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Abstract
Background: SPG11 mutations can cause autosomal recessive hereditary spastic 
paraplegia (ARHSP) and juvenile amyotrophic lateral sclerosis (JALS). Because 
these diseases share some clinical presentations and both can be caused by SPG11 
mutations, it was considered that definitive diagnosis may not be straight forward.
Methods: The DNAs of referred ARHSP and JALS patients were exome sequenced. 
Clinical data of patients with SPG11 mutations were gathered by interviews and neu-
rological examinations including electrodiagnosis (EDX) and magnetic resonance 
imaging (MRI).
Results: Eight probands with SPG11 mutations were identified. Two mutations are 
novel. Among seven Iranian probands, six carried the p.Glu1026Argfs*4-causing 
mutation. All eight patients had features known to be present in both ARHSP and 
JALS. Additionally and surprisingly, presence of both thin corpus callosum (TCC) 
on MRI and motor neuronopathy were also observed in seven patients. These presen-
tations are, respectively, key suggestive features of ARHSP and JALS.
Conclusion: We suggest that rather than ARHSP or JALS, combined ARHSP/JALS 
is the appropriate description of seven patients studied. Criteria for ARHSP, JALS, 
and combined ARHSP/JALS designations among patients with SPG11 mutations are 
suggested. The importance of performing both EDX and MRI is emphasized. Initial 
screening for p.Glu1026Argfs*4 may facilitate SPG11 screenings in Iranian patients.
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1  |   INTRODUCTION

Mutations in SPG11 (OMIM 610844) which encodes spatac-
sin (after “spasticity with thin or atrophied corpus callosum 
syndrome protein”) are associated with various neurological 
diseases. The gene was first identified as a major cause of 
autosomal recessive hereditary spastic paraplegia (ARHSP; 
OMIM 604360) in 2007(Stevanin et al., 2007). It was shown 
that SPG11 is expressed ubiquitously in the nervous system 
and most prominently in the cerebellum, cerebral cortex, 
hippocampus, and pineal gland. Very quickly after the ini-
tial publication, SPG11 mutations were reported in ARHSP 
patients of various ethnicities (Boukhris et al., 2008; Del Bo 
et al., 2007; Denora et al., 2009; Hehr et al., 2007; Lee et al., 
2008; Paisan-Ruiz, Dogu, Yilmaz, Houlden, & Singleton, 
2008; Zhang et al., 2008). Hereditary spastic paraplegia 
(HSP) constitutes a clinically and genetically heterogeneous 
group of disorders whose clinical hallmark is progressive 
spasticity and weakness, which are more prominent in the 
lower limbs (Novarino et al., 2014; Schule & Schols, 2011). 
Additional indications include increased tendon reflexes, bi-
lateral Babinski sign, muscle weakness, and urinary urgency. 
HSP is classically associated with only upper motor neuron 
(UMN) defects. Its prevalence is estimated to be 2-10/100000 
in most populations (Ruano, Melo, Silva, & Coutinho, 2014). 
The disease is classified as pure when spasticity and weak-
ness occur in isolation or as complex when the spasticity and 
weakness are accompanied by other impairments including 
thinning of the corpus callosum (TCC), cognitive impair-
ment, amyotrophy, ataxia, peripheral neuropathy, pseudob-
ulbar involvement, deafness, and retinal manifestations 
(Harding, 1983; Stevanin et al., 2008). Clearly, complex HSP 
as compared to pure HSP is a more severe disorder. Although 
inheritance of HSP in familial forms can be autosomal dom-
inant (AD), autosomal recessive (AR), or X-linked, inheri-
tance of pure HSP is usually AD and inheritance of complex 
HSP is usually AR. At least 58 ARHSP-causing genes have 
been identified, but SPG11 mutations were reported as a 
common cause in various studies and sometimes accounted 
for disease in approximately 50% of the patients investigated 
(Dong et al., 2018; Du, Hu, Tang, Jiang, & Shen, 2018; Kara 
et al., 2016; Schule et al., 2016).

Adult onset amyotrophic lateral sclerosis (ALS; OMIM 
105400) is a progressive and fatal motor neuron disease 
with an estimated prevalence of 2-7/100000 (Nelson, 1995; 
Wijesekera & Leigh, 2009). Death usually ensues 3–5 years 
after onset of symptoms. ALS is characterized by dysfunc-
tion and degeneration of both UMNs in the cortex and lower 
motor neurons (LMNs) in the brainstem and spinal cord. 
Like HSP, initial manifestations of motor neuron symptoms 
usually involve the limbs. UMN damage causes spasticity 
in the arms and legs that lead to difficulty in writing, walk-
ing, uncoordinated movements, and brisk reflexes. LMN 

damage causes weakness, muscle wasting, and fasciculation. 
Approximately 5%-10% of cases are familial, and inheritance 
pattern in most of these is AD (Dion, Daoud, & Rouleau, 
2009). Juvenile onset ALS (JALS) is a rare form of ALS with 
onset before the age of 25 years and an AR pattern of inher-
itance. In addition to recessive inheritance and early onset, 
JALS is typically distinguished from adult onset ALS by its 
slow rate of progression and long disease duration of up to 
a few decades (Hentati et al., 1994). Overlaps between clin-
ical features of ARHSP and JALS are evident (Fink, 2001; 
Meyer et al., 2005; Strong & Gordon, 2005). In addition to 
shared clinical presentations, pathological findings and ge-
netic evidence also support shared etiologies for the two dis-
eases. For example, mutations in the ARHSP gene ERLIN2 
(SPG18) have been reported in JALS patients and mutations 
in the JALS gene Alsin (ALS2) have been reported as the 
cause of ARHSP (Al-Saif, Bohlega, & Al-Mohanna, 2012; 
Eymard-Pierre et al., 2002; Hadano et al., 2001; Wakil et al., 
2014; Yang et al., 2001; Yildirim et al., 2011). Yet, results 
of electrodiagnostic (EDX) testing are usually not the same 
for ARHSP-diagnosed patients and JALS-diagnosed pa-
tients. Specifically, motor neuronopathy is always evidenced 
by electromyography (EMG) in JALS patients. Nerve con-
duction studies (NCS) are more likely to suggest abnormal 
sensory findings in ARHSP patients as compared to JALS 
patients. Nevertheless, similarities between clinical features 
of ARHSP and JALS prompted mutation screening of SPG11 
in 25 families with JALS-affected members; patients of 10 
families were found to have mutations in SPG11 (Orlacchio 
et al., 2010). Mutations in SPG11 were subsequently identi-
fied by exome sequencing in two additional JALS-affected 
families without mutations in known ALS-causing genes 
(Daoud et al., 2012).

Charcot–Marie–Tooth (CMT) disease constitutes a 
heterogeneous group of inherited peripheral neuropathies 
(Mathis et al., 2015) with an estimated prevalence of one 
in a few thousand in most populations (Gonzaga-Jauregui 
et al., 2015). The clinical features of adult-onset CMT 
are highly variable but usually include symmetric slowly 
progressive distal muscle weakness and atrophy that first 
affect the lower limbs, foot deformities, slight or moder-
ate distal sensory impairment, and depressed tendon re-
flexes (Lupski et al., 2010; Marttila et al., 2017; Mathis 
et al., 2015). CMT is commonly classified as CMT type 1 
(CMT1; demyelinating) or CMT type 2 (CMT2; axonal). 
As compared to JALS/ARHSP, overlap of clinical features 
between CMT and ARHSP and also between CMT and 
JALS is less. Spasticity and increased deep tendon reflexes, 
which are among the presentations associated with both 
ARHSP and JALS, are not among the clinical features of 
CMT. In fact, CMT is characterized by diminished tendon 
reflexes. Nevertheless, the presence of TCC in three sib-
lings affected with AR axonal CMT (ARCMT2) prompted 
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F I G U R E  1   SPG11 mutations in patients of eight families. (a) Pedigrees of the eight families. SPG11 genotypes of individuals tested are 
presented. Individual SPG11-210-II3 was genotyped prior to her death. Present age of individuals is provided when known. Filled circles and 
squares, affected; unfilled circles and squares, unaffected at time of examination. Among the affected individuals, only those designated with * 
were clinically examined, and the others were reported to be affected by family members. M, mutated SPG11 allele; N, wild-type SPG11 allele; 
MN-MN, compound heterozygous SPG11 phenotypes. (b) DNA sequence chromatograms showing various SPG11 mutations identified in the eight 
families

(a)

(b)



4 of 14  |      KHANI et al.

T
A

B
L

E
 1

 
Ph

en
ot

yp
ic

 fe
at

ur
es

 a
nd

 S
PG

11
 g

en
ot

yp
es

 o
f p

at
ie

nt
s f

ro
m

 e
ig

ht
 fa

m
ili

es
 w

ith
 S

PG
11

 m
ut

at
io

ns
 (p

at
ie

nt
s a

va
ila

bl
e 

w
er

e 
ex

am
in

ed
)

Fa
m

ily
SP

G
11

-3
00

SP
G

11
-1

02
SP

G
11

-1
01

SP
G

11
-1

89
SP

G
11

-2
10

O
ri

gi
n 

of
 fa

m
ily

O
ru

m
ie

h,
 Ir

an
A

fg
ha

ni
st

an
Za

nj
an

, I
ra

n
G

ha
zv

in
, I

ra
n

K
ur

di
st

an
, I

ra
n

SP
G

11
-3

00
-I

I1
SP

G
11

-3
00

-I
I2

SP
G

11
-1

02
-I

I3
SP

G
11

-1
02

-I
I4

SP
G

11
-1

02
-I

I5
SP

G
11

-1
01

-I
I3

SP
G

11
-1

01
-I

I7
SP

G
11

-1
89

-I
I2

SP
G

11
-1

89
-I

I3
SP

G
11

-2
10

-I
I7

A
ge

 a
t e

xa
m

in
at

io
n 

(y
ea

rs
)

26
19

20
18

16
40

20
27

17
23

A
ge

 a
t o

ns
et

 (y
ea

rs
)

16
17

12
12

13
22

16
17

12
15

D
is

ea
se

 d
ur

at
io

n 
(y

ea
rs

)a  
10

2
8

6
3

18
4

10
5

8

Se
x

M
al

e
Fe

m
al

e
Fe

m
al

e
M

al
e

M
al

e
Fe

m
al

e
M

al
e

Fe
m

al
e

M
al

e
Fe

m
al

e

In
iti

al
 m

an
ife

st
at

io
n

Le
g 

w
ea

kn
es

s 
&

 st
ifn

es
s

Le
g 

w
ea

kn
es

s &
 

st
ifn

es
s

Le
g 

w
ea

kn
es

s &
 

st
ifn

es
s

H
an

d 
tre

m
or

Le
g 

w
ea

kn
es

s &
 

st
ifn

es
s

Le
g 

w
ea

kn
es

s &
 

st
ifn

es
s

Le
g 

w
ea

kn
es

s &
 

st
ifn

es
s

Le
g 

w
ea

kn
es

s &
 

st
ifn

es
s

Le
g 

w
ea

kn
es

s &
 

st
ifn

es
s

Le
g 

w
ea

kn
es

s &
 

st
ifn

es
s

M
ot

or
 d

is
tu

rb
an

ce
W

ea
kn

es
sc  

W
ea

kn
es

sc  
W

ea
kn

es
sb  

W
ea

kn
es

sb  
W

ea
kn

es
sb  

W
ea

kn
es

sb  
W

ea
kn

es
sb  

W
ea

kn
es

sb  
W

ea
kn

es
sc  

W
ea

kn
es

sc  

Sp
as

tic
ity

+
+

+
+

+
+

+
+

+
+

D
is

ta
l a

m
yo

tro
ph

y
+

−
+

+
+

+
+

+
+

+

D
ys

ar
th

ria
−

−
−

+
 (m

ild
)

+
 (m

ild
)

+
 (m

ild
)

−
−

−
−

D
ys

ph
ag

ia
−

−
−

−
−

−
−

−
−

−

Su
bj

ec
tiv

e 
se

ns
or

y 
sy

m
pt

om
s

−
−

−
−

−
−

−
−

−
−

Se
ns

or
y 

si
gn

s
N

or
m

al
 e

xa
m

N
or

m
al

 e
xa

m
+

d  
+

 d
 

+
 d

 
N

or
m

al
 e

xa
m

N
or

m
al

 e
xa

m
N

or
m

al
 e

xa
m

N
or

m
al

 e
xa

m
N

or
m

al
 e

xa
m

D
ee

p 
te

nd
on

 re
fle

xe
s

In
cr

ea
se

d
In

cr
ea

se
d

In
cr

ea
se

d
In

cr
ea

se
d

In
cr

ea
se

d
In

cr
ea

se
d

In
cr

ea
se

d
In

cr
ea

se
d

In
cr

ea
se

d
In

cr
ea

se
d

Tr
em

or
−

−
−

+
+

−
−

−
−

−

U
rin

ar
y 

in
co

nt
in

en
ce

−
−

−
−

−
−

−
−

−
−

A
ta

xi
a

−
−

−
−

−
−

−
−

−
−

M
en

ta
l i

m
pa

irm
en

t
−

−
+

+
+

−
−

−
−

−

A
m

bu
la

to
ry

 st
at

e
N

ee
ds

 w
al

ki
ng

 
de

vi
ce

in
de

pe
nd

en
t

N
ee

ds
 h

el
p

N
ee

ds
 h

el
p

N
ee

ds
 w

al
ki

ng
  

de
vi

ce
N

ee
ds

 w
al

ki
ng

 
de

vi
ce

Sl
ow

 b
ut

 
in

de
pe

nd
en

t
N

ee
ds

 w
al

ki
ng

 
de

vi
ce

Sl
ow

 b
ut

 
in

de
pe

nd
en

t
B

ed
rid

de
n

EM
G

N
or

m
al

N
or

m
al

M
ot

or
 

ne
ur

on
op

at
hy

e  
M

ot
or

 
ne

ur
on

op
at

hy
e  

M
ot

or
  

ne
ur

on
op

at
hy

e  
M

ot
or

 
ne

ur
on

op
at

hy
e  

M
ot

or
 

ne
ur

on
op

at
hy

e  
M

ot
or

 
ne

ur
on

op
at

hy
e  

M
ot

or
 

ne
ur

on
op

at
hy

e  
M

ot
or

 
ne

ur
on

op
at

hy
e  

N
C

S
N

or
m

al
 se

ns
or

y
N

or
m

al
 se

ns
or

y 
fin

di
ng

s
M

ild
 se

ns
or

y 
po

ly
ne

ur
op

at
hy

1  
M

ild
 se

ns
or

y 
po

ly
ne

ur
op

at
hy

2  
M

ild
 se

ns
or

y 
po

ly
ne

ur
op

at
hy

2  
M

ild
 se

ns
or

y 
po

ly
ne

ur
op

at
hy

3  
N

or
m

al
 se

ns
or

y 
fin

di
ng

s
N

or
m

al
 se

ns
or

y 
fin

di
ng

s
N

or
m

al
 se

ns
or

y 
fin

di
ng

s
N

or
m

al
 se

ns
or

y 
fin

di
ng

s

B
ra

in
 M

R
I

TC
C

 &
 T

2 
pe

riv
en

tri
cu

la
r 

hy
pe

rin
te

ns
ity

f  

TC
C

 &
 T

2 
pe

riv
en

tri
cu

la
r 

hy
pe

rin
te

ns
ity

f  

TC
C

 &
 T

2 
pe

riv
en

tri
cu

la
r 

hy
pe

rin
te

ns
ity

f  

TC
C

 &
 T

2 
pe

riv
en

tri
cu

la
r 

hy
pe

rin
te

ns
ity

f  

TC
C

 &
 T

2 
pe

riv
en

tri
cu

la
r 

hy
pe

rin
te

ns
ity

f  

TC
C

 &
 T

2 
pe

riv
en

tri
cu

la
r 

hy
pe

rin
te

ns
ity

f  

TC
C

 &
 T

2 
pe

riv
en

tri
cu

la
r 

hy
pe

rin
te

ns
ity

f  

TC
C

 &
 T

2 
pe

riv
en

tri
cu

la
r 

hy
pe

rin
te

ns
ity

f  

TC
C

 &
 T

2 
pe

riv
en

tri
cu

la
r 

hy
pe

rin
te

ns
ity

f  

TC
C

 &
 T

2 
pe

riv
en

tri
cu

la
r 

hy
pe

rin
te

ns
ity

f  

SP
G

11
 m

ut
at

io
ns

C
om

po
un

d 
he

te
ro

zy
go

us
C

om
po

un
d 

he
te

ro
zy

go
us

H
om

oz
yg

ou
s

H
om

oz
yg

ou
s

H
om

oz
yg

ou
s

c.
30

75
du

pA
; p

.G
lu

10
26

A
rg

fs
*4

c.
C

28
77

A
; p

.C
ys

95
9*

c.
30

75
du

pA
; p

.G
lu

10
26

A
rg

fs
*4

c.
20

12
du

pA
; p

.H
is

67
1G

ln
fs

*2
c.

30
75

du
pA

;

c.
66

18
-6

61
9d

el
C

A
; 

p.
Ile

22
07

G
ln

fs
*9

c.
57

69
de

lT
; p

.S
er

19
23

A
rg

fs
*2

7
p.

G
lu

10
26

A
rg

fs
*4

(C
on

tin
ue

s)



      |  5 of 14KHANI et al.

Fa
m

ily
SP

G
11

-3
01

SP
G

11
-3

02
SP

G
11

-3
03

O
ri

gi
n 

of
 fa

m
ily

K
er

m
an

sh
ah

, I
ra

n
Za

nj
an

, I
ra

n
Ta

br
iz

, I
ra

n

SP
G

11
-3

01
-I

II
5

SP
G

11
-3

01
-I

II
9

SP
G

11
-3

02
-I

I5
SP

G
11

-3
02

-I
I6

SP
G

11
-3

03
-I

I1
SP

G
11

-3
03

-I
I2

A
ge

 a
t e

xa
m

in
at

io
n 

(y
ea

rs
)

22
30

26
23

27
25

A
ge

 a
t o

ns
et

 (y
ea

rs
)

15
5

15
15

18
20

D
is

ea
se

 d
ur

at
io

n 
(y

ea
rs

)a  
7

25
11

8
9

5

Se
x

M
al

e
M

al
e

Fe
m

al
e

Fe
m

al
e

Fe
m

al
e

M
al

e

In
iti

al
 m

an
ife

st
at

io
n

Le
g 

w
ea

kn
es

s &
 st

ifn
es

s
Le

g 
w

ea
kn

es
s &

 st
ifn

es
s

Le
g 

w
ea

kn
es

s &
 st

ifn
es

s
Le

g 
w

ea
kn

es
s &

 st
ifn

es
s

Le
g 

w
ea

kn
es

s &
 st

ifn
es

s
Le

g 
w

ea
kn

es
s &

 st
ifn

es
s

M
ot

or
 d

is
tu

rb
an

ce
W

ea
kn

es
sc  

W
ea

kn
es

sc  
W

ea
kn

es
sc  

W
ea

kn
es

sc  
W

ea
kn

es
sc  

W
ea

kn
es

sc  

Sp
as

tic
ity

+
+

+
+

+
+

D
is

ta
l a

m
yo

tro
ph

y
+

+
+

+
+

+

D
ys

ar
th

ria
+

+
+

−
+

+

D
ys

ph
ag

ia
−

−
−

−
−

−

Su
bj

ec
tiv

e 
se

ns
or

y 
sy

m
pt

om
s

−
−

−
−

−
−

Se
ns

or
y 

si
gn

s
N

or
m

al
 e

xa
m

N
or

m
al

 e
xa

m
N

or
m

al
 e

xa
m

N
or

m
al

 e
xa

m
N

or
m

al
 e

xa
m

N
or

m
al

 e
xa

m

D
ee

p 
te

nd
on

 re
fle

xe
s

In
cr

ea
se

d
In

cr
ea

se
d

In
cr

ea
se

d
In

cr
ea

se
d

In
cr

ea
se

d
In

cr
ea

se
d

Tr
em

or
+

−
−

−
−

−

U
rin

ar
y 

in
co

nt
in

en
ce

−
−

+
−

−
−

A
ta

xi
a

−
−

−
−

−
−

M
en

ta
l i

m
pa

irm
en

t
−

−
−

−
−

−

A
m

bu
la

to
ry

 st
at

e
N

ee
ds

 w
al

ki
ng

 d
ev

ic
e

W
he

el
 c

ha
ir 

bo
un

d
Sl

ow
 b

ut
 in

de
pe

nd
en

t
Sl

ow
 b

ut
 in

de
pe

nd
en

t
N

ee
ds

 h
el

p
Sl

ow
 b

ut
 in

de
pe

nd
en

t

EM
G

M
ot

or
 n

eu
ro

no
pa

th
ye  

M
ot

or
 n

eu
ro

no
pa

th
ye  

M
ot

or
 n

eu
ro

no
pa

th
ye  

M
ot

or
 n

eu
ro

no
pa

th
ye  

M
ot

or
 n

eu
ro

no
pa

th
ye  

M
ot

or
 n

eu
ro

no
pa

th
ye  

N
C

S
N

or
m

al
 se

ns
or

y 
fin

di
ng

s
N

or
m

al
 se

ns
or

y 
fin

di
ng

s
N

or
m

al
 se

ns
or

y 
fin

di
ng

s
N

or
m

al
 se

ns
or

y 
fin

di
ng

s
N

or
m

al
 se

ns
or

y 
fin

di
ng

s
N

or
m

al
 se

ns
or

y 
fin

di
ng

s

B
ra

in
 M

R
I

TC
C

 &
 T

2 
pe

riv
en

tri
cu

la
r 

hy
pe

rin
te

ns
ity

f  
TC

C
 &

 T
2 

pe
riv

en
tri

cu
la

r 
hy

pe
rin

te
ns

ity
f  

TC
C

 &
 T

2 
pe

riv
en

tri
cu

la
r 

hy
pe

rin
te

ns
ity

f  
TC

C
 &

 T
2 

pe
riv

en
tri

cu
la

r 
hy

pe
rin

te
ns

ity
f  

TC
C

 &
 T

2 
pe

riv
en

tri
cu

la
r 

hy
pe

rin
te

ns
ity

f  
TC

C
 &

 T
2 

pe
riv

en
tri

cu
la

r 
hy

pe
rin

te
ns

ity
f  

SP
G

11
 m

ut
at

io
ns

H
om

oz
yg

ou
s

H
om

oz
yg

ou
s

H
om

oz
yg

ou
s

H
om

oz
yg

ou
s

H
om

oz
yg

ou
s

H
om

oz
yg

ou
s

c.
30

75
du

pA
;

c.
30

75
du

pA
;

c.
30

75
du

pA
;

c.
30

75
du

pA
;

c.
30

75
du

pA
;

c.
30

75
du

pA
;

p.
G

lu
10

26
A

rg
fs

*4
p.

G
lu

10
26

A
rg

fs
*4

p.
G

lu
10

26
A

rg
fs

*4
p.

G
lu

10
26

A
rg

fs
*4

p.
G

lu
10

26
A

rg
fs

*4
p.

G
lu

10
26

A
rg

fs
*4

A
bb

re
vi

at
io

ns
: E

M
G

, e
le

ct
ro

m
yo

gr
ap

hy
; M

R
I, 

m
ag

ne
tic

 re
so

na
nc

e 
im

ag
in

g;
 T

C
C

, t
hi

n 
co

rp
us

 c
al

lo
su

m
.

a Y
rs

 b
et

w
ee

n 
on

se
t a

nd
 e

xa
m

in
at

io
n.

 
b M

or
e 

pr
om

in
en

t i
n 

lo
w

er
 li

m
bs

. 
c W

ea
kn

es
s i

n 
lo

w
er

 li
m

bs
. 

d D
ec

re
as

ed
 v

ib
ra

tio
n 

se
ns

e 
in

 lo
w

er
 e

xt
re

m
iti

es
. 

e A
t e

xt
re

m
iti

es
 a

nd
 c

ra
ni

al
 a

nd
 tr

un
ca

l l
ev

el
s. 

f M
or

e 
pr

om
in

en
t i

n 
fr

on
ta

l r
eg

io
n.

 
1 SN

A
P 

in
 u

pp
er

 li
m

bs
 a

t l
ow

er
 n

or
m

al
 li

m
it 

an
d 

un
ob

ta
in

ab
le

 S
N

A
Ps

 in
 lo

w
er

 e
xt

re
m

iti
es

. 
2 D

ec
re

as
ed

 S
N

A
P 

am
pl

itu
de

 in
 u

pp
er

 li
m

bs
 a

nd
 u

no
bt

ai
na

bl
e 

SN
A

Ps
 in

 lo
w

er
 e

xt
re

m
iti

es
. 

3 D
ec

re
as

ed
 S

N
A

P 
in

 u
pp

er
 &

 lo
w

er
 li

m
bs

. N
C

S,
 n

er
ve

 c
on

du
ct

io
n 

st
ud

ie
s. 

T
A

B
L

E
 1

 
(C

on
tin

ue
d)



6 of 14  |      KHANI et al.

SPG11 mutation screening in these siblings and in 27 other 
ARCMT2 families without mutations in other candidate 
genes (Montecchiani et al., 2016). SPG11 mutations were 
reported in 12 of the families. Finally, Parkinsonism, cer-
ebellar ataxia, and even multiple sclerosis-like symptoms 
have been reported in some patients with SPG11 mutations, 
thus adding to the clinical heterogeneity that is associated 
with mutations in SPG11 (Balicza et al., 2018; Faber et al., 
2018; Guidubaldi et al., 2011; Mukai et al., 2018).

SPG11 is a large gene that has 40 exons and spans approx-
imately 100 kb; it encodes a protein of 2,443 amino acids. 
Although the function of spatacsin with respect to disease eti-
ology is not well known, it has been suggested to have roles in 
axonal maintenance and trafficking, and also in recycling of 
lysosomes from autolysosomes (Chang, Lee, & Blackstone, 
2014; Hirst et al., 2015; Perez-Branguli et al., 2014). Over 
250 mutations in the gene have been reported, the vast major-
ity of which are nonsense, splicing, or frameshift mutations. 
These are likely loss of function mutations as they cause dis-
eases with recessive inheritance and as the mutated alleles are 
expected to encode truncated proteins. They are distributed 
throughout the length of the gene; there are no obvious hot 
spots of mutation, and there are no regions whose mutations 
are associated specifically with ARHSP, JALS, or ARCMT2 
(Montecchiani et al., 2016). In fact, several of the reported 
mutations have been observed in two or even all three of the 
diseases. It has been suggested that the pattern of observed 
SPG11 mutations may in part be due to the presence of mul-
tiple Alu sequences in SPG11 that could promote nonallelic 
homologous recombination and mutational events during 
replication (Baskin, Kalia, Banwell, Ray, & Yoon, 2017). The 
findings summarized above suggest partly shared etiologies 
among the disorders described and beg the question of why 
individuals bearing SPG11 mutations have different clinical 
presentations.

Here, we report finding SPG11 mutations in 19 available 
individuals of eight families who are affected with neurologi-
cal disorders. Subjective, clinical, EDX, and muscle magnetic 
resonance imaging (MRI) data on the patients are presented. 
Features common to ARHSP and JALS were present in the 
patients of all the families. We conclude that diagnosis of 
ARHSP is in order for patients of one of the families, but that 
definitive diagnosis of either ARHSP or JALS in the remain-
ing patients is not straightforward. They have both ARHSP 
and JALS presentations that may somewhat favor one or the 
other of the two diseases in various patients.

2  |   SUBJECTS AND METHODS

This research was performed in accordance with the 
Declaration of Helsinki and with approval of the ethics board 
of the University of Tehran.

HSP- or ALS-diagnosed individuals were referred to us 
by various neurologists for genetic analysis in the frame-
work of our ongoing studies on ALS in Iranians and our 
newly initiated studies on HSP (Alavi et al., 2013, 2014; 
Khani et al., 2019). Genetic analysis was initiated on some 
of the patients by whole-exome sequencing of their DNA 
using the Sure Select V6-POST kit and an Illumina HiSeq 
4,000 system (Illumina, CA, USA). The selected patients 
were among those who had at least one affected sibling, and 
whose pedigree structure was consistent with AR inheri-
tance of disease. The sequencing of two probands (SPG11-
300-II1 and SPG11-303- II1) had been done commercially, 
and the mutation reports were placed at our disposal. Exome 
sequence alignment for the other probands was performed 
by us against human reference genome GRCh37/hg19, and 
variant callings were done by using ENSEMBL Variant 
Effect Predictor (http://www.ensem​bl.org/Tools​/VEP) and 
wANNOVAR (http://wanno​var.wglab.org/). Subsequently, 
filtering was performed by removing SNPs with a minor 
allele frequency (MAF) of  >  0.01 in the dbSNP data-
base (http://www.ncbi.nlm.nih.gov/), the Trans-Omics for 
Precision Medicine program (https://www.nhlbi​wgs.org/), 
the 1,000 Genomes database (www.1000g​enomes.org), the 
NHLBI Exome Sequencing Project (http://evs.gs.washi​
ngton.edu/EVS/), the Exome Aggregation Consortium 
database (http://exac.broad​insti​tute.org/), the Genome 
Aggregation Database (http://genom​ad.broad​insti​tute.
org/), the Greater Middle East Variome Project (http://igm.
ucsd.edu/gme/), ENSEMBL (https://www.ensem​bl.org/
index.html), the Healthy Exomes database (https://www.
alzfo​rum.org/exome​s/hex), the Sequencing Initiative Suomi 
database (http://www.sisup​roject.fi/), the VarCards data-
base (http://varca​rds.biols.ac.cn/), or the Iranome database 
(http://irano​me.com/), or observed in in-house exome data 
belonging to approximately 50 unrelated Iranians affected 
with non-neurological diseases. Among the variations that 
remained, those that did not affect amino acid change or 
splicing were also removed. Finally, a file of homozygous 
variations and a file of compound heterozygous variations 
were prepared. Variations in the files were scrutinized to 
identify those within any of the 44 known ALS-causing or 
91 known HSP-causing genes (Table S1). Candidate dis-
ease-causing variations identified were screened for seg-
regation with disease status by direct sequencing. Novel 
mutations were also screened in 300 Iranian control indi-
viduals by an allele-specific PCR protocol or sought in the 
Iranome database that contains exome data on 800 healthy 
Iranians.

Probands with mutations in SPG11 and their available 
affected family members were recruited, interviewed, and 
examined by at least two collaborating neurologists (HS and 
either SN, FF, MR, or BH). EDX including NCS and nee-
dle EMG was done in upper and lower extremities, truncal 

http://www.ensembl.org/Tools/VEP
http://wannovar.wglab.org/
http://www.ncbi.nlm.nih.gov/
https://www.nhlbiwgs.org/
http://www.1000genomes.org
http://evs.gs.washington.edu/EVS/
http://evs.gs.washington.edu/EVS/
http://exac.broadinstitute.org/
http://genomad.broadinstitute.org/
http://genomad.broadinstitute.org/
http://igm.ucsd.edu/gme/
http://igm.ucsd.edu/gme/
https://www.ensembl.org/index.html
https://www.ensembl.org/index.html
https://www.alzforum.org/exomes/hex
https://www.alzforum.org/exomes/hex
http://www.sisuproject.fi/
http://varcards.biols.ac.cn/
http://iranome.com/
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regions, and cranial regions according to standard procedures 
(Dantec Keypoint G4, Natus, CA, USA). Brain magnetic res-
onance imaging (MRI) was performed using a 1.5-T system 
(MAGNETOM Avanto 1.5 Tesla, Siemens). T1- and T2-
weighted spin-echo protocols were performed.

3  |   RESULTS

3.1  |  Genetic analysis

Pedigrees of the eight families who were found to har-
bor mutations in SPG11 and whose clinical features were 
carefully evaluated are shown in Figure  1a. Inheritance of 
disease in all the families was consistent with an AR pat-
tern, as multiple affected offspring were born to unaffected 
parents. Parents in seven of the families were consanguine-
ous. Family SPG11-102 is originally from Afghanistan, and 
the others are Iranian. Compound heterozygous mutations 
c.3075dupA (p.Glu1026Argfs*4) and c.6618-6619delCA 
(p.Ile2207Glnfs*9) in SPG11 were reported in the exome se-
quence results of the proband of family SPG11-300, and ho-
mozygous c.3075dupA (p.Glu1026Argfs*4) mutations were 
reported for the proband of family SPG11-303. The filtering 
protocol applied by us to the whole-exome sequence data of 
the probands of six families identified homozygous SPG11 
mutations in five, SPG11-101, SPG11-189, SPG11-210, 
SPG11-301, and SPG11-302 (Figure 1b; Table 1). The speci-
fications of exome data of all patients reflect high quality se-
quencing (Table S2); the data pertaining to SPG11-210-II7 
are presented in Table S2. Compound heterozygous muta-
tions in SPG11 were found in the exome sequence data of 
the proband of the Afghani family SPG11-102. Observation 
of compound heterozygous mutations in SPG11-102-II4 was 
unexpected because the parents of this family reported con-
sanguinity. Neither homozygous nor compound heterozy-
gous mutations in other candidate genes were observed in the 
exome sequences of the six families (SPG11-102, SPG11-
101, SPG11-189, SPG11-210, SPG11-301, and SPG11-302) 
that we ourselves had sequenced and were also not reported 
in the results of SPG11-300 and SPG11-303 (Table S1). 
All the SPG11 mutations segregated with disease status in 
the respective families (Figure  1a). Interestingly, the same 
p.Glu1026Argfs*4-causing mutation (c.3075dupA) was 
observed in the homozygous state in families SPG11-101, 
SPG11-210, SPG11-301, SPG11-302, and SPG11-303. It 
was also observed as one of two mutated alleles in family 
SPG11-300. This mutation has previously been reported in 
several studies (Balicza et al., 2018; Denora et al., 2009; 
Hehr et al., 2007; Orlacchio et al., 2010; Orlen et al., 2009; 
Schneider-Gold et al., 2017), usually in association with 
ARHSP diagnosis and once in a JALS diagnosis (Orlacchio 
et al., 2010). Three different intragenic haplotypes are 

associated with the p.Glu1026Argfs*4-causing mutation 
among the families that carry it in the homozygous state. This 
suggests that among the families studied, there are three dif-
ferent SPG11 alleles with the c.3075dupA mutation that are 
not identical by descent (Table 2). Unfortunately, inclusion 
of the p.Glu1026Argfs*4-causing mutated alleles of families 
SPG11-300 and SPG11-303 in the haplotype analysis was 
not possible because the full exome data of the probands 
of these families were not available to us. The c.3075dupA 
nucleotide appears to be a mutation hotspot; it is positioned 
within a run of eight A nucleotides in the wild-type allele, 
and such runs promote slippage events during replication 
that can result in deletions and additions. In any case, pres-
ence of the p.Glu1026Argfs*4-causing mutated allele in six 
of the seven Iranian families here studied suggests that this 
may be a common SPG11 mutation among Iranian patients. 
The two SPG11 mutations found in family SPG11-102 were 
each infrequently previously reported in the homozygous 
state, and always in HSP-diagnosed patients (https://www.
ncbi.nlm.nih.gov/; Paisan-Ruiz et al., 2008; Stevanin et al., 
2008). The p.Ile2207Glnfs*9- and p.His671Glnfs*2-causing 
mutations, respectively, of families SPG11-300 and SPG11-
189 have not been previously reported. They were absent 
in the chromosomes of 300 Iranian control individuals and 
in the Iranome database. The American College of Medical 
Genetics (ACMG) classified all five observed SPG11 muta-
tions including one nonsense and four frameshift mutations 
as pathogenic (http://winte​rvar.wglab.org/mlr.php).

3.2  |  Clinical features of patients with 
SPG11 mutations

Relevant information on patients of families with SPG11 mu-
tations is presented in Tables 1 and 3 and in the text below. 
Representative brain MRI images of patients of the families 
are shown in Figure 2. The images testify to the interpretation 
of the images as reported in Table 1.

3.2.1  |  Family SPG11-300

The proband (SPG11-300-II1) was referred at the age of 
26  years with presentations of difficulties in walking and 
spasticity in lower extremities. Onset of symptoms was at 
age of 16 years. His mental status was normal, there were no 
signs of bulbar involvement, sensory signs were normal, and 
amyotrophy was not seen. EDX evaluation was normal and 
there was no evidence of lower motor neuronopathy or of 
sensory neuropathy. Absence of motor neuronopathy in the 
EDX findings does not support ALS diagnosis. Brain MRI 
demonstrated TCC, more prominent in the rostral (anterior) 
region, and periventricular white matter hyperintensities. The 

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
http://wintervar.wglab.org/mlr.php
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proband had an affected 19 years old sister with similar his-
tory and presentations since the age of 17  years. We con-
sider that the siblings have pure UMN involvement and are 
affected with ARHSP.

3.2.2  |  Family SPG11-102

The proband (SPG11-102-II4) had difficulty in grasping and 
holding onto objects, and also in performing fine tasks with 
his hands from age of 12 years. Stiffness and then weakness 
in lower limbs ensued within 1 year. His speech is low tone, 
but comprehensible. He does not have swallowing, hearing, 
or vision problems. Spinal deformity, scoliosis, and dys-
tonic posture in the arms were evident. The patient could not 
continue schooling after primary school because of mental 
insufficiency. EDX results indicated prominent motor neu-
ronopathy. The proband has two siblings with similar history 
and manifestations, except that their mental impairment was 
more serious, pes cavus was observed, and scoliosis was not 

evidenced in these individuals. Some phenotypic features that 
are presented here and in Table 1, particularly the presence of 
TCC, mental impairment, and some sensory anomaly, argue 
in favor of ARHSP diagnosis for the SPG11-102 patients. 
Yet, EDX evidence of prominent lower motor neuronopathy 
is suggestive of JALS. The patients apparently have mixed 
ARHSP and AR-JALS presentations, slightly more in favor 
of ARHSP.

3.2.3  |  Families SPG11-101, SPG11-189, 
SPG11-210, SPG11-301, SPG11-302, and 
SPG11-303

Both affected siblings in families SPG11-189 and SPG11-
303 are described in Tables 1 and 3, whereas all affected sib-
lings of families SPG11-101, SPG11-210, SPG11-301, and 
SPG11-302 are not described. SPG11-101-II1, who is not 
described, became symptomatic at age of 18 years and died 
27  years later. SPG11-101-II2 did not consent to undergo 

F I G U R E  2   Representative brain MRI 
images of patients with SPG11 mutations. 
a1 and a2, SPG11-300-II1; a3 and a4, 
SPG11-102-II3; b1 and b2, SPG11-102-
II4; b3 and b4, SPG11-101-II3; c1 and 
c2, SPG11-101-II7; c3 and c4, SPG11-
189-II2; d1 and d2, SPG11-189-II3; d3 
and d4, SPG11-210-II7. Rows 1 and 3, 
axial views; rows 2 and 4, sagittal views. 
Hyperintensities, which are more prominent 
in anterior regions next to frontal horns 
(black arrows), are evident in the axial 
images. Thin corpus callosum, which is 
significantly more prominent in anterior/
rostral parts (white arrow heads), is shown 
in the sagittal images
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medical examination; onset of symptoms in this patient was 
at age of 18 years and he is presently 42 years old. SPG11-
210-II3, who is also not included in the tables, became 
symptomatic at age of 15 years and died 7 years later. SPG11-
301-III6 also did not consent to medical examination; onset 
of symptoms in this patient was at age of 15 years and he is 
presently 50 years old. SPG11-302-II3 could not be brought 
to Tehran for examination because of complications in trans-
port; he is bedridden and more severely affected than his sis-
ters. The presentations of the 11 examined patients in these 
six families were very similar. Age of onset of symptoms was 
in the second or early third decade of life and leg weakness 
and stiffness were the initial presentations in all the patients. 
Spasticity, increased deep tendon reflexes, and distal amyo-
trophy were also present in all the patients. Dysarthria was 
evidenced in six of the 11 patients. Sensory signs were nor-
mal and NCS results showed mild sensory polyneuropathy in 
only one patient (SPG11-101-II3). There were no reports of 
visual problems in any of the patients. EDX showed motor 
neuronopathy in all the patients; amplitude of motor action 
potentials was always in the normal range and EMG showed 
chronic neurogenic pattern. TCC was present in the brain 
MRI of all the patients. The clinical features of the patients 
of these six families did not allow a definitive diagnosis of 
either ARHSP or JALS (Table 3). Observation of rostral-pre-
dominant TCC in the MRIs is suggestive of ARHSP, whereas 
the normal mental status and prominent lower motor neu-
ronopathy in EMG findings of all examined patients argue 
against ARHSP and are supportive of JALS diagnosis for 
these individuals. The patients have mixed ARHSP and AR-
JALS presentations, perhaps slightly more in favor of JALS. 
Observation of mild abnormal sensory findings in SPG11-
101-II3 but not in affected sibling SPG11-101-II7 may be the 
result of significantly longer duration of disease in the former 
(18 as compared to 4 years).

4  |   DISCUSSION

We have reported SPG11 mutations in eight families with 
neurological diseases. Five different mutations were identi-
fied, two of which (c.6618-6619delCA; p.Ile2207Glnfs*9 
and c.2012dupA; p.His671Glnfs*2) are novel. The oth-
ers have previously been reported in ARHSP (c.C2877A; 
p.Cys959* and c.5769delT; p.Ser1923Argfs*27) diag-
nosed or ARHSP- and JALS-diagnosed (c.3075dupA; 
p.Glu1026Argfs*4) patients. Considering repeated obser-
vation of the p.Glu1026Argfs*4-causing mutation in the 
Iranian patients of this study, it seems reasonable to first 
check for this mutation in SPG11 screenings of patients of 
this population.

Variable presentations among patients diagnosed with 
ARHSP are well known (Kara et al., 2016). Intrafamilial 

differences in clinical features among patients with SPG11 
mutations have also been reported in several studies (Daoud 
et al., 2012; Denora et al., 2009; Iskender et al., 2015; 
Schneider-Gold et al., 2017). Partial overlap in clinical pre-
sentations of ARHSP and JALS has been well noted (Denora 
et al., 2016; Fink, 2001; Meyer et al., 2005; Strong & Gordon, 
2005). In some studies, both ARHSP-diagnosed patients and 
JALS-diagnosed patients were reported in the same fam-
ily (Daoud et al., 2012; Iskender et al., 2015). Among the 
families with SPG11 mutations reported in this study, we 
have suggested that diagnosis of ARHSP is appropriate for 
affected individuals of only one family (SPG11-300). The 
presentations of the patients of this family including muscle 
weakness, stiffness, spasticity, and increased reflexes may all 
be attributed to UMN malfunctioning. Absence of EDX evi-
dence for motor neuronopathy suggests the absence of LMN 
involvement. Definitive diagnosis of either ARHSP or AR-
JALS is difficult for the patients of the remaining families. 
Patients of the latter families have some presentations sup-
portive of ARHSP diagnosis, and other features supportive 
of JALS diagnosis. A combined ARHSP/JALS phenotype 
may be a better designation for their condition. We empha-
size that proposal of a combined ARHSP/JALS phenotype is 
related to but goes beyond recognition that pure ARHSP and 
pure JALS share some presentations including motor distur-
bance, spasticity, increased deep tendon reflexes, and long 
disease duration. It emphasizes that some patients simulta-
neously manifest presentations that are classically associated 
with ARHSP and also presentations classically associated 
with JALS. The most evident of these are presentation of 
TCC that is commonly associated with ARHSP and EDX 
evidence of motor neuronopathy that is a cardinal feature as-
sociated with JALS. Although a relatively small number of 
families were studied here, it is notable that the condition of 
the patients in the majority of the families was considered to 
be the combined ARHSP/JALS phenotype. The importance 
of correct diagnosis will become more important if effec-
tive treatment protocols become available for one or both of 
the diseases. Presently, riluzole and edaravone are adminis-
tered only to ALS patients (https://doi.org/10.1016/S1474​
-4422(18)30091​-7) (Sawada, 2017). CMT diagnosis was not 
considered for patients of any of the families studied here, as 
CMT features, including absence of spasticity and depressed 
tendon reflexes, were not among the clinical presentations of 
the patients.

A review of the literature reveals that while recognizing the 
overlaps in presentations of ARHSP and JALS, only rarely have 
authors ultimately refrained from making a definitive diagnosis 
of one or the other in reported patients (Querin et al., 2014). 
In some cases, justifications of definitive diagnoses based on 
reported data are not obvious. For example, in one study, pa-
tients of three Turkish families with SPG11 mutations were di-
agnosed with JALS, and ARHSP was “definitively excluded” 

https://doi.org/10.1016/S1474-4422(18)30091-7
https://doi.org/10.1016/S1474-4422(18)30091-7
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in these families (Iskender et al., 2015). However, patients of at 
least one of the families (Family 3) presented with cognitive im-
pairment and TCC, which are consistent with ARHSP. EDX is 
not routinely performed in the clinical setting for patients who 
are readily diagnosed with ARHSP; this precludes detection of 
EDX evidence of motor neuronopathy if it were to be present. 
And when EDX is performed, there may be no motivation to 
specifically query the presence or absence of motor neuronop-
athy (Kara et al., 2016). Although MRI is often performed for 
ALS diagnosis, its purpose is usually for differential diagnosis 
(Sawalha, Gonzalez-Toledo, & Hussein, 2019). As such, phy-
sicians may not carefully focus on the presence or absence of 
TCC in the images.

Variations in presentations of patients with SPG11 mu-
tations may be due to environmental factors, stochastic 
events during development, and of course differences in ge-
netic background pertaining to other genes. In Table 3, the 
presence of motor disturbances, spasticity, increased deep 
tendon reflexes, and long disease duration are presented as 
findings common to both SPG11-associated ARHSP and 
SPG11-associated AR-JALS. Within this background, EDX 
evidence of motor neuronopathy, absence of evidence for sen-
sory anomalies, normal mental status, and absence of TCC 
in brain MRI are supportive of AR-JALS diagnosis. Within 
the shared background, presence of TCC in brain MRI, ab-
sence of neuronopathy in EDX, abnormal sensory findings, 
and mental impairment are supportive of ARHSP diagnosis. 
In patients with clinical signs of UMN involvement (spastic-
ity, increased DTR, and weakness), EDX evidence of motor 
neuronopathy is the most important feature that can deter-
mine whether LMN involvement is present (as in JALS) or 
absent (as in ARHSP). This feature becomes evident early 
in the course of the disease, and is therefore useful for early 
differential diagnosis. For practical application, we suggest 
that patients with the shared ARHSP and AR-JALS presen-
tations described above may be classified as ARHSP if there 
is no EDX evidence of motor neuronopathy but TCC is ev-
idenced in brain MRI. They may be classified as AR-JALS 
if EDX results indicate motor neuronopathy and TCC is not 
evidenced in brain MRI. Patients with the common ARHSP 
and AR-JALS presentations and also EDX evidence of motor 
neuronopathy and TCC in MRI may be diagnosed with a 
combined ARHSP/JALS phenotype. In light of the informa-
tion provided, we suggest that EDX and MRI be performed on 
patients for whom ARHSP or JALS diagnosis is being consid-
ered, and that the presence or absence of neuronopathy and 
TCC be carefully assessed.
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