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ABSTRACT 

 

 

Over the past decade, the rotary switched reluctance actuator (SRA) has been gaining 

attention not only in the areas of industrial applications as well in promising research areas 

such as robotics and automotive engineering. The popularity can be much associated with 

the attractive advantages SRA has to offer such as inherent fault tolerance, simple and robust 

structure in addition to the ability for high frequency operations. Despite the attractive 

advantages it has to offer, SRA exhibits significant nonlinear characteristics due to its 

unpredictable magnetic flux flow and operation in saturation region. Subsequently, these 

dynamic behaviors often make modelling and real time motion control a challenging effort. 

Although various control methods have been developed, these controller design procedures 

frequently require exact model of mechanism and deep understanding in modern control 

theory which leads to their impracticability. Henceforth, in this research, a practical control 

strategy namely the modified proportional-integral-derivative (PID) control scheme is 

proposed for point-to-point motion control of the rotary SRA mechanism. The practical 

control scheme presented heavily emphasizes on simple structure and straightforward design 

framework. Hence, the proposed modified PID controller includes control elements that are 

derived from the measured open loop responses. Complex system modelling or high 

computational learning algorithms are not required in the controller design process. The 

performance evaluation is examined and compared to a conventional PID controller through 

experimental works. At fully aligned and almost aligned positions, experimental results 

showed that the proposed controller successfully reduced steady-state error in step 

positioning by an average improvement of 94%. The maximum overshoot and settling time 

are improved by an average 62.5% and 47%. At intermediate positions, although zero steady-

state error can be enjoyed on both controllers, modified PID controller performed better by 

showing a reduced overshoot and settling time response of 60% and 37% improvement. 

Overall, the proposed controller displayed superiority compared to conventional PID 

controller with a smoother displacement response with reduced steady-state error, overshoot 

and settling time in all positioning tasks.  
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ABSTRAK 

 

 

Menelusuri dekad yang lalu, penggerak berputar Bertukar Keengganan (SRA) semakin 

mendapat perhatian bukan sahaja dalam industri malahan dalam bidang-bidang 

penyelidikan yang prominen seperti robotik dan kereta elektrik hybrid. Populariti ini boleh 

dikaitkan dengan kelebihan yang ditawarkan oleh penggerak berputar SRA seperti ciri-ciri 

keselamatan, struktur bina yang mudah dan kebolehan beroperasi menggunakan putaran 

frekuensi tinggi. Walau bagaimanapun, penggerak berputar SRA mempamerkan ciri-ciri 

tidak linear yang ketara yang disebabkan pengaliran fluks magnet yang sukar dijangka dan 

operasinya dalam kawasan ketepuan. Justeru itu, kelemahan dinamik ini sering kali 

menyebabkan pencirian sistem dan kawalan gerakan satu usaha yang mencabar. Walau 

terdapat beberapa jenis sistem kawalan yang telah dicadangkan, rangka kerja sistem 

kawalan yang dicadangkan memerlukan model yang tepat dan juga pengetahuan yang 

mendalam berkaitan teori sistem kawalan moden di mana sistem kawalan sering kali 

menjadi tidak praktikal. Oleh itu, dalam penyelidikan ini, satu strategi kawalan praktikal 

yang dinamakan sebagai skema pengawal modifikasi PID dicadangkan untuk kawalan 

gerakan titik ke titik untuk mekanisme penggerak berputar SRA. Skema kawalan praktikal 

ini mempertimbangkan struktur yang mudah dan rangka kerja yang ringkas. Pengawal 

modifikasi PID yang dicadangkan mempunyai elemen pengawal yang dibina melalui 

hubungan antara input dan keluaran yang boleh didapati melalui pencirian gelung terbuka. 

Pemodelan yang kompleks dan algoritma pembelajaran berkiraan tinggi tidak diperlukan 

dalam proses rekabentuk pengawal modifikasi PID. Seterusnya, prestasi pengawal 

modifikasi PID dinilai dan dibandingkan dengan pengawal PID lazim melalui eksperimen. 

Hasil ujikaji menunjukkan bahawa sistem pengawal yang dicadangkan berjaya 

mengurangkan ralat keadaan mantap dalam penempatan langkah dengan pembaikan 

purata sebanyak 94% di posisi berjajar dan hampir berjajar. Terlajak maksimum dan masa 

penepatan diperbaiki sebanyak 62.5% dan 47% secara purata. Di posisi perantaraan, 

walaupun kedua-dua pengawal mempamerkan ralat keadaan mantap sifar, pengawal 

modifikasi PID mencapai terlajak maksimum terturun dan masa penepatan terturun dengan 

pembaikan sebanyak 60% dan 37%. Keseluruhannya, pengawal modifikasi PID 

menunjukkan keunggulan berbanding dengan pengawal PID lazim dengan pencapaian 

sambutan sesaran yang licin, ralat keadaan mantap terturun, terlajak maksimum terturun 

dan masa penepatan terturun dalam semua kes penempatan. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction 

This chapter highlights the background of the study, problem statement, objectives 

and the scope of the research. The background study includes a brief exposition on the 

structure, working principle and advantages of the actuator in this project. The problem 

statement dictates the core issues to be addressed through this research. Meanwhile, the 

objectives serve as benchmark and the scope defines the boundaries and limit in overseeing 

the completion of the project. 

 

1.2 Background 

Switched reluctance actuator (SRA) is a subdivision of electromagnetic machines 

which fundamentally, operate by converting electrical energy to magnetic field, then through 

magnetic field interactions, produces electromagnetic force that drives a mechanical part 

(rotational or linear motion). Electromagnetic actuation can be applied in optical 

electromechanical systems (MOEMS) to provide large and long-range forces for industrial 

applications such as magnetic matrix array of micro-switches for optical network (Helin et 

al., 2000) and magnetostrictive scanner for automobile obstacle detection (Bourouina et al., 

2001). Electromagnetic actuators carry the ability to operate via remote control, which 

allows actuation of microsystems with a silicon-based structure by just reacting to an 

external magnetic field (Reyne, 2002). Apart from that, electromagnetic actuators can easily 

achieve bi-stability due to the presence of permanent magnet in its structure. Actuation 
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positions are retained from one position to another steadily by a pulse of excitation current 

through the forces of magnetic field interactions. Electromagnetic actuators are also 

implemented in microelectromechanical systems (MEMS) for applications such as and 

positioning stage with nanometer precision (Ahn et al., 2015; Lv et al., 2015) and medical 

laser scanners (Shevchenko et al., 2018).  The general characteristics of several types of 

actuators (Ulbrich, 1994; Yang and Xu, 2017) can be summarized as in Table 1.1.  

 

Table 1.1: Comparison of general characteristics for 4 types of actuators 

 
Characteristics 

Actuator types 
Working 

Range 

Transfer 

characteristics 

Actuation 

force 
Precision 

Hydraulic Large 
Complex (fluid 

dynamics) 
Large Low 

Electrostatic Large Simple Small High 

Piezoelectric Small Simple Large High 

Electromagnetic Large Simple Large High 

 

Electromagnetic actuators carry the advantage of high actuation force, a wide 

working range with high precision, simple electrical transfer characteristics and operations 

in high speed mode. However, the most significant drawback of electromagnetic actuators 

is their complex design structure which require permanent magnets (PM). The constant 

excitation of PM in high speed modes brings high power dissipation and lowers the actuator 

efficiency (Bostanci et al., 2017). Hence, the SRA steps in as a solution to this flaw. In this 

thesis context, the actuator used would be known as the rotary switched reluctance actuator 

or rotary SRA.  



3 

 

The rotary SRA is classified as a member of the electromagnetic actuators, but it 

boasts a simple and robust structure with no implementation of highly expensive permanent 

magnets, which allow it to operate at higher temperature (Zabihi and Gouws, 2016). The 

rotary SRA operates based on the principle of magnetic reluctance and inductance. The rotor 

will rotate and align with the excited stator poles to form a path with least reluctance and 

highest inductance, which allows the flow of magnetic flux. Sequential excitation of stator 

poles will hence allow the continuous rotation of the actuator. The fabrication material for 

this whole actuator does not involve any rare-earth elements. Along the years, advanced 

design structures for rotary SRAs are introduced such as the double stator SRA (Abassian et 

al., 2010), multilayer SRA (Siadatan et al., 2011) and the segmental rotor SRA (Xu and Ahn, 

2013) mainly to produce enhanced torque and eliminate torque ripple. However, reverting 

to the fundamental design structure of rotary SRA, the actuator consists of three main 

components, which are the rotor, stator and coil windings as shown in Figure 1.1.  

 

 

Figure 1.1: Design of a conventional rotary SRA 

 

The typical rotary SRA is equipped with six stator poles and four rotor poles (6/4) as 

shown in Figure 1.1. The number of poles differ in various rotary SRA configurations 

because it affects the acoustic behaviour (Hofmann et al., 2014). A greater number of stator 

and rotor poles delivers the advantage of noise and vibration reduction, besides minimizing 
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radial force (Li et al., 2008). The actuation torque can also be improved with higher ratios 

of stator and rotor poles (Yusri et al. 2016a; Yusri et al. 2016b).  SRA operates based on the 

principle of magnetic reluctance. When a sequential excitation scheme is initiated, the rotor 

will rotate accordingly to align with the excited stator poles to form a path with least 

reluctance for the flow of magnetic flux. An air gap exists between the rotor and stator of 

rotary SRA. Ideally, air gap is made to be as small as possible because air has high resistance 

against the flow of magnetic flux which lowers the output torque (Balaji et al., 2004). 

However, the gap must be sufficient to allow smooth rotational motion without contact 

between the rotor and stator. The example 6/4 rotary SRA in Figure 1.1 is driven by 3-phase 

excitation current. Opposite stator poles are wounded with winding coils which forms one 

phase of the excitation current. SRA does not have any windings on its rotor, the only stator 

windings can be formed externally and inserted into the stator which provides a simple 

construction process (Fairall et al., 2015). Rotary SRA is typically powered by 3-phase 

current but there are development projects involving up to 6-phase (Han et al., 2016). The 

multi-phase characteristic of SRA provides inherent fault tolerance (Parsa, 2005). The 

electrical configurations of each phase are independent of each other. In case one phase fails, 

the machine maintains continuous operation. This allows SRA to be applied in aerospace 

applications (Fronista and Bradbury, 1997; Schramm and Gerling, 2006) and mining 

equipment (Hao and Guilin, 1998). When operating under high speed modes, SRA displays 

a high power factor as well as enhanced efficiency. This allows SRA to be well-suited for 

hybrid electrical vehicle (HEV) applications (Rahman et al., 2000; Ding et al., 2017) which 

could be a breakthrough for the industry. HEV are environmental friendlier and provide a 

lower maintenance cost compared to gas-powered vehicles. Apart from that, the simple, 

robust, low cost structure of SRA and absence of speed multiplication system makes rotary 

SRA suitable for wind power systems (Ogawa et al., 2011). There are also other useful 
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applications for rotary SRA such as robotic joints and manipulator (Hernandez-Guzmann et 

al., 2013; Li et al., 2017) to replace the existing PM stepper motor. 

Despite the advantages, there are a few significant weaknesses of rotary SRA where 

its usage is concerned. Rotary SRA intricately exhibits non-linear characteristics which is 

attributed to the unpredictable flow of magnetic flux linkage and magnetic saturation. The 

non-linear nature of the rotary SRA makes analytical modelling extremely challenging. 

Measurements or finite element predictions for magnetization curves are necessary to 

formulate control schemes which complicates controller design processes. Henceforth, these 

factors limit the real-time motion control of rotary SRA in which often deemed as a 

challenging effort with low accuracy. 

At present, there are numerous control methods proposed and established for motion 

control of linear SRA. However, for rotary SRA it is fairly limited. Most of these early works 

involved model-based control which yields ameliorated performance but is highly dependent 

on the accuracy and quality of the system’s modelling. Hence, through classical control, the 

proportional-derivative-integral is widely used as alternative because it has simple design 

procedures and high applicability well suited for industrial operations. However, this method 

deteriorates in performance when non-linear mechanisms are involved due to the controllers’ 

linear structure. Various model-free controllers such as intelligent and hybrid are also 

employed. The complexity of control architecture is reduced compared to model-based 

controllers and their performance are enhanced because system uncertainties and variations 

can be accommodated through decision making skills of the controller. However, these 

controllers require sufficient knowledge in control theory and a tedious, time-consuming 

design procedure. Therefore, in this research, a control strategy that has a simple and 

practical framework is presented. The proposed control method will then be validated 

through a 3-phase 6/4 rotary SRA. 


