

Faculty of Mechanical Engineering

THERMOPHYSICAL PROPERTIES OF CNF-BASED NANOCOOLANT AS A HEAT TRANSFER MEDIA

Syazwani binti Zainal Abidin

Master of Science in Mechanical Engineering

2018

THERMOPHYSICAL PROPERTIES OF CNF-BASED NANOCOOLANT AS A HEAT TRANSFER MEDIA

SYAZWANI BINTI ZAINAL ABIDIN

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Thermophysical Properties of CNF-based Nanocoolant as A Heat Transfer Media" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Mechanical Engineering.

Signature	:	
Supervisor Name	:	
Date	:	

DEDICATION

To Allah s.w.t, Alhamdulillah for your blessings.

To my beloved family and friends, Thank you for your love, care and support. May Allah grant us a forever Jannah.

To supervisor,

Thank you for your unlimited patience, heaps of tolerance and inspirational personality.

Working with you was a privileged.

ABSTRACT

High heat flux removal is one of the major challenges in designing for the future electronic devices. The trend to address these high heat fluxes is to introduce microchannel arrays directly in the heat generating by the electronic component. Commonly, water is suggested to be used as a single-phase coolant in combination with the microchannel heat sinks for cooling of electronics applications. However, one of the major problems faced by the existing coolants is the limited amount of heat that can be absorbed by the fluids. An innovative way to overcome this limitation is by utilizing a nanocoolant as the heat transfer medium in a cooling application. This research was aimed at formulating an efficient nanocoolant from PR-24 HHT carbon nanofibers (CNF) in a base fluid consisting of deionized water (DI) and ethylene glycol (EG). The dispersion of nanofibers was enhanced by the presence of polyvinylpyrrolidone (PVP) as the stabilizing agent through two-step preparation process. The experiment was conducted by setting the variable weight percentage of CNF from 0.1wt% to 1.0wt%, with the base fluid ratio range from 100:0 (DI:EG) to 0:100 (DI:EG). The characterization testing was performed to study the surface species of the nanofiber using nitrogen gas adsorption technique, fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The detailed study of the thermophysical properties such as thermal conductivity, viscosity, and specific heat capacity of stable CNF-based nanocoolant was also been investigated at three different temperatures (6°C, 25°C and 40°C). The maximum thermal conductivity enhancement of 29.95% was noticed for the nanocoolant with 0.6wt% at 0:100 (DI:EG). The rheological analysis showed that when the temperature increases, the viscosity diminishes. Whereas, due to a lower specific heat of the CNF, the specific heat of the nanocoolant decreased in proportion with the CNF concentration. Experimental investigations into the forced convective heat transfer performance of the CNF-based nanocoolant in a laminar flow through a mini heat transfer test rig showed that the presence of nanoparticles enhanced the heat transfer coefficient as opposed to the original base fluid. The highest heat transfer coefficient was reported with 30:70 (DI:EG) by the 0.7wt% nanocoolant at 40°C with the value of 265.28 x 10^3 W/m².K. The enhancement of the heat transfer coefficient was due to the higher thermal conductivity value. The Nusselt number was also calculated and presented in this research. Overall, this study shows that the CNF-based nanocoolant has a huge potential to replace existing coolants in electronic cooling applications. Thus, in order to commercialize nanocoolant in practice, more fundamental studies are needed to understand the crucial parameters that affect their thermal characteristics.

ABSTRAK

Penyingkiran fluks haba yang tinggi adalah salah satu cabaran utama dalam mereka bentuk peranti elektronik masa hadapan. Trend untuk menangani fluks haba yang tinggi ini adalah dengan memperkenalkan saluran mikro secara langsung ke komponen elektronik yang menghasilkan haba. Umumnya, air dicadangkan untuk digunakan sebagai pendingin fasa tunggal dengan kombinasi sinki haba mikro untuk aplikasi penyejukan elektronik. Walau bagaimanapun, salah satu masalah utama yang dihadapi oleh pendingin sedia ada ini ialah jumlah haba yang terhad yang boleh diserap oleh cecair tersebut. Salah satu cara yang inovatif untuk mengatasi masalah ini adalah dengan menggunakan cecair pendingin nano sebagai media pemindahan haba dalam aplikasi penyejukan. Justeru, kajian ini berobjektif untuk mengformulasikan cecair nano dari PR-24 HHT karbon nanofiber dengan penggunaan cecair asas etilena glikol dan air ternyahion serta polivinilpirolidon sebagai ejen dispersi. Eksperimen ini dijalankan dengan menetapkan pembolehubah peratusan berat CNF dari 0.1wt% hingga 1.0wt% dengan peratusan nisbah cecair asas bermula dari 100:0 (DI:EG) hingga 0:100 (DI:EG). Ujian pencirian telah dilakukan untuk mengkaji spesies permukaan nanofiber menggunakan teknik penjerapan gas nitrogen, spektroskopi perubahan inframerah fourier (FTIR) dan mikroskop elektron pengimbas (FESEM). Kajian terperinci tentang sifat-sifat terma-fizikal seperti kekonduksian termal, kelikatan, dan kapasiti haba spesifik pendingin nano berasaskan karbon nanofiber yang stabil juga telah disiasat pada tiga suhu berbeza (6°C, 25°C dan 40°C). Peningkatan kekonduksian termal maksimum telah dicatatkan sebanyak 29.95% oleh pendingin nano dengan peratusan berat 0.6wt% pada nisbah 0:100(DI:EG). Analisis rheologi menunjukkan bahawa apabila suhu meningkat, kelikatan berkurang. Selain itu, haba spesifik yang lebih rendah oleh karbon nanofiber telah menyebabkan kapasiti haba spesifik pendingin nano menurun berkadaran dengan kepekatan karbon nanofiber. Penyiasatan eksperimen ke atas prestasi pemindahan haba konvektif pendingin nano berasaskan karbon nanofiber dalam aliran laminar melalui ujian pemindahan haba mini, hasil menunjukkan bahawa kehadiran nanopartikel telah meningkatkan pekali pemindahan haba berbanding dengan cecair asas. Pekali pemindahan haba tertinggi dilaporkan pada nisbah 30:70 (DI:EG) oleh 0.7wt% pendingin nano pada suhu 40°C dengan nilai 265.28 x 10^3 W/m².K. Peningkatan pekali pemindahan haba adalah disebabkan oleh nilai kekonduksian termal yang lebih tinggi. Nombor Nusselt juga dikira dan dibentangkan dalam kajian ini. Keseluruhannya, kajian ini menunjukkan bahawa pendingin nano berasaskan karbon nanofiber berpotensi besar untuk menggantikan pendingin sedia ada dalam aplikasi penyejukan elektronik. Oleh itu, untuk mengkomersialkan pendingin nano, lebih banyak kajian fundamental diperlukan untuk memahami parameter penting yang mempengaruhi ciri-ciri termal cecair ini.

ACKNOWLEDGEMENTS

Thanks to Almighty Allah for giving me a strength and ability to complete this research. Without His guidance, I would never be able to accomplish this research. First and foremost, I would like to express my special gratitude to my helpful supervisor, Mr Imran Syakir Mohamad. The supervision and support that he gave truly help the progression and smoothness of this research. The co-operation is much indeed appreciated. I also want to express my deepest gratitude to my co-supervisor, Associate Professor Dr Ahmad Yusairi Bani Hashim for his guidance and invested a full effort to help me to complete this project. Special thanks also to Ministry of Education (MOE) for providing a financial support under the grant of FRGS/2/2013/SG02/FKP/02/2/F00176. My grateful thanks also go to my nano research group, friends, and colleagues at UTeM which made my stay and studies in Malacca more enjoyable. To them, I say "true friends never apart, maybe in distance but never in heart". Great deals appreciated going to the contribution of my faculty - Faculty of Mechanical Engineering (FKM) for lending the necessary apparatus and materials needed for the accomplishment of this study. Finally, I also would like to thank my family for the support, love, and care that truly motivated me. I hope this research will give a positive impact on students and help next researchers when doing the research regarding this topic.

TABLE OF CONTENTS

DEC	CLAR	ATIO	N	
DEL	DICA '	ΓΙΟΝ		
ABS	TRA	СТ		i
ABS	TRA	K		ii
ACF	KNOV	VLED	GEMENTS	iii
TAB	BLE (OF CO	NTENTS	iv
LIST	ΓOF	TABL	ES	vii
LIST	ГOF	FIGU	RES	ix
LIST	ГОГ	APPE	NDICES	xiii
LIST	ГОГ	ABBR	EVIATIONS AND SYMBOL	xiv
LIST	ГOF	PUBL	ICATIONS	xvii
CHA	АРТЕ	R		1
1.	INT	RODU	CTION	1
	1.1	Introd	uction	1
	1.2	Backs	round Research	2
	1.3	Proble	em Statement	3
	1.4	Objec	tive of Research	4
	1.5	Scope	of Research	4
	1.6	Limita	ation and Challenges	5
	1.7	Thesis	s Outline	5
2.	LIT	ERAT	URE REVIEW	8
	2.1	Introd	luction	8
	2.2	Prepa	ration Method of Nanofluids	9
		2.2.1	Single-step Approach	10
		2.2.2	Two-step Approach	12
	2.3	Views	s in Application	15
		2.3.1	Nanofluids for Industrial Cooling Applications	16
		2.3.2	Nanofluids for Electronic Applications	18
	2.4	Comn	non Nanoparticles Used in Nanofluids	19
		2.4.1	Carbon Nanofiber (CNF)	20
		2.4.2	Carbon Nanotube (CNT)	22
		2.4.3	Advantages of CNF over CNT	24
	2.5	Chara	cterization of Nanoparticles	26
		2.5.1	Field Emission Scanning Electron Microscope (FESEM)	27
		2.5.2	Fourier Transform Infrared (FTIR)	30
		2.5.3	Gas Adsorption Analysis	34
	2.6	Dispe	rsion and Stability of Nanoparticles in Nanofluids	38
		2.6.1	Sedimentation and Centrifugation Method to Evaluate	41
			Nanofluid Stability	
		2.6.2	Used of Surfactant / Dispersing Agent for Nanofluid	41
			Stability Enhancement	
		2.6.3	Homogenization and Sonicating Effect	44
		2.6.4	Surface Modification Techniques	45

2.7	Thermal Conductivity	46
	2.7.1 Parameter which Effect Thermal Conductivity	46
	2.7.1.1 Volume Fraction Effect	46
	2.7.1.2 Nanoparticle Size Effect	48
	2.7.1.3 Temperature Effect	51
2.8	Viscosity of Nanofluids	52
	2.8.1 Parameter which Effect Viscosity of Nanofluids	54
	2.8.1.1 Temperature	54
	2.8.1.2 Nanoparticle Concentration	56
2.9	Specific Heat Capacity	58
	2.9.1 Parameter which Effect Specific Heat Capacity of	59
	Nanofluids	
	2.9.1.1 Effect of Volume Fraction	59
• • •	2.9.1.2 Effect of Temperature	61
2.10	Heat Transfer of Nanofluids	62
	2.10.1 Heat Transfer Coefficient	65
	2.10.2 Nusselt Number	67
2.11	Critical Issue in Nanofluids Preparation and Thermophysical	68
	Properties	60
	2.11.1 Long Term Stability in Nanofluids Dispersion	68
	2.11.2 Lower Specific Heat	69
	2.11.5 Higher Viscosity	69 70
2.10	2.11.4 Difficulties in Nanofluids Production	70
2.12	Summary and Concluding Remark	/1
ME	THODOLOGY	72
3.1	Introduction	72
3.2	Material Description	73
	3.2.1 Type of CNF Used	73
	3.2.2 Surfactant	74
	3.2.3 Base Fluid Properties	75
	3.2.3.1 Deionized Water (DI)	75
	3.2.3.2 Ethylene Glycol (EG)	76
3.3	Phase 1: Characterization of PR-24 HHT CNF Particles	77
	3.3.1 Field Emission Scanning Electron Microscopy (FESEM)	77
	3.3.2 Nitrogen Adsorption Analysis	79
	3.3.3 Fourier Transform Infrared (FTIR)	82
3.4	Phase 2: Formulation of CNF-based Nanocoolant	84
3.5	Phase 3: Nanocoolant Sample Preparation	85
3.6	Phase 4: Stability and Screening Test	86
3.7	Phase 5: Determination of Thermophysical Properties of Nanocoolant	87
	3.7.1 Thermal Conductivity	87
	3.7.2 Viscosity	89
	3.7.3 Specific Heat Capacity	91
3.8	Heat Transfer Performance of Nanocoolant	93
3.9	Summary and Concluding Remark	95

3.

4.	RES	SULT AND DISCUSSION	96
	4.1	Introduction	96
	4.2	Stability of CNF-based Nanocoolant	96
	4.3	Dispersion of CNF-based Nanocoolant	99
	4.4	Analysis of CNF-based Nanocoolant Stability	102
	4.5	Thermophysical Properties of CNF-based Nanocoolant	103
		4.5.1 Thermal Conductivity of CNF-based Nanocoolant	103
		4.5.1.1 Standard Data Comparison Between Measured and Reference	103
		4.5.1.2 Thermal Conductivity at 100:0 (DI:EG)	105
		4.5.1.3 Thermal Conductivity at 90:10 (DI:EG)	108
		4.5.1.4 Thermal Conductivity at 80:20 (DI:EG)	110
		4.5.1.5 Thermal Conductivity at 70:30 (DI:EG)	114
		4.5.1.6 Thermal Conductivity at 60:40 (DI:EG)	117
		4.5.1.7 Thermal Conductivity at 50:50 (DI:EG)	119
		4.5.1.8 Thermal Conductivity at 40:60 (DI:EG)	122
		4.5.1.9 Thermal Conductivity at 30:70 (DI:EG)	124
		4.5.1.10 Thermal Conductivity at 20:80 (DI:EG)	126
		4.5.1.11 Thermal Conductivity at 10:90 (DI:EG)	128
		4.5.1.12 Thermal Conductivity at 0:100 (DI:EG)	130
		4.5.1.13 Analysis of Thermal Conductivity of	133
		CNF-based Nanocoolant	
		4.5.1.14 Influence of Nanoparticle Loading	135
		4.5.1.15 Influence of Temperature	136
		4.5.1.16 Influence of Base Fluid Thermal Conductivity	137
		4.5.2 Viscosity of CNF-based Nanocoolant	138
		4.5.2.1 Viscosity of CNF-based Nanocoolant: Influence of Concentration and Temperature	140
		4.5.3 Specific Heat Capacity of CNF-based Nanocoolant	142
		4.5.3.1 Analysis of Specific Heat Capacity of CNF-based Nanocoolant	145
	4.6	Heat Transfer Performance of CNF-based Nanocoolant	147
		4.6.1 Heat Transfer Coefficient	146
		4.6.2 Nusselt Number	149
		4.6.3 Analysis of Heat Transfer Performance of CNF-based Nanocoolant	152
	4.7	Influence of CNF Properties on Enhancing	153
		Thermophysical Properties of Nanocoolant	
	4.8	Summary and Concluding Remark	164
5.	CO	NCLUSION AND RECOMMENDATION	166
	5.1	Conclusion	166
	5.2	Future Recommendation Work	169
RE	FERE	ENCES	170
AP	PEND	DICES	196

vi

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Advantages and disadvantages of single-step approach	14
	and two-step approach	
2.2	Comparison between CNF and CNT	25
2.3	Summary of the different synthesis process and dispersion	40
	method on the stability of CNT/CNF nanofluids	
2.4	Summary of experimental studies on convective heat transfer of	64
	nanofluids	
3.1	Geometrical specification and characteristics of PR-24 HHT CNF	74
3.2	PVP physical properties	76
3.3	DI physical properties	76
3.4	Ethylene glycol properties at room temperature	77
4.1	Stability measurement experiment	99
4.2	Micrograph of nanocoolant dispersion in base fluid	101
4.3	Thermal conductivity enhancement of CNF-based nanocoolant	107
	compared to base fluid at 100:0 (DI:EG)	
4.4	Thermal conductivity enhancement of CNF-based nanocoolant	110
	compared to base fluid at 90:10 (DI:EG)	

4.5	Thermal conductivity enhancement of CNF-based nanocoolant	112
	compared to base fluid at 80:20 (DI:EG)	
4.6	Thermal conductivity enhancement of CNF-based nanocoolant	116
	compared to base fluid at 70:30 (DI:EG)	
4.7	Thermal conductivity enhancement of CNF-based nanocoolant	118
	compared to base fluid at 60:40 (DI:EG)	
4.8	Thermal conductivity enhancement of CNF-based nanocoolant	121
	compared to base fluid at 50:50 (DI:EG)	
4.9	Thermal conductivity enhancement of CNF-based nanocoolant	123
	compared to base fluid at 40:60 (DI:EG)	
4.10	Thermal conductivity enhancement of CNF-based nanocoolant	125
	compared to base fluid at 30:70 (DI:EG)	
4.11	Thermal conductivity enhancement of CNF-based nanocoolant	127
	compared to base fluid at 20:80 (DI:EG)	
4.12	Thermal conductivity enhancement of CNF-based nanocoolant	130
	compared to base fluid at 10:90 (DI:EG)	
4.13	Thermal conductivity enhancement of CNF-based nanocoolant	132
	compared to base fluid at 0:100 (DI:EG)	
4.14	Variation of nanocoolant viscosity with temperature for different	139
	concentrations and base ratios	
4.15	Specific heat capacity of CNF-based nanocoolant	144
4.16	Heat transfer coefficient of CNF-based nanocoolant at different	148
	temperature setting	
4.17	Variation of Nusselt numbers at different temperature setting	151
4.18	BET surface area and pore properties of CNF	159

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Thesis structure diagram	7
2.1	Numerous base fluids, nanoparticles and surfactant used in	10
	nanofluid preparation	
2.2	Proposed improvements for one-step direct evaporation nanofluids	11
	preparation process	
2.3	Two-step preparation process of nanofluids	13
2.4	Schematic demonstration of (a, b, c) formation of cup-stacked CNF	21
	structure and (d) platelet CNF structure	
2.5	Structure of carbon nanotubes	22
2.6	Comparison in structure between SWCNT and MWCNT	23
2.7	FESEM images of (a, b, c) CNF paper and (d, e, f) CNF-PANI	28
	composite paper	
2.8	FESEM images of (a, b) CNF, (c, d) CNF-Ti and (e, f) CNF-Mn	29
2.9	FTIR spectrum evaluation	31
2.10	FTIR spectrum of MWCNT oxidized with H ₂ SO ₄ /HNO ₃ mixture	32
2.11	CNT-IR absorbance spectrum	33
2.12	IUPAC classification of isotherms	35
2.13	IUPAC classification of hysteresis loops	36
2.14	Nitrogen-adsorption curves of CNF, CNF-Ti and CNF-Mn	37
	ix	

2.15	Formation of stable suspension by dispersant	43
2.16	Molecular structure of PVP	44
2.17	Thermal conductivity of carbon black nanofluids	48
2.18	Thermal conductivity enhancement with decreasing size of	49
	nanoparticle	
2.19	Thermal conductivity of CNF-based nanofluids	50
2.20	Thermal conductivity of MWCNT-water nanofluids	52
2.21	Viscosity plots against temperature for ethylene glycol-based	54
	nanofluids	
2.22	Variations of dynamic viscosity with temperature at different solid	56
	volume fractions	
2.23	Variations of dynamic viscosity with solid volume fraction at	58
	different temperatures	
2.24	Effect of mass fraction on the specific heat of nanofluids	61
3.1	Methodology flow chart	73
3.2	Schematic diagram of FESEM chamber	78
3.3	Schematic diagram of BET instrument	81
3.4	Working principle of FTIR	83
3.5	Nanocoolant samples after undergoing homogenization and sonication	86
3.6	Stability test using STR device (a) unstable sample and	87
	(b) stable sample	
3.7	Schematic diagram for thermal conductivity measurement of	88
	nanocoolant	
3.8	Schematic diagram of the rotary viscometer	90
3.9	Schematic diagram of IKA C 200 calorimeter bomb	92

3.10	Schematic diagram of mini heat transfer test rig	93
4.1	CNF-based nanocoolant observation (a) without dispersant	97
	and (b) with dispersant	
4.2	Comparison of thermal conductivity variation with temperature	104
	between experimental values and ASHRAE	
4.3	Thermal conductivity of 100:0 (DI:EG) CNF-based nanocoolant	105
	with various concentration at different temperatures	
4.4	Thermal conductivity of 90:10 (DI:EG) CNF-based nanocoolant	108
	with various concentration at different temperatures	
4.5	Thermal conductivity of 80:20 (DI:EG) CNF-based nanocoolant	111
	with various concentration at different temperatures	
4.6	Thermal conductivity of 70:30 (DI:EG) CNF-based nanocoolant	114
	with various concentration at different temperatures	
4.7	Thermal conductivity of 60:40 (DI:EG) CNF-based nanocoolant	117
	with various concentration at different temperatures	
4.8	Thermal conductivity of 50:50 (DI:EG) CNF-based nanocoolant	120
	with various concentration at different temperatures	
4.9	Thermal conductivity of 40:60 (DI:EG) CNF-based nanocoolant	122
	with various concentration at different temperatures	
4.10	Thermal conductivity of 30:70 (DI:EG) CNF-based nanocoolant	124
	with various concentration at different temperatures	
4.11	Thermal conductivity of CNF-based nanofluids at various	126
	concentrations when compared to standard DI:EG (20:80)	
4.12	Thermal conductivity of 10:90 (DI:EG) CNF-based nanocoolant	129
	with various concentration at different temperatures	

4.13	Thermal conductivity of 0:100 (DI:EG) CNF-based nanocoolant	131
	with various concentration at different temperatures	
4.14	Comparison of viscosity of base fluid with ASHRAE	138
4.15	Specific heat capacity of standard mixture	143
4.16	FESEM Images of PR-24 HHT CNF nanoparticles at a) 500, b) 5000,	154
	c) 20,000 and d) 80,000 magnification	
4.17	Diameter distribution for carbon nanofiber	155
4.18	Isotherm plot for PR-24 HHT CNF	157
4.19	DFT pore size distribution	159
4.20	FTIR spectra of PR-24 HHT CNF	162

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Nanocoolant sample calculation	196
B1	Nanocoolant sample stability	199
B2	Temperature difference in heat transfer test	202
С	BET testing	204
D	ASHRAE standard reference	214

xiii

LIST OF ABBREVIATIONS AND SYMBOLS

CNF	-	Carbon nanofibers
CNT	-	Carbon nanotube
CF	-	Carbon fiber
EG	-	Ethylene glycol
DI	-	Deionized water
PVP	-	Polyvinylpyrrolidone
Cu	-	Copper
CuO	-	Copper oxide
Al_2O_3	-	Aluminium oxide
CuSO ₄ .5H ₂ O	-	Copper (II) sulfate pentahydrate
NaH ₂ PO ₂ .H ₂ C)-	Sodium hypophosphite monohydrate
NaH ₂ PO ₂	-	Sodium hypophosphite
CuSO ₄	-	Copper (II) sulfate
Cu ₂ O	-	Copper (I) oxide
TiO ₂	-	Titanium dioxide
LaB ₆	-	Lanthanum hexaboride
SiO ₂	-	Silicon dioxide
SiC	-	Silicon carbide
PVA	-	Polyvinyl alcohol
SDS	-	Sodium dedocyl sulphate

xiv

DTAB	-	Dodecyltrimethylammonium bromide	
VEROS	-	Vacuum evaporation onto a running oil substrate	
SANSS	-	Submerged arc nanoparticles synthesis system	
HVAC	-	Heating, ventilation and air conditioning	
PCM	-	Phase change materials	
OHP	-	Oscillating heat pipe	
HPLC	-	High performance liquid chromatography	
CPU	-	Central processing unit	
SWCNT	-	Single-walled carbon nanotubes	
MWCNT	-	Multi-walled carbon nanotubes	
CVD	-	Chemical vapor deposition	
SCCNT	-	Stacked-cup carbon nanotubes	
AC	-	Activated carbons	
FESEM	-	Field emission scanning electron microscopy	
TEM	-	Transmission electron microscope	
FTIR	-	Fourier transform infrared	
EDS	-	Energy-dispersive spectrometer	
EBSD	-	Electron backscatter diffraction	
BET	-	Brunauer emmet teller	
DFT	-	Density functional theory	
IUPAC	-	International union of pure and applied chemistry	
ASHRAE	-	American society of heating, refrigerating and air-conditioning	
		engineers	
ASTM	-	American society for testing and materials	
IEEE	-	Institute of electrical and electronics engineers	

Q	-	Flow of heat
h	-	Coefficient of heat transfer
A	-	Heat transfer area
ΔT	-	Temperature different
т	-	Mass of water bath
C_p	-	Specific heat of the water bath
K	-	Temperature difference in the water bath
Nu	-	Nusselt number
D	-	Copper pipe diameter
k	-	Thermal conductivity

LIST OF PUBLICATIONS

JOURNAL PAPER

Abidin, S.Z., Mohamad, I.S., Hashim, A.Y.B., Abdullah, N. and Abdullah, A., 2018. Textural and Adsorption Analysis of Nanocarbon Particles. *International Journal of Nanoelectronics and Materials*, 11(3), pp. 295-306. (Scopus)

Abidin, S.Z., Mohamad, I.S., Hashim, A.Y.B., Abdullah, N. and Abdullah, A., 2018. Thermal conductivity of Carbon Nanofiber in EG-DI Based Nanofluids. *Journal of Mechanical Engineering*, 15(1), pp. 59-68. (Scopus)

Abidin, S.Z., Mohamad, I.S., Hashim, A.Y.B., Abdullah, N., Tuan, T.B. and Abdullah, A., 2018. Thermophysical Properties of Nanocarbon Particles in Ethylene Glycol and Deionized Water. *Journal of Engineering and Technology*, 9(1), pp. 1-15.

Abidin, S.Z., Mohamad, I.S., Hashim, A.Y.B., Abdullah, N., Hafiz, M.I.M., Masripan, N.A.B. and Abdullah, A., 2016. Investigation of Thermal Characteristics of CNF-based Nanofluids for Electronic Cooling Applications. *Journal of Mechanical Engineering and Sciences*, 10(3), pp. 2336-2349. (Scopus)

Abdullah, A., Mohamad, I.S., Hashim, A.Y.B., Abdullah, N., Wei, P.B., Md. Isa, M.H. and Abidin, S.Z., 2016. Thermal Conductivity and Viscosity of Deionised Water and Ethylene Glycol-Based Nanofluids. *Journal of Mechanical Engineering and Sciences*, (10)3, pp. 2249-2261.

xvii

CONFERENCES PROCEEDINGS

Abidin, S.Z., Mohamad, I.S., Hashim, A.B., Masripan, N.A.B. and Abdullah, A., Specific Heat Capacity of Carbon Nanofiber Nanocoolant. *1st Colloquium Paper Advanced Materials and Mechanical Engineering Research (CAMMER'18)*, Melaka, Malaysia, April 2018, Penerbit Universiti Teknikal Malaysia Melaka.

Abidin, S.Z., Mohamad, I.S., Hashim, A.Y.B., Abdullah, N. and Abdullah, A., Thermal conductivity of Carbon Nanofiber in EG-DI Based Nanofluids. *Proceedings of Mechanical Engineering Research Day 2017*, Melaka, Malaysia, 31 March 2017, Centre for Advanced Research on Energy.

Abdullah, A., Mohamad, I.S., Hashim, A.Y.B., Abdullah, N. and Abidin, S.Z., Development of Ethylene Glycol and Water Mixture MWCNT-OH based Nanofluid with High Thermal Conductivity. *Proceedings of Mechanical Engineering Research Day* 2017, Melaka, Malaysia, 31 March 2017, Centre for Advanced Research on Energy.

Mohamad, I.S., Hashim, A.Y.B., Abdullah, A. and Abidin, S.Z., Nanofluids: A New Generation Coolants. *Melaka International Intellectual Exposition 2016 (MIIEx2016)*, UITM Melaka, Melaka, Malaysia, 10 December 2016. (Gold Medal Award)

Abidin, S.Z., Mohamad, I.S., Hashim, A.Y.B., Abdullah, N., Tuan, T.B. and Abdullah, A., Thermo-physical Properties of Nanocarbon Particles in Ethylene Glycol and Deionized Water. *Postgraduate Symposium on Green Engineering and Technology 2016* (*PSGET 2016*), UniKL MICET, Melaka, Malaysia, 7 November 2016, UniKL Publisher.

xviii

Abidin, S.Z., Mohamad, I.S., Hashim, A.Y.B., Abdullah, N., Hafiz, M.I.M. and Abdullah, A., Investigation of Thermal Characteristics of CNF-based Nanofluids for Electronic Cooling Applications. *The* 4th *International Conference on Engineering & ICT 2016* (*ICEI 2016*), Melaka, Malaysia, 4 - 6 April 2016, UTeM Publisher.

Abidin, S.Z., Mohamad, I.S., Hashim, A.Y.B., Abdullah, N. and Abdullah, A., Characterization of Nanocarbon Particles Using Nitrogen Adsorption Analysis: Isotherm, Pore Type, Pore Size and BET Surface Area. *Proceedings of Mechanical Engineering Research Day 2016*, Melaka, Malaysia, 31 March 2016, Centre for Advanced Research on Energy.

Abdullah, A., Mohamad, I.S., Hashim, A.Y.B., Abdullah, N. and Abidin, S.Z., Effect of Duration Time of Homogenization and Sonication on Stability of MWCNT-OH in Ethylene Glycol and Deionized Water. *Proceedings of Mechanical Engineering Research Day 2016*, Melaka, Malaysia, 31 March 2016, Centre for Advanced Research on Energy.