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ABSTRACT 

 

 

Aedes aegypti mosquitoes are small slender fly species spreading the arbovirus from 

flavivirus vector through the feeding of the mammals’ blood. The early detection of this 

species is very important. Once this species turns into adult mosquitoes, the population 

control becomes more complicated. The situation even worse when difficult access places 

like a water storage tank became one of the favourite breeding places for the Aedes aegypti 

mosquitoes. Therefore, a technological method is required to assist the operator in the field 

during the routine inspection of the Aedes aegypti larvae, especially at difficult access places 

as stated in the report of the World Health Organization (WHO). This research proposed a 

development of the Aedes aegypti larvae detection system based on the convolutional neural 

network via the transfer learning method. In this study, a database is created since there is 

no Aedes aegypti database available online. The database is developed by collecting the 

Aedes aegypti larvae images in in the same environment of water storage tank. 507 images 

are set for training dataset, 10 images for validation dataset and 30 images for test dataset. 

Two different convolutional architectures have been trained in this study, which are Faster-

Region Convolutional Neural Network (Faster-RCNN) and Single Shot Multibox Detector 

(SSD) that applying same region proposal techniques and base network of Inception-v2. 

Besides, the pre-trained model of the Common Object in the Context dataset has been 

applied in this training, where the hyper-parameter fine-tune configuration has been 

implemented in this study. The performance of the generated inference graphs is analysed 

based on three main aspects, which are the performance during training, validation and test. 

In order to estimate the generalization gap in the training phase, the cross-entropy loss of the 

training and the validation for both architectures are obtained so that the optimum capacity 

can be retrieved from the learning. Meanwhile, in the validation phase, the tracking-based 

metrics and the perimeter intrusion detection metrics are conducted for several specific 

learning steps in the validation dataset. The precision-recall curve (PR Curve) also has been 

implemented in the validation phase, where the curve at the right top angle is proposed as 

the best model in this study. In the test phase, the test dataset is tested with standard detection 

metrics. From the results obtained in the training, validation and test analyses, it is observed 

that the best architecture for the detection of the Aedes aegypti larvae is the Faster-RCNN. 

The results also indicated that the accuracy of the test results for the Faster-RCNN is 0.9213, 

while the SSD is 0.6966. Therefore, it can be concluded that the Faster-RCNN is the best 

model in the detection of the Aedes aegypti larvae. The impact of this study is the proposal 

of a new method with respect to vision technology, specifically for the Aedes Aegypti larvae 

prevention and outbreak as highlighted by WHO and sustainable development programme 

by United Nation. 
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ABSTRAK 

 

 

Nyamuk Aedes aegypti ialah spesies serangga kecil berterbangan yang menyebarkan 

arbovirus dari vektor flavivirus melalui permakanannya dengan mengambil darah mamalia. 

Pengesanan awal spesies ini sangat penting. Apabila spesies ini menjadi nyamuk dewasa, 

kawalan populasi menjadi lebih rumit. Keadaan menjadi semakin buruk ketika tempat sukar 

dicapai seperti tangki simpanan air menjadi salah satu tempat kegemaran untuk nyamuk 

Aedes aegypti membiak. Oleh itu, satu kaedah teknologi diperlukan untuk membantu 

pengendali di lapangan semasa pemeriksaan rutin larva Aedes aegypti, terutamanya di 

tempat-tempat yang sukar dicapai seperti yang dinyatakan dalam laporan Pertubuhan 

Kesihatan Sedunia (PKS). Kajian ini mencadangkan pembangunan sistem pengesanan larva 

Aedes aegypti berdasarkan Rangkaian Neural Konvolusi melalui kaedah pemindahan 

pembelajaran. Dalam kajian ini, pangkalan data dibuat kerana tiada pangkalan data Aedes 

aegypti dalam talian sedia ada. Pangkalan data dibangunkan dengan mengumpul imej larva 

aedes aegypti dalam persekitaran tangki simpanan air di mana. 507 imej ditetapkan untuk 

kumpulan latihan, 10 imej untuk dataset pengesahan dan 30 imej untuk dataset ujian. Dua 

seni bina konvolusi yang berlainan telah dilatih dalam kajian ini, iaitu Rangkaian Rantau 

Neural Konvolusi dengan Cepat (Cepat-RRNK) dan Pengesan Berbilang Kotak dengan 

Sekali Tembak (PBKST) yang menggunakan teknik cadangan wilayah yang sama dan 

rangkaian asas Inception-v2. Selain itu, model yang telah dilatih sengan Objek Bersama 

dalam Konteks (OBK) telah digunakan dalam latihan ini, di mana konfigurasi parameter 

terbaik telah digunakan dalam kajian ini. Prestasi graf yang dihasilkan dianalisis 

berdasarkan tiga aspek utama, iaitu prestasi semasa latihan, pengesahan dan ujian. Untuk 

menganggarkan jurang penggenapan dalam fasa latihan, ralat entropi ketika latihan dan 

pengesahan untuk kedua-dua seni bina diperoleh supaya kapasiti optimum dapat diperolehi 

dari pembelajaran. Sementara itu, dalam fasa pengesahan, metrik berasaskan pengesanan 

dan metrik pengesanan pencerobohan perimeter dijalankan untuk beberapa langkah 

pembelajaran tertentu dalam dataset pengesahan. Lengkung Ketepatan dan Ingat Semula 

(Lengkung-KI) juga telah dilaksanakan dalam fasa pengesahan, di mana lengkung di sudut 

kanan atas dicadangkan sebagai model terbaik dalam kajian ini. Dalam fasa ujian, dataset 

ujian diuji dengan piawai metrik pengesanan. Dari hasil yang diperolehi dalam latihan, 

pengesahan dan analisis ujian, diperhatikan bahawa seni bina terbaik untuk mengesan larva 

Aedes aegypti adalah Cepat-RRNK Hasilnya juga menunjukkan bahawa ketepatan 

keputusan ujian untuk Cepat-RRNK adalah 0.9213, sedangkan PBKST adalah 0.6966. Oleh 

itu, ianya dapat disimpulkan bahawa Cepat-RRNK adalah model terbaik dalam pengesanan 

larva Aedes aegypti. Impak dalam kajian ini adalah cadangan mengenai satu kaedah baru 

dengan menggunakan teknologi penglihatan, khususnya untuk pencegahan larva Aedes 

Aegypti dan wabak seperti yang digariskan oleh PKS dan program pembangunan mampan 

oleh Bangsa-Bangsa Bersatu. 
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CHAPTER 1   

 

INTRODUCTION 

 

1.1 Introduction 

Aedes aegypti mosquito is a small slender fly species that survives through the blood 

of mammals. This species has adapted to the natural habitats as the number of mammals 

occupied the earth has grown (Powell and Tabachnick, 2013). Aedes aegypti mosquito 

became one of the most dangerous living organisms which has contributed to a huge number 

of deaths annually. These Aedes aegypti mosquitoes are like agent spread the flavivirus 

vector of arboviruses such as dengue fever, chikungunya fever, yellow fever and Zika fever 

(Powell and Tabachnick, 2013; Veasna et al., 2017). These viruses have existed about 1,500 

years ago. However, the dissemination of the viruses within human occurred only in a few 

hundred years ago (Wang et al., 2000). For instance, the spread of dengue vector by Aedes 

aegypti mosquito can be fatal the human and animals. 

Urbanization, demographic, and environmental are the main factors that contribute 

to the global distribution of these arboviruses (Messina et al. 2014). Besides, the increament 

of the international traveller and the military personnel become the key reasons in facilitating 

the dissemination of these viruses. The most affected countries are the tropical countries that 

lie on the equator line. The epidemiology has been accentuated to haunt in these tropical 

countries are 40% of world population. Taxonomically, the causative agent carrying 

identical viruses that consist of 4 distinct subtypes. Figure 1.1 shows the global spread of 

these 4 different dengue virus or DENV types reported for every 10 years since the year 

1943 (Messina et al. 2014). 
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Figure 1.1: Global spread of DENV type reported for every 10 years since the year 1943 

 

In Malaysia, the first dengue diseases was detected in 1901, while the first epidemic 

outbreak was raised in 1973, where the number of total cases are 969 with 54 deaths (Pang 

and Loh, 2016). In 2013, it is discovered that the majority of the affected community is 

between the age of 13 to 35 years old (Sam et al., 2013). It is a predictable trend of arbovirus 

of flavivirus epidemiology, especially in the spell of the wet weather during the monsoon 

season. Based on a survey that has been made by Shepard et al. (2013), Malaysia is estimated 

to be borne with US$ 102.25 million per year, which is only due to the dengue illness. 

Presume that the existing of the under-reported cases, the cost would be even higher since 

Malaysia has a passive surveillance system (Shepard et al., 2013). The contagious of 

flavivirus episode has caused impacts on most health domains. A country’s developments 

and financial are affected due to the epidemic which simultaneously reducing the quality of 
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life. Therefore, a significant action is required to eliminating the agent of the Aedes aegypti 

mosquitoes as an effective method to control the distribution of the virus. 

 

1.2 Research background 

In the classification of the mosquitoes, there are hundreds of different species that 

even the scientist does not have a common point of view on how it should be classified. 

Researchers have even spent so much time in exploring into their genus and species. Every 

species of mosquito has its own characteristics, behaviour, and the way of survival. In 

Malaysia, there are three common mosquitoes’ species can be mostly found which are 

Anopheles, Culex and Aedes. The elimination during the larvae early stage is very important 

because when it turns into adult mosquitoes, the population control becomes more 

complicated since it can fly. 

Anopheles is commonly found in America and known as the malaria carrier agent. 

However, due to Malaysia located within the equatorial zone with high temperature and 

humidity, Anopheles also can be found in Malaysia (William and Menon, 2014). Anopheles 

adult females lay their eggs in the shallow, clear water of swamps and ponds which are not 

too acidic and stagnant. The Anopheles larvae are tending to rest in parallel on the surface 

of the water rather than hanging down. It also floats fast from one point to another point 

(Sum et al., 2014). 

Culex species were typically related with the Japanese Encephalitis, West Nile Virus 

and St. Louis encephalitis carrier agent. Malaysian have mostly infected with Japanese 

Encephalitis from the Culex species as the pathogen transfer through the pig whenever there 

are swine nearby. They lay eggs connected to each other in group, which is the so-called raft. 

The eggs usually float in quite drain, in pool as small as bucket or big as lakes, or as stinky 
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