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Homogenized Yarn-Level Cloth

GEORG SPERL, IST Austria
RAHUL NARAIN, Indian Institute of Technology Delhi
CHRIS WOJTAN, IST Austria

  

HYLC
YLC

Fig. 1. Left: A comparison between direct yarn-level simulation (YLC) and simulation with our homogenized model (HYLC); our homogenized model accurately
captures the non-trivial elastic stretching and bending response of the fabric. Middle and right: Results simulated with homogenized continuum models of
woven and knitted patterns; our method allows us to efficiently compute large-scale simulations where direct yarn-level simulation would be prohibitively slow.

We present a method for animating yarn-level cloth effects using a thin-
shell solver. We accomplish this through numerical homogenization: we
first use a large number of yarn-level simulations to build a model of the
potential energy density of the cloth, and then use this energy density
function to compute forces in a thin shell simulator. We model several
yarn-based materials, including both woven and knitted fabrics. Our model
faithfully reproduces expected effects like the stiffness of woven fabrics, and
the highly deformable nature and anisotropy of knitted fabrics. Our approach
does not require any real-world experiments nor measurements; because
the method is based entirely on simulations, it can generate entirely new
material models quickly, without the need for testing apparatuses or human
intervention. We provide data-driven models of several woven and knitted
fabrics, which can be used for efficient simulation with an off-the-shelf cloth
solver.

CCS Concepts: • Computing methodologies → Physical simulation.

Additional Key Words and Phrases: knitted, woven, cloth simulation, yarn-
level cloth, homogenization, data fitting
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1 INTRODUCTION
The simulation and analysis of yarn-level cloth has recently gen-
erated a great deal of research in the computer graphics [????],
materials science [??], and physics communities [?]. Woven and
knitted materials can exhibit a wide array of behaviors (highly vari-
able stretchiness, anisotropy, area-preservation effects, etc.). They

Authors’ addresses: Georg Sperl, IST Austria, georg.sperl@ist.ac.at; Rahul Narain,
Indian Institute of Technology Delhi, narain@cse.iitd.ac.in; Chris Wojtan, IST Austria,
wojtan@ist.ac.at.

2020. 0730-0301/2020/7-ART31
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Fig. 2. Large-scale phenomena can emerge from simulated yarn-level ge-
ometry. The rib pattern (top) exhibits anisotropy and a tendency to preserve
area under tension, while the stockinette pattern (bottom) exhibits curling.

can be produced from simple threads or wires, leading to their ubiq-
uity in everyday life. Furthermore, these materials are fascinating
from a theoretical point of view, because their varying material
properties arise almost entirely from the geometric structure of the
threads — subtly different stitch patterns can lead to dramatically
different material behaviors. For example, Figure 2 illustrates how
different knit patterns influence area-preservation and curling of
the fabric.

ACM Trans. Graph., Vol. 39, No. 4, Article 31. Publication date: July 2020.
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Simulating woven and knitted materials as a collection of inter-
acting threads can accurately reproduce highly complex behaviors,
but this direct strategy tends to be computationally expensive. On
the other hand, finite element-based cloth simulations are relatively
computationally efficient, because they replace the simulation of
individual fibers with an approximate material model based on
continuum mechanics. Unfortunately, choosing a suitable material
model is a nontrivial task, and Little is known about the continuum
behavior of many woven and knitted fabrics in particular, so many
yarn-level effects cannot be captured by existing material models in
computer graphics.
In this work, we aim to determine material properties directly

from yarn-level geometry using numerical homogenization. We
precompute the effective material response from periodic yarn-level
simulations, learn an approximate material model from the resulting
data, and incorporate this new material into an off-the-shelf cloth
simulator. We offer the following technical contributions:

• The first use of numerical homogenization for animating
woven and knitted fabrics

• Novel co-rotated periodic boundary conditions for the non-
linear homogenization of thin shells

• A procedure for fitting a material model capable of repro-
ducing common textile phenomena such as anisotropy, area-
preservation, and curling.

2 RELATED WORK
This paper incorporates ideas from a variety of topics including the
simulation of rods and shells, data-driven models, and homogeniza-
tion. In the following, we only provide a brief summary of closely
related areas.

2.1 Cloth simulation
Yarn-Level Cloth. Modern simulators approximate the behavior

of an individual strand of yarn or thread using the theory of elastic
rods [???]. Simulation of fabric at the yarn level was pioneered in
computer graphics by ? with subsequent work on improving the
treatment of collision handling [?] and using persistent contacts
to simulate woven [?] and knitted fabrics [??]. ? propose a method
for the interactive authoring and editing of small periodic yarn
patches on GPUs, and they reproduce the rest shape of a multitude
of stitches and patterns under tension. ? introduce stitch meshes
to create large-scale virtual knitted patterns, and ? ensure they
are actually fabricable. ?? introduce a suite of tools for converting
virtual knit patterns into garments fabricated by a machine. MPM
modeling of yarn-level simulations was first performed by ?, and
then combined with neural networks for homogenizing fiber-level
motions to yarn level motions [?]. In our work, we rely on the
methods of ? and ? for the simulation of our periodic yarn patterns.

Continuum-Level Cloth. Researchers in computer graphics often
treat cloth as an elastic solid with a potential energy that increases as
it deforms from its rest state. Typical methods for discretizing such
an elastic solid are mass-spring networks [???], discrete thin shells
[?], and continuum mechanics solvers based on finite differences
[?], finite elements [??], and the material point method [?]. We use

a finite-element thin-shell solver to simulate our macroscale cloth
(ArcSim [??]).

Data-driven Cloth. Many of the methods above use analytically
derived material models based on a somewhat straightforward rela-
tionship between deformation and potential energy. However, the
material model can also be learned from example data. ? propose an
inexpensive setup for measuring features of fabric under tensile and
bending tests, and they optimize piece-wise linear material models.
? develop a measurement setup to capture more complex 3D defor-
mations of cloth with complete position and force data. ? show how
to inexpensively measure internal stretching and bending friction,
and they optimize the required parameters based on sparse data.
Further research discusses incremental fitting of separable models
for convex hyperelastic materials [?] and an orthotropic model for
woven fabric based on commercially available tests [?].

For each update to model parameters, the above methods typi-
cally need to recompute quasistatic cloth equilibria to compare to
real-world measurements. They also mention difficulty in accurately
capturing bending. In our approach, data-gathering and fitting are
decoupled. We precompute deformation responses once as an in-
expensive preprocessing step and thus do not require simulations
during fitting. We also do not require any real-world measurement
setup. Additionally, our method can directly compute the bend-
ing resistance for applied curvatures, allowing for more controlled
measurements.

Finally, data-driven methods have also been used to add detail to
coarse simulations; ? add detailed wrinkles to coarse simulations at
interactive rates using a database of precomputed high-resolution
simulations.

2.2 Multiscale modeling and homogenization
In computer graphics, the concept of multiscale modeling covers
a wide area of research such as analytic multiscale models [???],
numerical coarsening [???], meta-materials and digital fabrication
[????], sound simulation [?], and rendering [??].
Our work focuses on homogenization of periodic yarn patterns

and is thus closely related to the work of ?. They investigate the elas-
tic properties of isohedral tilings represented as planar rod patterns
through numerical homogenization. They also provide a tool for
exploring the various families of tilings and discuss emergent prop-
erties such as material symmetries in detail. Their tool examines
material nonlinearities by fitting linear models at multiple mag-
nitudes of deformation. Our work can be seen as an extension to
fully non-linear models for non-planar woven and knitted yarn
patterns. In addition, our novel boundary conditions let us homoge-
nize interaction between multiple modes of deformation, such as
simultaneous stretching and bending.

Computational Homogenization. Multiscalemodeling has received
a lot of attention also outside of computer graphics; this includes the
technique of computational homogenization, where macroscopic
material responses are computed based on representative microscale
simulations [??]. Macroscopic strains are imposed on the represen-
tative microscale material sample through boundary conditions, and
stresses can be computed through averaging. To this end, ? and ?

ACM Trans. Graph., Vol. 39, No. 4, Article 31. Publication date: July 2020.
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(a) Precomputed Homogenization (b) Fitting (c) Thin-shell Simulation

Fig. 3. Our method takes a periodic yarn pattern and produces a homogenized cloth material model. (a) We impose macroscopic in-plane and bending
deformations on a periodic pattern. (b) We compute homogenized energy density samples for ranges of deformations and fit them with regularized splines.
(c) The resulting material model can be used to efficiently simulate cloth by computing elastic responses of the pattern to deformations.

propose a generalized framework to derive microscale boundary
conditions and averaging relations for homogenization in general.
For more details, we refer to the reviews of ? and ?.
This method has been applied to the homogenization of thin

shells [?] as well as textiles and fabrics [??]. However, they use a
small-curvature assumption which is inadequate for large bending,
as we will discuss in Section 4.2.
The nature of representative microscale computations in com-

putational homogenization lends itself to data-driven approaches.
Various approaches fit constitutive models from precomputed stress
and energy data [???]. However, the basic constitutive models used
are either not descriptive enough for our data or do not provide any
guarantees to ensure smooth animation.

Other Continuum Models for Fabric. The physics and engineer-
ing communities have also developed continuum-level models for
approximating the behavior of fabrics. ? and ? propose mathemat-
ical models describing the rich material response of a stockinette
pattern based on inextensible and incompressible yarns. However,
their investigations are limited to a small set of extension tests. Re-
searchers have also developed mesoscopic models of woven fabric
using spring-based finite elements [???].

3 OVERVIEW
We first explain the necessary background in homogenization and
derive novel periodic boundary conditions for our method in Sec-
tion 4. We then implement these ideas in a quasi-static yarn-level
cloth simulator, as described in Section 5. Using this microscale
yarn-level simulator, we sample the material’s behavior in response
to a number of different in-plane and bending deformations. We use
regularized spline regression to fit a macroscopic energy density
model to this data (Section 6), and use the new material model di-
rectly in a thin-shell cloth simulator (Section 7). Figure 3 provides
an overview of our method.

Modeling Assumptions. Woven and knitted fabrics are complex
materials with non-trivial elastic, plastic, hysteretic, and damping
behaviors. As a first step toward data-driven yarn-level cloth simu-
lation, this paper assumes that these materials exhibit a purely hy-
perelastic response to deformation. Although our current approach

is limited, we show in Section 8 that this hyperelastic assumption
is sufficient to reproduce a number of qualitative effects specific to
yarn-level materials. We discuss future extensions in the directions
of data-driven plasticity, hysteresis, and damping in Section 9.

4 HOMOGENIZATION
We begin by summarizing the “kinematic averaging” theory of com-
putational homogenization for volumetric solids, and we extend
these concepts to the homogenization of thin shells in the second
part of this section. For further details, we recommend the following
reviews on computational homogenization and multiscale model-
ing [??].
We use the terms microscopic and microscale when referring to

small local (yarn-level) effects, and we use the termsmacroscopic and
macroscale when referring to average (continuum-level) behaviors
of the bulk material. We write macroscopic quantities 𝒙 with a bar
and microscopic quantities 𝒙 without. We use Latin indices 𝑖, 𝑗 to
iterate dimensions 1, 2, 3, and Greek indices 𝛼, 𝛽 to iterate only the
first two dimensions 1, 2. We use indices preceded by a comma as
shorthand for derivatives, e.g. 𝑥𝑖, 𝑗 is the derivative of element 𝑥𝑖
with respect to parameter 𝑗 .

4.1 Computational Homogenization of Volumetric Solids
We describe the macroscale deformation of an elastic solid with
reference coordinates 𝑿 , deformed coordinates 𝒙 , and deformation
gradient 𝑭 = 𝜕𝒙

𝜕𝑿
. Similarly, we have microscale quantities 𝑿 , 𝒙 ,

and 𝑭 = ∇𝒙 = 𝜕𝒙
𝜕𝑿 . Homogenization theory assumes that the bulk

material exhibits microscale variations, and thus we can zoom in
at any macroscale point 𝒙 to find a volume of microscale material,
called the representative volume element (RVE) [??]. Mathematically,
we can describe the RVE with a first-order expansion about a point
𝒙 [?]:

𝒙 (𝑿 ) = 𝒙 + 𝑭𝑿 + 𝒖̃ (𝑿 ), (1)

where 𝒖̃ is a microscale displacement fluctuation field which encodes
all of the non-affine local deformations around 𝒙 . In other words,
𝒖̃ encodes all of the detailed, high-frequency deformations of the

ACM Trans. Graph., Vol. 39, No. 4, Article 31. Publication date: July 2020.
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microstructure geometry that are not accounted for by the large-
scale deformation 𝑭 . The holes in a spongy material, for example,
may deform more than the stiffer elastic parts; 𝒖̃ would define this
difference in microscale deformation. See Figure 4 for an illustration.

Next, macroscale quantities are defined to be averages over their
microscale counterparts [??]:

𝒙 =
1
|Ω |

∫
Ω
𝒙 (𝑿 ) 𝑑Ω, (2)

𝑭 =
1
|Ω |

∫
Ω
𝑭 (𝑿 ) 𝑑Ω, (3)

where Ω is the microscale reference domain with volume |Ω |, and
𝑑Ω denotes integration over Ω. The theory assumes without loss
of generality that

∫
Ω 𝑿 𝑑Ω = 0, and that the macroscale quantities

vary so slowly over the RVE that they are essentially constant at
the microscale [?], i.e. 𝒙 and 𝑭 do not depend on 𝑿 . Plugging (1)
into (2) and (3) and applying these assumptions gives us∫

Ω
𝒖̃ (𝑿 ) 𝑑Ω = 0, (4)∫

Ω
∇𝒖̃ (𝑿 ) 𝑑Ω = 0. (5)

In other words, the small-scale fluctuations in translation 𝒖̃ and
deformation ∇𝒖̃ must average out over the RVE. In computer simu-
lations with periodic micro-structures, (4) is satisfied by fixing the
barycenter of 𝒖̃, and (5) is commonly satisfied by requiring 𝒖̃ to be
periodic on the boundaries [??]:

𝒖̃+ = 𝒖̃−, (6)

where 𝒖̃+ is the value of the fluctuation field on one side of the do-
main, and 𝒖̃− is its value on the corresponding opposite side. Finally,
we compute the homogenized energy density as the averaged total
energy in the RVE

Ψ =
1
|Ω |

∫
Ω
Ψ(𝑿 ) 𝑑Ω, (7)

where Ψ and Ψ are the microscale and macroscale energy densi-
ties respectively. For the purposes of simulation, we can compute
forces by taking the negative gradient of this homogenized potential
energy.
To restate briefly, we expand a microscale RVE from a macro-

scopic deformation 𝑭 and with fluctuations 𝒖̃ that describe local
deformation. We then require that the microscale deformation on

Ω

FX

u

x

Fig. 4. At any macroscale point 𝒙 , we can observe a microscale RVE with
reference domain Ω. The RVE is deformed through an affine transformation
given by 𝑭 (dashed lines) and additional periodic fluctuations 𝒖̃ (blue). Note
that the deformation of the holes is described by a combination of 𝑭 and 𝒖̃.

average equals 𝑭 . This imposes the constraint that 𝒖̃ should on av-
erage not induce any additional deformation. Finally, this can be
enforced through periodicity.

4.2 Nonlinear Homogenization of Thin Shells
Next, we apply this rationale to the problem of homogenizing a yarn-
level microscale to a thin-shell macroscale. The main challenge here
is to find a suitable analogy to Equation (1) that works for thin shells
instead of volumes. Previous work on thin shell homogenization
relies on a small curvature assumption and uses first or second order
expansions for the RVE (e.g. [?]). This effectively replaces bending
modes with shearing or stretching of the material, as illustrated in
Figure 5. Formicroscale materials that resist stretching far more than
bending, the erroneous stretching can introduce artificial stiffness
in the homogenized response for macroscale bending. To support
our goal of homogenizing highly flexible materials, this section
proposes a novel non-linear thin shell expansion based on metrics
from differential geometry.

On the macroscale, we have a thin shell 𝒙 that is defined through
its midsurface 𝝋, which is extruded along the normal 𝒏:

𝒙 (𝜉1, 𝜉2, ℎ) = 𝝋 (𝜉1, 𝜉2) + ℎ 𝒏(𝜉1, 𝜉2), (8)

where 𝜉𝛼 are the flat reference coordinates of the midsurface, and ℎ
is the thickness coordinate. The left side of Figure 6 illustrates this
parametrization.

We locally define deformations with the first fundamental form I
for in-plane deformation and the second fundamental form II for
bending modes. With surface tangents 𝒂𝛼 = 𝝋,𝛼 we have

𝒏 =
𝒂1 × 𝒂2
|𝒂1 × 𝒂2 |

, (9)

and we compute the components of the fundamental forms as

I𝛼𝛽 = 𝒂𝛼 · 𝒂𝛽 , (10)

II𝛼𝛽 = −𝒏,𝛼 · 𝒂𝛽 . (11)

We construct the RVE expansion similar to (1):

𝒙 (𝜉1, 𝜉2, ℎ) = 𝝋 (𝜉1, 𝜉2) + ℎ 𝒏(𝜉1, 𝜉2) + 𝒖̃ (𝜉1, 𝜉2, ℎ) (12)

with microscale midsurface 𝝋, its normal 𝒏, and fluctuation field 𝒖̃.
In an analogy to (1), which deforms the volumetric RVE based on the
macroscale quantity 𝑭 , we deform the thin shell RVE with a midsur-
face 𝝋 derived from the macroscale fundamental forms I and II. The
function 𝝋 (𝜉1, 𝜉2) +ℎ 𝒏(𝜉1, 𝜉2) applies a low-resolution spatial defor-
mation across the entire microstructure (illustrated by the dashed
line in Figure 6), while 𝒖̃ encodes the remaining high-frequency

Fig. 5. Comparison of a first order (left), second order (middle) and our
non-linear expansion (right) of thin-shell RVEs in a curved configuration.
The lower order expansions show strong artifacts as bending modes are
approximated through shearing (left) or stretching (middle).
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457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

Homogenized Yarn-Level Cloth • 31:5

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

h

ξξ

h

φ
φ

u

Fig. 6. A macroscopic line-segment (left) is expanded in-plane into a curved
microscale volume (right). Top and bottom show reference and deformed
configurations respectively. This example uses a squiggly yarn for the mi-
crostructure, and we indicate the fluctuations 𝒖̃ as offsets to the yarn
deformed purely from its embedding (dashed).

details of the thin-shell microgeometry. In a knitted microstruc-
ture, for example, 𝒖̃ prescribes how the individual threads stretch,
slide, twist, and bend relative to each other. Figure 6 illustrates a
2D schematic, and Figure 7 shows a 3D rendering of this expansion.
Notice that the thickness coordinate ℎ is shared between both micro-
and macroscale since our thin-shell homogenization averages only
the in-plane coordinate.

Defining the Midsurface. Our goal here is to create a midsurface
𝝋 in (12) with constant fundamental forms I, II matching those of
the macroscale. Although it is possible to derive such constant-
fundamental-form surfaces analytically, the exact solutions are
only compatible with a limited set of boundary conditions. Here,
we present a more general least-squares solution to this surface-
reconstruction problem.
Inspired by the rotation-strain decomposition for deformation

extrapolation [?], we begin with the polar decomposition of the
midsurface gradient

∇𝝋 =
(
𝒂1 𝒂2

)
= 𝑹𝑺 . (13)

Here, the 3 × 2 matrix 𝑺 represents the constant in-plane deforma-
tion and 𝑹 is a 3 × 3 rotation matrix that aligns 𝑺 with the tangent
plane of the curved surface. Without loss of generality, we choose
the macroscale frame of reference such that

(
𝒂1 𝒂2

)
= 𝑺 and

𝒏 =
(
0 0 1

)⊤. Note that ∇𝝋, 𝒂1, 𝒂2, and 𝑹 vary along the mid-
surface; we omit the (𝜉1, 𝜉2) function notation when convenient for
readability.
We want to match I = I. With I = ∇𝝋⊤∇𝝋 and (13) we get

𝑺
⊤
𝑺 = I, (14)

allowing us to compute 𝑺 in (13) from the principal square root of
the first fundamental form I:

𝑺 =

( √
I

0 0

)
. (15)

To match II = II, we compute 𝑹 (𝜉1, 𝜉2) in (13) by integrating the
normal curvatures 𝒏,𝛼 outward from the RVE center 𝜉1 = 𝜉2 = 0.
We perform this integration with an analytic expression for the
exponential map, which we explain in detail in the supplementary
material (Section ??).

Fig. 7. A periodic yarn pattern microstructure is shown with its associated
midsurface in an undeformed (left) and deformed state (right).

(a) (b)

Fig. 8. (a) Naive averaging creates a null-space of growing/shrinking cylinder
radii as well as sliding along the surface. As an example, the displacements
indicated as pairs of orange or brown arrows would cancel each other
respectively, whereas with our co-rotated averaging they are treated as
the same rotated displacement. (b) Our co-rotated periodicity compares
fluctuations (arrows) by rotating them into a common frame (gray).

Now that we know 𝑹 and 𝑺 , we solve (13) for 𝝋 in the least squares
sense, giving us a vector Poisson equation with natural boundary
conditions:

∇2𝝋 = ∇ · 𝑹𝑺 inside the domain, (16)

𝑵 · ∇𝝋 = 𝑵 · 𝑹𝑺 on the boundary. (17)

This equation gives the exact solution for singly-curved surfaces
and can generalize to solutions for non-constant I and II. We solve
the system numerically by discretizing the surface as a regular grid
and using standard finite differencing. This midsurface can now be
used in (12) to completely describe a highly deformed thin shell
microstructure, as illustrated in Figure 7.

Co-Rotated Boundary Conditions. To complete our analogy with
the homogenization strategy in Section 4.1, we must derive con-
straints on the fluctuation field 𝒖̃ which make sense for thin shells.
Unfortunately, as illustrated in Figure 8a, the simple averages pro-
posed in (4) and (5) can lead to erroneous cancellation of fluctuations
when applied to a highly deformed domain, leading to undesired
nullspaces in the RVE.
To address this problem, we propose to average quantities by

parallel transporting them to a common frame. The rotation 𝑹 from
earlier rotates 𝒏 = 𝒏(0, 0) to 𝒏(𝜉1, 𝜉2) and thus describes orthogonal
frames oriented along the midsurface normal. Therefore, we can
use its transpose to align local frames for fluctuations, resulting in
the modified constraint ∫

Ω
𝑹⊤𝒖̃ 𝑑Ω = 0. (18)

With a bit more work (explained in supplementary material Sec-
tion ??), we can also derive a co-rotated constraint on the derivative
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of 𝒖̃: ∫
Ω
𝑹⊤𝒖̃,𝛼 𝑑Ω = 0, (19)

implying an analogous co-rotated version of (6):

(𝑹⊤𝒖̃)+ = (𝑹⊤𝒖̃)−, (20)

which is satisfied by splitting the boundary of themidsurface domain
Γ into opposing parts 𝜕Γ+ and 𝜕Γ−, and using this constraint as
periodic boundary conditions. Figure 8b illustrates how our co-
rotated periodicity aligns displacements.
Finally, for macroscale thin shell simulations, we are interested

in homogenizing an elastic energy area density. Instead of dividing
the total energy by the volume as in (7), we divide by the area of
the RVE midsurface to get

Ψ =
1
|Γ |

∫
Ω
Ψ(𝜉1, 𝜉2, ℎ) 𝑑Ω, (21)

with |Γ | being the area of the midsurface domain.
To summarize, we are now able to take a macroscale deformation

given by I and II and compute a midsurface 𝝋 from (16)–(17). This
defines the fluctuation field 𝒖̃ through (12), on which we can then
enforce the translation and periodicity constraints (18) and (20), and
compute homogenized energy area densities Ψ with (21).

5 YARN PATTERN SIMULATION
For any periodic yarn pattern, we aim to compute a mapping from
deformation to homogenized energy densities. To minimize the di-
mensionality of the problem, we seek the energy at the elastostatic
equilibrium configuration, subject to the macroscopic deformation.
The elastostatic assumption is common in many applications like an-
imation [?], fracture simulation [?], and structural optimization [?],
because it captures the overall behavior of a material without need-
ing to compute dynamic effects. In our case, this equilibrium state
corresponds to the physical state with yarn collisions resolved and
the yarns being at rest with respect to bending, twisting, and stretch-
ing.
To deform a microscale periodic yarn patch, we embed it into

the RVE as shown in Figure 7. Finding the elastostatic equilibrium
amounts to a constrained optimization problem of minimizing the
homogenized energy with respect to the fluctuations 𝒖̃ and subject
to the translation and deformation constraints; i.e.,

Ψ = min
𝒖̃

1
|Γ |

∫
Ω
Ψ(𝒖̃) 𝑑Ω s.t. (18) and (20). (22)

Figure 9 shows a yarn pattern before and after relaxing it into its
optimized state.
The number of tiles within an RVE is a choice that determines

which scales of buckling are handled by homogenization, and which
ones are handled by the cloth simulator. In this work, we chose to use
a small RVE size for each pattern primarily based on computational
cost, and have not explored larger sizes. We leave the study of RVE
sizes and buckling frequencies as future work.

5.1 Yarn Model
We simulate yarns using discrete elastic rods (DER) [??] with the
yarn-level cloth collision forces of [?] modified for linear spline

Fig. 9. We show a stretched rib pattern before (left) and after (right) opti-
mization with the periodic tile highlighted in red, periodic ghost segments
in gray, and the midsurface in translucent blue. Notice how the rib pattern’s
yarn loops naturally tighten under tension while maintaining the curvature
of the surface.

segments. Real wool yarns consist of many threads wound together,
so they may resist bending and twisting much less than stretching.
To add more flexibility to our yarn simulations, we therefore add
an additional parameter 𝛾 to scale bending and twisting energies in
relation to stretching energy. Thus, we compute the integral in (22)
as the sum of stretching 𝐸𝑠 , bending 𝐸𝑏 , twisting 𝐸𝑡 , and collision
energies 𝐸𝑐 of yarns in the periodic patch:∫

Ω
Ψ 𝑑Ω = 𝐸𝑠 + 𝛾𝐸𝑏 + 𝛾𝐸𝑡 + 𝐸𝑐 . (23)

For the definition of the individual energies, see [?] for 𝐸𝑐 and [?]
for the other terms. As discussed in Section 3, we omit inter-yarn
friction in the micro-scale quasistatic optimization.

The elastic energy terms in this model require that we know the
rest shape of each yarn. Because the act of knitting and weaving
can actually change the rest shape of a yarn (as seen in Figure 10),
obtaining it is a non-trivial task. In our experiments, we apply a
heuristic that the rest pattern should be in equilibrium relative to
the stretching energy; inspired by ?, we apply tension by shortening
the yarns’ rest lengths, and then we shrink the periodic lengths of
the pattern to find an energy minimum relative to stretching. We
explain this initialization process in detail in the supplementary
material (Section ??).

Fig. 10. In this real-world example, we extracted the top strand of wool yarn
from the knit pattern below, and allowed the yarn to come to rest. The yarn
clearly has a bent rest shape related to the pattern it was knitted into.

5.2 Periodicity
Yarns on one side of the patch can interact with yarns on the opposite
side through periodic collisions or by being periodically connected.
Therefore, we have to consider periodic discrete elastic rod and
collision forces. We introduce ghost segments that copy and tile the
yarns along the periodic field 𝑹⊤𝒖̃ implied by the constraint (20).
Ghost segments do not contribute to the energy in the (23); they
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simply copy the motion of the primary yarns and act as colliders
and boundaries for the yarn segments in the RVE. Figure 9 shows
these ghost segments colored gray.
In addition to positional degrees of freedom, [?] incorporates

material frames and edge twists. We enforce periodicity on reference
frame directors 𝒅𝛼 and twist variables 𝜃 via

(𝑹⊤𝒅𝛼 )
+ = (𝑹⊤𝒅𝛼 )

−, (24)

𝜃+ = 𝜃−, (25)

where + and − denote an original and copied edge respectively.

5.3 Homogenization Constraints
For the purposes of homogenization, we have to impose the trans-
lation constraint (18), periodic vertex positions (20), and periodic
edge twists (25) on the microscale. Additionally, the yarn forces
are invariant to a constant twist, so we remove this nullspace by
requiring the total twist per periodically connected yarn to be zero.
We found that the reference frames do not drift from their constraint
manifold (24) over time, so we do not actively enforce this constraint
after initialization.

We enforce the periodicity constraints by eliminating the copied
degrees of freedom from the linear system in the Newton step.
Exploiting the fact that any periodic vertex or twist relates linearly
to exactly one other vertex or twist through (20) and (25), we can
define reduced degrees of freedom 𝒚 through

𝑪̃𝒚 + 𝒅 = 𝒒, (26)

where 𝒒 is the vector of all vertex positions and edge twists. Notably,
𝑪̃ is sparse and will preserve the sparsity of the Newton system. This
elimination of variables is based on parametrizing the nullspace of all
periodicity constraints. We discuss its construction in Appendix A.
On the other hand, due to its density, enforcing the translation

constraint (18) by parametrizing its nullspace would result in a dense
𝑪̃ . Instead, we enforce this constraint with Lagrange multipliers. In
addition, we also use Lagrange mutlipliers to remove the nullspace
of constant twists along a yarn by requiring∑

𝑖

𝜃𝑖 = 0 (27)

for each (periodically connected) yarn. We concatenate the transla-
tion and twist constraints to get

𝑪𝐿𝒒 = 𝒅𝐿 . (28)

5.4 Optimization Step
We can now solve the constrained minimization problem in (22).
Using Newton iteration, each step to solve for increments 𝛿𝒚 and
Lagrange multipliers 𝝀 is given by(

𝑪̃⊤𝑯𝑪̃ + 𝛼 𝑰 𝑪̃⊤𝑪𝐿⊤

𝑪𝐿 𝑪̃ 0

) (
𝛿𝒚
𝝀

)
= −

(
𝑪̃⊤∇𝐸

𝑪𝐿𝒒 − 𝒅𝐿

)
, (29)

where 𝐸 is the total energy, 𝑯 = 𝜕2𝐸
𝜕𝒒𝜕𝒒 is its Hessian, and and 𝛼 is

an exponentially decaying regularizer to help convergence. We also
limit the maximal vertex displacement per step to a fraction of a
yarn radius to avoid missing collisions between iterations, and we
observed improved numerical conditioning if we rescale positional

degrees of freedom relative to twists. We provide these details, as
well as initialization and stopping criteria for this optimization
algorithm in the supplementary material (Section ??).

6 FITTING
At this point, we are able to compute an energy density Ψ for a
yarn pattern given an input deformation I, II. Our next step is to
build a database of entries sampling this Ψ(I, II) function, and then
approximate the data by fitting a model to it. However, the energy
landscape can be noisy due to multiple microscale equilibria — the
yarn pattern can buckle, interacting yarns are generally multistable
and slide over each other. Especially in compressive regimes, the
pattern can buckle differently for similar strains, leading to noise in
the energies. Local minima in the fit then introduce noisy restshapes
and popping in the final macroscale simulation (see Figure 11). Addi-
tionally, our data is neither convex nor is it well-fit by polynomials.
After experimenting with several fitting schemes, we settled on the
strategy of first regularizing the input data, and then fitting a model
as a sum of regularized splines while enforcing quasiconvexity and
piecewise monotone interpolation. We will discuss the main ideas of
the fitting procedure in this section, and we provide further details
in our supplementary material (Section ??).

Fig. 11. Insufficient regularization can negatively affect simulated rest
shapes. Here, a draped rib knit shows noisy boundaries (left) compared
to a fit with better regularization (right).

6.1 Parametrization and Sampling

We begin by choosing a reparametrization of the input strains I and
II that is better suited to sampling and interpolation. We desire each
input parameter to be valid over a fixed interval independent of
other parameter values, so that we can use standard interpolation
schemes over rectilinear grids. Furthermore, we wish to avoid sam-
pling over the full 𝑛-dimensional space of possible strains, but still
capture pairwise interactions such as the Poisson’s ratio, influence
of stretching on bending, and so on.

To start, we reparametrize the in-plane strains. Using the entries
of I is problematic as its off-diagonal entry 𝒂1 · 𝒂2 not only encodes
the shearing angle but is also influenced by the lengths of the 𝒂𝛼 . In-
stead, we define weft-stretching 𝑠𝑥 , shearing 𝑠𝑎 , and warp-stretching
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𝑠𝑦 strains as

𝑠𝑥 =

√
I11 − 1, 𝑠𝑎 =

I12√
I11I22

, 𝑠𝑦 =

√
I22 − 1, (30)

and the combined in-plane strain 𝒔 =
(
𝑠𝑥 𝑠𝑎 𝑠𝑦

)⊤. Here, we use
the terms “weft” and “warp” to refer to the directions 𝜉1 and 𝜉2
respectively.
The difficulty with the bending strain II is that it is not possible

to construct a microscale patch with constant strain unless it is
singly curved, i.e. the rank of II is ≤ 1. We were further unable to
find a satisfactory parametrization for the space of all singly-curved
bending strains. Instead, we choose to only sample the response to
bending along two orthogonal directions. That is, we collect one
set of data with II of the form diag(𝜆𝑥 , 0), and another set with
II = diag(0, 𝜆𝑦).
The data then represent samples of the function along two sub-

spaces: one with arbitrary 𝒔 and bending only in 𝑥 , and one with
arbitrary 𝒔 and bending only in 𝑦. As described the next section, we
interpolate the data in each subspace to obtain fits Ψ𝑥 (𝒔, 𝜆𝑥 ) and
Ψ𝑦 (𝒔, 𝜆𝑦). Finally, we describe how to interpolate between them to
define the fitted energy density for arbitrary bending strain II.
Note that our choice of axis-aligned bending and stretching cor-

responds to the weft and warp directions that are dominant in the
patterns we investigate, but in general the orientation of the bases
is arbitrary.

Prior to fitting, we normalize all strains (𝑠𝑥 , 𝑠𝑎, 𝑠𝑦, 𝜆𝑥 , 𝜆𝑦) by their
maximum absolute values in the data, which ensures that stretch-
ing and bending strains are treated as equally important. We have
tried various strategies to mitigate the noise in the data induced by
buckling, including prohibiting specific buckling modes through
constraints and even penalizing yarn motion normal to the midsur-
face. However, we were unable to eliminate noise without affecting
the overall elastic response and concluded that homogenization
of micro-scale buckling is a difficult problem. As a first step, we
settled on regularizing the data by re-sampling it using moving least
squares interpolation.

6.2 Fitting and Interpolation
We define a fitting procedure for multidimensional data which cap-
tures pairwise interactions between parameters without requiring
high-dimensional sampling. Consider a function 𝑓 depending on
many parameters 𝜃1, 𝜃2, ... . Inspired by ?, we additively split it into
the form

𝑓 (𝜃1, ... , 𝜃𝑛) = 𝑓0 +
∑
𝑖

𝑓𝑖 (𝜃𝑖 ) +
∑
𝑖< 𝑗

𝑓𝑖 𝑗 (𝜃𝑖 , 𝜃 𝑗 ) . (31)

Without loss of generality, we may fix 𝑓𝑖 (0) = 0 and 𝑓𝑖 𝑗 (0, 𝜃 𝑗 ) =

𝑓𝑖 𝑗 (𝜃𝑖 , 0) = 0. Thus the one-dimensional term 𝑓𝑖 encodes the re-
sponse to𝜃𝑖 holding other parameters at zero, and the two-dimensional
term 𝑓𝑖 𝑗 encodes the residual response to both 𝜃𝑖 and 𝜃 𝑗 , i.e. the
component of 𝑓 ( ... , 𝜃𝑖 , ... , 𝜃 𝑗 , ... ) not explained by 𝑓0+ 𝑓𝑖 (𝜃𝑖 )+ 𝑓𝑗 (𝜃 𝑗 ).

Therefore, the 𝑓𝑖 𝑗 terms describe cross-modal material responses,
including stretching in two directions or simultaneous stretching
and bending. Notably, our homogenization method is capable of
sampling these cross-modal deformations.

To fit the components of (31), we measure 𝑓0 = 𝑓 (0, 0, 0, ... ), we
fit the one-dimensional 𝑓𝑖 terms using piecewise monotone cubic
splines [?], and we fit the two-dimensional residual 𝑓𝑖 𝑗 terms using
our novel extension of ? to spline patches. We also apply a heuristic
outward marching algorithm to ensure quasiconvexity. ? enforce
convexity in their fits. However, we found that this would not de-
scribe our data well, and we opted for quasi-convexity as the closest
choice. This strategy makes our results stable (see Figure 11) with
the downside of not perfectly fitting the data. Outside of the sampled
range, we linearly extrapolate the fitted splines. We provide details
for each of these steps in our supplementary material (Section ??).
Figure 12 shows data and fit for the 1D splines. Figure 13 compares
data, 1D fits, 2D residuals, and the cumulative fit.

Our method makes the simplifying assumption that there are only
pairwise interactions between parameters. What this assumption
buys us is a dramatic economy of sampling: even for arbitrarily high-
dimensional parameter spaces, our procedure only needs samples
along coordinate axes and 2D coordinate planes. When the assump-
tion is violated, however, our approach may not preserve convexity.
For example, 𝑓 (𝑥,𝑦, 𝑧) = max(𝑥2, 𝑦2, 𝑧2) is a convex function for
which our fit is nonconvex.

The above procedure is applied to the singly-curved data Ψ𝑥 and
Ψ𝑦 defined previously. Of course, the zero-curvature data points
and the 1D and 2D fitting terms not involving curvature will be
shared between both. Finally, to define our fitted energy density for
an arbitrary curvature II, we look at the eigenvalues of II, 𝜆1 and
𝜆2, and the squared cosine 𝑐2 of the angle between the eigenvector
corresponding to 𝜆1 and the x-axis. In our supplementary document
(Section ??), we show how to robustly compute these values. Now
we define Ψ(𝒔, II) as

Ψ(𝒔, II) = 𝑐2
(
Ψ𝑥 (𝒔, 𝜆1) + Ψ𝑦 (𝒔, 𝜆2)

)
+ (1 − 𝑐2)

(
Ψ𝑥 (𝒔, 𝜆2) + Ψ𝑦 (𝒔, 𝜆1)

)
.

(32)

Limitations. We found the fitting problem particularly challeng-
ing due to the complex interactions between deformation modes,
the numerical noise in the data, and especially the sensitivity of
macroscale simulations to local minima in the energy density (Fig-
ure 11). We invested a great deal of effort to design a fitting scheme
that works well for all the yarn patterns we tested, but we found
a few cases unavoidable, which we summarize below. Firstly, to
ensure a decent fit for the “stockinette” pattern, which features a
strong tendency to curl, we found it necessary to concentrate spline
control points for 2D residual terms involving bending strains more
closely around the origin (Figure 14), and to apply a higher qua-
siconvexity parameter in the marching step. We believe that this
may be caused by the far-off-center bending minimum and the addi-
tively split model thus creating local minima. Secondly, we observed
yarn-level reference simulations to exhibit symmetric rest shapes
with zero shear; to ensure that this behavior is preserved in our
macroscale simulations, we symmetrized our data with respect to
𝑠𝑎 . Finally, we disabled our heuristic quasiconvexity marching for
the two-dimensional 𝑓13 (𝑠𝑥 , 𝑠𝑦) term, which would otherwise pre-
vent us from modeling Poisson’s ratio. We refer the reader to the
supplementary material for the full details of the fitting algorithm,
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Fig. 12. One-dimensional in-plane (left) and bending (right) terms for the honeycomb pattern. We show data in blue, the fit as a green line, and spline control
points as black dots. Notice the off-center minimum for the bending terms, which corresponds to the pattern’s curved rest shape.
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Crucially, this behavior is missing from just the sum of 1D terms.

including the above modifications, as well as the raw strain-energy
data and our fitting code.
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Fig. 14. We show a simulated restshape and the plot for a representative
bending residual for the homogenized stockinette with default and modified
spline control points, and a yarn-level reference (YLC). Even though the
fit is smooth, default control point locations create artifacts at the fabric
boundary.

7 CLOTH SIMULATION
We now want to drive a thin-shell cloth simulator using the contin-
uum models fit in the previous section. The cloth is discretized as a

trianglemesh, which represents themacroscale thin shell midsurface
𝝋. Similarly, we need to discretize I and II to compute in-plane and
bending strains, (30) and 𝜆1, 𝜆2, 𝑐2, on the triangle mesh. For robust
simulation, we use implicit integration, which requires computing
the Hessian of the energy. To improve stability, we enforce positive
definiteness in the Hessian. Dynamic yarn friction is partially mod-
eled via Rayleigh damping in the continuum simulations, but we
leave the inclusion of friction into the homogenization procedure
as future work.

For each triangle, we first compute its deformation gradient

𝑭△ =
(
𝝋1 − 𝝋0, 𝝋2 − 𝝋0

) (
𝝃 1 − 𝝃 0, 𝝃 2 − 𝝃 0

)−1
, (33)

where 𝝋 𝑗 and 𝝃 𝑗 are the world-space andmaterial-space coordinates
of vertex 𝑗 , and the triangle-averaged shape operator [?]

𝚲 =
∑
𝑖

𝜃𝑖

2𝐴𝑙𝑖
𝒕𝑖 ⊗ 𝒕𝑖 , (34)

where 𝜃𝑖 is the signed angle between this and the 𝑖-th neighboring
triangle’s normals, 𝐴 is the triangle area, 𝑙𝑖 are edge lengths, and 𝒕𝑖
are vectors of length 𝑙𝑖 perpendicular to each edge and the inner
triangle normal. All quantities in (34) are computed in world-space.
With this, we compute the discrete fundamental forms as

I△ = 𝑭△
⊤𝑭△, (35)

II△ = 𝑭△
⊤
𝚲 𝑭△ . (36)

Because of (34), the degrees of freedom involved in a triangle’s
strain also include the triangle vertices of up to three neighboring
triangles. Denoting the combined degrees of freedom as 𝒒△ and
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Fig. 15. The patterns used in our results with abbreviated names.

the collected strains 𝒛 = (𝑠𝑥 , 𝑠𝑎, 𝑠𝑦, 𝜆1, 𝜆2, 𝑐2), the total energy of a
triangle is given by

𝐸△ = 𝐴 Ψ(𝒛 (𝒒△)) . (37)

Since our energies are nonconvex, their Hessians are not guaranteed
to be positive definite, which negatively affects stability. Inspired
by ?, we enforce positive definiteness by clamping the eigenvalues
of per-triangle sub-Hessians 𝜕2𝐸△

𝜕𝒒△𝜕𝒒△
to be non-negative using an

eigensolver for self-adjoint matrices in the library Eigen [?]. The
global system in the implicit timestep will then be positive definite
as a sum of the positive semi-definite sub-Hessians and the positive
definite global mass matrix.

8 RESULTS
To summarize, our pipeline first takes in a periodic yarn pattern
and elastic rod material properties, simulates the pattern subject
to various deformed boundary conditions, and records the result-
ing potential energy density. We then create a data-driven strain-
parameterizedmaterial model for each yarn pattern and simulate the
material in an existing thin shell finite element solver (ArcSim [??]).
We include pseudo-code for each step in our pipeline in a supple-
mentary document.
In our experiments, we wanted to model a variety of yarn pat-

terns with notably different topologies and macroscale material
effects. We drew several patterns from the yarn pattern database of ?
(basket2_2, satin2_3, slip_stitch_honeycomb, and cartridge_belt_rib),
and implemented a custom stockinette knit pattern of our own. Fig-
ure 15 shows the five patterns. The knitted patterns are topologically
quite different from each other and from the woven patterns, leading
to significant variance in macroscopic effects like area preservation,
resistance to stretching, and out-of-plane curling. We rescale the
patterns to have a yarn radius of 1mm and smaller variants of
the satin and stockinette patterns to 0.1mm. Table 1 lists the yarn-
level parameters for each pattern; we choose parameters to achieve
realistic-looking yarn-level simulations.
We render cloth simulated with our models using ambient oc-

clusion and normal map textures, which we create by projecting
the periodic yarn patterns. Thus, our results cannot easily generate
visible gaps between yarns as seen in Figure 14, regardless of the
quality of the homogenization. It is possible to drive the deforma-
tion of detailed yarn-level geometry using the coarser, simulated
mesh, although such a strategy may be computationally expensive
for large garments or small knits (e.g. Figure 18). We attribute the
differences between yarn-level and homogenized results in Figure 14
to both texture mapping as well as an imperfectly homogenized
model.

Table 1. Yarn-level parameters per pattern including Young’s modulus 𝐸,
the shear modulus𝐺 , the bending and twisting stiffness multiplier 𝛾 , the
collision stiffness 𝑘contact, and the density 𝜌 .

Pattern 𝐸 (Pa) 𝐺 (Pa) 𝛾 𝑘contact
( kg
s2

)
𝜌

( kg
m3

)
basket 1e5 4e4 0.1 1.2e1 1.2e2
honey 5e5 2e5 0.1 6e1 1.2e2
rib 5e5 2e5 0.001 6e1 6e1
satin 1e5 4e4 0.1 1.2e1 1.2e2
stock. 5e5 2e5 0.001 6e1 1.2e2
satin small 1e6 4e5 1 1e2 1.2e3
stock. small 1e6 4e5 1 1e2 1.2e3

8.1 Validation
To validate our homogenized macro-material models, we run side-
by-side comparison simulations between our macro-material cloth
simulator and a brute-force yarn-level cloth simulator. We compare
the behavior of a 30 cm × 30 cm square patch of material when
stretched in different directions and draped over a spherical obstacle.
Some of these comparisons are displayed in Figure 16 and Figure 1,
and all of them are included in our supplementary data.
Our homogenized yarn-level cloth models generally agree well

with the yarn-level cloth simulations, even though the various yarn
patterns behave very differently from each other: the woven ma-
terials tend to be stiffer and exhibit no tendency to preserve area
when stretched; the rib knit exhibits fairly extreme anisotropy when
stretching; the stockinette stitch curls up on the boundaries when
stretched or left to hang freely.
For the yarn-level simulations in this comparison, we used the

non-rigid motion damping of ?. Because our material models are
based on elastic properties of the cloth, we did not yet attempt to
learn damping properties. Instead, we used the continuum Rayleigh
damping model implemented in ArcSim, which we tuned to empir-
ically match the yarn-level damping model.
Note that our material models are extracted from periodic yarn

patterns, so they should be able to adequately reproduce the behav-
ior of a yarn-level simulation near the interior of the cloth. However,
knitted garments generally have different stitches or fasteners near
boundaries, which disrupts this periodic structure; indeed, to model
boundary effects in our yarn-level simulator, we effectively “glue”
the yarns together with springs that are pre-stretched in the thick-
ness direction. These boundary effects were not included in our
periodic homogenization, so we do not expect our material to be-
have perfectly near boundaries. Nevertheless, our results do show
relatively similar boundary behaviors to the yarn-level examples.

To illustrate the merits of our multi-dimensional fitting procedure
described in Section 6, we also compared ourmethod’s behavior with
andwithout two-dimensional energy terms. As seen in Figure 17 and
our supplementary data, the materials with only one-dimensional
stress response do a reasonable job of approximating the overall
stretching and bending resistance, but they fail to capture more
complex two-dimensional compensations. Notably, the 1D models
cannot capture Poisson-like behaviors, where stretching in one
direction causes the material to compress in the other.
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Fig. 16. Comparison of direct yarn-level simulation (YLC) to simulation with our homogenized continuum models (HYLC) for drapes and stretching tests of
three patterns. Our method is able to capture a wide array of phenomena such as the Poisson’s ratio of the honeycomb pattern, or the more exotic restshape
and curling under tension of the stockinette pattern at a fraction of the cost.

Fig. 17. Only fitting the one-dimensional energy terms for the same models
as in Figure 16 shows that overall draped shapes are still captured nicely
and are arguably faster and easier to fit. However, area-preservation effects
and curling under tension are modeled by two-dimensional terms and as a
result are lost in the simpler model.

Performance. The computational complexity of a yarn-level cloth
simulator scales with the number of yarn segments. In contrast, the
performance of ourmacroscale material scales with the number of el-
ements in a cloth simulator, multiplied by the cost of evaluating our
potential energy function (or its gradient). Yarn-level simulations
also invest computational resources into carefully handling persis-
tent inter-yarn collisions, either through small time steps or more
clever collision handling. Our method deals with those persistent
contacts in its preprocessing phase, and only deals with large-scale
self-collisions within the cloth solver. Because our method sidesteps
most of the performance bottlenecks in a yarn-level cloth simulator,
we expect our method to achieve a large speedup over a yarn-level
cloth, especially when the yarn density is high. Additionally, using
an implicit cloth solver allows us to take larger timesteps compared
to the explicit yarn-level solver, where computing Hessians becomes
infeasible. Although these side-by-side examples use a modest num-
ber of yarn segments, our simulator shows significant speedups

from ×3.3 to up to ×46, as seen in Table 2. Across the patterns, sam-
pling the data for fitting takes from 15min to 76min, and the fitting
itself takes less than a minute, further highlighting the cost benefit
of precomputing inexpensive simulations. The stockinette examples
in Table 2 have a higher “sec/frame” and number of vertices due to
finer adaptive remeshing needed for resolving tight curls.
Our proposed constitutive model depends on the second fun-

damental form and thus requires more computation compared to
standard bending models based on dihedral angles such as [?].

8.2 Large-scale Simulations
Because our homogenized material’s computational complexity is
now independent of the number of yarns, we are able to approxi-
mate the behavior of large garments with a high density of yarns.
Figure 19 and our supplementary data show draped cloth simulated
with models of stockinette and satin patterns rescaled to 10% of their
original size. The stitch density of these materials is one hundred
times higher than those we were able to feasibly simulate with a
yarn-level simulator, so we do not have any direct performance or
behavioral comparisons to report here.

Similarly, we are able to simulate large garments such as sweaters
and shirts (Figure 1, Figure 18). We note that these homogenized
knitted materials retain their unique material properties, like stretch-
iness (honey), anisotropic effects (rib), or curling at the bound-
aries (stockinette), despite the fact that they were simulated with
a continuum-mechanics based cloth solver. For comparison, a di-
rect yarn-level simulation of a stockinette sweater would require
over 1.7 million vertices, compared to the 76 thousand vertices in
our yarn-level validation tests. The small-stockinette shirt would
require 36 million vertices.
Because our homogenized materials rely on triangle meshes in-

stead of knitted patterns to determine their geometry, it is straight-
forward to simulate garments with more exotic shapes using our
method (Figure 1, Figure 20). We report the simulation timings for
each of these results in Table 3.
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Table 2. Simulation timings for the comparisons of direct yarn-level simulation (YLC) and with our method (HYLC). Pattern names are abbreviated. All tests
were performed for two orientations of the cloth (original and 90◦ rotation), and their videos can be found in the supplementary data. Δ𝑡 denotes the timestep
in seconds. sec/step denotes the average seconds per timestep. sec/frame denotes the average seconds per frame for a reference framerate of 30fps. # Vertices
denotes the number of vertices in yarn-level simulations, and the average number of vertices for thin-shell simulations, which are subject to remeshing.

Simulation HYLC YLC

Δ𝑡 sec/step sec/frame # Vertices* Δ𝑡 sec/step sec/frame # Vertices

basket drape Fig. 16 2.09e-04 0.46 73.46 2276 1e-05 0.13 (×5.9) 430.43 65188
basket drape 90◦ 2.09e-04 0.46 72.74 2229 2e-05 0.23 (×5.2) 381.50 65188
basket stretch Fig. 16 2.09e-04 0.50 80.58 2668 1e-05 0.17 (×7.0) 560.43 65188
basket stretch 90◦ 2.09e-04 0.52 82.96 2657 1e-05 0.24 (×9.6) 797.10 65188

honey drape Fig. 16 1.67e-04 0.41 81.91 2091 1e-05 0.36 (×14.7) 1206.40 118140
honey drape 90◦ 1.28e-04 0.42 109.65 2127 1e-05 0.39 (×12.0) 1314.72 118140
honey stretch Fig. 16 1.67e-04 0.49 98.67 2370 1e-05 0.31 (×10.3) 1017.60 118140
honey stretch 90◦ Fig. 1 1.67e-04 0.44 87.50 2376 1e-05 0.29 (×10.9) 954.20 118140

rib drape 2.09e-04 0.48 76.86 2337 5e-06 0.39 (×34.2) 2625.12 157592
rib drape 90◦ 2.09e-04 0.48 77.32 2374 5e-06 0.53 (×46.0) 3559.10 157592
rib stretch 2.09e-04 0.48 76.35 2577 5e-06 0.38 (×33.3) 2542.47 157592
rib stretch 90◦ 2.09e-04 0.47 75.07 2541 5e-06 0.45 (×39.6) 2971.27 157592

satin drape Fig. 1 2.09e-04 0.48 77.21 2297 1e-05 0.56 (×24.0) 1855.08 95040
satin drape 90◦ 2.09e-04 0.47 74.74 2246 1e-05 0.56 (×24.9) 1861.55 95040
satin stretch 2.09e-04 0.44 70.82 2500 1e-05 0.35 (×16.6) 1176.50 95040
satin stretch 90◦ 2.09e-04 0.50 79.66 2684 1e-05 0.30 (×12.4) 985.17 95040

stock. drape Fig. 16 2.09e-04 0.96 152.96 3390 1e-05 0.19 (×4.2) 643.08 76156
stock. drape 90◦ 2.09e-04 1.03 165.04 3383 4e-06 0.08 (×4.0) 652.35 76156
stock. stretch Fig. 16 2.09e-04 1.15 184.17 4415 1e-05 0.18 (×3.3) 615.83 76156
stock. stretch 90◦ 2.09e-04 0.79 126.91 3869 4e-06 0.08 (×5.4) 684.30 76156

basket satin honeycomb rib stockinette small satin small stock.

Fig. 18. We demonstrate the effectiveness and the rich behavior of our homogenized models for all of our patterns on simulations of sweaters and t-shirts.
This freeze frame highlights: stronger stretching resistance of woven fabric (basket and satin), the anisotropy of the rib, curling of the stockinette, and the folds
of the small-scale patterns.

9 CONCLUSION
This paper proposes a method for computing homogenized models
capable of simulating yarn-level effects in a thin-shell cloth solver.
Through homogenization of a non-linear shell, we are able to com-
pute homogenized responses of periodic yarn patterns to macroscale
deformations. We can then fit a regularized continuum model with-
out the need for expensive measurement equipment. We compare

our results with brute force simulations for multiple patterns on a
series of stretching and draping tests. Our method is able to capture
the rich properties of knitted fabric such as general stretching and
bending anisotropy, including Poisson’s ratio, while being an order
of magnitude faster even on moderate scales.

Limitations and Future Work. Our model is able to abstract the
yarn-level interactions into an elastic continuum; however, this
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Fig. 19. Models homogenized from higher density variants of the satin (left)
and stockinette (right) patterns at a 10% scale naturally produce more folds
when draped. Notably, the small stockinette shows small curls on the inside,
similar to cut t-shirts. Besides the scale of the folds, the larger stitch density
does not affect the performance of our method.

Fig. 20. Before and after of a bunny and a yarnmadillo simulated with our
models.

implies that we do not model localized effects such as tearing or
pulling on single yarns. To this end, combining our continuum
model with localized yarn simulation is worth investigating.
While our model captures elastic rest shapes well, we ignore

yarn-level friction and hysteresis in our homogenization procedure.
Although our method can be combined with other macroscale damp-
ing and plasticity models, we would like to explore homogenizing
viscous and plastic effects from yarn-level simulations as well. We
have left cloth-cloth and cloth-obstacle frictional contact entirely to
the continuum solver; the more recent Argus simulator [?] could
be used in place of ArcSim for improved accuracy there.
Homogenization theory assumes a small RVE compared to the

macroscale deformation. Although our co-rotated boundary condi-
tions significantly loosen this limitation by allowing large highly-
deformed configurations, the theory still imposes practical limita-
tions on pattern size and thickness. For example, extreme curvatures

Table 3. Simulation timings for large-scale simulations with timestep Δ𝑡
in seconds, average seconds per step, and average seconds per frame for a
reference framerate of 30fps.

Simulation Δ𝑡 sec/step sec/frame

satin small drape Fig. 19 3.34e-04 1.10 109.72
stock. small drape Fig. 19 3.34e-04 2.01 200.32

sweater basket Fig. 18 1.67e-03 7.40 147.62
sweater honey Fig. 18 1.67e-03 7.43 148.36
sweater rib Fig. 18 8.35e-04 5.79 231.15
sweater satin Fig. 18 1.67e-03 7.45 148.79
sweater stock. Fig. 18 1.67e-03 7.44 148.50
shirt stock. small Fig. 18 8.35e-04 3.74 149.19
shirt satin small Fig. 18 1.67e-03 4.96 99.06

scarf Fig. 1 8.35e-04 0.91 36.31
yarn bunny Fig. 20 6.68e-04 1.23 61.20
yarnmadillo Fig. 20 5.57e-04 11.16 668.24

at the macroscale may cause excessive self-intersections at the mi-
croscale. Similarly, approximating voluminous yarn patterns with a
triangle-based cloth solver may make the garment look unrealisti-
cally thin.

Our fitting procedure based on regularized splines aims to strike a
balance between generality and robustness. Although we present a
number of heuristics to increase the quality of the fit for nonconvex
data, we do not offer any provable performance guarantees, and
the approach is tailored to our application domain. Our focus in
this work was to find one approach that yields stable simulations
and reproduces the essential qualitative features of yarn-level cloth.
Due to various approximations in fitting, we do not expect a perfect
quantitative match. It would be interesting to devise experiments
similar to real-world devices for measuring cloth material response.
We hope that these aspects can be improved further in future work.

Finally, our homogenization procedure is not limited to yarn-level
cloth and could be useful for animating other complicated multi-
physics materials like layered quilts, layered elastic materials [?],
skin tissue, and layered deployable shells [?]. Outside of computer
graphics, our technique may be applicable to the homogenization
of composite materials, micro-structured shells, and finite-element
simulations. This approach may also be helpful as an intermediate
step in inverse problems like the design and fabrication of functional
fibrous materials.
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A ELIMINATION OF PERIODIC VARIABLES
The constraints on periodic vertex positions (20) and edge twists
(25) can be concatenated into one constraint

𝑪𝒒 = 𝒅 . (38)

We eliminate periodic variables by parametrizing the nullspace of
(38). We found that simply using a QR factorization for this is not
numerically robust and produced dense matrices. However, we can
exploit that each periodically copied degree of freedom is used in
exactly one (sub-)constraint. As such, we can write 𝑪 as

𝑪 =
(
𝑰 𝑨

)
𝑷 , (39)

where 𝑷 is a permutation matrix that permutes the columns of 𝑪 ,
splitting it into a left identity block 𝑰 and a sparse right block 𝑨;
i.e., we bring the constraint matrix into reduced row echelon form,
where the columns of𝑨 span the kernel of 𝑪 . In our case, the kernel
represents exactly the original degrees of freedom that are copied.
For our periodicity constraints, the matrix is of the form

(
𝑰 𝑨

)
=

©­­«
𝑰3×3 −(𝑹+) (𝑹−)⊤

1 −1
. . .

. . .

ª®®¬ . (40)

Note that 𝑷 splits 𝒒 into free variables 𝒚 and copies 𝒒̂copy:

𝑷𝒒 =

(
𝒒̂copy
𝒚

)
. (41)

Then, we have

𝑪𝒒 = 𝒅 (42a)(
𝑰 𝑨

)
𝑷𝒒 = 𝒅 (42b)(

𝑰 𝑨
) (

𝒒̂copy
𝒚

)
= 𝒅 (42c)

𝒒̂copy = −𝑨𝒚 + 𝒅, (42d)

and

𝒒 = 𝑷⊤
(
𝒒̂copy
𝒚

)
(43a)

= 𝑷⊤
(
−𝑨𝒚 + 𝒅

𝒚

)
(43b)

= 𝑷⊤
(
−𝑨
𝑰

)
𝒚 + 𝑷⊤

(
𝒅
0

)
(43c)

= 𝑪̃ 𝒚 + 𝒅 . (43d)

Finally, we need to compute the initial 𝒚 from 𝒒. For generality,
we consider the case when 𝑪𝐿𝒒 ≠ 𝒅𝐿 and find 𝒚 as

min
𝒚

���𝑪̃𝒚 + 𝒅 − 𝒒
���2 s.t. 𝑪𝐿 (𝑪̃𝒚 + 𝒅) − 𝒅𝐿 = 0, (44)

the solution of which is given by(
𝑪̃⊤𝑪̃ 𝑪̃⊤𝑪𝐿⊤

𝑪𝐿 𝑪̃ 0

) (
𝒚
𝝀

)
=

(
𝑪̃⊤ (𝒒 − 𝒅)
𝒅𝐿 − 𝑪𝐿𝒅

)
. (45)
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