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A B S T R A C T

Mupirocin (MUP), bactroban, or pseudomonic acid is a natural crotonic acid derivative drug extracted from
Pseudomonas fluorescens which is produced by modular polyketide synthases.
This antibiotic has a unique chemical structure and mechanism of action. It is a mixture of A–D pseudomonic

acids and inhibits protein synthesis through binding to bacterial isoleucyl-tRNA synthetase.
MUP is often prescribed to prevent skin and soft tissue infections caused by S. aureus isolates and where the

MRSA isolates are epidemic, MUP may be used as a choice drug for nasal decolonization. It is also used for
prevention of recurring infections and control the outbreaks.
The emergence of MUP resistance has been increasing particularly among methicillin-resistant Staphylococcus

aureus (MRSA) isolates in many parts of the world and such resistance is often related with MUP widespread
uses. Although both low-level and high-level MUP resistance were reported among MRSA isolates, the rate of
resistance is different in various geographic areas.
In this review, we will report the global prevalence of MUP resistance, discuss synergism and mechanism of

action of MUP, and provide new insights into the clinical use of this antibiotic.

1. Introduction

In 1976, Sutherland et al. introduced mupirocin (MUP) as a pro-
mising drug against gram-positive bacteria [1].

MUP, bactroban, or pseudomonic acid is a crotonic acid derivative
drug initially extracted from Pseudomonas fluorescens in 1971. It is a
secondary metabolite produced in the bacterial stationary phase which
inhibits protein synthesis through binding to bacterial isoleucyl-tRNA
synthetase [2].

MUP has a wide spectrum of activities against Gram-positive bac-
teria, including staphylococci and streptococci, and is rarely active
against Gram-negatives [3]. The nosocomial infections caused by me-
thicillin-resistant Staphylococcus aureus (MRSA) isolates has increased
during recent years and has associated with hospital outbreaks leading
to considerable morbidity and mortality. Therefore, as a part of com-

prehensive program to control the spread of methicillin-resistant Sta-
phylococcus aureus (MRSA), MUP can decolonize the anterior nares [4].

Furthermore, this drug is useful for the treatment of both primary
and secondary superficial skin infections caused by S. aureus isolates
(such as impetigo), usually with 80% improvment in infected patients
and 90% eradication in the S. aureus isolates [5].

The long term use of MUP and its multiple courses have led to MUP
resistance among S. aureus isolates. Nowadays this resistance is re-
ported all over the world, although not all of these reports exactly
differentiate high-level from low-level MUP resistance [2].

The current study was done to review mechanism of action of MUP,
narrate the global epidemiology of MUP resistance, discuss synergism
of MUP with other anti-bacterial agents, and describe new insights into
the clinical implications of this drug.
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2. Antimicrobial properties

2.1. Structure of drug

MUP is identified as one of the first of an extensive family of drugs
produced by the modular polyketide synthases. MUP contains of 9-
hydroxy nonanoic acid (a short fatty acid side-chain) and monic acid (a
C polyketide-derived substructure), which have linked by an un-
saturated ester linkage (Fig. 1) [6,7].

MUP has a unique chemical structure which is a mixture of several
pseudomonic acids, with pseudomonic acid A constituting the major
component of the mixture (more than 90%). Pseudomonic acid A is the
product of an esterification between the 17C polyketide monic acid and
the 9C fatty acid 9-hydroxy-nonanoic acid. The possibility that the
entire molecule is assembled as a single polyketide with a Baeyer-
Villiger oxidation inserting an oxygen into the carbon backbone has
been ruled out because C1 of monic acid and C9 of 9-hydroxy-nonanoic
acid are both derived from C1 of acetate (Figs. 1 and 2) [8].

The pseudomonic acid B, which has an additional hydroxyl group at
C8, and pseudomonic acid C, which has a double bond at C10−C11,
instead of the epoxide of pseudomonic acid A, are two other major
components. The pseudomonic acid D with a double bond at C4 and C5
in the 9-hydroxy-nonanoic acid portion of MUP has also been reported
as a very minor component (Fig. 2) [7].

2.2. Mechanism of action

MUP inhibits protein synthesis through binding to its target enzyme,
the bacterial isoleucyl-tRNA synthetase, but not their mammalian or-
thologs (blocking the formation of bacterial isoleucyl-tRNA) (Fig. 3)
[9]. P. fluorescens has a 74-kb gene cluster encoding MUP which in-
cludes ileRS1 and ileRS2 genes. Since IleRS2 gene has no sensitivity to
MUP and exhibits eukaryotic features, suggests that this gene protects
the bacteria from MUP attack [10,11].

The epoxide side chain of MUP is structurally similar to that of

Fig. 1. Structure of mupirocin (9-hydroxy nonanoic acid and monic acid). (The figure was adopted and reproduced from Gao et al. with permission from the
publisher) [7].

Fig. 2. Structure of mupirocin and major pseudomonic acids. (The figure was adopted and reproduced from Gao et al. with permission from the publisher) [7].

Fig. 3. Binding of mupirocin to its target enzyme, isoleucyl-trNA synthetase,
from Staphylococcus aureus. (The figure was adopted and reproduced from
Thomas et al. with permission from the publisher) [9].
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isoleucine and can bind to the isoleucine-specific binding pocket of
isoleucyl-tRNA synthetase [12]. Because of the formation of the iso-
leucyl-tRNA synthetase is blocked, the cellular levels of the isoleucine-
charged transfer RNA are depleted, leading to cessation of protein and
RNA synthesis in bacteria. Due to the very low affinity of MUP for
mammalian isoleucyl-transfer-RNA synthetase, it is not associated with
substantial toxicity in humans. At the concentrations near the minimum
inhibitory concentration (MIC) for Staphylococcus aureus the sodium salt
of MUP is bacteriostatic. However, the antibiotic is bactericidal at
higher concentrations including those applied to the skin with the 2%
formulation, and after 1 day of exposure [13].

2.3. Activity in Biofilms

The increasing evidence has implicated biofilms in approximately
70% of chronic infections in humans during the last 15 years. Since the
biofilms contribute to the development of antibiotic resistance, they can
also complicate infection management. Because of this spreading of
antibacterial resistance the insufficient number of antibiotics in devel-
opment by the pharmaceutical industry, biofilm eradication strategies
are increasingly important [14].

Ha et al performed a study on drug susceptible isolates of S. aureus
and allowed them to form biofilms in vitro. They found that topical
MUP concentrations of 125 μg/mL could reduce S. aureus biofilm mass
by more than 90% [15].

In a investigation conducted by Bakkiyaraj et al., the anti-biofilm
properties of a MUP spray against clinical isolates of Escherichia coli
were evaluated. They have formulated the MUP spray with Eudragit
E100 and tested its anti-biofilm effects and showed significant anti-
biofilm activities at the commercial ointment concentration [16].

Ishikawa et al. investigated the effect of MUP on biofilm formation
and demonstrated that MUP can reduce biofilm formation in vitro
among P. aeruginosa isolates. In this study MUP decreased biofilm for-
mation and glycocalyx production for 10 days, although biofilm for-
mation with glycocalyx was observed on day 6–10 without MUP [17].

In addition, in the study of TB et al. using a standardized biofilm
sheep model, regular treatment with MUP flushes over a 5 day period
showed an almost complete eradication of biofilms as assessed by
mucosal surface coverage, with sustained effects over the 8 day period
of follow-up [18].

In the other study done by Gunther et al., MUP showed detectable
efficacy in inhibiting metabolic effect in methicillin-resistant S. aureus
(MRSA) biofilms after short exposure times. Even after 3.5 h of ex-
posure to MUP, the level of metabolic inhibition of the bacteria in the
MRSA biofilms did not exceed 20%. In this study, 2% MUP showed
between 1 and 20% inhibition of the metabolic activity of MRSA bio-
films after exposure times of up to 3.5 h [19].

3. Mupirocin resistance

MUP resistance was identified immediately after its introduction.
Mup-resistant S. aureus was first reported in 1987 at St Thomas'
Hospital [20].

The frequency of MUP resistance is different among clinical strains
of MRSA (from 0% to 65%) which is correlated with increased use in
hospitals. However, this prevalence is unknown in pediatric patients
due to the few studies that have been done [21].

The decreasing MUP using has been led to the decreasing of the
prevalence of MRSA infection over recent decades in many areas
worldwide. MUP decolonization is most common MRSA-specific control
strategy which in combination with chlorhexidine can successfully
decrease the MRSA bloodstream infections [22–24].

The lower resistance breakpoint value (MIC, mg/L) for MUP has
been recommended 4mg/l according to guidelines. However, several
factors are related with this breakpoint in the outcome of therapy in-
cluding the concentrations of the S.aureus isolates in the layers of skin

and nose, the existence of reservoirs of S.aureus and ineffective actions
[25,26].

3.1. Mechanisms of resistance

According to antibiotic susceptibility testing, there are three groups
of MUP susceptibility for S. aureus isolates. At a MIC of ≤4 μg/ml these
isolates are susceptible to MUP, at MICs of 8–64 μg/ml they are low-
level resistance, and MIC of ≥512 μg/ml refers to high-level MUP re-
sistance. Due to the MIC of 128–256 μg/ml is uncommon among S.
aureus isolates, it is not mentioned in the above classification (Although
it is usually considered as low-level resistance) [27,28].

Low-level MUP resistance (chromosome-encoded MUP resistance) is
because of the point mutations in the ileS gene (isoleucyl-tRNA syn-
thetase gene), leading to a Val-to-Phe change in the MUP-binding site.
These point mutations in the ileS gene arises from combinations of
V588F, V631F, G593V, R816C, H67Q, and F563L mutations in isoleucyl-
tRNA synthetase [29].

There are two mechanisms of high-level MUP resistance (plasmid-
encoded MUP resistance). The first mechanism is mediated by acqui-
sition of a plasmid-mediated mupA or ileS2 gene (an alternate isoleucyl-
tRNA synthetase). The second mechanism is due to the mupB gene
which has 65% similar sequence with mupA) (Fig. 4) [9,30].

High-level MUP resistance can be acquired by MRSA isolates with
low-level MUP resistance through the acquisition of the pSK41-like
plasmid. This plasmid is a family of staphylococcal multi-resistant
conjugative plasmids which confers high-level MUP resistance [31,32].
Pérez-Roth et al. showed the relationship between traK gene of pSK41-
like plasmid and ileS2 gene. They used the traK gene as a marker for
plasmids carrying related transfer systems and this was found for all the
plasmids with ileS2 implying that all these plasmids are related to a
common ancestor [33].

In addition, IS 256 and IS 257 elements which may be present in
both chromosome and plasmids, can affect on the expression of MUP
resistance (mupA gene) among S. aureus isolates, through the activation
of the transcription of the resistance genes [34].

3.2. Epidemiology of resistance

Recently, the emergence of MUP resistance has been increasing
among Staphylococcus species in many parts of the world and such re-
sistance seems to be more among MRSA isolates due to the prior MUP
uses. The available evidence from various studies was collected from
PubMed and Web of Science databases during the period 1990–2017 to
narrate the global epidemiology of MUP resistance (Table 1 and Fig. 5).

3.2.1. America
Alarming reports on the prevalence of MUP-resistant S. aureus iso-

lates in american countries have been published. Simor et al. in their
investigation done antimicrobial susceptibility tests of MRSA strains
collected from 32 Canadian hospitals during 1995–2004 and detected
approximately 4% (n= 198) high-level MUP resistance isolates. The
prevalence rate of high-level MUP resistance MRSA strains increased
from 1.6% (n= 46) in 1995–1999 to 7% in the second 5 years of sur-
veillance (2000–2004). All MRSA strains with high-level MUP re-
sistance had a Hind III-associated plasmid-encoding mupA gene [35].

In another study, 409 MRSA strains were isolated from Madigan
Army Medical Center during 2006–2007 and E test was carried out for
screening the MUP-resistant MRSA isolates. The results revealed that
although 95.9% (n=392) of MRSA isolates were found to be fully
sensitive to MUP (MIC < 1 μg/mL), 1.7% (n= 7) of them had MIC
values of> 1024 μg/mL, and 2.4% (n=10) isolates had MIC values of
1–32 μg/mL [36].

In the study performed by Ramsey et al. in the United States, the
characteristics of MUP-resistant S. aureus isolates (18 S. aureus strains
with high-level resistance and 19 S. aureus strains with low-level
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resistance) were defined. The results demonstrated that in some of the
isolates low-level MUP resistance was related to mupA gene. In addi-
tion, both mechanisms of MUP resistance were shown from several
various clones in different geographic regions US [37].

Antonov et al. performed a study on 358 S. aureus strains isolated
from 249 outpatient children in New York City. They demonstrated that
in the beginning of the study, approximately 19% (n= 68) of children
were infected with MUP-resistant S. aureus. As well as, approximately
31% (n= 110) of S. aureus strains isolated during the period of in-
vestigation were MUP-resistant, mostly due to widespread MUP uses
[38].

3.2.2. Asia
In Asia, both low-level and high-level MUP resistance were reported

among Staphylococcus isolates. However, the rate of resistance is dif-
ferent in various geographic areas (Table 1).

In South Korea, MUP utilization has began since 1994 and the first
case of resistance was reported in 2003. Yoo et al. in their study de-
tected 6.14% (n= 25) high-level and 2.89% (n=21) low-level MUP-
resistant S. aureus isolates, of which 21 high-level MUP-resistant iso-
lates had the most predominant mupA restriction fragment length
polymorphism type [39].

In another study, Youn et al. performed a 10-year (2003–2013)
follow-up study on MUP prescription in a Korean hospital. They de-
monstrated that during these 10 years (from the beginning of the study
to the end of it), the annual MUP utilization almost doubled. In this
period, the prevalence of high-level and low-level MUP-resistant MRSA
isolates doubled and tripled, respectively [40].

Fujimura et al. carried out a study on 1368 MRSA strains isolated
from 15 general Japanese hospitals during 1997–2001 to determine the
prevalence of MUP resistance. Although the rate of low-level MUP-

resistant MRSA strains was increased from 0.8% (n= 2261) in 1997 to
2.4% (n= 6254) in 2001, high-level MUP-resistant MRSA strains were
not isolated [41].

Rudresh et al. conducted an investigation in India on 98 S. aureus
strains isolated from skin and soft-tissue to document the rate of MUP
resistance. The prevalence of high-level MUP-resistant S. aureus strains
was 8.2% (n=8) and the prevalence of low-level MUP-resistant S.
aureus strains was 17% (n= 17) [42].

Liu et al. reported the rate of MRSA isolates with high-level MUP
resistance in China. From the 803 MRSA isolates studied, 6.6% (n=53)
were high-level MUP-resistant isolates, while the low-level MUP-re-
sistant MRSA isolates were not detected [43].

3.2.3. Europe
In european countries, different reports about the status of current

patterns of MUP resistance in S. aureus were enclosed (Table 1). In
Europe, high-level MUP resistance among S. aureus isolates was first
reported in the UK in 1961. Nowadays, the data shows that low-level
MUP-resistant MRSA isolates were increased [44].

Schmitz et al. have investigated the prevalence of low-level and
high-level MUP resistance among 699 S. aureus strains isolated from 19
European hospitals. MUP susceptibility tests demonstrated that high-
level and low-level MUP resistance were detected among 1.6% (n=11)
and 2.3% (n= 2.3) of S. aureus isolates, respectively [45].

In the study performed by Lee et al. in a Swiss tertiary care hospital,
the trends in MUP-resistant MRSA isolates were shown. They demon-
strated that low-level MUP resistance surprisingly increased among
clinical isolates of MRSA during 1999–2008 years [from 0% (n=17) to
79% (n=19)] [46].

In another study carried out by Moorhouse et al. in Ireland, the MUP
susceptibility tests were done for 1152 S. aureus isolates. Overall, of this

Fig. 4. The mupirocin biosynthesis genes and the proposed pathway of mupirocin production. (The figure was adopted and reproduced from Thomas et al. with
permission from the publisher) [9].

S. Khoshnood et al. Biomedicine & Pharmacotherapy 109 (2019) 1809–1818

1812



Table 1
Prevalence of mupirocin resistance worldwide.

Location /reference Publication date Bacteria No.
of resistant
bacteria

MIC
(μg/ml)

Resistance
mechanism

Resistance
rate

United
Kingdom [82]

1992 S.aureus 9 (I)
6 (H)

8-256 (I)
≥ 2048 (H)

– 42.8% (I)
28.5% (H)

United
Kingdom [83]

1993 S. aureus 4 (I)
4 (H)

8- 256 (I)
≥512 (H)

– –

Poland(84) 1999 S.aureus
S. epidermidis S. haemolyticus S. xylosus

7 (L)
46 (H)

32-128 (L)
≥1024 (H)

mupA gene 2.5% (L)
17% (H)

Malaysia [85] 2001 MRSA 4 (H)
1 (L)

8–256 (L)
⩾512 (H)

– 0.25% (L)
1% (H)

South Korea(86) 2003 S. aureus
CoNS

S. aureus:
0 (L), 16 (H)
CoNS:
21 (L), 34 (H)

– mupA gene
ileS2 gene

S. aureus:
0% (L), 5% (H)
CoNS:
10.3% (L), 16.7% (H)

India [87] 2006 S. aureus 2 (L)
10 (H)

5-200 – 1% (L)
5% (H)

South Africa [88] 2006 MRSA
MSSA

– 5-200 – –

Spain [33] 2006 MRSA 48 – ileS2 gene 12.8%
Canada [35] 2007 MRSA 396 (L)

198 (H)
– mupA gene 8% (L)

4% (H)
USA [89] 2007 MRSA 14 (L)

26 (H)
8–256 (L)
⩾512 (H)

– 4.6% (L)
8.6% (H)

Belgium [90] 2008 MRSA 39 (L)
32 (H)

8–32 (L)
⩾512 (H)

– 31.2% (L)
25.6% (H)

Brazil [91] 2008 S. haemolyticus 5 (H, L)
1 (I)

– – 8% (H, L)
2% (I)

Turkey([92] 2008 MRSA
CoNS

75 5 ileS2 gene 45%

Ireland(93) 2009 MSSA
MRSA
S. epidermidis
S. xylosus

CoNS:
10 (L)
22 (H)

8–32 (L)
⩾1024 (H)

– MRSA:
0% (L), 3% (H)
MSSA:
0% (L), 1% (H)
CoNS:
10% (L), 22% (H)

Nigeria(94) 2009 S. aureus 14 (L)
3 (H)

8–24 (L)
⩾1024 (H)

– 17.6% (L)
82.2% (H)

USA [95] 2009 MRSA 17 (L)
3 (H)

8–256 (L)
⩾512 (H)

– 2.9% (L)
0.5% (H)

Brazil [96] 2010 MSSA 5 256 (H) – 1.1%
China(43) 2010 MRSA 53 (H) 8–256 mupA gene 6.6% (H)
Pakistan [97] 2011 MRSA 2 (L)

0 (H)
5-200 mupA gene 1%

Singapore [98] 2011 CoNS
MRSA
MSSA

MRSA:
0 (L), 6 (H)
MSSA:
0 (L), 1 (H)
CoNS:
11 (L), 77 (H)

8–256 (L)
⩾512 (H)

ileS2 gene –

USA [99] 2011 MRSA 13 – mupA gene 6.8%
USA [100] 2011 MRSA

MSSA
MRSA:
3 (L), 11 (H)
MSSA:
1 (L), 5 (H)

– mupA gene MRSA:
2.7% (L), 10.1% (H)
MSSA:
3.5% (L), 17.8% (H)

Iran [101] 2012 MRSA
MSSA

– 20 μg – 68%

South Korea [102] 2012 MRSA 16 (L)
11 (H)

8–256 (L)
> 256 (H)

– 8.4% (L)
5.7% (H)

Australia [103] 2013 MRSA
MSSA

9(H)
26(H)

– – 1.3% (H)
1.6% (H)

India [104] 2013 S. aureus
CoNS

2 (L)
3 (H)

5-200 – 3.3%

Iran [105] 2013 MRSA
MSSA

– 5 – 11%

France [48] 2013 MRSA
CoNS

MRSA:
3 (L), 3 (H)
CoNS:
33 (L), 40 (H)

– mupA gene MRSA:
1.4% (L), 0.8% (H)
CoNS:
4.7% (L), 5.6% (H)

India [106] 2014 MRSA 7 (L)
8 (H)

8–256 (L)
⩾512 (H)

– 46.7 % (L)
53.3 % (H)

India [42] 2014 S. aureus
CoNS

21 (L)
15 (H)

8–256 (L)
⩾512 (H)

– S. aureus:
17% (L), 8.2% (H)
CoNS:
8.9% (L), 15.6% (H)

(continued on next page)
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isolates, 2% (n=23) were MUP-resistant [47].
Desroches et al. conducted a study on epidemiology of the MUP-

resistant MRSA isolates in France and detected a MUP-resistant MRSA
clone carring mupA gene. They showed that of 367 MRSA clinical iso-
lates, 2.2%(n=8) were resistant to MUP, of which 0.8% (n=3) had

high-level resistance and 1.4% (n=5) low-level resistance and in this
survey the mupB gene was not detected [48].

3.2.4. Africa
A few studies have been done to report the prevalence of high-level

Table 1 (continued)

Location /reference Publication date Bacteria No.
of resistant
bacteria

MIC
(μg/ml)

Resistance
mechanism

Resistance
rate

USA [107] 2014 S.aureus – 8-256 mupA gene 9.8%
Belgian [108] 2015 MRSA

MSSA
MRSA:
26 (L), 39 (H)
MSSA:
1 (L), 4 (H)

2-128 (L)
⩾256 (H)

– MRSA:
2.1% (L), 3.1% (H)
MSSA:
0.1% (L), 0.6% (H)

India [109] 2015 MRSA 1 (L)
3 (H)

8–256 (L)
⩾512 (H)

– 25 % (L)
75% (H)

Iran [110] 2015 MRSA
MSSA

– 5 mupA gene 1.85%

USA [111] 2015 S. aureus 16 (L)
96 (H)

8–64 (L)
⩾1024 (H)

– 14.3 % (L)
85.7% (H)

China [112] 2016 S. lugdunensis 3 (L)
10 (H)

32 (L)
≥1024 (H)

Mutation V588F
within the
chromosomal
ileS
gene (L)
ileS2 gene (H)

2.2%(L)
7.3%(H)

Egypt [113] 2016 S. aureus 5 (L)
8 (H)

8–256 (L)
⩾512 (H)

mupA gene 38.5 % (L)
61% (H)

India [114] 2016 MRCoNS 4 (L)
22 (H)

5-200 mupA gene 4.8 % (L)
26.5 % (H)

Iran [115] 2016 MRSA 12 (H) ⩾512 (H) – 41.4% (H)
Iran [116] 2016 S. aureus 2 – – 3.8%
USA [117] 2016 MRSA 35 – mupA gene 6.9%
Greece [118] 2017 MRSA 100 (H) ⩾512 (H) mupA gene 98% (H)
Nepal [119] 2017 MRSA

MSSA
50 (H) ⩾1024 (H) – 51% (H)

Abbreviations: L Low level-resistant; I Intermediate level-resistant; H High level-resistant; CoNS coagulase-negative staphylococci; MRSA methicillin-resistant sta-
phylococcus aureus.

Fig. 5. Global epidemiology of mupirocin resistance against Staphylococcus aureus.
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and low-level MUP-resistant S. aureus isolates in Africa and current
MUP resistance patterns is unclear in sub-Saharan Africa (Table 1).

In the study performed by Fritz et al., 1089 patients infected with
skin and soft tissue infections were followed for up to one year to
identify MUP-resistant S. aureus isolates. They reported that 2.1%
(n=23) of patients were infected with S. aureus isolates which were
high-level resistant to MUP [49].

Nicholson and colleagues have reported the prevalence of low-level
and high-level resistance to MUP among MRSA isolates. They showed
that 30% of MRSA isolates were low-level and 24% high-level resistant
to MUP [50].

Moyo et al. have conducted a study on 89 patients infected with S.
aureus isolates. They reported that 25% (n=22) of the isolates were
MRSA, of which 1.1% (n= 1) were MUP-resistant [51].

In another study done by Orrett, 188 MRSA isolates mostly collected
from bloodstream and surgical site infections were tested for MUP re-
sistance. He showed that 26% (n=49) of MRSA isolates were high-
level and 44% (n=83) low-level resistant to MUP [52].

Monecke et al. have conducted a study on 294 S. aureus strains
isolated during 2012–2013 years. They reported that 15.3% (n= 45) of
these strains were MRSA, of which 5.8% (n= 17) were mupA-positive
isolates [53].

4. Synergism

Synergy is the cooperation of two or more agents to produce a
combined effect greater than the sum of their separate effects and drug
synergism is an interaction between two or more drugs that causes the
total effect of the drugs to be greater than the sum of the individual
effects of each drug. A synergistic effect can be beneficial or harmful.

The studies on synergism against staphylococcus species are very
limited and few researchs have been reported. In current study, the
synergism of MUP with amoxicillin-clavulanate, monoterpenes, HT61,
and propolis against MRSA was reported.

4.1. Synergism of mupirocin with amoxicillin-clavulanate against MRSA

In order to fight against MRSA isolates, combinations of MUP and
amoxicillin-clavulanate have been studied and confirmed that this sy-
nergy had a therapeutic benefit in the prevention of staphylococcal in-
fections [54,55].

Alou et al. have demonstrated that combinations of MUP as an in-
hibitor of protein synthesis and amoxicillin-clavulanate as an inhibitor
of cell wall synthesis can show synergistic activity against MRSA and
MSSA isolates in vitro. They have reported synergy for 15% (n=2) of
MSSA isolates and 20% (n= 2) of MRSA isolates [54].

In another study performed by Ghiselli et al., it was used a rat model
to study the effect of MUP in the prophylaxis against S. aureus vascular
graft infection. They shown that the MUP–amoxicillin-clavulanate
combination can completely inhibit the MSSA and MRSA growth in
vivo. [55].

4.2. Synergism of Mupirocin with monoterpenes against MRSA

The monoterpenes are essential oils which have antibacterial
properties specially against S. aureus isolates due to their derivatives
(terpenoids) (56, 57).

For example, Trombetta et al. in their study showed the anti-
bacterial effect of three types of monoterpenes including linalyl acetate,
menthol, and thymol against S. aureus strains [56].

As well as Hosseinkhani and colleagues have demonstrated that the
monoterpenes including thymol, paracymene, and gamma-terpinene
can inhibit the growth of S. aureus isolates with an inhibitory zone
diameter between 30–60mm and MIC<0.02 μL/mL [57].

Kifer et al. performed a study to show the antibacterial effect of
three monoterpenes including thymol, menthol and 1,8-cineole

combined with MUP against MRSA isolates in their planktonic and
biofilm phases. The results showed that the MICs of MUP were 3-fold
lower than the MICs of monoterpenes. Although the single substance of
MUP was failed to eliminate the biofilm, MUP combined with 1,8 ci-
neole destroy the MRSA isolates grown in biofilm. MUP combined with
menthol showed antagonism effect and MUP combined with thymol
had inconclusive effect [58].

4.3. Synergism of Mupirocin with HT61 against MRSA

HT61 is a quinoline-derived cationic bactericidal agent against both
MRSA and MSSA isolates which has a synergism efficacy with MUP
against S. aureus isolates [59].

In the study conducted by Hubbard et al., the mechanism of action
of HT61 on bacterial membranes was studied. Their study demon-
strated that, HT61 can depolarize the membrane to release the inter-
cellular constituents at concentrations above and below the drug’s MIC
[60].

In another study performed by Hu et al. [61]., the effect of combi-
nation of HT61 and MUP against of MSSA and MRSA clinical isolates
was investigated. In their study, no interaction was reported between
HT61 and MUP using the fractional inhibitory concentration index.
They reported that HT61-MUP combination showed a potency with
significant killing of MSSA and MRSA isolates in vivo (mouse model).

4.4. Synergism of Mupirocin with Propolis against MRSA

The studies on natural herbal products have become more valuable
than synthetic products, due to the increasing prevalence of bacterial
resistance to chemical drugs and also lower cytotoxicity of the herbals
[62,63]. Although many studies performed on the effects of natural
herbal products in the world, nowadays there are few available herbal
medicines for treatment of bacterial infections compared with anti-
biotics [64,65].

Propolis, a natural resinous substance collected by honeybees from
several plants, is a complex mixture of compounds such as botanical
balsams and resin with bees’s digestive enzymes. Propolis has anti-
bacterial properties including both bacteriostatic and bactericidal ac-
tivities which is mostly because of the phenolic acid fraction [8,66].

In a study performed by Darwish and colleagues, they reported
antibacterial effect of propolis against MRSA isolates. The results of
broth microdilution method demonstrated that propolis type I with MIC
4.69 μg/ml and type II with MIC 18.75 μg/ml had antibacterial activity
against MRSA isolates. As well as, The antimicrobial susceptibility
testing showed that the propolis type I produced the highest anti-
bacterial activity with inhibition zone of 17.00mm than other fractions
against the MRSA isolates [67].

Onlen et al. in their study evaluated the antibacterial activity of
propolis and its synergism with MUP against MRSA isolates in nasal
carriage. They have investigated the treatment and control groups in
vivo (rabbit model). The treatment groups treated with MUP and the
control groups were received phosphate-buffered solution without
MUP. The propolis combined with MUP resulted in a significant de-
crease in the count of neutrophils in the mucous membranes of rabbits
compared with the control group. In this study, the propolis-MUP
combination showed significant decrease in bacterial cell count and
inflammatory response [68].

5. Clinical treatment

5.1. Use for nasal decolonisation

Due to the lack of FDA breakpoints for MUP, along with limited
availability of commercial tests, there is not specific recommendation
on MUP susceptibility testing and specific program for screening the
MRSA isolates them from the nose [69].

S. Khoshnood et al. Biomedicine & Pharmacotherapy 109 (2019) 1809–1818

1815



Oral MUP is not routinely suggested for decolonization and it should
only be considered in patients who continue to have infections [69].
When the MRSA isolates are epidemic, MUP may be used as a choice
drug for nasal decolonisation [70]. In these patients, MUP can be used
to reduce infection despite increasing the MUP resistance [71].

In a study performed by Dupeyron et al., they have used MUP in the
prevention of MRSA infections for 2242 patients hospitalized in a
gastroenterology unit during a period of 52 months. Overall, it was
shown that after MUP using, this drug significantly reduced nasal MRSA
colonization [72].

In a prospective cohort study done by Doebbeling et al., the effect of
intranasal MUP ointment against S. aureus carriage in healthy hospital
staff was investigated. The results of this study showed that six months
after treatment, the nasal colonization was 48% versus 72% in placebo
group; while one year after treatment, the nasal colonization was 53%
versus 76% in placebo group [73].

MUP-based nasal decolonization in hemodialysis patients can re-
duce the prevalence of S. aureus bacteremia. Although due to the threat
of MUP resistance, it is often not routinely used in this population [74].

Boelaert et al. in their study demonstrated that nasal calcium MUP
decreased the rate of S. aureus bacteremia among patients hospitalized
in the hemodialysis unit. MUP-based nasal decolonization led to era-
dication of 96% nasal colonization of S. aureus and decrease from 0.097
to 0.024 in the incidence of S. aureus bacteraemia (per patient-year)
[75].

5.2. Use for controlling outbreaks

The infection control programmes can limit the endemic infection or
colonization with drug-resistant bacteria such as MRSA isolates [76].

In a randomized controlled research trial Ellis and colleagues tar-
geted intranasal MUP for preventing the colonization and infection by
isolates of CA-MRSA among soldiers (a highly endemic population). The
military trainees nasally colonized with MRSA isolates were treated
with intranasal MUP and after a 16 weeks followeing up no MUP re-
sistance was detecteds [77].

Irish et al. carried out a study on an outbreak of an epidemic HA-
MRSA and according to UK guidelines used nasal MUP for eradication
of the MRSA isolates. During this work a MUP-resistant MRSA emerged
in 12 patients and 11 staff. This outbreak control had significant
medical, social and financial implications [78].

5.3. Use to prevent recurring infection

Approximately 70% of patients infected with CA-MRSA skin and
soft tissue infections will experience recurrent infections over one year,
even after the best initial therapy. MUP-based decolonization of S.
aureus isolates is one of the main approaches for patients colonized with
subsequent skin and soft tissue infections [79].

Mascitti et al. have done an investigation on preferred treatment
and prevention strategies for recurrent CA-MRSA skin and soft-tissue
infections. In this study, approximately 40% (n=77) of volunteers
used MUP with antiseptic body wash. MUP-based decolonization was
effective in more than half of the patients at preventing subsequent CA-
MRSA skin and soft tissue infections [80].

In a placebo-controlled study performed by Raz et al., MUP was
used to prevent the recurrent staphylococcal nasal colonization and skin
infection in 17 patients and was not used in the placebo group (17
MUP-untreated patients). The results of this study showed that the
number of skin infections was 26 in MUP-treated patients and 62 in
MUP-untreated patients. As well as, the number of nasal colonization
was 22 in MUP-treated patients and 83 MUP-untreated patients [81].

6. Conclusion

MUP is predominantly used for nasal decolonization and it can be

considered as a topical drug useful against superficial skin infections
such as impetigo or folliculitis caused by S. aureus isolates. The patients
infected with MRSA isolates has increased the morbidity and mortality
rates in recent years. An effective global MRSA control will require the
use of combined drugs which the total effects of them are greater than
the sum of their separate effects. MUP combined with amoxicillin-cla-
vulanate, monoterpenes, HT61, or propolis has a promising synergistic
effect against MRSA isolates and decreases the duration of MUP treat-
ment. This drug also used for prevention of recurring infections and
control the outbreaks. MUP also used for prevention of recurring in-
fections and control the outbreaks. However, the data shows that the
emergence of MUP resistance following its widespread use is increasing
among MRSA isolates worldwide.
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