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CrossMark
Abstract
In the computation of the material properties of random alloys, the method of
‘special quasirandom structures’ attempts to approximate the properties of the
alloy on a finite volume with higher accuracy by replicating certain statistics of
the random atomic lattice in the finite volume as accurately as possible. In the
present work, we provide a rigorous justification for a variant of this method
in the framework of the Thomas—Fermi—von Weizsacker (TFW) model. Our
approach is based on a recent analysis of a related variance reduction method
in stochastic homogenization of linear elliptic PDEs and the locality properties
of the TFW model. Concerning the latter, we extend an exponential locality
result by Nazar and Ortner to include point charges, a result that may be of
independent interest.

Keywords: random material, Thomas—Fermi—von Weizsacker model, variance
reduction, density functional theory,
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1. Introduction

In material science, direct simulations based on density functional theory [14, 15, 21] are
currently limited to hundreds to thousands of atoms and therefore to material samples just
about one order of magnitude larger than the atomic length scale (see e.g. [22]). Multiscale
approaches—employed for example in the simulation of dislocations [9, 19, 25]—rely on
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Figure 1. A simple example of a random atomic lattice, the different atomic species
being indicated by the colours red and blue (left). An illustration of the method of rep-
resentative volumes (right): for ab initio computations of material properties, a sample
of microscopic extent must be chosen.

an extrapolation of the elastic properties of the material from such microscopic samples to
larger scales, a concept also known in the context of continuum mechanics as ‘method of rep-
resentative volumes’. While for materials with a periodic lattice the computational problem
on the atomic scale may often be simplified to a problem on a single periodicity cell [3, 9,
19, 22, 25], such a simplification is no longer possible for materials with random atomic lat-
tices like random alloys (see figure 1 for an illustration). As a consequence, for random alloys
the atomic-scale samples must be chosen significantly larger, giving rise to a computationally
costly problem.

For the computation of the effective properties of random alloys, an approach called ‘special
quasirandom structures’ (SQS) has been proposed by Zunger et al [29] to increase the accu-
racy of DFT computations without increasing computational effort. The key idea of the method
of special quasirandom structures is to construct a periodic configuration of atoms with finite
but large periodicity cell (‘superlattice’) which reflects certain statistical properties of the ran-
dom atomic lattice particularly well—like the proportion of the atomic species, the proportion
of nearest-neighbor contacts of the various atomic species, and so on (see figure 2 for an
illustration). Further developments and applications of this method of ‘special quasirandom
structures’ may be found in [27, 28]. Related approaches have been employed in the context
of homogenization in continuum mechanics [1, 2, 23].

Inspired by the method of special quasirandom structures, in the continuum mechanical con-
text of homogenization of random materials a selection approach for representative volumes
has been proposed by Le Bris, Legoll, and Minvielle [16]: This selection approach proceeds by
considering a large number of microscopic samples of the random material and selecting the
sample that is ‘most representative’ for the material as measured by certain statistical quanti-
ties, like for example the volume fraction in the case of a two-material composite. The effective
material properties are then approximated by numerically evaluating the cell formula provided
by homogenization theory on the selected sample. In the context of stochastic homogenization
of linear elliptic PDEs —V - (a-Vu) = f, for the computation of the effective (homogenized)
coefficient the selection approach has been shown to yield an increase in accuracy of up to one
order of magnitude in a numerical example with ellipticity ratio 5 [16], while requiring negligi-
ble computational effort. Recently, a rigorous mathematical analysis of the selection approach
by Le Bris, Legoll, and Minvielle in the context of homogenization of linear elliptic PDEs has
been provided by the first author [11].

The main goal of the present paper is to show that the selection approach of Le Bris, Legoll,
and Minvielle [16]—which is conceptually related to the method of special quasirandom

5734



Nonlinearity 33 (2020) 5733 J Fischer and M Kniely

structures of Zunger et al [29]—also allows for an increase of accuracy in the computation
of the effective elastic properties of random atomic lattices in the context of orbital-free den-
sity functional theory (orbital-free DFT). More precisely, we neglect exchange—correlation
energy and consider the approximation of effective energies of random atomic lattices in the
framework of the Thomas—Fermi—von Weizsacker (TFW) model. In the TFW model, for a
given nuclear charge distribution m the associated electronic density p of the ground state is
determined by minimizing the TFW energy

1
/CW|V\/5|2 + Crep* + E(m — p)odx

with the electric potential ¢ being subject to the Poisson equation
—A¢ = 4n(m — p).

By rescaling, we may henceforth assume that Cyw = 1 and Crg = 1. We recall that it is con-
venient to reformulate the TFW model in terms of the square root of the electronic density
u ;= ,/p. With this notation, the Euler-Lagrange equation for the TFW model reads

w2t - gu=, (1a)

— A¢ = 4dm(m — uz). (1b)

In orbital-free DFT, further contributions accounting for exchange and correlation energy are
typically added to the TFW energy (and, correspondingly, to the Euler—Lagrange equation).
In the present work, we shall neglect those terms. We will also assume that the positions of
the nuclei are given a priori. While in a more realistic model the positions of the nuclei would
be determined by energetic relaxation, the question of crystallization in variational models of
interacting atoms is a challenging topic on its own, with positive answers currently restricted
to rather elementary (mostly non-quantum mechanical) models; see e.g. the review [6]. For
this reason, we restrict ourselves to the aforementioned setting of fixed nuclei positions. For
an overview of the mathematical theory of the TFW model, we refer to [7] and the references
therein.

In the framework of hyperelasticity the deformation of an elastic body is determined by min-
imization of the total (elastic and potential) energy. For an atomic lattice, the elastic energy is
given as the overall energy of electrons and nuclei. In a multiscale approximation, the macro-
scopic deformation of the elastic body is approximated on the atomic length scale by affine
deformations. In many cases, for a macroscopically affine deformation the state of minimal
energy of the atomic lattice is given by an approximately affinely deformed atomic lattice (a
principle known as the Cauchy—Born rule, see e.g. [8, 12]). The associated effective (homoge-
nized) elastic energy density is then given by the thermodynamic limit (i.e. the ‘infinite-volume
average’) of the energy of the affinely deformed atomic lattice. In other words, in the context of
the TFW approximation the effective elastic energy density is given as the thermodynamic limit
of the TFW energy, i.e.—up to subtracting the self-energy of point charges—by the quantity

Es = lim Vo + p°2 +

R—o0 [7R,R]

where the nuclear charge distribution m has been subjected to an appropriate affine change of
variables to account for the affine deformation of the lattice. Note that the almost-sure existence
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Figure 2. An illustration of the method of special quasirandom structures: an L-periodic
‘superlattice’ (with L > 1) is built to reflect the statistical properties of the random mate-
rial particularly well—like the percentage of atoms of the two species, the statistics
of nearest-neighbor configurations, the statistics of configurations of three neighboring
atoms, and so on.

of this thermodynamic limit has been established for certain random lattices in [5]; see also [4,
7] for an overview and related questions. Under our main assumptions (AO0)—(A3) below, the
almost sure existence of the limit (2) could also be shown by an argument similar to our proof
of theorem 3.

In practical computations of the effective energy (2), the infinite-volume average in (2) must
be replaced by an average over a finite volume, say, a box of the form [0, L], an approach also
known in the context of continuum mechanics as the method of representative volumes. Note
that in this setting one must specify appropriate boundary conditions for p on [0, L]¢. We shall
denote the resulting finite-volume approximation for E., by ERVE.

As boundary layer effects may negatively impact the rate of convergence (in the length L)
of the representative volume approximations EXVE towards the thermodynamic limit E,,, (see
for instance [11] for a brief discussion of the analogous problem in the context of periodic
homogenization of elliptic PDEs), it is desirable to work with periodic representative volumes.
In the context of nuclear charge distributions m arising from random lattices, this requires the
existence of a periodization of the probability distribution of the nuclear charges m, that is
an L-periodic variant m of the probability distribution of m (see for instance figure 2 for an
illustration). Note that care must be taken to align the definition of the representative volume
with a possible underlying periodic structure. For a more precise explanation of this notion of
periodization, see the discussion preceding conditions (A3,)—(A3.) below. From now on and
for the rest of the paper, we will assume that the representative volume approximation EX'E
for the effective energy density E,, has been obtained by evaluating the averaged TFW energy
(see (6) below) on such a periodic representative volume.

Our main result—theorem 3—states that the selection approach for representative volumes
of Le Bris, Legoll, and Minvielle [16] increases the accuracy of approximations ELRVE, at least
for a wide class of random nuclear charge distributions: Instead of choosing a representa-
tive volume (that is, an L-periodic nuclear charge distribution) uniformly at random from the
(periodized) probability distribution, it is better to preselect the representative volume to be
‘particularly representative’ for the random alloy in terms of certain basic statistical quantities
like the proportion of different types of atoms in the representative volume, the proportion of

5736



Nonlinearity 33 (2020) 5733 J Fischer and M Kniely

nearest-neighbor contacts of certain types in the representative volume, and so on. We denote
the resulting approximation for the effective energy density by E*™RVE, In theorem 3 we show
that the approximation E*"™RVE is typically more accurate than the approximation EXVE, From
a mathematical viewpoint, the interest in our main result is twofold:

e [t provides a rigorous justification of a mathematically more precise version of the method
of ‘special quasirandom structures’ in a quantum mechanical model, the setting in which
these concepts were first developed [29].

e It provides a first example of a nonlinear PDE for which the selection approach for
representative volumes of Le Bris, Legoll, and Minvielle [16] can be proven to be
successful.

Let us briefly comment on the mechanism for the gain in accuracy achieved by the method
of special quasirandom structures. The leading-order contribution to the error in the method
of representative volumes consists in fact of fluctuations, while in expectation the method of
representative volumes is accurate to much higher order. In fact, in the case of the TFW model
the systematic error of the method of representative volumes decays even exponentially in the
size of the representative volume

|E[EFVE] — Eo| < Cexp(—cL).
At the same time, the fluctuations display only CLT scaling behaviour
|EEVE _ E[EEVE” ~ L*d/2’

that is they behave like the fluctuations of the average of L i.i.d. random variables. Thus, a
variance reduction method—a method to reduce the fluctuations of the approximations EX'E
while mostly preserving the expected value E[ERVE]—is expected to lead to an increase in
accuracy.

The selection of ‘particularly representative’ material samples may be viewed as such a
variance reduction method: in fact, we shall prove that the joint probability distribution of
the effective energy ERVE and statistical quantities like the percentage of atoms of a certain
species in the representative volume (and/or quantities like the percentage of nearest-neighbor
configurations of two given atomic species, etc.) is close to a multivariate Gaussian. Condition-
ing on the event that the auxiliary statistical quantity—which we shall denote by F—is close
to its expected value then reduces the variance of the computed energies EX'E, provided that
EXVE and the auxiliary quantity are nontrivially correlated (see figure 3). At the same time, the
expected value E[ERVE] is not changed much by selecting only representative volumes subject
to the condition that F is close to its expected value.

The main challenge in the proof is the derivation of the quantitative multivariate normal
approximation result for the joint probability distribution of the energy EX'E and the statistical
quantities F of the representative volume. Just like in [11], we make crucial use of the locality
properties of these quantities of interest, which allow for a quantitative (multivariate) normal
approximation. In [11], in the context of the homogenization of the linear elliptic PDE —V -
(a-Vu) = f, alocalization result for the effective energies

veH! ([0,L]4)

per

afBe- &= inf ][ a(w, )€+ Vo) - (€ + Vv)da
0,27

has been established: in [11], the contribution of terms with dependency range ~ ¢ to the overall
energy aRVE¢ - € is seen to be essentially of the order ¢~ which is essentially twice the order of
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Figure 3. The joint probability distribution of the approximations for the effective
energy EXVE and auxiliary statistical quantities F like the percentage of atoms of a
certain species is close to a multivariate Gaussian (left). Conditioning on the auxiliary
statistical quantity J being close to its expected value then reduces the variance of ERVE,
provided that the two random variables are nontrivially correlated (right).

the fluctuation scaling 2, By means of a ‘multilevel local dependency structure’ [10], this

allowed for the derivation of a quantitative multivariate normal approximation result for the
joint probability distribution of the representative volume approximation aX'E of the effective
coefficient and auxiliary statistical quantities like the averaged coefficient F := 35[07 L) adzx
[11].

Due to the strong—exponential—localization properties of the TFW model (see [20] for the
case without point charges and theorem 5 below for the general case), we in principle would not
even need to appeal to the ‘multilevel local dependence structure’ introduced in [10, 11], but
could directly work with a multivariate central limit theorem with a standard local dependence
structure. However, it will be convenient for us to employ the abstract variance reduction result
of lemma 7, which is established in [10, 11].

Notation. We use standard notation for Sobolev spaces: by W'*(Q) we denote the space
of functions v € L7(£2) whose distributional derivative Vv also belongs to LF(f2), along

with the usual norm ||v||€vl,p(9) = [olv]? +|Vo|Pdx. As usual, we use the abbreviation

H'() .= W"*(Q). Given L > 1, by ngr([O, L]%) we denote the space of L-periodic Sobolev
functions v € H'([0, L]9).

By H.(R?) we denote the space of functions v:R? — R whose restrictions v|g, )
belong to H'(Bi(x)) for all x € RY, with a uniform bound on the local Sobolev norm

HU”le (&, = SUPxemd fB1 (x)|11|2 + |Vo|?dx < oo. Similarly, by L2, (R?) we denote the space
of measurable functions v : R — R with finite norm ”U”izloc(Rd) = SUP, e [, [V]7 dx < o0,

By B,(x) we denote the ball of radius r around x € R¢. We also use the shorthand notation
B, := B,(0). By C we will denote a generic constant depending only on quantities like p, M, and
wy (see the assumptions (A1) and (A3) below), whose precise value may vary from occurrence
to occurrence.

For a set M, we denote by §M the number of its elements.

For two vector-valued random variables X and Y, we denote the covariance matrix as usual
by Cov[X, Y]. We also use the notation Var X as a shorthand notation for Cov[X, X ].

2. Main results

In this article, we prove that the selection approach for representative volumes of Le Bris,
Legoll, and Minvielle [16] leads to an increase in accuracy when calculating effective energies
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for random lattices in the context of the Thomas—Fermi—von Weizsacker model (1), at least for
a wide class of random nuclear charge distributions. For a precise statement of our assumptions
and our main result, see (A0)—(A3) and theorem 3 below.

Under more general conditions, we establish an exponential locality result for the TFW
model, an auxiliary result that generalizes a corresponding result by Nazar and Ortner [20] and
that may also be of independent interest. For a more precise statement of the assumptions and
the result, see (A1) and theorem 5 below.

Consider any Bravais lattice and denote by F € R3** a matrix whose columns are given
by the corresponding three primitive vectors. Our key assumptions on the nuclear charge
distribution m are as follows.

(A0) Let m be a random nuclear charge distribution (a—random—Iocally finite nonnegative
Radon measure) on R3. In other words, let a probability space (2, 7, P) be given along
with a random variable m taking values in the space of locally finite nonnegative Radon
measures on R?.

(A1) Suppose that uniform local finiteness of the nuclear charge distribution m holds in the
following sense: there exist constants p > 0, M > 0, and wy > 0 such that m is of the
form

m=m,+ chéy

yeP

for some m, = m.(m) € L (R*) with m. > 0, some ¢, = ¢,(m) > 0, and some set

P = P(m) C R satisfying |x — y| > 4p forall x,y € P with x # y, and in addition the
estimate

1

2
sup ( / m? dy) + sup Z cﬁ <M
B (x) ’

x€R3 x€R3 yEPNB (x)

holds. Furthermore, suppose that an averaged lower bound for the nuclear charge
density of the form

inf ][ mdy > wy
zER3 Br(z)

holds for all R > w, ' for some wy > 0.

(A2) Let m be stationary, i.e. suppose that the law of the shifted charge distribution m(- + x)
coincides with the law of m for every x € FZ?.

(A3) Let m have a finite range of dependence r > 0, i.e. suppose that for any two Borel
sets A, B C R® with dist(A,B) > r the restrictions m|4 and m|p are stochastically
independent.

We shall also use the concept of a periodization of an ensemble of nuclear charge distribu-
tions m (where an ensemble of nuclear charge distributions is defined as a probability measure
on the space of nuclear charge distributions): a periodization of an ensemble of nuclear charge
distributions is an ensemble of nuclear charge distributions 7z which are almost surely LFZ>-
periodic for some L > 1 and for which the probability distribution of 7|, FlO.LP coincides

with the probability distribution of m|, FlO.LP for all x € R*. Given such a periodization n,
we substitute (A3) by (A3,)—(A3.):
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(A3,) The nuclear charge 7 is almost surely LFZ3-periodic for some
L>1.

(A3y) There exists a finite range of dependence r > 0 such that for any two Borel LZ>-
periodic sets A, B C R3 with dist(A, B) > r the restrictions |4 and rn|p are stochasti-
cally independent.

(A3.) There exists a nuclear charge distribution m satisfying (A1), (A2), and (A3) such

that for any xo € R3 the law of the restriction ﬁ1|x0 LFIO0LP coincides with the law of

My po.Lp-

Let us briefly comment on our main assumptions. The condition (A1) is nothing but a uni-
form local upper and lower bound on the charge distribution of the nuclei. The condition (A3)
is a strong decorrelation assumption restricting all stochastic dependencies to a scale r > 1.

The condition (A2) imposes a statistical homogeneity assumption on the random lattice.
Since we want to include the model case of a periodic lattice like Z> whose sites are occupied
by random atomic nuclei (i.e. at whose lattice sites there is a random multiple of a Dirac charge;
see figure 1) in our assumptions, we cannot assume translation invariance of the law of the
nuclear charge distribution m with respect to arbitrary shifts x € R?. Instead, in the case of
the lattice Z> we have to restrict the translation invariance to discrete shifts x € Z>; as we are
interested in the effective elastic properties and as most (elastic) affine deformations of Z3
destroy the Z* periodicity, we have to cover the case of an arbitrary Bravais lattice FZ? in our
assumption (A2).

Let us now give a precise definition of the TFW energy and its thermodynamic limit.

Definition 1. Let m be a nuclear charge distribution satisfying the assumption (A1). For a
set @ C R? with finite volume, we introduce the Thomas—Fermi—von Weizsicker energy

Eglm] = /Q Va2 + ¥ + %(mc — ) dx+ Y el — ) 3)

xePNQ

where (u, ¢) € H},.(R?) x L2,,.(R?) is the (unique) solution of the TFW equations (1) (see
theorem 16) and where ¢, € L*(R?) is the (decaying) solution of —A¢, = 4mc,d, on R3,
We define the thermodynamic limit E,, of the energy density—the effective energy

density—as
Es = lim L7 Ejg p[m] )

if the limit exists for almost every m and if it is independent of the realization m.

Let m be a nuclear charge distribution satisfying the assumptions (A0)—(A3). Given L > 1,
let m be a periodization of the probability distribution of the nuclear charge distribution m
subject to (A3,)—(A3.). We define the approximation ERVE of the effective energy density E.,
by the representative volume method as

(e — i) dx+ Y Edd— d(x)

xePNFP,L)?

1 10
ERVE . / Vil? + ¥
L L3 detF F[O,L]3| u| + " +

N —

where (i1, ¢) € H!\..(R*) x L2, .(R?) denotes the (unique) solution of the TFW equations (1)
given the nuclear charge distribution 72. Note that both i7 and gz~5 inherit the LFZ?-periodicity of
the nuclear charge distribution m [7].

Finally, let N € N, let F be a measurable RN-valued function of the (periodized) nuclear

charge distribution 712, and let § > 0. We then define E;*"RVE to denote the approximation of
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the effective energy density E, using the selection method for representative volumes with the
selection performed according to the criterion

|F — ELF]| < 61732, ©)

In other words, the probability distribution of Ef"RVE is given as the conditional probability
distribution of ERVE given the event (5).

Letus briefly discuss the TFW energy (3). The first two terms in (3) correspond to the kinetic
energy of the electrons in the Thomas—Fermi—von Weizsacker approximation. The third and
fourth term correspond to the Coulomb energy. Here, the contribution from the nuclear charges
m has been split into two terms, representing the absolutely continuous part m,. and the singular
part > ¢,d, of the nuclear charge distribution. The presence of the difference ¢ — ¢, in the
fourth term in (3) corresponds to the usual subtraction of the self-energy of point charges. Note
that the difference ¢ — ¢, satisfies the PDE

—A(p— ) =4 [ me—i + Y 0, |, ©)
yeP
yEx

which by ¢ — ¢, € H*(B,(x)) = CO*%(B,)(x)) ensures that the pointwise evaluation of ¢ — ¢,
at the point x in the above definition is indeed meaningful.

We next state additional assumptions and notation which will be needed to formulate our
main result on the analysis of the selection approach for representative volumes.

Main Assumptions 2. Consider a probability distribution of nuclear charges m on R3
satisfying (A0), (Al), (A2), and (A3). Let L € N, L > 2, and assume that there exists an L-
periodization m of the probability distribution of m subject to (Al), (A2), and (A3,)—(A3.).
Let F(m) = (Fi(m), ..., Fy(m)) (for some N € N) be a collection of statistical quantities of
the nuclear charge density m which are subject to the conditions of definition 4 with K <
Co and B < Cy|logL| 0 for some Cy > 1. Suppose that the covariance matrix of F(in) is
nondegenerate and bounded in the natural scaling in the sense

L731d < Var F(in) < CoL~1d @)

using the constant Cy from above. We introduce the condition number k of the covariance
matrix of (ERVE, F(m))

r =t (Var(EQ'F, F(i)))

and the ratio rvy between the expected order of fluctuations and the actual fluctuations of the
approximation EXVE

L73
~ Var ERVE’
Let us briefly mention that the following statistical quantities F satisfy the conditions of

definition 4 below and are therefore admissible choices in our main result (i.e. in theorem 3
below):

"Var -

e The density of nuclei of a specific type

Fra=detF'L3{x e PNF[0,1)*: ¢, = a}.
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e The density of nearest-neighbor contacts of two specified types of nuclei

Frap = det F~'L734 {(x, 9 ePnF[0,L)}

xP: cy=a, ci =0, x_jc:Fejforsomel<j<3}

in case that the nuclei are arranged on the lattice FZ>.

e Similar statistics of configurations of three or more neighboring atoms or corresponding
quantities for more general atomic lattices.

Note that it is precisely these type of statistics of the random atomic lattice that are
considered in the original formulation of the method of special quasirandom structures [29].

We are now in a position to formulate our main result, the gain in accuracy by the selection
approach for representative volumes in the context of the TFW model for random alloys. Note
that our main result comprises essentially three assertions:

e The increase in accuracy of Ej"RVE (as compared to ERVE) (10), which is achieved via the
reduction of fluctuations by essentially the fraction of the variance of ERVE explained by
the statistical quantities F.

e The higher-order approximation quality (9) of the expected value E[E{RVE],

e The lower bound (12) for the probability that a randomly chosen nuclear charge distribu-
tion m meets the selection criterion (8).

Theorem 3. Let the main assumptions 2 be satisfied. Denote by EXVE the approximation for
the effective energy Eo, by the standard representative volume element method and by E;*™®VE
the approximation for Ey, by the selection approach for representative volumes introduced
by Le Bris, Legoll, and Minvielle [ 16] in the case of a representative volume of size L. Fur-
ther assume that in the selection approach, the representative volumes are selected fom the
periodized probability distribution according to the criterion

|\ Fiti) — E[Fi()]| < 6L~ 8)

prallie{l,....N} and some 6 € (0, 1] sarisfying N > CL’3/2|log L|C. Then, the selection
approach for representative volumes is subject to the following error analysis:

(a) The systematic error of the approximation Ei*™®VE satisfies
scl-RVE Cr¥? 4 c
|E [EfRVE] — Exo] < L |log LIC. 9)

N

(b) The variance of the approximation E*™RVE is bounded from above by

Var ES-RVE Ck3ryy
TERVE <1—(1—8pP + TVL 32| 1og L)€ (10)
L

where |p|* is the fraction of the variance of EXVE explained by the F(in). In other words,

|p|? is the maximal squared correlation coefficient between EX'E and any linear combi-
nation of the F(m). This explained fraction of the variance is given by the expression

P = Cov[ERVE, F(im)](Var F (i)~ 'Cov[F(in), ERVE]
Pr= Var ERVE

. (11)
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(¢) The probability that a randomly chosen nuclear charge distribution m satisfies the
selection criterion (8) is at least

P[|F (i) — E[F(m)]| < 6L = e(N)s". (12)
We next state our precise assumption on the statistical quantities JF.

Definition 4 (similar to [10, definition 3]). Let L > 2, and consider a probability distribu-
tion of LFZ3-periodic nuclear charges i on R? satisfying (A1), (A2), and (A3,)—(A3,). Let
X = X[m] be a random variable of the periodized nuclear charge. We say that X is a sum of
random variables with multilevel local dependence if there exist random variables X;’ = X;’ [m],
0<n<1+logyLy€c2'FZ°NF [0, L), and constants K > 1 and B > 1 with the following
properties:

e The random variable X][/n] only depends on 7], , logy LF[~27,27] -
o We have

1+logy L
X= > >ooxn
n=0  ye2nF73nFp,L)3
e The random variables satisfy almost surely

|X1| <BL™.

Our proof of theorem 3 makes use of the following exponential locality result for solutions
to the TFW equations, which extends a similar locality result of [20] to include point charges
and which may be of independent interest.

Theorem 5. Let m; and my be two nonnegative nuclear charge distributions (i.e. non-
negative locally finite Radon measures) subject to the assumption (Al). Denote by (u;, ¢1) €
H! (R x L2 (R and (uz, $2) € HY (R®) x L2 (R®) the corresponding solutions to the
TFW equation (1). Then the perturbations of the electronic density w:=u, — uy and the
potential ) = ¢, — ¢, decay exponentially away from the perturbation of the nuclear charge
distribution ém:=my — my. More precisely, there exist constants C = C(p,M,wy) > 0 and

v = ~(p, M,wp) > 0 such that for all y € R the estimate

3
/ w? + [Vw + 47+ n| Vo[ + 0> [0 | e dx
R3

ij=1

—y di Sm),y
< Ce™? ist(supp(dm).y)

holds, where the cutoff n (0 < n < 1) is defined in assumption 9 below.

The following proposition comprises the exponential locality result for the TFW energy.
Given two nuclear charge distributions m; and m;, the difference between the values of the
TFW energy evaluated for m; and m, within the domain Q, exponentially decreases with the
distance between supp(m; — m;) and Q.

Corollary 6. Let assumption 9 be satisfied. Then, there exist constants C = C(p, M, wq) > 0
and ¢ = c(p, M,wo) > 0 such that for any cube Q, C R? with unit volume the estimate

|EQ1 [m] — EQ1 [m2]| < CefcdiS‘(SuPP(WH*W), o) (13)

holds true.
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3. Simulation of the selection approach for the TFW equations

In order to illustrate the applicability of the selection approach by Le Bris, Legoll, and Min-
vielle [16] in the context of orbital-free DFT, we calculate the energy per atom of an AITi
random alloy in the simplified case of the TFW model. We assume that both constituents of
the AlTi random alloy appear with the same probability of 0.5 at each lattice site; as a further
simplification, we avoid the use of pseudopotentials. Such random AlTi alloys have also been
investigated in [27], but in the context of a molecular mechanics model for the interatomic
interactions.

We subsequently compare the performance of the selection approach for RVEs and the
standard RVE method by calculating the TFW energy per atom of random AlTi configurations
on RVEs of different size. To this end, we evaluate the TEFW energy per atom on 10 completely
randomly chosen configurations and 10 random configurations satisfying a selection criterion
discussed in a moment. This procedure is carried out on RVEs with length aL and L € {2,3,4}.
Concerning the selection criterion for RVEs, we use the criterion (8) with F being the density
of Al atoms within the RVE. Employing the notation from the preceding chapters, we set

F=(aL)34{x e PN[0,aL)’ : c, = Al}.
The selection criterion now reads
t{x € PN[0,aL)’ : c, = Al} — Ay| < d(al)*?

where § > 0 remains to be fixed, and where A; := 2L is the expected number of Al atoms
within an RVE of length aL (note that the unit cell of an fcc crystal contains four distinct
atoms). In the simulations below, we have chosen ¢ := 2(3a)’3/ 2~ 0.02. For L =2, this
implies d(aL)*/? ~ 1.09 which basically corresponds to the selection criterion

t{x € PN[0,2a)*: c, = Al} — 16/ < 1.

By the definition of d, we exactly arrive at the condition
l#{x e PN[0,3a)* : c, = Al} — 54| <2

for L = 3. As 6(4a)*? ~ 3.08, the criterion for L = 4 basically coincides with
t{x € PN[0,4a): ¢, = Al} — 128] < 3.

The quality improvement of the selection approach for approximating the effective TFW
energy of a random AlTi alloy is apparent from figure 4 even though each data point corre-
sponds to only 10 underlying atomic configurations. In particular, the variance of the measure-
ments of the TFW energy is smaller by a factor of ~10 compared to the standard approach.
The variance reduction property of the selection method is also visualized in figure 5, which
depicts the distribution of 40 calculated TFW energies for both the standard and the selec-
tion approach. While the TFW energy is close to a Gaussian distribution for the standard RVE
method, this is not the case within the selection approach (for which the distribution of the
TFW energy basically approximates a truncated Gaussian confirming the analytic results from
the proof of [11, theorem 2]).

Let us finally briefly comment on the employed numerical scheme. For a given distribution
m of nuclear charges, we calculate (u, ¢) by solving the discretized nonlinear PDE (1) using a
fixed-point iteration. Our discretization is based on P1 finite elements; we use local refinement
of the mesh near the point charges.
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Average of the TFW Energy Variance of the TFW Energy
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Figure 4. Left: the mean TFW energy obtained for different sizes of the RVE using
the standard RVE method (blue) and the selection approach for RVEs (red). Right: the
variance of the TFW energy within the same setting.
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Figure 5. Histogram plots for the TFW energy. Note that the TFW energy is approxi-
mately normally distributed in the case of the standard RVE method.

4. Analysis of the method of special quasirandom structures

The following lemma serves as the main technical tool to prove theorem 3. In fact, it is an
abstract version of [11, theorem 2]: one may adapt the proof of [11, theorem 2] in a one-to-one
fashion to establish lemma 7.

Lemma7 Letd NeN, d>2, N>1, Cy>1,L>2, and let C > 0 denote a generic
constant which only depends on d, N, and Cy as well as on K and B from definition 4. Let
Z=(Zy,Z,...,Zy) be avector of random variables. Suppose that each Z;, i € {0, ...,N}, is
a sum of random variables with multilevel local dependence according to definition 4. Assume
that the covariance matrix of (Zy, . . ., Zy) is nondegenerate and bounded in the natural scaling
in the sense that

L™1d < Var(Z,, ..., Zy) < CoL™1d.

Let § € (0, 1] satisfy 8" > CL™%/ *llog L|C, and let Zy s be a random variable whose law
coincides with the probability distribution of the random variable Z, conditioned on the event
|Z; — E[Z]| < L™ foralli € {1,...,N}.
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Introduce the condition number k of the covariance matrix of (Zy, . . ., Zy),
k =k (Var(Zy, . ..,2Zy)),
and the ratio ry, between the expected order of fluctuations and the actual fluctuations of Zy

L*d
= Var Zo

I'var -

Then, the following estimates hold true:

(a) The difference of the expected values of Zy s and Zy satisfies

3/2
E|Zosa] —E[Z]] < 5 L4 og L (14)
: g

oN

(b) The variance of Zy s is bounded from above by

Var ZO,sel
Var 7

Cr3/? I'Var

L= (= @)pl* + =L log L

where |p|?* is the fraction of the variance of Zy explained by (Zy, . . ., Zy). In other words,
|p|? is the maximal squared correlation coefficient between Zy and any linear combination

of the Z;, i € {1,...,N}. This fraction of the variance of Zy explained by Z, ..., Zy is
given by the expression

o= Cov[Zo, (Zy,....ZWI(Var(Z,, ..., Zy) " 'Cov[(Zi, . . ., Zn), Zo]
Pl Var Z, ’

(¢) The probability that (Z,, . . ., Zy) satisfies the imposed selection criterion is at least

P[|(Z,....2Zy) — El(Z1, . ... Z)]| < SL™Y?] > c(N)&".

By combining the locality properties of the TFW model established in theorem 5 with the
abstract variance reduction result of lemma 7, we now establish our main result.

Proof of Theorem 3. Throughout the proof, we will assume F = Id. The case of general
F is similar.

For proving theorem 3, we aim to apply lemma 7 to the random variables Z, := ERE and
Z;:=F(m), i € {1,...,N}. For this reason, we have to ensure that ELRVE is a sum of random
variables with multilevel local dependence according to definition 4, and that E[Zy] = E[ERVE]
in (14) can be replaced by E, (cf (9)) causing an error which is also bounded by the right-hand
side in (14). Hence, the results of theorem 3 immediately follow as soon as we have established
the following two results:

(a) The approximation EXVE for the thermodynamic limit energy E., by the method of
representative volumes

EYF =L E plim]

o[t @1 Y a0
L

xePN[,L)?
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(where (u, <;~5) denotes the solution of the TFW eguations as stated in theorem 16;
note that by the L-periodicity of i, the solution (i, ¢) is L-periodic) is a sum of random
variables with multilevel local dependence according to definition 4.

(b) The estimate for the systematic error

|E[ERVE] — E| < Cexp(—cL) (15)
holds.
Step 1: Proof of (a). We denote by Q,(x) the cube x + [— g, 5)3. In order to establish the
property (a), we may write
EEVE _ Z E;) + ElJrlngL
yeZ3np,L)y?
with
E) = L7 Eoyy [l 0] (16a)
and
Eltel 3} (EQIO,)[;h] _ EQIO,)[m|3‘;IOg2LO,)]) . (16b)
yeZ3np,Ly?

C et . S
Here, we employ the notation m|8‘mog2w,) to denote the extension of the restriction /|g,,, eyl ()

to R? by a constant multiple of the Lebesgue measure

1 (A) = (A ) Oty () + / ldx

A\QKlogQL()’)

for any Borel set A C R3. The constant K will be chosen below. Note that ﬁ1|3‘1‘(1 20 is still
082
subject to uniform bounds of the form (Al).
The first of the three conditions on the XC’ in definition 4 is satisfied for the choice (16) as the
random variables Eg only depend on ”~1|Qmog2 .- The second condition trivially holds true due
to the definition of ES and E't1°%2L The third condition for the Eg—that is, the bound |E3| <

BL—3—follows from the structure of the Thomas—Fermi—von Weizsicker energy in (3) and
the bounds on u, ¢ and m from proposition 14. Finally, to establish (a) it only remains to show
the bound |E'*1°&2L| < CL73. As a consequence of corollary 6 and the equality 7z = 72|

QKlogQL()’)
on Qxlog,1(y), we derive

Klogy L—1 K—1)logy, L
o Klogy < 70( )logy

~ ~ - -3
Eg,plm] — Eg, ) [m|3‘,§10g2b<y>] ‘ <Ce 7T <Ce T <CL

for the choice K := % + 1, where the positive constants C and ¢ only depend on p, M, and wy.

Taking the sum over all y € Z* N [0, L)? and multiplying by L™, we have shown the desired
bound |E' o2l | < CL3.
Step 2: Proof of (D). In order to establish (15), we may write
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ER* =L Y Eg Lol
yek{0.123}3

_ 73 ~ |ext
=L Z EQL/AO’) {VH|QL/20,)}
yek{0123}3

-3 ~ ~ rext
+L7 Y (EQL/4<y> [m] = Eg, [m|32,2<y>]) :
yek{0.123}3

Taking the expectation and estimating the terms in the last line using corollary 6 and the
equality m = ﬁ1|Z‘L‘/2(y) on Q; »(y), we obtain

]E[EEVE] — L*S Z E |:EQL/4(y)[ﬁ1|3(Z/20)]:| < CeXp(*CL).
yek{0.1.23}3

1 1 1 ~lext ext
Using the equality in law of m|QL/20,) and m| Oy Ve deduce

7 I A N [EQL/M[mISL‘/Z(y)]} < Cexp(—cL). (17
yek{0,1.23)3

Following the same strategy but now for m instead of 7, we obtain

-3 -3 t
L7 Eguulml =L Y Eg {m@l/z@)}
yek{01.23}3

+L7 Z (EQL/40’)[m]_EQL/A,()’)[mlg:/Q@)])*
yek{01.23}3

and by the same reasoning as above we infer

LB [Eggplml] = L7 Y E [Eg,ulmlg 1] | < Cexp(—cL). (18)
yek{0123)3

Since we assumed in definition 1 that =3 Ey13[m] converges to the effective energy density
E, for L — oo independently of the realization m, we also know that LE [E[O,LP [m]} tends to
E, for L — co. Butas L—°E [E[O,LP [m]} is independent of L due to the stationarity assumption
(A2), we deduce

L7E [Eyplm]] = Ex (19)

for all L > 1. Combining (17)—(19) gives rise to (15). O

5. Locality of the TFW equations involving point charges

An important tool which we will utilize frequently to deal with the Dirac charges and the
corresponding singularities of the potential is given by the class of cut-off functions 7, which
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we introduce now. Note that given a nuclear charge distribution m, we will define 7, in such a
way that 7), vanishes in a p-neighborhood of the point charges and that 7, = 1 holds outside
of a 2p-neighborhood of all point charges.

Notation 8. For p > 0, we define the cut-off function 7}, : [0, 00) — [0, 1] via

~ log 2
() = exp (—zp(ro—gp))

for r € (p, %p], n,(r):=1—-1,3p—r) for r e (%p, 2p), 1, =0 on [0,p] and 7, =1 on
[2p, 00). For all p > 0, one thus has 77, € C ([0, 0)) and there exists a constant cy(p) >0

12
such that % < ¢,(p) holds true on (p, 00).

Moreover, for any discrete set P C R? satisfying |x —y| > 4p for some p > 0 and all
x,y € P, x #y, define 1), : R* — [0, 1] via 1, :==17),(| - —z|) on B,(z) forall z € Pand 5, := 1
elsewhere. Then, we have 7, € C'(R®) and

\V4 2
'7;7”' <eylp) (20)
P

is valid on {n, > 0}.

‘We now collect the set of assumptions and notations which we employ within the subsequent
lemmas and theorem 5.

Assumption 9. Let m;, i € {1,2}, be charge distributions satisfying (Al), (A2), and
(A3), and let (u;, ¢;) eH&loc(R3) x L2, .(R%) denote the unique weak solution to the

uloc
Thomas—Fermi—von Weizsacker equations

512
—Au; + Jui — giu; =0,
u +3”1 oiu @1
—A¢; = 4m(m; — 1),

(see theorem 16).
We define the short-hand notations w:=u; — uz, ¥:=¢@, — ¢y, dm:=m; —my, and
ome :=m.; — m.. The measure dm then may be decomposed as

Sm = Sm, + Z&xax

xeP’

where P’ C Py U, is the set of all x € P; U P, for which dc, := ¢, — ¢2.x # 0 holds true.
Moreover, we will use the notation 7) to denote the cutoff function 7, from notation 8 with P
taking the role of P. Finally, we introduce ¢ :=e 1" for some 0 < v < 1 and y € R?. Note
that this choice entails |[VE| < 7€ < €.

As a key step towards theorem 5, we derive an upper bound for the weighted L>-norm of
w, Vw, and /nV1) by adapting the strategy in [20] to the more general case of locally finite
nonnegative Radon measures representing the nuclear charges.

Lemma 10. Ler assumption 9 be satisfied. Then, there exist positive constants C =
C(p, M, wp) > 0and v = v(p, M, wy) > 0 such that
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/3(w2 + |[Vw]® + 5|V ) dx
R

<C (/ (w? + )| VEP dx+/ (w?* + *)E? dx+/ |6m, p|€? dx)
R3 {n<1} R3

holds, where 1 and & (depending on ) are defined in assumption 9.

Following the argumentation in [20], we have
S 3
uy —uj |+ Gy — gau,

CAw =2
=3

—Ay = 471'(1/[% — u%) + 47 dm,

Proof.
(22)

(23)

and test (22) with w&? (note that by w € H],,.(R?) and the exponential decay of ¢ and V¢, we?

is indeed an admissible test function). This yields
2 5 i i 2 2
/ Vw - V(wé?) dx + —/ uj —uy | wg dx f/ (Pr1uy — Gour)wé dx = 0.
R3 3 R3 R3

The elementary estimate
7 7 4 8\, 1
ujp —uy | (g —w) = uj +uy | w + wur(uj

4 4
with %infRa (uf +u; | > v > 0 (and v only depending on p, M, and wy due to theorem 16),

as well as the identities

3 Log 4\ 5 2
fuz)w>§ ui +u; | w4+ vw

+ U +u
¢1u1—¢2u2:¢12¢2w+ 12 2y,

Vw - V(we?) = |[V(w)> — w?|VE|?

give rise to
2 5 F3), 202
R3|V(w§)| dx—i—g . uj +u; | wE dx
1
5 @t o€ axw [ W ax
R3 R3

1
< / w?[VEP dx + / (1 + up)pwé” du.
]R3 2 R3

4
Now, consider the operators L; .= — A + %uﬁ — ¢; fori e {1,2} and

: (24)

5 4 4 1
L= —A+a, = <Mf Jr”f) - E(éf’l + ¢) € Lo (RY)

(the latter inclusion holding by u; € HflOC(IR3)). Due to lemma 12, L;, L,, and hence L are
nonnegative operators on H'(IR?). In fact, w¢ € H'(R?), (w&, L(w¢)) > 0 and

(w€, L(wf)) + 1// w?€? dx < / w?|VEPF dx + l/ (uy + u)pwe? dx.
R3 R3 2 R3
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We continue by testing (23) with ¢ € H'(R?), which results in

[ 50 Ve = —ax [ o + g axdn [ nome et ax
R3 R3 R3
The representation

Vi - Vppe?) = n| V@O — np?| VEP + €V - Vi

leads one to

! / Dt + uypwe? dx = — - / Vi - Vi) dx + - / 0 ome e dix
2 R3 87T 3 2 ]R3

1 1
= o [vwor as o [ rrver ax
87T R3 87T R3

—i/ YEVY -V dx + 1/ néme & dx
87T R3 2 R3
and, thus,
(wE, Lwe)) + v / e dxt - / nIVWO dx
R3 87T R3
< [ wveR x| wAvep ax- o [ vV vy ax
R3 87T R3 87T R3
+1 / (1 = ) + w)pwe? dx + & / 0 Sme b€ da.
2 ]R3 2 ]R3

We further apply Young’s inequality together with [V7|> < ¢,(p)n and the identity Vi = 0 on
the set {n = 1} to find

’/ YEVY - Vi dx
]R3

<uf ulvePe im0 a
{n<1} {n<1}

with 0 < < M < 0o and p sufficiently small. The estimate 7|Vi|>¢? < 2n|V(1&)|> +
2% | VE|? now allows us to absorb the integral y |, <1} n|V|2€2dx on the right-hand side
within the corresponding integral on the left-hand side. By employing the uniform L*°-bound
for u; and u, from proposition 14, we obtain

(we L) + [ @ + VI dx
<cC < / (W + )| VEP dx + / (W + e dx + / (G, ]2 dx) e
R3 (n<1} R3

As L= —A +a with a € L2, (R?) defined in (24) and |Vw|?¢* < 2|V(wé)|? + 2w?|VE|)?,
we derive

/ |Vw[*¢* dx +/ (w* + 1| Vp[HE? dx < 2/ la|w?E* dx
]R3 ]R3 ]R3
+C </ (W +p?)|VEP? dx+/ (W + )& dx +/ |om, [ dx> . (26)
R3 {n<1} R3
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In order to handle the |a|w?£>-term, we bound the integral over R® by the sum over all inte-
grals over all balls of radius 1 located at points with integer coordinates. After applying a
Gagliardo—Nirenberg-estimate and Young’s inequality, we again arrive at (a multiple of) an
integral over R? as every x € R? can belong to at most eight unit balls around integer points:

[ el ax < 3 ol o € Ein o

x€Z3

3 3
< Z CHaHLﬁloc(R3) ||w§HL2(Bl(x)) ||w§HH1(Bl(x))

x€Z3
-
< 3 (Cmlally o 06l + h0elErnco
ez3 uloc
< [ cmlalt, +7 / w?¢? dx+T/ |Vw|*¢? dx+T/ w?| VE? dx.
Luloc(RS) R3 R3 R3

We now choose 7 > O—arising from Young’s inequality—in such a way that [5;|Vw|*¢* dx
can be absorbed on the left-hand side of (26). As L is nonnegative, the right-hand side of (25)
already serves as an upper bound for ng w?€? dx. As a consequence, the claim of the lemma
follows. U

The next lemma establishes an L*-bound for 1, and at the same time improves the bound
on the L*-norm of w, Vw, and \/7V1.

Lemma 11. Let assumption 9 be satisfied. Then, there exist positive constants C =
C(p,M,wp) > 0 and v = ~(p, M, wq) > 0 such that

/ﬂ@(w2 + |Vw]* + 9% + 9| Vy[HE? dx

<c < / (W? + D€ dx + / (Gm )€ dx)
{n<1} R3

where 1 and & (depending on ) are defined in assumption 9.

Proof. We rewrite (22) as

—Aw+§ uj —u

5(; Z> pr+d2  urtu
5 — w
and test with €2 € H'(R?). This gives

Uy + un
/ e dx
R3 2

:/ YV - Vpbe?) dx + é/ <uf . u§) e dx f/ Ot e dv. @7)
R3 3 Jrs R3 2

Considering the first term on the right-hand side of (27), we obtain
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/ V- V) dx
]R3

+2’/}R3Vw-V§77w§dx

+’/ Vw - Vi né* dx
R3

< ’/Ryw-vwsz dx
< ([ jvure ax) % ([ ke dx)%
+( [ wure dx)% ([ wepre dx)%
—|—2(/R3|Vw|2§2 dx)% (/R3|V5|2772w2 dx) %.

Taking |V¢| < € and | V| < ¢,(p)n into account, we obtain for any 7 > 0 that there exists a

constant C(7) > 0 such that
< C(T)/ (|Vw|* +n|Vy[HE? dx + r/ Pretdx.  (28)
R3 R3

/ Vw - V(p€?) dx
R3

The next term in (27) can be controlled for any 7 > 0 using the L>°-bounds on u; and u, from

proposition 14 via

§/ <ulZ u2;> 771/1§2 dx
3 R3
< / 77|w||1/)|§2 dx < C(T)/ w?e? derT/ P2E? dx
R3 R3 R3

with some C = C(7, M) > 0. We proceed by estimating the last expression in (27) using also

(29)

proposition 14 as

‘/ ¢1+¢277w1/)§2 dox
R3 2

¢1 72L¢277w1/}§2 dox

<
x€zZ3

By (x)

o1+

) , HU’f”L“(Bl(x))H77¢§||L4(31(x))

2
Luloc(R )

3

x€Z3

< CZ <|w§||L2(Bl(x)) + 1€Vl 2,0 + |wv§|L2(Bl(x))>
xez3

X <||771/1§|L2(31(x)) + 1VEVN 28,0y + 1MEVY 1208, () + |77¢V§|L2(31(x)))

> [C (”ngiz(Bl(x)) HIEVW ] Fap 0 + ”wvgni%m(x)))

A

’
+ § (Hm/f”iz(gl(x)) + ||7/}§V77”i2(31(x)) + anvaiZ(Bl(x)) + Hn"/)foiZ(Bl(x)))}

<8C (/ w?é? dx+/ |Vw|*¢? dx+/ w?|VEP dx)
R3 R3 R3
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7 < / e dx + / ViPye dx + / PIVYPE dx + / P VER dx)
R3 R3 R3 R3
< 16C/ W + |Vw)E? dx + 2 + c,,)r/ B2 dx + T/ [V 2e? dx (30)
]R3 ]R3 ]R3

where 7 > 0 will be chosen sufficiently small. Returning to fR3 ?€% dx, we make use of the
lower bounds infgsu; > 0, i € {1,2}, from theorem 16 and rewrite

/ V2 dx < C/ M¢2§z dx
R3 R3 2
<cC / Mt e gyt / MU e gy
{77<1} 2 R3 2

with constants C(p, M, wy) > 0. We now combine (27)—(30), and find

P?er dx < C ( P22 dx+/ (w* + |[Vw]? + n|Vap[H)E? dx> + CT/ P?E dx
R3 R3 R3

{n<1}

where 7 > 0 can be chosen arbitrarily small. Thanks to lemma 10, we arrive at
[+ 1Vl + 0 +niTupie ax
R

<C (/ (w? + H|VEP dx + (w? + e dx+/ (Om.)*e? dx) + CT/ PrE* dx
R3 { R3 R3

n<l}

with 7 > 0 arbitrary. If we set both constants 7 (from above) and v (from the definition
of ¢&:=e ) to sufficiently small values, we may absorb fR31/)2§2 dx and fR3(w2 +
?)|VE|? dx on the left-hand side due to |V&| < ~€, which entails the desired estimate. [

We are now in position to prove our locality result theorem 5.

Proof of Theorem 5. 1In view of lemma 11, for proving theorem 5 it suffices to show that
the bound on the L?-norm of w, Vw, 1, and V) from lemma 11 also serves as an upper bound
for the L?-norm of the second order partial derivatives 0.

We first establish a bound for [53n|Av|*¢* dx. From (23), we derive

/ n|AY|PE? dx = 47r/ n(uy + u)wAp £ dx — 47r/ nome A € dx.
]R3 ]R3 ]R3

Using Young’s inequality and absorption as well as the bounds from proposition 14 and lemma
11, we arrive at

/ nAyPg? dx < C ( / (w? +¢*)&* dx + / (Ome)*¢? dx> EENEIY
R3 {n<1} R3

We will now employ integration by parts to arrive at
S [ o ax
— JR3
ij
= Z (_2/]1%377@776:'1/16[/'1/’52 dx — /anzaiwaijﬂ/’fz dx — 2/]1%377251'1#@1'1/153/5 dx)
i.j ’
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= Z (2 /}R OmApApE* dx +2 /}R 10mOp0;€* dx
ivj
+ /R POOE dx+2 /R TPOYOEDE dx 2 /R P OOEDsE dx) .
We utilize the bounds |V¢| < € and |V7|? < ¢,(p)n and continue as
;A3n2|8ijw|2gz dx

1
< Cn2EVY| g3 (Z”W&&WHE(R% + ||77§A7/’||L2(R3)> + /RS77|A7/’|2§2 dx

ij
1
<c( [vere axe [ aiavee dx)+z [ o ax
]R3 ]R3 2 ij R3

Lemma 11 and (31) now entail

3
/3 w? + [Vul® + ¢ + 9| VY + 2 Y [0 | e dx
R

ij=1

<C ( / (w? + e dx + / (6me)2e= 21 dx)
{n<1} R3

where we inserted the definition & = e 7" from assumption 9 with some fixed y € R>.
Moreover, we calculate

/ (W + ?)e 21 dx + / (Gmey’e 1 dx
{n<1} "
< eﬂdist({nd},y)/ (w* + 1/12)5 dx
{n<1}

+ effydist(supp((imc),y)/ (5mc)2§ dx
supp(dme)

< X dist(lP",y)/ (w? + )¢ dx
{n<1}

+ e*”/diSl(SUPP(tsmc)»)’)/ (5mc)2§ dx.

supp(dmy)

Finally, the claim of the theorem follows from the uniform bounds on w, %, and dm, arising
from proposition 14 and condition (A1). 0

We finally establish the locality result for the TFW energy.

Proof of Corollary 6. The difference of the TFW energy for m; and mj is given by
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Eo,lmi] — Eg,lm2] = | |Vui|* — |Vup|[*dx
0
10 10
Jr/ u —uy dx
[
1 2 2
+3 (Mey — up)ey — (mep — uy)ps dx (32)
[
+ Y b — 0@ — Y caldr — dr)().
x€P1NQ; x€PrNQ0y

We recall ¢ :=e 71|, where y := le x dx is the centre of Q. We further recall the definition
of 1 from notation § and find using proposition 14 and theorem 5

(|Vui|* — |Vuy[*) dx
0
< Cl|(Vuy + Vu)€ || sy [(Vur — V)€ || 23y

—cdi ) Y
< Ce @ ist(supp(dm),y)

< C/ [[Vu | — [Vup|*|€ dx
]R3

with positive constants C(p, M, wy) and c(p, M, wy). Consequently, we have

(|VM1|2 o |Vu2|2) dx < Cefcdist(supp(ém),Ql)’

which implies the desired estimate for the first term in (32). Concerning the second expression,
we derive (using again proposition 14)

10 10
/ (uf —uy ) dx < C< (u; — un)? dx)
01 01

where v(x) € [u;(x), ux(x)] for all x € Q,. As for the previous term, we obtain from theorem

5
10 10
/ <“13 u23> dx
01

The first part of the Coulomb energy in (32) can be estimated via

1

/ o} @ — w0 dx
01

1
7 .
< C</ (u; — u2)2§2 dx) < Ce—cdist(supp(dm),01)
R3

‘/ ((mey — uDdy — (mep — 1)) dx
01

< / (mealdr = da| + |pallmey — mea| + uildr — daf + |al|uf — u3]) do.
0

Due to me;, ¢; € L%, .(R*) and u; € L>°(R?) (see proposition 14), one concludes that

uloc

’/Q ((mey — uD)dy — (mep — 1)) dx

< C (1 — d2)€l 2ms) + N meq — me2)€ | 2ws) + 111 — )€l 2 g3))
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and, hence, arrives at the desired bound by applying theorem 5 and the same arguments as
above. We are left to control the change of the Coulomb energy related to the atomic nuclei in
(32), which we may bound by

D gt —dr )@ = Y s — d2)X)

x€P1NQy x€PrNQ;

< D (lensll(@r = brr = 62 + )@ + (62 — G2 )@ lere — cal) -

xe(P1UP2)NQ0y

In the case that dist(supp(m; — my), Q) < 2p, we observe that (13) holds true for the right-
hand side of the previous equation as it is bounded by a constant (due to the uniform bound
on ¢; — ¢;,) and as e~ <distsuPPm=m2). O1) i hounded from below by a positive constant. And if

dist(supp(m; — my), Q,) > 2p, we know that ¢; — ¢, € H>(Q;) — CO’%(QI) and @), = ¢,
as well as c;, = ¢y, forall x € (P; UP;) N Q). As a consequence, in this case we have

Yo addi—d®— Y b — $a))

xe(P1UP2)NQ0; xe(P1UP2)N0y

<C > el — 6@ < Cligr — ol

xe(P1UP2)N0y

1

< c(/Q <|¢1 — &> + |V — e)I” + D01 — ¢2)|2> dx)
1 ij

}
) C</R <|¢1 = O +alV G = 6P 47 [0y - ¢2)|2> & dX>

i

and we may now employ theorem 5 and the bound from proposition 14 to finish the proof. [J

6. Uniform bounds on solutions to the TFW equations

For our arguments we need uniform estimates on the solutions to the TFW equations which
depend only on the parameters p, M, and wy. For this reason, we repeat some of the calculations
of [7, 20] to show that they do in fact yield uniform estimates. The following lemma and its
proof are based on similar considerations in [7, 20].

Lemma12. Leta € L3 (R?) and suppose there exists some u € H2 (RY) with infg, ) u >

‘uloc

0 forall R > 0 and (—A + a)u = 0. Then,
(w, (A + a)w) ::/ (|Vw|2 +aw?) dx >0
R3

for allw € H'(R?).

Proof. We firstnote that u € L>(R*) N C(R?) due to the uniform boundedness of ||ul| 2, (),

for every x € R®. Regularizing a € L2, .(R?) (e.g. by convolution with some mollifier), we

obtain a family of functions a. € C>(R?) which converge for ¢ = 0 to a in L?(Bg) for any
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R > 0. A standard result on differential operators [13] ensures that the minimal eigenvalue \.
of —A + a. as an operator on Bg with Dirichlet boundary conditions is simple and is associated
with a nonnegative eigenfunction v. € Hj(Bg), ||v:||;25,) = 1. From the equation

(A +a)v. = Ao

and elliptic regularity theory, we deduce v. € H3(Bg) — C L (Bgr), hence Vv, is well-defined
and % < 0 on 0Bg. Moreover, it holds that

Agz/ (|Vv.|* + a.v?) dx = inf (|Vv|? + a.v?) dx.
Bg @eHé(BR) Bg

y =1
Il 2

We shall now prove that the eigenvalues A\. are bounded for € — 0. For any fixed
v, € Hy(Bg) with [[v.[ o, =1, we have . < [ ([Vu.|* +a0?) dx < H“*|\§1<3R> +
Clla-|| 2sg 04131 5,., Where the last expression is bounded due to a. — ain L*(Bg). This yields
an upper bound of the form \. < C. In addition, the equation fBR|Vv€|2 dx = A\ — f BRagvg dx
and the Gagliardo—Nirenberg—Sobolev type estimate

HU€||L4(BR) C||U5||L2(BR)HUEHHI(BR) CHUEHHI(B )

further implies

’/ a.v? dx
Bg

CHaEHLZ(BR)HUE||H1(BR) CllaellLZ(BR)+ HUEHHI(BR)

1 2
+ §||VU€||L2(BR)

where we utilized the normalization of v. and the boundedness of ||a.||;2(g,. This results
in ||VUE||L2(B ySA+C+5 HV’UEHLZ(B ,» Which provides both a lower bound for A. of the

form \. > —C and an upper bound for [[v. || 1) Up to a subsequence, we thus know that \.
converges for e — 0.
In fact, one can show that lim. .,y A\. > 0 holds true. To see this, we calculate

)\E/ uv, dx :/ u(—A +a)v. dx
Bgr Br

:f/ av:dSJr/VwVvdenL/agqudx
OBg On Bg Bg

_/ Ove dS+/ (—A + a)uv. dx +/ (a: — a)uv. dx
OBg 8}1 Bg Bg

—lla- — a||L2(BR)||u||L°0(BR)

WV

where we have employed # > 0 and dl:: < 0on0Bg as well as ( A + a)u = 0. By arguing that
1
3

1
1= fBRvg dx < (IBRUE dx)i(fBRUg dx) CHUEH Cllv:||?

Lisgy WE con-
clude that

L'(Bg) HUEHHl(BR)

/uvgdx>infu/ v.dx = c¢>0.
Br Br Jpyg
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Consequently, \. > f(fBRuvg dx)"a: — all 2 l|ull L @g) — 0 for e — 0.

Now choose some arbitrary w € H'(R?) and a sequence wy € CX(R?), wy — w in H'(R?).
As

(w,(—A 4+ a)w) = / (|Vwl* + aw?) dx = lim/ (|Vwy|* + aw}) dx,
R3 k=00 JR3

it suffices to verify that [p;(|Vuw|* 4+ aw}) dx > 0 forall k € N. For fixed k € N, there exists
some R > 0 such that supp wy C Bg(0), hence, fR3(|Vwk|2 +a.w?) dx > A Hwk||L2(BR(O)) for
alle > 0and

/(|Vwk|2+awk) dx_hm/ (V| + acw?) dx > HwkHLz(BR(O»hm/\ > 0.

Finally, (w, (—A + a)w) > 0is proven. O

Appropriate bounds on the solutions to the Thomas—Fermi—von Weizsacker equations (21)
can be constructed with the help of proposition 13. The proof mainly relies on arguments from
[7, 20] where corresponding estimates have been deduced in similar situations.

Proposition 13. LetM > 0and m = m. + ) p <0, where m, € L2 (R, m. >0, ¢ >

0 and P C R? such that |x — y| = 4p > 0 for all x,y € P with x # y, and

lmell 2 s, + sup Y| <m. (33)
x€R3 \ yeprB, (x)

Then, there exists some Ry > 1 such that for each R, > Ry and mg, :=m XBg, (0) there exists
a solution (ug,, ¢r,) € H'(R?) x L2 (R?), u > 0, which satisfies

uloc

51
—Aug, + guﬁn — ¢r,ur, =0,
—A¢g, = dm(mg, — uy ),

(34)

in the sense of distributions. Using the notation 1), introduced in notation 8, this solution
satisfies the bounds

H“Rn”Hgloc(W) < C(1+ MY,

H“RnHL" (R?) p(1+M4)f0r all 1 < p <4,

//\

H‘bRnHL" (B3 C,(1+M) forall 1 < p<3,

3 (35)

7
H¢RnHW1{p‘(R3) <G, (1 +M4) forall1 < p< >

cp(1+M%) forall0<p<p, 1<i<3,

N

17,0 ¢r, HLf‘lOC(]R3)

N

96,3 0 < o (14 38F) Jor all < p < 1< 0j <3

where C, C,, C, > 0 are independent of M and R,,.
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Proof. We assume from now on that m is not identically zero on R3. Consequently, there
exists some Ry > 1 such that fR3mRn dx > 0 holds true for all R, > Ry. According to [17,
theorem 7.19, theorem 7.7, theorem 7.8], there exists a nonnegative ug, € H IR satisfying
Jgsu, dx = [g3mg, dx which is a solution to

51 1
—Aug, + §”13n - ((mR,, - ”122,,) * ﬁ) ug, = —Or,ur,

where 6, > 0 is the Lagrange multiplier associated to the charge constraint fR3u§n dx =
Jgsmg, dx. By introducing

1
¢Rn = (mRn — ”1%,,) * ﬁ — 9Rn, (36)

we arrive at the Thomas—Fermi type equations

51z
7AMRH + gulgn - (bRnuRn = 0, (37)
—Agg, =4rm (mRn — u,zen) . (38)

Due to [17, theorem 7.10, theorem 7.13], there even exists a solution ug, € HR?) —

1 . .
C%2(R?), which satisfies u(x) — 0 for |x| — oo and ug, > 0 on R*. Moreover, we define
Me.R, =M X8y, ) and derive for any x € R

o, i+
-1 L2(B (x))

c 1
— Z Y —+ (mc,Rn —_ M%n) * 7|

ye]P’ﬂBRn(O)l gl |

L2(By (x))
4 1
< > of + \/3H<mc,1en )
yePNBg, (0) | ’ | L2(B1(0)) | : | L>®(R3)
<CRY M+ |meg, —i2 || 5 || X2
) n 3 (R3) || L%(H@)

XR3\B,(0)
+ lmer, = uk, 3 0 ﬁ

L%(R3)>

< C(Ry) (MJF Ime.r, |l 28 ) + lur, P10 .+ llug,|* 1a )
" L3 (R3) L5 (R3)
< CR) (M -+, s )

where we also employed the Sobolev embedding. As a consequence, we get ¢g, € L2 (R?).
Analogously,

5760



Nonlinearity 33 (2020) 5733 J Fischer and M Kniely

H“"R" )

4
L3 (B1(x)
¢ 1
=2 Tt e TR e
YEPNBR,, (0) Y L% (B1(x))
1
< Z Cy T2 + CH(mc,Rn - Mlzzn) * 2
yermgo 1P lld o Pl
S CR) (M + |[meg, — i}, || 5 |[XE2
Sn n L§(R3) | . |2 L}_?(R3)

XR3\B1(0)

+ HmC,Rn - uIZQnH | . |2

L%(R3)
< CR) (M + g, B i)

L3 (]R3)>
4
which implies Vg, € L3 .(R?). Moreover, we will use the fact that for any f € LP(R%), g €
LY(R?) and dual indices p, g € (1, 00), the convolution f*g is a continuous function tending to

zero at infinity (see e.g. [18, lemma II.25]). From the previous calculations, we thus know that
(Meg, — Ug,) * ‘—1‘ € C(R?) and ((mC,Rn — up ) * |1—|) (x) — 0 for |x| — co. As a result, ¢r, €
C(R*\(P N Bg,(0))) and ¢g, (x) — —0Og, for |x| — oo.

A pointwise lower bound (uniform in R,,) for ¢, can be obtained from the inequalities [24,
proposition 8, corollary 9]

4 1
Eu;"" < (mg, — u,zen) * — + A,

|- (39)
0< g, <A
where A > 0 is a constant independent of M and R),. Thus,
or, > —2A. (40)

A pointwise upper bound for ¢, cannot hold due to the point charges, but we may follow the
arguments of [7, 20] to establish upper bounds for ¢, in L .(R?), p < 3, which are uniform
inR,.
Step 1: L”-bound on ¢, . Let w € C>°(B;(0)) satisfying 0 <w < 1, w =1o0n B%(O) and
Jgs w* dx = 1. We further define ¢, := [;3|Vw|?* dx and w, := w(- —x). Applying lemma 12,
4

we know that the operator Lg, := — A + %u;n — ¢g, 1s nonnegative. Therefore,

5 4
(Wy, L, wy) = /R3|wa|2 dy + /R3 (3”1%, — qSRn) w? dy >0,
and hence,

ué *w? > (0r, *w? — cu)

n

5
3 +
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We now construct a (uniform in R,) pointwise upper bound for the convolution ¢g, * w?. First,
2 2_ 2 2
—A (¢Rn * W ) =47 (mRn kWS —Up xw )

and the first term on the right-hand side can be estimated by

(mg, * W*)(x) = / me, (MW (x =) dy < Y e / me(y) dy < CM
By (x)

Bi(x) yePNB (x)

for all x € R? with a constant C > 0 independent of M and R,. By employing Jensen’s
inequality, we control the second term via

3
2

dm(up, * w?)(x) > (;) ' / 3u,%n(x — W) dy
R

5 % 4 %
> <3) ( / Uy, (x — y)w(y) dy)
R3
3
(5
_ (3u

: *w2)2 > (¢, *wz—cw)i.
3
—A (fr, ¥w?) + (dr, ¥ — )2 < CM,

RS

‘We thus have

with a constant C, > 0. Apart from that, one can easily show that ¢g, * w? is a continuous

function (seee.g. [18, lemmaIl.25]), which satisfies—due to (36)—(¢g, * wH(x) = —0g, <0
for |x| — oo.
We introduce the set

S:= {x€R3

¢Rn*wzcw>0}a

which is open and bounded due to the previous calculations. Furthermore, the constant and

3
positive function i == (C*M)% satisfies —Ah + hi = C.M on S, which entails

—A (¢Rn * w? — Cw) + (¢R,, * w? — Cw) < —Ah+ h__% on S,

. .. . 2 5 ..
Thanks to the maximum principle, we arrive at ¢g, * w? < ¢, + C3M5 on S, but trivially also
on R3\S. Therefore,

P <C(1+M%)

with a constant C > 0 independent of M and R,,.
In the case that ¢g, < 0 on R3, we have due to (40) the pointwise bounds —2A < or, < 0.
Otherwise, the positive part qb;{n is not identically zero, and we shall derive appropriate L”-

bounds for (b;{n. We first recall that ¢g, € C(R*\(P N Bg,(0))). In particular, gb,}tq is continuous
away from the set P N Bg,(0) and

¢1€l*w2:¢gn*w2+¢lgn*w2<2A+C(1+M%) gc(1+M%)
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with constants C > 0 independent of M and R,. Now, choose some arbitrary xo € ]R3\(]P’ N
Bg,(0)) satisfying ¢, (x9) > 0. On the one hand, we obtain the bound

/ o () dx < / oF (o — ) dx
B (xp) R3

= (o8, *wz)(xo)<C(1+M%). (41)

On the other hand, we may write

/ oF (x) dx = / 2 / ok () ds(y) dr
B% (x0) 0 OB (xp)

and we immediately see that there exists some 7 € (4 1 2) such that
[ siman<s| oo )
0Bi(x0) B (x0)

Consider the boundary related problem
—Ag¢* =0 on B(xo),
= qb;{n on OB(xo),
as well as the two domain related problems

—A¢, = 4wm, on B(xo),
" =0 on dB(xo).

and
—AGY =4 Z cydy  on By(xo),
yEPNBg,, (0)
20 =0 on dB(xo).
Because of

*A(ﬁ;{n < (AR, X (4, >0) = 4T (mg, — )X{aR S0y < 4mmg,

we may employ the maximum principle to deduce (25;{,1 < ¢° + ¢, + ¢3” on B(xo). In partic-
ular, ¢ (x0) < ¢,° (x0) + ¢ (x0) + ¢3° (x0) and we shall derive bounds for the three terms on
the right-hand side which are independent of R,,.

The first bound follows from the mean value property of harmonic functions and the
estimates in (42) and (41) via

o - 8 2
SO MG AVLOE BB O] Ja, oy O ()4 OO D)
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where the constant C > 0 is independent of M and R,,. For the second problem, we proceed as
in [20] and find a solution ¢,° € H?*(B,(x0)) < C%% (B, (xo)). This yields

X0 X0 X0
X0) < <C
2 (x0) < H¢2 ”CO’%(W) X H¢2 ||H2(B,(x0))
< CHmCHLZ(Bt(xO)) < C”mCHLﬁloc(]R3) <M
with C > 0 independent of M and R,,. The bound on ¢3(x¢) arises from a comparison of ¢’

with
o . Z Cy
¢30 .:

yePrB, ONBixg) |~ |

X0 _ _ X0 X0
As —Ag; = 47TZy€IPﬂBRn(O)ﬂB,(x0) cyly = 47TZy€IPﬂBRn(O) cydy = —A¢3” in Bi(xo) and ¢’ >
0 = ¢3° on 9By(xo), we have ¢3° < ¢3° in B,(x¢) and, hence,

c c
3 (x0) < Z 2 Z mXB,(y)(Xo).

lxo =y
)’EPQBRW (0)NB(xp) )EPF‘]BRH (0)

Together, we arrive at

Cy
b (x0) SCA+M)+  » oo 5] X (o).

yEPNBg, (0)

and as xo € ]R3\(]P’ M Bg,(0)) has been chosen arbitrarily, we further obtain

Cy
g <CA+M+ > ﬁm@)

yEPNBg, (0)

a.e. in R where C > 0 is a constant independent of M and R,,. For p € [1, 3), we then conclude
that

|‘¢IJQF,,HL§106(R3) <C,(1+M)

where C, > 0 denotes a constant depending only on p. Combining this estimate with the lower
bound for ¢g, in (40), entails—as a first step—the desired L”-bound on ¢, in (35).

Step 2: further bounds. In order to establish the bounds on ug, in (35), we first utilize (39)
to find

4 3 3 3
g, |7y o = llug, Ml %5 <G <1 + (g, |17 > S C(l+M7)  (43)
L3P(By(x0)) L3P(B(x0))

for any p € [1,4) and x € R3. We recall the definition of the cut-off function 17, :[0,00) =
[0, 1] from notation 8 and observe that n, : R — [0,1], 7, =1 — 71 (] - —x]) is another cut-off
function satisfying 7, = 1 on B (x) and 77, = 0 on R*\By(x). As an immediate consequence,
there exists some C > 0 such that [V7,|* < Cholds true on R®. Testing (37) with 17 ug, gives
rise to

/ n§0|VuRn|2 dx + 2/ NxoUr, VUR, - V), dx
By (x0) By (x0)

5 10
— 75/ 77)2‘01/[1?3}1 dx+/ U§O¢Rnu§n dx.
B(x) By (x0)
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Applying Young’s inequality and |V7,,| < C to the second integral on the left-hand side, an
absorption argument leads one to

/ |Vug, |* dx < 2/ or, g, dx + C/ uy, dx
Bi(xo) By (x0) By (xp)

2 2
S N 8 P o A

(43)
SCA+M1+M)+CA+MH)<C(L+M3).  (44)

Now, consider the equation
53
—AMR,, = —guRn + ¢RnuRn-

As the right-hand side belongs to L (B2(x0)) (which will be detailed immediately), a standard
result (see e.g. [13, theorem 8.17]) ensures the following norm estimates on B(xy):

7
L3 (Bz(xo))>

llur, || 2B, (o)

5 1z
<C <||uRn||L2(Bz(x0)) + H3M§n + Or,Ug,

7

<C + ’ +

= <|“R"|L2(BZ("0” H“R"HL?%(BZ<XO>) |¢R"|L281(Bz(xo))|uRn”Lz“l(Bz(XO)))
7

<C ('uRn|L2(Bz(x0)) + H”Ranl(Bz(xO)) + |¢Rn|L%(BZ(XO))””Rn||H1(Bz(m)))

<c(a+mhy+a+mhi+a+ma+uh)

< C(1+MB)

where C > 0 denotes various constants independent of M and R,. As a consequence,

7
llur, || 1@y < CA + M) and Jui — dr,ur, € L}, (R?). By applying standard elliptic reg-
ularity theory to (37) we thus conclude that

+ HMR,, |H1(Bz(x0))>

51
HMRnHHZ(Bl(XO)) < ¢ <H3M1%n - (bRnuRn
L2(B>(x0))

7
< € (1 gy *+ 1o sl sy + Do, L )
<c(a+mbi+a+ma+mby+a+ud)

47
< +m,

For establishing the remaining bounds on ¢g,, we split

Oro= > T w(— )+,

YEPNBg, (0) |- =)l
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where all singularities of ¢g, are collected within the first term. The cut-off function w €
C(R?) satisfying w = 1 on B;(0) and w = 0 on R3\B,(0) enforces each contribution from
the Coulomb potential to have finite range. The nonsingular function ¢ is then subject to

= 1
—AG, = dnlmy, +up)+ Y (_2|.ny V(=) + ———Aw( — y)) :

yEPNBg, (0) [ =
(45)
Testing this equation with w(- — y)@% on Ba(xo) for some arbitrary xo € R? entails
/ |V |* dx < / w(- — x0)| Ve |* dx
By (x0) B)(x0)

= — A(bfenw(- — xo)@%n dx — Vw(- — xq) - ¢§HV¢§H dx
By (x0) By (xp)

<[ (a5, + 19t ol 195,
By (xp)

+ Y e ( SIVet =+ ﬁmw( y>|) |0, ] | dx.

yEPNBg, (0)

As the expression inside the brackets in the last line is bounded by a constant which only
depends on the choice of w, we deduce

[ wafas
B (xp)

<C <(||mRn||L21 @ T lu RnHHl (R3)||¢§en||LgIOC(R3)

g IR o+ VI 0t 3 el e

L2 (R’%
YEPNB; (x0)
where v > 0 will be chosen subsequently. Besides, we observe that

w(—y)
|- =]

H(b;?nHLﬁloc(]R3 H‘bRnHLZl ®3 + sup Z

x€R3 P, () L2(By (x))

< C(1 + M) + sup Z ¢, C < C(1+ M).

XE€RyePB3 (x)
For v > 0 sufficiently small and together with (44), we arrive at
/ (V65,12 dx < € (14 MO+ M)+ (1+ M) + M(L+ M) + —||V¢Rn|\ oy
B1(xp) oc

and, hence,

7
|‘V¢§en||Lgloc(R3) < C (1 +M4) . (46)
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A similar estimate can be derived for the second order derivatives 9; ngR s < 3. To this

end, we first note that

- Agyp wApyp dx = Vor, - VwAdy dx

By (xp) By (x0)

— Z/ 8¢R ]w a,](bR dx — Z/ w|al]¢;n|2 dx.
i,j 7 B2lxo)

B> (x0)

This enables one to estimate

Sl arsc [ (VR PHAR) 0D [ 0010510 0
i,j Y Bi1(xo Ba(x)

By (xp)
From (45) and by arguing as above, we know that
/ |Agg P dx < C / (Om)? +up) dx+ >
By (xp) By (x0) yePNB3(xg)

where the constant C > 0 only depends on the choice of w. Consequently,

4C ]2
E;JQNWJ8”¢&' dx < (HV¢&JLZ(R%%H A,

Flully ot > 6 +§J”%¢2m

yEPNB3(xp)

Using (44) and (46), we now get for all 1 < i,j < 3 the bound

10165, 12, ey < € (1+M3).

By an elementary calculation with p € [1, %), one easily obtains

\Y
/Bl(xo) Z

YEPNBR,, (0)

<G Y. c”/

yePNB3 (xg) By (x0)

w(—fyﬂpdx

1
+ dx<C,
( |- =y |-—y|"> »>

yePNB3(xq)

with a constant C, > 0. This gives rise to

p>

yEPNBg, (0) |

=) <C,M

®3)

uloc

forl <p< % and—>by taking into account (46)—

7
1V g, o) < G (14 7).
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Similarly, we deduce

/ 1 0ipw, > dox
Bi(xq)

1
/ < rin 2> dx + C/ nﬁ|8,~¢f€n|2 dx
Bl(xo) —y| | : —y| B1(x0)

<M +c(1+m) <, (14+m3)

yerB; (0)

by employing (46). This yields

7
H77pai¢Rn||Lgloc(R3) <G (1 +M4) .

An analogous argumentation using (47) finally leads to

5
Hnﬂaij(bRnHLﬁloc(R3) g Cp (1 +M2) .
This finishes the proof. 0

Proposition 14. Letm=m.+ )
(Al). Then, there exists a solution (u, ) € H,

cx6 be a charge distribution subject to assumption
R x L2 (R, u>0,t0

loc loc

—Aqu%u% —ou=0
—A¢ = 4n(m — u?),

(48)
in the distributional sense. Furthermore, using the cutof 1), introduced in notation 8 this
solution satisfies the bounds

HMHHz (B S < C(1 + M%),

HMHLp @) < Cy(l +M4)f0r all 1 < p< 4,

I¢llr @) < Co(l+M) forall 1 < p <3,

3
2’
0002, < Gy (1 +M4) forall 0 < p <7, 1 <i<3,

60yt oy < Co (14 MF) forall 1< p <

056012, < G, (1 +Mz) forall0<p<73,1<i,j<3
where C, C,, C, > 0 are independent of M.

Proof. This proposition can be proven along the same lines of arguments as a similar
statement in [20]. We first set R, := Ry + n for n € N in proposition 13 and obtain bounded
sequences ug, € H2 (R*) and ¢g, € W,}kf’c(]R3), p € (1, 3). By adiagonal sequence argument,
we get subsequences ug, > 0 weakly converging in H*(Bz(0)) to some u € H{, (R*) and ¢,

weakly converging in W!?(Bg(0)) to some ¢ € W, P(R3) forall R > 0and p € (1, 2).

loc
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Let xo € R®. We then have ug, — u in H*(Bi(xo)) and ¢g, — ¢ in W'(B(xo)) for all
pell, %); in particular, one derives ug, — u in LY(B;(xp)) for all g € [1,4) and ¢, — ¢ in
L"(B(xp)) for all r € [1,3). The corresponding bounds on # and ¢ are now an immediate
consequence of the bounds on ug, and ¢, in (35).

The H>*-type bound on ¢ on the set R*\P can be deduced by a similar reasoning. We start
by observing that

3 7
0i0r, || 2 8ryrinegn, =13 < [Mp0iPR, | 28100 < CoR? (1 + M“) ,

forall 1 <i,j<3,R>0,and 0 < p < p due to the bounds in (35). By selecting a diagonal
sequence ¢x,, we find that ¢, weakly converges to ¢ in H'(Bz(0) N int{n,, = 1}) for all
R > 0and 0 < p < p. This fact gives rise to

7
H77pai¢HL2(Bl(x0)) < ||ai¢HL2(Bl(xg)ﬂint{nﬁ:1}) < Cg (1 +M4)
2

(and an analogous bound on 7,9;¢) for all xo € R0<p<p,andl <i,j<3.
We subsequently rewrite (34) in the distributional formulation. For all v € C>(R?),
we have

51
/ (—uRnAv + supv— ¢Rnuan) dx=0
R3 3 "

and

,/}R}qunAv dx =4r Z cu(x) + /}R3 (mc,Rn — uin) vdx

x€PMBg, (0)

Due to the convergence properties of ug, and ¢, derived above, these equations converge to
the corresponding distributional formulation of (48) for n — oco. 0

Note that in the literature sometimes a condition equivalent to (A1) is used.

Remark 15. 'We now give an equivalent characterization of the inf-condition for charge dis-

tributions m in (A1), which also appears in [7]. An analogous statement without Dirac measures

has been proven in [20]. But as the result only appeals to the mass, the proof is the same.
Letm = m + Y, p 0, where m, € L3 (R), me >0, ¢, > 0 and P C R’ such that |x —

y| = 4pforall x,y € P, x # y, for some p > 0. Then, the following statements are equivalent.
) inf e (Sygeote 49+ ety ) > wok®forall R > wy!

.o . . 1 _
(i) limgosooinfyeps 7 ( [ppc0mMe dy + ZyGPﬂBR(x)c),) =00

Theorem 16. Let the charge distribution m satisfy (Al). Then, there exists a unique solution
(u, ) € Hlo o (R x L2, (R, u >0, to

‘uloc

—Au+ %u% —ou =20,
—A¢ = dn(m — u?),
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in the distributional sense. This solution (u, ¢) satisfies the bounds established in proposition
14 as well as

inf u(x)>c
x€R3

where ¢ > 0 only depends on p, M, and wy.

Proof. The existence of a corresponding solution has already been proven in proposition
14, whereas the uniqueness follows from the general existence and uniqueness result in [7,
theorem 6.10]. The assumptions in this theorem are satisfied due to (A1) and remark 15.
As in [20], we assume that
inf inf u(x) =0
m subject to (A1) xcR3
and show that this assumption leads to a contradiction. We choose a sequence of charges m,,
satisfying (A1) and x, € R such that the solution (u,, ¢,,) fulfils
1
“n(xn) < .
n

Using the bounds on u, and ¢,, from proposition 14, we estimate

4 4
ISef=a  <Fhul’

§ + H(b””Lﬁloc(W) < C(+M).

uloc\™

12

uloc(]R3)
From Harnack’s inequality [26, corollary 5.2] and the uniform bound on the coefficient of the
4
operator —A + %u,? — ¢, we obtain a constant C > 0 depending only on M and R such that
. C
sup  u,(x) < C inf  wu,(x) < — (49)
xEBR(xy) n

XEBR(xn)

for all R > 0. The shifted functions u, (- + x,), thus, converge uniformly to zero on B(0), while
the potential ¢, solves

— A, = dr(m, — u?) (50)

in the sense of distributions.
We now choose a cut-off function w € CSC(R3) subjectto 0 < w < 1,w =1 on B% (0), and

w = 0 on R*\B,(0). By testing (50) with w(-52), we derive

47T/ my(x)w (x — x") dx
Br(n) R
— An 1 — An
= 477/ urw <x s ) dx — — OnAw (x a ) dx.
Brxa) R R® JBgan) R

As a consequence of (A1) and the bound on ¢, from proposition 14, we may now estimate

cR® < / my(x) dx < / u(x) dx + CR(1 + M)
B%(xn) BR(xn)

with positive constants ¢ and C independent of M and R > 2w I However, if we first choose
R > 2w0’1 solving cR>> 1+ CR( + M), and then n € N such that fBR(xn)ui(x) dx < 1 holds
true (according to (49)), we arrive at a contradiction. ]
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