collision operator are presented, and the dis-

cretized lattice Boltzmann equation is derived, which is the equation upon

which the LBM is based.

Chapter 4 introduces the LBM itself as well as its implementation. This

includes a discussion of different models that are typically used, from 1D to

3D models along with different boundary conditions. Finally, the procedure

is included along with software implementation with regard to GPU com-

puting.

Chapter 5 discusses the evolution of the code from a Matlab 2D code run-

ning on the CPU to a Fortran 3D code that utilizes GPU computing. Ad-

ditionally, the results of the simulations are given for both the Fortran 2D

and Fortran 3D code. These simulations show the validity of the LBM codes

created for this thesis.

To end, Chapter 6 provides the conclusion along with many suggestions

for future research and how the code can be further improved.

6

Chapter 2

Acoustics of Musical Instruments

2.1 Introduction

Preliminary work performed before the start of this thesis as a part of Rollins

College’s Student-Faculty Collaborative Scholarship Program involved study-

ing the fluid-structure interaction of the clarinet as discussed in Section 2.2.1.

While this work was ultimately unsuccessful, it was the starting point for

which the idea of this thesis was created. As a member Dr. Coyle’s research

lab, the ultimate goal is the study the clarinet, therefore while simulations of

the flow within the clarinet will not be presented in this thesis, it is for this

reason that the acoustics of the clarinet is where this thesis begins.

2.2 Clarinet Acoustics

The clarinet is a member of the woodwind family of instruments of which

other instruments include the flute and saxophone. These instruments are

characterized by the way in which they produce sound. As opposed to brass

instruments where the air stream passes through a player’s vibrating lips

into the resonator, woodwind instruments produce sound by having the air

stream interact with a sharp edge, as is the case for the labium in a flute, or a

reed, as is the case for the clarinet [11].

Chapter 2. Acoustics of Musical Instruments 7

FIGURE 2.1: The clarinet with all of its components labeled.
This can be modeled as a cylinder with one open end and the
other end closed [12].

The clarinet is composed of five parts as seen in Fig. 2.1. From left to right,

the ligature holds the reed onto the mouthpiece through which the musician

blows. The barrel is responsible for connecting the mouthpiece to the upper

tube which is where the musician would place their left hand. Along the

length of the clarinet are keys, which are holes in the instrument that the

musician opens or closes with their fingers to change the note. At the end of

the instrument, connected to the lower tube is the bell, which helps radiate

the sound of the clarinet.

Due to the complexity of the physical qualities of the clarinet, it is nec-

essary to break the instrument into simpler parts, for both theoretical and

computational purposes. Typically, the clarinet is divided into two pieces:

the generator and the resonator. The reed-mouthpiece system, where air is

input into the instrument, acts as the generator, and the remainder of the

instrument then acts as the resonator.

2.2.1 Reed Mouthpiece System

The reed mouthpiece system, as seen in Fig. 2.2, is comprised of the reed

and mouthpiece, which are held together by the ligature. By clamping the

reed to the mouthpiece at only one end, the tapered end of the reed is free to

Chapter 2. Acoustics of Musical Instruments 8

vibrate. The rest position of the reed sits a small distance above the edge of

the mouthpiece. This is known as the lay.

In order to play the clarinet, the musician places their mouth around the

mouthpiece and blows into the instrument. This input air pressure forces

the reed to close against the mouthpiece, but, due to the reed material, the

reed bends back to its initial position. This process repeats in an oscillatory

manner similar to that of a spring, allowing for the reed to be modeled as a

mass-spring system [13].

FIGURE 2.2: The clarinet reed mouthpiece system where the
ligature holds the reed to the mouthpiece [14].

In addition to this initial source of flow from the musician, there is a sec-

ond component of flow from the oscillations of the reed. This second com-

ponent of flow is known as the reed induced flow. When the reed oscillates,

it displaces air and this displaced air also interacts with the reed, altering its

motion. This fluid-structure interaction plays a role in the reed induced flow,

which in turn has a large effect on the playing frequency of the clarinet [9],

[15]. These two components of flow can be seen in Fig. 2.3.

The reed induced flow, ur, is described by,

ur = −Sr
dy
dt

, (2.1)

where dy
dt is the velocity of the reed and Sr is the relevant surface area of the

reed. Values for Sr are not very well understood, with values in literature

Chapter 2. Acoustics of Musical Instruments 9

FIGURE 2.3: The clarinet reed mouthpiece system where the
ligature holds the reed, dotted line, to the mouthpiece. The
reed induced flow, ur, the input flow from the muisician, ub
and the pressure difference between the inside of the mouth
and mouthpiece, ∆p, can be seen [16].

ranging from 60 - 200 mm2 [17]. Due to the reed being inside the mouth of

the musician while the clarinet is being played, it is difficult to measure this

surface area experimentally.

FIGURE 2.4: The results of the sensitivity analysis for the rel-
evant surface area of the reed, Sr, where γ is a dimensionless
blowing parameter and cents is a measure for describing ratios
of frequencies. A difference of around 10 cents can be heard by
the average musician, so these differing values of Sr would be
audible [15].

Previous work at Rollins included performing a sensitivity analysis of Sr

using our analytical model as seen in Fig. 2.4. The model works by taking in

multiple parameters in addition to the resonance frequency of the clarinet in

order to calculate the playing frequency of the clarinet. For example in Fig.

2.4, the 0 cents mark corresponds to the resonance frequency and each line

Chapter 2. Acoustics of Musical Instruments 10

corresponds to the playing frequency, the frequency that is actually heard,

for a particular Sr and blowing pressure. More information on the analytical

model can be found in [15]. The average musician can detect a difference of

around 10 cents, so the 50 cents difference between the smallest and largest

values of Sr would be audible [15].

2.2.2 Resonator

FIGURE 2.5: A represenationation of the acoustical pressure in
a closed open tube for the first five resonance frequencies where
λ is the wavelength, L is the length of the tube, f0 is the funda-
mental and v is the velocity of the wave. Notice that only the
odd multiples of the fundamental are possible [18].

After the reed-mouthpiece system, the rest of the clarinet is acoustically

very similar to that of a closed open tube. The bell corresponds to the open

end of the tube, as that is from where the sound is radiated and the mouth-

piece corresponds to the closed end. While not physically closed, it is acous-

tically closed in that no air comes out, allowing for reflection at the boundary

and the creation of standing waves. This restriction imposes boundary con-

ditions allowing for the frequency of the tube to be determined. Specifically,

two of these conditions are that the pressure at the closed end of the tube

is an antinode and that the pressure at the open end of the tube is 0, a node.

This can be seen in Fig. 2.5. These boundary conditions allow for only certain

frequencies described by,

fn =
nc
4L

, (2.2)

Chapter 2. Acoustics of Musical Instruments 11

for odd multiples of n where c is the speed of sound and L is the length of

the tube. These frequencies are known as resonance frequencies. The keys

along the length of the clarinet allow for the effective length of the clarinet to

be changed by closing and opening the holes.

2.3 Flutes

While the end goal of the current work is to study the clarinet, the instrument

does not lend itself to being an easy place to start. Being a reed woodwind

instrument, the instrument has moving parts, the reed, that causes the air

column in the instrument to vibrate and produce its sound. The fluid struc-

ture interaction as described in Section 2.2.1 is difficult to model, so in an

attempt to build up to the clarinet, this study will start with the other type of

woodwind instruments, flutes.

The flute family can be further divided into two subfamilies: non-fipple

(also known as non-duct or open) and fipple (also known as duct or closed)

flutes [11], [19]. The difference between these two subfamilies is in how the

air flow is directed to the sharp edge. In non-fipple flutes, the musician di-

rects the air flow against the edge whereas in fipple flutes, the airstream is

directed to the sharp edge by a duct, which is known as a fipple.

An example of a non-fipple flute would be the transverse flute. To play

the transverse flute, a musician blows across the top of the embouchure hole

which acts as a sharp edge to split the airflow. This split airstream then acts

upon the air in the hollow flute causing it to vibrate and produce sound.

While still a woodwind instrument, the hollow flute is typically open at both

ends so it can be modeled as an open open tube. This means that the non-

fipple flute is not a perfect parallel to the clarinet.

One example of a fipple flute is a flue pipe, which can be seen in Fig. 2.6.

To play the flue pipe, air is driven through the flue where it then interacts

Chapter 2. Acoustics of Musical Instruments 12

with the labium which acts as a sharp edge to split the airflow. This causes

for the air column in the pipe resonator to resonate hence producing sound.

In effect, the labium acts as the reed does in the clarinet allowing for the

flue pipe to behave as a simplified clarinet with no moving parts [20]. This

comparison between the clarinet and flue pipe is not perfect because, similar

to the transverse flute, the flue pipe is open by the labium and at the end

of the pipe resonator. However, the end of the pipe resonator can be closed

yielding a closed flue pipe which can be modeled as a closed open tube. It is

for these reasons that the closed flue pipe is first analyzed in this study.

FIGURE 2.6: A diagram of the parts of a flue pipe where L is the
distance from the flue exit to the labium and H is the height of
the flue exit. The flue pipes studied for this thesis are closed flue
pipes, so the end of the pipe resonator is closed (not pictured)
[4].

2.4 Impedance

2.4.1 Acoustical Impedance

Before moving on to how these instruments will be modeled computation-

ally, the concept of impedance will be discussed. The acoustical impedance,

Z, is the complex ratio of acoustic pressure, P, to acoustic volume flow, U, so

Z =
P
U

. (2.3)

Chapter 2. Acoustics of Musical Instruments 13

In other words, spacial variations in pressure give rise to air flow and this

relationship is the acoustical impedance [18]. For woodwind instruments,

impedance varies with frequency. Instruments resonate at close to maximum

impedance, so the resonance frequencies of an instrument closely correspond

to peaks in its impedance spectra. This can be seen in Fig. 2.7 where the peaks

correspond to the resonance frequencies described by Eq. 2.2.

FIGURE 2.7: The impedance spectra of a closed-open cylinder
and a clarinet. It can be seen that the frequency at which the
peaks occur are similar for the first few peaks [18].

The impedance spectra in Fig. 2.7 shows why the approximation between

the clarinet and cylinder can be made as the first few resonance frequencies of

both the clarinet and cylinder are very similar. While it is a good approxima-

tion, elements of the clarinet such as the flared bell at the end are the cause

for a difference in sound quality between the clarinet and a simple closed

open tube. These differences in the spectra at higher frequencies are shown

in Fig. 2.7.

Chapter 2. Acoustics of Musical Instruments 14

2.4.2 Radiation Impedance

In Section 2.2.2, the resonance frequency was discussed using Eq. 2.2. While

the equation is not incorrect, an alteration, which is discussed in Section 2.5,

will need to be made due to the radiation impedance of air. The radiation

impedance of a medium is a quantitative statement of the manner in which

it reacts against the motion of a vibrating surface [21].

A useful example can be seen in sound production from a speaker. In a

speaker, sound is produced by the vibrations of the diaphragm. In addition

to the energy needed to vibrate the diaphragm, energy is radiated into the

air by the diaphragm. Some of this radiated energy is useful and represents

the sound output from the speaker whereas the remainder is reactive energy

that is returned to the diaphragm. In relating this to acoustical impedance,

in Eq. 2.3 acoustical impedance is defined as a complex ratio, so it has a real

component, which determines the radiated power, and it has an imaginary

component, which determines the reactive power [21].

2.5 End Corrections

In discussing the boundary conditions of the closed open tube set up in Sec-

tion 2.2.2, it was assumed that the pressure at the open end was zero. This

would be true if not for the radiation impedance of the open end, which acts

like a small piston radiating into open air [21]. For a tube with a small di-

ameter with respect to its length, this radiation impedance is small and has

the same effect as to slightly increase the length of the tube. This part of the

instrument, where the sound wave approaches the open end, is important

in the instrument’s acoustic behavior, such as the resonance frequency and

its ability to radiate sound. In woodwind instruments, accurate representa-

tion of this area is vitally important because small changes in the resonant

frequency are audibly noticeable.

Chapter 2. Acoustics of Musical Instruments 15

The reflection of the acoustic wave at the end of a tube is given by the

ratio of the reflected wave pressure, p−, to the incident wave pressure, p+, so

the reflection coefficient can be written as,

R =
p−

p+
. (2.4)

The radiation impedance can then be given as,

Zr = Zc
1 + R
1− R

, (2.5)

where Zc = ρc/S is the characteristic acoustic impedance, ρ is the density of

air, c is the speed of sound and S is the cross-sectional area of the tube [10].

The reflection coefficient can also be written as product of its magnitude and

a phase term,

R = −|R|e−2ikl, (2.6)

where k is the wavenumber and l is known as the length correction. One way

to think about the end correction is to go back to the boundary conditions laid

out in Section 2.2.2 with the pressure at the open end being zero. This implies

that the reflected wave pressure is equal to the opposite of the incident wave

pressure. Using Eq. 2.4, this means that the reflection coefficient is -1. Hence,

the radiation impedance is zero from Eq. 2.5, and the phase of the reflection

coefficient is π from Eq. 2.6. The end correction is then the length added to

the tube necessary to make the phase 2kl = π [9]. A representation of this

can be seen in Fig. 2.8. Whether there is another effect other than the phase

shift is not known; however, as part of this thesis, a pipe with a quiescent

flow is simulated, which could potentially be used to better understand the

physicality of the end correction. This will be left for future work. The results

of the 2D simulation are discussed in Section 5.4.

Chapter 2. Acoustics of Musical Instruments 16

FIGURE 2.8: A representation of the pressure inside the closed
open tube where the radiation impedance of the open end is
nonzero with L being the length of the tube and l being the end
correction.

Both the reflection coefficient and the length correction are strongly in-

fluenced by the geometry of the end of the tube. Due to how these charac-

teristics influence the sound of the instrument, a lot of work has been done

to calculate these parameters[22]–[25]. Analytical determinations of R are

rather difficult and are typically derived based on many simplification such

as replacing the end of a tube with a surrounding infinite flange [9]. While

this simplifies the problem, it was demonstrated experimentally that this ap-

proximation yields an incorrect value for l [26]. Levine and Schwinger were

the first to get an exact solution for an unflanged tube using the Wiener-Hopf

technique [22]. In the low frequency limit, they found that l = 0.6133a where

a is the radius of the tube. Going back to Eq. 2.2, L is replaced by the cor-

rected length, L′, which yields for the resonance frequency of a closed open

tube,

fn =
nc
4L′

=
nc

4(L + l)
. (2.7)

2.6 Conclusion

This chapter offered an introduction to musical acoustics, specifically the ba-

sics of the acoustics of the clarinet (the woodwind instrument studied most in

Chapter 2. Acoustics of Musical Instruments 17

Dr. Coyle’s research lab) and recorder (flute, the woodwind that will be mod-

eled in this work). While there are many computational models that could

be introduced in order to study flow in the instruments, this thesis focuses

on one in particular. In Chapter 3, the mathematical background and deriva-

tions necessary to implement this method is introduced and will be followed

by Chapter 4 where the implementation itself is detailed.

18

Chapter 3

Theory of Lattice Boltzmann

Method

3.1 Introduction

In this chapter, the discretized lattice Boltzmann equation, the governing

equation of the LBM, is derived. This derivation is not the author’s own

and is inspired by derivations from other sources [27], [28]. This derivation

is in no way meant to be fully comprehensive, but rather serves as the mini-

mum required to understand the motivation behind the LBM. Great care was

taken in attempting to make this derivation as approachable to a wide range

of readers while still maintaining a high mathematical level.

The derivation begins by defining the equations of motion for a single

particle in one dimension in terms of the Lagrangian and then converting it

in terms of the Hamiltonian. Due to the large number of particles present in a

realistic system, it is necessary to focus on the one-particle distribution func-

tion as opposed to the motion of every particle. From this distribution func-

tion, the general movement of all of the particles can be determined through

the use of the lattice Boltzmann equation.

Chapter 3. Theory of Lattice Boltzmann Method 19

3.2 Kinetic Theory

In general, when determining equations of motion, it can be useful to use

the Lagrangian formulation where the function L(ri, ṙi, t) is the Lagrangian

and ri (with i = 1, . . . , w) are w generalized coordinates. This formulation

is beneficial in this regard due to its ability to work in generalized coordi-

nate systems and without explicit concern for constraints as is necessary with

Newtonian formulation. The equations of motion for a single particle are,

d
dt

(
∂L
∂ṙi

)
− ∂L

∂ri
= 0. (3.1)

These w second order differential equation require 2w initial conditions to

solve. For the sake of clarity and to minimize notational complications, the

remainder of this discussion will be with a one-dimensional system. From

here, the generalized momentum can be calculated as,

p =
∂L
∂ṙ

. (3.2)

This allows for Eq. 3.1 to be written as,

ṗ =
∂L
∂r

. (3.3)

Going forward, instead of having the equations of motion dependent on

(r, ṙ), it is beneficial to have them dependent on (r, p). The rationale behind

this is that the state of a system is defined by r and p, so this information al-

lows for the state to be determined at all times in the future. Now, instead of a

w dimensional configuration space, (r,p) defines a point in a 2w-dimensional

phase space [27]. In order to replace ṙ with p, the Legendre transform can be

used.

Chapter 3. Theory of Lattice Boltzmann Method 20

Through the use of a Legendre transformation, the Hamiltonian, H, is

defined as,

H(r, p, t) = pṙ−L(r, ṙ, t), (3.4)

where ṙ has been eliminated in favor of p. Looking at the variation of the

Hamiltonian,

dH = ṙdp + pdṙ− ∂L
∂r

dr− ∂L
∂ṙ

dṙ− ∂L
∂t

dt

= ṙdp− ∂L
∂r

dr− ∂L
∂t

dt.
(3.5)

The Hamiltonian can also be written as a total differential yielding,

dH =
∂H
∂r

dr +
∂H
∂p

dp +
∂H
∂t

dt. (3.6)

By equating the terms in Eqs. 3.5 and 3.6, Hamilton’s equations can be writ-

ten as,

ṗ = −∂H
∂r

(3.7)

ṙ =
∂H
∂p

. (3.8)

One of the benefits of utilizing the Hamiltonian and this 2w-dimensional

phase space is that it allows for Liouville’s Theorem to be employed, which

states that as a region in phase space evolves over time, the shape will change,

but the volume will remain constant. This means that the probability distri-

bution of locating a particle on phase space acts like an incompressible fluid

[27]. Since probability is locally conserved, it follows a continuity equation

so the probability distribution obeys,

∂ f
∂t

+
∂

∂r
(ṙ f) +

∂

∂p
(ṗ f) = 0. (3.9)

This is a general mathematical statement that becomes physical by applying

Chapter 3. Theory of Lattice Boltzmann Method 21

the Hamiltonian. Using Hamilton’s equations in Eqs. 3.7 and 3.8, Eq. 3.9

becomes,
∂ f
∂t

+
∂ f
∂r

∂H
∂p
− ∂ f

∂p
∂H
∂r

= 0. (3.10)

Eq. 3.10 is known as Liouville’s equation, which says that probability of lo-

cating a particle in a given volume doesn’t change as it moves along any

trajectory in phase space [27]. In that regard it is very similar to Liouville’s

Theorem which can be written in its more common form as,

∂ f
∂t

= {H, f }, (3.11)

where {·, ·} is the Poisson bracket [29].

3.3 Lattice Boltzmann Equation

Up until this point, only one particle in a one dimensional space has been

considered. It is at this point that it becomes necessary to revert to a more

realistic system with N identical particles in 3 dimensional space. It is impor-

tant to note that N ∼ O(1023) [27]. The Hamiltonian of this system can be

written in the form,

H =
1

2m

N

∑
i=1

~pi
2 +

N

∑
i=1

V(~ri) + ∑
i<j

U(~ri −~rj), (3.12)

where ~F = −∇V is an external force that acts equally on all particles, m is

the mass of the particles and the two body interactions between particles is

described by the potential energy U [27]. In looking at the probability dis-

tribution function from before, it now describes the probability distribution

over this 6N-dimensional phase space. In other words, it is now a function of

∼ 1023 variables, so instead the focus will be on the one-particle distribution

function, f1, that gives us the expected number of particles around a point

Chapter 3. Theory of Lattice Boltzmann Method 22

(~r,~p). This function is defined as,

f1(~r,~p; t) = N
∫ N

∏
i=2

d3rid3pi f (~r, ~r2, . . . , ~rN,~p, ~p2, . . . , ~pN; t), (3.13)

where the N ensures that f1 is normalized [27]. Since all particles are identi-

cal, the first particle can be chosen for this function without loss of generality.

As it turns out, many thermodynamic properties of the system can be de-

rived from f1. For example, the average density of particles, average velocity

of particles and energy flux are given respectively as,

ρ(~r; t) =
∫

d3p f1(~r,~p; t), (3.14)

~u(~r; t) =
∫

d3p
~p
m

f1(~r,~p; t), (3.15)

~ξ(~r; t) =
∫

d3p
~p
m

E(~p) f1(~r,~p; t), (3.16)

where E = p2/2m [27]. In order to obtain a governing equation for f1, it is

necessary to understand how it changes with time so,

∂ f1

∂t
= N

∫ N

∏
i=2

d3rid3pi
∂ f
∂t

. (3.17)

Using Liouville’s Equation (3.11), this becomes,

∂ f1

∂t
= N

∫ N

∏
i=2

d3rid3pi{H, f }. (3.18)

Expanding this using the Hamiltonian defined in Eq. 3.12 yields,

∂ f1

∂t
= N

∫ N

∏
i=2

d3rid3pi

[
−

N

∑
j=1

~pj

m
· ∂ f

∂~rj

+
N

∑
j=1

∂V(~r)
∂~rj

· ∂ f
∂~pj

+
N

∑
j=1

∑
k<l

∂U(~rk −~rl)

∂~rj
· ∂ f

∂~pj

]
.

(3.19)

Notationally, the use of derivatives with respect to vectors is for the sake

Chapter 3. Theory of Lattice Boltzmann Method 23

of clarity and to be consistent with other sources in deriving the Boltzmann

equation [27], [30]. In this sense, these derivatives are akin to the gradient.

For a scalar function, g(~x) where ~x = [x1, x2]
T, the gradient of g(~x) is,

∇g(~x) =
∂g
∂~x

=

[
∂g
∂x1

,
∂g
∂x2

]T
=

∂g
∂x1

x̂1 +
∂g
∂x2

x̂2, (3.20)

where x̂1 and x̂2 are unit vectors in the x1 and x2 direction respectively. Look-

ing at the probability distribution function, since f is over phase space, the

gradient includes both ∂/∂~ri and ∂/∂~pi. The benefit of this notation is that it

makes explicit reference to the argument of f to which the derivative is being

taken.

While the integral in Eq. 3.19 appears to be rather unruly, it can be greatly

simplified through the use of integration by parts,

∫
udv = uv−

∫
vdu. (3.21)

To get a better understanding of this, I will examine a section of the integral,

the second summation term, for an arbitrary j > 2 yielding,

∫ N

∏
i=2

d3rid3pi
∂V(~r)

∂~rj
· ∂ f

∂~pj

=
∫

d3r2d3p2 · · · d3rjd3pj · · · d3rNd3pN
∂V(~r)

∂~rj
· ∂ f

∂~pj
.

(3.22)

Identifying dv = dpj
∂ f
∂pj

and u as the remainder of the expression, the integral

becomes,

∫ N

∏
i=2

d3rid3pi
∂V(~r)

∂~rj
· ∂ f

∂~pj
= −

∫ N

∏
i=2

d3rid3pi f
∂

∂pj

∂V(~r)
∂~rj

, (3.23)

where the uv term goes to zero. Notice that V is only a function of~r thus Eq.

3.23 is equal to zero. In fact, this same process of shifting the derivative away

Chapter 3. Theory of Lattice Boltzmann Method 24

from f and on to the other terms that are not functions of that variable to

which the derivative is being taken can be repeated whenever j = 2, . . . , N.

This leaves only the j = 1 terms, so Eq. 3.19 is simplified to,

∂ f1

∂t
= N

∫ N

∏
i=2

d3rid3pi

[
− ~p

m
· ∂ f

∂~r

+
∂V(~r)

∂~r
· ∂ f

∂~p
+

N

∑
k=2

∂U(~r− ~rk)

∂~r
· ∂ f

∂~p

]
,

(3.24)

where ~r1 ≡~r and ~p1 ≡ ~p in accordance with previous notation. Defining the

one-particle Hamiltonian as,

H1 =
p2

2m
+ V(~r), (3.25)

allows for Eq. 3.24 to be written as a quasi-Liouville equation as,

∂ f1

∂t
= {H1, f1}+

N

∑
k=2

∂U(~r− ~rk)

∂~r
· ∂ f

∂~p
. (3.26)

Renaming the second term yields the Boltzmann equation,

∂ f1

∂t
= {H1, f1}+

(
∂ f1

∂t

)
coll

. (3.27)

The first term is known as the streaming operator where it contains the infor-

mation pertaining to how particles move when not colliding, and the second

term is known as the collision operator where it contains the information

about particle collisions.

It should be noted that referring to Eq. 3.27 as the Boltzmann equation is

a bit disingenuous. While it is indeed equivalent to the Boltzmann equation,

calling the collision operator in Eq. 3.27 equal to the second term in Eq. 3.26

is not a proper stopping point. In its current form, the collision term is not in

terms of the one particle distribution function. The derivation of this collision

Chapter 3. Theory of Lattice Boltzmann Method 25

term in terms of f1 is outside of the purview of this thesis, and would be

superfluous as will be seen later because this term will be replaced entirely.

A complete derivation of the collision term can be found in Ref. [27].

With the Boltzmann equation derived, it is only a matter of manipulation

and discretization to arrive at the lattice Boltzmann equation. Expanding the

streaming operator and applying Hamilton’s equations (3.7 and 3.8), Eq. 3.27

becomes,
∂ f1

∂t
+

d~r
dt

∂ f1

∂~r
+

d~p
dt

∂ f1

∂~p
=

(
∂ f1

∂t

)
coll

. (3.28)

Realizing d~r
dt =

~p
m and d~p

dt = ~F yields,

∂ f1

∂t
+

~p
m
· ∇ f1 + ~F · ∂ f1

∂~p
=

(
∂ f1

∂t

)
coll

. (3.29)

In this case, there are no outside forces making ~F = 0 and it is customary to

now switch from momentum to velocity so ~p
m = ~v, making Eq. 3.29,

∂ f1

∂t
+~v · ∇ f1 =

(
∂ f1

∂t

)
coll

. (3.30)

3.3.1 Single Relaxation Time

The most common way to replace this collision term is to use the Bhatnagar,

Gross, Krook (BGK) approximation where the collision term is replaced with

a collision operator that depends on a single relaxation parameter Ω [31].

This yields the Boltzmann equation with the BGK approximation,

∂ f
∂t

+~v · ∇ f = −1
τ
(f − f eq), (3.31)

where f1 has been redefined as, f1 ≡ f = f (~r,~v, t), and τ = 1/Ω is the

relaxation time of f to the equilibrium state f eq. The collision operator en-

sures that f − f eq decays exponentially as e−t/τ where f eq is a Maxwellian

distribution function [31].

Chapter 3. Theory of Lattice Boltzmann Method 26

To obtain the discrete Boltzmann equation, the velocity space is discretized

into a finite set of velocities, ~vq, with their respective distribution functions,

fq(~r, t). The discrete Boltzmann equation can then be written as,

∂ fq

∂t
+ ~vq · ∇ fi = −

1
τ
(fq − f eq

q). (3.32)

How the space is discretized is discussed in Section 4.2.

From here, the variables are converted from whatever units they may

have to lattice units which are dimensionless. This is done using the char-

acteristic length scale, L, the reference speed, U, the reference density, nr,

and the time between particle collisions, tc yielding,

∂ f ′q
∂t′

+ ~cq · ∇′ f ′q = −
1

τ′ε
(f ′q − f eq′

q), (3.33)

where ~cq = ~vq/U,∇′ = L∇, t′ = t · U/L, τ′ = τ/tc, f ′q = fq/nr and ε =

tc ·U/L is the Knudsen number [28]. Discretizing Eq. 3.33 using a first order

finite difference scheme gives,

f ′q(~r′, t′ + ∆t′)− f ′q(~r′, t′)
∆t′

+ ∑
s′=x′,y′,z′

cis′
f ′q(~r′ + ∆s′, t′ + ∆t′)− f ′q(~r′, t′ + ∆t′)

∆s′

= − 1
τ′ε

(f ′q − f eq′
q),

(3.34)

where x′, y′ and z′ are the normalized position components. By having ∆~r′/∆t′

= ~cq, this can be rewritten as,

f ′q(~r′ + ~cq∆t′, t′ + ∆t′)− f ′q(~r′, t′)
∆t′

= − 1
τ′ε

(f ′q − f eq′
q). (3.35)

Chapter 3. Theory of Lattice Boltzmann Method 27

Finally, choosing ∆t = tc and dropping all the primes leads to the BGK lattice

Boltzmann equation,

fq(~r + ~cq∆t, t + ∆t)− fq(~r, t) = −1
τ
(fq − f eq

q). (3.36)

The left hand side of Eq. 3.36 dictates the streaming of the distribution func-

tions, and the right hand side is the collision operator which describes how

the distribution functions change due to collisions. It should be noted that

Eq. 3.36 is explicit, meaning that fq(t + ∆t) is determined from fq(t), and

simple in that the underlying arithmetic operations are addition and multi-

plication. Additionally, the collision step is local in that f (~r, t + ∆t) depends

only on f (~r, t) while the streaming step is not local because f (~r+ ~cq∆t, t+∆t)

depends on f (~r, t). This will be of importance when discussing the inherent

parallel nature of the LBM in Section 4.4.

The equilibrium distribution function is the Maxwell-Boltzmann distri-

bution. By using the small Mach number approximation and a second order

polynomial expansion about ~u = 0, the discrete form of the equilibrium dis-

tribution function is

f eq
q = wqρ

(
1 +

~cq · ~u
c2

s
+

(~cq · ~u)2

2c4
s
− ~u2

2c2
s

)
, (3.37)

where cs is the speed of sound in lattice units, ~u is the velocity and wq are

velocity weights that are calculated to ensure the conservation of mass and

momentum [32]. As seen in Eqs. 3.14 and 3.15, the fluid density and velocity

can be determined from the distribution function. In the discrete form, this

relation mimics the conservation of mass and momentum as,

ρ = ∑ fq, (3.38)

~u =
1
ρ ∑ fq~cq. (3.39)

Chapter 3. Theory of Lattice Boltzmann Method 28

3.3.2 Multiple Relaxation Times

The LBGK model from Eq. 3.36 is known as a Single Relaxation Time (SRT)

LBM model due its single relaxation parameter, Ω. The LBGK-SRT model is

commonly used because of its simple implementation. This characterization

as simple comes from the use of a single constant relaxation term and easily

calculated functions. While the LGBK-SRT model is generally reliable, its

dependence on a single relaxation term can cause stability issues. This can

be the case for simulations with fluids that have small kinematic viscosities,

such as air, where numerical instabilities arise due to the strong anisotropy

of the dispersion relations from the lattice symmetry [33].

In order to overcome these instabilities, d’Humieres proposed using a

Multiple Relaxation Time (MRT) model where the single relaxation parame-

ter is replaced by a relaxation matrix [34]. Additionally, instead of perform-

ing the collision in the velocity space where the distribution function is re-

laxed towards equilibrium, the collision is performed in the moment space

allowing for the time scale of moment relaxing towards equilibrium to be

controlled separately. By allowing the moments to relax towards equilibrium

on different time scales, numerical stability is increased.

Similar to Eq. 3.36, the LBE can be rewritten using the MRT scheme by

replacing Ω with the multiple relaxation time matrix S as,

f(~r + ~cq∆t, t + ∆t)− f(~r, t) = −S(f− feq), (3.40)

where f = (f0, f1, . . . , fn−1)
T is the vector of n discrete distribution functions

in the n−dimensional velocity space. It can be seen from Eq. 3.40 that the

LGBK-SRT is a special case in which S = ΩI where I is the identity matrix.

Complimentary to the velocity space is the n−dimensional moment space

that is comprised of n moments, m = (m0, m1, . . . , mn−1)
T. In the moment

Chapter 3. Theory of Lattice Boltzmann Method 29

space, the collision process is,

m(~r + ~cq∆t, t + ∆t)−m(~r, t) = −Ŝ(m−meq), (3.41)

where Ŝ is a diagonal matrix. The mapping of f in the velocity space onto m

in the moment space is through the use of the transformation matrix, M, as,

m = Mf. (3.42)

Similarly, m can be mapped to f as,

f = M−1m. (3.43)

The diagonal matrix Ŝ is given by,

Ŝ ≡ diag(s0, s1, . . . , sn−1) = MSM−1. (3.44)

The values of Ŝ and M are dependent on which moments are considered and

how the space is discretized which is discussed in Section 4.2. For the MRT

model, the collision step is now broken into three steps. First, the distribution

function is mapped onto the moment space using Eq. 3.42. Next, the collision

is performed using Eq. 3.41. Finally, the moments are mapped back onto the

velocity space using Eq. 3.43 where the distribution functions can then be

streamed. More concisely, these last two steps can be combined into one

yielding,

f(~r + ~cq∆t, t + ∆t)− f(~r, t) = −M−1S(m−meq). (3.45)

This process of streaming the distribution function to adjacent nodes will be

described in the following chapter.

Chapter 3. Theory of Lattice Boltzmann Method 30

3.4 Conclusion

The lattice Boltzmann method has been widely used in woodwind acoustics

over the past 25 years to study the flow in musical instruments. The pro-

gramming language and specifics of implementation have varied by author.

In Chapter 4 the necessary steps for implementation of a few different ver-

sions of this model in two different programming languages are offered.

31

Chapter 4

Implementation of Lattice

Boltzmann Method

4.1 Introduction

Previous chapters provided motivation for the work, necessary background

in musical acoustics, and a mathematical basis for the lattice Boltzmann method.

In this chapter the steps to implementing the LBM in order to simulate flow

in musical instruments will be discussed.

4.2 LBM Models

In discretizing the space, the domain is broken into a lattice that can be 1, 2

or 3 dimensional depending on the model. Each node in the lattice is known

as a cell that is comprised of q propagation sites. Each of these sites then

corresponds with the distribution function fq that propagates to the next cell

at every time step, ∆t. The cells in the lattice are connected by the velocity

vectors, ~cq. The standard nomenclature for the lattice geometry of the model

is DmQn where m corresponds with the number of dimensions of the model

and n corresponds with the number of propagation sites q [35]. Much to

the chagrin of programming languages that are not zero-based indexing, the

naming standard for the propagation sites starts with the non-propagating

Chapter 4. Implementation of Lattice Boltzmann Method 32

site in the middle of the cell as q = 0. Below, a few of the most common

models are discussed. The lattice speed of sound, cs, and the velocity weight,

wq, are determined by the model used.

4.2.1 One Dimension

Starting with one dimension, the lattice cell representation of the D1Q3 model

is depicted in Fig. 4.1. The speed of sound here is 1/
√

3 and the velocity

weights, wq, and vectors, ~cq are,

wq =

4/6 for q = 0

1/6 for q = 1, 2
(4.1)

~cq =

(0, 0) for q = 0

(±1, 0)c for q = 1, 2.
(4.2)

𝑐" 𝑐# 𝑐$

FIGURE 4.1: The lattice cell representation for the D1Q3 model
where c0 is the non-propagating site and c1 and c2 are the prop-
agation sites. The velocity vectors correspond to the position of
cq multiplied by the speed.

4.2.2 Two Dimensions

Moving on to two dimensions, the lattice cell representation for the D2Q9

model is portrayed in Fig. 4.2. This is a common two dimensional model be-

cause it leads to second-order accurate solutions and can recover the Navier

Stokes equations from Eq. 3.36 [32]. Additionally, the D2Q9 model allows

for a conceptually convenient partition of the domain. The speed of sound is

Chapter 4. Implementation of Lattice Boltzmann Method 33

1/
√

3 and the velocity weights, wq and vectors, ~cq are as follows,

wq =

4/9 for q = 0

1/9 for q = 1, . . . , 4

1/36 for q = 5, . . . , 9

(4.3)

~ci =

(0, 0) for q = 0

(±1, 0)c, (0,±1)c for q = 1, . . . , 4

(±1,±1)c for q = 5, . . . , 9

(4.4)

𝑐"

𝑐#

𝑐$

𝑐%

𝑐&

𝑐' 𝑐(

𝑐) 𝑐*

FIGURE 4.2: The lattice cell representation for the D2Q9 model
where c0 is the non-propagating site and c1, . . . , c8 are the prop-
agation sites. Notice that the naming convention starts with the
edges of the square followed by its verticies in an anticlockwise
manner.

Chapter 4. Implementation of Lattice Boltzmann Method 34

The transformation matrix, M, for the MRT model from section 3.3.2 is

defined as,

M ≡

ρ

e

ξ

jx

qx

jy

qy

pxx

pxy

≡

1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1

, (4.5)

where ρ is the density mode, e is the energy mode, ξ is related to the energy

square, jx and jy correspond to the x- and y-component of momentum, qx

and qy correspond to the x- and y-component of energy flux and pxx and pxy

correspond to the diagonal and off-diagonal component of the stress tensor.

More details on this can be found in [33]. The diagonal matrix is defined as,

Ŝ ≡ diag(0,−s2,−s3, 0,−s5, 0,−s7,−s8,−s9) (4.6)

where s2 = 2/(6ζ + 1) = 1.63 and s8 = s9 = 2/(6ν + 1) = 1/τ with ζ and ν

being the bulk and shear viscosity respectively, s3 = 1.14 and s5 = s7 = 1.92

[33].

4.2.3 Three Dimensions

For three dimensions, there are three different models that are commonly

used, the D3Q15, D3Q19 and D3Q27 models which are shown in Fig. 4.3.

These models differ in which propagation sites they have on the cube. Each

model connects the center to the six faces, but where they differ is in whether

Chapter 4. Implementation of Lattice Boltzmann Method 35
40 4 The Lattice Boltzmann method for computational aeroacoustics

(a) D3Q15 (b) D3Q19

(c) D3Q27

Figure 4.2: Lattice representations in three dimensions

D2Q9, see Fig. 4.1(b):

ci =

Y
____]
____[

(0, 0),

(±1, 0)c, (0,±1)c,

(±1,±1)c,

wi =

Y
____]
____[

4/9, i = 0

1/9, i = 1, 2, 3, 4

1/36, i = 5, 6, 7, 8

(4.11)

D3Q15, see Fig. 4.2(a):

ci =

Y
____]
____[

(0, 0, 0),

(±1, 0, 0)c, (0,±1, 0)c, (0, 0,±1)c,

(±1,±1,±1)c,

wi =

Y
____]
____[

2/9, i = 0

1/9, i = 1, 2, . . . , 6

1/72, i = 7, 8, . . . , 14

(4.12)

(A) D3Q15

40 4 The Lattice Boltzmann method for computational aeroacoustics

(a) D3Q15 (b) D3Q19

(c) D3Q27

Figure 4.2: Lattice representations in three dimensions

D2Q9, see Fig. 4.1(b):

ci =

Y
____]
____[

(0, 0),

(±1, 0)c, (0,±1)c,

(±1,±1)c,

wi =

Y
____]
____[

4/9, i = 0

1/9, i = 1, 2, 3, 4

1/36, i = 5, 6, 7, 8

(4.11)

D3Q15, see Fig. 4.2(a):

ci =

Y
____]
____[

(0, 0, 0),

(±1, 0, 0)c, (0,±1, 0)c, (0, 0,±1)c,

(±1,±1,±1)c,

wi =

Y
____]
____[

2/9, i = 0

1/9, i = 1, 2, . . . , 6

1/72, i = 7, 8, . . . , 14

(4.12)

(B) D3Q19

40 4 The Lattice Boltzmann method for computational aeroacoustics

(a) D3Q15 (b) D3Q19

(c) D3Q27

Figure 4.2: Lattice representations in three dimensions

D2Q9, see Fig. 4.1(b):

ci =

Y
____]
____[

(0, 0),

(±1, 0)c, (0,±1)c,

(±1,±1)c,

wi =

Y
____]
____[

4/9, i = 0

1/9, i = 1, 2, 3, 4

1/36, i = 5, 6, 7, 8

(4.11)

D3Q15, see Fig. 4.2(a):

ci =

Y
____]
____[

(0, 0, 0),

(±1, 0, 0)c, (0,±1, 0)c, (0, 0,±1)c,

(±1,±1,±1)c,

wi =

Y
____]
____[

2/9, i = 0

1/9, i = 1, 2, . . . , 6

1/72, i = 7, 8, . . . , 14

(4.12)

(C) D3Q27

FIGURE 4.3: The lattice representations for three commonly
used three dimensional lattice Boltzmann models. Notice that
for all three models, the six faces of the cube are included (blue)
however for 4.3a the verticies are included (red) unlike 4.3b
where the edges are included (green). 4.3c includes all 27 prop-
agation sites, the verticies, edges and faces [4].

they connect the center to the vertices (D3Q15), edges (D3Q19) or both (D3Q27).

Practically, the differences between D3Q15 and D3Q19 are fairly small. The

additional propagation sites lead to the D3Q19 model being more computa-

tionally intense; however, it also converges more quickly to a steady state.

The D3Q27 model is different in that it is better suited for more complex

problems because it is capable of representing an energy equation due to

the number of degrees of freedom. The naming convention is that the non-

propagation site is 0 as usual followed by the face sites, then the edge sites

and finally the vertex sites as can be seen by the velocity vectors below. The

velocity weights and vectors for the three models are:

For D3Q15,

wq =

2/9 for q = 0

1/9 for q = 1, . . . , 6

1/72 for q = 7, . . . , 14

(4.7)

Chapter 4. Implementation of Lattice Boltzmann Method 36

~cq =

(0, 0, 0) for q = 0

(±1, 0, 0)c, (0,±1, 0)c, (0, 0,±1)c for q = 1, . . . , 6

(±1,±1,±1)c for q = 7, . . . , 14

(4.8)

For D3Q19,

wq =

1/3 for q = 0

1/18 for q = 1, . . . , 6

1/36 for q = 7, . . . , 18

(4.9)

~cq =

(0, 0, 0) for q = 0

(±1, 0, 0)c, (0,±1, 0)c, (0, 0,±1)c for q = 1, . . . , 6

(±1,±1, 0)c, (±1, 0,±1)c, (0,±1,±1)c for q = 7, . . . , 18

(4.10)

For D3Q27,

wq =

8/27 for q = 0

2/27 for q = 1, . . . , 6

1/54 for q = 7, . . . , 18

1/216 for q = 19, . . . , 26

(4.11)

~cq =

(0, 0, 0) for q = 0

(±1, 0, 0)c, (0,±1, 0)c, (0, 0,±1)c for q = 1, . . . , 6

(±1,±1, 0)c, (±1, 0,±1)c, (0,±1,±1)c for q = 7, . . . , 18

(±1,±1,±1)c for q = 19, . . . , 26

(4.12)

When considering which model would be best to use, both the simulation

time and accuracy were taken into account. With fewer streaming sites, the

Chapter 4. Implementation of Lattice Boltzmann Method 37

D3Q15 model will result in the fastest simulation time however it has been

shown to be much less accurate and more susceptible to numerical insta-

bilities than both the D3Q19 and D3Q27 models [36]. While the differences

in terms of accuracy and stability are large between the D3Q15 and D3Q19

models, these differences between D3Q19 and D3Q27 are smaller. Addition-

ally, since the flow simulations performed in this simulation are relatively

simple, the additional streaming sites provided by the D3Q27 model were

deemed unnecessary. It was thus decided that for the purposes of this the-

sis, a D3Q19 model would be sufficient. As the simulations become increas-

ingly complex, with the addition of the fluid structure interaction between

the reed and air flow for example, it could be necessary to upgrade the code

to a D3Q27 model however that is left for future work.

In addition to the modes from the D2Q9 transformation matrix in Eq. 4.5,

the D3Q19 tranformation matrix M includes the z component of j and q along

with additional off dimensional elements of the stress tensor pij. Addition-

ally, two vectors of quadratic order that have the same symmetry as the di-

agonal part of the stress tensor pij and three vectors of cubic order that are

parts of a third rank tensor that has symmetry of jkpnm. The transformation

matrix, M, is written out in full in [36]. The diagonal matrix is defined as,

Ŝ ≡ diag(0, s1, s2, 0, s4, 0, s4, 0, s4, s9, s10, s13, s13, s13, s16, s16, s16) (4.13)

where s9 = s13 = 2/(6ν + 1),s1 = 1.19, s2 = s10 = 1.4, s4 = 1.2 and s16 = 1.98

[33].

4.3 Boundary Conditions

Boundary conditions in LBM can be split into two categories: solid and open

boundaries. A solid boundary is where the fluid contacts a solid object, and

Chapter 4. Implementation of Lattice Boltzmann Method 38

an open boundary is where the fluid reaches the end of the simulation do-

main. While there are many different types of boundary conditions used in

LBM models, only the boundaries used in this thesis will be discussed in this

section. These conditions are the no-slip, free slip and absorbing boundary

condition.

4.3.1 Solid Boundary

When it comes to solid boundaries, there are two types of conditions that are

used: no-slip condition and free-slip condition. The no-slip boundary condi-

tion assumes that the solid has a high enough rugosity which makes it so the

tangential velocity of the particles at the solid is zero. How this approach is

applied can be seen in Fig. 4.4. In the first step, the three distribution func-

tions at position, ~x, and time, t, that will interact with the boundary can be

seen. Next, the distribution functions are propagated to their neighboring

sites through the boundary at an intermediary time between t and t + ∆t. In

the third step, the no slip condition is applied where the directions of propa-

gation are inverted. Finally, the distribution functions are propagated along

their new inverted directions at time t + ∆t. It should be noted that steps

two and three from Fig. 4.4 are not performed programatically, and are only

included to give a conceptual understanding of the boundary condition. Pro-

gramatically, this can be described as,

f6(~x, t + ∆t) = f8(~x, t),

f2(~x, t + ∆t) = f4(~x, t),

f5(~x, t + ∆t) = f7(~x, t).

(4.14)

Note that these are only the conditions for this direction of collision as seen

in Fig. 4.4. The other equations for collisions on a north, east or west wall

can be determined in a similar manner.

Chapter 4. Implementation of Lattice Boltzmann Method 39

3 Lattice Boltzmann Method 36

gosity such that the tangential advection of solid particles is refrained and the tangential
component of the fluid particles at the solid wall is zero.

Figure 3.4 No-slip condition.

Figure 3.4 depicts the procedure of the no-slip condition in four steps. Step I shows
the states of f4, f7 and f8 of a grid node at position x at time t in the pre-streaming
stage. In step II, the traveling particles pass through the solid boundary and arrive at
the neighboring sites. In step III, a bounce-back scheme is applied to all three particles
that have crossed the solid wall by inverting their directions. In step IV, the particles
propagate along their new directions at time t+ ∆t. This procedure can be described by
the following formulas:

f6(x, t+ ∆t) = f8(x, t),

f2(x, t+ ∆t) = f4(x, t),

f5(x, t+ ∆t) = f7(x, t).

For boundaries aligned with the grid coordinates, the no-slip condition provides a
second-order accuracy of representing the viscous boundary layer phenomena. Non-
aligned boundaries and curved boundaries can also be handled by no-slip conditions
using an interpolation or extrapolation procedure.

3.3.4 Free-Slip Condition

The free-slip condition is useful for simulating smooth walls where the tangential com-
ponents of the flow velocities at the wall are untouched and the effects of the viscous

FIGURE 4.4: The procedure of the no-slip condition for the dis-
tribution functions. Notice that because the distribution func-
tion get inverted from steps two to three, the tangential velocity
along the wall is zero. Steps two and three are not performed
programatically, but are included as an aid to give a better un-
derstanding of the boundary condition [10].

As opposed to the no-slip boundary condition, the free-slip condition is

used for smooth walls where the tangential velocity is unaffected. The im-

plementation can be seen in Fig. 4.5. Starting at position, ~x1, and at time, t,

the first two steps are identical to the no-slip procedure. In step three, instead

of the directions of propagation being inverted, they are reflected leading to

the final step where they are streamed in their new direction to the respective

neighboring cell. Just like for the the no-slip condition, steps two and three

are included solely as a conceptual aid. Programatically, the equations are,

f6(~x0, t + ∆t) = f7(~x1, t),

f2(~x1, t + ∆t) = f4(~x1, t),

f5(~x2, t + ∆t) = f8(~x1, t).

(4.15)

Note that in comparing Figs. 4.4 and 4.5, for the no slip condition, the

propagation is local in that it is not streamed to a neighboring cell whereas for

the free slip condition, the distribution function is propagated to neighboring

cells. This is what allows for a non zero tangential velocity at the wall for the

free slip condition whereas there is a zero tangential velocity at the wall for

the no slip condition.

Chapter 4. Implementation of Lattice Boltzmann Method 40

3 Lattice Boltzmann Method 37

boundary layers are minimized. It is also useful in the case of representing a vertically
symmetric 2D system by a half plane, where the axis of symmetry is numerically iden-
tical to a free-slip condition.

Figure 3.5 Free-slip condition.

Figure 3.5 depicts the procedure of the free-slip condition in four steps. Step I shows
the states of f4, f7 and f8 of a grid node x1 at time t in the pre-streaming stage. In
step II, the particles propagate and arrive at the solid boundary. In step III, the vertical
components of the velocity are flipped while the horizontal components are unchanged.
In step IV, the particles propagate in their new directions at time t + ∆t and arrive at
new destinations. This procedure can be described by the following formulas:

f6(x0, t+ ∆t) = f7(x1, t),

f2(x1, t+ ∆t) = f4(x1, t),

f5(x2, t+ ∆t) = f8(x1, t).

3.3.5 Curved Boundary

The no-slip boundary condition works for either simple straight walls or arbitrarily
shaped walls. However, the implementation can be tricky when the boundary is a non-
aligned wall or an arbitrary curved wall.

The simplest curved boundary scheme uses a staircase to approximate the curved
wall AB, as shown in Fig. 3.6(a). The staircase can be either defined on the lattice grids
using the explicit boundary scheme or represented by a set of line sections using the
implicit boundary scheme (which gives slightly better accuracy). The no-slip boundary

FIGURE 4.5: The procedure of the free-slip condition for the dis-
tribution functions. Notice that because the distribution func-
tions get reflected between steps two and three, the tangential
velocity along the wall is non-zero. Similar to the no-slip pro-
cedure, steps two and three are only included to give a better
conceptual understanding [10].

4.3.2 Open Boundaries

Open boundary conditions are more difficult from a computational view-

point than solid boundary conditions and must be carefully handled to en-

sure the stability of the code. As can be seen in Eqs. 3.38 and 3.39, it is

simple to recover ρ and ~u from fq; however, to derive fq from ρ and ~u is

not trivial. Due to the complexities involved, there are many different ap-

proaches to open boundaries that each have their benefits to particular prob-

lems. As stated earlier, these other schemes will not be addressed here, how-

ever, an overview of multiple open boundary conditions can be found in

these sources [9], [10].

The open boundary condition used in this thesis is the absorbing bound-

ary condition (ABC), which was first extended from direct numerical sim-

ulation to the LBM by Kam et al. [37]. The technique works by creating a

buffer region between the fluid region and the open boundary that creates

an asymptotic transition towards a pre-specified target flow through the use

of target distribution functions, f T
q . This is done by adding an additional

Chapter 4. Implementation of Lattice Boltzmann Method 41

term into Eq. 3.36,

fq(~r + ~cq∆t, t + ∆t)− fq(~r, t) = −1
τ
(fq − f eq

q)− σ(f eq
q − f T

q), (4.16)

where σ = σm(δ/D)2 is the absorption coefficient and σm is a constant, nor-

mally 0.3, D is the width of the buffer region and δ is the distance measured

from the beginning of the buffer zone to the position in the buffer zone. Di-

viding by D normalizes this distance. The ABC is convenient because it is

easy to implement, efficient and provides second-order accuracy [37]. Addi-

tionally, the ABC allows for a source flow to be created by setting f T
q equal

to a non-zero target velocity at the inlet of the simulation. For these reasons,

the ABC was chosen as the open boundary condition used in this thesis.

70 Lattice Boltzmann Theory

walls

flow

D

f T
i

fi

δ

Figure 3.9 Schematics of the asymptotic target flow technique.

3.7 Dimensionless to Physical Quantities

Very often, the parameters associated with a lattice Boltzmann model such as velocity,

space, time and viscosity are given in terms of dimensionless parameters such as u, x,

t and ν. This is due to the fact that the simulation analyses are more conveniently de-

scribed is terms of dimensionless numbers than with the actual values of the physical

properties. However, the physical quantities can be easily obtained from the dimension-

less parameters by using the characteristic velocity ζ = c∗
0/c0 and the lattice discretiza-

tion (pitch) Δx, where c∗
0 is the physical speed of sound. Hence, the physical velocity u∗,

space x∗, time t∗ and viscosity ν∗ are obtained from their dimensionless counterparts by

applying the following relations:

u∗ = ζu

x∗ = Δxx

t∗ = (Δx/ζ)t and

q

q

FIGURE 4.6: A schematic displaying the asymtotic target flow
for the absorbing boundary condition (ABC) where D is the
length of the buffer, δ is the distance from the end of the buffer
and f T

q is the target distribution function. Notice that in this
schematic, the target distribution function is used to asymptot-
ically induce a source flow at the inlet of the simulation. Not
pictured, it could similarly be used to set an outlet flow at the
edge of the domain [9].

Chapter 4. Implementation of Lattice Boltzmann Method 42

4.4 GPU Computing

As will be discussed in Section 5.2, the LBM is expensive in terms of compu-

tational cycles, especially as the grid size and resolution increase. However,

the LBM is inherently parallelizable due to its simple and explicit algorithm

along with the fact that information is largely decoupled, outside of stream-

ing to neighboring cells.

Before looking at the specifics of computing on the graphics processing

unit (GPU), its place in the field of parallel programming should be noted.

As will be discussed in Section 4.4.2, subroutines that run on the GPU are ex-

ecuted by many threads in parallel. While all threads execute the same code,

they operate on different data, different lattice nodes in this case. This is

known as fine-grained parallelism where it is advantageous to have adjacent

threads operating on adjacent data. This type of parallelism is much different

from course-grained parallelism, such as MPI, where the data is partitioned

into large segments with each MPI thread operating on the entire data par-

tition [38]. An example of fine-grained parallelism from conventional CPU

computing is given below.

Using a conventional CPU Fortran algorithm, elements of two arrays, A

and B, can be added with the following do loop:

1 do i = 1,5

2 C(i) = A(i) + B(i)

3 enddo

LISTING 4.1: A simple example of a series loop in Fortran that

can parallelized.

This loop is performed sequentially, with the first index of C taking the value

of the first index of A plus the first index of B followed by the second in-

dex up through the fifth index. Utilizing parallel computing, instead of each

Chapter 4. Implementation of Lattice Boltzmann Method 43

index of the arrays being added sequentially, they are performed simultane-

ously allowing for a significant speed up in performance. How this works

discussed in Section 4.4.2. First, the architecture of the graphics processing

unit is discussed.

4.4.1 Architecture

Almost every computer contains a central processing unit (CPU) that has

multiple cores. The reason for more than one core stems from the inabil-

ity of CPU manufacturers to increase performance in a singe core leading to

CPU designs scaling out to multiple core instead of scaling up to higher clock

rates [38]. While CPUs have anywhere from a couple to dozens of cores, this

pales in comparison to the number of cores available in the graphics process-

ing unit. As graphics processing is an inherently parallel task, GPUs have

a highly parallel architecture. Originally, performing general purpose GPU

computing (GPGPU) was quite difficult due to the lack of support and re-

strictive types of algortihms that could be mapped to the GPU. This changed

with the creation of NVIDIA’s CUDA architecture in 2007 [38]. This allowed

for the highly parallel nature of GPGPU to be realized with only slight mod-

ifications to the original CPU Fortran code.

At its most basic level, the thread processor is the unit of the GPU that

executes individual GPU threads. These thread processors are grouped into

multiprocessors which have a small amount of on board shared memory [38].

This hierarchy of GPU components can be seen in Fig. 4.7. As will be dis-

cussed in 4.4.2, the computational units in the GPU are analogous with com-

ponents in the programming model.

Chapter 4. Implementation of Lattice Boltzmann Method 44
1.2. BASIC CONCEPTS 9

Memory

GPU
Multiprocessor

Thread
Processors

Figure 1.1: Hierarchy of computational units in a GPU, where thread processors are grouped together
in multiprocessors.

The basic computational unit on the GPU is a thread processor, which executes individual GPU

threads. Thread processors are grouped into multiprocessors, which in addition to thread processors

have a limited amount of resources used by resident threads, namely registers and shared memory.

This is illustrated in Figure 1.1. The analog to a multiprocessor in the programming model is a

thread block. Thread blocks are assigned to multiprocessors and do not migrate once assigned.

Multiple thread blocks can reside on a single multiprocessor, but the number of blocks is limited by

the resources required by each thread block.

Turning back to our example, when the kernel is invoked, it launches a grid of thread blocks. The

number of thread blocks launched is specified by the first parameter of the execution configuration,

and the number of threads in a thread block is specified by the second parameter. So our first

CUDA Fortran program launched a grid consisting of a single thread block of 256 threads. We can

accomodate larger arrays by launching multiple thread blocks, as in the following code:

1 module simpleOps_m

2 contains

3 attributes(global) subroutine increment(a, b)

4 implicit none

5 integer , intent(inout) :: a(:)

6 integer , value :: b

7 integer :: i, n

8

9 i = blockDim%x*(blockIdx%x-1) + threadIdx%x

10 n = size(a)

FIGURE 4.7: A graphical representation of the breakdown of the
GPU into multiprocessors and thread processors. Notice that
the thread processors are grouped into multiprocessors along
with a limited amount of shared memory. This breakdown of
the GPU computational units is analagous to the breakdown of
the programming model into threads and blocks [38].

4.4.2 Programming

CUDA Fortran is a hybrid programming model which means that sections of

the code can operate on the CPU or GPU, or as is more commonly said, on

the host or device. The host refers to the CPU and its memory whereas the

device refers to the GPU and its memory. A subroutine that is called from the

host but executes on the GPU is called a kernel [38]. The use of kernels is the

basis of GPU computing with CUDA.

As can be seen in Fig. 4.8, the programming model is made up of threads

that are grouped into blocks that make up the execution grid. This hierarchy

closely resembles that of the CPU architecture where the analog of the multi-

processor is the thread block. Thread blocks are assigned to multiprocessors

when the kernel is called and do not migrate once assigned. Multiple thread

blocks can be on a single multiprocessor however this number is limited by

the required resources of each thread block [38].

The layout of the execution grid is determined at run time, and it can

have up to three dimensions of blocks. Similarly, the blocks of threads within

Chapter 4. Implementation of Lattice Boltzmann Method 45

2.1. Architecture
General purpose GPU programming usually re-

quires to take some architectural aspects into con-
sideration. CUDA hardware specifications make
the optimisation process easier by providing a gen-
eral model for the nVidia GPUs architecture from
the G80 generation on.

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Device Memory

Shared Memory

I nstruction
Unit

Processor 1

Registers

...Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache

Figure 2: CUDA hardware (source nVidia)

Figure 2 shows the main aspects of the CUDA
hardware specifications. A GPU consists in several
Streaming Multiprocessors (SMs). Each SM con-
tains Scalar Processors (SPs), an instruction unit,
and a shared memory, concurrently accessible by
the SPs through 16 memory banks. Two cached,
read-only memories for constants and textures are
also available. The device memory, usually named
global memory is accessible by both the GPU and
the CPU. Table 1 specifies some of the features of
the GT200 processor on which our implementations
were tested.

SPs are only able to perform single precision com-
putations. From compute capability 1.3 on, CUDA
supports double precision. On this kind of hard-
ware, each SM is linked to a double precision com-
putation unit. Both single and double precision
calculations are mostly IEEE-754 compliant. Di-
vergences from the standard are mainly:

• No denormalized numbers. Numbers with null
exponent are considered as zero.

Number of SMs 30
Number of SPs per SM 8
Registers per SM 16,384
Shared Memory 16 KB
Constant Cache 8 KB
Texture Cache 8 KB
Global Memory 896 MB or 1 GB

Table 1: Features of the GT200

• Partial support of rounding modes.

• No floating point exception mechanism.

• Multiply-add operations with truncated inter-
mediate results.

• Non compliant implementations of some oper-
ations like division or square root.

2.2. Programming
CUDA programming model (see [4]) relies on the

concept of kernel. A kernel is a function that is ex-
ecuted in concurrent threads on the GPU. Threads
are grouped into blocks which in turn form the ex-
ecution grid (see figure 3).

Grid

Block (2, 1)Block (1, 1)Block (0, 1)

Block (2, 0)Block (1, 0)Block (0, 0)

Block (1, 1)

Thread (0, 0) Thread (1, 0) Thread (2, 0) Thread (3, 0)

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1)

Thread (0, 2) Thread (1, 2) Thread (2, 2) Thread (3, 2)

Figure 3: CUDA programming model (source nVidia)

The CUDA technology makes use of a slightly
modified version of the C (or C++) language as a

2

FIGURE 4.8: The breakdown of the programming model where
the grid is comprised of thread blocks which are further com-
prised of threads. Notice that this hierarchy is similar to the
architecture of the GPU itself [39].

the grid can also have up to three dimensions, however, they each must be

identical in terms of threads per block. Each thread is identified by a unique

identifier through the use of the structures, threadIdx and blockIdx, which

contain the three fields x, y and z.

The mapping of lattice nodes on to threads on the GPU is rather simplis-

tic. As shown in Fig. 4.9, each lattice node is mapped to one thread with

adjacent nodes corresponding to adjacent threads on the GPU. The number

of threads per block was chosen in order to maximize the number of concur-

rent threads running on each multiprocessor.

Chapter 4. Implementation of Lattice Boltzmann Method 46

3 Lattice Boltzmann Method 52

operators on the GPU, including streaming, boundary treatment and collision (SRT and
MRT), and added the necessary code for GPU initialization and data transfer between
CPU and GPU, where almost all of the LBM initialization code are reused. The proce-
dures on the CPU and the GPU are described by the pseudo code in Procedure 3 and
4, respectively. The procedures in the while-loop of the CPU model are replaced by a
single function LoopOnGPU(), which consists of a series of kernel functions performing
the parallelized computations of steaming, boundary treatments, updating distribution
functions and collisions on the GPU.

Figure 3.9 Mapping lattice grid to thread grid on the GPU.

Figure 3.9 depicts how the lattice grid is mapped to the thread grid on the GPU.
Each node of the lattice is linked to one thread on the multiprocessor, which executes
the same kernel functions implementing the LBGK operators during the main while-
loop. The number of threads per block is set in order to obtain the maximal number of
concurrent threads running on each multiprocessor.

We use a rather simple approach that all of the fluid variables (distribution func-
tions, density and velocities) are saved in the global memory, which is big and slow,
while the simulation parameters and coefficients (such as the relaxation parameter, the
velocity weights, etc) are saved in shared memory, which is small but fast. In the case
of the collision operator, the parallelization is straightforward because all computations
occur locally and there is no information exchange between nodes. In the case of the
streaming operator, there is some information exchange between neighboring cells, so
a certain number of access to the global memory in the kernel function is unavoidable.
The computation of the boundary treatment of the static curved walls requires a lot
more overhead since a node is influenced by several neighboring nodes. That said, the

FIGURE 4.9: The mapping of the lattice grid on to the thread
grid on the GPU. Notice that each lattie node corresponds with
a thread on the thread grid which makes this fine-grained par-
allelism [10].

4.4.3 Memory Management

With regards to GPU computing, it is necessary to discuss memory arrange-

ment. As mentioned in the previous sections, there are two types of memory:

shared memory for intra-block communication and global memory for inter-

block communication. Threads are able to efficiently communicate within a

block through the use of shared memory, however, inter-block communica-

tion is much slower due to its use of global memory. Thus, it is important

to limit inter-block communication as much as possible. To give an idea of

the importance of proper memory management, optimal memory access pat-

terns can improve the performance by an order of magnitude [40].

One way to do this is to ensure that data are aligned such that the reading

and writing of those data is coalesced into a continuous aligned memory

access. An example of this and two types of uncoalesced memory access

can be seen in Fig. 4.10. As will be discussed in Section 4.5, some amount

of uncoalesced data access is unavoidable due to streaming however it is

important to limit it.

In addition to memory access, it is also necessary to discuss the way that

information is arranged in the model. As shown in Fig. 4.9, the code is paral-

lelized such that each thread corresponds to one spatial location, f (x). This

Chapter 4. Implementation of Lattice Boltzmann Method 4762 M. Astorino, J. Becerra Sagredo, A. Quarteroni

�

�

�

�

�

�

�

	

���

���

���

���

���

��	

��

���

(a) Coalesced

�

�

�

�

�

�

�

	

���

���

���

���

���

��	

��

���

(b) Uncoalesced: non-
sequential

�

�

�

�

�

�

�

	

���

���

���

���

���

��	

��

���

(c) Uncoalesced: misaligned

Figure 4: Different accesses to GPU memory. The BaseAddress corresponding to
the zero-th thread is 122.

LBM algorithm. In a classical LBM algorithm at least six milestones routines can
be identified:

• initProblem for problem initialization,

• computeMacro for computation of macroscopic quantities from the particle
distributions,

• collideParticles for particle collision,

• streamParticles for particle streaming,

• applyBCs for the enforcement of boundary conditions,

• exportResults to export results.

In our code these procedures have been implemented according to Algorithm 1.
In the routine initProblem the initialization procedure is implemented.

As already mentioned, in this work we consider for the sake of simplicity
an initialization based on the values of the equilibrium distribution feq ,
nonetheless other approaches exist in literature (see [5] for a review). The
functions computeMacro and collideParticles are implemented within the
same routine computeMacroAndCollideParticles since the macroscopic

FIGURE 4.10: The two different types of memory access: coa-
lesced and uncoalesced, where the data of a specific thread is
accessed at the address in the GPU memory. Misaligned and
non-sequencial memory access can degrade code performance
[40].

means that each thread stores the value of f , ρ,ux,uy,uz, δ and whether or not

that location is a solid boundary. f is m + 1 dimensional where it has m spa-

tial dimensions plus an additional dimension corresponding to the streaming

directions. For the D3Q19 model, f (i, j, k, q) is 4 dimensional where i, j and

k correspond to the x, y and z coordinates and q corresponds to the 19 com-

ponents of f . It is common practice to flatten multidimensional arrays into a

single dimension for memory purposes [40]–[42].

There are two main formats for ordering data in f : Array of Structures

(AoS) and Structure of Arrays (SoA). In the AoS arrangement, the q values

of the distribution function for each component are stored contiguously for

each lattice node. In the SoA arrangement, the Nx ∗Ny ∗Nz lattice nodes for

each component of the distribution function are stored contiguously, where

Chapter 4. Implementation of Lattice Boltzmann Method 48

Nr is the number of nodes in the r direction. The two arrangements, AoS and

SoA, are computationally optimized for different steps of the LBM algorithm,

collision and streaming. Hence, while AoS is preferable for CPU implemen-

tations, SoA is necessary for better coalesced access to global memory within

the GPU [43]. This is because in SoA spatially adjacent nodes are adjacent in

memory as well. Additionally, it has been shown that improvements in per-

formance in the streaming step with SoA outweigh performance lost in the

collision step when using AoS [42]. It is for these reasons that the ordering of

data in this thesis utilized the SoA format.

Scientific Programming 9

x

y

zBlock

(a) Grid divided into 3D blocks (b) Block containing subplanes. The red
column contains all cells one thread processes

Figure 9: Tiling optimization for LBM.

Block 3

Block 3

Block 0

Block 0

Block 1

Block 1

Block 2

Block 2

(a) Original data layout (b) Proposed data layout

Figure 10: Different data layouts for blocks.

row, and so on. In the proposed new layout, the cells in the
tiled first row in Block 0 are stored first. Then the second
tiled row of Block 0 is stored instead of the first row of
Block 1 (Figure 10(b)). With the layout change, the data cells
accessed in the consecutive iterations of the tiled code are
placed sequentially. This places the data elements of the
different groups closer. Thus, it increases the possibility for
these memory accesses to the different groups coalesced if
the tiling factor and the memory layout factor are adjusted
appropriately. This can further improve the performance
beyond the tiling.

The data layout can be transformed using the following
formula:

indexnew = 𝑥id + 𝑦id × 𝑁𝑥 + 𝑧id × 𝑁𝑥 × 𝑁𝑦 (9)

where 𝑥id and 𝑦id are cell indexes in 𝑥- and 𝑦-dimension on
the plane of grid and 𝑧𝑖𝑑 is the value in the range of 0 to 𝑛𝑧−1.𝑥id and 𝑦id can be calculated as follows:

𝑥id = (block index in 𝑥-dimension)
× (number of threads in thread block in 𝑥-dimension)
+ (thread index in thread block in 𝑥-dimension)

𝑦id = (block index in 𝑦-dimension)

× (number of threads in thread block in 𝑦-dimension)
+ (thread index in thread block in 𝑦-dimension)

(10)

In our implementation, we use the changed input data
layout stored offline before the program starts. (The original
input is changed to the new layout and stored to the input file.)
Then, the input file is used while conducting the experiments.

4.3. Reduction of Register Uses perThread. TheD3Q19 model
is more precise than the models with smaller distributions
such as D2Q9 orD3Q13, thus usingmore variables.This leads
to more register uses for the main computation kernels. In
GPU, the register use of the threads is one of the factors
limiting the number of active WARPs on a streaming mul-
tiprocessor (SMX). Higher register uses can lead to the lower
parallelism and occupancy (see Figure 11 for an example)
which results in the overall performance degradation. The
Nvidia compiler provides a flag to limit the register uses to a
certain limit such as −𝑚𝑎𝑥𝑟𝑟𝑒𝑔𝑐𝑜𝑢𝑛𝑡 or launch bounds ()
qualifier [5]. The −𝑚𝑎𝑥𝑟𝑟𝑒𝑔𝑐𝑜𝑢𝑛𝑡 switch sets a maximum
on the number of registers used for each thread. These
can help increase the occupancy by reducing the register
uses per thread. However, our experiments show that the
overall performance goes down, because they lead to a lot of
register spills/refills to/from the local memory.The increased

FIGURE 4.11: Two different data layout schemes: row major
and tiling. While less efficient, the row major scheme is simple
and still sufficiently efficient for the purposes of this thesis. For
larger simulations, the increased efficiency of the tiling scheme
could merit its more difficult implementation [42].

While the AoS vs SoA format addresses how the q components of f are

formatted, it does not address how the spatial components of f are orga-

nized. This is important because it is beneficial for fewer accesses to global

memory to be made meaning that adjacent data should be in the same block

whenever possible. For the code presented in this thesis, a rather simplistic

row major data layout is used where all nodes in a row belong to the same

block. This is a fairly common layout that is used due to its simplicity and

efficiency [40], [41]. With a row major data layout utilizing SoA, f (i, j, k, q)

is flattened to f (q ∗ Nx ∗ Ny ∗ Nz + k ∗ Nx ∗ Ny + j ∗ Nx + i). It should be

Chapter 4. Implementation of Lattice Boltzmann Method 49

noted, however, that more efficient data layout schemes exist. It was pro-

posed by Tran et al. to switch from a row major scheme to a tiled scheme

instead as it proved to be around 28 percent more efficient. The added com-

plexities in implementing the tiling method were outside the desired scope

and the performance of the code was deemed sufficient for this work. The

row major scheme and tiling scheme are pictured in Fig. 4.11.8 Scientific Programming

Pi+1

Pi

Pi−1

N
y

Nx

Figure 8: Data accesses for orange cell in conducting computations
for streaming and collision phases.

a thread performs the computations for the orange colored
cell. The 19 cells (18 directions (green cells) + current cell in
the center (orange cell)) are distributed on the three different
planes. Let 𝑃𝑖 be the plane containing the current computing
(orange) cell, and let 𝑃𝑖−1 and 𝑃𝑖+1 be the lower and upper
planes, respectively. 𝑃𝑖 plane contains 9 cells. 𝑃𝑖−1 and 𝑃𝑖+1
planes contain 5 cells, respectively. When the computations
for the cell, for example, (𝑥, 𝑦, 𝑧) = (1, 1, 1), are performed,
the following cells are accessed:

(i) 𝑃0 plane: (0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 2, 0), (2, 1, 0)
(ii) 𝑃1 plane: (0, 0, 1), (0, 1, 1), (0, 2, 1), (1, 0, 1), (1, 1, 1),(1, 2, 1), (2, 0, 1), (2, 1, 1), (2, 2, 1)
(iii) 𝑃2 plane: (0, 1, 2), (1, 0, 2), (1, 1, 2), (1, 2, 2), (2, 1, 2)

The 9 accesses for 𝑃1 plane are divided into three groups
{(0,0,1), (0,1,1), (0,2,1)}, {(1,0,1), (1,1,1), (1,2,1)}, {(2,0,1),
(2,1,1), (2,2,1)}. Each group accesses the consecutivememory
locations belonging to the same row. Accesses of the different
groups are separated apart and lead to the uncoalesced
accesses on the GPU when 𝑁𝑥 is sufficiently large. In each
of 𝑃0 and 𝑃2 planes, there are three groups of accesses each.
Here, the accesses of the same group touch the consecutive
memory locations and accesses of the different groups are
separated apart in thememory which lead to the uncoalesced
accesses also. Accesses to the data elements in the different
planes (𝑃0, 𝑃1, and 𝑃2) are further separated apart and also
lead to the uncoalesced accesses when𝑁𝑦 is sufficiently large.

As the computations proceed, three rows in the 𝑦-
dimension of 𝑃0, 𝑃1, 𝑃2 planes will be accessed sequentially
for 𝑥 = 0 ∼ 𝑁𝑥 − 1, 𝑦 = 0, 1, 2, followed by 𝑥 = 0 ∼ 𝑁𝑥 − 1,
𝑦 = 1, 2, 3, . . ., 𝑥 = 0 ∼ 𝑁𝑥 − 1, 𝑦 = 𝑁𝑦 − 3,𝑁𝑦 − 2,𝑁𝑦 − 1.
When the complete 𝑃0, 𝑃1, 𝑃2 planes are swept, then similar
data accesses will continue for 𝑃1, 𝑃2, and 𝑃3 planes, and so
on. Therefore, there are a lot of data reuses in 𝑥-, 𝑦-, and 𝑧-
dimensions. As explained in Section 4.1.2, the 3D lattice grid

is stored in the 1D array. The 19 cells for the computations
belonging to the same plane are stored ±1 or ±𝑁𝑥 + ±1 cells
away. The cells in different planes are stored ±𝑁𝑥 × 𝑁𝑦 +
±𝑁𝑥 + ±1 cells away. The data reuse distance along the 𝑥-
dimension is short: +1 or +2 loop iterations apart. The data
reuse distance along the 𝑦- and 𝑧-dimensions is ±𝑁𝑥 + ±1 or
±𝑁𝑥 × 𝑁𝑦 + ±𝑁𝑥 + ±1 iterations apart. If we can make the
data reuse occur faster by reducing the reuse distances, for
example, using the tiling optimization, it can greatly improve
the cache hit ratio. Furthermore, it can reduce the overheads
with the uncoalesced accesses because lots of global memory
accesses can be removed by the cache hits. Therefore, we tile
the 3D lattice grid into smaller 3D blocks. We also change
the data layout in accordance with the data access patterns of
the tiled code in order to store the data elements in different
groups closer in the memory. Thus we can remove a lot of
uncoalesced memory accesses, because they can be stored
within 128-byte boundary. In Sections 4.2.1 and 4.2.2, we
describe our tiling and data layout change optimizations.

4.2.1. Tiling. Let us assume the following:

(i) 𝑁𝑥, 𝑁𝑦, and 𝑁𝑧 are sizes of the grid in 𝑥-, 𝑦-, and 𝑧-
dimension.

(ii) 𝑛𝑥, 𝑛𝑦, and 𝑛𝑧 are sizes of the 3D block in 𝑥-, 𝑦-, and
𝑧-dimension.

(iii) 𝑥𝑦-plane is a subplane which is composed of (𝑛𝑥×𝑛𝑦)
cells.

We tile the grid into small 3D blocks with the tile sizes of 𝑛𝑥,𝑛𝑦, and 𝑛𝑧 (yellow block in Figure 9(a)), where

𝑛𝑥 = 𝑁𝑥 ÷ 𝑥𝑐
𝑛𝑦 = 𝑁𝑦 ÷ 𝑦𝑐
𝑛𝑧 = 𝑁𝑧 ÷ 𝑧𝑐

𝑥𝑐, 𝑦𝑐, 𝑧𝑐 = [1, 2, 3, . . .) .

(8)

We let each CUDA thread block process one 3D tiled
block. Thus 𝑛𝑧 𝑥𝑦-planes need to be loaded for each thread
block. In each 𝑥𝑦-plane, each thread of the thread block
executes the computations for one grid cell.Thus each thread
deals with a column containing 𝑛𝑧 cells (the red column in
Figure 9(b)). If 𝑧𝑐 = 1, each thread processes 𝑁𝑧 cells and
if 𝑧𝑐 = 𝑁𝑧, each thread processes only one cell. The tile
size can be adjusted by changing the constants 𝑥𝑐, 𝑦𝑐, and 𝑧𝑐.
These constants need to be selected carefully to optimize the
performance. Using the tiling, the number of created threads
is reduced by 𝑧𝑐-times.

4.2.2. Data Layout Change. In order to further improve
benefits of the tiling and reduce the overheads associated
with the uncoalesced accesses, we propose to change the
data layout. Figure 10 shows one 𝑥𝑦-plane of the grid with
and without the layout change. With the original layout
(Figure 10(a)), the data is stored in the row major fashion.
Thus the entire first row is stored, followed by the second

FIGURE 4.12: The data access required for the orange cell dur-
ing the streaming and collision phases where Nx is the number
of cells in the x dimension, Ny is the number of cells in the y
direction and Pi is the ith plane of cells, 0 ≤ i ≤ Nz where Nz
is the number of cells in the z direction [42].

While the tiling scheme was not used in this thesis, the reasons why it

is more efficient are important to gain a better understanding of the LBM

using GPU computing. As shown in Eq. 3.36, there are two steps in the LBM,

collision and streaming, each representing one side of the equation. The data

access required for a single cell is shown in Fig. 4.12. The collision step is

local in that f (l, t + ∆t) depends only on f (l, t) while the streaming step is

non-local as can be seen in Eq. 3.36 and discussed in Section 3.3.1. While the

Chapter 4. Implementation of Lattice Boltzmann Method 50

streaming step is indeed non-local, it only depends on cells that are at most

one coordinate away in any direction. This means that as long as these cells

all belong to the same block, shared memory as opposed to global memory

can be used.

4.5 Implementation

With the basics of GPU computing addressed, it is necessary to discuss the

implementation of the LBM using GPU computing. While Eq. 3.36 shows

the two main steps of the LBM, f eq depends on ρ and ~u, hence, another step

where these are computed is necessary. As will be discussed in Section 5.2,

this code began as a CPU implementation and hence this is a natural place

for this discussion to begin. The pseudocode for this algorithm can be seen

below:

Algorithm 1 CPU Algorithm

1: for all i, j, k do
2: Read fin to f
3: Calculate f eq from ρ and ~u using Eq. 3.37
4: Collision between fin and f eq

5: for all q do
6: Stream fin(x) to f (x + cq∆t)
7: end for
8: Synchronize across f
9: Read f to fin

10: Apply boundary conditions
11: Calculate ρ and ~u from Eqs. 3.38 and 3.39
12: end for

While this algorithm is fine for a serial CPU implementation, there are

some locality issues caused by the streaming step that inhibit this algorithm

from being performed in a parallel manner. In order for this algorithm to run

as written, since a thread operates on each location, the streaming step re-

quires a synchronization across the domain before the boundary conditions

Chapter 4. Implementation of Lattice Boltzmann Method 51

are performed and macroscopic variables are calculated. These synchroniza-

tions cause for idle threads, which are to be avoided in trying to achieve

better efficiency.

While this synchronization cannot be totally avoided due to the non-local

nature of the streaming step, it can be relegated to the end of the kernel where

it occurs naturally. This then leads to two reorderings of the algorithm which

achieve this: the push and pull algorithm [43]. The main difference between

the push and pull algorithms is where the streaming step occurs. For the

push algorithm, the streaming step occurs at the end where f (x, t) is pushed

to f (x + cq∆t, t + ∆t). For the pull algorithm, the streaming step occurs at

the beginning where f (x, t) is pulled from f (x− cq∆t, t− ∆t). The two algo-

rithms are given below in Algorithms 2 and 3.

Algorithm 2 Push Algorithm

1: for all i, j, k do
2: for all q do
3: Create a local copy of f : fin = f
4: end for
5: Apply boundary conditions
6: Calculate ρ and ~u from Eqs. 3.38 and 3.39
7: for all q do
8: Calculate f eq from ρ and ~u using Eq. 3.37
9: Collision between fin and f eq

10: Stream fin(x) to f (x + cq∆t)
11: end for
12: end for

As mentioned earlier, uncoalesced data can degrade the performance of

the code, however, due to the non-local nature of the streaming step some

amount of uncoalesced memory access is unavoidable. The difference be-

tween the push and pull algorithms then is whether the misaligned data is

read to or written from memory. It has been shown on multiple different

GPUs that the former is more efficient than the later [41]–[43]. It is for these

reasons that a variant of the pull algorithm is used for this thesis, which will

be discussed next.

Chapter 4. Implementation of Lattice Boltzmann Method 52

Algorithm 3 Pull Algorithm

1: for all i, j, k do
2: for all q do
3: Stream fin(x, t) from f (x− cq∆t, t− ∆t)
4: end for
5: Apply boundary conditions
6: Calculate ρ and ~u from Eqs. 3.38 and 3.39
7: Calculate f eq from ρ and ~u using Eq. 3.37
8: for all q do
9: Collision between fin and f eq

10: end for
11: end for

4.6 LBM Procedure

As discussed in the previous section, the algorithm used for this thesis was

based on the pull algorithm. The main difference between the pull algorithm

in Algorithm 3 and the one used in these thesis (Algorithm 4) is the relo-

cation of the calculation of the macroscopic variables of ρ and ~u. This was

done because of the difficulty in performing Eqs. 3.38 and 3.39 in parallel.

By placing this step at the end of the kernel, it allowed for an inherent syn-

chronization to occur at the end of the kernel similar to having the streaming

step at the end of the push algorithm, seen in Algorithm 2. This however re-

quired downloading and uploading ρ and ~u at each time step which reduced

the efficiency of the code. This should be avoidable, and reorganizing the

algorithm to make achieve this will be left for future work.

Algorithm 4 LBM Algorithm

1: for all i, j, k do
2: for all q do Stream fin(x, t) from f (x− cq∆t, t− ∆t)
3: end for
4: Calculate f eq from ρ and ~u using Eq. 3.37
5: for all q do
6: Collision between fin and f eq

7: end for
8: Apply boundary conditions
9: Calculate ρ and ~u from Eqs. 3.38 and 3.39

10: end for

Chapter 4. Implementation of Lattice Boltzmann Method 53

Overall, the code operates as follows. First, the domain is created and all

constants are given their respective values. Next, ρ,~u, f and f eq are initial-

ized. This is important because an inaccurate initialization can cause insta-

bilities. Since the velocity and pressure fields are homogeneous at the start

of simulation, an equilibrium initialization can be applied where fq = f eq
q at

t = 0.

At this point, the for loop is entered that iterates over t. Within the loop,

the kernel, which is shown in Algorithm 4, is called. As mentioned, at every

time step ρ and ~u are downloaded. At certain time steps, these values are

written to a file for post processing. This occurs until a set number of time

steps is completed.

4.7 Conclusion

While the code and suggestions for implementation thereof for the LBM were

presented in several references, there were some specific challenges faced in

creating the code. Spurious pressure oscillations at the edge of the domain

were fixed through implementing a ghost layer. Further, the stability of the

simulation was improved through the use of the MRT scheme. In order to

increase the performance of the code, the code was translated from running

on the CPU to running on the GPU which required a number of other opti-

mizations as well. Nevertheless, there remain a few challenges to overcome.

In Chapter 5, the benchmarking and several results of simulations run in an

attempt to accurately model the flute described in Chapter 2 are presented.

Then later, these challenges and suggested improvement for future work are

discussed in Chapter 6.

54

Chapter 5

Numerical Analysis of Pipes and

Flutes

5.1 Introduction

This chapter will present the results, modifications, and different iterations

of the code that have been run throughout this thesis work.

5.2 Evolution of the code

The first iteration of the code was a D2Q9 code written in Matlab. Due to its

status as a very high level programming language along with the author’s

familiarity with the language, it was a deemed a natural starting point for

the code. Multiple different simulations were run on this code. These ranged

from basic benchmark tests such as Poiseuille flow in a pipe and a lid driven

cavity to more advanced simulations such as quiescent flow in a pipe and

flow in a flute. These simulations were run using a D2Q9 LBM-MRT model.

For the more basic tests, where a high grid resolution and many time steps

were not necessary, the Matlab CPU code was more than satisfactory. How-

ever, as the simulations became more complicated, the grid resolution had

to be increased, leading to more required time steps that caused for the sim-

ulation to take a long time to complete. Knowing that this was only a 2D

Chapter 5. Numerical Analysis of Pipes and Flutes 55

code and that the ultimate goal of the thesis was to develop a 3D code, it be-

came apparent that the Matlab code would need to be abandoned in favor of

Fortran.

The second iteration of the code was subsequently a D2Q9 code written

in Fortran. Fortran, due to its nature as a lower level programming language

than Matlab, allowed for the simulation time to be reduced for the same pa-

rameters, grid size, resolution and time steps. This version of the code was

purely a CPU code and many of the same simulations run on the Matlab

D2Q9 code were performed on the Fortran code. While converting the code

from Matlab to Fortran did provide a marginal speed up in performance, the

large grid size and high resolution required meant that additional changes to

the code were necessary. Using CUDA Fortran, the code was converted into

a Fortran code that ran on the GPU as described in Section 4.4. By utilizing

the GPU, the code was sped up by 11 times, which made it so 3D simulations

would be feasible. The difference in code speed can be seen in Table 5.1. The

table also shows the million lattice updates per second (MLUPS) of both the

CPU and GPU codes, which is the way LBM code performance is compared

and is defined as,

MLUPS =
Nx ∗ Ny ∗ Nz ∗ Nt

ts
, (5.1)

where Nt is the number of time steps and ts is the total time of the simula-

tion. 15.58 MLUPS for the GPU model places it in line with the 18.86 MLUPS

achieved by Shi and the 11.23 MLUPS by Kühnelt [4], [10].

Time per iteration (s) MLUPS
CPU model 0.0395 1.39
GPU model 0.0035 15.58

TABLE 5.1: Performance of the D2Q9 Fortran CPU model com-
pared to the same GPU model on a 500 x 110 lattice. The 15.58
million lattice updates per second (MLUPS) places it in line
with other codes used in musical acoustics [4], [10].

As a 2D CPU code, the change from Matlab to Fortran equated to just

Chapter 5. Numerical Analysis of Pipes and Flutes 56

translating the code without the addition of any structural or memory ar-

rangement changes. This allowed for the D2Q9 LBM-MRT code to be created

without too many issues. However, when switching from CPU to GPU, the

changes made as described in Sections 4.4 and 4.5 meant that the GPU For-

tran code remained using the SRT model. Being an upgraded version of the

D2Q9 LBM-SRT model on the GPU, the D3Q19 code additionally is a SRT

model. It will be subject of future work to upgrade this code to a D3Q19

LBM-MRT model on the GPU. Unless otherwise specified, any reference to

code below is referring either to the D2Q9 or D3Q19 LBM-SRT model on the

GPU written in Fortran.

5.3 Poiseuille Flow in a Pipe

A common benchmark test for computational fluid dynamic codes is that of

Poiseuille flow in a pipe. The simulation itself is relatively simple, consisting

of a pipe that is not too wide or short. The Hagen-Poiseuille equation can

be derived from the Navier-Stokes equations under the assumptions that the

flow is in steady-state, axisymmetric, fully developed and that the radial and

azimuthal components of the velocity are zero.

In three dimensions using cylindrical coordinates, the axial momentum

becomes,
1
r

∂

∂r
(
r

∂u
∂r
)
=

1
µ

dp
dx

, (5.2)

where µ is the dynamic viscosity of the fluid. Since the left hand side is a

function of r and the right hand side is a function of x, this implies that both

sides are equal to a constant. This allows for the equation to be solved as,

u = −∆p
L

r2

4µ
+ Aln(r) + B, (5.3)

where ∆p is the change of pressure from the inlet to the outlet of the pipe, L

Chapter 5. Numerical Analysis of Pipes and Flutes 57

is the length of the pipe and A and B are constants. Since u exists at r = 0,

A = 0 and the bounce back condition at the walls mean that u = 0 at r = R

implying that B = (∆p/L)(R2/4µ) where R is the radius of the pipe. Thus u

can be written as,

u =
∆p
L

1
4µ

(R2 − r2), (5.4)

yielding the parabolic velocity profile as expected.

In two dimensions for plane flow in an infinitely long pipe, the Navier-

Stokes equations reduce to,

d2u
dy2 =

dp
dx

1
µ

, (5.5)

where dp/dx is a constant. With u = 0 at y = 0 and y = 2R, u can be solved

as,

u =
−dp
dx

1
2µ

y(2R− y), (5.6)

where h is the height of the tube. For L >> 2R, u be approximated as,

u =
∆p
L

1
2µ

y(2R− y). (5.7)

5.3.1 D2Q9

The Poiseulle flow in a 2D pipe was the first benchmark test performed on

the code. The D2Q9 model as described in Section 4.2 was employed with the

fully developed flow being shown in Fig. 5.1. The speed is as follows: yellow

corresponds to high speed flow to green to dark blue which corresponds with

low speed or zero net flow. The yellow and dark blue blocks on the ends of

Fig. 5.1 are the inlet and outlet sources.

For this simulation, rather simple velocity boundary conditions were em-

ployed. At the top and bottom solid boundaries, which correspond to the

walls of the pipe, the no slip boundary condition was imposed. On the

Chapter 5. Numerical Analysis of Pipes and Flutes 58

FIGURE 5.1: Poiseuille flow in a pipe from the D2Q9 model
where the yellow on the left side indicates the inlet velocity and
the blue on the right side indicates the outlet condition of zero
flow. Additionally, notice that the velocity at the walls is zero
and maximum in the middle as expected.

left and right ends of the simulation, which correspond to the open ends of

the pipe, the ABC boundary condition was imposed with a buffer distance,

D = 58. To start the simulation, a source flow and an outlet flow of zero was

initiated through the use of the target velocity, uT. In terms of the geometry

of the pipe, the height was 100 cells and the length was 500 cells which was

deemed sufficient so Eq. 5.7 would be valid.

FIGURE 5.2: Comparison of the theoretical results for the
Poiseuille flow from Eq. 5.7 and the results from the D2Q9
code. Notice that the simulated results agree well with the the-
ory curve.

At an arbitrary length along the pipe, a vertical slice of the velocity was

taken and that velocity compared to the theoretical velocity from Eq. 5.7 is

shown in Fig. 5.2. Since the flow is fully developed, the exact place where

the slice was taken is not important. As can be seen in Fig. 5.2, the simulation

Chapter 5. Numerical Analysis of Pipes and Flutes 59

velocity was in agreement with the theoretical velocity showing the validity

of the model.

The numerical error is given by,

Error =
√

∑
i

∑
j
(~u(i, j)− ~ua(i, j))2/P, (5.8)

where ~u is the velocity from the simulation, ~ua is the analytical velocity from

Eq. 5.7 and the sum is over all P nodes in the domain other than the buffer

regions. The calculated error from this simulation was 0.0001, additionally

showing the validity of the model.

5.3.2 D3Q19

The Poiseulle flow in 3D cylindrical pipe was the first 3D benchmark test per-

formed on the code. The D3Q19 model as described in Section 4.2.3 was em-

ployed. For this simulation, similar conditions to the ones for the Poiseulle

flow in a 2D pipe were employed. In terms of the geometry of the pipe, the

radius was 40 cells and the length was 500 cells. Due to the rectangular na-

ture of the discretized domain, a simplistic zig-zag scheme was used for the

walls. This scheme approximates a circle at larger radii, and the 40 cells was

deemed sufficient for this simulation. It is left for future work to implement

an interpolation scheme for the solid boundaries. The no slip boundary con-

dition was used for the walls of the pipe. At the open ends of the simulation,

the ABC boundary condition was used with a buffer distance of, D = 58. A

source flow and outlet flow of zero was initiated through the use of the target

velocity, uT.

At an arbitrary length along the pipe with the y-axis set to the center of the

pipe, a slice of the velocity was taken and compared to the theoretical velocity

from Eq. 5.4. This comparison is shown in Fig. 5.3, and shows that the

velocity was in agreement with the theoretical velocity showing the validity

Chapter 5. Numerical Analysis of Pipes and Flutes 60

-40 -30 -20 -10 0 10 20 30 40

Distance from center

0

0.5

1

1.5

2

2.5

3

3.5

4

S
p
e
e
d
 (

a
rb

.)

10
-3

Theory

Code

FIGURE 5.3: Comparison of the theoretical results for the
Poiseuille flow from Eq. 5.4 and the results from the D3Q19
code. Notice that the simulated results agree well with the the-
ory curve.

of the 3D model. Additionally, at an arbitrary length along the length, a

planar slice was taken. This contour plot shows the equivelocity lines from

the simulation with yellow corresponding to high speed flow and purple

corresponding to low to zero flow, and is shown in Fig. 5.4. It can be seen

from the figure that there is high speed flow at the center of the pipe and

close to zero flow at the walls of the pipe. Additionally, the concentric circle

nature of the equivelocity lines are what is expected from Eq. 5.4.

-40 -20 0 20 40

z axis distance from center (arb.)

-40

-20

0

20

40

y
 a

x
is

 d
is

ta
n
c
e
 f
ro

m
 c

e
n
te

r
(a

rb
.)

FIGURE 5.4: Equivelocity lines from the results of the D3Q19
code at an arbitrary length. Notice that the concentric circles
are what is expected from Eq. 5.4.

Chapter 5. Numerical Analysis of Pipes and Flutes 61

5.4 Acoustics of a Pipe with No Mean Flow

As discussed in 2.5, the end of a pipe is an important area of research in musi-

cal acoustics. As an interest of the current work is to study the flow at the end

of the organ pipe, a tangential objective was to examine the end corrections

of a pipe. End corrections are notoriously difficult to determine theoretically

leaving most of the work to experimentation. However, these end corrections

can also be determined computationally [9], [10]. These results can then be

compared to the exact result determined by Levine and Schwinger for a pipe

with zero mean flow [22]. Using the D2Q9 model, the goal for this thesis was

to show that the propagation of the wave pulse was as expected. The length

correction, l, can be determined in the D3Q19 model and compared to the

exact result, however, this will be left to future work.

5.4.1 D2Q9

For the D2Q9 simulation, the dimensions were 1000 by 1000 cells with the

pipe length equal to 510 cells and the radius of the pipe, a, equal to 10 cells.

A free slip boundary condition was applied to the walls of the pipe with the

ABC being used for the open boundaries with a buffer width, D, equal to 60

cells. In order to excite the system, a perturbation was implemented in the

form of a Hanning impulse as,

ρT = ρ0 + ρ′
(

0.5 + 0.5 cos
(2πx

T0
+ π

))

uT
x =

ρ′c0

ρ0

(
0.5 + 0.5 cos

(2πx
T0

+ π
))

,

(5.9)

where ρ0 = 1 is the initial density, ρ′ = 0.001 is the density perturbation and

T0 = 10 was the length of the impulse. For t > T0, ρT = ρ0 and uT
x = 0.

Chapter 5. Numerical Analysis of Pipes and Flutes 62

The use of this smooth impulse is required to reduce the production of high

frequency noise which aids in the stability of the simulation [9].

FIGURE 5.5: Snapshots of flow from a pipe with an initial per-
turbation from [9]. From a to b, the pulse reaches the end of
the pipe where part of it reflects and part of it is radiated out-
wards. From b to c, the pulse continues to radiate outwards and
propagate in the pipe.

This is similar to some of da Silva’s simulations, with those results shown

in Fig. 5.5. The results of this simulation are shown in Fig. 5.6, which show

the propagation of the wave pulse at times similar to that of Fig. 5.5. In

the first snapshot, the initial propagation is traveling to the right and has

yet to reach the end of the pipe. In the second snapshot, some of the pulse

has reflected at the end and is now traveling to the left in the pipe while the

remainder of the pulse is propagated outside the pipe. In the final snapshot

the wave continues to propagate outwards as the reflected pulse continues

to travel to the left. A three dimensional model is necessary to accurately

(A) (B) (C)

FIGURE 5.6: Results from the D2Q9 code for a pipe with an
initial perturbation. Notice that the flow at the three different
snapshots are similar to that of 5.5.

Chapter 5. Numerical Analysis of Pipes and Flutes 63

calculate the end corrections of a pipe, so these similarities between Figs. 5.5

and 5.6 gave confidence to move on to the D3Q19 model. It will be the subject

of future work to calculate the end corrections of the pipe using the D3Q19

model.

5.5 Flow in a Flute

This brings us to the flute. The acoustics of the flute family, of which the

organ pipe and recorder are instruments, is discussed more thoroughly in

Section 2.3. While a lot of research has been performed both experimental

and computationally on the flute, most of this research has focused on the

flow around the labium. Subsequent work will study the flow exiting the

end of the instrument for different resonator geometries, mainly circular and

rectangular flutes. Since these geometries could not be examined by using

a two dimensional model, the purpose of the D2Q9 model was to see if the

behavior of the flow was as expected. It will left for future work to use the

D3Q19 model to examine the flow exiting the instrument for circular and

rectangular geometries.

5.5.1 D2Q9

For the D2Q9 model, the dimensions of the simulation were 700 by 1000 cells.

The dimensions of the flute are as follows: the length and height of the flue

was 84 by 9 cells; the distance between the labium and flue exit was 35 cells;

the height of the labium was 16 cells and the angle was 15 degrees; and, the

length and height of the resonator was 344 by 52 cells. No-slip boundary

conditions were used for the walls of the flute and the ABC was used for

the open boundaries with a buffer width, D = 58, and an outlet velocity

condition of uT
x = 0. Similar to the simulation performed in Section 5.4, a

Chapter 5. Numerical Analysis of Pipes and Flutes 64

FIGURE 5.7: Flow from a flute from the D2Q9 code. Notice the
presence of oscillations and vorticies about the labium.

smooth velocity inlet was used of the form,

uT
x = uin sin2(

πt
2T0

), (5.10)

where T0 = 5000 and uin = 0.071. The results of the simulation can be seen

in Fig. 5.7 where yellow to dark blue represents high to low/zero speed flow.

As can be seen in the figure, the flow oscillates above and below the labium

as expected and the creation of vorticies can be seen.

5.6 Conclusion

In this chapter, the results from the simulations performed in this thesis were

presented along with the different models of the code used. Chapter 6 will

describe the improvements possible and ideas for future work.

65

Chapter 6

Conclusion and Future Research

6.1 Conclusion

In this thesis, a lattice Boltzmann method code was developed from scratch

with the intent of studying the flow inside woodwind instruments. The code

started in Matlab with a D2Q9 model. As the required domain of the simu-

lations increased, it was realized that it would be necessary to re-implement

the code in Fortran. This CPU Fortran code allowed for a marginal speedup

ratio but it was still not enough for a 3D model. This led to the final imple-

mentation of the code: a D3Q19 GPU CUDA Fortran model.

The simulations reported in this thesis are from the D2Q9 and D3Q19

GPU Fortran code. The first simulation was that of Poiseuille flow in a pipe

that was used as a first, easy to implement benchmark test. This allowed for

the validity of the code to be established through both qualitative and quanti-

tative means. Moving from here, this simple test of a pipe was extended to an

open pipe where the acoustic wave was able to propagate outside the pipe.

The results were compared qualitatively to other simulations and followed

what experimentally occurs. The final simulations performed were that of

an organ pipe. The 2D model simulation results were used as a qualitative

assessment of the code.

Chapter 6. Conclusion and Future Research 66

6.2 Future Work

As referenced in Chapter 1, the work in this thesis represents a starting point

that is meant to be built upon. With that in mind, there are numerous im-

provements and advancements that can be made.

In terms of simulations to be run, there are two simulations discussed in

Chapter 5 that can be run without any major changes to the code: 3D end cor-

rections of a pipe and the 3D flute. Calculating the end corrections of a pipe

would provide an additional quantitative means to show the validity of the

model by comparing the results to those by Levine and Schwinger. Addition-

ally, these results would be relevant because the purpose of the simulations

of the 3D flute would be to analyze the flow leaving the end of the flute. This

leads us to the second simulation that can be run. There has been some exper-

imental evidence that the flow leaving the end of the flute changes depending

on its geometry. One advantage of the LBM is that changing the geometry of

what is being simulated does not require extensive changes to the code. This

means that flutes of different geometries, rectangular and cylindrical for in-

stance, can be simulated with relative ease. Moving from here, it would also

be possible to use this code to simulate the reed-mouthpiece system of the

clarinet. This, however, will require some more major changes to the code in

the form of moving boundaries among other matters.

Other than additional simulations that can be run on the model, there

are improvements that can make the code more efficient and accurate. As

discussed, the final D2Q9 and D3Q19 Fortran codes were SRT models. In ob-

serving the flow at the end of the 3D flute, it will likely be necessary for the

code to be upraded to an MRT model for improved stability. Additionally

in considering the flute, it would be beneficial to implement an interpolated

bounce back condition at boundaries that fall between nodes. This would

also be necessary for the moving boundaries in the case of the reed for the

Chapter 6. Conclusion and Future Research 67

clarinet. This type of scheme is described in [44]. Both the MRT model and

interpolation scheme would help improve the accuracy of the code. In terms

of efficiency, there are a few areas where the code can be further optimized

to improve its performance. To start, instead of the row major layout that is

currently used, the data layout could be switched to a tiling scheme as dis-

cussed in Section 4.4.3. Additionally, there are other optimization techniques

that were not employed in this thesis that could be considered from [40]–[42].

Finally, the calculation of the macroscopic variables of ~u and ρ could be re-

worked so that the values did not have to be downloaded and re-uploaded

to the GPU at every time step. Of all the optimization proposed here, this last

one would lead to the greatest increase in performance.

68

Bibliography

[1] W. Hui, “Exact solutions of the unsteady two-dimensional navier-stokes

equations”, Journal of Applied Mathematics and Physics, vol. 38, pp. 689–

702, 1987.

[2] D. Wang, “Global solutions of the navier–stokes equations for viscous

compressible flows”, Nonlinear Analysis: Theory, Methods and Applica-

tions, vol. 52, no. 8, pp. 1867–1890, 2003, ISSN: 0362-546X. DOI: https://

doi.org/10.1016/S0362-546X(02)00280-8. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0362546X02002808.

[3] A. Mohamad, Lattice Boltzmann Method: Fundamentals and Engineering

Applications with Computer Codes, ser. SpringerLink : Bücher. Springer

London, 2011, ISBN: 9780857294555.

[4] H. Kühnelt, “Studying the vortex sound of recorder and flute-like in-

struments by means of the lattice boltzmann method and helmholtz

decomposition”, PhD thesis, University of Music and Performing Arts

Vienna, 2016.

[5] N. Giordano, “Direct numerical simulation of a recorder.”, The Journal

of the Acoustical Society of America, vol. 133 2, pp. 1111–8, 2013.

[6] N Giordano, “Simulation studies of a recorder in three dimensions”,

The Journal of the Acoustical Society of America, vol. 135, no. 2, pp. 906–

916, 2014. DOI: 10.1121/1.4861249. eprint: https://doi.org/10.

1121/1.4861249. [Online]. Available: https://doi.org/10.1121/1.

4861249.

https://doi.org/https://doi.org/10.1016/S0362-546X(02)00280-8
https://doi.org/https://doi.org/10.1016/S0362-546X(02)00280-8
http://www.sciencedirect.com/science/article/pii/S0362546X02002808
http://www.sciencedirect.com/science/article/pii/S0362546X02002808
https://doi.org/10.1121/1.4861249
https://doi.org/10.1121/1.4861249
https://doi.org/10.1121/1.4861249
https://doi.org/10.1121/1.4861249
https://doi.org/10.1121/1.4861249

BIBLIOGRAPHY 69

[7] M. Sukop and D. Thorne, Lattice Boltzmann Modeling: An Introduction

for Geoscientists and Engineers. Springer Berlin Heidelberg, 2007, ISBN:

9783540279822.

[8] P. Skordos, “Modeling flue pipes-subsonic flow, lattice boltzmann, and

parallel distributed computers”, PhD thesis, Massachusetts Institute of

Technology, 1995.

[9] A. R. da Silva, “Numerical studies of aeroacoustic aspects of wind in-

struments”, PhD thesis, McGill University, 2008.

[10] Y. Shi, “A numerical framework for fluid-acoustic-structure interaction

in clarinet-like instruments”, PhD thesis, McGill University, 2016.

[11] P. Carroll, Baroque Woodwind Instruments. Taylor and Francis Ltd, 1999.

[12] Yamaha, The structure of the clarinet, https://www.yamaha.com/en/

musical_instrument_guide/clarinet/mechanism/, (accessed: 02.17.2018).

[13] J.-P. Dalmont, J. Gilbert, and S. Ollivier, “Nonlinear characteristics of

single-reed instruments: Quasistatic volume flow and reed opening

measurements”, The Journal of the Acoustical Society of America, vol. 114,

no. 4, pp. 2253–2262, 2003. DOI: 10.1121/1.1603235. eprint: http:

//dx.doi.org/10.1121/1.1603235. [Online]. Available: http://dx.

doi.org/10.1121/1.1603235.

[14] L. Fuks, “Acoustical, physiological and perceptual aspects of reed wind

instrument playing and vocal-ventricular fold phonation”, PhD thesis,

Kungl Tekniska Högskolan, 1998.

[15] W. L. Coyle, P. Guillemain, J. Kergomard, and J.-P. Dalmont, “Predict-

ing playing frequencies for clarinets: A comparison between numeri-

cal simulations and simplified analytical formulas”, The Journal of the

Acoustical Society of America, vol. 138, no. 5, pp. 2770–2781, 2015. DOI:

https://www.yamaha.com/en/musical_instrument_guide/clarinet/mechanism/
https://www.yamaha.com/en/musical_instrument_guide/clarinet/mechanism/
https://doi.org/10.1121/1.1603235
http://dx.doi.org/10.1121/1.1603235
http://dx.doi.org/10.1121/1.1603235
http://dx.doi.org/10.1121/1.1603235
http://dx.doi.org/10.1121/1.1603235

BIBLIOGRAPHY 70

10.1121/1.4932169. eprint: http://dx.doi.org/10.1121/1.4932169.

[Online]. Available: http://dx.doi.org/10.1121/1.4932169.

[16] C. Richard, J. Gabriel, and W. Coyle, “Comparison of the vacuum and

compression artificial mouth systems in clarinet acoustics”, Student-

Faculty Collaborative Research Annual Reports, 2017.

[17] M. L. Facchinetti, X. Boutillon, and A. Constantinescu, “Numerical and

experimental modal analysis of the reed and pipe of a clarinet”, The

Journal of the Acoustical Society of America, vol. 113, no. 5, pp. 2874–2883,

2003. DOI: 10.1121/1.1560212. eprint: http://dx.doi.org/10.1121/

1.1560212. [Online]. Available: http://dx.doi.org/10.1121/1.

1560212.

[18] P. Dickens, R. France, J. Smith, and J. Wolfe, “Clarinet acoustics: In-

troducing a compendium of impedance and sound spectra”, vol. 35,

pp. 17–24, Apr. 2007.

[19] E. M. von Hornbostel and C. Sachs, “Classification of musical instru-

ments: Translated from the original german by anthony baines and

klaus p. wachsmann”, The Galpin Society Journal, vol. 14, pp. 3–29, 1961,

ISSN: 00720127.

[20] A. Benade, Fundamentals of Musical Acoustics, ser. Dover Books on Mu-

sic Series. Dover Publications, 1990, ISBN: 9780486264844.

[21] L. L. Beranek, Acoustics, ser. Electrical and electronic engineering. Amer-

ican Institute of Physics, 1986, ISBN: 9780883184943.

[22] H. Levine and J. Schwinger, “On the radiation of sound from an un-

flanged circular pipe”, Phys. Rev., vol. 73, pp. 383–406, 4 1948. DOI:

10.1103/PhysRev.73.383. [Online]. Available: https://link.aps.

org/doi/10.1103/PhysRev.73.383.

https://doi.org/10.1121/1.4932169
http://dx.doi.org/10.1121/1.4932169
http://dx.doi.org/10.1121/1.4932169
https://doi.org/10.1121/1.1560212
http://dx.doi.org/10.1121/1.1560212
http://dx.doi.org/10.1121/1.1560212
http://dx.doi.org/10.1121/1.1560212
http://dx.doi.org/10.1121/1.1560212
https://doi.org/10.1103/PhysRev.73.383
https://link.aps.org/doi/10.1103/PhysRev.73.383
https://link.aps.org/doi/10.1103/PhysRev.73.383

BIBLIOGRAPHY 71

[23] Y. Ando, “Experimental study of the pressure directivity and the acous-

tic centre of the circular pipe horn loud speaker”, Acta Acustica united

with Acustica, vol. 20, no. 6, pp. 366–369, 1968, ISSN: 1610-1928. [On-

line]. Available: https://www.ingentaconnect.com/content/dav/

aaua/1968/00000020/00000006/art00009.

[24] A. Norris and I. Sheng, “Acoustic radiation from a circular pipe with

an infinite flange”, Journal of Sound and Vibration, vol. 135, no. 1, pp. 85

–93, 1989, ISSN: 0022-460X. DOI: https://doi.org/10.1016/0022-

460X(89)90756-6. [Online]. Available: http://www.sciencedirect.

com/science/article/pii/0022460X89907566.

[25] R. Munt, “Acoustic transmission properties of a jet pipe with subsonic

jet flow: I. the cold jet reflection coefficient”, Journal of Sound and Vibra-

tion, vol. 142, no. 3, pp. 413 –436, 1990, ISSN: 0022-460X. DOI: https://

doi.org/10.1016/0022-460X(90)90659-N. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/0022460X9090659N.

[26] J. M. Tyler and T. G. Sofrin, “Axial flow compressor noise studies”, in

SAE Technical Paper, SAE International, Jan. 1962.

[27] D. Tong, Kinetic theory, Lecture Notes, 2012.

[28] D. A. Wolf-Gladrow, “5. lattice boltzmann models”, in Lattice Gas Cel-

lular Automata and Lattice Boltzmann Models, Springer, 2000, pp. 159–

246.

[29] D. Tong, Classical mechanics, chapter 4: The hamiltonian formulation, Lec-

ture Notes, 2015.

[30] S. Harris, An Introduction to the Theory of the Boltzmann Equation. Holt,

Rinehart and Winston, 1971.

[31] P. L. Bhatnagar, E. P. Gross, and M. Krook, “A model for collision pro-

cesses in gases. i. small amplitude processes in charged and neutral

https://www.ingentaconnect.com/content/dav/aaua/1968/00000020/00000006/art00009
https://www.ingentaconnect.com/content/dav/aaua/1968/00000020/00000006/art00009
https://doi.org/https://doi.org/10.1016/0022-460X(89)90756-6
https://doi.org/https://doi.org/10.1016/0022-460X(89)90756-6
http://www.sciencedirect.com/science/article/pii/0022460X89907566
http://www.sciencedirect.com/science/article/pii/0022460X89907566
https://doi.org/https://doi.org/10.1016/0022-460X(90)90659-N
https://doi.org/https://doi.org/10.1016/0022-460X(90)90659-N
http://www.sciencedirect.com/science/article/pii/0022460X9090659N
http://www.sciencedirect.com/science/article/pii/0022460X9090659N

BIBLIOGRAPHY 72

one-component systems”, Phys. Rev., vol. 94, pp. 511–525, 3 1954. DOI:

10.1103/PhysRev.94.511. [Online]. Available: https://link.aps.

org/doi/10.1103/PhysRev.94.511.

[32] W. Kausel, A Musical Acoustician’s Guide to Computational Physics, Con-

cepts, Algorithms and Applications. Jan. 2003, pp. 123–132, ISBN: 3900914052.

[33] P. Lallemand and L.-S. Luo, “Theory of the lattice boltzmann method:

Dispersion, dissipation, isotropy, galilean invariance and stability”, NASA,

Tech. Rep., 2000.

[34] D. d’Humieres, Rarefied Gas Dynamics: Theory and Simulation. American

Institiute of Aeronautics and Astronautics, Inc., 1994, pages 450-458.

[35] Y.-H. Qian, D. d’Humières, and P. Lallemand, “Lattice bgk models for

navier-stokes equation”, EPL (Europhysics Letters), vol. 17, no. 6, p. 479,

1992.

[36] D. d’Humieres, I. Ginzburg, M. Krafczyk, P. Lallemand, and L.-S. Luo,

“Multiple-relaxation time lattice boltzmann models in 3d”, NASA, Tech.

Rep., 2002.

[37] E. W. Kam, R. M. So, and R. C. Leung, “Non-reflecting boundary condi-

tions for one-step lbm simulation of aeroacoustics”, in 12th AIAA/CEAS

Aeroacoustics Conference (27th AIAA Aeroacoustics Conference), 2006, p. 2416.

[38] M. Fatica and G. Ruetsch, CUDA Fortran for Scientists and Engineers.

Elsevier, 2014.

[39] Programming guide, version 10.2.89, NVIDIA CUDA, 2019.

[40] M. Astorino, J. Sagredo, and A. Quarteroni, “A modular lattice boltz-

mann solver for gpu computing processors”, SeMA Journal, vol. 59,

pp. 53–78, 2012.

https://doi.org/10.1103/PhysRev.94.511
https://link.aps.org/doi/10.1103/PhysRev.94.511
https://link.aps.org/doi/10.1103/PhysRev.94.511

BIBLIOGRAPHY 73

[41] M. J. Mawson and A. J. Revell, “Memory transfer optimization for a

lattice boltzmann solver on kepler architecture nvidia gpus”, Computer

Physics Communications, vol. 185, no. 10, pp. 2566 –2574, 2014, ISSN:

0010-4655. DOI: https://doi.org/10.1016/j.cpc.2014.06.003. [On-

line]. Available: http://www.sciencedirect.com/science/article/

pii/S0010465514002070.

[42] N.-P. Tran, M. Lee, and S. Hong, “Performance optimization of 3d lat-

tice boltzmann flow solver on a gpu”, Scientific Programming, vol. 2017,

pp. 1–16, Jan. 2017. DOI: 10.1155/2017/1205892.

[43] G. Wellein, T. Zeiser, G. Hager, and S. Donath, “On the single proces-

sor performance of simple lattice boltzmann kernels”, Computers and

Fluids, vol. 35, no. 8, pp. 910 –919, 2006, Proceedings of the First Inter-

national Conference for Mesoscopic Methods in Engineering and Sci-

ence, ISSN: 0045-7930. DOI: https://doi.org/10.1016/j.compfluid.

2005.02.008. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/S0045793005001532.

[44] P. Lallemand and L.-S. Luo, “Lattice boltzmann method for moving

boundaries”, Journal of Computational Physics, 2002.

https://doi.org/https://doi.org/10.1016/j.cpc.2014.06.003
http://www.sciencedirect.com/science/article/pii/S0010465514002070
http://www.sciencedirect.com/science/article/pii/S0010465514002070
https://doi.org/10.1155/2017/1205892
https://doi.org/https://doi.org/10.1016/j.compfluid.2005.02.008
https://doi.org/https://doi.org/10.1016/j.compfluid.2005.02.008
http://www.sciencedirect.com/science/article/pii/S0045793005001532
http://www.sciencedirect.com/science/article/pii/S0045793005001532

	Computational analysis of woodwind instruments using the lattice Boltzmann method
	Recommended Citation

	Declaration of Authorship
	Ozymandias

	Abstract
	Acknowledgements
	Introduction
	Acoustics of Musical Instruments
	Introduction
	Clarinet Acoustics
	Reed Mouthpiece System
	Resonator

	Flutes
	Impedance
	Acoustical Impedance
	Radiation Impedance

	End Corrections
	Conclusion

	Theory of Lattice Boltzmann Method
	Introduction
	Kinetic Theory
	Lattice Boltzmann Equation
	Single Relaxation Time
	Multiple Relaxation Times

	Conclusion

	Implementation of Lattice Boltzmann Method
	Introduction
	LBM Models
	One Dimension
	Two Dimensions
	Three Dimensions

	Boundary Conditions
	Solid Boundary
	Open Boundaries

	GPU Computing
	Architecture
	Programming
	Memory Management

	Implementation
	LBM Procedure
	Conclusion

	Numerical Analysis of Pipes and Flutes
	Introduction
	Evolution of the code
	Poiseuille Flow in a Pipe
	D2Q9
	D3Q19

	Acoustics of a Pipe with No Mean Flow
	D2Q9

	Flow in a Flute
	D2Q9

	Conclusion

	Conclusion and Future Research
	Conclusion
	Future Work

	Bibliography

