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a b s t r a c t

We study optimal election sequences for repeatedly selecting a (very) small group of
leaders among a set of participants (players) with publicly known unique ids. In every
time slot, every player has to select exactly one player that it considers to be the
current leader, oblivious to the selection of the other players, but with the overarching
goal of maximizing a given parameterized global (‘‘social’’) payoff function in the limit.
We consider a quite generic model, where the local payoff achieved by a given player
depends, weighted by some arbitrary but fixed real parameter, on the number of
different leaders chosen in a round, the number of players that choose the given player as
the leader, and whether the chosen leader has changed w.r.t. the previous round or not.
The social payoff can be the maximum, average or minimum local payoff of the players.
Possible applications include quite diverse examples such as rotating coordinator-based
distributed algorithms and long-haul formation flying of social birds. Depending on the
weights and the particular social payoff, optimal sequences can be very different, from
simple round-robin where all players chose the same leader alternatingly every time
slot to very exotic patterns, where a small group of leaders (at most 2) is elected in
every time slot. Moreover, we study the question if and when a single player would not
benefit w.r.t. its local payoff when deviating from the given optimal sequence, i.e., when
our optimal sequences are Nash equilibria in the restricted strategy space of oblivious
strategies. As this is the case for many parameterizations of our model, our results reveal
that no punishment is needed to make it rational for the players to optimize the social
payoff.
©2020 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

There are many instances of both man-made and evolutionary developed biological distributed systems that verify the
tility of using a leader for solving certain problems. A well-known example is the rotating coordinator approach, which
s e.g. used for enforcing a univalent system state in the Byzantine fault-tolerant Phase Queen and Phase King consensus
lgorithms [7]. An interesting example from biology is long-haul V -formation flying of social birds like geese and pelicans,
here all birds except the leader benefit energetically from the uplift of their neighbor ahead [4].
The latter immediately raises the question of why any individual should take over the exhausting role of the flock

eader at all? As argued in [4], reciprocation and kin selection might play a role here: In social1 groups (where individuals
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1 In fact, less social birds or larger populations do not use V -formation flying.
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know each other), free-loaders do not go unnoticed and thus take the risk of being mobbed in the air or at a stopover.
Hence, there is pressure on every (healthy and adult) individual to take turns in leadership. Kin selection may be the
motivation for certain individuals, in particular, parents, to take over the lead for gaining inclusive fitness of their whole
family.

Obviously, taking turns in the role of the leader can be seen as a strategy of the individual birds for solving a repeated
eader election problem: Every bird chooses a leader candidate according to this strategy, independently of the choices of
he other birds, which nevertheless allows to easily determine a single leader most of the times. The birds’ strategy may
f course be seen as the evolutionary result of the strive for maximum fitness. A good election sequence, comprising the
hoices of all birds, should (i) reach agreement on the next leader (to make the actual leader determination easy, thereby
voiding turbulences at the formation head), (ii) encourage fair leader changes (to avoid exhaustion of the leader), but
iii) penalize too frequent changes (to minimize the cumulated adverse effects of the leader changes during the flight).

Similar considerations can be applied for rotating coordinator algorithms in distributed computing [6,16], which
ctually involve (a simple form of) repeated leader election. In particular, the Phase Queen consensus algorithm [7] for
ynchronous byzantine fault-tolerant distributed systems [13] operates in phases consisting of two rounds each. In the first
ound, a full message exchange is used to get the proposal values of all participating processes. If this leads to a univalent
ystem configuration (an overwhelming majority for some value), every process can decide. In the second round of a
hase, only the coordinator process sends its new proposal value, which is adopted by every still undecided receiver. If
he coordinator is correct, this leads to a univalent system configuration. If the coordinator is faulty or not unique, the
ystem may still be in a bivalent configuration at the end of the phase, so further phases are needed until the system can
ecome univalent.
In the original Phase Queen algorithm, the process with id equal to the phase number modulo n is used as the

oordinator. It is not difficult to see, however, that the Phase Queen algorithm can be adapted to work with every strategy
hat (i) sufficiently often reaches agreement on the coordinator (to force the system configuration to become univalent),
ii) enforces reasonably fair leader changes (to eventually choose a non-faulty coordinator and distribute the coordinator-
oad evenly among all processes), and (iii) to stimulate sufficiently frequent leader changes (for fast termination and, again,
o avoid putting too much coordinator load on a single node in successive rounds). In order not to increase the adverse
ower of byzantine faulty nodes, however, every process should choose the coordinator in a given round independently
f the choices of the other processes, albeit in a way that guarantees agreement on a single coordinator sufficiently often.
Main contributions: In this paper, we completely characterize election sequences L for oblivious repeated leader

lection in synchronous systems that optimize the global payoff (‘‘social payoff’’) in the limit. We consider a system of n
articipants (for compatibility with game theory, we call them players), where every player i ∈ Π = {1, . . . , n} has to
hoose a player Li(r) it considers to be the leader of the current round r ∈ {1, 2, . . .}. We will restrict our attention to
he restricted strategy space of oblivious strategies, where, in round r , the players are completely unaware of the choices
f the other players in rounds 1, . . . , r . Note that we borrowed the term ‘‘oblivious’’ from [22], where it is used with a
lightly less restrictive meaning. If Li(r) = j, player i votes for j to act as the leader in round r . Note carefully, though, that
ifferent players could vote for different leaders in a given round as well. The collection of all the players votes in round
is denoted L(r), and the election sequence L = (L(r))r≥1 consists of all the collective votes over time.
In order to quantitatively assess the quality of a particular election sequence, we first define a round r-payoff u(r)

i (L) =

G(r)
i (L)| + c · |F (r)

i (L)| + c ′δLi(r−1)(Li(r)) for every player i ∈ Π . Note carefully that player i’s local payoff also depends on
he leader choices of all other processes, and is hence not known by player i locally:

• F (r)
i (L) is the set of players that voted for i. If this quantity is large, many players want i to be leader, and depending

on the sign of the parameter c , the local payoff of i gets proportionally larger or smaller. It therefore allows to model
the benefit resp. loss for being elected leader.

• G(r)
i (L) is the set of players that voted for the same player as process i. This quantity, the parameter of which has

been normalized to 1, hence models the common strive to elect a small group of leaders, ideally only one.
• δLi(r−1)(Li(r)) = 1 if Li(r − 1) = Li(r) (i.e., the chosen leader did not change) and 0 otherwise. This quantity, along

with its parameter c ′, allows to incorporate the strive for leader stability vs. leader changes. Note that we are aware
of the limitations of this somewhat simplistic modeling, which has been chosen also for tractability reasons (see
Section 6).

he (local) payoff of player i is then defined as ui(L) = lim infr→∞
1
r

∑r
k=1 u

(k)
i (L), and the (global) social payoff is either

vg{u1(L), . . . , un(L)}, min{u1(L), . . . , un(L)} or max{u1(L), . . . , un(L)}. We addressed these different social payoffs in order
o maximize the applicability of our results: Besides the quite natural average, it may be interesting in some applications
o know the smallest (resp. largest) payoff of some fixed player, which is provided by the min (resp. max) social payoff.
he goal of this paper is to precisely characterize election sequences that maximize these social payoffs.
The real-valued parameters c, c ′ can be chosen arbitrarily to model different applications. For instance, in our

-formation flight example, c > 0 represents the importance of reciprocation for every individual and hence assures
air turns, whereas c ′ controls the frequency of the leader changes; c ′ > 0 encourages infrequent leader changes and thus
inimizes the disturbances of the flock at the cost of exhaustion of the leader, whereas c ′ < 0 encourages frequent leader
hanges. For the social payoff, avg and min seem natural candidates, but even max may make sense here: It may be in the
393
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interest of the entire family to maximize the payoff of some (strongest) individual (in return of its parental care efforts),
albeit one should probably choose c ′ < 0 in this case, to guarantee some leader changes that avoid the exhaustion of a
single individual that always acts as the leader. In our Phase Queen algorithm example, c > 0 represents the importance
f fairly choosing every process, whereas c ′ < 0 again controls the leader change frequency. For the social payoff, min is

arguably the most interesting social payoff, as no process should experience an excessively low payoff in order to ensure
that all processes take turns in acting as the coordinator.

We need to stress, however, that the problem studied in this paper is a global optimization problem, rather than a
problem in game theory. More specifically, we do not assume that a player has a strategy to choose its leader Li(r) locally,
.g., based on local payoff maximization and/or some information on the past choices of the other players. Rather, we
ust assume that some ‘‘decision-maker’’ gives the election sequence L to the players a priori somehow, and all players
aithfully choose according to L.

This does not mean, however, that our results are irrelevant with respect to game theory. First of all, it would actually
e very interesting to study our social payoffs in a setting where the players choose their leader proposal using information
ollected in the past, possibly even in an evolutionary setting. In order to be able to compute the ‘‘price of anarchy’’, as
.g. in Schmid et al. in a virus inoculation game setting [17], i.e., the ratio between locally computed election sequences
nd the globally optimal ones, one obviously needs our results.
In view of this application of our results, it is also of interest whether and when an optimal sequence L is a Nash

quilibrium, i.e., whether and when it does not pay off for a single player to deviate from L: we determine the range
f parameters c, c ′, for which any player i’s sequence of local choices Li(r) is a best response strategy to the case where
ll other players keep acting according to L. Note carefully that this defines a Nash equilibrium in a restricted strategy
pace only, namely, of those strategies where players choose leaders oblivious w.r.t. the choices of the other players in
ll previous rounds. This restriction is necessary, since a player is unable to detect and possibly punish the deviation of
ome other player i as part of its own strategy. Anyway, if an optimal strategy for some social payoff can be shown to be
Nash equilibrium in the above sense, it is rational for the players not to deviate in order to also maximize their local
ayoff, which in turn maximizes the social payoff. As a consequence, no punishment is needed to enforce this behavior.
ote that this is in stark contrast to ‘‘folk theorems’’ for repeated games [11,23], where punishments are used to achieve
his goal.

Paper organization. After a short overview of related work in Section 2, we introduce the cornerstones of the
nderlying model in Section 3. In Section 4, we characterize the optimal election sequences for maximizing the different
ariants of our social payoffs, for all possible parameter choices for c , c ′. In Section 5, we investigate the conditions under
hich our optimal sequences are Nash equilibria. A discussion of the consequences of our results in Section 6 and some
irections of future work in Section 7 conclude our paper.

. Related work

One-shot leader election is a well-studied problem in distributed computing, where it requires all the processes in
he system to agree on a single leader process. For systems without failures, both synchronous and asynchronous leader
lection algorithms can be found in any good textbook [6,16], and thanks to its close relation to distributed consensus,
he same can be claimed even for (Byzantine) fault-tolerant distributed systems [10,13]. The challenge lies in the fact that
he processes do not a priori know the ids of all the processes in the system, so need to reach agreement via a protocol.

One-shot leader election has also been studied in game-theoretic settings. For rational players, [2] studied Nash
quilibria and even k-resilient Nash equilibria [1,12] for coalitions of a minority of deviating players. A k-resilient
quilibrium (k = 1 in the case of a standard Nash equilibrium) provides a strategy, i.e., a protocol, which is optimal
.r.t. coalitions of k deviating players. The challenge answered in [2] is to ensure fair equilibria, where every player has
he same probability of being elected as the leader. Whereas acquiescent players (that faithfully follow the protocol) are
llowed here, Byzantine faulty players, as also foreseen in more general models like the BAR model [3], are forbidden:
fter all, electing a Byzantine player cannot be ruled out in leader election.
The challenge in one-shot leader election is to ensure that exactly one leader is elected, despite selfish interests, and

ithout a priori common knowledge of the ids of all players. In stark contrast, in this paper, we consider the problem of
infinitely) repeated leader election in systems, where agreeing on a single leader is usually desirable but not mandatory.
here is a reasonably rich literature on repeated games, which goes back at least to John Nash’s PhD thesis. Most existing
ork focuses on 2-player scenarios, typically of the iterated Prisoner’s Dilemma, albeit there are also results on general
nd multi-player repeated games [11,23]. Note that leader election for two players can be viewed as an instance of the
ell-known coordination game Battle of Sexes [15].
For infinitely repeated games, ‘‘folk theorems’’ have been established [11,23], which essentially show that any feasible

ayoff of the one-shot game underlying an infinitely repeated game can be the discounted average payoff, for a discount
actor sufficiently close to 1, of a Nash equilibrium of the infinitely repeated game. However, those results depend on the
act that a deviating player can be punished by the other players, so that she has no incentive to deviate. Note carefully,
owever, that folk theorems are not applicable if such punishment if prohibited, e.g., when the other players are oblivious
o a possible deviation of some player.

By contrast, we consider Nash equilibria in restricted strategy spaces, which have been studied in different applications
n the past. The seminal work of Simon [18] proposed bounded rationality (i.e., bounded resources) as a natural way
394
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to restrict strategy spaces, and this has been studied in different contexts in economics [19,20] as well as reactive
synthesis [8]. Oblivious strategy spaces have been introduced in [22], where the decision making of a player is confined
to its local state (plus some long-term average information on the global system state). In the particular context of Nash
equilibria, considering restricted strategy spaces is also known from literature: (a) stationary strategy equilibria, which
are restricted to strategies that do not remember past information, have been studied in [9,21]; (b) since dealing with
irrational probabilities is complex even in one-shot games, simple uniform strategies equilibria have been considered
in [14]. In all these contexts, including ours, as argued in Section 1, strategy space restrictions are natural, and so are
Nash equilibria with respect to restricted strategy spaces.

Nevertheless, our work differs significantly from all the related work mentioned above, in several aspects: Rather
han the ‘‘weak’’ utility used in [2], where a player never considers an outcome of the leader election without a leader
etter than one with a leader, we consider a much richer utility function. Moreover, we consider infinitely repeated
eader election with more then 2 players. And last but not least, rather than considering players who try to maximize the
ndividual local payoff, we are looking for election sequences (that can be viewed as optimal strategies) that maximize
ome form of social payoff. Similar to [5], where the authors study a one-shot inoculation game that models virus
nfection/protection in networks, we also address the question of whether globally optimal sequences are also locally
ptimal, i.e., Nash equilibria. However, unlike [5], we neither characterize locally optimal strategies nor do we compute
he ‘‘price of anarchy’’ as Schmid et al. do in [17].

. Preliminaries

In this section, we will introduce the formal model and basic concepts used in our paper, as well as some pivotal
echnical definitions.

.1. The model

Let n be a positive integer. Denote by Π = {1, 2, . . . , n} the set of players and by V ⊆ N the set of possible votes.
vote is an element of V . An election is a collection of votes, indexed by Π . In this paper, we will always assume that2
= Π .
An election sequence L = (L(r))r≥1 is a sequence of elections, which is given to the players a priori by some ‘‘decision-

aker’’. Given an election sequence L, we say that player i voted for player j in round r in L if Li(r) = j and call j the vote
f player i in round r . Player i considers itself leader in round r of L if Li(r) = i. Note that more than one process may
onsider itself leader in the same round r .
For an election sequence L, we define F (r)

i (L) as the set of players that voted for i in round r in L. We further define
(r)
i (L) as the set of players that voted for the same player as process i in round r in L. Formally, we have

F (r)
i (L) = {j ∈ Π : Lj(r) = i},

G(r)
i (L) = {j ∈ Π : Lj(r) = Li(r)}.

efinition 3.1 (Payoffs). Let c and c ′ be real numbers. The payoff of player i in round r is defined as

u(r)
i (L) = |G(r)

i (L)| + c · |F (r)
i (L)| + c ′δLi(r−1)(Li(r)), (1)

here δLi(r−1)(Li(r)) = 1 if Li(r − 1) = Li(r) and 0 otherwise, and the payoff of player i is

ui(L) = lim inf
r→∞

1
r

r∑
k=1

u(k)
i (L).

Example 3.2. We illustrate these definitions by means of a short example. Assume that we have five players with the
sequence of votes specified in columns:

Player r = 1 2 3 4 5 6 . . .
1 1 1 1 1 1 1 . . .
2 2 1 1 2 1 1 . . .
3 4 4 1 4 4 1 . . .
4 3 4 1 3 4 1 . . .
5 5 5 1 5 5 1 . . .

The following table gives the individual payoffs in the first four rounds, as well as the (limit) payoff of each player if
the sequence of the first three rounds is repeated forever.

2 For further research, we have some generalizations in mind, where the set of possible votes can differ from the set of players. For example,
one can assign (possibly identical) labels to the players.
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Player r = 1 2 3 4 limit payoff
1 1 + c 2 + 2c + c ′ 5 + 5c + c ′ 1 + c + c ′ 8

3 +
8
3 c + c ′

2 1 + c 2 5 + c ′ 1 + c 8
3 +

1
3 c+

1
3 c

′

3 1 + c 2 + c ′ 5 1 + c 8
3 +

1
3 c+

1
3 c

′

4 1 + c 2 + 2c 5 1 + c 8
3 + c

5 1 + c 1 + c + c ′ 5 1 + c 7
3 +

2
3 c+

1
3 c

′

Based on the payoffs of the individual players according to Definition 3.1, we can define several different payoffs for
he whole group of players:

efinition 3.3 (Social Payoffs). An ethics is a function Rn
→ R. In particular, we will consider the following ethics:

min(x1, x2, . . . , xn) = min{xi | 1 ⩽ i ⩽ n}
max(x1, x2, . . . , xn) = max{xi | 1 ⩽ i ⩽ n}

avg(x1, x2, . . . , xn) =
1
n

n∑
i=1

xi

For a election sequence L and an ethics e, we define the e-social payoff by ue(L) = e(u1(L), . . . , un(L)).

Our goal in this paper is to characterize optimal election sequences in case V = Π for the three ethics given above, in
ependence on the choice of c and c ′.

efinition 3.4 (Optimal Election Sequence). An election sequence L is called optimal for an e-social payoff ue, if

ue(L) ≥ ue(L′)

or all election sequences L′.

.2. Technical definitions

All our characterizations of optimal election sequences will rely on the sets of round numbers given in Definition 3.5.
or simplicity, we will often write just Ai instead of Ai(L) and so on when using these sets.

efinition 3.5 (Characterization Sets). For an election sequence L, we define the following sets:

Ai(L) = {r| all players vote for player i in round r}

= {r| Lj(r) = i for all j ∈ Π},

Bi(L) = {r| in round r all players vote for the same player, but not for i}

= {r| ∃ k ̸= i : Lj(r) = k for all j ∈ Π},

Ei(L) = {r| in round r all players except player i vote for i, player i votes for a

player j ̸= i}

= {r| ∃ k ̸= i : Lj(r) = i for all j ∈ Π \ {i}, Li(r) = k},

Hi(L) = {r| in round r player i votes for a player j ̸= i, all the other players

vote for i or j}

= {r| ∃ k ̸= i : Li(r) = k, Lj(r) ∈ {i, k} for all j ∈ Π \ {i}},

A∗

i (L) = {r| all players vote for player i in round r, same

pattern in round r − 1}

= {r| Lj(r − 1) = Lj(r) = i for all j ∈ Π},

A∗∗

i (L) = {r| all players vote for player i in round r, same

pattern in rounds r − 1 and r − 2}

= {r| L (r − 2) = L (r − 1) = L (r) = i for all j ∈ Π},
j j j
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a

B∗

i (L) = {r| in round r all players vote for the same player, but not for i, same

pattern in round r − 1}

= {r| ∃ k1 ̸= i, k2 ̸= i : Lj(r) = k1 for all j ∈ Π,

Lj(r − 1) = k2 for all j ∈ Π},

E∗

i (L) = {r| in round r all players except player i vote for i, player i votes for a

player j ̸= i, same pattern in round r − 1}

= {r| ∃ k1 ̸= i, k2 ̸= i : Lj(r − 1) = Lj(r) = i for all j ∈ Π \ {i},

Li(r) = k1, Li(r − 1) = k2},

H∗

i (L) = {r| in round r player i votes for a player j ̸= i, all the other players

vote for i or j, same pattern in round r − 1}

= {r| ∃ k1 ̸= i, k2 ̸= i : Li(r) = k1, Lj(r) ∈ {i, k1} for all j ∈ Π \ {i},

Li(r − 1) = k2, Lj(r − 1) ∈ {i, k2} for all j ∈ Π \ {i}},

nd

D(i) = {r| δLi(r−1)(Li(r)) = 1},
D0 = {r| δLi(r−1)(Li(r)) = 0 for all i},
D1 = {r| δLi(r−1)(Li(r)) = 1 for all i}.

Example 3.6. We also illustrate those definitions by means of a short example. Consider the following votes of five players
in the first nine rounds:

Player r=1 2 3 4 5 6 7 8 9 . . .
1 2 3 3 4 4 4 5 2 4 . . .
2 2 3 1 4 4 4 5 1 1 . . .
3 2 1 1 4 4 4 5 1 1 . . .
4 2 3 3 4 4 4 5 1 1 . . .
5 2 3 1 4 4 4 5 1 1 . . .

The sets defined above (restricted to the first nine rounds) are as follows:

Player Ai Bi Ei Hi
1 ∅ {1, 4, 5, 6, 7} {8, 9} {1, 2, 3, 4, 5, 6, 7, 8, 9}
2 {1} {4, 5, 6, 7} ∅ {4, 5, 6, 7, 8}
3 ∅ {1, 4, 5, 6, 7} {2} {1, 2, 3, 4, 5, 6, 7}
4 {4, 5, 6} {1, 7} ∅ {1, 7, 9}
5 {7} {1, 4, 5, 6} ∅ {1, 4, 5, 6}

Player A∗

i A∗∗

i B∗

i E∗

i H∗

i D(i)
1 ∅ ∅ {5, 6, 7} {9} {2, 3, 4, 5, 6, 7, 8, 9} {3, 5, 6}
2 ∅ ∅ {5, 6, 7} ∅ {5, 6, 7, 8} {5, 6, 9}
3 ∅ ∅ {5, 6, 7} ∅ {2, 3, 4, 5, 6, 7} {3, 5, 6, 9}
4 {5, 6} {6} ∅ ∅ ∅ {3, 5, 6, 9}
5 ∅ ∅ {5, 6} ∅ {5, 6} {5, 6, 9}

Moreover, D0 = {2, 4, 7, 8} and D1 = {5, 6}.

Throughout our paper, we will employ the well-known concept of the density of a subset of the natural numbers A ⊆ N
and its complement AC

= N \ A to describe the properties of infinite characterization sets according to Definition 3.5.

Definition 3.7 (Density of a Set). For a set A ⊆ N we define the lower and upper density as

d(A) = lim inf
n→∞

|[1, n] ∩ A|

n
and d(A) = lim sup

n→∞

|[1, n] ∩ A|

n

with [1, n] = {1, . . . , n}. If d(A) = d(A) (i.e., the limit limn→∞
|[1,n]∩A|

n exists), we denote this value by d(A) and call it the
density of A.
397
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4. Characterization of optimal election sequences

The goal of this section is to give a characterization of optimal election sequences in the case of Π = V . We will
tart with two lemmas giving upper and lower bounds for the payoff in a single round. Afterwards, we establish lower
nd upper bounds for all our social payoffs (Corollary 4.4 and Lemmas 4.5–4.11). The main results of this section are
heorems 4.13, 4.16, and 4.18, which precisely characterize the optimal election sequences for every social payoff: A
equence is optimal for the respective social payoff, in some parameter range, if and only if it satisfies the given condition.
Our first lemma gives bounds on the total payoff in a single round:

emma 4.1. For every election sequence L and every r ⩾ 1, we have:{
nc ′ if c ′

≤ 0
0 if c ′

≥ 0
+ n + cn ≤

n∑
i=1

u(r)
i (L) ≤ n2

+ cn +

{
0 if c ′

≤ 0
nc ′ if c ′

≥ 0

roof. Replacing u(r)
i (L) by its definition yields:

n∑
i=1

u(r)
i (L) =

n∑
i=1

|G(r)
i (L)| + c

n∑
i=1

|F (r)
i (L)| + c ′

n∑
i=1

δLi(r−1)(Li(r)). (2)

f course, 1 ≤ |G(r)
i (L)| ≤ n and 0 ≤ δLi(r−1)(Li(r)) ≤ 1. Because every player has exactly one vote in round r , we obtain

n∑
i=1

|F (r)
i (L)| =

⏐⏐⏐⏐⏐
n⋃

i=1

F (r)
i (L)

⏐⏐⏐⏐⏐ = n.

ombining this with (2) concludes the proof. □

emark 4.2. To achieve the maximum value n2
+ nc in round r , all players have to vote for the same player i. In case

′ < 0, no player has voted for this player i in round (r − 1); in case c ′ > 0, all players must have voted for player i in
ound (r −1) too. In case c ′

= 0, round r is independent from round (r −1). On the other hand, the minimum is obtained
ff each player is voted for exactly once in round r . In case c ′ < 0, this must also be true in round (r −1) and every player
otes for the same player in both rounds; in case c ′ > 0 every player has to choose a vote different from his vote in round
r − 1). In case c ′

= 0, round r is again independent from round (r − 1).

The following lemma bounds the payoff of a single player in a single round.

emma 4.3. For all n ≥ 2,

u(r)
i (L) ≤

{
n + cn if 0 ≤ c
n if c ≤ 0

+

{
0 if c ′

≤ 0
c ′ if c ′

≥ 0

nd, for n ≥ 3,

u(r)
i (L) ≥

⎧⎨⎩
1 if 0 ≤ c
1 + c(n − 1) if 1 − n ≤ c ≤ 0
n + cn if c ≤ 1 − n

+

{
c ′ if c ′

≤ 0
0 if c ′

≥ 0

hereas

u(r)
i (L) ≥ min(2, 2 + 2c, 1 + c) + min(0, c ′)

=

⎧⎨⎩
2 if 1 ≤ c
1 + c if − 1 ≤ c ≤ 1
2 + 2c if c ≤ −1

+

{
c ′ if c ′

≤ 0
0 if c ′

≥ 0

or n = 2.

roof. For simplicity, we will write f instead of |F (r)
i (L)| and g instead of |G(r)

i (L)|. The upper bounds are easy to see: In
ase c ≥ 0, the payoff u(r)

i (L) is increasing in f and g , so the maximum is obtained for f = g = n, i.e., all players vote for
layer i. On the other hand, if c ≤ 0, u(r)

i (L) is increasing in g and decreasing in f , so we can choose g = n and f = 0;
his corresponds to the situation where all players vote for a player j ̸= i. Together with c ′δLi(r−1)(Li(r)) ≤ max(0, c ′) this
ives the upper bounds.
For n ≥ 3 the lower bound for c ≥ 0 is an immediate consequence of f ≥ 0 and g ≥ 1. In case c ≤ 0, we have to be

ore careful and consider two cases: Firstly, if player i votes for some player j ̸= i, we have u(r)(L) ≥ 1 + c(n − 1) + c ′δ
i
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(with δ = δLi(r−1)(Li(r))). Secondly, if player i votes for himself, then

u(r)
i (L) = g + cg + c ′δ = (1 + c)g + c ′δ ≥

{
1 + c + c ′δ if − 1 ≤ c ≤ 0
n(1 + c) + c ′δ if c ≤ −1.

So, for −1 ≤ c ≤ 0, we have 1 + c(n − 1) ≤ 1 + c . For c ≤ −1 we have 1 + c(n − 1) ≤ n(1 + c) iff 1 − n ≤ c . With
c ′δLi(r−1)(Li(r)) ≥ min(c ′, 0) the bounds follow immediately. The case n = 2 is trivial. □

These bounds on the individual payoff in a single round immediately yield a lower bound on the social payoff:

Corollary 4.4 (Lower Bounds for Social Payoffs). For every election sequence L and ethics e ∈ {min, avg,max}, it holds that:

ue(L) ≥

⎧⎨⎩
1 if 0 ≤ c
1 + c(n − 1) if 1 − n ≤ c ≤ 0
n + cn if c ≤ 1 − n

+

{
c ′ if c ′

≤ 0
0 if c ′

≥ 0

for n ≥ 3, whereas

ue(L) ≥

⎧⎨⎩
2 if 1 ≤ c
1 + c if − 1 ≤ c ≤ 1
2 + 2c if c ≤ −1

+

{
c ′ if c ′

≤ 0
0 if c ′

≥ 0
for n = 2.

The following lemmas are devoted to the study of upper bounds of the social payoff.

Lemma 4.5 (Upper Bound for avg-social Payoff). For every election sequence L, it holds that:

uavg(L) ≤ n + c +

{
0 if c ′

≤ 0
c ′ if c ′

≥ 0.

Proof. Lemma 4.1 implies

1
r

r∑
k=1

1
n

n∑
i=1

u(k)
i (L) ≤ n + c +

{
0 if c ′

≤ 0
c ′ if c ′

≥ 0.

xchanging the two sums and noting lim infαr + lim infβr ≤ lim inf(αr + βr ) yields

uavg(L) =
1
n

n∑
i=1

lim inf
r→∞

1
r

r∑
k=1

u(k)
i (L) ≤ n + c +

{
0 if c ′

≤ 0
c ′ if c ′

≥ 0.

his concludes the proof. □

emma 4.6 (Upper Bound for min-social Payoff). For every election sequence L, it holds that:

umin(L) ≤ n + c +

{
0 if c ′

≤ 0
c ′ if c ′

≥ 0.

roof. The lemma follows directly from Lemma 4.5, because we always have the inequality min(x1, . . . , xn) ≤

vg(x1, . . . , xn). □

emma 4.7 (Upper Bound for max-social Payoff). For every election sequence L, it holds that:

umax(L) ≤

{
n + cn if 0 ≤ c
n if c ≤ 0

+

{
0 if c ′

≤ 0
c ′ if c ′

≥ 0.

Proof. This is an immediate consequence of Lemma 4.3. □

Whereas the upper bounds for uavg(L) and umin(L) given in Lemmas 4.5 and 4.6 are tight bounds, the upper bound for
max(L) is not in general: To maximize ui(L) for a single player i in case c ≥ 0, all players would have to vote for player i
n (almost) all rounds. But on the other hand, if c ′

≤ 0, they get a penalty for choosing the same player as in the round
efore. So always choosing the same leader could be bad. Lemma 4.11 will state tight bounds in this case.
For this purpose, we need the following proposition, which asserts monotonicity of lim inf of a sequence obtained from

nother one by replacing a fixed subsequence.
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Proposition 4.8. Let u = (u(k))k≥1 be a bounded sequence of real numbers and v = (v1, . . . , vℓ) and ṽ = (ṽ1, . . . , ṽℓ) two
inite sequences of length ℓ with

∑ℓ

j=1 vj ≤
∑ℓ

j=1 ṽj. Moreover, define the set R by the following: For r1 = min{k : u(k+j−1)
=

vj for all 1 ≤ j ≤ ℓ} and ri = min{k : k ≥ ri−1 + ℓ, u(k+j−1)
= vj for all 1 ≤ j ≤ ℓ} let R =

⋃
i≥1{ri}. Additionally, for R

′
⊆ R

et Rℓ = {r + j : r ∈ R′, 0 ≤ j ≤ ℓ − 1}.
Construct a sequence ũ = (ũ(k))k≥1 according to:

• ũ(k)
= u(k) for all k ∈ N \ Rℓ and

• ũ(r+j)
= ṽ(j+1) for all r ∈ R′ and 0 ≤ j ≤ ℓ − 1,

i.e., we replace some (possibly all) occurrences of v in u by ṽ.
Then lim infr→∞

1
r

∑r
k=1 u

(k)
≤ lim infr→∞

1
r

∑r
k=1 ũ

(k).

Proof. For r ̸∈ Rℓ−1 we have
r∑

k=1

u(k)
=

∑
k: k∈[1,r]∩(N\Rℓ)

u(k)
+

∑
k∈[1,r]∩R′

ℓ∑
j=1

vj

≤

∑
k: k∈[1,r]∩(N\Rℓ)

ũ(k)
+

∑
k∈[1,r]∩R′

ℓ∑
j=1

ṽj =

r∑
k=1

ũ(k).

If r ∈ R′ and 0 ≤ j ≤ ℓ − 2, this result implies

lim inf
r→∞

1
r + j

r+j∑
k=1

u(k)
= lim inf

r→∞

1
r + j

r−1∑
k=1

u(k)

≤ lim inf
r→∞

1
r + j

r−1∑
k=1

ũ(k)
= lim inf

r→∞

1
r + j

r+j∑
k=1

ũ(k),

which concludes this proof. □

Remark 4.9. Note that Proposition 4.8 still remains true if we replace finitely many finite sequences v[1], . . . , v[m] by
ṽ[1], . . . , ṽ[m] if for all those finite sequences

∑ℓt
j=1 v

[t]
j ≤

∑ℓt
j=1 ṽ

[t]
j holds for 1 ≤ t ≤ m.

Example 4.10. Let the first 24 rounds of u be given as below, and let v = (−1, −1, 1, 1) and ṽ = (−5, −5, 5, 6). Replacing
all occurrences of v by ṽ and using the notation cr (u) = 1/r ·

∑r
k=1 u

(k) yields:

r = 1 2 3 4 5 6 7 8 9 10 11 12
u(r) 0 0 −1 −1 1 1 0 0 −1 −1 1 1
cr (u) 0 0 −

1
3 −

1
2 −

1
5 0 0 0 −

1
9 −

1
5 −

1
11 0

ũ(r) 0 0 −5 −5 5 6 0 0 −5 −5 5 6
cr (ũ) 0 0 −

5
3 −

5
2 −1 1

6
1
7

1
8 −

4
9 −

9
10 −

4
11

1
6

13 14 15 16 17 18 19 20 21 22 23 24 . . .

u(r) 0 0 −1 −1 1 1 0 0 −1 −1 1 1 . . .

cr (u) 0 0 −
1
15 −

1
8 −

1
17 0 0 0 −

1
21 −

1
11 −

1
23 0 . . .

ũ(r) 0 0 −5 −5 5 6 0 0 −5 −5 5 6 . . .

cr (ũ) 2
13

2
14 −

3
15 −

8
16 −

3
17

1
6

3
19

3
20 −

2
21 −

7
22 −

2
23

1
6 . . .

Assuming that the first 24 rounds are perpetually repeated, it is easy to see that lim inf 1
r

∑r
k=1 u

(k)
= lim 1

r

∑r
k=1 u

(k)
=

0 < 1
6 = lim 1

r

∑r
k=1 ũ

(k)
= lim inf 1

r

∑r
k=1 ũ

(k).

Now we are ready to prove tight bounds on umax(L). The main idea is to manipulate any given election sequence L
step by step (only depending on the parameters c and c ′) in such a way that umax increases in every step. The resulting
sequence L′ is of a particular simple shape and hence umax(L′) can be determined easily.

emma 4.11 (Upper Bound for max-social Payoff). For n ≥ 3, if c ≥ 0 and c ′
≤ 0, then every election sequence L satisfies

umax(L) ≤

⎧⎨⎩
1
2n + cn +

1
2 −

1
2 c if c ≥ 1, c ′

≤
1−c−n

2
n +

1
2 cn if c ≤ 1, c ′

≤
−cn
2

n + cn + c ′ ow.

Moreover, every optimal sequence L can be changed, by a sequence of replacements in accordance with Proposition 4.8, to an
optimal sequence L′ of the following form:
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• c ≤ 1, c ′
≤

−cn
2 : there exists a player i with Lk(2r) = i and Lk(2r + 1) = j2r+1 with j2r+1 ̸= i for all k ∈ Π (or with

even/odd rounds changed),
• c ≥ 1, c ′

≤
1−c−n

2 : there exists a player i with Li(2r) = i and Li(2r + 1) = j2r+1 with j2r+1 ∈ Π \ {i} and Lk(r) = i for
all k ∈ Π \ {i} for all r (or with even/odd rounds changed),

• ow.: there exists a player i with Lj(r) = i for all j ∈ Π and all r ≥ 1.

roof. To prove this lemma, we will construct optimal election sequences. Let an election sequence L be given, and fix a
layer i with ui(L) = umax(L). Recall that Li = (Li(r))r is the sequence of votes of player i and (u(r)

i (L))r is the sequence of
tilities of player i. Given this sequence Li, we will define an election sequence L′ with umax(L′) ≥ umax(L). For this purpose,
e maximize u(r)

i (L′) for every round, but we keep Li fixed, i.e., Li = L′

i . If Li(r) = i, then in L′ all players vote for player
in round r (i.e., L′

j(r) = i for all j ∈ Π ). Then u(r)
i (L′) = n + cn + c ′δ ≥ u(r)

i (L) (note that δ remains unchanged). On the
ther hand, if Li(r) = j ̸= i, then in L′ all the other players vote for player j too if c ≤ 1 (i.e., L′

k(r) = j for all k ∈ Π ) or for
layer i if c ≥ 1 (i.e., Lk(r) = i for all k ∈ Π \ {i}). Then,

u(r)
i (L′) =

{
1 + c(n − 1) + c ′δ if c ≥ 1
n + c ′δ if c ≤ 1.

ince the choices in L cannot lead to a larger payoff, we get u(r)
i (L′) ≥ u(r)

i (L). Thus, umax(L′) ≥ umax(L).
Thus, it is sufficient to consider election sequences in which all players vote for one fixed player in each round (in case

≤ 1) or in which all players vote for one fixed player i in each round or all players except player i vote for i and player
votes for player j(r) ̸= i (in case c ≥ 1).
In the following, let L be an election sequence from this set and let player i be one player with maximal payoff and Li

is sequence of votes that induces the votes of all the other players. We will now show that, by replacing certain 3-blocks
the leader choice for 3 consecutive rounds) in Li by some other 3-block, the maximum payoff in the resulting L′ cannot
ecrease.
For a subsequence of Li, the total payoff of a subsequence is denoted by Ui(Li(r), . . . , Li(r + k)) =

∑k
ℓ=0 u

(r+ℓ)
i (L). In the

ext step, we will compare the subsequences (of Li) j1, j2, j3 with j1, i, j3 and i, i, i with i, j, i (with j ̸= i ̸= jℓ). Define

a =

{
1 + c(n − 1) if c ≥ 1,
n if c ≤ 1.

o we want to compare Ui(j1j2j3) with Ui(j1ij3). Start with case c ≤ 1 first. Then j1j2j3 means that in these rounds every
layer votes for j1, j2 and j3. Thus,

Ui(j1j2j3) = (n + c ′δ) + (n + c ′δj1 (j2)) + (n + c ′δj2 (j3)) ≤ (n + c ′δ) + n + n,

hereas

Ui(j1ij3) = (n + c ′δ) + (n + cn) + n.

imilarly, if c ≥ 1,

Ui(j1j2j3)
= (1 + c(n − 1) + c ′δ) + (1 + c(n − 1) + c ′δj1 (j2)) + (1 + c(n − 1) + c ′δj2 (j3))
≤ (1 + c(n − 1) + c ′δ) + (1 + c(n − 1)) + (1 + c(n − 1))

ince if i votes for jℓ all other players vote for i, whereas

Ui(j1ij3) = (1 + c(n − 1) + c ′δ) + (n + cn) + (1 + c(n − 1)).

hen, Ui(j1j2j3) ≤ Ui(j1ij3) iff 2a ≤ a + nc + n. Since a ≤ n + nc , this is always fulfilled. So it is sufficient to consider only
lection sequences where js can only occur isolated or in pairs.
On the other hand, Ui(iii) ≤ Ui(iji) iff 2n + 2nc + 2c ′

≤ a + nc + n iff n + nc + 2c ′
≤ a iff c ′

≤ (a − n − nc)/2 iff

c ′
≤ b :=

a − n − nc
2

=

{ 1−c−n
2 if c ≥ 1,

−cn
2 if c ≤ 1.

(3)

Thus, in case c ′ > b, we only need to consider sequences with subsequences ik of arbitrary length and pairs of j, in case
′ < b we only consider sequences in which both i and j occur isolated (i.e., a 1-block i like in j1ij2, resp. a 1-block j like
n iji) or in pairs (i.e., a 2-block ii like in j1iij2, resp. a 2-block j1j2 like in ij1j2i).

Now we will show that we can eliminate pairs of j in an election sequence: Firstly, if c ′
≥ b, then Ui(iiii) ≥ Ui(ij1j2i) iff

n + 3nc + 3c ′
≥ 2a + n + nc + c ′δj1 (j2) iff n + nc + (3 − δj1 (j2))

c′
2 ≥ a iff c ′

≥
4

3−δj1 (j2)
b. Since b < 0, this is always true.

Consequently, if c ′
≥ b, the election sequence Lk(r) = i for all k ∈ Π and all rounds r is an optimal sequence with payoff

n + cn + c ′ (note that all the other players have payoff n + c ′).
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Secondly, if c ′ < b and if r is an index with Li(r) ̸= Li(r + 1), define I1(r) as the number of 1-blocks of i in Li up to
ound r , I2(r) as the number of 2-blocks of i, J1(r) the number of 1-blocks of j, and J2(r) the number of 2-blocks of j (for
implicity, we may drop the index r). Moreover,

U(r) :=

r∑
ℓ=1

u(ℓ)
i (L) ≤ I1 · (n + nc) + I2 · (2n + 2nc + c ′) + J1 · a + J2 · 2a (4)

= (I1 + 2I2)n + (I1 + 2I2)nc + I2c ′
+ (J1 + 2J2)a

=

{
rn + (I1 + 2I2)nc + I2c ′ if c ≤ 1,
(I1 + 2I2)n + rnc + I2c ′

+ (J1 + 2J2)(1 − c) if c ≥ 1.
(5)

ith (i) I1 + 2I2 + J1 + 2J2 = r and (ii) |I1 + I2 − J1 − J2| ≤ 1. Note that Eq. (4) holds also for j1 = j2 in a 2-block of j, as
′
≤ 0. Now we show that we can restrict ourselves to election sequences with J2 = 0: If L contains only finitely many

airs of j then define L′ as the sequence which starts after the last pair; the limiting payoff does not change. On the other
and, if L contains infinitely many pairs of j, we construct a sequence L′ as follows. Let r be an index such that J2(r) is
ven. Change the prefix of Li according to L′

i(1) = Li(1), L′

i(r) = Li(r), I ′1 = I1 + J2/2, I ′2 = I2, J ′1 = J1 + 3J2/2, and J ′2 = 0.
ore specifically, for any subsequence starting and ending with a pair of j, retain the first and the last j, delete the second
of the starting pair and shift the original sequence left by one index, and insert i before the second j in the ending pair.
We illustrate the above construction by a short example:

xample 4.12. Let the following part of Li be given:
Li: . . . j j i i j i j i i j i j j . . .

L′

i: . . . j i i j i j i i j i j i j . . .

In the construction of L′

i , the blue italic js (the first and the last one) remain fixed, the red striked out j is dropped and
the black sequence is shifted to the left and copied down, and the green underlined i is inserted.

It follows that the new subsequence has a total payoff greater than or equal to the total payoff of the original
subsequence: For c ≤ 1, we have

U ′(r) = rn + (I ′1 + 2I ′2)nc + I ′2c
′
= rn +

(
I1 +

J2
2

+ 2I2

)
nc + I2c ′

nd for c ≥ 1

U ′(r) = (I ′1 + 2I ′2)n + rnc + I ′2c
′
+ (J ′1 + 2J ′2)(1 − c)

=

(
I1 +

J2
2

+ 2I2

)
n + rnc + I2c ′

+

(
J1 +

3J2
2

)
(1 − c).

t is easy to see that U ′(r) is greater than or equal to the formulas given in (5). In fact, since c ′ < b < 0 and J2 ≥ 2,
omputing the actual difference using Eq. (3) reveals even

U ′(r) − U(r) + 2c ′
≥

{ J2nc
2 + 2c ′

≥ nc − cn ≥ 0 if c ≤ 1,
J2n
2 −

J2(1−c)
2 + 2c ′

≥ n − (1 − c) + 1 − c − n ≥ 0 if c ≥ 1.

he entire election sequence L′ is obtained by repeating the above construction starting at round (r + 1).
Whereas this suggests that the total payoff in L′ is larger that the total payoff in L, the above construction does not

llow us to directly apply Proposition 4.8. The reason is that the length (r) of the modified subsequences as described
bove need not be bounded, i.e., the distance between two pairs of js can increase unboundedly. Nevertheless, we can
ecompose the parts between two consecutive pairs of js into three blocks of length 2 and 3, to which we can apply
roposition 4.8 simultaneously: Take Example 4.12 from above and decompose it as follows:

Li: . . . j j i i j i j i i j i j j . . .

L′

i: . . . j i i j i j i i j i j i j . . .

The block jii changes to iij; ji (if this is followed by j) to ij; and the final pair jj to ij. It is easy to check that the payoff
f each block of the resulting sequence L′ is the same or larger than the payoff of the corresponding block of the original
equence L. This construction does not only hold for this example, but also in general. Hence, we can deduce that L′ has
ndeed a payoff greater than or equal to the payoff of L.

In final step, we also eliminate all pairs of i by the analogous procedure: If there are only finitely many, we start after
he last occurrence. In case of infinitely many pairs, choose an index r such that I2 is even and change the prefix of Li
ccording to L′

i(1) = Li(1), L′

i(r) = Li(r), I ′1 = I1+3I2/2, I ′2 = 0, and J ′1 = J1+I2/2. In particular, for any subsequence starting
nd ending with a pair of i, retain the first and the last i, delete the second i of the starting pair and shift the original
equence left by one index, and insert j before the second i in the ending pair. The same reasoning as before shows that
he payoff of the resulting election sequence L′ is greater than or equal to the payoff of L.
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Fig. 1. Visualization of the results of Theorem 4.13 for n = 4 (top) and n = 8 (bottom). The z-axis shows the payoff for the given choice of c (x-axis)
and c ′ (y-axis). The region in the graphs that is shaded gray depicts the range of parameters where no consensus on the leader is achieved.

Consequently, the election sequence ‘‘all players vote for i, j, i, j, i, . . .’’ (with possibly varying j’s) is an optimal election
sequence with payoff n +

1
2 cn in case of c ≤ 1 (it is easy to check that player i has maximal payoff). In case of c ≥ 1, the

lection sequence ‘‘all players ̸= i always vote for i and player i votes for i, j, i, j, i, . . .’’ is an optimal election sequence
ith payoff 1

2n+cn+
1
2 −

1
2 c. Again, player i has the maximal payoff. Note that it can be shown that the payoff of any other

layer is less than or equal to n +
c′
2 here. As these are the optimal sequences stated in Lemma 4.11, we are done. □

With these preparations, we can state our first main result: the exact characterization of the optimal election sequences
for umax. It causes the most varied behaviors of all social payoffs studied in this paper, as we need to distinguish 6 different
major parameter ranges (i)–(vi), some of which with several sub-ranges. Fig. 1 in Section 6 shows the payoff as a function
of c and c ′ for n = 4 and n = 8, also highlighting the regions where the players do not agree on a single leader. Quite
different proof techniques, from tight lower- and upper-enclosing to exchange arguments to suitable payoff sequence
partitioning are required to prove that the given conditions indeed lead to the maximum social payoff.

Theorem 4.13 (Optimal Sequences for max-social Payoff). The optimal election sequences for umax can be characterized as
follows: An election sequence L is optimal (for n ≥ 3)

(i) for c > 0, c ′
≥ 0 iff there exists an i with d(Ai) = 1 (with payoff n + cn + c ′),

(ii) for c > 0, c ′ < 0 iff there exists an i with

– c > 1, c ′ < 1−c−n
2 : d(Ai) = d(Ei) =

1
2 , d(D(i)) = 0 (with payoff 1

2n + cn +
1
2 −

1
2 c),

– c > 1, c ′
=

1−c−n
2 : d(Ai ∪ Ei) = 1, d(E∗

i ) = 0 (with payoff 1
2n + cn +

1
2 −

1
2 c),

– c < 1, c ′ < −cn
2 : d(Ai) = d(Bi) =

1
2 , d(D(i)) = 0 (with payoff n +

1
2 cn),

– c < 1, c ′
=

−cn
2 : d(Ai ∪ Bi) = 1, d(B∗

i ) = 0 (with payoff n +
1
2 cn),

– c = 1, c ′ < −n
2 : d(Ai ∪ Hi) = 1, d(D(i)) = 0 (with payoff 3n

2 ),
– c = 1, c ′

=
−n
2 : d(Ai ∪ Hi) = 1, d(H∗

i ) = 0 (with payoff 3n
2 ),

– ow.: d(Ai) = 1 (this implies d(D(i)) = 1) (with payoff n + cn + c ′),

(iii) for c < 0, c ′ > 0 iff there exists an i with d(B ) = d(D(i)) = 1 (with payoff n + c ′),
i
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(iv) for c < 0, c ′
= 0 iff there exists an i with d(Bi) = 1 (with payoff n),

(v) for c < 0, c ′ < 0 iff there exists an i with d(Bi) = 1 and d(D(i)) = 0 (with payoff n),
(vi) for c = 0 iff d

(⋃
i Ai
)

= 1 and

– c ′ > 0: d(D1) = 1 (with payoff n + c ′),
– c ′ < 0: d(D0) = 1 (with payoff n).

Proof. To prove (i) and (iii) − (vi), we define the set Ci as

Ci = {r| u(r)
i (L) = m},

where m is the maximal value for u(r)
i (L) from Lemma 4.3 (which defines the respective payoff given in our theorem). If

there is a player i with d(Ci) = 1 for an election sequence L, then this election sequence is optimal:

m ≥ max
j=1...n

lim inf
r→∞

1
r

r∑
k=1

u(k)
j (L) ≥ lim inf

r→∞

1
r

r∑
k=1

u(k)
i (L)

≥ lim inf
r→∞

1
r

∑
k≤r: k∈Ci

u(k)
i (L) + lim inf

r→∞

1
r

∑
k≤r: k̸∈Ci

u(k)
i (L)

≥ lim inf
r→∞

|Ci ∩ [1, r]|
r

m + lim inf
r→∞

r − |Ci ∩ [1, r]|
r

d

= d(Ci)m + (1 − d(Ci))d = m,

where d is a lower bound for u(r)
i (L) (can be obtained from Lemma 4.3, e.g., d = 1 + min(0, c)n + max(0, c ′)). Hence the

lection sequence is optimal.
Conversely, assume that an optimal election sequence L that leads to umax(L) = m is given. Then, there exists a player

such that

m = max
j=1...n

lim inf
r→∞

1
r

r∑
k=1

u(k)
j (L) = lim inf

r→∞

1
r

r∑
k=1

u(k)
i (L) ≤ m

ince, due to Lemma 4.3, u(r)
i (L) ≤ m. Hence, the lim inf is in fact a limit, i.e.,

lim
r→∞

1
r

r∑
k=1

u(k)
i (L) = m.

Thus,

m = lim
r→∞

1
r

r∑
k=1

u(k)
i (L) ≤ lim

r→∞

1
r
|Ci ∩ [1, r]| · m +

1
r
(r − |Ci ∩ [1, r]|) · m′

≤ m,

here m′ is the largest possible value of u(r)
i (L) smaller than m, which is independent of r . Defining e := m − m′, we get

m = lim
r→∞

1
r
|Ci ∩ [1, r]| · m +

1
r
(r − |Ci ∩ [1, r]|) · (m − e)

= lim
r→∞

m − e
1
r
(r − |Ci ∩ [1, r]|) = m − e lim

r→∞

1
r
(r − |Ci ∩ [1, r]|)

= m − e + e lim
r→∞

|Ci ∩ [1, r]|
r

.

So the remaining limit must exist be equal to 1, i.e., we have to obtain the maximal value for u(r)
i (L) in almost every round.

hese election sequences are exactly those stated in (i) and (iii) − (vi).
Now let us turn to case (ii). Firstly, we will prove that the given election sequences are optimal. We will do this

alculation only for case c > 1, c ′ < 1−c−n
2 , as the proof of the other cases runs along the same lines. Define

m =
1
2n + cn +

1
2 −

1
2 c. Then, by using Lemma 4.11, we have

m ≥ max
j=1...n

lim inf
r→∞

1
r

r∑
k=1

u(k)
j (L) ≥ lim inf

r→∞

1
r

r∑
k=1

u(k)
i (L)

= lim inf
r→∞

1
r

r∑
k=1

(
|G(k)

i (L)| + c · |F (k)
i (L)| + c ′δLi(k−1)(Li(k))

)
≥ lim inf

r→∞

1
r

r∑(
|G(k)

i (L)| + c · |F (k)
i (L)|

)
+ c ′ lim sup

r→∞

1
r

r∑
δLi(k−1)(Li(k))
k=1 k=1
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Since d(D(i)) = 0, we have δLi(k−1)(Li(k)) = 0 for almost all rounds, and so

≥ lim inf
r→∞

1
r

∑
k≤r: k∈Ai

(
|G(k)

i (L)| + c · |F (k)
i (L)|

)
+ lim inf

r→∞

1
r

∑
k≤r: k∈Ei

(
|G(k)

i (L)| + c · |F (k)
i (L)|

)
+ lim inf

r→∞

1
r

∑
k≤r: k̸∈Ai∪Ei

(
|G(k)

i (L)| + c · |F (k)
i (L)|

)
+ 0 · c ′

≥ lim inf
r→∞

1
r

∑
k≤r: k∈Ai

(n + nc) + lim inf
r→∞

1
r

∑
k≤r: k∈Ei

(1 + c(n − 1)) + 0

= lim inf
r→∞

|Ai ∩ [1, r]|
r

(n + cn) + lim inf
r→∞

|Ei ∩ [1, r]|
r

(1 + c(n − 1))

=
n + cn

2
+

1 + c(n − 1)
2

=
n
2

+ cn +
1
2

−
c
2

= m,

ence the election sequence is optimal.
Secondly, to prove that all optimal election sequences are of the stated forms, we start with the following two

ropositions. The first proposition ensures the existence of the limit in the definition of the payoff of a single player
f the payoff is ‘optimal’.

roposition 4.14. Let u = (u(k))k≥0 be a sequence of payoffs of an individual player and let U(r) =
1
r

∑r
k=1 u

(k). If
lim infr→∞ U(r) is optimal, i.e., lim infr→∞ U(r) ≥ lim infr→∞ Ũ(r) for all other possible payoff-sequences (ũ(k))k≥0, then we
ave lim infr→∞ U(r) = lim supr→∞ U(r), i.e., limr→∞ U(r) exists.

roof. The rough idea of the proof is to construct from u (under the assumption a := lim infU(r) < lim supU(r) =: b) a
ew sequence û that consists only of those elements u(t) with U(t) ≥ (a+b)/2 and to show that lim inf Û(r) > lim infU(r),
hich is a contradiction.
So assume a := lim infU(r) < lim supU(r) =: b and choose ε small. Let T0 be the first time with U(T0) > b−ε, T ′

0 < T0
the closest time before with U(T ′

0) < (a+ b)/2, and T ′′

0 the first time after T0 with U(T ′′

0 ) < (a+ b)/2. Inductively, let Ti+1
be the first time after T ′′

i with U(Ti+1) > b − ε, T ′

i+1 the closest time before Ti+1 with U(T ′

i+1) > (a + b)/2, and T ′′

i+1 the
first time after Ti+1 with U(T ′′

i+1) < (a + b)/2.
Now define a sequence ũ = (ũ(k))k≥0 by

ũ = u(T ′
0+1)

· · · u(T ′′
0 −1)u(T ′

1+1)
· · · u(T ′′

1 −1)u(T ′
2+1)

· · · .

By construction, lim inf Ũ(r) ≥ (a + b)/2 > a.
If we would consider u just as a sequence of real numbers, ũ would be a sequence with lim inf Ũ(r) > lim infU(r) and

this would be a contradiction to the optimality of U(r). But since u is a payoff-sequence, it is dependent on an underlying
election sequence, in particular, the values u(k) depend on the vote of round (k−1) through the term c ′δLi(k−1)(Li(k)). Hence,
ũ might not be a valid payoff-sequence since u(T ′

i +1)
= ũ(

∑i−1
k=0(T

′′
k −T ′

k−1)), and u(T ′
i +1) depends on the vote in round T ′

i , thus
˜
(
∑i−1

k=0(T
′′
k −T ′

k−1)) depends on the ‘original’ vote in round T ′

i and not on the ‘new’ vote of round
∑i−1

k=0(T
′′

k − T ′

k − 1) − 1.
ence, to make ũ a valid payoff-sequence, we might have to change ũ(

∑i−1
k=0(T

′′
k −T ′

k−1)) (i ≥ 1) by adding/deleting c ′.
Because of this, we will now show that the set A = {

∑i−1
k=0(T

′′

k − T ′

k − 1) : i ≥ 1} (i.e., the set of indices where we
lue together parts of u) has density 0. If this is true, the change of ũ(k) (k ∈ A) by ±c ′ does not change the value of
im inf Ũ . So, for this purpose, observe the following: To increase U(T ′

ℓ) to at least (b − ε) as fast as possible, we could
hoose u(k)

= β , with β ≥ b the maximum value of the sequence, i.e., β = maxk u(k). (Recall that u is a sequence of
ayoffs, and consequently there are only finitely many possible values of u(k); since lim supU(r) = b, we have β ≥ b.)
hen,

b − ε ≤ U(Tℓ) =
1
Tℓ

⎛⎝ T ′
ℓ∑

k=1

u(k)
+

Tℓ∑
k=T ′

ℓ
+1

u(k)

⎞⎠ ≤
1
Tℓ

(
T ′

ℓ

a + b
2

+ (Tℓ − T ′

ℓ)β
)

⇐⇒ T ′

ℓ

(
a + b

− β

)
≥ Tℓ(b − ε − β)
2
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⇐⇒ T ′

ℓ

(
β −

a + b
2

)
≤ Tℓ (β + ε − b)

⇐⇒ Tℓ ≥ T ′

ℓ

β −
a+b
2

β + ε − b
.

A similar calculation shows for the time to decrease U(Tℓ) to (a + b)/2

T ′′

ℓ ≥ Tℓ

α − b + ε

α −
a+b
2

,

ith α ≤ a the minimum of the sequence, i.e., α = mink u(k). Combining both inequalities yields

T ′′

ℓ ≥ T ′

ℓ

(
β −

a+b
2

)
(α − b + ε)

(β − b + ε)
(
α −

a+b
2

)  
=:q>1

.

So, T ′′

ℓ ≥ T ′

0q
ℓ and

T ′′

ℓ − T ′

ℓ ≥ T ′

ℓ(q − 1) ≥ T ′′

ℓ−1(q − 1) ≥ T0qℓ−1(q − 1).

hus, the differences of consecutive elements of A grow (exponentially), hence this set has density 0. Consequently,
f û is constructed from ũ by just changing the values of ũ(

∑i−1
k=0(T

′′
k −T ′

k−1)), û differs from ũ only on a 0-set and hence
im inf Û(r) = lim inf Ũ(r) > lim infU(r), which is a contradiction. □

The next proposition states that if we start with an optimal sequence and replace a fixed subsequence v by a
ubsequence ṽ with larger payoff, then the set of occurrences of v must be a set of density 0.

roposition 4.15. Let u = (u(k))k≥0 and ũ = (ũ(k))k≥0 two sequences like in Proposition 4.8 with the additional assumption
:=
∑ℓ−1

j=0 ṽj+1 − vj+1 > 0.
If lim infr→∞ U(r) is optimal, then d(R) = 0.

roof. We will use notation and definitions from Proposition 4.8. If R is finite we have trivially d(R) = 0. Assume |R| = ∞.
ince U(r) is optimal, Ũ(r) is optimal, too. Hence, by Proposition 4.14, the limits of U(r) and Ũ(r) exist and

lim
r→∞

Ũ(r) = lim
r→∞

r∈R

Ũr+ℓ−1 = lim
r→∞

r∈R

(U(r + ℓ − 1) +
1

r + ℓ − 1

∑
k∈R∩[1,r]

ℓ−1∑
j=0

∆u(k+j)),

here ∆u(k+j)
= ũ(k+j)

− u(k+j)
= ṽj+1 − vj+1 for k ∈ R and 0 ≤ j ≤ ℓ − 1. This implies

0 = lim
r→∞

r∈R

Ũ(r) − lim
r→∞

r∈R

U(r) = lim
r→∞

r∈R

1
r + ℓ − 1

∑
k∈R∩[1,r]

γ

= γ lim
r→∞

r∈R

1
r + ℓ − 1

|R ∩ [1, r]|

but we want to get rid of the condition r ∈ R in the limit. For this purpose note that the term |R ∩ [1, r]| does not change
etween to consecutive elements of R, but 1

r+ℓ−1 decreases. Hence,

≥ γ lim sup
r→∞

1
r + ℓ − 1

|R ∩ [1, r]| ≥ lim inf
r→∞

1
r + ℓ − 1

|R ∩ [1, r]| ≥ 0.

ence, d(R) exists and equals 0. □

With this proposition, the characterization of the optimal election sequences given in (ii) follows from Lemma 4.11,
hich stated that every optimal election sequence can be transformed, in a way compatible with Proposition 4.8, to one
f the following optimal sequences:

• c ≤ 1, c ′
≤

1−c−n
2 : there exists a player i with Lk(2r) = i and Lk(2r + 1) = j2r+1 with j2r+1 ̸= i for all k ∈ Π (or with

even/odd rounds changed),
• c ≥ 1, c ′

≤
−cn
2 : there exists a player i with Li(2r) = i and Li(2r + 1) = j2r+1 with j2r+1 ∈ Π \ {i} and Lk(r) = i for all

j ∈ Π for all r (or with even/odd rounds changed),
• ow.: there exists a player i with Lj(r) = i for all j ∈ Π and all r ≥ 1.

ue to Proposition 4.15, the required transformation steps occur only on a set of density 0, which reveals that the
haracterization of the above sequences applies to every optimal sequence. This completes the proof of Theorem 4.13. □
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Our next main result characterizes the optimal election sequences for the avg-social payoff. Compared to Theorem 4.13,
his social payoff causes substantially less varied behavior. Tight lower- and upper-enclosing is the major proof technique
sed here. Recall that, for x ∈ {0, 1}, the set of rounds where no (i.e., in case x = 1) resp. all (x = 0) players change their
otes is

Dx = {r| δLi(r−1)(Li(r)) = x for all players i ∈ Π}.

heorem 4.16 (Optimal Sequences for avg-social Payoff). In case c ̸= 0, an election sequence is optimal for uavg iff d(Ai) exists
or all players, d

(⋃
Ai
)

= 1 and

1 =

{
d(D1) if c ′ > 0
d(D0) if c ′ < 0.

The optimal payoff is n + c + c ′ in case c ′ > 0 and n + c otherwise.
In case c = 0, an election sequence is optimal for uavg iff d

(⋃
Ai
)

= 1 and

1 =

{
d(D1) if c ′ > 0
d(D0) if c ′ < 0.

The optimal payoff is n + c ′ in case c ′ > 0 and n otherwise.

Proof. Under our assumptions on the densities, we have by Lemma 4.1

n2
+ nc + max(nc ′, 0) ≥

n∑
j=1

lim inf
r→∞

1
r

r∑
k=1

u(k)
j (L)

≥

n∑
j=1

lim inf
r→∞

1
r

⏐⏐⏐⏐⏐[1, r] ∩

⋃
i

Ai

⏐⏐⏐⏐⏐ · n +

n∑
j=1

lim inf
r→∞

1
r
|Aj ∩ [1, r]| · cn

+

n∑
j=1

lim inf
r→∞

1
r

⏐⏐⏐⏐⏐⏐[1, r] ∩

(⋃
i

Ai

)C
⏐⏐⏐⏐⏐⏐ · d +

n∑
j=1

lim inf
r→∞

1
r

|[1, r] ∩ D(j)| · c ′,

where d is a lower bound on |F (r)
i (L)| + c|G(r)

i (L)|, e.g., d = 1 + min(0, c)n, see Lemma 4.3. Since the densities exist, the
imits inferior are limits and due to d(Dx) = 1 (where x = 1 if c ′ > 0 and x = 0 otherwise) we have d(D(j)) = x for all
layers j, and so

=

n∑
j=1

d

(⋃
i

Ai

)
n +

n∑
j=1

d(Aj)nc + 0 · d + xnc ′

= n2
+ cn + xnc ′

nd hence this is an optimal election sequence by Lemma 4.1.
On the other hand, if we have an optimal election sequence L, then

n2
+ nc + max(nc ′, 0) =

n∑
j=1

lim inf
r→∞

1
r

r∑
k=1

u(k)
j (L) ≤ lim inf

r→∞

1
r

n∑
j=1

r∑
k=1

u(k)
j (L)

≤ lim sup
r→∞

1
r

r∑
k=1

n∑
j=1

u(k)
j (L) ≤ n2

+ nc + max(nc ′, 0).

imilar as in the proof of Theorem 4.13, we conclude

n2
+nc + max(nc ′, 0) = lim

r→∞

1
r

n∑
j=1

r∑
k=1

u(k)
j (L)

= lim
r→∞

n2+cn+max(nc′,0)∑
i=nc+n+min(nc′,0)

1
r

· i ·

⏐⏐⏐⏐⏐⏐{k ≤ r|
n∑

j=1

u(k)
j (L) = i}

⏐⏐⏐⏐⏐⏐
≤ lim

r→∞

1
r
(n2

+ nc + max(nc ′, 0))

·

⏐⏐⏐⏐⏐⏐{k ≤ r|
n∑

u(k)
j (L) = n2

+ nc + max(nc ′, 0)}

⏐⏐⏐⏐⏐⏐
j=1
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+
1
r
(n2

+ nc + max(nc ′, 0) − ẽ)

·

⎛⎝r −

⏐⏐⏐⏐⏐⏐{k ≤ r|
n∑

j=1

u(k)
j (L) = n2

+ nc + max(nc ′, 0)}

⏐⏐⏐⏐⏐⏐
⎞⎠

≤ n2
+ nc + max(nc ′, 0),

where ẽ > 0 is the difference between n2
+nc+max(nc ′, 0) and the second largest possible value of

∑n
j=1 u

(r)
j (L) (analogous

o the proof of Theorem 4.13). As a consequence,

d

⎛⎝⎧⎨⎩r |

n∑
j=1

u(r)
j (L) = n2

+ nc + max(nc ′, 0)

⎫⎬⎭
⎞⎠ = 1; (6)

this implies d(
⋃

Ai) = 1 and d(Dx) = 1. Hence the proof is finished in case c = 0. For c ̸= 0, note that d(
⋃

Ai) = 1 implies
that in an optimal election sequence L the set

Uj = {r| u(r)
j (L) = n + max(c ′, 0) or u(r)

j (L) = n + nc + max(c ′, 0)}

has density 1 for every player j. Hence, by Lemma 4.3,

lim inf
r→∞

1
r

r∑
k=1

u(k)
j (L)

= lim inf
r→∞

1
r
(n + max(c ′, 0))

⏐⏐⏐{k ≤ r | u(k)
j (L) = n + max(c ′, 0)

}⏐⏐⏐
+

1
r
(n + nc + max(c ′, 0))

⏐⏐⏐{k ≤ r | u(k)
j (L) = n + nc + max(c ′, 0)

}⏐⏐⏐
+

∑
i̸=n+max(c′,0)

i̸=n+nc+max(c′,0)

1
r

· i ·
⏐⏐⏐{k ≤ r| u(k)

j (L) = i}
⏐⏐⏐

= n + max(c ′, 0) + nc lim inf
r→∞

|Aj ∩ [1, r]|
r

+ 0 = n + max(c ′, 0) + d(Aj)nc.

Summing up for j = 1, . . . , n and comparison with (6) reveals
n∑

j=1

d(Aj) = 1.

The following proposition ensures that this already implies the existence of the densities.

Proposition 4.17. Let A1, . . . , An ⊆ N with d
(⋃

Ai
)

= 1,
∑n

i=1 d(Ai) = 1, and d(Ai ∩ Aj) = 0 for all i ̸= j. Then d(Ai) exists
or all i, 1 ≤ i ≤ n.

roof. Define A(i) =
⋃

j̸=i Aj =
⋃

Aj \ Ai. Since d
(
N \

⋃
Ai
)

= 0, we have

d(Ai) = 1 − d(A(i)) and d(Ai) = 1 − d(A(i)).

Due to d(Ai ∩ Aj) = 0, the inequality
∑

j∈J d(Aj) ≤ d(
⋃

j∈J Aj) holds for J ⊆ [1, n]. Thus,

0 =

n∑
i=1

d(Ai) − 1 ≤ d(Ai) + d(A(i)) − 1 = 1 − d(Ai) − d(A(i)) ≤ 1 − d
(⋃

Ai

)
= 0.

Consequently,

0 = d(Ai) + d(A(i)) − 1 = d(Ai) +
(
1 − d(Ai)

)
− 1 = d(Ai) − d(Ai)

and therefore d(Ai) exists. □

So the proof of Theorem 4.16 is complete. □

Finally, we give a characterization of umin-optimal election sequences.
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Theorem 4.18 (Optimal Sequences for min-Social Payoff). In case c ̸= 0, an election sequence is optimal for umin iff d(Ai) =
1
n

or all players and

1 =

{
d(D1) if c ′ > 0
d(D0) if c ′ < 0.

The optimal payoff is n + c + c ′ in case c ′ > 0 and n + c otherwise.
In case c = 0, an election sequence is optimal for umin iff d(

⋃
i Ai) = 1 and

1 =

{
d(D1) if c ′ > 0
d(D0) if c ′ < 0.

The optimal payoff is n + c ′ in case c ′ > 0 and n otherwise.

Proof. Let c ̸= 0. If d(Ai) =
1
n and d(Dx) = 1 for an election sequence L, then

ui(L) = lim inf
r→∞

1
r

r∑
k=1

u(k)
i (L)

= lim inf
r→∞

⎛⎜⎜⎝ |Ai ∩ Dx ∩ [1, r]|
r

(n + nc + max(c ′, 0))

+
1
r

⏐⏐⏐⏐⏐⏐[1, r] ∩ Dx ∩

⋃
j̸=i

Aj

⏐⏐⏐⏐⏐⏐ (n + max(c ′, 0)) +
1
r

∑
1≤k≤r

k̸∈(
⋃

Aj)∩Dx

u(k)
i (L)

⎞⎟⎟⎠
≥ lim inf

r→∞

1
r

⏐⏐⏐⏐⏐⏐[1, r] ∩ Dx ∩

⋃
j

Aj

⏐⏐⏐⏐⏐⏐ (n + max(c ′, 0))

+ lim inf
r→∞

|Ai ∩ Dx ∩ [1, r]|
r

nc + lim inf
r→∞

1
r

⏐⏐⏐⏐⏐⏐⏐[1, r] ∩ Dx ∩

⎛⎝⋃
j

Aj

⎞⎠C
⏐⏐⏐⏐⏐⏐⏐ d,

here d is a lower bound on u(k)
i (L). Since all terms have a limit, this leads to

= n + max(c ′, 0) +
nc
n

+ 0 = c + n + max(c ′, 0). (7)

Hence umin = c + n + max(c ′, 0), i.e., optimal. In case c = 0 it is the same proof, just omitting all terms involving c.
Conversely, if an election sequence is umin-optimal, then it is uavg-optimal as well, recall Lemma 4.6. Thus, the sets Ai,

1 ≤ i ≤ n have densities which sum up to 1. To see that d(Ai) =
1
n in case c ̸= 0, we can reuse the computation above

with arbitrary densities in (7), which yields umin = min d(Ai)nc + n + max(c ′, 0). So the only possible choice is d(Ai) =
1
n

or all i. □

. Characterization of (restricted) Nash equilibria

The goal of this section is to characterize those optimal sequences L that are Nash-equilibria in the restricted strategy
pace of oblivious strategies, i.e., where no individual player can increase his own payoff by deviating from L, for all types
f social payoffs studied in this paper.
Unlike in the previous sections, where we solely considered an optimization problem, we are now touching upon the

ame-theoretic formulation. We will therefore establish the required notation first. Recall that an election is a collection of
otes indexed by the set of players Π . A (r-round-)history is an r-tuple of elections, and a (round r-)decision is a function
apping (r − 1)-round histories to votes of a single player. A strategy is a collection of functions of round r-decisions; a

trategy profile is a collection of strategies indexed by Π .
For a strategy profile S =

(
S(r)i

)
i∈Π

, we define P(S), the play corresponding to S, as the sequence
(
P (r)
)
r≥1 of elections

nductively defined by the votes

P (r)
i = S(r)i

(
P (1), P (2), . . . , P (r−1)) .

iven a play P , we say that player i voted for player j in round r in play P if P (r)
i = j and call j the vote of player i in

ound r in play P .
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With these preparations, we can now formulate Nash equilibria in the restricted strategy space of oblivious strategies,
here the choice of any player in round r cannot depend on the choices of the other players in rounds 1, . . . , r:

efinition 5.1. Given some (optimal) election sequence L, let S be a strategy profile leading to a play P[j] that is identical
o L for all players ℓ ∈ Π , ℓ ̸= j, whereas the elections of j ∈ Π in P[j] may be arbitrarily different from its elections in L.
he election sequence L is called a Nash equilibrium in the restricted strategy space of oblivious strategies (restricted3 Nash
quilibrium for short) if ui(L) ≥ ui(P[j]) for all players j ∈ Π and all plays P[j].

The following Theorems 5.2, 5.3 and 5.5 characterize the restricted Nash equilibria for all our social payoffs. Again, the
ost varied one will be the maximum social payoff. The major proof technique used in this section is to start out from
n optimal sequence, and to use the conditions given in the characterization theorems developed in Section 4 to infer
hat will happen if some player j deviates. Unfortunately, there is usually no alternative but to exhaustively explore all
ossibilities of how it could deviate in order to find out whether and when a Nash equilibrium exists.

heorem 5.2 (Characterization of Nash Equilibria for Max-social Payoffs). An optimal election sequence as given in
heorem 4.13 is a Nash equilibrium (assuming n ≥ 3 as long as not stated otherwise):

(i) for c > 0, c ′
≥ 0 iff n ≥ 1 + c,

(ii) for c > 0, c ′ < 0:

– c > 1, c ′ < 1−c−n
2 : never,

– c > 1, c ′
=

1−c−n
2 : never,

– c < 1, c ′ < −cn
2 : always,

– c < 1, c ′
=

−cn
2 : for n ≥ 4: iff n ≥ (1 + c)/(1 − c) or d(A∗∗

i ) = 0 (player i the maximum player),
– c = 1, c ′ < −n

2 : iff d(D(j)) = 0 for all players j (essentially, Hi = Bi in this case),
– c = 1, c ′

=
−n
2 : iff d(A∗

i ) = 0 and d(D(j)) = 0 for all players j (essentially, Hi = Bi in this case),
– ow.: iff n + 2c ′

≥ 1 + c in case c ≤ 1 and 2n + 2c ′
≥ max(n + 1 + c, 2 + 2c + c ′) in case c > 1.

(iii) for c < 0, c ′ > 0 iff n ≥ 1 − c,
(iv) for c < 0, c ′

= 0 iff n ≥ 1 − c,
(v) for c < 0, c ′ < 0 iff n ≥ 1 − c,
(vi) for c = 0 always.

roof. In our proof, we will use the notation Uℓ
j (r) =

∑r+ℓ−1
k=r u(k)

j (L), Uℓ
j (r)

′
=

∑r+ℓ−1
k=r u(k)

j (P[j]), and Uℓ
j (r)

′′
=

r+ℓ−1
k=r u(k)

j (P[j]′) (P[j]′ will be defined later on).
Case (i): Since there exists a player i with d(Ai) = 1 according to Theorem 4.13.(i), we have (for almost all rounds r)

u(r)
j (L) =

{
n + nc + c ′ if j = i,
n + c ′ ow.

y Lemma 4.3, player i cannot increase his payoff, so he will not deviate. On the other hand, if a single player j ̸= i
hanges his vote in P[j]′ compared to L, by voting always for himself, then his payoff changes to u(r)

j = 1 + c + c ′. So L is
n equilibrium iff 1 + c ≤ n.
Case (ii): When comparing payoffs, we will only consider players j ̸= i (i is the player whose payoff has the maximal

alue), since if player i could increase his payoff, L would not be optimal.

• c > 1, c ′ < 1−c−n
2 : Since d(Ai) = d(Ei) =

1
2 , d(D(i)) = 0 according to Theorem 4.13.(ii) in this case, we have for

almost all rounds for every player j ̸= i

u(r)
j (L) =

⎧⎨⎩
n + c ′ if r ∈ Ai,

n − 1 + c + c ′ if Li(r) = j, i.e., r ∈ Ei(L),
n − 1 + c ′ if Li(r) = k ̸= j, i.e., r ∈ Ei(L).

Note that, due to d(D(i)) = 0, rounds with r ∈ Ai and r ∈ Ei alternate (with a possible exception of a 0-set). Hence,
if u(r)

j (L) = n − 1 + c + c ′, then u(r+1)
j (L) = n + c ′. If player j changes his vote in round r from Lj(r) = i to P[j](r)j = j,

we have u(r)
j (P[j]) = 2 + 2c and u(r+1)

j (P[j]) = n. Thus,

U2
j (r) = 2n − 1 + c + 2c ′ < n < 2 + 2c + n = U2

j (r)
′
,

3 Since we only consider restricted Nash equilibria in this paper, we usually drop the attribute ‘‘restricted’’ for conciseness as well.
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so player j gains a benefit by deviating from L. Similarly, if u(r)
j (L) = n − 1 + c ′, then u(r+1)

j (L) = n + c ′. If j changes
his vote in round r from i to j, we have u(r)

j (P[j]) = 1 + c and u(r+1)
j (P[j]) = n. Hence,

U2
j (r) = 2n − 1 + 2c ′ < n − c < 1 + c + n = U2

j (r)
′
,

so deviating increases player j’s payoff again. Consequently L cannot be an equilibrium.
• c > 1, c ′

=
1−c−n

2 : Additionally to the cases above, the set Ai can contain (arbitrarily long) sequences of consecutive
rounds. If we have sequences of length at least 3, we have u(r−1)

j (L) = u(r)
j (L) = u(r+1)

j (L) = n+ c ′. If player j changes
his vote in round r from i to himself, then u(r)

j (P[j]) = 1 + c and u(r+1)
j (P[j]) = n. Hence,

U2
j (r) = 2n + 2c ′ < n + 1 − c < 1 + c + n = U2

j (r)
′
,

i.e., deviating is again good for player j. Hence L is not an equilibrium.
• c < 1, c ′ < −cn

2 : Due to d(Ai) = d(Bi) =
1
2 , d(D(i)) = 0, we have for almost all rounds for every player j ̸= i

u(r)
j (L) =

{
n if Lj(r) ̸= j, i.e., r ∈ Bj(L),
n + nc if Lj(r) = j, i.e., r ̸∈ Bj(L).

If player j deviates from L, his new payoff equals

u(r)
j (P[j]) =

⎧⎪⎪⎨⎪⎪⎩
1 if r ∈ Bj(L), P[j](r)j ̸= j, P[j](r)j ̸= Lj(r),

1 + c if r ∈ Bj(L), P[j](r)j = j,

1 + (n − 1)c if r ̸∈ Bj(L), P[j](r)j ̸= j.

Obviously, changing his vote only decreases his individual payoff, so L is an equilibrium.
• c < 1, c ′

=
−cn
2 : Since d(Ai ∪ Bi) = 1, d(B∗

i ) = 0, it holds for almost all rounds that

u(r)
j (L) =

{
n + c ′δ if Lj(r) ̸= j,where δ = δLj(r−1)(Lj(r)),
n + nc if Lj(r) = j,

or in more detail,

u(r)
j (L) =

⎧⎪⎪⎨⎪⎪⎩
n if r ∈ Ai, r − 1 ̸∈ Ai,

n + c ′ if r ∈ Ai, r − 1 ∈ Ai,

n if r ∈ Bk, k ̸= j,
n + nc if Lj(r) = j, i.e., r ∈ Bj.

We have to distinguish 3 different cases here:
Firstly, note that if there are no rounds r with r ∈ Ai and r +1 ∈ Ai, then player j cannot increase his payoff: If r ∈ Ai

or r ∈ Bk and he decides to vote for himself (or another player) then u(r)
j (P[j]) ≤ 1 + c < n = u(r)

j (L) and u(r+1)
j does

not change. On the other hand, if r ∈ Bj, then u(r)
j = n+nc is already the maximal possible payoff for a single round,

so changing his vote just decreases his payoff for this round.
Secondly, if there are rounds r with r − 1 ̸∈ Ai, r ∈ Ai, r + 1 ∈ Ai and r + 2 ̸∈ Ai, then U2

j (r + 1) is still the maximal
possible: If r +2 ∈ Bk, then U2

j (r +1) = n+ c ′
+n, whereas changing his vote from i to j gives U2

j (r + 1)′ = 1+ c+n.
If n ≥ 4, then U2

j (r + 1) ≥ U2
j (r + 1)′. On the other hand, if r + 2 ∈ Bj, then U2

j (r + 1) = n + c ′
+ n + nc . Now

we have to consider three different possibilities: (i) If player j decides to vote for himself in round (r + 1) then
U2
j (r + 1)′ = 1 + c + n + nc + c ′, but since c < 1 we always have U2

j (r + 1)′ < U2
j (r + 1). (ii) If player j votes

for some player k, i ̸= k ̸= j, then U2
j (r + 1)′ = 1 + n + nc , but this is smaller than U2

j (r + 1) for n ≥ 4 again.
(iii) If player j decides already to deviate in round r , then the original payoff U3

j (r) = n + n + c ′
+ n + nc , whereas

U3
j (r)

′
≤ 1 + c + n + n + nc and hence U3

j (r)
′
≤ U3

j (r) for n ≥ 4.
Thirdly, assume that there exist maximal sequences R of length greater than or equal to 3 of consecutive rounds in
Ai, starting at round r . If the length of R is odd, let player j change his vote from i to j every two rounds, starting
with i (we will call this the alternating strategy). Then, the original payoff is UR

j (r) = n + (R − 1)(n + c ′), whereas
UR
j (r)

′
= n +

R−1
2 (1 + c + n). This leads to UR

j (r) ≥ UR
j (r)

′ iff n(1 − c) ≥ (1 + c). If the length of R is even, we
have to consider two different cases. (i) Assume that the round r̃ after the end of R is in Bk. The original payoff is
UR
j (r) = n + (R − 1)(n + c ′). If player j uses the alternating strategy, we obtain UR

j (r)
′

= n +
R
2 (1 + c) +

R−2
2 n.

If player j chooses the shifted alternating strategy P[j]′ instead of P[j], where it votes for i in round r and then
starts the alternating strategy as before, we get UR

j (r)
′′

= n + n + c ′
+

R−2
2 (1 + c) +

R−2
2 n. Since 1 + c ≤ n + c ′

for n ≥ 4, we have UR(r)′ ≤ UR(r)′′, and as before we have UR(r)′′ ≤ UR(r) iff n(1 − c) ≥ (1 + c). (ii) If
j j j j
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r̃ in Bj, then UR+1
j (r) = n + (R − 1)(n + c ′) + n + nc. If player j applies the alternating strategy, we obtain

UR+1
j (r)

′
= n +

R
2 (1 + c) +

R−2
2 n + n + nc + c ′. On the other hand, using the shifted alternating strategy yields

UR+1
j (r)

′′
= n+ n+ c ′

++
R−2
2 (1+ c)+ R−2

2 n+ n+ nc. Obviously, UR+1
j (r)

′
≤ UR+1

j (r)
′′
, and again, UR+1

j (r)
′′

≤ UR+1
j (r)

iff n(1 − c) ≥ (1 + c).
We hence conclude with observing that, as long as there are no sequences of consecutive rounds of length greater
than or equal to 3 in Ai contributing to the lim inf, then L is always an equilibrium. This is exactly the case if and only
if d(A∗∗

i ) = 0. On the other hand, if d(A∗∗

i ) > 0, then we have to require n(1− c) ≥ (1+ c) to ensure an equilibrium.
• c = 1, c ′ < −n

2 : Since d(Ai ∪ Hi) = 1 and d(D(i)) = 0, we have for almost all rounds

u(r)
j (L) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n + c ′δ if Lk(r) = i for all k ∈ Π, i.e., r ∈ Ai

s + (n − s) + c ′
= n + c ′ if Lj(r) = i, Li(r) = j, Lk(r) ∈ {i, j}

for all k ∈ Π \ {i, j},
if (s − 1) other players vote for i, too,

2(n − s) if Lj(r) = j, Li(r) = j, Lk(r) ∈ {i, j}
for all k ∈ Π \ {i, j},
if s players vote for i,

s + c ′ if Lj(r) = i, Li(r) = ℓ, Lk(r) ∈ {i, ℓ}
for all k ∈ Π \ {i, j},
if (s − 1) other players vote for i, too,

n − s if Lj(r) = ℓ, Li(r) = ℓ, Lk(r) ∈ {i, ℓ}
for all k ∈ Π \ {i, j},
if s players vote for i.

Note that, due to d(D(i)) = 0, rounds with r ∈ Ai and r ∈ Hi alternate (with a possible exception of a 0-set). Hence,
if u(r)

j (L) = s+ (n− s)+ c ′
= n+ c ′, then u(r+1)

j (L) = n+ c ′. We distinguish the following cases: (i) If player j changes
his vote in round r from i to j, we have u(r)

j (P[j]) = 2(n − s + 1) and u(r+1)
j (P[j]) = n. Thus,

U2
j (r) = 2n + 2c ′ < n < 2(n − s + 1) + n = U2

j (r)
′
, (8)

i.e., deviating leads to a higher payoff for player j. (ii) If player jwould vote for a player ℓ ̸∈ {i, j}, we have u(r)
j (P[j]) = 1

and u(r+1)
j (P[j]) = n, which is again better than the original payoff (albeit not as good as changing his vote to j).

Completely analogously, in case u(r)
j = s + c ′, (i) changing player’s j vote from i to ℓ leads to a benefit, namely

u(r)
j (P[j]) = n − s + 1, so

U2
j (r) = s + c ′

+ n + c ′ < s < n − s + 1 + n = U2
j (r)

′
.

(ii) If player j would change from i to j, his new payoff in round r would be u(r)
j (P[j]) = 1 + c = 2, and this is not

larger than his payoff n−s+1 obtained in (i) since s ≥ 1. (iii) If j would change its vote from i to a player p ̸∈ {i, j, ℓ},
then u(r)

j (P[j]) = 1, which is an even smaller payoff than in (i) and (ii).
In case u(r)

j (L) = 2(n− s), however, player j does not want to deviate: If he would vote for some player ℓ ̸∈ {i, j}, his
payoff would be only 1, and if he would vote for player i, his payoff would decrease due to Eq. (8).
Analogously, in case u(r)

j (L) = n − s, player j cannot increase his payoff by deviating from L: Changing his vote to
himself gives a new payoff of 2, and since at most (s − 2) players vote for player i, we have 2 ≤ n − s. Voting for
player i would lead to case u(r)

j (P[j]) = s + c ′, which we showed above to be suboptimal.
So player j gains a benefit by deviating from L iff Lj(r) = i (r ̸∈ Ai). Hence he will not deviate iff d(D(j)) = 0. Recall
that an optimal election sequence L is an equilibrium if there is no possibility for any player to increase his payoff
by deviating from L. Hence, L is an optimal election sequence iff d(D(j)) = 0 for all j ∈ Π .

• c = 1, c ′
=

−n
2 : All of the computations of the previous case remain true, but since we only require d(H∗

i ) = 0
instead of d(D(i)) = 0, it may happen that all players vote for player i in consecutive rounds. In this case u(r)

j (L) =
n
2

for all players j ̸= i (except for the first round of this subsequence). But if player j decides to vote for himself in
round r , and is still voting for i in round (r + 1), then u(r)

j (P[j]) = 2 and u(r+1)
j (P[j]) = n. Thus,

U2
j (r) = n < 2 + n = U2

j (r)
′
,

i.e., player j would benefit from deviating from the optimal sequence. Hence, we have to additionally require
d(A∗

i ) = 0 to secure an equilibrium.
• Otherwise: Due to d(Ai) = 1, the individual payoff of player j ̸= i is u(r)

j (L) = n+ c ′ for almost all rounds r . If player j
wants to deviate from L, he can (a) either vote for himself or (b) for another player in round r , and in the following
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round (r +1) he can (i) switch back to L, (ii) vote again for himself, or (iii) vote for another player. Comparing U2
j (r)

′

for these variants shows that the highest payoff will be achieved in case (a.i) with payoff (1 + c + n) or in case
(a.ii) with payoff (2 + 2c + c ′). The first case can lead to a higher payoff for arbitrary c , whereas the latter case is
only interesting for c > 1. Comparing these payoffs with the payoff U2

j (r) = 2n + 2c ′ directly leads to the stated
conditions.

Case (iii): Theorem 4.13(iii) reveals that there is a player i with d(Bi) = d(D(i)) = 1, which implies d(D1) = 1. Hence,
or almost all rounds r ,

u(r)
j (L) =

{
n + c ′ if Lj(r) ̸= j,
n + nc + c ′ if Lj(r) = j.

n either case, if j deviates to a fixed player j′ (in all such rounds), he has a new payoff u(r)
j (P[j]) = 1 + (n − 1)c + c ′. The

ritical case for the equilibrium is the one with lower original payoff, which is u(r)
j = n + nc + c ′ since c < 0 and c ′ > 0

ere. Comparing the payoffs, it turns out that L is an equilibrium iff 1 − c ≤ n.
Case (iv): Analogous to (iii) for c ′

= 0.
Case (v): The existence of a player i with d(Bi) = 1 and d(D(i)) = 0 implies d(D0) = 1. Hence, for almost all rounds r ,

u(r)
j (L) =

{
n if Lj(r) ̸= j,
n + nc if Lj(r) = j.

imilar to case (iii), if j deviates to a fixed player j′ (in all such rounds), he has a new payoff u(r)
j (P[j]) = 1+ (n− 1)c . The

ritical case for the equilibrium is the one with lower original payoff, which is u(r)
j = n + nc since c < 0 and c ′ < 0 here.

omparing the payoffs, it turns out again that L is an equilibrium iff 1 − c ≤ n.
Case (vi): In this case, we have u(r)

j (L) = n + max(0, c ′) for all players j and almost all rounds r . If a player deviates
rom L, then his best possible payoff is u(r)

j (P[j]) = 1 + max(0, c ′), which is strictly smaller than u(r)
j (L). So L is always an

quilibrium. □

The next main result characterizes whether and when an optimal election sequence for the average social payoff is a
ash equilibrium. Again, it is much less varied than Theorem 5.2.

heorem 5.3 (Characterization of Nash Equilibria for Avg-social Payoffs). An optimal election sequence as given in Theorem 4.16
s a Nash equilibrium iff{

for n ≥ 1 − c if c ≤ 0,
for n ≥ 1 + c if c ≥ 0.

emark 5.4. Note that in case c = 0 the optimal election sequences are always an equilibrium, as no player has an
ncentive to become elected.

roof. Let us start with case c ≤ 0. Firstly, if c ′
≥ 0, it holds for almost all rounds r that

u(r)
i (L) =

{
n + c ′ if r ̸∈ Ai,

n + nc + c ′ if r ∈ Ai.

f player i wants to deviate from the optimal election sequence L in round r for r ̸∈ Ai, then his payoff would change
o u(r)

i = 1 + c ′ or u(r)
i = 1 + c + c ′ depending on his new vote. If c < 0 and n ≥ 1, he gains no benefit by deviating.

n the other hand, if r ∈ Ai and player i decides to deviate and votes for some player j ̸= i, then his payoff changes to
+ (n − 1)c + c ′. But

1 + (n − 1)c + c ′
≤ n + nc + c ′

⇔ 1 − c ≤ n,

o we are done in case c ′
≥ 0.

Secondly, if c ′
≤ 0, we have for almost all rounds r ,

u(r)
i (L) =

{
n if r ̸∈ Ai,

n + nc if r ∈ Ai.

nalogous arguments as above lead again to the condition 1 − c ≤ n.
The case c > 0 is very similar: Firstly, if c ′

≥ 0, it holds for almost all rounds r that

u(r)
i (L) =

{
n + c ′ if r ̸∈ Ai,

′
n + nc + c if r ∈ Ai.
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If player i wants to deviate from the optimal election sequence L in round r for r ̸∈ Ai, then his payoff would change to
u(r)
i = 1 + c ′ or u(r)

i = 1 + c + c ′ depending on his new vote. Since c > 0, his change does not lead to a larger payoff iff

1 + c + c ′
≤ n + c ′

⇔ 1 + c ≤ n.

If r ∈ Ai, then changing his vote leads to the inequality 1− c ≤ n as above, but this inequality is always true since c > 0.
Secondly, case c ′

≤ 0 can be treated analogously. □

Since the optimal election sequences for umin are a subset of those for uavg, we immediately conclude the following
third main result of this section:

Theorem 5.5 (Characterization of Nash Equilibria for Min-social Payoffs). An optimal election sequence as given in Theorem 4.18
is a Nash equilibrium iff{

for n ≥ 1 − c if c ≤ 0,
for n ≥ 1 + c if c ≥ 0.

6. Discussion

Thanks to the complete characterization of the optimal social payoffs for any choice of the parameters c , c ′ in
Theorems 4.13, 4.16 and 4.18, we have developed an important ingredient for the game-theoretic analysis of repeated
leader election algorithms that compute election sequences on-line. Like in [5], one may want to characterize locally
optimal strategies, and may even want to compute the associated ‘‘price of anarchy’’ as in [17]. In order to accomplish
this, the knowledge of globally optimal election sequences is mandatory.

Our results also allow us to draw some interesting conclusions on the role and interplay of c and c ′.
First and foremost, as expected, c ′ > 0 favors always electing the same leader i, whereas c ′ < 0 stimulates leader

changes. Still, for umax, c ′ must be a surprisingly large negative value (like c ′ < 1−c−n
2 ) to really stimulate leader changes.

Overall, this just confirms the fact that our generic model is a bit simplistic in this regard. In fact, c ′ parameterizes the
event ‘‘leader change’’, rather than the time some player has been continuously elected leader already. Unfortunately, we
were not yet able to come up with a refined model that is also mathematically tractable: what one loses immediately is
locality of the local payoffs u(r)

i (L), which now depend only on the elections L(r) and L(r − 1).
In addition, for umax, the results of Theorem 4.13 (visualized in Fig. 1) reveal several interesting facts:

1. Sign and size of c dramatically change the optimal sequence for umax. Quite obviously, c < 0 makes it optimal to
choose a unique leader j ̸= i (where i is the player earning the maximal benefit). For c > 0, the optimal strategies
vary considerably depending on the relation between c and c ′. Note that, for sufficiently small c ′, like for c > 1
and c ′ < 1−c−n

2 , not having a unique leader, i.e., some players choosing different leaders in some rounds, becomes
optimal. Note, however, that at most two leaders are elected in the limit in all optimal sequences.

2. Forcing leader changes, i.e., c ′ < 0, decreases the maximum payoff considerably. For c > 1, the payoff is reduced
from n + cn + c ′ to n/2 + cn + (1 − c)/2. Interestingly, the reduction is less dramatically for c < 1, where it goes
down to n + cn/2 only. For c ≤ 0, the maximum payoff is around n, without much dependency on c ′.

For uavg and umin, we note the following:

1. There is not much dependency of uavg and umin on the parameter c. More specifically, c ̸= requires the individual
densities d(Ai) (of the sets Ai where every player chooses i) to exist, and sum to 1 for uavg and being equal to 1/n
for umin, which essentially means uneven/even alternation of the unique leader. For c = 0, all that is needed is
d(
⋃

Ai) = 1, which amounts to unfair alternation. Unlike for umax, not having all players choosing the same leader
in some rounds is always sub-optimal here.

2. For uavg and umin, in case c ′ < 0, round-robin is an optimal election sequence. For c ′ > 0, however, this is not
the case, since round-robin causes d(D1) = 0. However, an optimal election sequence for two players would be
12112211122211112222 . . ., as the time between changes increases here.

3. Neither uavg nor umin depend much on frequent (n + c + c ′ in the case c ′ < 0) vs. infrequent (n + c ′ for c ′ > 0)
leader changes.

So, overall, it is fair to say that uavg nor umin are much more robust w.r.t. peculiarities of the chosen sequence: As long
s sufficient fairness is guaranteed, they guarantee their optimal payoff. This payoff is, however, typically considerably
maller than the optimal payoff for umax.
Regarding Nash equilibria, we observe the following from Theorems 5.2, 5.3 and 5.5:

1. For uavg nor umin, Nash equilibria only depend on the relation between n and c , depending on whether c ≤ 0 or
c ≥ 0: Too large a |c| is prohibitive. The same is true for many cases of u , in particular, (iii)–(v).
max
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2. As for the optimal sequences, the situation is very different for case (ii) of umax, where c > 0 and c ′ < 0: Whether
the optimal sequences are Nash equilibria or not depends heavily and non-trivially on the sign and value of c and
c ′. This is particularly true for the range 0 < c ≤ 1 and −n/2 ≤ c ′ < 0.

So, overall, it is apparent that local and social payoffs go hand-in-hand for uavg and umin, provided the critical relation
etween n and c is respected.

. Conclusions

We exhaustively characterized optimal sequences for repeated leader election. We restrict our attention to strategies
here every player chooses the preferred leader oblivious w.r.t. the other players choice in every round, but subject to a
arameterized local payoff function for player i that takes into account how many players vote for the same leader as i,
ow many players vote for i, and whether i chooses the same leader as in the previous round or not. The limiting social
ayoffs considered are the maximum, average and minimum of the players’ local payoffs. In the case of the maximum
ocial payoff, a surprisingly rich set of optimal sequences was found for some parameter ranges. In most other cases,
owever, there is not much variation. We also discovered that, depending on the relation of certain parameters, the
ptimal sequences are often Nash equilibria in the restricted strategy space of oblivious strategies. As a consequence, no
ational player will deviate from the globally optimal sequence in order to improve its local payoff, without any need for
unishment.
Part of our current work is devoted to a more realistic modeling of leader persistence. In some future work, we will

se our results as the basis for computing the price of anarchy in evolutionary games, where players do not know an
ptimal oblivious strategy a priori but try to converge towards a good strategy based on locally available information.
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