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ABSTRACT 

 

 

Higher tracking accuracy, robustness and disturbance rejection are the three most 

important elements that are highly demanded to be applied and achieved in the process of 

controller design in manufacturing process. In this new era where technology keeps rising, 

controller design for machine tools has caught the attention of most researchers nowadays. 

However, disturbances such as friction force and cutting force affect the tracking 

performance of the machine tool. Issues related to cutting force effect on machining have 

been studied extensively by previous researchers in which different controller techniques 

are designed to overcome this issue. The conventional controller such as a proportional-

integral-derivative (PID) controller is proved to be inadequate in enhancing the tracking 

performance of the machine tool under the presence of cutting force. Consequently, PID 

structure is modified by cascading a nonlinear component and PID controller which is 

named as nonlinear proportional-integral-derivative (NPID) controller. However, an NPID 

controller also has limitation with respect to the range of stability of the nonlinear gain. 

Owing to this reason, NPID controller with more than one nonlinear components are 

proposed to address the issue. Thus, this thesis proposes an NPID Double Hyperbolic 

controller for improving the tracking performance of the machine tool application. First, 

the transfer function of the model is obtained via system identification approach which is 

known as black box approach. Then, the proposed controller is designed. It consists of two 

embedded hyperbolic nonlinear components known as the nonlinear proportional and the 

nonlinear integral which are located before the proportional and integral gains, respectively. 

This controller is validated via simulation and experimental works. The performance of 

this proposed controller is compared with the two conventional controllers; the PID and the 

NPID controllers to verify the effectiveness of the proposed controller. This thesis has 

successfully demonstrated that by adding additional nonlinear hyperbolic components, the 

tracking performance of a machine tool can increase significantly. The results showed that 

NPID Double Hyperbolic controller provide an improvement of 94.43% in terms of root 

mean square error (RMSE) performance and an enhancement of 62.59% in terms of fast 

fourier transform (FFT) error performance compared to the conventional NPID controller. 

However, further studies and improvement are needed to study the machine tool 

performance in view of the quadrant glitches existence produced by the friction force. In 

addition, further study is required on PID controller with three nonlinear components in 

order to produce better tracking machine tool performance.   
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 ABSTRAK 

 

 

Ketepatan, keteguhan dan penyingkiran gangguan yang tinggi adalah antara tiga elemen 

yang amat penting dalam proses rekabentuk sistem kawalan dalam sektor pembuatan. 

Proses rekabentuk sistem kawalan bagi memastikan peningkatan prestasi sesebuah alat 

mesin adalah suatu era yang baru di mana ramai penyelidik mula mengkaji dan 

merekabentuk pelbagai jenis sistem kawalan. Walau bagaimanapun, gangguan pada alat 

mesin seperti daya geseran dan daya pemotongan memberi kesan kepada prestasi proses 

pemesinan. Isu berkaitan daya pemotongan ketika proses pemesinan telah dikaji dengan 

lebih meluas di mana pelbagai jenis sistem kawalan telah diperkenalkan oleh ahli 

penyelidik sebelum ini. Sistem kawalan konvensional seperti “proportional-integral-

derivative (PID)” sahaja tidak mencukupi bagi meningkatkan prestasi ketepatan proses 

pemesinan ketika kehadiran daya pemotongan berlaku. Akibatnya, rekabentuk sistem 

kawalan “PID” yang terhad telah ditambah baik dengan menjalankan proses ubah suai 

rekabentuk di mana satu penambahan sesuatu komponen dalam reka bentuk sistem 

kawalan “PID” yang dinamakan sebagai sistem kawalan “nonlinear proportional-

integral-derivative (NPID)”. Walau bagaimanapun, sistem kawalan “NPID” juga 

mempunyai kepelbagaian nilai kestabilan yang terhad. Oleh kerana itu, sistem kawalan 

“NPID” mesti direkabentuk dengan lebih komponen tidak linear. Dalam tesis ini, satu 

rekabentuk sistem kawalan “NPID Double Hyperbolic” diperkenalkan bertujuan untuk 

menambahbaik prestasi ketepatan sesuatu alat mesin. Pertama, satu model matematik 

yang dinamakan rangkap pindah dihasilkan melalui proses pengenalan sistem yang 

dikenali sebagai “black box”. Kemudian, cadangan sistem kawalan ini terdiri daripada 

dua fungsi “hyperbolic” tidak linear yang dinamakan sebagai fungsi tidak linear “P” dan 

fungsi tidak linear “I”. Hasil prestasi “NPID Double Hyperbolic” ini kemudian 

dibandingkan dengan sistem kawalan konvensional “PID” dan “NPID” bagi 

mengesahkan keberkesanan cadangan sistem kawalan ini. Tesis ini juga telah 

menunjukkan dua fungsi “hyperbolic” tidak linear berpotensi dalam meningkatan prestasi 

ketepatan ketika proses pemesinan. Hasil eksperimen menunjukkan bahawa sistem 

kawalan “NPID Double Hyperbolic” telah berjaya membuahkan hasil yang lebih baik 

sebanyak 94.43% dari aspek “Root mean square error (RMSE)” dan 62.59% dari aspek 

“Fast Fourier Transform (FFT) error” berbanding sistem kawalan konvensional “NPID”. 

Walau bagaimanapun, kajian lanjut dan penambahbaikan adalah diperlukan. Tujuan 

kajian lanjut adalah bagi memastikan prestasi proses pemesinan dapat ditingkatkan lagi. 

Prestasi proses pemesinan ini dapat ditingkatkan dengan menghasilkan satu model 

geseran dalam cadangan sistem kawalan bagi mengurangkan daya geseran dan dalam 

masa yang sama meningkatkan lagi ketepatan proses pemesinan. Sebagai tambahan, 

sistem kawalan “PID” dengan tiga fungsi tidak linear perlu dikaji dengan lebih teliti pada 

masa akan datang bagi meningkatkan lagi prestasi proses pemesinan. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

Machine tool is a machine for shaping material parts into a product with desired 

shapes by performing a cutting process. One example of a machine tool is the milling 

machine in which this machine provides a rotating tool that is located at the Z-axis 

machine and provides X-axis and Y-axis movement tables in order to perform various 

milling operations. In general, the milling machine is able to perform a continuous path 

system (Kalpakjian and Schmid, 2006) which is included in some milling operations such 

as pocket milling, profile milling, surface contouring, slotting, and others. The milling 

machine is also usually related to the precision mechanical system in the manufacturing 

industry. 

Due to the superiority of the milling machine, various shapes of products or known 

as the work-piece can be produced by the industrial companies (Kalpakjian and Schmid, 

2001). The milling machine operates by rotating the cutting tool to cut the unwanted part 

of the work-piece which is located on the milling machine table. However, the cutting 

process produces cutting force disturbance which is contributing to the poor performance 

of the machine tool and affecting the quality of the product surface (Abdullah et al.,  

2013a). Ogun and Jackson (2017) claimed that the performance of the XY table was 

recently still being investigated in order to produce a good surface quality of a product. 

Other than the cutting force disturbance, the friction force also affects the 

performance of the machine tools. According to previous researchers (Chen et al., 2004, 


