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Abstract. The goal of this study was to predict the soluble solid content (SSC) of on-tree Marian plum fruit 
using two different wavelength range and algorithm. One of these was the commercial dispersion NIR 
spectrometer (MicroNIR 1700), providing shortwave infrared (SWIR), while the other was a making diode 
array spectrometer giving visible-near infrared (Vis-NIR). To search optimal model, the analytical ability of 
the two wavelength ranges spectrometers coupled with two algorithms: i.e. partial least squares regression 
(PLSR) and support vector machine regression (SVR), were investigated. Different spectral pre-processing 
methods were tested. The model providing the lowest root mean square errors of prediction (RMSEP) was 
selected. Overall, the proposed outcome was that the performance of SWIR was more accurate than Vis-NIR 
spectrometer, and that both SWIR and Vis-NIR coupled with PLSR algorithm had a higher accuracy than 
SVR algorithm. The best model for on-tree evaluation SSC was the SWIR constructed using the PLSR 
algorithm with the spectral pre-processing of the 2nd derivative, providing a coefficient of determination of 
calibration set (R2) of 0.81, a coefficient of determination of validation set (r2) of 0.76, RMSEP of 0.69 °Brix, 
and a relative standard error of prediction (RSEP) of 4.43%. The outcome showed that a portable SWIR 
spectrometer developed with PLSR could be used for monitoring the SSC of individual Marian plum fruit 
on-tree for quality assurance. 
 
Keywords: Handheld NIR spectrometer, soluble solids content, partial least squares 
regression, support vector machine regression, on-tree measurement. 
 

ENGINEERING JOURNAL Volume 24 Issue 5 
Received 16 February 2020 
Accepted 3 August 2020 
Published 30 September 2020 
Online at https://engj.org/ 
DOI:10.4186/ej.2020.24.5.227 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Engineering Journal (Faculty of Engineering, Chulalongkorn University, Bangkok)

https://core.ac.uk/display/352942578?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:bnavavit@kkumail.com


DOI:10.4186/ej.2020.24.5.227 

228 ENGINEERING JOURNAL Volume 24 Issue 5, ISSN 0125-8281 (https://engj.org/) 

1. Introduction 
 
The Marian plum (Bouea macrophylla) is a fruiting tree 

planted in Southeast Asia, with most plantations being 
found in Malaysia, Thailand, and Indonesia [1, 2]. 
Currently, the price of Marian plum is set following its 
appearance. For example, if fruit is a big size, ellipse shape, 
absence of defects, skin and flesh color, it is sold with a 
high price.  However, quality of fruit is not only the 
physical properties but also chemical properties. Soluble 
solid content (SSC) is the one parameter indicated the 
quality of Marian plum fruit. It should be checked before 
selling and SSC should be used to set the price of fruit. 
Therefore, if a Marian plum has a lower SSC, it should be 
sold with a lower price. On the contrary, fruits giving a 
high SSC value should be sold with a high price. At present, 
the SSC of fruit in each plantation is randomly checked 
using the refrectometry method. This leads to destruction, 
wastage, and lost time. Even though the examined fruits 
are from the same tree, area and age, the fruits’ quality are 
varied due to different on-tree conditions, which is 
uncontrolled [3–5]. Therefore, to harvest with a quality of 
fruit, the SSC of all fruits should be checked using an easy-
to-use device to be 100-percent verified. Hence, a rapid 
and non-destructive technique such as the NIR 
spectrometer is a key. Moreover, the evaluation of the 
quality of individual fruits in the field also benefits field 
management and fruit storage [6]. 

NIR spectroscopy has been applied to estimate the 
quality of various fruits and crops, Asian pears [5], apple 
[6, 7], passion fruit pulp [8], onion bulbs [9, 12], mango 
[10], and sugarcane stalk [11]. Unfortunately, no studies 
have been conducted analyzing Marian plum fruit in the 
field. Therefore, obtaining the necessary knowledge of 
how to develop the NIR predictive model is important. 
The factors of interest used to develop the model include 
wavelength ranges, algorithm, spectral and pre-processing 
techniques [9]. Because these factors are very important, 
they urgently need to be examined. In the field, the focus 
is placed on the analytical performance of a portable NIR 
spectrometer.  Because the Marian plum is a climacteric 
fruit, this focus is necessary, due to the fact that its 
effective utilization can lead to differences in the 
properties of the fruits during the harvesting process and 
during transportation to the customer [2]. 

For model development, algorithm and spectra 
preprocessing is significant. The best model can be 
achieved if algorithm and spectra pretreatment methods 
are suitable. Both linear and non-linear algorithms were 
preferred for model development [13–16]. PLSR and SVR 
represent the linear and non-linear algorithms, 
respectively. PLSR creates an inner relationship between 
the absorbance information and the reference value, using 
the maximizing covariance of the independent variable (X, 
absorption value) and the dependent variable (reference 
value) [17, 18]. For example, PLSR was proposed for use 
in the application of NIR spectroscopic method on 
sugarcane [11, 19], avocado fruit [20], and onion [12], 
giving a high performance. SVR represents non-linear 

correlation, and at present, only a few research studies 
have applied SVR to NIR spectroscopic techniques. It is 
able to provide excellent performance when using small 
sample sizes [21]. It is very interesting to study occasions 
in which SVR has been compared to PLSR, and as such, a 
comparison of the performance of PLSR and SVR using 
SWIR was studied by Malegori et al. [13], who found that 
SVR algorithm had given better results when evaluating 
titratable acidity in acerola fruit. PLSR is not always a 
perfect technique [22] if the relationship between the 
spectra and interests are not linear. As a result, the non-
linear model was proposed. Pretreatment of spectral data 
has become an integral part of chemometrics modeling, it 
is used to remove physical phenomena in the spectra in 
order to improve the multivariate regression [23]. Spectral 
pretreatment is divided into two categories: derivatives 
methods (e.g. sd1, sd2, smoothing (Savitzky-Golay)) and 
scatter correction methods (e.g. SNV, MSC, baseline 
correction). For example, baseline offset was applied in 
order to solve the baseline shift resulting from differences 
in particle sizes. The 1st and 2nd derivatives were able to 
separate the overlapping peaks, which benefitted the 
modelling [24]. 

SNV and MSC were able to reduce the multiplicative 
scattering effects of sample surfaces resulting from the 
differences in particle size. SNV reduces the additive in 
spectra and the effect of multiplicative scatter, it is used to 
treat individual spectrum by dividing with its standard 
deviation [25]. While MSC helps to adjust the slope and 
the intercept of individual spectrum to the averaged slope 
and intercept [25].  The spectral pre-treatments of SNV 
and MSC give very similar results [26]. However, their 
geometry in spectral space is not the same [26]. Optimal 
technique of spectral data collection is significant, but, 
after data collection, pre-processing of spectral data is the 
most important step before model creation [23]. 
Therefore, the application of different combinations of 
spectral pretreatment method is necessary in order to 
improvement of calibrations and the selection of the best 
model on the basis of validation results [27].  

Therefore, the goal of this work was to compare the 
analytical performance of the two different wavelength 
ranges (Vis-NIR and SWIR) of spectra, which had been 
collected from different portable spectrometers, and two 
algorithms (PLSR and SVR) on their accuracy to examine 
the SSC of Marian plum fruit on-tree. Several spectra 
pretreatment method including single and combination 
pre-treatments was applied for modeling. Utilizing this 
knowledge could be the best way to make good 
predictions about the SSC of ‘tree-ripening’ fruits in the 
field. If this work succeeds, it will be able to benefit the 
commercial fruit industry by allowing them to generate 
higher profits, as faulty decisions, which tend to be made 
at harvest time, will be reduced. 
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2. Materials and Methods 
 
2.1. Sample Collection 
 

Marian plums of the ‘Tool Kraw’ variety were 
collected from five plantations located in Nakhon Nayok 
Province, Thailand. In order to obtain a wide variance of 
SSC values, Marian plums at five different stages of 
ripeness, including <60 days (13 fruits), 60 days (7 fruits), 
70 days (13 fruits), 75 days (54 fruits), and >75 days (13 
fruits) days after blooming, were randomly collected from 
different plantations i.e. orchard -A, -B, -C, -D, -E, -F, -G 
and -blind. The total sample equaled 100 fruits. Fig. 1a 
illustrates the Marian plum fruit ripening on-tree. 

 
2.2. Spectral Acquisition 
 

NIR spectral acquisition for the Vis-NIR and SWIR 
were scanned using an interactance mode. The scanning 
was performed on-tree in the field under real 
environmental conditions. Fig. 1a illustrated on-tree NIR 
spectral acquisition. The following two spectrometers 
were used:  

  

 
 
 
 

 
 
 
 
 
 
 
 
 

•  A portable NIR instrument (P-TF1 , HNK Engineering 
Co., Ltd., Hokkaido, Japan) in an interactance mode with 

a short wavelength range (Vis-NIR) of between 5 7 0  to 

1031 nm.  

•  A MicroNIR Pro1 7 0 0  in an interactance mode with a 

long wavelength range (SWIR) of between 908-1676 nm. 
 

Each fruit was scanned on-tree using the two 

spectrometers with an integration time of 30 ms at the 
center of fruit. During spectral acquisition, temperature 
samples was measured using infrared digital thermometer 
(GM 320, benetech, China). The measurement positions 

were at Position-1, Position -2, Position -3, and Position -
4, respectively (see Fig. 1b). In order to avoid specular 
reflection, a light source window and a detector were 
adjoined to the surface of the fruit. Position-1 was 
randomly chosen and scanned. Next, Position-2, Position-

3, and Position-4 were pointed at 90°, 180°, and 270° 
degree rotations, respectively from Position-1. Each 
position was scanned one time. The absorbance was 

calculated from log 1/R, in which R is the relative 

reflectance.  It was calculated using the formula [28]: R =
(RSam−RDark)

(RWhite−RDark)
, in which RSam represents the reflection of 

the Marian plum sample, RWhite represents the reflection of 
the white reference  (Teflon), and RDark represents the 
reflection when the light source was turned off. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Variation of SSC value at each ripening stage. 

 
 
Fig.  1. a) Marian plum fruit ripening on-tree and spectral 
acquisition, b) The measurement position and its cross-
section. 

 

 
a) 

 
b) 

Fig. 3. PCA scores plot (PC1, PC2, and PC3) for all 
spectral data acquired on the a) shortwave and b) 
longwave. 
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2.3. Reference Analysis 

 
After spectral acquisition, the fruit at each position 

was cut 1cm3 around the scanned point. Then the 1 cm3 
sample was immediately squeezed in order to obtain its 
juice (See Fig. 1b for details of the juice extraction and 
scanning procedures). The SSC values were collected by 
dropping juice into the test slot of a portable refractometer 
(Nar–3Ta, ATAGO, Tokyo, Japan). 
 
2.4. NIR Construction 
 

The SSC predictive models were developed using Vis-
NIR and SWIR spectra coupled with two different 
multivariate algorithms (i.e., PLSR and SVR). The two 
algorithms and spectral pre-treatments were performed 
using multivariate software analysis (Unscrambler X 10.3, 
Camo, Norway). Before model development, either raw 
spectra or pre-processed spectra was used for the 
multivariate analysis. The spectral pre-processing methods 

were performed utilizing any of the following methods: a) 
smoothing (Savitzky-Golay, smoothing points=7, 

polynomial order=2); b) the 1st derivative (Savitzky-Golay, 

smoothing points=7, polynomial order=2); c) the 2nd 
derivative (Savitzky-Golay, smoothing points=7, 
polynomial order=2); d) the baseline offset; e) the 
standard normal variate (SNV); f) the multiplicative scatter 
correction (MSC); g) the baseline offset + SNV; h) 
MSC+SNV; and i) SNV+MSC. 

The SSC of each position and its corresponding 
spectrum was assigned as a data set. The total sample 
equaled one hundred fruits scanned with four positions 
per fruit. Therefore, the total data set was four hundred 
(100 fruits × 4 positions = 400 data set).  The data set was 
sorted in ascending order of SSC value. One in every four 
samples was selected to be a validation set while the 
remaining samples were assigned to be a calibration set. 
The calibration set covered the maximum SSC range. The 
model was validated using test set method: 75% was for 
the calibration set and 25% was for the validation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.5. Model Performance 
 

After the modeling, the accuracy of each condition 
was compared using the statistical term of the coefficient 

of determination (R2: calibration set, r2: validation set), the 
root mean square error of prediction (RMSEP), the bias, 
the residual predictive deviation (RPD), and the relative 
standard error of prediction (RSEP) [11]. The effective 

model was selected based on the highest r2  or the lowest 
RMSEP. These parameters can be calculated as follows 
[25] 

 

R2 = 1 −
∑ (yi−ypre)

2n
1

∑ (yi−y̅)
2n

1
    (1) 

RMSEP = √∑ [(yi−ypre)−bias]
2n

i

n
   (2) 

Table 1. Results of calibration and the validation model for NIR (700-1000 nm) developed using PLSR and SVR 
algorithms in the evaluation of total soluble solids of Marian plum fruits. 
 

Spectral  

Pre-processing 

Algorithms Calibration Set Validation Set 

Factor R2 RMSE r2 RMSEP bias RPD RSEP,% 

Raw spectra 

 

PLSR 9 0.73 0.72 0.66 0.81 -0.097 1.7 5.22 

SVR - 0.30 1.24 0.31 1.28 0.0098 1.1 8.32 

aSmoothing (Savitzky-

Golay) 

PLSR 10 0.75 0.70 0.70 0.76 -0.12 1.8 4.91 

SVR - 0.30 1.24 0.31 1.28 0.0094 1.1 8.32 

a1st derivative PLSR 9 0.77 0.67 0.65 0.82 -0.080 1.7 5.28 

SVR - 0.75 0.72 0.69 0.85 0.080 1.6 5.54 

a2nd derivative PLSR 11 0.67 0.80 0.50 0.98 -0.055 1.4 6.30 

SVR - 0.52 1.00 0.42 1.13 0.027 1.2 7.34 

Baseline offset PLSR 10 0.75 0.70 0.67 0.80 -0.13 1.8 5.15 

SVR - 0.47 1.04 0.48 1.13 0.018 1.2 7.31 

SNV PLSR 7 0.71 0.75 0.63 0.84 -0.086 1.7 5.41 

SVR - 0.68 0.80 0.61 0.92 0.11 1.5 6.02 

MSC PLSR 8 0.74 0.71 0.65 0.82 -0.15 1.7 5.27 

SVR - 0.68 0.80 0.60 0.93 0.11 1.5 6.08 

Baseline offset + SNV PLSR 7 0.71 0.75 0.63 0.84 -0.086 1.7 5.41 

SVR - 0.68 0.80 0.61 0.92 0.11 1.5 6.02 

MSC+SNV PLSR 6 0.69 0.78 0.59 0.88 -0.068 1.6 5.70 

SVR - 0.68 0.80 0.61 0.92 0.11 1.5 6.02 

SNV+MSC PLSR 8 0.74 0.71 0.65 0.82 -0.15 1.7 5.27 

SVR - 0.68 0.80 0.60 0.93 0.11 1.5 6.08 
aSmoothing point=3, Polynomial order=2, R2: coefficient of determination of calibration set, r2: coefficient of determination of validation set, 
RMSE: root mean square error of estimation, RMSEP: root mean square error of prediction, RSEP: relative standard error of prediction, PLSR: 
partial least square regression, SVM: support vector machine  
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bias =
∑ (yi−ypre)
n
i

n
        (3) 

RPD =
SDy

RMSEP
     (4) 

RSEP = √∑ [
(Yi−Ypre)

2

∑Yi
2 ] × 100   (5) 

 

in which yi, ypre, and y̅ are the measured SSC value, the 
predicted SSC value, and the average measured SSC value, 
respectively. Bias is the mean difference between the 

reference SSC values and the predicted value. The 
percentage of absolute error of prediction and its 
reference value is shown in RSEP. For example, if the 

RSEP was equal to 5 %, it meant that every prediction 

could approximately give a 5% error [11]. 
To search for the effective model, the wavelength 

range (Vis-NIR and SWIR) and the regression algorithm 
(PLSR and SVR) were crossed, including Vis-NIR-PLRS; 
SWIR-PLSR; Vis-NIR-SVR; and SWIR-SVR.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 

3. Result and Discussions 
 
3.1. Reference Data 
 

Figure 2 delineates the statistical data of the Marian 
plum fruits at the different harvesting times used for 
developing the SSC predictive model. The variability of 
the fruit samples had in fact depended upon the 
differences in their stages of maturity. As the results show, 
there were different SSC values at each of the ripening 
stages. The lowest SSC was found at the age at <60 days 
after flowering, and the highest SSC was at the age of >75 
days. The SSC values increased as the harvesting time 
increased. However, because the harvests had been carried 
out in different orchards, a lower SSC value was 
discovered at 75 days than was found at 70 days.  It is 
possible that the differences in the SSC of the Marian 
plum fruits could have arisen if any of the farmers had 
given different attention or care to the trees or if there had 
been differences in the external factors, such as location 
and soil fertility. Therefore, if a plant had grown in good 

field conditions and had received good attention and care, 
it is possible that fruits harvested after a lower number of 
harvesting days could have a higher SSC than those with a 
higher number of flowering days. This confirms the fact 
that the classification of the SSC of the Marian plum 
cannot be determined visually or predicted based on the 
age of the fruit. 
 
3.2. Spectral Data 
 

Figures 3a and 3b demonstrate the scatter plots of 
PC1, PC2, and PC3 of raw spectra obtained from Vis-NIR 
and SWIR spectra. The result shows that there was no 
effect of different orchards. The in-field temperature 

sample during experiment ranged between 29 to 39 °C, 

and average temperature sample was 32.9 °C. As reported 
by Acharya et al. [29], found that the temperature sample 

between 20 to 40 °C did not affect the accuracy (R value 
and SEP) of tomato dry matter content model predicted 
by Vis-NIR spectrometer. Figures 4a, 4b, 4c, and 4d show 
the spectra of the Marian plum samples for the Vis-NIR 

Table 2. Results of calibration and validation model for SWIR (908-1676 nm) developed using PLSR and SVR 
algorithms in the evaluation of the SSC of Marian plum fruits.  
 

 Calibration Set Validation Set 

Spectral Pre-processing  
Algorithms 

Factor R2 RMSE r2 RMSEP Bias RPD RSEP,% 

Raw spectra PLSR 11 0.81 0.61 0.72 0.74 0.00046 1.9 4.75 

SVR - 0.29 1.19 0.32 1.16 0.072 1.2 7.57 

aSmoothing (Savitzky-Golay) PLSR 11 0.81 0.61 0.72 0.74 0.0023 1.9 4.75 

SVR - 0.29 1.19 0.32 1.16 0.072 1.2 7.57 

a1st derivative PLSR 8 0.80 0.63 0.74 0.70 -0.0026 2.0 4.52 

SVR - 0.73 0.74 0.70 0.78 -0.0077 1.8 5.07 

a2nd derivative PLSR 9 0.81 0.60 0.76 0.69 -0.011 2.0 4.43 

SVR - 0.79 0.65 0.73 0.73 0.029 1.9 4.76 

Baseline offset PLSR 10 0.81 0.61 0.72 0.73 0.0044 1.9 4.74 

SVR - 0.51 1.00 0.47 1.05 0.052 1.3 6.82 

SNV PLSR 12 0.82 0.60 0.75 0.69 -0.019 2.0 4.48 

SVR - 0.47 1.05 0.47 1.06 0.063 1.3 6.92 

 MSC PLSR 11 0.81 0.61 0.74 0.70 -0.014 2.0 4.53 

SVR - 0.47 1.05 0.48 1.06 0.080 1.3 6.92 

Baseline offset+ SNV PLSR 12 0.82 0.60 0.75 0.69 -0.019 2.0 4.48 

SVR - 0.47 1.05 0.47 1.06 0.063 1.3 6.92 

MSC+SNV PLSR 10 0.76 0.63 0.72 0.73 -0.011 2.0 4.74 

SVR - 0.47 1.05 0.47 1.06 0.062 1.3 6.92 

SNV+MSC PLSR 11 0.81 0.61 0.74 0.70 -0.014 2.0 4.53 

SVR - 0.47 1.05 0.47 1.06 0.063 1.3 6.92 
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spectra, the 2nd derivative Vis-NIR spectra, the SWIR 
spectra, and the 2nd derivative SWIR spectra, respectively. 
The Vis-NIR spectra contained higher noise in the 
wavelength range of 571-700 nm due to effects from the 
color of the fruit’s surface. Meanwhile, 1000-1031 nm 
contained noise checked by visualizing (see Fig. 4b). These 
wavelength ranges were then not recommended. 
Sanseechan et al. [11] found that the wavelength range of 
700–1000 nm was able to give good predictions for the 
assessment of cane density, whereas a wavelength ranges 
of 670–1031 nm gave poor predictions. The model was 
improved by removing the confounding effects of the 
visible wavelength range. For the development of the 
model, a wavelength of 700–1000 nm was used. This range 
was also suggested by Luo et al. [7] who found that the 
wavelength range of 861-1074 nm had provided the most 
robust model for predicting the SCC of apples. Meanwhile, 
SWIR was determined to be a good spectrum. By carrying 
out a visual check, it was found that there was no noise in 
the raw and the 2nd derivative spectra. SWIR had many 
obvious peaks which had occurred in the 2nd derivative 
spectra, such as at 1370 nm, 1409 nm, 1450 nm, and 1651 
nm, which are related to the C-H (2vCH3 and δCH3) 
combinations of hydrocarbons [30]; the C-H (2vCH2 and 
δCH2) combinations of hydrocarbons, O-H (2v), the O-H 
of water and starch [30] and C-H methyl, and CH3NO2 
[30], respectively. In addition, these obvious peaks 
demonstrated that there was much change when the 
composition of the samples differed. This characteristic 
can give a higher variance of absorbance, which is useful 
for modeling. 
 
3.3. Analytical Performance 
 

Table 1 demonstrates the PLSR and SVR results 
developed from Vis-NIR across either the raw or the pre-
treated spectra. Overall, the PLSR algorithm was proven 
to be more accurate than the SVR algorithm. The best 
model for PLSR algorithm, which provided the lowest 
RMSEP, was optimized with spectral pre-treatment of 
smoothing. The R2, RMSE, r2, RMSEP, bias, RPD, and 
RSEP were 0.75, 0.70 °Brix, 0.70, 0.76 °Brix, -0.12 °Brix, 
1.8, and 4.91%, respectively. For the SVR algorithm, 
generation with spectral pre-processing of the 1st 
derivative was also able to provide a fair prediction.  The 
R2, RMSE, r2, RMSEP, bias, RPD, and RSEP were 0.75, 
0.72 °Brix, 0.69, 0.85 °Brix, 0.080 °Brix, 1.6, and 5.54%, 
respectively.  

For SWIR results, the PLSR and the SVR algorithms 
utilizing different pre-treatment techniques are illustrated 
in Table 2. The overall outcome found was that the PLSR 
proved to be more accurate than SVR algorithm. The best 
result in PLSR algorithm was developed with spectral pre-
processing of the 2nd derivative, giving a PLS factor of 9, 
providing an R2 value of 0.81, an RMSE of 0.60 °Brix, an 
r2 of 0.76, an RMSEP of 0.69 °Brix, a bias of -0.011 °Brix, 
an RPD of 2.0, and an RSEP of 4.43%. Furthermore, the 
best result in SVR algorithm was pre-treated with the 2nd  

derivative, provided an R2 of 0.79, an RMSE of 
0.65 °Brix, an r2 of 0.73, an RMSEP of 0.73 °Brix, a bias 
of 0.029 °Brix, an RPD of 1.9, and an RSEP of 4.76%, 
respectively. As the result, it was shown that the SVR 
algorithm for Vis-NIR and SWIR could be optimized with 
derivative technique. 

The ability of the validation model indicated by the 
RPD value was as follows: an RPD ≤1.5 means that it will 
give poor predictions, an 1.5<RPD≤2.0 means that it can 
be used for rough screening, 2.0<RPD≤2.5 can be used 
for quantitative predictions, 2.5<RPD≤3.0 are fit to be 
used as good predictors, and an RPD>3.0 are appropriate 
to create an excellent model [20, 31, 32].  

Therefore, the SWIR-PLSR model gave a good 
prediction and was able to be used for screening as a 
quantitative and qualitative assessment, while the SWIR-
SVR, Vis-NIR-PLSR, and the Vis-NIR-SVR had a fair 
models and could be used for rough screening. However, 
all of the models showed a low RSEP (approximately 4.43 
- 5.54%), which was able to be accepted for quality 
assessment. For example, if the RSEP equals 4.43%, it 
means that every predicted value will give an error of 
approximately 4.43% based on measured SSC value. The 
scatter plots between the predicted values and measured 
values of the effective model in NIR were developed using 
Vis-NIR-PLSR, SWIR-PLSR, Vis-NIR-SVR, and SWIR-
SVR and are illustrated in Figs. 5a, 5b, 5c, and 5d, 
respectively. The optimal algorithm which could be used 
to predict SSC in Marian plum fruit was PLSR.  

Figures 6a and 6b show the regression coefficient plot 
and the pre-treated spectra of the best model optimized 
from the PLSR algorithm of Vis-NIR and SWIR. If the 
regression coefficient value had shown high value at any 
wavelength, it would mean that the wavelength had had a 
high impact on the prediction. 

Soluble solid content (SSC) in fruit are mainly 
composed of soluble sugars, including fructose, glucose 
and sucrose [33]. This leads to SSC is a key parameter in 
the quality of fruit. Sugars molecules have a generic 
formula of CnH2nOn [34]. 

The obvious peaks in regression coefficient plot and 
the Vis-NIR spectra, which had been pre-treated by 
smoothing, were at 876, 912, and 940 nm and are related 
to the vibrational band of the C-H aromatic of 
hydrocarbon [30], the C-H methyl of CH3 [30], and the C-
H stretching third overtone of CH2 [35], respectively. The 
waveband at 910 nm is related to the sugar band [36]. The 
result can be seen that important peak related to 
vibrational band of hydrocarbon, which are in sugar 
structure. Maraphum et al. [37] found that the vibrational 
bands of 910, 953, 836, 928, and 970 nm had impacted the 
prediction of Pol in cane stalks. The important peaks used 
to predict the density of sugarcane stalks were found at 
800 to 818 nm, 912, 960, and 980 nm as reported by 
Sanseechan et al. [11].  
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For the SWIR model, which had been pre-processed 
from the 2nd derivative, obvious peaks in the regression 
coefficient plot were at 982, 1155, 1409, and 1465 nm, and 
they corresponded to the O-H stretching of the second 
overtone of starch, the C-H stretching of the second 
overtone of CH3, and the O-H stretching of the first 
overtone of ROH [35], respectively. These peaks related 
to sugar structure.  

For Vis-NIR and SWIR model, the accuracy is not 
much difference between raw spectra and pre-treated 
spectra. Therefore, the raw spectral model could be 
assigned as the best for the application of detecting SSC 
on trees because of processed fast.  

Comparing to the previous study, our study showed a 
high degree of accuracy, which has also been reported by 
Huang et al. [38], who predicted the soluble solids content 
(SSC) of ‘Sun Bright’ tomatoes by visible and shortwave 
near-infrared Vis-NIR (400-1100 nm) and SWIR (900-
1300 nm) spectroscopy. In their study, they gave r2, 
RMSEP, and RPD values of 0.53, 0.45 °Brix, and 1.4; and 
0.66, 0.37 °Brix, and 1.7, respectively. 

Comparing the performance of the SSC prediction 
model with the results of other studies using portable 
devices, the prediction precision obtained in the present 
study was better than that reported by Neto et al. [39], who 
studied ‘Palmer’ mango (Mangifera indica L.) using a 
commercial portable device in the spectral range of 310–
1100 nm, the best SSC calibration model was developed 
using spectra pre-processed with SNV, sd1 and window 
of 699–999 nm. It was observed a RMSECV of 1.39%.  
On the other hand, lower RMSEP values were reported 
by Nordey et al. [40] applied longwave (800-2200 nm) NIR 

portable for prediction of °Brix value in mango fruits 

(Mangifera indica cv. ‘Cogshall’), the best model provided 
RMSEP of 0.6 ◦Brix.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 4. The spectra of the Marian plum samples: a) shortwave NIR spectra, b) 2nd derivative shortwave NIR spectra, 
c) longwave NIR spectra, and d) 2nd derivative longwave NIR spectra. 

 
 
Fig. 5. A comparison of the SSC: a) Vis-NIR developed 
using PLSR with spectral pre-processing of smoothing, b) 
SWIR developed using PLSR with spectral pre-processing 
of the 2nd derivative, c) Vis-NIR developed using SVR with 
spectral pre-processing of the 1st derivative, and d) SWIR 
developed using SVR with spectral pre-processing of the 2nd 
derivative) of Marian plum fruit predicted by effective NIR 
spectroscopy and measured by a reference laboratory. 
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Fig. 6. a) Regression coefficient plot and the smoothing spectra used in the Vis-NIR model developed from the PLSR, 
b) the regression coefficient plot and the 2nd derivative spectra used in the SWIR model developed from PLSR. 

Marques et al. [41] use commercial handheld NIR 
spectrometer (900-1700 nm) for predicting SSC of ‘Tommy 
Atkins’ mango, r2 and RMSEP values were, respectively: 0.92 

and 0.55 °Brix for SSC. From three studies, it was noted that 
longwave NIR portable had accuracy than shortwave NIR, 
and the PLS model was a promising tool to predict the SSC 
of mangoes. 

 

4. Conclusions 
 

It was necessary to use the in-field NIR spectrometer 
to assess the SSC of Marian plum fruits on tree so that the 
optimal model development (i.e., wavelength range, 
algorithm utilization, and spectral pre-processing) could 
be studied. This study illustrated that wavelength range 
(Vis-NIR and SWIR) across the algorithms had influenced 
the model’s ability. Considering the algorithm, the PLSR 
was optimal over the SVR algorithm. For wavelength, 
SWIR had a higher performance than Vis-NIR. It was 
found that the pre-treatment of the derivative technique 
was suitable for intact fruit using the scanning mode of 
interactance. However, author opinions that raw spectral 
model was recommended for in-field application because 
not much different accuracy and rapid analysis. The SVR 
algorithm was not suggested for the Vis-NIR because this 
region was a flat spectrum after the derivative displayed a 
small obvious peak. This is the reason why SVR is not 
recommended for Vis-NIR. The most effective model was 
SWIR coupled with the PLSR algorithm, which can be 
used to make quantitative predictions and to carry out 
quality assessment. This is a sustainable way to determine 
the optimal conditions that should be used for fruit 
assessment in the field. 
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