
Article

A Nonlinear Model for Online Identifying a
High-Speed Bidirectional DC Motor

Ayad Mahmood Kwad1,2,a,*, Dirman Hanafi1,b, Rosli Omar1,c, and Hisyam Abdul Rahman1,d

1 Faculty of Electrical and Electronic Engineering (FKEE), Universiti Tun Hussein Onn Malaysia (UTHM),
86400 Parit Raja, Batu Pahat, Johor, Malaysia
2 Faculty of Engineering, Al-Iraqia University, Baghdad, Iraq
E-mail: aayad_m_k@yahoo.com (Corresponding author), bdirman@uthm.edu.my, croslio@uthm.edu.my,
darhisyam@uthm.edu.my

Abstract. The modeling system is a process to define the real physical system mathematically, and the in-
put/output data are responsible for configuring the relation between them as a mathematical model. Most of
the actual systems have nonlinear performance, and this nonlinear behavior is the inherent feature for those
systems; Mechatronic systems are not an exception. Transforming the electrical energy to mechanical one or
vice versa has not been done entirely. There are usually losses as heat, or due to reverse mechanical, electrical,
or magnetic energy, takes irregular shapes, and they are concerned as the significant resource of that nonlinear
behavior. The article introduces a nonlinear online Identification of a high-speed bidirectional DC motor with
dead zone and Coulomb friction effect, which represent a primary nonlinear source, as well as viscosity forces.
The Wiener block-oriented nonlinear system with neural networks are implemented to identify the nonlin-
ear dynamic, mechatronic system. Online identification is adopted using the recursive weighted least squares
(RWLS) method, which depends on the current and (to some extent) previous data. The identification fitness
is found for various configurations with different polynomial orders, and the best model fitness is obtained
about 98% according to normalized root mean square criterion for a third order polynomial.
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1. Introduction

DC motors are the central unit of most manufacturing
activities and functions. These motors are used in a wide-
ranging field of implementations, for instance, mechanized
movements, automated controls, robotic vehicles, servo
structures, high-speed motors for drones, driving fluctuat-
ing loads, and functions that demand a controlled speed and
positioning. The ease control and driving (for speed and
torque), high precision, small size, superior power, and low
cost are factors that make the DC motor be classified as the
most convenient solution for industrial processes in com-
parison with other types of electrical motors [1, 2]. Precise
modeling of DCmotors is a necessity for efficient feedback
model in many useful operations. The current hypotheses
and models, which are frequently utilized in the books and
by academics, do not consider all the existent effects. Like-
wise, the friction rates are not typically recognized before.
It is essential to quantify the friction rates when the tradi-
tional modeling methods utilized or employ more advanced
modeling procedures that are built on identifying dynamic-
system to obtain an accurate model for a DC motor [3, 4].

Modeling a dynamic system is achieved by developing
a mathematical model that determines interactions among
the real input and output amounts that can be observed
empirically. Numerous approaches have been formulated
and improved in various applied fields concerning the mod-
eling. In the Mechatronic engineering branch, the meth-
ods are identified beneath the name system identification
[5, 6, 7]. The modeling system often starts with the dy-
namics of the system then tries to find parameters for that
model, which generates estimations that minimize the error
function, which is defined as a cost function, in a compro-
mise interrelationship [8]. The mathematical model for a
specific dynamic system can forecast the dynamic behav-
ior of the real system as a response for a given input stim-
ulus [9]. Most modeling processes have been carried out
after acquiring the data altogether. Still, there is an alter-
native type of modeling done in real-time to assess the pa-
rameters of an individual system, is called online modeling
system [10, 11, 12]. The online modeling system started
with measured input (stimulation) and output signals in
real-time. Some signals need to be filtered before process-
ing them, which demands to throw from a low pass filter.
The prepared data are passing through a recursive process
that estimates the model parameters and error at that mo-
ment. Many engineering systems have a nonlinear behavior;
they need a nonlinear modeling process. The systems non-
linearity comes from some effective coefficients that affect
the response of the system to input signals, are unknown in
system analysis, or ignored to simplify the calculation. In
these systems, precise modeling is almost not essential, and
the linearity that suggested is somewhat adequate. In the
real system, many reasons motivate the researchers to build

a nonlinear system to be more realistic, two of the crucial
motivations are; the accurate control and right prediction
for system performance [13, 14].

This paper presents a developed nonlinear model to
identify the DC motor. The numerical methods are used
to simplify the differential equations of the real system,
which supports the discrete mathematics and time series.
The nonlinear model is developed using the block-oriented
Wiener model with neural networks to represent the non-
linear behavior in the DC motor. In the static nonlinear
block of the Wiener model, the nonlinear neural function
will be replaced with a high-order polynomial to be conve-
nient with real-time estimation. RWLS method is used to
train online the multi-layer neural networks (MLNN) with
one shot for each time that the input/output data are avail-
able on the input ports of the controller come from the
sensors.

2. Deriving a Nonlinear Dynamical Model

Many types of researches in the modeling of dynamic
system motion have been written by using a linear approx-
imation. Although the assumption of linearity does well
with some of those systems, especially some types of the
DC motor, it restricts the generality as a consequence, and
it does not work with many systems [15].

2.1. Essential Linear Model

A piece of advanced knowledge about the system helps
to represent the physical model with mathematical equa-
tions. In the DC motor case, to get a mathematical model
that describes the system nonlinear behavior (which is near
to real one), it is necessary to start with a fundamental con-
figuration. It can be derived with some considerations that
represent the boundary condition of the system, starting
from Kirchhoff ’s voltage law, as shown in Fig. 1 below:

u = iR+ L
di

dt
+ bemf (1)

and from Newton’s second law for rotating parts:

Tm − TL = J
dωm

dt
(2)

Where;
bemf = Kωm (3)

and,
Tm = Ki (4)

By substituting Eq. (3) and Eq. (4) in Eq. (1) and Eq. (2) re-
spectively, and rearranging the last two equations, they will
be:

di

dt
=

u

L
− iR

L
− Kωm

L
(5)
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Fig. 1. Representative drawing of the DC motor and the driven load.

and,
dωm

dt
=

Ki

J
− TL

J
(6)

Using a conventional notation and setting x1 = ωm, x2 =
i, Eq. (6) and Eq. (5) will be:

ẋ1 =
K

J
x2 −

TL

J
(7)

ẋ2 = − 1

L
(Kx1 +Rx2) +

1

L
u (8)

Where the meaning of physical symbols as following:
u input voltage (V)
i armature current of motor (A)
R total armature and field resistor (Ω)
L total armature and field inductance (H)
bemf back electromotive force (V)
Tm the generated motor torque (N.m)
TL load torque (N.m)
J associated moment of inertia for motor

and load (Kg.m)
ωm angular speed for motor (rad/sec)
K motor constant (N.m/A) or (V/rad.s−1)

2.2. Friction Effects and Non-linearity

Friction is one of the phenomena that enables human
beings to live on the earth and do many of their activities
such as standing, walking, swimming, using various trans-
portation methods, and many manufacturing processes, etc.
But on the other hand, friction has a role in decreasing
net mechanical energy generally, machine wearing along
duty cycle, and noisy hindering force in mechanical mov-
ing parts. One of the important effects is changing ma-
chine behavior, which affects system response to the exter-
nal stimulant enormously, this effect can be regarded from
zero effect (neglected) to a brutal level which is, in the main,
against movement direction of machine parts.

In general, friction is a complex nonlinear motion re-
sistance that occurs among surfaces or between two sur-
faces (in either lubricated or dry cases) that are in contact
with each other when there is a relative motion among those
surfaces. It could happen between two (or more) solid sur-
faces, or solid with the fluid environment due to friction of

the solid part with molecules of that environment, or even
among the molecules of the same substance. The resulting
impedance force is named friction force, which has a con-
trary action line to the original motion direction [16].

Demonstrating the friction pattern is not an easy task
in mechatronic machines. Friction’s effect can have a tough
influence on the system dynamics and can cause a compli-
cated dynamic action. The effect of friction is especially im-
portant in dynamic system identification and derivingmath-
ematical model issues. The applications subjected to online
system identification and control often demand high accu-
racy and fast operation at the same time [3]. Non-linearity
effect of friction is often ignored in DC motor modeling by
most researchers, where accuracy is not a major concern.
However, adding friction components is more appropriate
to achieve a precision of dynamic system identification, and
to give a general, real, mathematical formula.

The previous equations are derived by ignoring any ef-
fect for nonlinear forces that act on the mechanical parts of
the DC motor. Still, when friction and viscosity of air gap
between stator and armature, lubrication in bearings, and
aerodynamic drag have been calculated, the non-linearity
behavior will be revealed.

From Eq. (2):

Tm − Tf − Tv − TL = J
dωm

dt
(9)

Where;
Tv = νωm (10)

and;
Tf = µsgn(ωm) (11)

Where;
ν viscosity coefficient (N.m/rad.s−1)
µ friction anti-torque coeficient (N.m)
Tv viscous friction (N.m)
Tf Coulomb friction (N.m)
As the angular velocity increases, the Tv increases, and

vice versa. While Tf is not affected with ωm, but the sign of
Tf changes with it. Figure 2 describes the relation between
friction torque and angular velocity [1, 17].
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Fig. 2. The relation between friction torque and angular
velocity.

The coefficient of viscosity is lower than the coefficient
of Coulomb friction µ (µ is positive constant). The sgn
(signum function) is identified as :

sgn(ωm) =


1 ωm > 0

0 ωm = 0

−1 ωm < 0

(12)

Now, it is possible to rewrite Eq. (1) and Eq. (9) to be:

u = iR+ L
di

dt
+Kωm (13)

J
dωm

dt
= Ki− µ sgn(ωm)− υωm − TL (14)

In discrete-time, it can use a numerical method to evaluate
the derivative terms in Eq. (13) and Eq. (14). Here, back
difference method is used, as followed:

di

dt
=

i(t)− i(t− τ)

τ
(15)

and;
dωm

dt
=

ωm(t)− ωm(t− τ)

τ
(16)

Where τ is a sampling time. Substituting the equivalent
value to the current derivative from Eq. (15) into Eq. (13):

u(t) = Ri(t) + L
(i(t)− i(t− τ))

τ
+Kωm(t) (17)

(R+
L

τ
)i(t) = u(t) +

L

τ
i(t− τ)−Kωm(t) (18)

Assuming L/τ = ρ and R+ ρ = z;

i(t) =
1

z
u(t) +

ρ

z
i(t− τ)− K

z
ωm(t) (19)

Substituting Eq. (19) and Eq. (16) in Eq. (14), and let TL

be constant, the result will be:

K

z
u(t) +

Kρ

z
i(t− τ)− K2

z
ωm(t)

−µ sgn(ωm)− ν ωm(t)− TL

=
J

τ
(ωm(t)− ωm(t− τ))

(20)

Let the τ/J = ξ;

ξK

z
u(t) +

ξKρ

z
i(t− τ)− ξK2

z
ωm(t)

− ξµ sgn(ωm)− ξν ωm(t)− ξTL

= ωm(t)− ωm(t− τ)

(21)

then;

ξK

z
u(t) +

ξKρ

z
i(t− τ)

− ξµsgn(ωm)− TL+ωm(t− τ)

= (1 +
ξK2

z
+ξν)ωm(t)

(22)

Let (1 +
ξK2

z
+ ξν) = r, then substitute in Eq. (22).

ωm(t) =
ξK

rz
u(t) +

ξKρ

rz
i(t− τ)

− ξµ

r
sgn(ωm)− TL

r
+

1

r
ωm(t− τ)

(23)

The ωm(t) is a current output, the u(t) is a current in-
put, the i(t − τ) is a previous intermediate variable (here,
it is current), The sgn(ωm) is a nonlinear function, TL is a
load torque (here, it is considered constant), and ωm(t−τ)
is a previous output. From the Eq. (23), it is possible to
find the output equation before a period τ of time.

ωm(t− τ) =
ξK

rz
u(t− τ) +

ξKρ

rz
i(t− 2τ)

− ξµ

r
sgn(ωm)− TL

r
+

1

r
ωm(t− 2τ)

(24)

Then, the output before a period 2τ of time will be:

ωm(t− 2τ) =
ξK

rz
u(t− 2τ) +

ξKρ

rz
i(t− 3τ)

− ξµ

r
sgn(ωm)− TL

r
+

1

r
ωm(t− 3τ)

(25)

and so on, for s time before:

ωm(t− sτ) =
ξK

rz
u(t− sτ) +

ξKρ

rz
i(t− (s+ 1)τ)

− ξµ

r
sgn(ωm)− TL

r
+

1

r
ωm(t− (s+ 1)τ)

(26)

Where s ∈ N. Each equation is substituted in the previous
one and the term ωm(t− (s+1)τ)), which is the previous
output for (t− sτ) moment because it will be far from the
current instant and almost has no effect, is ignored. Then, it
could assume the value of τ equals to one, and it can avoid
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Fig. 3. Block-diagram of DC motor.

the present term of input because it does not get into the
system practically. So the Eq. (23) can be written as:

ωm(t) =

s∑
h=1

bhu(t− h) +

s+1∑
j=1

aji(t− j)

− f(sgn(ωm)|TL)

(27)

The j is greater or equal to h. The f(.) is a nonlinear func-
tion, depends on sgn function and load torque, which is
constant here. bh is the factor of u(t− h) term calculated
such as:

bh =
ξK

zr1+h
; h = 1, 2, 3, ..., s (28)

aj is the factor of x(t− h) term is calculated as:

aj =
ξKρ

zrj
; j = 1, 2, 3, ..., s+ 1 (29)

The i variable (direct current) can be changed with x as
intermediate variable and the ωm with the y variable as in
traditional references.

y(t) =
s∑

h=1

bhu(t− h) +
s+1∑
j=1

ajx(t− j)− nonlinear

(30)

3. Non-linear Wiener Model

In general, most non-linear systems can be described
by the Wiener model [18], Hammerstein model [19], or
Hammerstein-Wiener combined model [20]. The Wiener
model, as shown in Fig. 4, can be described by two sequen-
tial blocks; the first is a dynamic linear block (that means
in addition to present values of input/output, it relies on
the previous amount of the input/output as well), and the
second is a static nonlinear block.

Dynamic Linear
Block
G(q-1)

Static Nonlinear
Block
f(.)

u(t) x(t) w(t) y(t)

e(t)

+

+

Fig. 4. Wiener model.

For the single-input single-output system, Wiener dy-
namic block can be defined as:

x(t) = G(q−1)u(t) =
B(q−1)

A(q−1)
u(t) (31)

Where;

A(q−1) = 1 + a1q
−1 + a2q

−2 + · · ·+ amaq
−ma

B(q−1) = b1q
−1 + b2q

−2 + b3q
−3 + · · ·+ bmbq

−mb

The A and B are polynomials of delay (q−1), ma and mb
are the order of the polynomial, respectively. In general
(ma ≥ mb).

x(t) = −a1x(t− 1)− · · · − amax(t−ma)

+b1u(t− 1) + · · ·+ bmbu(t−mb)
(32)

The Eq. (32) demonstrates the dynamic relationship be-
tween the input and the intermediate signals. The nonlinear
static block will be:

y(t) = w(t) + e(t) = f(x(t)) + e(t) (33)

y(t), u(t), and x(t) are output, input and intermediate vari-
ables severally. x(t) has no physical meaning. The error
e(t) is regarded as white noise (uncorrelated sequential sam-
ples of error) with a zero-mean random sequence of finite
variance, and independent of x(t).

E(e(t)) = 0 ; for variance σ2 < ∞ (34)

So, according to this assumption, Fig. 4 could be com-
pacted to be:

Dynamic Linear
Block
G(q-1)

Static Nonlinear
Block
f(.)

u(t) x(t) y(t)

Fig. 5. Wiener model with zero-mean error assumption.

The output accordingly will be changed to be:

y(t) = f(x(t)) (35)
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There are some approaches to represent the nonlinear func-
tion in the static nonlinear block using; neural nonlinear ac-
tivation functions, piece-wise linear method, or polynomial
representation. Besides, many methods have been devel-
oped to evaluate the whole parameters of theWienermodel,
such as the basic correlation methods, linear and nonlinear
optimization methods [21].

Some nonlinear representations are unsuitable for on-
line nonlinear system identification that has unknown (part
or all) parameters of that system.

Using the nonlinear activation function has a limitation
because the output of these functions is limited to +1 as
maximum and -1 as minimum value, tanh, for example.
So, it is necessary for adding another layer to the neural net-
work and pure linear function with its bias and weights to
get real numbers larger than maximum or lease than min-
imum limits [22]. As a result, the time of calculation will
increase, and the weights will be correlated with each other
in a non-separable form.

The piece-wise linear method is used for following a
polygonal route separated by hinge points. The essential
weak point of this method is required the input and output
data to be available, or at least, the hinge points are deter-
mined [23]. The data availability discords with online sys-
tem identification essence, which depends on prediction.

The polynomial fitting method is used to forge a non-
linear relationship between the independent input and de-
pendent output variables as nth degree multi-term of input.
It has the flexibility to deal with many physical systems and
in prediction models by least-squares method help or one
of its family [24].

4. Wiener Neural Network

Generally, in neural networks, the network has no phys-
ical meaning or real description for the original system or
process, and the parameters of network or weights have no
physical explanation. It is near to the black box structure.
Relationships between the Eq. (32) and Eq. (35) configure
the shape and properties of the Wiener neural network. It
contains two nodes in Three layers. A dynamic linear part
with two attached delay series one for input and another
for intermediate value as input for this node and the output
of this node represents the variable value of the polynomial
that represents a static non-linear part with k lines as shown
in the Fig. 6. Each term of the polynomial is multiplied by
the corresponding weight.
So, the hidden layer can be expressed as:

x(t) = −
ma∑
i=1

aix(t− i)+

mb∑
j=1

bju(t− j) (36)

It is used to be represented in terms of parameters vector

and input-intermediate delay variables.

x(t) = θThφh(t)θThφh(t)θThφh(t) (37)

Where;
θThθ
T
hθ
T
h = (a1 · · · ama b1 · · · bmb)

And,

φT
h (t)φT
h (t)φT
h (t) =

[
−x(t−1) · · ·−x(t−ma) u(t−1) · · ·u(t−mb)

]
Where θh andφh are weights and input variable vectors of
hidden layer respectively, and the subscription h refers to
the hidden layer. The output layer will be:

ŷ(t) =
k∑

r=1

crx
r(t) (38)

it means;

ŷ(t) = c1x(t) + c2x
2(t) + · · ·

+ck−1x
k−1(t)+ckx

k(t)
(39)

it could represent it with vector term, to be:

ŷ(t) = θTo φo(t)θTo φo(t)θTo φo(t) (40)

Where;
θToθ
T
oθ
T
o = (c1 c2 · · · ck−1 ck)

And,

φT
o (t)φT
o (t)φT
o (t) =

(
x1(t) x2(t) · · ·xk−1(t) xk(t)

)
Where θo and φo are weights of output layer and hidden-
output variable vectors respectively, and the subscription o
refers to the output layer. In this case, the training algorithm
must be implemented through two steps, as in [25, 26], the
first step is estimating the weights of output layer Eq. (40),
then estimate the weights of hidden layer Eq. (37).

To speed up the training process, and make it one-shot
teaching for the whole network at a time. There is a step
that must be taken in this way—referring to Fig. 6, it is
possible to consider the weigh of the first polynomial term,
c1, equal to unity; however, it will not lose the feature of a
multi-layer network. New form for output, after substitut-
ing Eq. (32) in Eq. (39), will be:

ŷ(t) = −a1x(t− 1)− · · · − ama(t−ma) + b1u(t− 1)

+ · · ·+ bmau(t−mb) + c2x
2(t) + · · ·+ ckx

k(t)

(41)

ŷ(t) = θTφ(t)θTφ(t)θTφ(t) (42)
Where;

θTθTθT = (a1 · · · ama b1 · · · bmb c2 · · · ck) (43)

And,

φT (t)φT (t)φT (t) =
[
−x(t− 1) · · · − x(t−ma)

u(t− 1) · · ·u(t−mb) x2(t) · · · xk(t)
] (44)

Where θ andφ are parameters, and variable vectors respec-
tively for the whole network. The Eq. (41) is extremely
similar to the Eq. (30) which has been derived previously.
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Fig. 6. Wiener neural network.

5. Teaching Algorithm

In this work, an algorithm of the teaching process is
based on the weighted least squares method. The basic
idea of this process built on minimizing-error, which is the
essence of the least-squares error method, as shown:

FN (θ) =
1

N

N∑
t=1

[y(t)− ŷ(t)]2 (45)

Where FN is the least-squares function for N points (read-
ings), y(t) is the desired or real output, and ŷ(t) is the es-
timated output and equal to φT θ. Each error point of the
N points in the Eq. (45) has the same weight of effect.
Whereas the weighted-least squares (WLS) method gives
for each error point a different weight according to its im-
pact; where points are near to a regression line have a bigger
weight than those which are far away from the regression
line (or the sensitive noise readings) [27], as shown in the
Eq. (46).

FN (θ) =
1

N

N∑
t=1

αt[y(t)−φT (t)θφT (t)θφT (t)θ]2 (46)

Which α a scalar value varies for each single error point. It
is feasible to rewrite the Eq. (46) in discrete time symbols,
as shown in the Eq. (47).

FN (θ) = (Y N−ΦNθ)TQN (Y N−ΦNθ) (47)

To estimate the parameters at the smallest error (minimum
error). First, deriving the right side of Eq. (47) relative to
θ (parameter vector), and then solving for θ after equaling
the left side to zero. That is leading to Eq. (48).

θ̂N= [ΦT
NQNΦN ]−1ΦT

NQNYN (48)

It is possible to make the (WLS) deals with streaming data
recursively to be meet the online modeling requirements,
by using recursive weighted least squares (RWLS) [28, 29].
In the beginning, it is suitable to rewrite the Eq. (46) in
discrete-time symbolic terms (k) and present time (t), as in
Eq. (49).

θ̂t = argθmin
t∑

k=1

β(t, k)[y(k)− φT (k)θ]2 (49)

Which means, deriving the equation relative to θ and equat-
ing it to zero to get the minimum value. β is the weight of
a specific point at k time to the present time [27, 30]. The
Eq. (49) will be:

θ̂ =
[ t∑
k=1

β(t, k)φ(k)φT (k)
]−1

t∑
k=1

β(t, k)φ(k)y(k)

(50)
It is more convenient to minimize the terms, to be:

R(t) =
t∑

k=1

β(t, k)φ(k)φT (k) (51)

f(t) =
t∑

k=1

β(t, k)φ(k)y(k) (52)

So, the Eq. (50) will be:

θ̂t= R−1(t)f(t) (53)

Now, suppose that the successive weight has the following
property:

β(t, k) = λ(t)β(t− 1, k), 0 ≤ k ≤ t− 1
β(t, t) = 1

(54)
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That leads to:

β(t, k) =
t∏

k+1

λ(i) (55)

If the Eq. (54) was substituted in the Eq. (51) and Eq. (52),
the result will be:

R(t) = λ(t)R(t− 1) + φ(t)φT (t) (56)

f(t) = λ(t)f(t− 1) + φ(t)y(t) (57)

That leads to:

θ̂t = R−1(t)f(t) = R−1(t)
[
λ(t)f(t− 1) + φ(t)y(t)

]
= R−1(t)

[
λ(t)R(t− 1)θ̂t−1 + φ(t)y(t)

]
= R−1(t)

{[
R(t)− φ(t)φT (t)

]
θ̂t−1 + φ(t)y(t)

}
So, the result is:

θ̂t = θ̂t−1 +R−1(t)φ(t)
[
y(t)− φT (t)θ̂t−1

]
(58)

Which is a recursive equation. To avoid finding the inverse
of R(t) recursively, it is suitable to use:

P (t) = R−1(t) (59)

Then implementing the matrix inversion lemma.

[A+BCD]−1 = A−1−A−1B[DA−1B+C−1]−1DA−1

(60)
Substituting in Eq. (56), by considering A = λ(t)R(t −
1), B = DT = φ(t), and C = 1, this leads to:

P (t) =
1

λ(t)

[
P (t− 1)− P (t− 1)ϕ(t)φT (t)P (t− 1)

λ(t) + φT (t)P (t− 1)φ(t)

]
(61)

Furthermore, the inverting matrix multiplied by variables
vector will be:

R−1(t)φ(t) =
1

λ(t)
P (t− 1)φ(t)

− 1

λ(t)

P (t− 1)φ(t)φT (t)P (t− 1)φ(t)

λ(t) + φT (t)P (t− 1)φ(t)

=
P (t− 1)φ(t)

λ(t) + φT (t)P (t− 1)φ(t)
(62)

Summarizing of the whole recursive algorithm in the se-
quence is as follows:

P (t) =
1

λ(t)

[
P (t− 1)− P (t− 1)φ(t)φT (t)P (t− 1)

λ(t) + φT (t)P (t− 1)φ(t)

]
(63)

L(t) = R−1(t)φ(t) =
P (t− 1)φ(t)

λ(t) + φT (t)P (t− 1)φ(t)
(64)

θ̂t = θ̂(t− 1) + L(t)
[
y(t)− φT (t)θ̂(t− 1)

]
(65)

6. Online Modeling Steps

The following steps explain how to implement the re-
cursive method to estimate the model in real-time:

1. Initialize the covariance matrix P for the whole net-
work.

2. Initialize the estimated weight-matrix or parameter-
matrix θ̂ for each layer in the network.

3. Select the weighting factor in the range 0 < λ < 1.

4. Read the input u and calculating the intermediate
variable x.

5. Read the output y and calculating the estimated out-
put ŷ.

6. Form the variable matrix φ for the present time t as
in Eq. (44).

7. Calculate the error square e2.

8. Calculate the matrix of the estimated parameters θ̂
through calculating the Eq. (63) — Eq. (65).

9. Update a covariance matrix P and the estimated
weight-matrix θ̂.

Step 4 — step 9 are executed recursively.

7. Implementation of Model

The high-speed DC motor physical model is built with
the load by the Simscape™ software, which is an extension
for MATLABr language. The input is a noisy sinusoidal
signal. The output is high speed in (rpm) for relatively small
input in (voltage). The motor is constructed with minimal
Coulomb friction torque about 0.02 × 10−3 N.m with no
viscous friction coefficient. The weighting factor λ is taken
equal to 0.90; this is the best factor consists of two digits
after the decimal period for this system and some other sys-
tems [31, 32, 33]. Figure 7 demonstrates the input voltage
and the output speed of the DC motor in (rpm).

8. Experiment Methodology

Most experiments have appeared that the model con-
verges from the real system after 230 ms. The sampling
time for reading input/output data is 10 ms, which is about
4.3 % of convergence time. The input voltage varies from 7
to −7 volts around zero volts, to examine the non-linearity
of the dead zone and Coulomb friction in the bidirectional
DC motor and their impact on the modeled system. The
experiments have been done to determine the number of
terms, that represent the best model, in each u, x, and xn
polynomial in the Eq. (42), Eq. (43), and Eq. (44). Where u
is the number of dynamic input terms, for example u = 2;
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Fig. 7. Input voltage and motor speed.

it means b1u(t − 1) + b2u(t − 2)), x is the number of
dynamic feedback of first stage, for example x = 3; it is
means a1x(t − 1) + a2x(t − 2) + a3x(t − 3), and xn

is the order polynomial; for example xn = 3; it means
c2x

2(t)+ c3x
3+ c4x

4, the xn=1 is a trivial case [2], where
the set of xn is {x2, x3, x4, . . . } starts from x2. The
number and best distribution for terms on the u, x, and
xn variables are determined through experiments using 15
terms as a maximum for all variables. In comparison, the
number of the maximum terms for a specific variable does
not exceed 11 terms. More than forty combinations have
been examined as samples, which is more than most other
researches [34, 22], the minimum number of terms is six
terms two terms for each variable. The xn series specifies
the degree of non-linearity, and it is responsible for deter-
mining the order of the model.

8.1. Result and Model Evaluation

There are some methods to measure the validity of the
model in the modeling system field. Most two methods
used frequently are based on mean square error (MSE), and
Normalized root-mean-square error (NRMSE) [2, 35]; the
MSE is appropriate for small scale signals, but NRMSE

is used for various scales including large scale signals [35].
Here, the goodness of fit (gof) is used built on the NRMSE
criterion as a cost function, as shown in Eq. (66).

gof =

1−
√∑N

t=1(y(t)− ŷ(t))2√∑N
t=1(y(t)− ȳ(t))2

× 100% (66)

Where the ŷ(t) is the estimated output from the model and
ȳ(t) is the mean value of the original output of the motor
y(t). Table 1 clarifies the gof , which is depicted graphi-
cally by Fig. 8, for forty-one samples and the relation with
the number of terms for u, x, and xn variables. Where the
best model has two terms of dynamic inputs, five dynamic
feedback terms, and two xn terms as shown in Eq. (67);
the order polynomial = xn + 1; means number of terms
+ 1, here is (3). The NRMSE criterion was about 98% as
shown in Table 1.
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Fig. 8. Goodness of fit (gof) values for different combina-
tions of u, x, and xn polynomials.

Figure 9 and Fig. 10 show the difference between the
real output for DC motor and the estimated output for the
model, and display the tracking of the suggested model to
the real system. Figure 11 depicts the error of estimated out-
put relative to the real system e = y− ŷ along the working
period.
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Fig. 9. Difference between real system and the model of
the system.
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The closest model for the DCmotor, as shown in Table
1 and Fig. 8, is:

ŷ(t) = a1x(t− 1) + a2x(t− 2)

+ a3x(t− 3) + a4x(t− 4)

+ a5x(t− 5) + b1u(t− 1)

+ b2u(t− 2) + c2x
2(t) + c3x

3(t)

(67)
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Fig. 11. The error of the estimated model.
According to the Eq. (41) and as it was clarified by Fig.

6, the xn polynomial is starting with c2x2, so the two terms
of this polynomial will be c2x2 + c3x

3 at the specific time
t. The figures from Fig. 12 to Fig. 18 depict the estimated
parameters for online identification. After substituting the
values of parameters in the Eq. (67), it will be as follows in
Eq. (68):

ŷ(t) = 0.2268x(t− 1) + 0.0284x(t− 2)

− 0.0133x(t− 3) + 0.0047x(t− 4)

+ 0.0011x(t− 5) + 487.3654u(t− 1)

+ 380.7769u(t− 2)− 2.8936e− 7x2(t)

+ 2.1245e− 10x3(t)

(68)

The Eq. (68) shows the significant effect of the pre-
ceding input terms, u(t − 1) and u(t − 2), over the rest
terms of the polynomial, and the small effect of the non-
linear terms of polynomial because of the minimal value of
Coulomb friction torque that used in building the physical
model of DC motor in the Simscape/MATLABr.
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Fig. 12. Estimated a1 and a2 parameters.
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9. Conclusion

The high-speed bidirectional DC motor has been mod-
eled as a nonlinear online model, taking into account the
nonlinear effects of the Coulomb friction, dead zone, and
the viscous torque. The model developed from the prin-
ciple equation using the neural networks with time-shifting
and the Wiener block-oriented model. The RWLS method
is used to update the weights of the net. The physical model
is built by Simscape/MATLABr and examined online. The
best model was third order polynomial with fitness 98.03 %
using NRMSE as a criterion function. This research and its
methodology focus on setting general rules for dealing with
modeling mechatronic devices and implementing various
techniques for identifying nonlinear systems. The experi-
ments show promising results that can be applied to identify
other systems in the real world in real-time.
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Table 1. The goodness of fit (gof) values for different combinations of u, x, and xn polynomials.

u 2 2 2 2 2 2 2 2
x 2 2 2 2 2 2 2 2
xn 2 3 4 5 6 7 8 9
gof 95.8596 -inf -inf -inf -inf -inf -inf -inf
u 2 2 2 2 2 2 2 2
x 2 2 3 4 5 6 7 8
xn 10 11 2 2 2 2 2 2
gof -inf -inf 96.37867 97.9527 98.0311 -474.896 1.8404 80.2049
u 2 2 2 3 3 3 4 4
x 9 10 11 2 3 3 2 3
xn 2 2 2 2 2 3 2 3
gof 97.7863 85.6256 93.9708 97.9429 97.7765 -inf 95.5151 -inf
u 4 4 5 5 5 5 6 6
x 4 4 2 4 5 5 2 4
xn 3 4 2 4 4 5 2 4
gof -inf -inf 97.8157 -inf -inf -inf 97.9821 -inf
u 6 6 7 8 9 10 10 10 11
x 4 5 2 2 2 2 2 3 2
xn 5 4 2 2 2 2 3 2 2
gof -inf -inf 97.9625 97.4642 97.9331 97.9136 -inf -inf -inf
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