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Kinome and Transcriptome Profiling Reveal Broad and Distinct
Activities of Erlotinib, Sunitinib, and Sorafenib in the Mouse Heart and
Suggest Cardiotoxicity From Combined Signal Transducer and
Activator of Transcription and Epidermal Growth Factor Receptor
Inhibition
Timothy J. Stuhlmiller, PhD; Jon S. Zawistowski, PhD; Xin Chen, PhD; Noah Sciaky, PhD; Steven P. Angus, PhD; Sean T. Hicks, BS;
Traci L. Parry, PhD; Wei Huang, MS; Ju Youn Beak, PhD; Monte S. Willis, MD, PhD; Gary L. Johnson, PhD; Brian C. Jensen, MD

Background-—Most novel cancer therapeutics target kinases that are essential to tumor survival. Some of these kinase inhibitors
are associated with cardiotoxicity, whereas others appear to be cardiosafe. The basis for this distinction is unclear, as are the
molecular effects of kinase inhibitors in the heart.

Methods and Results-—We administered clinically relevant doses of sorafenib, sunitinib (cardiotoxic multitargeted kinase
inhibitors), or erlotinib (a cardiosafe epidermal growth factor receptor inhibitor) to mice daily for 2 weeks. We then compared the
effects of these 3 kinase inhibitors on the cardiac transcriptome using RNAseq and the cardiac kinome using multiplexed inhibitor
beads coupled with mass spectrometry. We found unexpectedly broad molecular effects of all 3 kinase inhibitors, suggesting that
target kinase selectivity does not define either the molecular response or the potential for cardiotoxicity. Using in vivo drug
administration and primary cardiomyocyte culture, we also show that the cardiosafety of erlotinib treatment may result from
upregulation of the cardioprotective signal transducer and activator of transcription 3 pathway, as co-treatment with erlotinib and a
signal transducer and activator of transcription inhibitor decreases cardiac contractile function and cardiomyocyte fatty acid
oxidation.

Conclusions-—Collectively our findings indicate that preclinical kinome and transcriptome profiling may predict the cardiotoxicity
of novel kinase inhibitors, and suggest caution for the proposed therapeutic strategy of combined signal transducer and activator
of transcription/epidermal growth factor receptor inhibition for cancer treatment. ( J Am Heart Assoc. 2017;6:e006635. DOI: 10.
1161/JAHA.117.006635.)
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K inase inhibitors (KIs) are the most rapidly growing class
of antineoplastic therapeutics and can elicit a highly

effective clinical response in many different cancers. Despite
putative selectivity for their respective targets, many KIs have
unanticipated serious adverse effects. Among the most
important of these adverse effects is cardiotoxicity, which
can manifest as cardiomyopathy and heart failure.1 KI
cardiotoxicity is clinically significant for its inherent morbidity

and mortality, and because it can necessitate discontinuation
of otherwise optimal cancer therapy. Unfortunately, our
current understanding of the mechanisms underlying KI
cardiotoxicity is limited and there is no reliable means to
predict cardiotoxicity of KIs in development. As the cancer
patient population ages, these potentially serious adverse
effects will become more prominent, and the need for
improved understanding and prediction even more pressing.
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KIs vary in their selectivity—some target a single kinase,
whereas others have numerous distinct therapeutic targets. It
has been proposed that KI cardiotoxicity arises from “on-
target” inhibition of cardioprotective kinases, and that the
potential for cardiotoxicity is proportional to the number of
kinases targeted.2 However, “off-target” mechanisms have
been proposed as well.3 The true breadth of the molecular
effects of therapeutic kinase inhibition on the heart remains
unknown. Investigating KI cardiotoxicity in vivo has been
difficult using traditional kinase analysis or preclinical models
because of limited power to assess the impact of a KI on the
kinome en masse. The kinome is a large, highly resilient
network, capable of bypassing targeted kinase inhibition
through elaborate “reprogramming” in tumors.4 The repro-
gramming capacity of the cardiac kinome in response to KI
treatment is unknown.

We utilized Multiplexed Inhibitor Beads (MIBs)–Sepharose
beads with covalently immobilized Type I kinase inhibitors that
preferentially bind kinases in their active state.5 MIB capture
followed by mass spectrometry (MIB/MS) affords a highly
reproducible platform to simultaneously determine changes in
the functionality of >70% of the expressed kinome. Particu-
larly when combined with transcriptional profiling, MIB/MS
can facilitate a comprehensive high throughput assessment of
drug response and may provide a scalable platform to
understand cardiotoxicity of approved KIs, predict cardiotox-
icity of novel KIs or combination therapies, and develop
cardioprotective strategies for patients receiving KIs.

Here we applied MIB/MS and RNAseq to investigate the
molecular effects of 3 KIs on the mouse heart. We chose to
study sunitinib and sorafenib, as models of multitargeted KIs
with known cardiotoxicity,6–8 as well as erlotinib, a selective
epidermal growth factor receptor (EGFR) inhibitor widely
considered to be cardiosafe.9,10 We identified unexpectedly
broad kinome reprogramming after treatment with all 3 KIs
and potential transcriptional signatures of cardiotoxicity.
Paired MIB/MS and RNAseq analysis identified upregulation
of the cardioprotective signal transducer and activator of
transcription 3 (STAT3) pathway in the hearts of mice treated
with erlotinib, analogous to mechanisms of EGFR inhibitor
resistance in tumors. Co-administration of erlotinib and a
STAT inhibitor decreased cardiomyocyte fatty acid oxidation
in vitro and cardiac contractility in vivo, suggesting that the
cardiosafety of erlotinib requires STAT3 upregulation.

Materials and Methods

Animals
Female FVB mice, 14 to 16 weeks old, from Jackson
Laboratory were used for all experiments, because female
mice are more susceptible to sunitinib-induced cardiotoxi-
city.11 Female Sprague-Dawley rats with newborn litters
were from Charles River. Animal care and experimental
protocols were approved by the UNC IACUC and complied
with Guide for the Care and the Use of Laboratory Animals
(National Research Council Committee for the Update of
the Guide for the Care and Use of Laboratory Animals,
2011).

KI Treatment
Mice were gavaged with vehicle (n=4) or erlotinib (Selleck
S7786, 50 mg/kg per day, n=5), sorafenib (S7397 30 mg/kg
per day, n=5), or sunitinib (S1042, 40 mg/kg per day, n=5)
once daily for 14 days in the UNC Lineberger Cancer Center
animal core. All mice underwent echocardiography on Days 0,
7, and 14. On Day 14 mice were euthanized by cervical
dislocation after an overdose of isoflurane, hearts were
removed, weighed, and rapidly transferred to liquid nitrogen.
In separate experiments, mice were gavaged with vehicle
(n=3) or erlotinib (n=4), and infused with WP-1066 (Selleck
S2796 20 mg/kg per day by osmotic minipump, n=3), or
erlotinib+WP 1066 (n=4) for 1 week. These mice underwent
conscious echocardiography on Days 0 and 7.

Echocardiography
Conscious transthoracic echocardiography was performed on
awake, loosely restrained mice in the McAllister Heart
Institute Animal Models Core using a VisualSonics Vevo

Clinical Perspective

What Is New?

• We use advanced proteomics and transcriptome profiling to
characterize the molecular response of the heart to multiple
kinase inhibitors with unprecedented breadth.

• We demonstrate that the molecular effects of both
cardiosafe and cardiotoxic kinase inhibitors extend far
beyond their target kinases.

• We show that upregulation of the signal transducer and
activator of transcription 3 pathway protects against
myocardial injury and preserves cardiomyocyte fatty acid
oxidation in the setting of epidermal growth factor receptor
inhibition.

What Are the Clinical Implications?

• Our findings suggest that combined epidermal growth factor
receptor and signal transducer and activator of transcription
inhibition may be cardiotoxic in humans.

• Combined kinome and transcriptome profiling may offer a
novel platform for predicting the cardiotoxicity of targeted
cancer therapies in preclinical studies.
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2100 ultrasound system (VisualSonics, Inc, Toronto, Ontario,
Canada). Two-dimensional and M-mode echocardiography
were performed in the parasternal long-axis view at the level
of the papillary muscle, and left ventricular systolic function
was assessed by fractional shortening (FS, where %FS=[(left
ventricular end-diastolic diameter�left ventricular end-systo-
lic diameter)/left ventricular end-diastolic diameter]9100).
Reported values represent the average of at least 5 cardiac
cycles per mouse. Sonographers and investigators were
blinded to mouse treatment condition during image acquisi-
tion and analysis.

Lysis and MIB Chromatography
Broad-spectrum Type I KIs (CTx-0294885, VI-16832, PP58,
Purvalanol B, UNC-2147A, and UNC-8088A), custom-synthe-
sized with hydrocarbon linkers and terminal amine groups were
covalently attached to ECH-activated Sepharose beads as
previously described.12 Mouse left ventricle was rinsed in
phosphate-buffered saline and processed in lysis buffer
(50 mmol/L HEPES, 150 mmol/L NaCl, 0.5% Triton X-100,
1 mmol/L EDTA, 1 mmol/L EGTA, at pH 7.5 containing
10 mmol/L NaF, 2.5 mmol/L NaVO4, complete Protease
Inhibitor Cocktail (Roche), and 1% Phosphatase Inhibitor
Cocktails 2 and 3 [Sigma]). Four milligram total protein lysate
was gravity-flowed over a mixture of the 6 KI-linked beads
(175 lL total beads), followed by 30 volumes of washes with
high salt (1 mol/L NaCl) and low salt (150 mmol/L NaCl) lysis
buffer, then 500 lL of low salt lysis buffer containing 0.1% SDS.
Bound proteins were eluted by boiling with 0.5% SDS and 1% b-
mercaptoethanol in 100 mmol/L Tris-HCl, pH 6.8, 29 15 min-
utes, treated with DTT (5 mmol/L, 25 minutes at 60°C) and
iodoacetamide (20 mmol/L, 30 minutes in the dark at RT), and
spin-concentrated to 100 lL (AmiconMillipore Amicon Ultra-4,
10K cutoff) before methanol/chloroform precipitation. Pro-
teins were trypsinized overnight at 37°C and labeled with TMT
sixplex reagents (Thermo) according to manufacturer instruc-
tions, and then dried down in a speed-vac. Peptides were
cleaned with C-18 spin columns (Pierce).

MS and Analysis
Five percent of each sample was first run on a 60-minute
LC gradient and then equalized on total peptide content
before combining. Peptides were resuspended in 2% ACN
and 0.1% formic acid. Thirty percent of the final peptide
suspension was injected onto an Easy nLC-1000 through a
Thermo Easy-Spray 75 lm925 cm C-18 column and sepa-
rated on a 300-minute gradient (5%–40% ACN). ESI param-
eters: 3e6 AGC MS1, 80 ms MS1 max inject time, 1e5 AGC
MS2, 100 ms MS2 max inject time, 20 loop count, 1.8 m/z
isolation window, 45-s dynamic exclusion. Spectra were

searched against the Uniprot/Swiss-Prot database with
Sequest HT on Proteome Discoverer software. Only peptides
with medium or greater confidence (5% FDR) were consid-
ered for quantitation, and peptides with >75% co-isolation
interference were omitted. Data for each KI-treated sample
were processed as fold change relative to a pool of 4
vehicle-treated control samples. After log2, average and SD
were calculated to determine consistent changes in kinase
MIB-binding.

RNAseq and Analysis
mRNA-Seq libraries were constructed using 4 lg total RNA
with the Stranded mRNA-Seq Kit (KAPA Biosystems). Three
hearts each were used from each condition (control, erlotinib,
sunitinib, sorafenib), multiplexed with Illumina TruSeq adap-
ters, and run on a single 75-cycle single-end sequencing run
with an Illumina NextSeq-500. QC-passed reads were aligned
to the mouse reference genome (mm9) using MapSplice.13

The alignment profile was determined by Picard Tools v1.64.
Aligned reads were sorted and indexed using SAMtools and
translated to transcriptome coordinates and filtered for indels,
large inserts, and zero mapping quality using UBU v1.0.
Transcript abundance estimates for each sample were
performed using an Expectation-Maximization algorithm.14

Raw RNAseq by Expectation Maximization read counts for all
RNAseq samples and raw FASTQ files of RNAseq runs have
been uploaded to National Center for Biotechnology Informa-
tion Gene Expression Omnibus under accession number
GSE98973. Reviewers may access these private data at the
following link: https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?token=qtsduckchxghlad&acc=GSE98973.

The DEseq2 algorithm15 was used to determine differential
expression analysis of each set of KI-treated samples versus
controls using the expected counts column for each data set.
Gene Set Enrichment Analysis (GSEA) was performed on each
set of treated versus control data sets using normalized
RNAseq by Expectation Maximization read counts. Data were
50-read filtered such that at least 1 sample for each
comparison (3 control versus 3 treated) for each gene must
have had a value of at least 50 normalized RNAseq by
Expectation Maximization reads. Mouse gene names were
converted to their human homolog and GSEA was performed
against MSigDB gene sets for Hallmarks, Gene Ontology,
KEGG, Reactome, and Oncogenic Signatures. Default param-
eters were used and only gene sets with nominal P<0.05 and
FDR <25% were considered.

Primer Sequences
Nr1d1: ccccaggaagtctacaagtgg; R: agcaccatgccattcagc.

Ednra1 F: tggagtgtttctctgcaag; R: ggaagccactgctctgtacc.
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Western Blotting
Proteins were denatured and separated by SDS-PAGE,
transferred to nitrocellulose membranes, and probed with
pSTAT3 (Y705 and S727) and STAT3, obtained from Cell
Signaling Technology. Secondary horseradish peroxidase–
anti-rabbit was from Jackson Immunoresearch Laboratories.
Western blots were visualized by incubation with SuperSignal
West Pico or Femto Chemiluminescent Substrate (Thermo
Scientific).

Neonatal Rat Ventricular Myocyte Isolation and
Culture
Female Sprague-Dawley rats (n=5) were from Charles River.
Neonatal rat ventricular myocytes (NRVMs) were isolated as
previously described.16 Briefly, hearts from 1-to-2-day-old rat
pups were minced, digested serially in collagenase (Worthing-
ton)-containing solution, filtered, then preplated to exclude
nonmyocytes. NRVMs were then plated on laminin-coated
dishes in DMEM with 5% fetal bovine serum (Sigma F2442) for
24 hours. Experiments were carried out after 36 to 72 hours
of serum starvation in the presence of bromodeoxyuridine.
Lactate dehydrogenase assays (Sigma MAK066-1KT) were
carried out in 1% fetal bovine serum.

Fatty acid oxidation assays used sodium oleate 500 lmol/L
(Sigma O-7501) with BSA 0.5% (Sigma 05470) and carnitine.
14C-oleate (Perkin-Elmer NEC317050UC) was added to the
medium and incubated for 2 hours. Medium was transferred to
a 48-well CO2 trapping plate with 200 lL NaOH (1 N). Seventy
percent perchloric acid (PCA) was added to each well and CO2

was trapped while agitating on an orbital shaker. One aliquot
of medium was transferred to a scintillation vial and labeled
CO2 was counted. Cells were scraped on ice, incubated
overnight, and then acid-soluble metabolites were counted in
the cell supernatant. Total cellular protein was quantitated
using the Bradford reagent. Total oxidation=(disintegrations
per minute from CO2 trap�blank)9(200/150)9specific

activity+(disintegrations per minute from acid-soluble metabo-
lites�blank)9(550/300)9specific activity.

Data Analysis and Statistics
Except where otherwise specified, all results are presented as
mean�SEM. Two-group comparisons were made using t test
and 3-group comparisons used ANOVA (1-way or repeated
measures as specified) in GraphPad Prism. Reanalysis with
nonparametric tests did not affect the statistical results.

Results

Mouse Body and Heart Weight After KI Treatment
We treated female 14-to-16-week-old FVB mice daily with
vehicle or 1 of 3 kinase inhibitors (erlotinib 50 mg/kg per day,
sorafenib 30 mg/kg per day, or sunitinib 40 mg/kg per day)
for 14 days in the UNC Lineberger Animal Models core. We
chose these doses because they yield plasma drug concentra-
tions similar to the therapeutic range in human studies and
have limited systemic toxicities in published mouse experi-
ments.17–24 On Day 9, 4 mice were euthanized for failure to
thrive: 2 from the erlotinib group and 1 each from the sorafenib
and sunitinib groups. Thesemice were included in our analyses.
Body weight decreased in sorafenib-treated mice, but was
unchanged in other treatment groups. Heart weight indexed to
body weight was higher in erlotinib- and sorafenib-treated mice
when compared with vehicle. Treatment with sorafenib and
sunitinib, but not erlotinib, led to increased indexed lung weight,
consistent with left heart failure (Table 1).

Mouse Echocardiography
To assess the effects of KI treatment on cardiac function, we
performed conscious echocardiography at baseline and on
Days 7 and 14 of treatment. Erlotinib had no significant effect
on any echocardiographic parameters. Sunitinib and sorafenib

Table 1. Body and Organ Weights After KI Treatment

Treatment (n)
Body Weight,
Initial (g)

Body Weight,
Final (g)

Heart Weight
(mg)

Heart/Body
Weight (%)

Lung Weight
(mg)

Lung Weight/Body
Weight (%)

Vehicle (4) 21.9�0.7 21.2�0.4 84�4 0.40�0.01 119�5 0.56�0.01

Erlotinib 50 mg/kg per d (5) 21.1�0.4 19.5�0.7 87�2 0.45�0.02* 115�3 0.59�0.03

Sunitinib 40 mg/kg per d (5) 20.9�0.5 19.9�0.6 82�3 0.41�0.02 128�3* 0.64�0.03*

Sorafenib 30 mg/kg per d (5) 21.9�0.5 20.2�0.2* 93�3 0.46�0.01* 125�6 0.62�0.02*

KI indicates kinase inhibitor.
All values are mean�SEM, n given in parentheses.
*P<0.05 vs vehicle treatment.
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both caused variable decreases in fractional shortening and
increases in left ventricular end systolic volume, consistent
with impaired contractile function (Figure 1; Table 2, Fig-
ure S1). These findings are consistent with previous in vitro
studies that showed sorafenib and sunitinib decreased, but
erlotinib did not affect, contractile force in engineered rat
heart tissue.25

Kinome Profiling Using MIB With MS
We used MIB coupled with MS (MIB/MS) to assess functional
cardiac kinome dynamics in response to erlotinib, sunitinib,
and sorafenib. All 3 KIs led to unexpectedly broad changes
cardiac kinome activity. MIB/MS detected 200 kinases in
erlotinib-treated hearts, 214 kinases in sunitinib-treated
hearts, and 215 kinases in sorafenib-treated hearts. When
compared with vehicle-treated hearts, 88 kinases were
dysregulated by erlotinib, 84 by sunitinib, and 80 by sorafenib
(Figures 1 and 2A; Table S1, Figure S2). Of note, more kinases

were upregulated than downregulated by each KI, suggesting
that the heart, like tumor tissue, undergoes kinome adapta-
tion in response to targeted therapies (Table 3). The 10 most
affected kinases for each KI are shown in Figure 2B, with
narrow SEs indicating the reproducibility of the findings.
Interestingly, metabolic kinases were disproportionately
affected by all 3 KIs, relative to other kinase families
(Figure 2C). KIs are known to disturb systemic metabolic
regulation,26 but their effects on cardiac metabolism have not
been described previously.

We analyzed MIB/MS data to identify a potential kinome
signature of KI cardiotoxicity, comparing cardiosafe erlotinib
with cardiotoxic sorafenib and sunitinib. MIB/MS kinome
response signatures accurately clustered hearts by treatment
and separated erlotinib from sunitinib and sorafenib (Fig-
ure 3A). Erlotinib induced a series of kinases including
Map3k11, Pip4k2a, Pip4K2b, Ddr2, Cdk9, Bmx, and Hck.
Ingenuity Pathway Analysis (IPA, Qiagen) performed on the
top-20 most-induced kinases for each of the treatments

Figure 1. Contractile function is not affected by erlotinib, but is reduced by sunitinib and
sorafenib. Female wild-type FVB mice (n=4 for vehicle, n=5 for KIs) were gavaged with vehicle,
erlotinib (50 mg/kg per day), sunitinib (40 mg/kg per day), or sorafenib (30 mg/kg per day) for
14 days. Conscious echocardiograms were performed at baseline, 7 days, and 14 days. Contractile
function is reported as fractional shortening. Repeated-measures ANOVA compared intragroup
changes. (*P<0.05). KIs indicates kinase inhibitors; NS, not significant.
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(within SD) indicated that erlotinib uniquely induces STAT3 (z-
score 2.8, P=5.0910�9), nuclear factor kappa B (NFjB) (z-
score 2.2, P=2.2910�7), and Tec kinase (z-score 1.9,
P=4.0910�6) pathway activity in the mouse heart (Fig-
ure 3B). Protein interactions for the erlotinib-activated
kinases were identified using the STRING database and
shown in Figure 3C, illustrating multiple connections to
STAT3 and NFjB.

To confirm the IPA analysis, we immunoblotted 14-day KI-
treated heart lysates for pSTAT3 and STAT3. We found that
erlotinib increased STAT3 phosphorylation at Y705 by 2.2-fold
when compared with vehicle (n=8 per group); STAT3 S727
phosphorylation was unaffected by erlotinib. Sunitinib and
sorafenib administration either did not change or decreased
STAT3 activation (Figure 3D). All 3 KIs inhibited EGFR (data
not shown). STAT3 and NFjB both are known to play context-
dependent cardioprotective roles in the heart,27,28 though the
function of Tec kinase is largely unknown.

In summary, we applied MIB/MS to KI-treated mouse
hearts and identified unexpectedly broad changes in kinome
regulation, suggesting that kinome reprogramming occurs in

the heart. The extent of these changes was similar in a highly
selective and cardiosafe KI (erlotinib) and multitargeted
cardiotoxic KIs (sorafenib and sunitinib).

Transcriptome Profiling Using RNAseq
We then performed deep mRNA sequencing (RNAseq) on 3 of
the same hearts that underwent MIB/MS analysis for each
treatment group. We used the differential expression algo-
rithm DEseq215 to determine significant changes compared
with vehicle-treated mice for each of the KIs. Erlotinib
treatment significantly affected expression (adjusted
P<0.05) of 535 genes (4.4% of the measured transcriptome),
with sorafenib affecting 227 genes (1.9%) and sunitinib only
98 genes (0.8%) (Figure 4A; Table 3, Table S2). Several
transcription factors were among the most differentially
expressed transcripts in each of the conditions, including an
upregulation of Junb hearts from erlotinib-treated mice and
Foxo3 in sunitinib-treated hearts. JunB is induced in car-
diomyocyte hypertrophy,29 whereas FOXO3 is a central
regulator of cardiac autophagy and atrophy.30

Table 2. Echocardiographic Parameters After KI Treatment

HR LVIDd LVIDs FS LVd Vol LVs Vol IVSd PWd

Vehicle

Day 0 674�9 2.6�0.1 1.1�0.0 58�1 25�2 2.8�0.3 0.9�0.0 1.0�0.0

Day 7 681�17 2.5�0.1 1.0�0.1 59�2 23�3 2.2�0.4 1.0�0.0 1.0�0.0

Day 14 687�14 2.7�0.1 1.1�0.0 57�1 28�2 3.2�0.3 1.0�0.5 1.0�0.0

Erlotinib

Day 0 672�23 2.7�0.1 1.1�0.1 57�1 26�3 3.0�0.5 0.9�0.1 1.0�0.0

Day 7 678�9 2.8�0.1 1.3�0.1 54�1 29�3 4.1�0.6 0.9�0.0 1.0�0.1

Day 14 668�12 2.8�0.1 1.3�0.1 56�2 31�2 3.9�0.5 1.0�0.0 1.0�0.1

Sunitinib

Day 0 684�14 2.8�0.1 1.2�0.0 58�1 29�2 3.1�0.3 0.9�0.0 1.0�0.0

Day 7 649�28 2.7�0.1 1.3�0.1 54�2 28�3 3.9�0.5 0.9�0.0 0.9�0.0

Day 14 683�19 2.9�0.1 1.5�0.1† 49�3* 32�2 5.7�0.7† 0.9�0.0 1.0�0.0

Sorafenib

Day 0 648�17 2.7�0.1 1.2�0.0 56�1 26�2 3.1�0.3 1.0�0.0 0.9�0.0

Day 7 661�17 2.7�0.1 1.3�0.1 52�2 28�2 4.3�0.4 0.9�0.0 0.9�0.0

Day 14 694�15 2.7�0.1 1.3�0.1 52�2* 28�2 4.5�0.8* 1.0�0.0 1.0�0.0

WP1066

Day 7 683�40 3.0�0.1 1.4�0.1 53�1 34�4 5.1�0.9 0.9�0.0 0.9�0.0

Erlotinib+WP1066

Day 7 653�36 2.9�0.1 1.5�0.1 49�2* 33�4 6.0�0.9* 0.8�0.0 0.8�0.0

All values are mean�SEM. FS indicates fractional shortening (%); HR, heart rate (beats per minute); IVSd, interventricular septal thickness, diastole (mm); KI, kinase inhibitor; LVd vol, left
ventricular diastolic volume (lL); LVIDd, left ventricular internal diameter, diastole (mm); LVIDs, left ventricular internal diameter, systole (mm); LVs vol, left ventricular systolic volume (lL);
PWd, posterior wall, diastole (mm).
*P<0.05, †P<0.01 vs baseline by intragroup repeated-measures ANOVA (except WP1066 and erlotinib+WP1066, which used 1-way ANOVA) with Tukey post-test.
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Next we compared the control and erlotinib-treated groups
with the sunitinib and sorafenib-treated hearts to identify a
putative transcriptional signature of cardiotoxicity. Interest-
ingly, 19 genes were commonly regulated by both sunitinib
and sorafenib, but unaffected by erlotinib (Figure 4B). Tran-
scription factors (Figure 4A in red) were disproportionately
represented among the most discrepantly regulated genes.
This pattern of gene expression also includes sunitinib- and
sorafenib-induced upregulation of endothelin receptor A
(Ednra), the receptor for endothelin-1 and a well-recognized
mediator of cardiac hypertrophy and heart failure (reviewed
in31). Sunitinib is known to upregulate the endothelin system

in the vasculature,32 but its effects in the heart have not been
studied. Interestingly, endothelin receptor A upregulation also
is implicated in tumor chemoresistance, and endothelin
receptor antagonists have been proposed as novel cancer
therapies.33,34 We identified common upregulation of Sox6 in
the sunitinib and sorafenib groups (Figure 4A and 4B).
Overexpression of Sox6 causes cardiomyopathy and heart
failure in mice, with induction of pathological isoforms of
sarcomeric proteins.35 Genes downregulated in this car-
diotoxic signature include Nr1d1 (RevErba), a transcription
factor involved in circadian rhythm and metabolic regula-
tion,36 as well as mitochondrial biogenesis, in skeletal

Figure 2. Kinome profiling using multiplexed inhibitor beads with mass spectrometry (MIB/MS) reveals broad changes in the cardiac kinome
after kinase inhibitor (KI) treatment. After 14 days of KI treatment, mice were euthanized. The heart was removed and processed for kinome
profiling with MIB/MS (n=5 for erlotinib and sorafenib, n=3 for sunitinib). A, Summary heat map of significant changes in kinase activity. B, The
10 kinases most increased and decreased by erlotinib, sunitinib, and sorafenib. C, Kinases involved in regulation of cellular metabolism were
disproportionately affected by KI treatment. MIB indicates multiplexed inhibitor beads; MS, mass spectrometry.

Table 3. Summary of KI Regulation of the Cardiac Kinome and Transcriptome

Treatment
MIB/MS Kinases
Assayed

MIB/MS Significant
Upregulation

MIB/MS Significant
Downregulation

RNAseq
Upregulation

RNAseq
Downregulation

Erlotinib 50 mg/kg per d 200 70 18 484 (4%) 1333 (10%)

Sunitinib 40 mg/kg per d 214 54 30 627 (5%) 424 (3%)

Sorafenib 30 mg/kg per d 215 62 18 516 (4%) 726 (5%)

KI indicates kinase inhibitor; MIB/MS, multiplexed inhibitor beads/mass spectrometry.
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muscle.37 Quantitative reverse transcriptase PCR confirmed
the RNAseq findings for both Ednra and Nr1d1 (Figure 4C and
4D).

GSEA was performed on these RNAseq data to further
define functional gene expression patterns induced by the
KIs. Gene sets significantly induced or repressed by each
treatment are shown in Table S3. When compared with

vehicle treatment, sunitinib and sorafenib both generated a
loss of established gene set signatures, with 204 (sunitinib)
and 175 (sorafenib) gene sets enriched in control (lost in
treatment). Gene sets commonly repressed by sunitinib and
sorafenib primarily involved extracellular matrix assembly
and the ribosome/translation (Table S3). In contrast, 43
gene sets were induced significantly by erlotinib treatment.

Figure 3. MIB/MS comparison of cardiosafe erlotinib with cardiotoxic sunitinib and sorafenib indicates differential regulation of multiple
signaling pathways, including STAT3. To identify a kinome signature of cardiotoxicity, MIB/MS results unique to erlotinib were compared with
results for sunitinib and sorafenib. A, Summary heatmap displaying kinases with significantly altered activity in erlotinib-treated hearts compared
with hearts treated with sunitinib or sorafenib. B, Ingenuity Pathway Analysis (Qiagen) compared the kinome profile of erlotinib with sorafenib
and sunitinib. Differentially regulated canonical pathways are displayed. C, STRING database interaction of erlotinib-induced kinases. D,
Immunoblot of heart lysates from mice treated for 14 days with kinase inhibitors. MIB/MS indicates multiplexed inhibitor beads/mass
spectrometry; NFjB, nuclear factor kappa B; STAT3, signal transducer and activator of transcription 3.
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Figure 5A displays gene sets that are both significantly
induced by erlotinib and lost upon treatment with sorafenib,
sunitinib, or both cardiotoxic agents. In concordance with

MIB/MS kinome response data, this GSEA analysis identified
erlotinib-induced upregulation of transcripts related to NFjB
(HALLMARK TNFA SIGNALING VIA NFKB) and STAT3

Figure 4. RNAseq demonstrates transcriptional changes in the mouse heart after treatment with kinase inhibitors (KIs). To assess the effect
of KI treatment on the cardiac kinome, heart tissue from female FVB mice (n=3 per group) treated for 14 days was processed for RNAseq. A,
Volcano plots of statistically significant (DEseq2) transcriptional responses to KI treatment, with kinases in blue and transcription factors in red.
B, Heat map displaying genes that distinguish cardiosafe treatment with vehicle or erlotinib from cardiotoxic treatment with sunitinib or
sorafenib. C and D, Confirmatory qRT-PCR of selected differentially regulated genes Ednra and Nr1d1. (*P<0.05 by 1-way ANOVA). qRT-PCR
indicates quantitative real-time polymerase chain reaction; TFs, transcription factors.
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(HALLMARK IL6 JAK STAT3 SIGNALING). GSEA plots are
shown in Figure 5B and complementary heat maps are
shown in Figure S3.

To profile the transcriptomic impact of cardiotoxic KIs with
greater statistical power, we performed DEseq2 combining
control and erlotinib against combined sorafenib and

Figure 5. Gene Set Enrichment Analysis of RNAseq data suggests that regulation of STAT3 and NFjB pathways and regulation of transcription
distinguish erlotinib from sorafenib and sunitinib. We analyzed RNAseq data to identify transcriptomic signatures of cardiotoxic kinase inhibitors.
A, Gene Set Enrichment Analysis of RNAseq data for kinase inhibitors sorted for fold change in erlotinib. B, Enrichment plots for Hallmark TNFA
signaling via NFjB and Hallmark IL6 JAK STAT3 signaling. C, Heat map and D summary figure for Gene Ontology terms that distinguish
transcriptomic changes in cardiosafe (vehicle and erlotinib) from cardiotoxic (sunitinib and sorafenib) treatments. EGFR indicates epidermal
growth factor receptor; IL6, interleukin 6; JAK, Janus kinase; NES, Normalized Enrichment Score; NFjB, nuclear factor kappa B; STAT3, signal
transducer and activator of transcription 3; TNFA, tumor necrosis factor a.
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sunitinib. This yielded 555 genes upregulated and 428 genes
downregulated (P<0.05) by sorafenib and sunitinib compared
with control- and erlotinib-treated hearts (Figure S4). Gene
Ontology enrichment analysis of the cardiotoxic KIs revealed
highly significant upregulation of genes involved in transcrip-
tion and chromatin modification (Figure 5C and 5D).

In summary, RNAseq revealed focused transcriptional
changes after KI treatment. Pathway analysis of the common
transcriptional effects of sunitinib and sorafenib indicated that
the cardiotoxic KIs affected transcriptional regulation and
chromatin modification. Erlotinib uniquely induced upregula-
tion of NFjB and STAT3 pathways, recapitulating the MIB/MS
findings.

Fatty Acid Oxidation Assays in NRVMs
In our study, both MIB-MS and RNAseq analysis suggested
that KIs affect cardiac metabolism, consistent with previous
studies indicating that sunitinib and sorafenib cause ATP
depletion and mitochondrial dysfunction.38 To evaluate further
the functional consequences of our MIB-MS and RNAseq
findings, we treated NRVMs with vehicle or KIs in vitro for
24 hours. Given that fatty acids are the primary energy
substrate in cardiomyocytes, we assayed fatty acid oxidation
in NRVMs after treatment with KIs, using the carnitine
palmitoyl transferase inhibitor, etomoxir, as a control.
Erlotinib caused a dose-dependent increase in fatty acid
oxidation, whereas sunitinib and sorafenib decreased fatty
acid oxidation (Figure 6A). None of the KIs significantly
increased cell death at the chosen concentrations, as
measured by lactate dehydrogenase release (Figure 6B).

Erlotinib-induced enhancement of fatty acid oxidation was
unexpected, as EGFR has no recognized role in regulating
fatty acid oxidation. MIB-MS and RNAseq both indicated that
cardiac STAT3 activity was upregulated by erlotinib treatment,
and 1 previous study suggested that STAT3 stimulates cardiac
fatty acid oxidation in response to leptin.39 To test whether
the effect of erlotinib on fatty acid oxidation required STAT3
activation, we co-treated NRVMs with erlotinib and the
selective STAT3 inhibitor, STATTIC. We found that STATTIC
abrogated erlotinib-mediated increase in fatty acid oxidation,
suggesting that STAT3 upregulation may contribute to this
energetically favorable metabolic adaptation (Figure 6A).

Combined Treatment With Erlotinib and STAT-
Inhibitor In Vivo
Profiling both the cardiac kinome and transcriptome indicated
that erlotinib treatment is associated with upregulation of the
STAT3 pathway in the heart, a particularly interesting finding
given that STAT3 activation is a primary mechanism of tumor
resistance to EGFR inhibitor treatment in multiple types of

cancer.40,41 We sought to determine whether upregulation of
cardioprotective STAT3 might account for the lack of
cardiotoxicity of erlotinib by treating female FVB mice for
7 days with erlotinib (50 mg/kg per day) and/or WP1066
(20 mg/kg per day by osmotic minipump), a STAT inhibitor
with demonstrated in vivo activity.42,43

Treatment with erlotinib did not affect contractile function.
WP1066 was associated with a nonsignificant trend towards
decreased contractile function (fractional shortening 53�2%
on Day 7), but co-administration of erlotinib and WP1066
significantly decreased fractional shortening to 49�2%
(Table 2; Figure 6C). Collectively, these findings suggest that
activation of STAT3 contributes to the heart’s biological
response to erlotinib by increasing fatty acid oxidation and
preserving contractile function.

Discussion
We utilized MIB-MS and RNAseq to provide a comprehensive
characterization of the molecular effects of KIs in the heart.
This combined approach revealed unexpectedly broad effects
on both the expressed kinome and transcriptome, underscor-
ing the complexity of KI cardiotoxicity. We found that erlotinib
unexpectedly upregulated STAT3 activity in the mouse heart
and that co-administration of erlotinib and a STAT inhibitor
decreased cardiac contractility and cardiomyocyte fatty acid
oxidation. Collectively, these findings position combined MIB-
MS and RNAseq as a platform for preclinical prediction of KI
cardiotoxicity in vivo.

MIB-MS is a recently developed technique that quantifies
changes in the functional kinome rather than merely kinase
abundance as provided by standard proteomics approaches.
Kinase capture occurs reproducibly as a function of kinase
abundance, the affinity of kinases for the inhibitor beads, and
the activation state of the kinase. As such, our MIB-MS data
extend the published explication of the cardiac kinome.44 This
platform has been applied to tumor tissue,5,12,45 but has not
been used previously in normal tissue. Somewhat surprisingly,
given that myocardium consists largely of somatic, nondivid-
ing issue, we find robust reprogramming of the cardiac
kinome after KI treatment, similar in scope to the changes
observed in malignant tissue. Many of the observed alter-
ations in kinase activity are not clearly predicted by the
molecular targeting of the drugs, suggesting that the cardiac
response to KI treatment represents a complex interaction of
both “on-target” and “off-target” signaling.

MIB/MS and RNAseq yielded distinct but complementary
data sets. The majority of MIB/MS-detected changes in
kinases were not predicted by transcript abundance, sug-
gesting that KIs remodel the cardiac kinome largely through
post-translational signaling. Predictably, the transcriptional
changes detected by RNAseq data offer a more extensive
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characterization of KI-induced molecular effects. The most
salient signal from pathway analysis of the RNAseq data is the
suggestion that the cardiotoxic KIs, sunitinib and sorafenib,

affect transcriptional regulation and chromatin remodeling,
likely yielding a net repression of transcription that blunts
adaptive responses.

Figure 6. Co-administration of a STAT inhibitor abrogates erlotinib-induced increase in cardiomyocyte fatty acid oxidation in vitro and impairs
contractile function in vivo. A, Neonatal rat ventricular myocytes (n=4 independent experiments) were treated with vehicle, the carnitine
phosphatoyl transferase inhibitor, etomoxir, or kinase inhibitors (including the STAT inhibitor, STATTIC) for 24 h, then fatty acid oxidation was
assayed using 14C-oleate. B, Cell death in NRVMs was assayed by LDH release (n=3–5 independent experiments, as indicated). C, Female FVB
mice were treated with vehicle, erlotinib, and/or the STAT inhibitor WP1066 for 7 days and contractile function was assessed using conscious
echocardiography. Groups for all experiments were compared using 1-way ANOVA, *P<0.05, **P<0.01. LDH indicates lactate dehydrogenase;
NRVMs, neonatal rat ventricular myocytes; NS, not significant; STAT, signal transducer and activator of transcription.
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We chose to study erlotinib as an exemplar of a highly
selective KI without known cardiotoxicity; sunitinib and
sorafenib were chosen for their recognized cardiotoxicity. It
has been suggested that KIs such as sunitinib and sorafenib
are inherently more likely to be cardiotoxic as they are
multitargeted,2,46 in contrast with highly selective KIs like
erlotinib. However, our findings suggest that KI selectivity
likely does not predict the molecular response in the heart or
the propensity for adverse cardiac effects: erlotinib treatment
led to more changes in the kinome and transcriptome than
either sunitinib or sorafenib.

The most consistent signal from combined kinome and
transcriptome analysis was the upregulation of STAT3 and
NFjB pathways after erlotinib treatment. These pathways were
downregulated by sunitinib and sorafenib, consistent with
previous studies in tumor tissue.40,41 Upregulation of both
NFjB47 and STAT3 activity has been implicated in the
development of resistance to EGFR inhibitors (such as erlotinib)
in numerous types of cancer including non–small cell lung
cancer,48,49 and pancreatic cancer.50 Preclinical studies have
shown that the addition of a STAT3 inhibitor to an EGFR
inhibitor can overcome resistance in ovarian cancer,51 soft
tissue sarcoma,52 head and neck cancer, and bladder cancer.53

The ErbB family of receptors, including EGFR, mediates
numerous essential roles in cardiomyocytes54; hence it is not
immediately evident why erlotinib is not cardiotoxic. By
contrast, trastuzumab, an ErbB2 antagonist used extensively
in the treatment of breast cancer, has widely recognized
cardiotoxicity (reviewed in55). Our analysis of the kinome and
transcriptome led us to consider whether STAT3 activation
might confer protection against otherwise putatively car-
diotoxic effects of erlotinib, given that STAT3 activation
through Y705 phosphorylation can be cardioprotective in the
setting of numerous insults (56,57 reviewed in 27). Of note,
STAT3 exerts its adaptive effects both through signaling and
as a transcription factor,58 potentially accounting for the
detection of its upregulation in both MIB-MS and RNAseq. We
found that co-treatment of cardiomyocytes with erlotinib and
the STAT3 inhibitor, STATTIC, abrogated the beneficial effect
of erlotinib on cardiomyocyte fatty acid oxidation. We also
found that co-treatment of mice with erlotinib and the STAT
inhibitor, WP1066, decreased contractile function in vivo,
whereas neither treatment affected fractional shortening
when administered alone. Collectively, these findings suggest
that cardiac STAT3 upregulation after EGFR inhibition repre-
sents a prosurvival response analogous to the development of
treatment resistance in tumors.

These findings may provide some caution regarding pro-
posed combination therapy with EGFR and STAT3 inhibitors,
such as the Phase 1 trial that is already under way for the
treatment of EGFR-mutated lung cancer with combined inhibi-
tion of EGFR and the JAK/STAT pathway (clinicaltrials.gov:

NCT02145637). Such potential interactions would not be
evident with standard focused analysis of kinase activation, and
highlight the potential for combined MIB/MS and RNAseq in
the preclinical prediction of cardiotoxicity in combination KI
treatment. This platformmay be particularly useful in assessing
the potential toxicity of combination therapies, given the
identified similarities between tumor and cardiac kinome
reprogramming in the setting of KI administration.

Our study has several limitations. We assessed the cardiac
response to a single dose of each KI. Though we chose KI
doses that are well established in the literature, we cannot
exclude the possibility that our findings are dose dependent.
We also studied female mice from a single strain and
acknowledge that there may be strain-related differences in
drug response. Interestingly, in contrast to most types of
cardiac insult, female mice are more prone to sunitinib-
induced cardiotoxicity than male mice.11 It is possible that the
inclusion of 4 mice that were euthanized early because of
excessive weight loss could have affected our data analysis;
however, none of those mice showed evidence of heart failure
(mean fractional shortening 56% at Day 7). Lastly, we did not
pursue the possibility that upregulation of cardioprotective
NFjB signaling,59 in addition to STAT3 activation, might buffer
the cardiac effects of EGFR inhibition with erlotinib. We will
pursue that avenue of investigation in future studies.

Collectively, our findings suggest that combined kinome
and transcriptome profiling could generate a molecular
signature of KI cardiotoxicity that could be useful in predicting
potential adverse cardiac effects of novel KIs in the preclinical
setting. That signature will be enriched by application of this
platform to other extant KIs, as well as proposed combination
therapies. Though routine sampling of human myocardium
poses unacceptable risk, understanding the effects of KIs on
the mouse cardiac kinome and transcriptome may facilitate
identification of circulating markers of pathway-specific
cardiac injury that could mitigate the risk of cardiac toxicity
during early phase clinical trials of KIs in development.
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Table S1. MIB-MS summary data 

Gene Sorafenib stdev  Gene Sunitinib stdev  Gene Erlotinib stdev 

Btk 0.545 0.501  Wee1 0.675 0.191  Map3k11 1.014 0.377 

Epha7 0.404 0.214  Csnk2a1 0.467 0.261  Btk 0.621 0.444 

Dstyk 0.403 0.203  Map3k11 0.348 0.308  Cdk9 0.484 0.189 

Prkg1 0.398 0.154  Insrr 0.332 0.259  Rps6ka6 0.473 0.131 

Src 0.374 0.286  Taok3 0.310 0.096  Trim28 0.451 0.168 

Adck4 0.367 0.156  Adk 0.297 0.172  Pip4k2a 0.432 0.247 

Dmpk 0.322 0.126  Phkg1 0.286 0.063  Tgfbr1 0.426 0.188 

Egfr 0.321 0.139  Mapk1 0.286 0.104  Hck 0.380 0.243 

Prkcd 0.321 0.236  Pfkl 0.267 0.082  Phkg1 0.377 0.168 

Pip5k1c 0.311 0.166  Rps6kb1 0.261 0.138  Ddr2 0.364 0.155 

Ikbkb 0.265 0.171  Axl 0.253 0.086  Bmx 0.356 0.137 

Tgfbr1 0.258 0.086  Bckdk 0.234 0.134  Mapk8 0.356 0.249 

Map3k3 0.228 0.148  Fyn 0.226 0.124  Wee1 0.347 0.296 

Chka 0.218 0.206  Ephb4 0.223 0.064  Csnk2a2 0.299 0.197 

Insrr 0.213 0.182  Cdk9 0.221 0.036  Prkg1 0.297 0.180 

Stk11 0.207 0.099  Stk24 0.219 0.094  Gak 0.289 0.130 

Stk24 0.203 0.088  Epha7 0.218 0.176  Stk24 0.282 0.104 

Mltk 0.199 0.129  Csnk1g3 0.217 0.159  Irak3 0.278 0.250 

Cdk7 0.197 0.108  Gsk3a 0.212 0.125  Adck4 0.270 0.068 

Ptk2b 0.196 0.187  Nek4 0.208 0.076  Taok3 0.265 0.242 

Mylk 0.195 0.120  Adck4 0.204 0.092  Flt4 0.255 0.174 

Syk 0.185 0.158  Nek3 0.197 0.160  Src 0.250 0.233 

Mylk3 0.184 0.180  Rps6kc1 0.189 0.151  Ikbkb 0.249 0.159 

Cdk9 0.182 0.147  Stk38 0.187 0.081  Cdk5 0.248 0.168 

Phkg1 0.179 0.154  Map2k2 0.181 0.073  Mapk9 0.243 0.162 

Csnk2a2 0.177 0.079  Pdxk 0.174 0.157  Aak1 0.243 0.193 

Tgfbr2 0.173 0.109  Stk39 0.170 0.064  Myo3a 0.236 0.081 

Pkn1 0.168 0.025  Pkn1 0.165 0.061  Stk16 0.232 0.152 

Stk38 0.168 0.153  Irak3 0.163 0.116  Axl 0.228 0.139 

Map4k3 0.165 0.113  Map2k1 0.159 0.111  Ephb4 0.226 0.137 

Stradb 0.157 0.132  Stk16 0.153 0.110  Dmpk 0.225 0.160 

Axl 0.155 0.067  Stk11 0.153 0.081  Camk2d 0.222 0.182 

Cdc42bpb 0.155 0.017  Rps6ka1 0.151 0.089  Stk25 0.216 0.091 

Rps6ka3 0.154 0.048  Tbk1 0.150 0.055  Camk2b 0.213 0.116 

Prkca 0.152 0.132  Ulk3 0.143 0.128  Fer 0.211 0.145 

Ddr2 0.151 0.140  Stk38l 0.141 0.108  Map4k5 0.200 0.109 

Mapk10 0.149 0.087  Taok1 0.135 0.103  Adck1 0.198 0.143 

Adck1 0.148 0.145  Csk 0.124 0.061  Ddr1 0.197 0.188 

Nek9 0.146 0.091  Sik3 0.120 0.078  Mylk3 0.196 0.138 

Dapk2 0.145 0.110  Nek9 0.112 0.081  Slk 0.194 0.171 

Insr 0.145 0.055  Pdpk1 0.110 0.020  Map2k6 0.194 0.111 

Camk2b 0.142 0.105  Pkn2 0.107 0.070  Pak4 0.194 0.181 

Map3k5 0.138 0.111  Gsk3b 0.106 0.027  Rps6ka3 0.189 0.180 

Rps6ka4 0.127 0.046  Tesk1 0.103 0.068  Stk3 0.186 0.128 

Rock2 0.126 0.032  Lyn 0.102 0.091  Egfr 0.185 0.181 

Slk 0.123 0.055  Pip4k2c 0.097 0.040  Stk4 0.184 0.183 

Lyn 0.120 0.067  Igf1r 0.094 0.008  Csnk1g1 0.184 0.160 



Irak3 0.120 0.043  Stk3 0.084 0.081  Mapk3 0.181 0.066 

Gk 0.115 0.064  Cdc42bpb 0.077 0.060  Nek9 0.179 0.130 

Fer 0.113 0.075  Csf1r 0.074 0.032  Tnik 0.168 0.100 

Ulk3 0.113 0.047  Epha2 0.072 0.062  Jak1 0.167 0.136 

Jak1 0.113 0.078  Mark2 0.061 0.028  Cdk4 0.164 0.081 

Prkcq 0.113 0.064  Hk2 0.049 0.047  Pdxk 0.161 0.153 

Irak4 0.107 0.051  Irak4 0.046 0.039  Epha2 0.160 0.152 

Map2k2 0.105 0.094  Mapk3 0.040 0.007  Ulk3 0.151 0.098 

Map3k2 0.103 0.035  Gk -0.033 0.021  Tgfbr2 0.150 0.070 

Chkb 0.100 0.081  Pdk2 -0.059 0.044  Srpk1 0.147 0.087 

Mapk8 0.099 0.070  Cdk16 -0.063 0.043  Stk38l 0.146 0.030 

Acvr1 0.099 0.097  Stk4 -0.068 0.032  Stk38 0.145 0.098 

Pkn2 0.098 0.069  Adck1 -0.069 0.024  Pdpk1 0.139 0.030 

Ephb4 0.095 0.067  Src -0.072 0.036  Ripk2 0.132 0.110 

Bmpr2 0.084 0.029  Map2k5 -0.076 0.067  Pfkl 0.129 0.104 

Igf1r 0.084 0.035  Khk -0.095 0.082  Pip4k2c 0.125 0.113 

Prkacb 0.060 0.029  Csnk1e -0.096 0.047  Cdk17 0.119 0.076 

Cdk6 -0.044 0.040  Pfkm -0.100 0.009  Stk11 0.115 0.086 

Ripk2 -0.067 0.046  Cdk6 -0.112 0.052  Rock2 0.113 0.051 

Gucy2d -0.086 0.034  Speg -0.119 0.080  Pkn1 0.109 0.059 

Abl2 -0.119 0.026  Pdk1 -0.137 0.016  Sik3 0.105 0.097 

Camk2a -0.121 0.102  Map4k4 -0.153 0.116  Fn3k 0.102 0.101 

Pdk1 -0.152 0.121  Rps6ka5 -0.173 0.137  Rps6ka4 0.092 0.052 

Hk1 -0.177 0.140  Pip4k2b -0.195 0.054  Pdk2 -0.065 0.038 

Tk2 -0.179 0.124  Stk10 -0.200 0.095  Nek1 -0.191 0.167 

Khk -0.182 0.141  Prkcb -0.209 0.117  Map2k5 -0.213 0.139 

Pip4k2b -0.211 0.196  Prkd3 -0.217 0.113  Hk1 -0.214 0.123 

Speg -0.220 0.179  Abl2 -0.231 0.088  Adrbk2 -0.214 0.151 

Pfkm -0.250 0.063  Wnk2 -0.232 0.033  Ckmt2 -0.232 0.163 

Eif2ak2 -0.253 0.073  Ppip5k2 -0.262 0.214  Obscn -0.246 0.169 

Ak2 -0.309 0.056  Ak1 -0.265 0.235  Mertk -0.248 0.231 

Ak1 -0.623 0.381  Galk1 -0.269 0.215  Pkm -0.255 0.148 

Ckm -0.736 0.575  Rps6ka6 -0.275 0.050  Nme2 -0.257 0.166 

Camk2d -1.072 0.576  Chka -0.341 0.029  Hk2 -0.258 0.098 

    Camk2d -0.343 0.297  Pdk1 -0.371 0.136 

    Tnik -0.357 0.245  Pgk1 -0.478 0.337 

    Ak2 -0.377 0.084  Oxsr1 -0.480 0.106 

    Pip5k1a -0.650 0.114  Prkd3 -0.633 0.615 

        Ckm -0.747 0.357 

        Ak1 -0.751 0.244 



Table S2. RNAseq by Expectation Maximization (RSEM) data for RNAseq. See Excel file. 

 

Table S3. Gene Set Enrichment Analysis (GSEA) results. See Excel file.  
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Figure S1. Conscious echocardiography compared structural and functional

cardiac parameters. Female wild type FVB mice (n=4 for vehicle, n=5 for KIs) were

gavaged with vehicle, erlotinib (50 mg/kg/day), sunitinib (40 mg/kg/day) or sorafenib

(30 mg/kg/day) for 14 days. Conscious echocardiograms were performed at baseline,

7 days, and 14 days. Repeated measures ANOVA compared intragroup changes. (* p

< 0.05). LVID=left ventricular internal diameter



Erlotinib Sunitinib Sorafenib

Figure S2. Graphical summary of Multiplex Inhibitor Beads-Mass Spectrometry (MIB-

MS) kinome profiling of kinase inhibitor-treated mouse hearts. Kinase activity depicted

with reference to vehicle-treated hearts.
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Figure S3. Heat maps for Gene Set Enrichment Analysis of RNAseq data.

Upregulation of transcripts in NFkB and STAT3 pathways distinguishes erlotinib from

sunitinib and sorafenib. TNFa=tumor necrosis factor alpha; IL6=interleukin 6;

NFkB=nuclear factor kappa B; STAT3=signal transducer and activator of transcription 3.



Figure S4. Volcano plots comparing statistically significant (DEseq2) transcriptional

responses to cardiosafe (control and erlotinib) or cardiotoxic (sorafenib and

sunitinib) treatments. Kinases are in blue and transcription factors in red. TF=transcription

factor


	Kinome and Transcriptome profiling reveal broad and distinct activities of Erlotinib, Sunitinib, and Sorafenib in the mouse heart and suggest cardiotoxicity from combined signal transducer and activator of transcription and epidermal growth factor receptor inhibition
	Authors

	tmp.1606158897.pdf.fDfeY

