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Abstract: Area-dependent quantum field theory is a modification of two-dimensional
topological quantum field theory, where one equips each connected component of a
bordism with a positive real number—interpreted as area—which behaves additively
under glueing. As opposed to topological theories, in area-dependent theories the state
spaces can be infinite-dimensional. We introduce the notion of regularised Frobenius
algebras in Hilbert spaces and show that area-dependent theories are in one-to-one
correspondence to commutative regularised Frobenius algebras. We also provide a state
sum construction for area-dependent theories. Our main example is two-dimensional
Yang–Mills theory with compact gauge group, which we treat in detail.
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1. Introduction and Summary

Area-dependent quantum field theory (aQFT1) is a modification of 2-dimensional topo-
logical quantum field theory (TQFT): we consider the category of bordisms with area
Bord area

2 and symmetric monoidal functors from it to the category of Hilbert spaces
Hilbwhich depend continuously on the area. We can think of the area as a positive num-
ber attached to each connected component of a surface, additive under composition.2 In
order to have identities in Bord area

2 , we allow zero area on cylinders.
The main change when passing from TQFTs to aQFTs, and indeed the main moti-

vation to look at this generalisation in the first place, is that the state spaces can now be
infinite-dimensional. This is in contrast to TQFTs, where dualisability forces all state
spaces to be finite-dimensional (see e.g. [CR, Sec. 2.4]). The same argument for aQFTs
merely requires each state space to be a separable Hilbert space (cf. Lemma 2.9 and
Theorem 3.5).

The main example of an aQFT is two-dimensional Yang–Mills theory for a compact
semisimple Lie group G [Mig,Rus,Wit], in which case the Hilbert space assigned to a
circle is Cl2(G), that is, square integrable class functions on G. We treat this example
in detail in Sect. 5. Area-dependent theories in general have been considered in [Bru]
and briefly in [Seg, Sec. 1.4] (see also [Bar, Sec. 4.5]). A construction of area-dependent
theories using triangulations with equal triangle area has been given in [CTS].

Two-dimensional TQFTs are of course a special case of aQFT, namely they are
aQFTs which are independent of the area parameters. Conversely one can show that if
for all bordisms � the zero area limit of Z(�) exists, then all state spaces Z(U ) are
necessarily finite dimensional, and the zero area limit of Z is a TQFT (Remark 3.6).

Recall that 2dTQFTs are in one-to-one correspondence to commutative Frobenius
algebras [Dij,Abr], and that there is a state sum construction of 2dTQFTs which starts
from a strongly separable symmetric (not necessarily commutative) Frobenius algebra
A as an input [BP,FHK,LP]. The commutative Frobenius algebra defining the TQFT
obtained from this state sum construction is just the centre Z(A).

The generalisation of these results to aQFTs is for the most part straightforward to
the point of being mechanical: just add a positive real parameter to all maps in sight
(“area parameters”) and impose the condition that everything just depends on the sum
of these areas.

The algebraic cornerstoneof thiswork is the notionof a regularisedFrobenius algebra
(RFA), which consists of families of structure morphisms (product, unit, coproduct and
counit), subject to the usual axioms of a Frobenius algebra, suitably decorated with area
parameters (Definition 2.3).

An important example of an RFA is L2(G), the square integrable functions on a
compact semisimple Lie group G. Here, the product μa and the coproduct �a do have
zero area limits given by the convolution product and by �0( f )(g, h) := f (gh). The
unit ηa and counit εa on the other hand do not have a → 0 limits, see Sect. 5.1 for details.
By the Peter-Weyl theoremwe have L2(G) =⊕V∈Ĝ V ⊗V ∗, where the sum is aHilbert

1 We use the small ‘a’ in aQFT to set it apart from Algebraic QFT or Axiomatic QFT, which are often
abbreviated as AQFT.

2 This is equivalent to considering Riemann surfaces and remembering the induced volume form up to
diffeomorphism, see [Mos,Ban].
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space direct sum over isomorphism classes of irreducible unitary representations of G,
and the RFA structure on L2(G) restricts to an infinite direct sum of finite-dimensional
RFAs on V ⊗ V ∗. This is a general result for Hermitian RFAs, i.e. RFAs for which
μ
†
a = �a and η

†
a = εa for every a ∈ R>0 (Theorem 2.19):

Theorem 1.1. Every Hermitian RFA is a Hilbert space direct sum of finite dimensional
Hermitian RFAs.

All examples of non-hermitian RFAs we know are also direct sums of finite dimen-
sional RFAs, but we are not aware of a proof that this holds in general (Remark 2.17).

Finite dimensional RFAs in turn are very simple: they are just usual Frobenius alge-
bras A together with an element H in the centre Z(A) of A, and the area-dependence
is obtained by exponentiating H (Corollary 2.15). This makes RFAs sound not very
interesting, but note that, conversely, an infinite direct sum of finite-dimensional RFAs
has to satisfy non-trivial bounds to again define an RFA (Proposition 2.16). And as the
example of L2(G) shows, the direct sum decomposition may not always be the most
natural perspective.

Our next main theorem generalises the classification of 2dTQFTs in terms of com-
mutative Frobenius algebras as given in [Dij,Abr]. Namely, in Theorem 3.5 (and in
Corollary 3.7) we show:3

Theorem 1.2. There is a one-to-one correspondence between (Hermitian) aQFTs and
(Hermitian) commutative RFAs.

In Sect. 4.2 we furthermore generalise the state sum construction of [BP,FHK,LP].
We find that a strongly separable symmetric RFA A (as defined in Sect. 2.1) provides—
under one extra technical assumption—the data for the state sum construction of an
aQFT, and the resulting aQFT corresponds, via Theorem 1.2, to the commutative RFA
given by the centre of A.

This paper is organized as follows. In Sect. 2 we collect the algebraic preliminaries
about RFAs, in Sect. 3 we state the definition of an aQFT and we show that aQFTs
correspond to commutative RFAs. Section 4 contains the state sum construction and in
Sect. 5 we give a detailed treatment of our main example, 2d YM theory.

2. Regularised Frobenius Algebras

In this section we study an algebraic notion—regularised Frobenius algebras—that will
play a central role in characterising and producing examples of area-dependent QFTs.
A more detailed treatment of this subject can be found in [Sze] where we also refer the
reader for proofs that are omitted here. We denote with Hilb the category of Hilbert
spaces and bounded linear maps with the strong operator topology on the hom sets
Hilb(H,K) = B(H,K).

3 In [Seg,Bar] the classification is instead in terms of algebras with a non-degenerate trace and an ap-
proximate unit. However, it is implicitly assumed there that the zero-area limit of the pair of pants with two
in-going and one out-going boundary circles exists. This is not true for all examples as the commutative RFAs
in Remark 2.25 illustrate.
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f

C D E

A B A

A

A B

B A

idA σA,B =

Fig. 1. Graphical notation of morphisms in the symmetric monoidal category Hilb. Here a morphism f ∈
B(A ⊗ B,C ⊗ D ⊗ E), the identity idA ∈ B(A, A) and the symmetric braiding σA,B are shown. The tensor
product of morphisms is depicted by drawing the morphisms next to each other and composition of morphisms
is stacking them on top of each other

2.1. Definition of regularised algebras and Frobenius algebras.

Definition 2.1. A regularised algebra is an object A ∈ Hilb together with continuous
families of morphisms

μa ∈ B(A⊗2, A) and ηa ∈ B(C, A) (2.1)

for every a ∈ R>0, called product and unit, such that the following relations hold:

1. for every a, a1, a2, b1, b2 ∈ R>0, such that a1 + a2 = b1 + b2,

μa1 ◦ (idA ⊗ηa2
) = μb1 ◦ (ηb2 ⊗ idA

)
, (2.2)

μa1 ◦ (idA ⊗μa2

) = μb1 ◦ (μb2 ⊗ idA
)
. (2.3)

2. Let Pa ∈ B(A, A) be given by (2.2), i.e. Pa = μa1 ◦ (idA ⊗ ηa2
)
with a = a1 + a2.

We require that lima→0 Pa = idA.

Let A, B ∈ Hilb be regularised algebras. A morphism of regularised algebras A
f−→ B

is a morphism inHilb such that for every a ∈ R>0

ηB
a = f ◦ ηA

a , μB
a ◦ ( f ⊗ f ) = f ◦ μA

a .

Instead of continuity of μa and ηa in (2.1) it is enough to require continuity of
a �→ Pa , for details see [Sze, Sec. 4.1.1]. On the other hand, it is important not to
impose the existence of an a → 0 limit on μa and ηa ; in Sect. 2.4 we will see examples
where this limit does not exist, which would then have been excluded.

We will often use string diagram notation to represent morphisms in Hilb, our con-
ventions are given in Fig. 1. The morphisms in (2.1) are drawn as

μa = ηa =
a

A A C

a

A A

(2.4)
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and the relations in (2.2) and (2.3) are

a1

a2

b1

b2

= = a

a1

a2

b1

b2
=and

A

A

A

A A

A A

A A A A A A

A

C C

= Pa

(2.5)

The next lemma gives some simple consequences of the above definition.

Lemma 2.2. Let A be a regularised algebra. Let a1, a2, b1, b2, c1, c2 ∈ R>0 such that
a1 + a2 = b2 + b2 = c1 + c2.

1. Let η′
a ∈ B(C, A) be a family of morphisms which satisfy (2.2) and Condition 2 of

Definition 2.1. Then η′
a = ηa for every a ∈ R>0.

2. Pa1 ◦ ηa2 = ηa1+a2 and Pa1 ◦ Pa2 = Pa1+a2 .
3. Pa1 ◦ μa2 = μb1 ◦ (Pb2 ⊗ id

) = μc1 ◦ (id⊗Pc2
) = μa1+a2 .

Proof. Here we only give the proof of Part 1, the proof of Part 2 and 3 are similar.
Let a, b, c ∈ R>0 and let us write P ′

a+b := μa ◦ (η′
b ⊗ idA

)
for the morphism in

(2.2). From (2.2) we have that

μa ◦ (ηb ⊗ η′
c

) = μa ◦ (ηc ⊗ η′
b

)
(2.6)

as both sides only depend on the sum of the parameters. We then have that

Pa+b ◦ η′
c = P ′

a+b ◦ ηc, (2.7)

and using that the composition is separately continuous together with lima,b→0 Pa+b =
lima,b→0 P ′

a+b = idA we get that η′
c = ηc for every c ∈ R>0.

	

Next we introduce the dual concept to a regularised algebra. A regularised coalgebra

is an object A ∈ Hilb together with continuous families of morphisms

�a : A → A⊗2 and εa : A → C (2.8)

for a ∈ R>0, called coproduct and counit, such that the following relations hold: for all
a, a1, a2, b1, b2 > 0, such that a1 + a2 = b1 + b2 = a,

(
idA ⊗ εa2

) ◦ �a1 = (εb2 ⊗ idA
) ◦ �b1 =: P ′

a, (2.9)
(
idA ⊗ �a2

) ◦ �a1 = (�b2 ⊗ idA
) ◦ �b1, (2.10)

and lima→0 P ′
a = idA. A morphism of regularised coalgebras, is a morphism of the

objects which is compatible with �a and εa in the obvious way. Note that for a regu-
larised coalgebra the dual statements of Lemma 2.2 hold. For the morphisms in (2.8) we
introduce the following graphical notation:

aΔa = εa =
a

A A

A A

C

(2.11)

A key notion in this paper is the following:
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Definition 2.3. A regularised Frobenius algebra (or RFA in short) is a regularised alge-
bra A ∈ Hilb, which is also a regularised coalgebra, such that

a1

=
b1

b2

=
c1

a2 c2

A A A A A A

A A A A A A (2.12)

holds for all a1 + a2 = b1 + b2 = c1 + c2. A morphism of RFAs, is a morphism of
regularised algebras and coalgebras.

In anRFA Pa from the algebra structure and P ′
a from the coalgebra structure coincide:

Lemma 2.4. For an RFA we have Pa = P ′
a for all a > 0.

Proof. Let a, b ∈ R>0 be arbitrary. Choose a1, a2, b2, b2 ∈ R>0 such that a = a1 + a2,
b = b1 + b2 and a > b1 and b > a1 (e.g. b1 = a

2 , a1 = b
2 ). By relation (2.12) one has

that

(
μa2 ⊗ idA

) ◦ (idA ⊗�b2

) = �a1+a2−b1 ◦ μb1+b2−a1 . (2.13)

Composing (2.13) with idA ⊗εb1 from the left and with ηa1 ⊗ idA from the right yields

Pa ◦ P ′
b = P ′

a ◦ Pb. (2.14)

We can take the b → 0 limit on both sides of (2.14) and use separate continuity of the
composition to get Pa = P ′

a . 	

We will prove the following lemma in “Appendix 5.2”.

Lemma 2.5. In the monoidal sub-category ofHilb tensor generated by an RFA and its
structure morphisms every morphism is jointly continuous in the parameters.

This lemma is not entirely immediate as composition in Hilb is only separately
continuous but not jointly continuous in the strong operator topology, and e.g. the map
B(H, H) → B(K ⊗ H, K ⊗ H), f �→ id⊗ f , is not continuous if K , H are infinite
dimensional.

Remark 2.6. Usual (non-regularised) Frobenius algebras have an equivalent characteri-
sation via a non-degenerate invariant pairing. The same is true in the regularised setting,
however as we will not need it here, we only refer the reader to [Sze].

Recall the symmetric braiding σ on Hilb. We call a regularised algebra A ∈ Hilb
commutative if μa ◦ σA,A = μa for all a ∈ R>0. The centre of a regularised algebra A
is an object B ∈ Hilb and a morphism iB : B → A such that

μa ◦ σA,A ◦ (iB ⊗ idA) = μa ◦ (iB ⊗ idA) (2.15)
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for all a ∈ R>0, which is universal in the following sense. If there is an object C and a
morphism f : C → A satisfying the above equation then there is a unique morphism
f̃ : C → B such that the diagram

B A

C

iB

f̃
f

(2.16)

commutes. This implies in particular that iB is mono [Dav].

Lemma 2.7. The centre of a regularised algebra exists and it is a commutative regu-
larised algebra.

Proof. One quickly checks that the closed subspace

K :=
⋂

a∈R>0
x∈A

ker (μa(x ⊗ −) − μa(− ⊗ x)) ⊆ A (2.17)

satisfies (2.15). It satisfies the universal property (2.16) as anymap f : C → A satisfying
(2.15) lands in K .

Analogously to ordinary algebras we obtain induced product and unit morphisms on
K satisfying the algebraic conditions (2.2) and (2.3). Finally, that the map P̃a induced
by Pa ◦ iK = iK ◦ P̃a satisfies lima→0 P̃a = idK follows from taking the a → 0 limit
on both sides of the defining equation and using that iK is an isometric embedding. 	


A regularised algebra is separable if there exists a family of morphisms ea ∈
B(C, A ⊗ A) for every a ∈ R>0 such that for a1 + a2 = b1 + b2 = a,

1. (μa1 ⊗ idA) ◦ (idA ⊗ea2) = (idA ⊗μb1) ◦ (eb2 ⊗ idA) and
2. μa1 ◦ ea2 = ηa .

The ea are called separability idempotents. A regularised algebra A is strongly separable
if it is separable and furthermore

3. σA,A ◦ ea = ea .

These notions are direct generalisations of separability and strong separability for alge-
bras, see e.g. [Kan,LP].

For an RFA A, we call the family of morphisms τa := μa1 ◦�a2 ◦ηa3 for a1, a2, a3 ∈
R>0 with a = a1 + a2 + a3 the window element of A, cf. [LP, Def. 2.12]. We call
the window element invertible if there exists a family of morphisms za ∈ B(C, A) for
a ∈ R>0 (the inverse) such that μa1 ◦ (τa2 ⊗ za3) = ηa1+a2+a3 = μa1 ◦ (za3 ⊗ τa3). From
a direct computation one can verify that if there exists another family of morphisms z′a
which satisfies the above equation then z′a = za for every a ∈ R>0, that is the inverse
of the window element is unique. In the following we write τ−1

a for the inverse of τa . It
is easy to check that the window element and its inverse satisfy (2.15).

An RFA is symmetric if εa1 ◦μa2 ◦σ = εb1 ◦μb2 . The following is a direct translation
of [LP, Thm.2.14] for strong separability for symmetric Frobenius algebras.

Proposition 2.8. A symmetric RFA is strongly separable if and only if its window element
is invertible.

Proof. Set ea := �a1 ◦ τ−1
a2 . Conversely set τ−1

a := (εa1 ⊗ idA) ◦ ea2 . 	
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2.2. Properties of RFAs. In this section we collect some properties of RFAs. The next
lemma shows in particular that an RFA has a Hilbert basis with at most countably many
elements.

Lemma 2.9. Let A be an RFA.

1. The Hilbert space underlying A is separable.
2. For all a ∈ R>0, Pa is a trace class operator (and hence compact).

Proof. Part 1: Let
{
φ j
∣
∣ j ∈ I

}
be a complete set of orthonormal vectors in A and write

γa(1) := �a1 ◦ ηa2(1) = ∑
k,l∈I φk ⊗ φl γ

kl
a with a = a1 + a2. By [Kub, Cor. 5.28],

independently of the countability of the indexing set I , there are at most countably many
non-zero terms in the above sum. Thus for a given a ∈ R>0 there is a countable set of
pairs (k, l) ∈ I × I such that γ kl

a �= 0. Define I (a) ⊆ I to be the countable set of all
elements of I that appear in such a pair. Let

J :=
⋃

n∈Z>0

I (1/n) ⊆ I and AJ := span
{
φ j
∣
∣ j ∈ J

} ⊆ A. (2.18)

Note that J is countable and AJ is separable. Write βa := εa1 ◦ μa2 . By (2.12), this
satisfies

(idA ⊗βa1) ◦ (γa2 ⊗ idA) = Pa (2.19)

and hence for every v ∈ A and n ∈ Z>0 we have that

P1/n(v) ∈ AJ and lim
n→∞ P1/n(v) = v, (2.20)

since limn→∞ P1/n = idA in the strong operator topology. Since AJ is closed, v is an
element of AJ . We have shown that AJ = A, and hence that A is separable.
Part 2: First let us compute the following expression for some a1, a2 ∈ R>0:

βa1 ◦ σ ◦ γa2(1) =
∑

j,k∈I
βa1(φ j ⊗ φk)γ

k j
a2 . (2.21)

This is an absolutely convergent sum, since the left hand side is a composition of bounded
linear maps. We can rewrite this expression using (2.19) to get

βa1 ◦ σ ◦ γa2(1) =
∑

j,k,l∈I
βa1(φ j ⊗ φk)γ

kl
a2 〈φ j |φl〉

=
∑

j,k,l∈I
〈φ j |(βa1 ⊗ idA)φ j ⊗ φk ⊗ φlγ

kl
a2 〉〉

=
∑

j∈I
〈φ j |(βa1 ⊗ idA)φ j ⊗

∑

k,l∈I
φk ⊗ φlγ

kl
a2 〉〉

=
∑

j∈I
〈φ j |(βa1 ⊗ idA) ◦ (idA ⊗γa2(1))φ j 〉

=
∑

j∈I
〈φ j |Paφ j 〉,

(2.22)
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which is again an absolutely convergent sum. By [Con2, Ex.18.2] Pa is a trace class
operator if and only if

∑
j∈I 〈φ j |Paφ j 〉 is absolutely convergent for every choice of

orthonormal basis {φ j }, which we just have shown. In this case we have that

tr(Pa) =
∑

j∈I
〈φ j |Paφ j 〉. (2.23)

	

Let A ∈ Hilb be an RFA. By the Part 2 of Lemma 2.9 and [EN, Thm. II.4.29],

a �→ Pa (for a > 0) is norm continuous. The following corollary shows that if we had
definedHilb to have the norm operator topology on hom-sets all examples of RFAs with
self-adjoint Pa would be finite-dimensional.

Corollary 2.10. Let A ∈ Hilb be an RFA such that lima→0 Pa = idA in the norm
topology on B(A). Then A is finite-dimensional.

Proof. From Lemma 2.9 (2) we know that Pa is compact for every a ∈ R>0. By [Con1,
Prop.VI.3.4] the subspace of compact operators is closed in norm operator topology.
These together with lima→0 Pa = idA imply that idA is compact, which in turn implies
that A is finite-dimensional. 	


We denote the category of RFAs byRFrob and its subcategory of commutative RFAs
by cRFrob.

Proposition 2.11. Any morphism inRFrob is mono and epi.

Proof. Let ϕ : A → B be a morphism of RFAs and let ψa,b := (idA ⊗βB
b ) ◦ (idA ⊗ϕ ⊗

idB) ◦ (γ A
a ⊗ idB). Then ϕ ◦ ψa,b = PB

a+b and ψa,b ◦ ϕ = PA
a+b. We show that ϕ

is epi, showing that it is mono is similar. Let f, g ∈ B(B, X) for an object X such
that f ◦ ϕ = g ◦ ϕ. After composing with ψa,b from the right for a, b ∈ R>0 we get
f ◦ PB

a+b = g ◦ PB
a+b. This last equation holds for every a, b ∈ R>0, so we can take the

limit a, b → 0 to get f = g. 	

Remark 2.12. As we will see in Example 2 in Sect. 2.4, not every morphism of RFAs is
invertible, hence RFrob is not a groupoid.

For A, B ∈ RFrob the object A ⊗ B is an RFAs by

μA⊗B
a :=

(
μA
a ⊗ μB

a

)
◦ (id⊗σ ⊗ id) , ηA⊗B

a := ηA
a ⊗ ηB

a ,

�A⊗B
a := (id⊗σ ⊗ id) ◦

(
�A

a ⊗ �B
a

)
, εA⊗B

a := εAa ⊗ εBa .
(2.24)

Proposition 2.13. RFrob is a symmetricmonoidal categorywith the above tensor prod-
uct.

Recall that a Frobenius algebra in Hilb is always finite-dimensional see e.g. [Koc,
Prop. 2.3.24].

Proposition 2.14. Let A ∈ RFrob. The following are equivalent.

1. A is finite-dimensional.
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2. All of the following limits exist:

lima→0ηa, lima→0μa, lima→0εa, lima→0�a .

Proof. (1 ⇒ 2): If A is finite-dimensional, then the map a �→ Pa is norm continuous,
hence Pa = eaH for some H ∈ B(A). Then η0 := e−aHηa is independent of a and
ηa = Pa ◦ η0, hence lima→0 ηa = η0 exists. One similarly proves that the other limits
exist as well.

(1 ⇐ 2): The morphisms given by these limits define a Frobenius algebra structure
on A, hence A is finite-dimensional. 	

Corollary 2.15. Afinite dimensional RFA A is in fact an ordinaryFrobenius algebra A(0)

together with an element in its centre H ∈ Z(A(0)) which one obtains by differentiating
Pa at a = 0. Conversely, the area depenence on A(0) can be restored by setting Pa :=
eaH .

For more details on this, see [Sze, Sec. 4.1.4].

Proposition 2.16. Let I be a countable (possibly infinite) set. For k ∈ I let Fk ∈ Hilb
be a (possibly infinite-dimensional) RFA. Then

⊕
k∈I Fk (the completed direct sum of

Hilbert spaces) is an RFA if and only if, for every a ∈ R>0,

sup
k∈I

∥
∥
∥μk

a

∥
∥
∥ < ∞ and sup

k∈I

∥
∥
∥�k

a

∥
∥
∥ < ∞, (2.25)

∑

k∈I

∥
∥
∥εka

∥
∥
∥
2

< ∞ and
∑

k∈I

∥
∥
∥ηka

∥
∥
∥
2

< ∞, (2.26)

where μk
a, �

k
a, ε

k
a and ηka denote the structure maps of Fk.

Proof. Let F :=⊕k∈I Fk and fix the value of a.
(⇒): Let us write xk for the k’th component of x ∈ F =⊕k∈I Fk . Then for every k ∈ I

∥
∥
∥�k

a

∥
∥
∥ = sup

xk∈Fk‖xk‖=1

∥
∥
∥�k

a(xk)
∥
∥
∥ = sup

xk∈Fk‖xk‖=1

‖�a(xk)‖ ≤ sup
xk∈Fk‖xk‖=1

‖�a‖ · ‖xk‖ = ‖�a‖ < ∞,

so in particular supk
∥
∥�k

a

∥
∥ < ∞. A similar proof applies to the case of μa . We calculate

the norm of ηa :

‖ηa‖2 = ‖ηa(1)‖2 =
∑

k∈I

∥
∥
∥ηka(1)

∥
∥
∥
2 =

∑

k∈I

∥
∥
∥ηka

∥
∥
∥
2
,

which is finite if and only if ηa is a bounded operator. If εa is bounded, then by the Riesz
Lemma there exists a unique v ∈ F such that εa(x) = 〈v, x〉 and ‖εa‖ = ‖v‖. Then
〈vk, xk〉 = 〈v, xk〉 = εa(xk) = εka(xk). So again by the Riesz Lemma

∥
∥εka
∥
∥ = ‖vk‖. We

have that

‖εa‖2 = ‖v‖2 =
∑

k∈I
‖vk‖2 =

∑

k∈I

∥
∥
∥εka

∥
∥
∥
2
.
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(⇐): The operators ηa and εa are bounded by the previous discussion. For �a one has
that

‖�a‖2 = sup
x∈F‖x‖=1

‖�a(x)‖2 = sup
x∈F‖x‖=1

∥
∥
∥
∥
∥

∑

k∈I
�a(xk)

∥
∥
∥
∥
∥

2

= sup
x∈F‖x‖=1

∑

k∈I

∥
∥
∥�k

a(xk)
∥
∥
∥
2

≤ sup
x∈F‖x‖=1

∑

k∈I

∥
∥
∥�k

a

∥
∥
∥
2 ‖xk‖2 ≤

(

sup
l

∥
∥
∥�l

a

∥
∥
∥
2
)

· sup
x∈F‖x‖=1

∑

k∈I
‖xk‖2 = sup

l

∥
∥
∥�l

a

∥
∥
∥
2

< ∞,

so �a is bounded. For μa the proof is similar.
Then one needs to check that a �→ Pa := ∑

k∈I Pk
a is continuous. Let ε ∈ R>0,

a0 ∈ R≥0 and f ∈⊕k∈I Fk with components fk be fixed. Let a′ > a0 and 0 < E < ε

be arbitrary. Since Pa − Pa0 is a bounded operator, one can find Ja′ ⊂ I finite, such that
for every a < a′

∑

j∈I\Ja′

∥
∥
∥(P

j
a − P j

a0) f j
∥
∥
∥
2

< E .

Then let δ′ > 0 be such that for every |a − a0| < δ′

∑

j∈Ja′

∥
∥
∥(P

j
a − P j

a0) f j
∥
∥
∥
2

< ε − E,

which can be chosen since the sum is finite and each P j
a is continuous by assumption.

Finally let δ := min
{
δ′, a′ − a0

}
. By construction we have that for every |a − a0| < δ,

∥
∥(Pa − Pa0) f

∥
∥2 =

∑

j∈I

∥
∥
∥(P

j
a − P j

a0) f j
∥
∥
∥
2

< ε.

	

Remark 2.17. All examples ofRFAsknown tous are of the formgiven inProposition 2.16
with finite-dimensional summands Fk . In fact we can show from the statements in [BB,
Sec. 6.4] that all RFAs are (not necessarily orthogonal) direct sums of finite dimensional
RFAs and a direct summand, on which Pa is quasinilpotent for every a > 0. This
summand may be either 0 or infinite dimensional. The finite dimensional summands
are generalised eigenspaces of Pa for every a > 0, while the remaining factor is the
intersection of their complement. On the latter Pa is quasinilpotent for every a > 0 by
[BB, Cor. 7.2.4]. For Hermitian RFAs, which wewill introduce in Sect. 2.3, we show that
this direct summand is 0 (see the proof of Theorem 2.19). We do not know an example
of an RFA where this summand is non-zero. Note also that the same RFA Fk cannot
appear infinitely many times, as otherwise the bounds (2.26) would be violated.

2.3. Classification of Hermitian RFAs. We start by recalling the notion of a dagger (or
†-) symmetric monoidal category S, e.g. from [Sel]. A dagger structure on S is a functor
(−)† : S → Sopp which is identity on objects, (−)†† = idS , ( f ⊗ g)† = f † ⊗ g† for
any morphisms f, g and σ

†
U,V = σV,U . We fix the dagger structure on Hilb given by

adjoints.
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Definition 2.18. A Hermitian regularised Frobenius algebra (or †-RFA for short) is an
RFA for whichμ

†
a = �a and η

†
a = εa (and therefore Pa = P†

a ). We denote by †-RFrob
the full subcategory of RFrob of †-RFAs.

Let †-FrobF denote the categorywhichhas objects countable families� = {Fj , σ j
}
j∈I

of †-Frobenius algebras Fj and real numbers σ j , such that for every a ∈ R>0

sup
j∈I
{
e−aσ j

∥
∥μ j

∥
∥
}

< ∞ and
∑

j∈I
e−2aσ j

∥
∥η j
∥
∥2 < ∞. (2.27)

A morphism � : � → �′ consists of a bijection f : I
∼−→ I ′ which satisfies σ j =

σ f ( j) and a family of morphisms of Frobenius algebras ψ j : Fj → F ′
f ( j) (which are

automatically invertible [Koc, Lem.2.4.5]). We will write � =
(
f,
{
ψ j
}
j∈I
)
.

Let � ∈ †-FrobF with the notation from above. For j ∈ I we turn the Frobenius
algebra Fj into an RFA by multiplying its structure morphisms by e−aσ j . Using Propo-
sition 2.16, we get an RFA structure on

⊕
j∈I Fj . The next theorem shows that the

resulting functor is an equivalence.

Theorem 2.19. There is an equivalence of categories †-FrobF → †-RFrob given by
� �→⊕

j∈I Fj .4

Proof. We define the inverse functor. Let F ∈ †-RFrob and fix a ∈ R>0. Then Pa is
self-adjoint and therefore can be diagonalised. Let sppt(Pa) denote the point spectrum

5

of Pa . Furthermore, by Lemma 2.9 Pa is of trace class, and hence compact. Thus it has
at most countably many eigenvalues and the eigenspaces with non-zero eigenvalues are
finite-dimensional. Let

F =
⊕

α∈sppt(Pa)
Fα (2.28)

be the corresponding eigenspace decomposition of Pa .

Claim: The eigenvalue α of Pa on Fα is of the form e−aσα for some σα ∈ R. In particular
0 is not an eigenvalue.

To show this, first assume that c(a) := α �= 0, so that Fα is finite-dimensional, and
simultaneously diagonalise Pa , Pb and Pa+b on Fα . Then on a subspace where all three
operators are constantwith values c(a), c(b) and c(a+b) one has that c(a)c(b) = c(a+b).
Furthermore a �→ c(a) is a continuous function R≥0 → R and c(0) = 1 since a �→ Pa
is strongly continuous at every a ∈ R≥0 and lima→0 Pa = idF . So the unique solution
to the above functional equation is c(a) = e−aσα for some σα ∈ R.

Finally let us assume that α = 0. Clearly, ker(Pa) ⊆ ker(Pa+b) for every b ∈ R≥0.
Since Pa is self-adjoint, we have for v ∈ F0 that 0 = Pa(v) = P†

a/2 ◦ Pa/2(v). But then
Pa/2(v) = 0 and similarly, for every n ∈ Z≥0 we have that Pa/2n (v) = 0. Altogether
we have that F0 = ker(Pa) = ker(Pb) for every b ∈ R≥0. So lima→0 Pa = idF implies
that F0 = {0}.

4 We would like to thank André Henriques for explaining to us this decomposition of †-RFAs, or rather the
corresponding decomposition of Hermitian area-dependent QFTs via Corollary 3.7.

5 The point spectrum of a bounded operator is the set of eigenvalues. Every compact operator on an infinite-
dimensional Hilbert space has 0 in its spectrum, but it need not be an eigenvalue.
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Claim: The eigenspaces are †-Frobenius algebras by restricting and projecting the struc-
ture maps of F .

To show this, first confirm that the structure maps do not mix eigenspaces of Pa ,
because Pa commutes with them. Then checking †-RFA relations is straightforward and
these are †-Frobenius algebras, cf. Proposition 2.14.

Claim: The convergence conditions in (2.27) are satisfied by the above obtained family
of †-Frobenius algebras Fα and real numbers σα .
This can be shown directly by computing the norm of the structure maps.

Showing that the two functors give an equivalence of categories is now straightfor-
ward. 	

Corollary 2.20. Let A ∈ Hilb be a †-RFA. Then Pa is mono and epi.

Proof. From the proof of Theorem 2.19 we see that Pa is mono. Since Pa is self-adjoint
we get that Pa is epi. 	

Lemma 2.21. 1. Every †-Frobenius algebra inHilb is separable, hence semisimple.
2. Every †-RFA is separable.

Proof. Part 1:
Let F denote a †-Frobenius algebra in Hilb and let ξ := μ ◦ � = �∗ ◦ �, which
is an F-F-bimodule morphism and an F-F-bicomodule morphism. It is a self-adjoint
operator, so it can be diagonalised and F decomposes into Hilbert spaces as

F =
⊕

α∈sp(ξ)

Fα, (2.29)

where Fα is the eigenspace of ξ with eigenvalue α.
Now we show that (2.29) is a direct sum of Frobenius algebras. Let α �= β and take

a ∈ Fα , b ∈ Fβ . We have

ξ(ab) = aξ(b) = βab

= ξ(a)b = αab
(2.30)

since ξ is a bimodule morphism. Then (2.30) shows that ab = 0, so (2.29) is a decom-
position as algebras.

Similarly one shows that (2.29) is a decomposition as coalgebras. We have for every
a ∈ Fα , using Sweedler notation:

�(ξ(a)) = ξ(a(1)) ⊗ a(2) = a(1) ⊗ ξ(a(2))

= α�(a) = αa(1) ⊗ a(2),
(2.31)

which shows that the comultiplication restricted to Fα lands in Fα ⊗ Fα .
We now show that 0 is not in the spectrum. Let us assume otherwise. Then F0 is

a Frobenius algebra. We have ξ(x) = �∗ ◦ �(x) = 0 for every x ∈ F0, and so also
�(x) = 0, which is a contradiction to counitality. Therefore 0 is not in the spectrum of
ξ , i.e. ξ is injective.

Now the only thing left to show is that each summand Fα is semisimple. Take �(1) ·
α−1 projected on Fα ⊗ Fα and denote it by eα . This is a separability idempotent for the
algebra Fα , hence Fα is separable, hence semisimple (see e.g. [Pie, Ch.10.4]).
Part 2:
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By Theorem 2.19 we can decompose a †-RFA A =⊕σ∈I Aσ into †-Frobenius algebras
and by the above proof we can decompose the Aσ summands into finite dimensional
separable algebras Aσ =⊕α Aσ,α with separability idempotents eσ,α . We have

∥
∥eσ,α

∥
∥2 =

∥
∥
∥α−1 · �σ,α(1)

∥
∥
∥
2 (C∗)=

∥
∥
∥α−2 · εσ,α ◦ μσ,α ◦ �σ,α(1)

∥
∥
∥

=
∥
∥
∥α−1 · εσ,α(1)

∥
∥
∥

(C∗)= α−1 · ∥∥ησ,α
∥
∥2 ,

(2.32)

where (C∗) refers to the fact that
∥
∥X†X

∥
∥ = ‖X‖2 and in the middle step we used that

Aσ,α is the eigenspace of ξσ = μσ ◦ �σ with eigenvalue α. Furthermore we have that

1 = ∥∥idAσ,α

∥
∥2 = ∥∥μσ,α ◦ (ησ,α ⊗ id)

∥
∥2

≤ ∥∥μσ,α
∥
∥2 · ∥∥ησ,α

∥
∥2 (C∗)= ∥

∥μσ,α ◦ �σ,α
∥
∥ · ∥∥ησ,α

∥
∥2 = α · ∥∥ησ,α

∥
∥2 .

(2.33)

We claim that

ea :=
∑

σ∈I
α∈sp(ξσ )

e−aσ eσ,α ∈ A ⊗ A, (2.34)

which is then clearly a separability idempotent for the RFA A. To check (2.34) we
compute

‖ea‖2 =
∑

σ∈I
α∈sp(ξσ )

e−2aσ
∥
∥eσ,α

∥
∥2 =

∑

σ∈I
α∈sp(ξσ )

e−2aσ α−1
∥
∥ησ,α

∥
∥2

(2.33)≤
∑

σ∈I
α∈sp(ξσ )

e−2aσ
∥
∥ησ,α

∥
∥4 ≤ ∥∥ηa/2

∥
∥4 < ∞.

(2.35)

	

Let ε ∈ C\ {0}, σ ∈ R and let Cε,σ denote the one-dimensional †-RFA structure on

C given by

εa(1) = e−aσ ε, �a(1) = e−aσ

ε
1 ⊗ 1, ηa(1) = e−aσ ε∗1, μa(1 ⊗ 1) = e−aσ

ε∗ 1.

(2.36)

Let C ∈ Hilb be a one-dimensional †-RFA and c ∈ C with ‖c‖ = 1. Then by Proposi-
tion 2.14, εa = ε0 ◦ Pa with Pa = e−aσ idC for σ ∈ R. Set ε := ε0(c) ∈ C. Then

C → Cε,σ

c �→ 1
(2.37)

is an isometric isomorphism of RFAs.

Corollary 2.22. Let C be a commutative †-RFA. Then there is a family of numbers(
ε j , σ j

)
j∈I , where ε j ∈ C and σ j ∈ R, satisfying

sup
j∈I

{
e−aσ j |ε j |−1

}
< ∞ and

∑

j∈I
e−2aσ j |ε j |2 < ∞ (2.38)

for every a ∈ R>0 such that C ∼=⊕ j∈I Cε j ,σ j as RFAs.



Area-Dependent Quantum Field Theory 97

Proof. By Theorem 2.19 and Lemma 2.21,C is a direct sum of semisimple algebras. By
the Wedderburn-Artin theorem every semisimple commutative algebra is a direct sum
of one-dimensional algebras. Using the isomorphism (2.37) we get the above family of
numbers. The finiteness conditions come from (2.27). 	

Lemma 2.23. Let ϕ : Cε,σ → Cε′,σ ′ be a morphism of RFAs. Then ϕ(1) = ε/ε′ ∈ U (1)
and σ = σ ′.
Proof. From ϕ ◦ ηa = η′

a one has that for every a ∈ R≥0, ϕ(1)ε∗e−aσ = (ε′)∗e−aσ ′
.

Since ε �= 0, ε′ �= 0 and ϕ(1) �= 0, one must have σ = σ ′ and hence ϕ(1)ε∗ = (ε′)∗.
One similarly obtains from ε′

a ◦ ϕ = εa that ε′ϕ(1) = ε. Combining these we get that
|ϕ(1)| = 1 and that ϕ(1) = ε/ε′. 	

Proposition 2.24. Every morphism of commutative †-RFAs is unitary, in particular the
category of commutative †-RFAs is a groupoid.

Proof. Let φ : C → C ′ be a morphism of commutative †-RFAs. By Corollary 2.22 we
assume that C = ⊕

j∈I Cε j ,σ j and C ′ = ⊕
j∈I ′ Cε′

j ,σ
′
j
. By a similar argument as in

the proof of Lemma 2.23, we see that φ does not mix the Cε j ,σ j ’s with different σ ’s.
Let Cσ := ⊕

j∈I
σ j=σ

Cε j ,σ j and define C ′
σ similarly. These are both finite-dimensional,

since these are eigenspaces of the Pa’s with eigenvalue e−aσ . Let ϕ := φ|Cσ . Then
ϕ is a morphism of finite-dimensional RFAs so it is a bijection as in particular ϕ is a
morphism of Frobenius algebras, cf. the proof of Proposition 2.14. Let nσ := dim(Cσ )

and let us write g j = 1 ( j = 1, . . . , nσ ) for the generator of Cε j ,σ j in Cσ and g′
j = 1

( j = 1, . . . , nσ ) for the generator of Cε′
j ,σ

′
j
in C ′

σ and write ϕ(g j ) =∑nσ

k=1 ϕ jk g′
k .

From the equation ϕ ◦ μ = μ′ ◦ (ϕ ⊗ ϕ) one has for every j, k, l that

δ jk(ε
∗
j )

−1ϕ jl = ϕ jlϕkl ((ε′
l )

∗)−1
.

• If j �= k then ϕ jlϕkl = 0 for every such k and for every l. This means that in
the matrix ϕ jl in every row there might be at most one nonzero element. Since ϕ is
bijective there is also at least one nonzero element in every row in the latter matrix
and the same holds for every column. We conclude that the matrix of ϕ is the product
of a permutation matrix ρ and a diagonal matrix D.

• If j = k and if ϕ jl �= 0 then ϕ jl = (
ε′
l/ε j

)∗, which give the nonzero elements of
the diagonal matrix.

Now ρ−1 ◦ϕ restricts to RFAmorphisms of the one-dimensional components, hence
by Lemma 2.23 the diagonal matrix D is unitary. Therefore ϕ is unitary, φ is the direct
sum of unitary matrices so φ is unitary and in particular invertible. 	


2.4. Examples of RFAs.

Commutative RFAs

1. Let (εk, σk)k∈I be a countable family of pairs of complex numbers such that for all
a > 0

sup
k∈I
∣
∣εke

−aσk
∣
∣ < ∞ and

∑

k∈I

∣
∣
∣
∣
e−aσk

εk

∣
∣
∣
∣

2

< ∞. (2.39)
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Then Aε,σ := ⊕
k∈I C fk , the Hilbert space generated by orthonormal vectors fk ,

becomes an RFA by Proposition 2.16 via

μa( fk ⊗ f j ) := δk, jεk fke
−aσk , ηa(1) :=

∑

k∈I

fk
εk

e−aσk , (2.40)

�a( fk) := fk ⊗ fk
εk

e−aσk , εa( fk) := εke
−aσk . (2.41)

This RFA is strongly separable (with τa = ηa) and commutative. Furthermore this
RFA is hermitian if and only if εk ∈ U (1) and σk ∈ R for every k ∈ I .

2. Let I := Z>0 and consider the one-dimensional Hilbert spaces C fk and Cgk with
‖ fk‖2 = k2 and ‖gk‖2 = k−1. Let F := ⊕∞

k=1 C fk and G := ⊕∞
k=1 Cgk be the

Hilbert space direct sums, so that

〈 fk, f j 〉F = δk, j k
2 and 〈gk, g j 〉G = δk, j k

−1. (2.42)

Define the maps

μF
a ( fk ⊗ f j ) := δk, j e

−ak2 fk, ηF
a (1) :=

∞∑

k=1

e−ak2 fk,

�F
a ( fk) := e−ak2 fk ⊗ fk, εFa ( fk) := e−ak2 ,

(2.43)

and similarly for G by changing fk to gk . These formulas define strongly separable
(with τa = ηa) commutativeRFAs by the previous examplewith (εk , σk) = (k−1, k2)
for F and with (εk, σk) = (k, k2) for G. Note that lima→0 μF

a exists and has norm
1, but lima→0 μG

a does not: the set
{ ∥
∥μG

0 (gk ⊗ gk)
∥
∥ / ‖gk ⊗ gk‖ = k

∣
∣ k ∈ Z>0

}
is

not bounded.
Define the morphism of RFAs ψ : F → G as ψ( fk) = gk . It is an operator with
‖ψ‖ = 1 and is mono and epi, but it does not have a bounded inverse, as the set{ ∥
∥ψ−1(gk)

∥
∥ / ‖gk‖ = k2

∣
∣ k ∈ Z>0

}
is not bounded. The example also shows that RFA

morphisms which are mono and epi need not preserve the existence of zero-area limits.
Isomorphisms, on the other hand, being continuous with continuous inverse, do preserve
the existence of limits.
These two RFAs are not †-RFAs, as one can easily confirm that the summands C fk

and Cgk for k > 1 are not †-RFAs. We compute e.g. for C fk that

〈 fk, μa( fk ⊗ fk)〉 = e−ak2k2 and 〈�a( fk), fk ⊗ fk〉 = e−ak2k4, (2.44)

so clearly, if k > 1 then these are not equal and hence μ
†
a �= �a .

Remark 2.25. In some cases none of the structuremaps of a commutativeHermitianRFA
admit an a → 0 limit. A concrete example can be given as follows. Fix 1/2 > δ > 0.
Then the family of numbers

(
n1/2+δ, n

)
n∈Z>0

satisfies (2.38) and the structure maps μa ,
�a , ηa , εa of the corresponding commutative †-RFA from Corollary 2.22 do not have
an a → 0 limit.
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Hermitian RFAs from compact Lie groups

3. Consider L2(G), the Hilbert space of square integrable functions on a compact
semisimple Lie group G with the following morphisms:

ηa(1) :=
∑

V∈Ĝ
e−aσV dim(V )χV , μ(F)(x) :=

∫

G
F(y, y−1x)dy,

Pa( f ) := μ(ηa(1) ⊗ f ), μa := Pa ◦ μ,

εa( f ) :=
∫

G
ηa(1)(x) f (x

−1)dx, �( f )(x, y) := f (xy), �a := � ◦ Pa,

(2.45)

where f ∈ L2(G), F ∈ L2(G ×G) ∼= L2(G)⊗ L2(G), Ĝ is a set of representatives
of isomorphism classes of finite-dimensional simple unitary G-modules, σV is the
value of the Casimir operator of the Lie algebra of G in the simple module V , χV is
the character of V , and

∫
G denotes the Haar integral on G. These formulas define a

strongly separable symmetric RFA (with τa = ηa), for details see Sect. 5.1.
4. The centre of the previous RFA isCl2(G), the Hilbert space of square integrable class

functions on G, with multiplication, unit and counit given by the same formulas, but
with the following coproduct:

�a( f ) =
∑

V∈Ĝ
e−aσV (dim(V ))−1 χV ⊗ χV fV , (2.46)

where f = ∑V∈Ĝ fVχV ∈ Cl2(G). This is a strongly separable commutative RFA
(with τa(1) =∑V∈Ĝ e−aσV (dim(V ))−1 χV and τ−1

a (1) =∑V∈Ĝ e−aσV (dim(V ))3

χV ). For more details see Sect. 5.1.

3. Area-Dependent QFTs as Functors

In this section we define the symmetric monoidal category of two-dimensional bordisms
with area. Using this, area-dependent QFTs are defined as symmetric monoidal functors
from such bordisms to the category of Hilbert spaces Hilb. We classify such functors
in terms of commutative regularised Frobenius algebras, mirroring the result for two-
dimensional TQFTs.

Below, by manifold we will always mean an oriented smooth manifold.

3.1. Bordismswith areaandaQFTs. Recall the definitionof the categoryof 2-dimensional
oriented bordismsBord2 [Koc,Car]: The objects are closed 1-dimensionalmanifolds and
morphisms are diffeomorphism classes of compact surfaces with boundary parametri-
sations that identify the boundary with the source and target 1-manifolds. The category
of bordisms with area Bord area

2 has the same objects as Bord2 and the morphism are
pairs

(�,A : π0(�) → R≥0), (3.1)

where � is a morphism in Bord2 andA assigns an area to each of its connected compo-
nents, which is additive under composition.We allowA to take 0 value only on cylinders.
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Here, by cylinder we mean bordisms C : S → S′, where S ∼= S′ as 1-manifolds, and
whereC is diffeomorphic to S1×[0, 1] as a 2-manifold with boundary. This implies that
Bord area

2 has identity morphisms, and that objects given by diffeomorphic 1-manifolds
are isomorphic in Bord area

2 . Both Bord2 and Bord area
2 are symmetric monoidal with

the disjoint union as tensor product.
We equip the hom-sets of Bord area

2 with a topology as follows. Fix a bordism � :
S → T in Bord2. Define the subset U� ⊂ Bord area

2 (S, T ) as

U� := F−1(�) = {
(�,A)

∣
∣A : π0(�) → R≥0

} ∼= (R>0)
Nn × (R≥0

)Nc ,

(3.2)

where Nc is the number of connected components of � equivalent to a cylinder over a
connected 1-manifold and Nn = |π0(�)|−Nc. The topology onU� is that of (R>0)

Nn ×
(
R≥0

)Nc . We define the topology on Bord area
2 (S, T ) to be the disjoint union topology

of the sets U� . After these preparations we can define:

Definition 3.1. An area-dependent quantum field theory, or aQFT for short, is a sym-
metric monoidal functor Z : Bord area

2 → Hilb, such that for every S, T ∈ Bord area
2

the map

ZS,T : Bord area
2 (S, T ) → B(Z(S),Z(T )) (3.3)

(�,A) �→ Z(�,A)

is continuous.

Remark 3.2. Bord area
2 is enriched in topological spaces Top, thus one could try to define

area-dependent theories to be Top-enriched symmetric monoidal functors Bord area
2 →

Hilb without the explicit mention of continuity in the area. However this would be too
restrictive: The category Hilb with strong operator topology is not Top-enriched [KR,
Sec. 2.6]. On the other hand, Hilb with norm topology is Top-enriched, but it leads to
the problem already encountered in Corollary 2.10: The existence of zero area limits of
cylinders implies that all Hilbert spaces Z(S) are finite-dimensional.

The following lemma shows that it is enough to require continuity in the area to hold
for cylinders over S1. The proof is similar to the proof of Lemma 2.5 and we omit it.

Lemma 3.3. Let Z : Bord area
2 → Hilb be a symmetric monoidal functor and let

(S1 × [0, 1], a) denote a cylinder with area a. If the assignment

R≥0 → B(Z(S1),Z(S1))

a �→ Z(S1 × [0, 1], a),
(3.4)

is continuous, then Z is an aQFT.

Similarly to RFAs, aQFTs form a symmetric monoidal category aQFT .
The categories Bord2 and Bord area

2 are †-categories, where (−)† is the identity on
objects. On morphisms it flips the orientation of a surfaces and switches its in- and
outgoing boundary components, while keeping its area. Following the terminology of
[Tur, Sec. 5.2] we define:
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Definition 3.4. We call an aQFT Z : Bord area
2 → Hilb Hermitian, if the diagram

Bord area
2 Hilb

Bord area
2 Hilb

(−)†

Z

(−)†

Z
(3.5)

commutes strictly.

3.2. Equivalence of aQFTs and commutative RFAs. Recall that 2-dimensional topolog-
ical quantum field theories (TQFT) correspond to commutative Frobenius algebras by
assigning to a TQFT Z its value on the circle Z(S1). The structure maps of Z(S1) are
given by the value of Z on the generators of Bord2, i.e. on three holed spheres (the two
pairs of pants) and on discs (the cup and the cap).

Analogously, ifZ is an aQFT one obtains a commutative RFA structure onZ(S1), the
parameter of the families of structure morphisms being the area. We have the following
generalisation of [Dij] and [Abr, Thm.3] for 2d TQFTs:

Theorem 3.5. The functor

G : aQFT → cRFrob
Z �→ Z(S1)

(3.6)

is an equivalence of symmetric monoidal categories.

The proof of this theorem is via a generators and relations description of Bord area
2 ,

essentially the same as in the topological case, see [Sze] for details.

Remark 3.6. If all zero area limits of Z ∈ aQFT exist, then the RFA Z(S1) is finite-
dimensional. This follows from Theorem 3.5 and Proposition 2.14.

Corollary 3.7. The restriction of the functor G in (3.6) to the category of Hermitian
aQFTs gives an equivalence to the category of †-RFAs.

Corollary 2.22 togetherwithCorollary 3.7 shows that aHermitian aQFT is determined
by a countable family of numbers (εi , σi )i∈I satisfying convergence conditions given in
Corollary 2.22.

4. State Sum Construction of aQFTs

The state sum construction of two-dimensional TQFTs (see [BP,FHK] and e.g. [LP,
DKR]) has a straightforwardgeneralisation to aQFTswhichwe investigate in this section.
We give an assignment of weights for plaquettes, edges and vertices from a strongly
separable symmetric RFA in order to obtain state sum aQFT and describe the connection
to the classification of aQFTs in terms of commutative RFAs assigned to the circle.
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e

(a) (b)

v v′ v v′

e

e′
e

f

w w

w′ w′

w′′

f ′f ′
f ′

f

f

f ′′

Fig. 2. Elementary moves of PLCW decompositions with area. a shows edges e, e′ and between faces f and
f ′. (The two faces are allowed to be the same.) When we remove the vertex w′′ and the edge e′, the new area
maps should be the same outside the shown region and such that the area of the connected component of the
surface does not change. b shows an edge e between two faces f and f ′. When we remove the edge e and
merge the faces f and f ′ to f ′′, the new area maps should again be the same outside the shown region and
such that the area of the connected component of the surface does not change

4.1. PLCW decompositions with area. In Sect. 4.2 we will use PLCW decompositions
[Kir] to build aQFTs. For a compact surface � this consists of three sets �0, �1 and �2
whose elements are subsets of �. Their elements are called vertices, edges and faces.
Faces are embeddings of polygons with n ≥ 1 edges, edges are embeddings of intervals
and vertices are just points in �. Faces are glued along edges so that vertices are glued
to vertices. For example a PLCW decomposition of a cylinder S1 × [0, 1] could consist
of a rectangle with two opposite edges glued together. From this one can obtain a PLCW
decomposition of a torus S1 × S

1 by glueing together the other two opposite edges. For
more details on PLCW decompositions we refer to [Kir] and for a short summary to
[RS, Sec. 2.2].

We are going to need PLCW decompositions of surfaces with area, which we define
now. Let (�,A) be a surface with strictly positive area for each connected component
and let �0, �1, �2 be a PLCW decomposition of �. Let Ak : �k → R>0 be maps
for k ∈ {0, 1, 2}, which assign to vertices, edges and faces an area, such that for every
connected component x ∈ π0(�) the sum of the areas of vertices, edges and faces of x
is equal to its areaA(x). A PLCW decomposition of a surface with area (�,A) consists
of a choice of �k and Ak for k ∈ {0, 1, 2}.
Definition 4.1. An elementary move on a PLCW decomposition of a surface with area
is either

• removing or adding a bivalent vertex as in Fig. 2a, or
• removing or adding an edge as in Fig. 2b.

By [Kir, Thm.7.4], any twoPLCWdecompositions canbe related by these elementary
moves. The elementary moves in Fig. 2 map PLCW decompositions with area to PLCW
decompositions with area.

4.2. State sum construction. Let A ∈ Hilb be a strongly separable symmetric RFA.
Recall that τ−1

a denotes the inverse to window element in the sense of Proposition 2.8.
We consider the following families of morphisms

ζa := μa1 ◦ (idA ⊗τ−1
a2 ) ∈ B(A, A), βa := εa1 ◦ μa2 ∈ B(A⊗2,C)

and Wn
a := �(n)

a1 ◦ ηa2 ∈ B(C, A⊗n)
(4.1)
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for a1, a2 ∈ R>0 with a1 + a2 = a and n ∈ Z≥1. Here, �
(n)
a is the n-fold coproduct:

�
(1)
a = Pa , �

(2)
a = �a , �

(n)
a = (�a/n ⊗ idA ⊗ · · · ⊗ idA) ◦ �

(n−1)
a(n−1)/n . We call βa the

contraction andWn
a the plaquette weights. We will use the following graphical notation

for these morphisms:

ζa = a

a

βa =

a;n

W ...n
a =

A A A

A A A A

(4.2)

We introduce the family of morphisms Da : A → A:

Da :=

a4; 4

a1

a2a3

=

a1
a2

a3 + a4

,

(4.3)

for every a1, a2, a3, a4 ∈ R>0 and a =∑4
i=1 ai . It follows from the axioms of an RFA

that these compositions depend only on the sum of the parameters.
The morphisms in (4.1) and (4.3) satisfy the following conditions for every a, a0, a1,

a2, a3 ∈ R>0, and for every n ∈ Z≥1:

1. Cyclic symmetry:

a;n

. . .

a;n

=
. . .

. . . and =

a a

(4.4)

2. Glueing plaquette weights:

a0

a2;ma1;n

. . . . . .

a0 + a1 + a2;n+m − 2

. . .=
.

(4.5)

3. Removing a bubble:

a1 + a2 + a3;n

. . .=

a3;n+ 2

. . .
a1

a2

(4.6)
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4. Moving ζa :

a1 + a2 − a3;n

. . .=

a2;n

. . .
a1 a3

a1 + a2 − a3

=
a2

a1 a3
and

(4.7)

Furthermore we will assume the following:

(L) The limit lima→0 Da exists.

We note that this assumption is quite natural, as it holds for all examples of the form
given in Proposition 2.16. In this case, the limit is the sum of finite rank projections.
Furthermore, from Lemma 2.21 Part 2 and Remark 2.17 we get the following lemma:

Lemma 4.2. A hermitian symmetric RFA is strongly separable and satisfies assumption
(L).

The following lemma is a direct generalisation of [LP, Prop. 2.20].

Lemma 4.3. Let A be strongly separable symmetricRFAsatisfyingAssumption (L). Then
Da◦Db = Da+b for every a, b ∈ R>0 and the image of the idempotent D0 := lima→0 Da
is the centre Z(A) of A. It is an RFA with the restricted structure maps of A. Let us write

D0 =
[
A

πA−→ Z(A)
ιA−→ A

]
,

[
Z(A)

ιA−→ A
πA−→ Z(A)

]
= idZ(A), (4.8)

for the embedding and projection of Z(A).

In the rest of this section we define a symmetric monoidal functorZA : Bord area
2 →

Hilb using the RFA A. Let S ∈ Bord area
2 . Then

ZA(S) :=
⊗

x∈π0(S)

Z(A)(x), (4.9)

where Z(A)(x) = Z(A) and the superscript is used to label the tensor factors.
In the remainder of this section we give the definition of ZA on morphisms. Let

(�,A) : S → T be a bordismwith area and let us assume that (�,A) has no component
with zero area. Choose a PLCW decomposition with area �k , Ak for k ∈ {0, 1, 2} of
the surface with area (�,A), such that the PLCW decomposition has exactly 1 edge
on every boundary component. By this convention π0(S) 
 π0(T ) is in bijection with
vertices on the boundary and with edges on the boundary.

Let us choose an edge for every face before glueing, which we callmarked edge, and
let us choose an orientation of every edge. For a face f ∈ �2 which is an n f -gon let us
write ( f, k), k = 1, . . . , n f for the sides of f , where ( f, 1) denotes the marked edge of
f , and the labeling proceeds counter-clockwise with respect to the orientation of f . We
collect the sides of all faces into a set:

F := { ( f, k)
∣
∣ f ∈ �2, k = 1, . . . , n f

}
. (4.10)

We double the set of edges by considering �1 × {l, r}, where “l” and “r” stand for
left and right, respectively. Let E ⊂ �1 × {l, r} be the subset of all (e, l) (resp. (e, r)),
which have a face attached on the left (resp. right) side, cf. Fig. 3a. Thus for an inner
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(e, l)

e

β
(e)
A1(e)

(e, r)
(e, l) (e, r)

(a) (b) A1(e)

β
(f)
A1(f)

(f, l) (f, in)

(c) A1(f)

Fig. 3. a Left and right sides (e, l) and (e, r) of an inner edge e, determined by the orientation of � (paper
orientation) and of e (arrow). b Convention for connecting tensor factors belonging to edge sides (e, l) and

(e, r) of an inner edge e with the tensor factors belonging to the morphism β
(e)
A1(e)

. c Conventions for the

labels of the tensor factors for an ingoing boundary edge f with ( f, l) ∈ E

edge e ∈ �1 the set E contains both (e, l) and (e, r), but for a boundary edge e′ ∈ �1 the
set E contains either (e′, l) or (e′, r). By construction of F and E we obtain a bijection

� : F ∼−−→ E, ( f, k) �→ (e, x), (4.11)

where e is the k’th edge on the boundary of the face f lying on the side x of e, counted
counter-clockwise from the marked edge of f .

For every vertex v ∈ �0 in the interior of � or on an ingoing boundary component
of � choose a side of an edge (e, x) ∈ E for which v ∈ ∂(e). Let

V : �0\π0(T ) → E (4.12)

be the resulting function.
To define ZA(�,A) we proceed with the following steps.

1. Let us introduce the tensor products

OF :=
⊗

( f,k)∈F
A( f,k), OE :=

⊗

(e,x)∈E
A(e,x),

Oin :=
⊗

b∈π0(S)

A(b,in), Oout :=
⊗

c∈π0(T )

A(c,out).
(4.13)

Every tensor factor is equal to A, but the various superscripts will help us distinguish
tensor factors in the source and target objects of the morphisms we define in the
remaining steps.

2. Recall that by our conventions there is one edge in each boundary component and
that we identified outgoing boundary edges with π0(T ). Define the morphism

C :=
⊗

e∈�1\π0(T )

β
(e)
A1(e)

: Oin ⊗ OE → Oout, (4.14)

where β
(e)
A1(e)

= βA1(e), and where the tensor factors in Oin ⊗ OE are assigned to
those of βA1(e) according to Fig. 3b, c.

3. Define the morphism

Y :=
∏

v∈�0\π0(T )

ζ
(V (v))

A0(v)
∈ B(OE ,OE ), (4.15)

where

ζ (e,x)
a = id⊗ · · · ⊗ ζa ⊗ · · · ⊗ id ∈ B(OE ,OE ), (4.16)

where ζa maps the tensor factor A(e,x) to itself.
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4. Assign to every face f ∈ �2 obtained from an n f -gon the morphism

W f
A2( f )

= W
(n f )

A2( f )
: C → A( f,1) ⊗ · · · ⊗ A( f,n f ) (4.17)

and take their tensor product:

F :=
⊗

f ∈�2

(
W f

A2( f )

)
: C → OF . (4.18)

5. Wewill nowput the abovemorphisms together to obtain amorphismL : Ain → Aout.
Denote by Π� the permutation of tensor factors induced by � : F → E ,

Π� : OF → OE . (4.19)

Using this, we define

K :=
[

C
F−→ OF

Π�−−→ OE
Y−→ OE

]

, (4.20)

L :=
[

Oin
idOin ⊗K−−−−−→ Oin ⊗ OE

C−→ Oout

]

. (4.21)

6. Using the embedding and projection maps ιA, πA from (4.8) we construct the mor-
phisms:

Ein :=
⊗

b∈π0(S)

ι
(b)
A : ZA(S) → Oin, Eout :=

⊗

c∈π0(T )

π
(c)
A : Oout → ZA(T ),

(4.22)

where ι
(b)
A = ιA : Z(A)(b) → A(b) and π

(b)
A = πA : A(b) → Z(A)(b). We have all

ingredients to define the action of ZA on morphisms:

ZA(�,A) :=
[

ZA(S)
Ein−→ Oin

L−→ Oout
Eout−−→ ZA(T )

]

. (4.23)

Now that we defined ZA(D) on bordisms with strictly positive area, we turn to the
general case. Let (�,A) : S → T be a bordism with area and let �+ : S+ → T+ denote
the connected component of (�,A)with strictly positive area.We have that inBord area

2

(�,A) = (�+,A+) 
 (�\�+, 0), (4.24)

whereA+ denotes the restriction ofA to π0(�+). The bordismwith zero area (�\�+, 0)
defines a permutation κ : π0(S\S+) → π0(T \T+). Let ZA(�\�+, 0) : ZA(S\S+) →
ZA(T \T+) be the induced permutation of tensor factors. We define

ZA(�,A) := ZA(�\�+, 0) ⊗ ZA(�+,A+), (4.25)

where ZA(�+,A+) is defined in (4.23).

Theorem 4.4. Let A be a strongly separable symmetric RFA satisfying Assumption (L).

1. The morphism defined in (4.23) is independent of the choice of the PLCW decom-
position with area, the choice of marked edges of faces, the choice of orientation of
edges and the assignment V .



Area-Dependent Quantum Field Theory 107

2. The state sum construction yields an aQFT ZA : Bord area
2 → Hilb whose action

on objects and morphisms is given by (4.9) and (4.25), respectively.
3. The commutative RFA corresponding to the aQFT ZA is the center of A.

Proof. Part 1:
In order to show independence of the PLCW decomposition with area first notice that all
conditions on A depend on the sum of the parameters. This implies that the construction
is independent of the distribution of area, i.e. the mapsAk (k ∈ {0, 1, 2}). Checking that
the construction is independent of the details of the PLCW decomposition can be done
as in the case of TFTs (see e.g. [DKR, Lem.3.5]), which is due to Conditions 1-4.

Part 2:
For an in-out cylinderwith a single componentwith area a themorphismL in from (4.21)
is exactly Da from (4.3). Clearly this is continuous in the parameter. When considering
an in-out cylinder with several components, the zero area limit of the assignedmorphism
exists by Assumption (L) and it is clearly a permutation of tensor factors.

Functoriality follows from the fact that the morphisms Da form a semigroup
(Lemma 4.3). Monoidality and symmetry directly follow from the construction, con-
tinuity in the area follows from Lemma 3.3, hence ZA is indeed an aQFT.

Part 3: This directly follows from Lemma 4.3 and from the (4.9). 	


5. Example: 2d Yang–Mills Theory

The state sum construction of 2d Yang–Mills theory has been introduced by [Mig],
was further developed for G = U (N ) in [Rus], and has been summarised in [Wit];
for a review see [CMR]. There, partition functions and expectation values of Wilson
loops were calculated. These references also discuss the relation between the state-sum
construction and the Lagrangian-based field theoretic approach to 2dYang–Mills theory.

The proof of convergence of the (Boltzmann) plaquette weights has been shown in
a different setting in [App]. In this section we will heavily rely on the representation
theory of compact Lie groups, a standard reference is e.g. [Kna].

5.1. Two RFAs from a compact group G. Let G be a compact semisimple Lie group
and

∫
dx the Haar integral on G with the normalisation

∫
G 1 dx = 1. We denote with

L2(G) the Hilbert space of square integrable complex functions on G, where the scalar
product of f, g ∈ L2(G) is given by 〈 f, g〉 := ∫ f (x)∗g(x)dx .

Let Ĝ denote a set of representatives of isomorphism classes of finite-dimensional
simple unitary G-modules. Then for V ∈ Ĝ with inner product 〈−,−〉V and an or-
thonormal basis {eVi }dim(V )

i=1 let

f Vi j : G → C

g �→ (dim(V ))1/2〈eVi , g.eVj 〉V
(5.1)

denote a matrix element function and let MV denote the linear span of these. The matrix
element functions are orthonormal [Kna,Cor. 4.2]: forV,W ∈ Ĝ, i, j ∈ {1, . . . , dim(V )}
and k, l ∈ {1, . . . , dim(W )}

〈 f Vi j , f Wkl 〉 = δikδ jlδV,W (5.2)
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where δV,W = 1 if V = W and 0 otherwise. The character of V is defined as

χV = (dim(V ))−1/2
dim(V )∑

i=1

f Vii . (5.3)

The Peter-Weyl theorem provides a complete orthonormal basis of L2(G) in terms of
matrix element functions and of the square integrable class functions Cl2(G) in terms
of characters:

L2(G) ∼=
⊕

V∈Ĝ
MV and Cl2(G) ∼=

⊕

V∈Ĝ
C.χV (5.4)

as Hilbert space direct sums. Note that L2(G) ⊗ L2(G) ∼= L2(G × G) and Cl2(G) ⊗
Cl2(G) ∼= Cl2(G × G) isometrically by mapping f ⊗ f ′ to the function (g, g′) �→
f (g) f ′(g′). We will often use these isomorphisms without further notice.

In the following we will define a †-RFA structure on L2(G) and Cl2(G). Let us start
with defining the operator

� : L2(G) → L2(G) ⊗ L2(G)

f �→ �( f ) = [(x, y) �→ f (xy)] ,
(5.5)

which has norm 1. Let μ := �† : L2(G) ⊗ L2(G) → L2(G) be its adjoint, which is
given by the convolution product. For F ∈ L2(G) ⊗ L2(G)

μ(F)(y) =
∫

G
F(x, x−1y) dx . (5.6)

Let V ∈ Ĝ and let us denote with σV ∈ R the value of the Casimir operator of G in the
module V . We define the unit to be the heat kernel on G:

ηa : C → L2(G)

1 �→ ηa(1) =
∑

V∈Ĝ
e−aσV dim(V )χV

(5.7)

for a ∈ R>0.

Lemma 5.1. The sum in (5.7) is absolutely convergent for every a ∈ R>0.

Proof. This follows from [App, Sec. 3], which we explain now. Let us fix a maximal
torus of G and let T denote its Lie algebra, let �+ ⊂ T ∗ denote the set of dominant
weights and let (−,−) be the inner product on T ∗ induced by the Killing form and | − |
the induced norm. We will use that, since G is semisimple, there is a bijection of sets
[Kna, Thm.5.5]

Ĝ
∼=−−→ �+

V �→ λV ,

Vλ �→λ.

(5.8)

From [Sug, (1.17)] and [App, (3.2)] we have that (by the Weyl dimension formula)
for V ∈ Ĝ with dominant weight λV ∈ �+

dim(V ) ≤ N |λV |m, (5.9)
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where N ∈ R>0 is a constant independent of V and 2m = dim(G) − rank(G).
From [Sug, Lem.1.1] we can express the value of the Casimir element in V using

the highest weight λV of V and the half sum of simple roots ρ as

σV = (λV , λV + 2ρ). (5.10)

It follows directly [App, (3.5)] that

|λV |2 ≤ σV . (5.11)

We can give an estimate for the norm of λV as follows. The choice of simple roots
gives a bijection Zrank(G) → �+ which we write as n �→ λ(n). Using the proof of [Sug,
Lem.1.3] there are C1,C2 ∈ R≥0 such that for every n ∈ Z

rank(G)

C1 ‖n‖ ≤ |λ(n)| ≤ C2 ‖n‖ , (5.12)

where ‖n‖2 =∑rank(G)
i=1 n2i .

Let b( j) denote the number of n ∈ Z
rank(G) with ‖n‖2 = j . We can easily give a

(very rough) estimate of this by the volume of the rank(G)-dimensional cube with edge
length 2 j1/2 + 1:

b( j) ≤ (2 j1/2 + 1)rank(G). (5.13)

We compute the squared norm of ηa following the computation in [App, Ex.3.4.1].

‖ηa‖2 =
∑

V∈Ĝ
(dim(V ))2e−2aσV (5.8)=

∑

λ∈�+

(dim(Vλ))
2e−2aσVλ

(5.9)≤ N 2
∑

λ∈�+

|λ|2me−2aσVλ

(5.11)≤ N 2
∑

λ∈�+

|λ|2me−2a|λ|2

(5.12)≤ N 2C2m
2

∑

n∈Zrank(G)

‖n‖2m e−2aC1‖n‖2 = N 2C2m
2

∞∑

j=1

b( j) jme−2aC1 j

(5.13)≤ N 2C2m
2

∞∑

j=1

(2 j1/2 + 1)rank(G) jme−2aC1 j ,

(5.14)

which converges. 	

Finally we define the counit as εa := η

†
a : L2(G) → C. Explicitly, for f ∈ L2(G),

εa( f ) = 〈ηa, f 〉 =
∑

V∈Ĝ
e−aσV dim(V )

∫

G
χV (x) f (x−1) dx . (5.15)

Again for a ∈ R>0 let

Pa : L2(G) → L2(G)

f �→ μ(ηa ⊗ f ),
(5.16)

μa := Pa ◦ μ and �a := � ◦ Pa .
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Proposition 5.2. L2(G), together with the family of morphisms μa, ηa, �a and εa for
a ∈ R>0 defined above is a strongly separable symmetric †-RFA.

Before proving this proposition let us state a lemma. Let V ∈ Ĝ and define

μV
a := μa |MV ⊗MV , ηV

a := e−aσV dim(V )χV ,

�V
a := �|MV , εVa := εa |MV .

(5.17)

From a computation using orthogonality of the f Vi j we can obtain the following formulas:

Pa( f
V
i j ) = e−aσV f Vi j ∈ MV , (5.18)

μa( f
V
i j ⊗ f Vkl ) = δ jke

−aσV (dim(V ))−1/2 f Vil ∈ MV , (5.19)

�a( f
V
i j ) = e−aσV (dim(V ))−1/2

dim(V )∑

k=1

f Vik ⊗ f Vk j ∈ MV ⊗ MV , (5.20)

εa( f
V
i j ) = e−aσV (dim(V ))1/2δi j . (5.21)

Lemma 5.3. Let V ∈ Ĝ. Then MV is a strongly separable symmetric †-RFA with the
structure maps in (5.17).

Proof. Checking the algebraic relations is a straightforward calculation. As an example,
we compute the window element of MV .

μV
a1 ◦ �V

a2 ◦ ηV
a3 =

dim(V )∑

l=1

μV
a1 ◦ �V

a2( f
V
ll )e−a3σV (dim(V ))1/2

=
dim(V )∑

k,l=1

μV
a1( f

V
lk ⊗ f Vkl )e

−(a2+a3)σV

=
dim(V )∑

k,l=1

f Vll e
−(a1+a2+a3)σV (dim(V ))−1/2

= e−(a1+a2+a3)σV dim(V )χV = ηV
a1+a2+a3 ,

(5.22)

which is clearly invertible. 	

Via the correspondence in Corollary 2.15, the finite dimensional RFA MV is given by

the Frobenius algebra MV (with structure maps at a = 0) and the element in the center
σV · idMV .

Proof of Proposition 5.2. Let V ∈ Ĝ and let us compute the following norms.

∥
∥
∥ηV

a

∥
∥
∥
2 = e−2aσV (dim(V ))2〈χV , χV 〉 = e−2aσV dim(V )

dim(V )∑

k,l=1

〈 f Vkk , f Vll 〉

= e−2aσV (dim(V ))2.

(5.23)



Area-Dependent Quantum Field Theory 111

Let ϕ =∑dim(V )
i, j=1 ϕi j f Vi j ∈ MV and compute

∥
∥
∥�V

a (ϕ)

∥
∥
∥
2 = e−2aσV (dim(V ))−1

dim(V )∑

i, j,k=1

|ϕi j |2
∥
∥
∥ f Vik ⊗ f Vk j

∥
∥
∥
2 = e−2aσV ‖ϕ‖2 , (5.24)

so
∥
∥�V

a

∥
∥ = e−aσV . Since MV is a †-RFA,

∥
∥εVa

∥
∥ = ∥∥ηV

a

∥
∥ and

∥
∥μV

a

∥
∥ = ∥∥�V

a

∥
∥.

We now would like to take the direct sum of the RFAs MV for all V ∈ Ĝ, so we
check the conditions of Proposition 2.16: the sum is convergent since it is the squared
norm of ηa ∈ L2(G) and the supremum is clearly bounded. Therefore L2(G) is an RFA.

Clearly, L2(G) is strongly separable, symmetric and Hermitian by Lemma 5.3. 	

Now we turn to define an RFA structure on Cl2(G).

Proposition 5.4. The centre of L2(G) is Cl2(G) and it is a commutative †-RFA.

Proof. Let us compute the morphism Da from (4.3). For ϕ =∑V∈Ĝ
∑dim(V )

i, j=1 ϕV
i j f

V
i j ∈

L2(G) we find:

Da(ϕ) = μa2 ◦ σL2(G),L2(G) ◦ �a1(ϕ)

= μa2 ◦ σL2(G),L2(G)

⎛

⎝
∑

V∈Ĝ

dim(V )∑

i, j,k=1

ϕV
i j f

V
ik ⊗ f Vk j

⎞

⎠ e−a1σV (dim(V ))−1/2

=
∑

V∈Ĝ

dim(V )∑

i, j,k=1

ϕV
i j e

−aσV (dim(V ))−1δi j f
V
kk

=
∑

V∈Ĝ

dim(V )∑

i=1

ϕV
ii e

−aσV (dim(V ))−1/2χV .

(5.25)

From this equation we immediately have that Da |Cl2(G) = Pa |Cl2(G). We now show that
Da |(Cl2(G))⊥ = 0. Using (5.4), we have that ϕ ∈ (Cl2(G))⊥ ⊂ L2(G) if and only if

for every W ∈ Ĝ 〈χW , ϕ〉 = 0. We can compute this using the orthogonality relation
(5.2) to get the following: ϕ ∈ (Cl2(G))⊥ if and only if for every W ∈ Ĝ we have that
∑dim(W )

k=1 ϕW
kk = 0. By (5.25) we get that Da(ϕ) = 0.

We have shown that the image of D0 isCl2(G), therefore it is the centre of L2(G) by
Lemma 4.3. Furthermore it is a †-RFA, since L2(G) is a †-RFA and D0 is self-adjoint. 	


For completeness we give the comultiplication �
Cl2(G)
a of Cl2(G). For ϕ = ∑V∈Ĝ

ϕVχV ∈ Cl2(G)

�Cl2(G)
a (ϕ) =

∑

V∈Ĝ
ϕV e−aσV (dim(V ))−2χV ⊗ χV . (5.26)

Remark 5.5. Note that for both L2(G) andCl2(G), the a → 0 limit of the multiplication
and comultiplication exists (by definition), but the a → 0 limit of the unit and counit
does not, cf. the proof of Proposition 5.2.
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5.2. State sum construction of 2d Yang–Mills theory. In this section we give state sum
data for 2d YM theory following [Wit]. The plaquette weights Wk

a : C → (L2(G))⊗k

for k ∈ Z≥0 and a ∈ R > 0 are

Wk
a (1)(x1, . . . , xk) =

∑

V∈Ĝ
e−aσV dim(V )χV (x1 · · · xk), (5.27)

and the contraction and ζa are given by

βa :=
(
W 2

a

)†
, ζa := Pa, (5.28)

where Pa is as in (5.16). Now we are ready to define 2d YM theory, which maps S1 to
the centre of L2(G), see Proposition 5.4.

Definition 5.6. The 2-dimensional Yang–Mills (2d YM) theory with gauge group G is
the state sum area-dependent QFT

ZG
YM := ZL2(G) : Bord area

2 → Hilb (5.29)

of Theorem 4.4. The commutative RFA it assigns to the circle is ZG
YM(S1) = Cl2(G).

Next we compute ZG
YM on connected surfaces with area and b ≥ 0 boundary com-

ponents. For b = 0 the result agrees with [Wit, Eqn. (2.51)] (see also [Rus, Eqn. (27)]).

Proposition 5.7. Let (�, a) : (S1)
bin → (S1)
bout be a connected bordism of genus
g with bin ingoing and bout outgoing boundary components and with area a. Then for
Vj ∈ Ĝ for j = 1, . . . , bout we have

ZG
YM

(
�,a

)
(χV1 ⊗ · · · ⊗ χVbin

)

=

⎧
⎪⎨

⎪⎩

∑
V∈Ĝ e−aσV (dim(V ))χ(�) · (χV )⊗bout if bin = 0

e−aσV1 (dim(V1))χ(�) · (χV1)
⊗bout if bin ≥ 1 and V1 = · · · = Vbin

0 else
,

(5.30)

whereχ(�) = 2−2g−bin−bout is the Euler characteristic of�. For bin = 0 (bout = 0)
the source (the target) is C and the factors of χV or χVj are absent.

Proof. We first consider the case that b := bout ≥ 1 and bin = 0. Denote the map
assigned to the two-holed torus by ϕa = μ ◦ (id⊗(μ ◦ σL2(G),L2(G) ◦ �

) ◦ �
(2)
a :

L2(G) → L2(G) and compute

ϕa( f
V
i j ) = μ ◦ (id⊗(μ ◦ σL2(G),L2(G)

)
⎛

⎝
dim(V )∑

k,l=1

e−aσV (dim(V ))−1 f Vik ⊗ f Vkl ⊗ f Vl j

⎞

⎠

=
dim(V )∑

k,l=1

e−aσV (dim(V ))−2δ jkδkl f
V
il = e−aσV (dim(V ))−2 f Vi j .

(5.31)
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Using this, we compute for a0, . . . , ag+1 ∈ R>0 with a =∑g+1
i=0 ai that

�(b)
ag+1 ◦

g∏

i=1

ϕai ◦ ηa0 = �(b)
ag+1

⎛

⎝
∑

V∈Ĝ
e−(a−ag+1)σV (dim(V ))1−2gχV

⎞

⎠

=
⎡

⎣(x1, . . . , xb) �→
⎛

⎝
∑

V∈Ĝ
e−aσV (dim(V ))1−2gχV (x1 . . . xb)

⎞

⎠

⎤

⎦ .

(5.32)

Finally, we need to compose (5.32) with π⊗b to get (5.30), where π : L2(G) → Cl2(G)

is the projection onto the image of D0. We compute using (5.25):

π⊗b(χV (x1 . . . xb)) = π⊗b

⎛

⎝
dim(V )∑

k1,...,kb=1

(dim(V ))−b/2 f Vk1k2(x1) . . . f Vkbk1(xb)

⎞

⎠

= (dim(V ))1−bχV (x1) . . . χV (xb).

(5.33)

For the case bin = bout = 0 we use functoriality. Let �′ the surface obtained by
cutting out a disk from �. Compose ZG

YM

(
�′, a − a′) with εa′ and use (5.21).

For the case bin �= 0 we need to turn back outgoing boundary components by com-
posing with cylinders with two ingoing boundary components and with area a, which
we denote with (C, a). For U,W ∈ Ĝ we have

ZG
YM(C, a)(χU , χW ) = e−aσU δU,V . (5.34)

Using the result for the bin = 0 case and (5.34) we get the claimed expression. 	

Remark 5.8. As already noted in Remark 5.5, ηa and εa |Cl2(G), i.e. the value of ZG

YM
on a disc with one outgoing (resp. one ingoing) boundary component, do not have zero
area limits. On the other hand, the expression (5.30) has a zero area limit if χ(�) =
2 − 2g − (bin + bout) < 0. Note that this is the condition of � being stable. Indeed, the
χV are orthogonal for different V and have norm ‖χV ‖ = 1, and for a given α ∈ Z the
sum

∑
V∈Ĝ(dim(V ))α converges if α ≤ −2. To see this, use the bijection from (5.8)

and the estimate from (5.9) to get
∑

V∈Ĝ
(dim(V ))α ≤

∑

λ∈�+

(dim(Vλ))
α ≤ N

∑

λ∈�+

|λ|mα, (5.35)

which converges for−mα > rank(G) by [Sug, Lem.1.3]. Then use thatm = (dim(G)−
rank(G))/2 and that 3 rank(G) ≤ dim(G) to get α < −1, and since α is an integer
α ≤ −2. These limits are related in [Wit] to volumes ofmoduli spaces of flat connections
(see e.g. [KMT] for more results and references). For example for G = SU (2) we have,
for g ≥ 2 and bin = bout = 0,

lim
a→0

Z SU (2)
YM (�, a) (1) =

∞∑

n=1

n−2g+2 = ζ(2g − 2), (5.36)

where ζ is the Riemann zeta-function. For general G, these functions are also referred
to as Witten zeta-functions, see e.g. [KMT].
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A Proof of Joint Continuity

The following lemma will be instrumental in showing that various joint continuity con-
ditions hold automatically inHilb. A similar statement can be found in [KMD, Sec. 2].

Lemma A.1. LetHi ∈ Hilb (i = 1, 2). Let X be a subset of a finite-dimensional normed
vector space (e.g. X = R≥0). Equip X with the induced topology and let a �→ S(i)

a be two
continuous maps X → B(Hi ). Then the map X2 → B(H1 ⊗H2), (a, b) �→ S(1)

a ⊗ S(2)
b

is jointly continuous.

Proof. We will first show that the map a �→
∥
∥
∥S

(i)
a

∥
∥
∥ is bounded on compact subsets of

X . Let K ⊂ X be compact. By strong continuity we have that for every h ∈ Hi the

map a �→ S(i)
a (h) is continuous, so in particular the map a �→

∥
∥
∥S

(i)
a (h)

∥
∥
∥ is continuous,

hence bounded on K . By the UniformBoundedness Principle [Con1, Ch. III.14] the map

a �→
∥
∥
∥S(i)

a

∥
∥
∥ is bounded on K .

Now we turn to the claim in the lemma. Let a0, b0 ∈ X and κ, ε ∈ R>0 be fixed. We
will show that the map (a, b) �→ S(1)

a ⊗ S(2)
b is continuous at (a0, b0).

For T ∈ H1 ⊗ H2 take a sequence {Tn}n in the algebraic tensor product of H1 and H2

such that Tn
n→∞−−−→ T . We have the estimate

∥
∥
∥(S(1)

a ⊗ S(2)
b − S(1)

a0 ⊗ S(2)
b0

)T
∥
∥
∥

≤
∥
∥
∥(S(1)

a ⊗ S(2)
b − S(1)

a0 ⊗ S(2)
b0

)

∥
∥
∥ · ‖T − Tn‖ +

∥
∥
∥(S(1)

a ⊗ S(2)
b − S(1)

a0 ⊗ S(2)
b0

)Tn
∥
∥
∥ .

(A.1)

We give an estimate for the first term on the right hand side of (A.1). Fix some δ1 > 0.
Then by the above boundedness result there is a κ > 0 such that for every a, b ∈ X with

|a − a0| + |b − b0| < δ1 we have
∥
∥
∥S

(1)
a

∥
∥
∥ < κ and

∥
∥
∥S(2)

b

∥
∥
∥ < κ . So we have

∥
∥
∥S(1)

a ⊗ S(2)
b − S(1)

a0 ⊗ S(2)
b0

∥
∥
∥ ≤

∥
∥
∥S(1)

a

∥
∥
∥ ·
∥
∥
∥S(2)

b

∥
∥
∥ +
∥
∥
∥S(1)

a0

∥
∥
∥ ·
∥
∥
∥S(2)

b0

∥
∥
∥

≤ κ2 +
∥
∥
∥S(1)

a0

∥
∥
∥ ·
∥
∥
∥S(2)

b0

∥
∥
∥ =: N κ

a0,b0 .
(A.2)

http://creativecommons.org/licenses/by/4.0/
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Since Tn
n→∞−−−→ T , we can choose n (which we keep fixed from now on) such that

‖T − Tn‖ <
ε

2N κ
a0,b0

. (A.3)

Putting (A.2) and (A.3) together we get
∥
∥
∥(S(1)

a ⊗ S(2)
b − S(1)

a0 ⊗ S(2)
b0

)

∥
∥
∥ · ‖T − Tn‖ ≤ ε

2
. (A.4)

We give an estimate for the last term in (A.1). Recall that each Tn was chosen in the
algebraic tensor product ofH1 and H2. Thus Tn is a finite sum of elementary tensors,

Tn =
tn∑

j=1

x j
n ⊗ y j

n (A.5)

for tn ∈ Z≥1, x
j
n ∈ H(1) and y j

n ∈ H(2). Using this, we get:
∥
∥
∥(S(1)

a − S(1)
a0 ) ⊗ S(2)

b Tn + S(1)
a0 ⊗ (S(2)

b − S(2)
b0

)Tn
∥
∥
∥

≤
tn∑

j=1

(∥
∥
∥(S(1)

a − S(1)
a0 )x j

n

∥
∥
∥ ·
∥
∥
∥S

(2)
b

∥
∥
∥ ·
∥
∥
∥y

j
n

∥
∥
∥ +
∥
∥
∥(S(1)

a0

∥
∥
∥ ·
∥
∥
∥x

j
n

∥
∥
∥ ·
∥
∥
∥(S

(2)
b − S(2)

b0
)y j

n

∥
∥
∥
)

.

(A.6)

By strong continuity of a �→ S(i)
a we can chose δ2 > 0 such that for every a, b ∈ X

with |a − a0| + |b − b0| < δ2 we have
∥
∥
∥(S(1)

a − S(1)
a0 )x j

n

∥
∥
∥ <

ε

4tnκ
∥
∥
∥y

j
n

∥
∥
∥

and
∥
∥
∥(S(2)

b − S(2)
b0

)y j
n

∥
∥
∥ <

ε

4tn
∥
∥
∥S

(1)
a0

∥
∥
∥ ·
∥
∥
∥x

j
n

∥
∥
∥
,

(A.7)

for every j = 1, . . . , tn , since these are only finitely many conditions to satisfy. Let
δ := min {δ1, δ2}. Then for every a, b ∈ X with |a − a0| + |b − b0| < δ we have that

∥
∥
∥(S(1)

a ⊗ S(2)
b − S(1)

a0 ⊗ S(2)
b0

)Tn
∥
∥
∥ ≤ ε

2
. (A.8)

Finally, using (A.4) and (A.8) we have that
∥
∥
∥(S(1)

a ⊗ S(2)
b − S(1)

a0 ⊗ S(2)
b0

)T
∥
∥
∥ < ε. (A.9)

	

Proof of Lemma 2.5. Let ϕa1,...,aN : A⊗n → A⊗m be a morphism inHilb tensor gener-
ated by μa , ηa , �a and εa , involving a total of N connected components when drawing
it using the graphical calculus, with parameters a1, . . . , aN . One can write ϕa1,...,aN in

the form ϕ
(1)
ε1 ◦

(⊗N
i=1 Pai−ε1−ε2

)
◦ ϕ

(2)
ε2 for some ε1, ε2 ∈ R>0 and morphisms ϕ

(1)
ε1

and ϕ
(2)
ε2 . Then by separate continuity of the composition ofHilb and joint continuity of

⊗N
i=1 Pai by Lemma A.1 the morphism ϕa1,...,aN is jointly continuous in the parameters

a1, . . . , aN . 	
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